

August 18, 1982 New Information Mailed to: E, D, C/2048/DB Westinghouse Electric Corporation Transformer Components Division Five Parkway Center, Greentree Rd. Pittsburgh, PA 15220 Product Bulletin 44-393

Page 1

350 Kv BIL for 69 Kv GRD Wye Outdoor, 60 Hertz

Type LPT Voltage Transformer

Application

The LPT is an oil filled outdoor potential transformer designed for metering and relaying applications. It is available only in the single bushing design for use on three phase, four wire ground wye systems.

Accuracy

ANSI metering accuracy class:

 X_1 - X_3 , 115 volts, 0.3 class, 0 thru ZZ burden X_2 - X_3 , 67.08 volts, 0.3 class, 0 thru Z burden Y_1 - Y_2 , 115 volts, 0.3 class, 0 thru Z burden

Design Features

Small Size, Low Weight

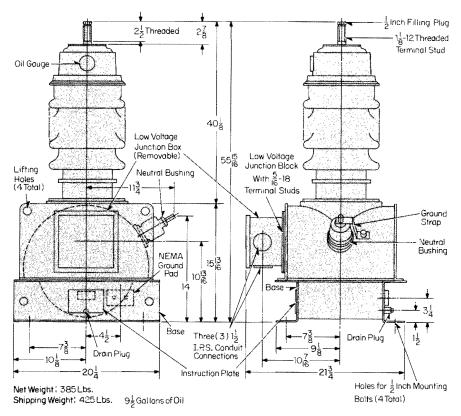
A form fit tank, coupled with a continuous, layer wound coil, results in a unit with only 56 inches overall height and less than 400 pounds in weight.

Core and Coil

A continuous, layer wound primary coil is wound directly over the secondary coils and assembled with two Hipersil core loops. The high voltage lead is covered with solid insulation and paper tape to form the central part of the internal bushing assembly.

Secondary Conduit Box

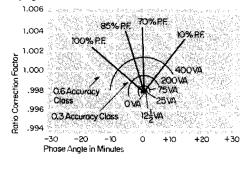
A removable, weather-proof secondary junction box is furnished, with provisions for 3 – 1½" conduit connections. The box mounts around a molded secondary terminal block having 1/16-18 threaded terminal studs.

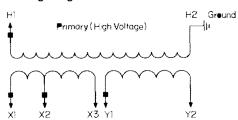

Color

The complete unit, including the primary porcelain, is standard #70 gray.

Further Information

Prices P.L. 44-321.


Dimensions and Weights


Performance Curves

Typical ratio correction factors and phase angle values plotted for standard burdens, using the Farber Method ("The Analytical and Graphical Determination of Complete Potential Transformer Characteristics" – Settles, Farber, Conner – AIEE Transaction Paper 60-1246 October, 1960).

X1-X3 (115 Volts)

Wiring Diagram

With rated primary voltage applied on the high voltage winding, X_1 - X_3 and Y_1 - Y_2 will provide 115 volts. The tapped portion of the secondary (X_2 - X_3) will provide 67.08 volts.

Selector Guide

BIL Kv	Normal Circuit Voltage	Winding Ratios		Transformer Voltages			Thermal Rating, VA		ANSI	Style
		Primary to X Winding	Primary to Y Winding	Primary	X Winding	Y Winding	All on One Secondary Winding	Divided Between Both Windings	Minimum HV Bushing Creep (Inches)	Number
350	69000	600/350:1	350:1	40250	67.08/115	115	4000	5000	48	4300A69G04