### INSTRUCTION MANUAL

# MOTOR PROTECTION RELAY

# S2E21

#### TOSHIBA CORPORATION

#### CONTENTS

|      |                                                                                                       | Page              |
|------|-------------------------------------------------------------------------------------------------------|-------------------|
| 1.   | INTRODUCTION ·····                                                                                    | 2                 |
| 2.   | GENERAL SPECIFICATION                                                                                 | 3<br>4            |
|      | 2.2 Functions<br>2.3 Protection Curves                                                                | 5<br>17           |
| 3.   | APPEARANCE AND CONFIGURATION3.1 S2E21-C1A* (without DG)3.2 S2E21-C1A[ 1 (with DG)                     | 18<br>18<br>21    |
| 4.   | MOUNTINGAND CONNECTION<br>4.1 Mounting<br>4.2 Connection                                              | 27<br>27<br>30    |
| 5.   | HANDLING                                                                                              | 38                |
|      | 5.1 Installing Battery5.2 Turning Power On                                                            | 38<br>38          |
|      | 5.3 Basic Operation of Screen                                                                         | 39<br>44          |
|      | 5.5 Menu                                                                                              | 46                |
|      | 5.6 Measurement5.7 Event                                                                              | 47<br>54          |
|      | 5.8 Setting<br>5.9 Testing                                                                            | 56<br>81          |
|      | 5.10 Failure Information                                                                              | 81<br>83          |
|      | 5.11 Hand1 ing of Memory Card5.12 Directional Ground Unit (DG)                                        | 86<br>91          |
| 6.   | MAINTENANCE AND INSPECTION                                                                            | 92                |
|      | <ul><li>6.1 Periodic Inspection</li><li>6.2 Troubleshooting</li></ul>                                 | 92<br>96          |
|      | 6.3 Bench Test                                                                                        | 100               |
| 7.   | PROTECTIVE DETECTION SCHEME                                                                           | 105<br>105        |
|      | 7.2 Locked Rotor Unit                                                                                 | 109               |
|      | <ul><li>7.3 Repetitive Starting</li><li>7.4 Detection of Starting Current and Starting Time</li></ul> | 113<br>114        |
|      | 7.5 Detection of the Heating Time Constant and                                                        |                   |
|      | Cool ing Time Constant                                                                                | $\frac{115}{117}$ |
|      | 7.7 Setting For Reduce Voltage Starting                                                               | 120               |
| APPE | NDIX A                                                                                                | ·121              |
| R    | ev 1 TYPES2E21-C1A VERSION 1.01                                                                       |                   |

| 29-1 → | P29 SETTI    | NG     |
|--------|--------------|--------|
|        | O/P RELAY    | CONFIG |
| 29-2 → | 0 (0) NON-   | L-SAFE |
| 29-3 → | • (1) FAIL-S |        |
| ſ      | TRIP         | 0      |
| {      | ALARM        | 0      |
| 29-4   | LOCK         | 0      |
| l      | ERROR        | 0      |
| 1      |              |        |

| No.  | Item                                              | Description                                                                                                                                                                                                   | State at delivery |
|------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 29-1 | Setting                                           | Sets the operation mode of the output relay.                                                                                                                                                                  | -                 |
| 29-2 | Energized-on<br>operation<br>(Non-fai 1-<br>safe) | The output relay is energized on operation.<br>The state of output contact is shown below in<br>the case of tripping.<br><u>State a-contact b-contact</u><br>Control Open Closed<br>supply<br>not<br>provided |                   |
|      |                                                   | Control Open Closed<br>supply<br>provided                                                                                                                                                                     |                   |
|      |                                                   | Trip Closed Open                                                                                                                                                                                              |                   |

- 70 -

## TOSHIBA

| ١o.  | Item                                     | Description                                                                                                                                                                                                                                                              | State at de livery                     |
|------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 29-3 | Continuously<br>energized<br>(fai lsafe) | The output relay is energized at normal condi-<br>tion. The state of output contact is shown below<br>in the case of tripping.<br>$\underbrace{\text{State a-contact b-contact}}_{\text{Control Open Closed}}$ $\underbrace{\text{supply not}}_{\text{p r o v i d e d}}$ |                                        |
|      |                                          | Control Closed Open<br>supply<br>provided                                                                                                                                                                                                                                |                                        |
|      |                                          | Trip Open Closed                                                                                                                                                                                                                                                         |                                        |
| !9-4 | Setting                                  | Selects between continuously energized and<br>energized-on-operation for 3 outputs-trip.<br>alarm, and lock.<br>Setting is made by moving the cursor to this<br>position and entering "0" or "1. "<br>The setting of the error output is made in<br>hardware.            | TR I P<br>AL ARM<br>LOCK }<br>ERROR: O |

| 30-1 → | P30SET                                                                                     | TING           |                  |          |
|--------|--------------------------------------------------------------------------------------------|----------------|------------------|----------|
|        | RYO/P<br>- (0)NOP<br>OL<br>OC<br>UC<br>INST<br>UB<br>L.R<br>OCG<br>RTD<br>SPARE1<br>SPARE2 | $P \cdot O(1)$ | OPE.<br>TRP<br>O | ← 30-3   |
|        | 6                                                                                          | 10 11          |                  | <u>L</u> |
| 30-2 — |                                                                                            |                |                  |          |

.

| No.       | Item         | Description                                                                                        | itate <b>at</b><br>lelivery |
|-----------|--------------|----------------------------------------------------------------------------------------------------|-----------------------------|
| 30-1      | jetting      | Sets the operation condition for the output relay.                                                 | -                           |
| -<br>30-2 | \larm output | Selects a unit that drives the alarmoutput<br>relay when an alarm is detected.                     | )                           |
|           |              | Enter either " $0$ " (not operate) or "1" (operate).                                               |                             |
|           |              | The output is an ORed output of alarm detections from the unit that drives the alarm output relay. |                             |
|           |              | Locked-rotor has no alarm But it isdetected<br>as an overload (OL) alarminstead.                   |                             |

| No.  | ltem | Description                                                                                      | State at delivery |
|------|------|--------------------------------------------------------------------------------------------------|-------------------|
| 30-3 | Trip | Specifies a unit that drives the trip output relay when a trip is detected.                      | 0L: 1<br>Others:  |
|      |      | Enter either "0" (not operate) or "1" (operate).                                                 |                   |
|      |      | The output is an ORed output of trip detections from the unit that drives the trip output relay. |                   |



$$31-1 \rightarrow P31 SETTING$$

$$31-2 \rightarrow ATD O/P = 2$$

$$(O = OFF 7 = RTD1 1 = IR 8 = RTD2 2 = IS 9 = RTD3 3 = IT 1 O = RTD4 4 = IAV 11 = RTD5 5 = \theta S 12 = RTD6 6 = \theta R 13 = RTD7 14 = RTD8 ... 15 = IO )$$

| No.  | Item                           | Description                                                          | State at delivery |
|------|--------------------------------|----------------------------------------------------------------------|-------------------|
| 31-1 | Setting                        | Selects an analog transducer output.                                 | -                 |
| 31-2 | Analog<br>transducer<br>output | Selects a measuring unit that outputs data to the analog transducer. | 0                 |

| transducer<br>output   | 4 mA $\sim$ 20 mA                               | transducer<br>putput                 | 4mA   | ~ | <b>20</b> mA                   |
|------------------------|-------------------------------------------------|--------------------------------------|-------|---|--------------------------------|
| I R<br>IS<br>IT<br>IAV | $0 \text{ A} \simeq \text{CT RATIO}$ (No. 20-2) | RTD1<br>RTD2<br>RTD3<br>RTD4<br>RTD5 | -20°C | ~ | 200°C                          |
| θS                     | 0 ℃ ~ θ S M<br>(No. 21-6)                       | RTD6<br>RTD8                         |       |   |                                |
| θ R                    | 0℃ ~ 200℃                                       | 10                                   | 0A    | ~ | <b>ZCT RATIO</b><br>(No. 20-3) |

| 32-1 →        | P32 SETTING                                                                                                                                                                                                    |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>32-2</b> → | $\begin{array}{ccccc} RTD1 & 0 \\ RTD2 & 0 \\ RTD3 & 0 \\ RTD4 & 0 \\ RTD5 & 0 \\ RTD6 & 0 \\ RTD7 & 0 \\ RTD7 & 0 \\ RTD8 & 0 \\ (0=0FF \\ 1=Pt100\Omega \\ 2=Pt100\Omega : JIS \\ 4=Ni120\Omega \end{array}$ |

| No.  | Item        | Description                                                                                                       | State at<br>delivery |
|------|-------------|-------------------------------------------------------------------------------------------------------------------|----------------------|
| 32-1 | Setting     | Sets the kind of RTD.                                                                                             | -                    |
| 32-2 | Kind of RTD | RTD1 to RTD8: Selects the corresponding RTD<br>type. Different RTD types can be selected on<br>one relay.         | 0                    |
|      |             | <b>Example:</b> RTD1 to RTD6 can be $Pt100\Omega$ , and RTD? & RTD8 can be $Ni120\Omega$ on one individual relay. |                      |
|      |             | Set to 0 (OFF) those channels that are not used.                                                                  |                      |

. -

...

| 33-1 → | P33 SETTING                                                                                                                                                                     | 7    |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 99 Q   | PRE RE<br>ALM TRP SE                                                                                                                                                            | 33-3 |
| 33-2   | RTD1 100 100 100<br>RTD2 100 100 100<br>RTD3 100 100 100<br>RTD4 100 100 100<br>RTD5 100 100 100<br>RTD5 100 100 100<br>RTD7 100 100 100<br>RTD7 100 100 100<br>RTD8 100 1 0 10 |      |

| No.          | Item        | Description                                                                                                                       | State at<br>delivery |  |
|--------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------|--|
| <b>33- l</b> | Setting     | <b>Sets the alarm, trip and reset levels for the</b> RTD's.                                                                       |                      |  |
| 33-2         | Alarm level | Sets alarm detection temperature for each RTD.<br>Setting range: $0\sim$ 200 $^\circ\!\mathrm{C}$                                 | 100 °C               |  |
| 33- 3        | Trip level  | Sets trip detection temperature for each RTD.<br>Setting range: 0 $\sim$ 200 $^\circ\!{ m C}$                                     | <b>100</b> ℃         |  |
| 33- 4        | Reset level | Sets a reset temperature for each KID.                                                                                            | <b>100</b> ℃         |  |
|              |             | After the temperature goes below the reset<br>level. the S2E21 can then be reset.<br>Setting range: 0 $\sim$ 200 $^\circ\!{ m C}$ |                      |  |

-----

| 34-1 → | P34 SETTING    |           |  |
|--------|----------------|-----------|--|
|        | AUTO LEARNING* |           |  |
|        | ○(0)<br>●(1)   | OFF<br>ON |  |
| 34-2 → | 1 s t          | 0         |  |
| 34-3 → | T s t          | 0         |  |
| 34-4 → | TR             | 0         |  |
| 34-5 → | TD             | 0         |  |

| <b>√o.</b> | Item                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | State at de I i very |
|------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 34-1       | Setting             | Sets whether or not automatic detection is needed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | —                    |
| 34-2       | Starting<br>current | Automatically detects the starting current and<br>specifies whether or not the detected value is<br>taken as the starting current setting.<br>Enter either 0 (OFF) or 1 (ON).<br>When 0 (OFF) is entered, the detected starting<br>current is displayed (P4) but the input value,<br>not the detected value, is used as the setting<br>value in the starting current setting (P25).<br>When 1 (0N) is entered, the detected starting<br>current is displayed (P4) and also taken as the<br>setting value in the starting current setting<br>(P25). | 0                    |

|                          |                                                                                                                                                                                         | delivery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>starting</b><br>time  | Automatically detects the starting time and<br>specifies whether or not the detected starting<br>time is used as the setting value.<br>Enter either 0 (OFF) or 1 (ON).                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                          | When 0 (OFF) is entered, the starting time is displayed $(P4)$ but the input setting value; not the detected value, is used as the setting value in the starting time setting $(P25)$ . |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                          | When 1 $(ON)$ is entered, the detected starting time is displayed $(P4)$ and also taken as the setting value in the starting time setting $(P25)$ .                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Heating time<br>constant | and specifies whether or not the detected value<br>is taken as the heating time constant setting.                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                          | constant is automatically detected and the detected value is taken as the setting value.                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                          | automatically turns off.<br>Automatic detection requires input of RTD1 to<br>RTD3 <sup>-</sup> for stator temperature, and RTD8 for '                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                          | time<br>Heating time                                                                                                                                                                    | timespecifies whether or not the detected starting<br>time is used as the setting value.<br>Enter either 0 (OFF) or 1 (ON).When 0 (OFF) is entered, the starting time is<br>displayed (P4) but the input setting value;<br>not the detected value, is used as the setting<br>value in the starting time setting (P25).When 1 (ON) is entered, the detected starting<br>time is displayed (P4) and also taken as the<br>setting value in the starting time setting<br>(P25).Heating time<br>constantAutomatically detects the heating time constant<br>and specifies whether or not the detected value<br>is taken as the heating time constant setting.When 1 (ON) is entered, the heating time<br>constant is automatically detected and the<br>detected value is taken as the setting value.<br>Upon completion of detection, this setting<br>automatically turns off. |

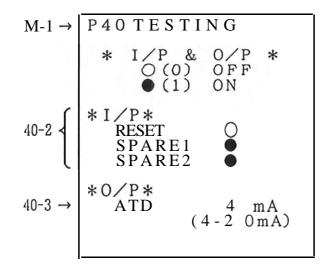
101

-

2

| 10.  | Item                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                           | State at de l i very |
|------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 14-5 | Cooling time<br>constant | Automatically detects the cooling time constant<br>and specifies whether or not the detected value<br>is taken as the cooling time constant setting.<br>When 1 (ON) is entered, the cooling time<br>constant is automatically detected and the<br>detected value is taken as the setting value.<br>Upon completion of detection, this setting<br>automatically turns off.<br>Automatic detection requires input of RTD1 to<br>RTD3, and RTD8 for ambient temperature. | 0                    |

-- 79 --


-

| 35-1 → | P35 SETTING                                                                                                                                           |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 35-2   | Clear data 0<br>(1 : ALL<br>$2 : \theta S, \theta R$<br>3 : IMAX<br>4 : N s t<br>5 : T t r u n<br>6 : LEARNED TR<br>7 : LEARNED TD<br>8 : MAX STARTS) |

| No.  | :tem         | Description                                                                                                                                                                                                                                                                                                                                                                                                              | State at delivery |
|------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 35-1 | Setting<br>- | Clears accumulated data and held data.                                                                                                                                                                                                                                                                                                                                                                                   | _                 |
| 35-2 | )learing     | <ul> <li>Entering the numbers of items whose data you want cleared causes the corresponding data to be cleared.</li> <li>Example: <ol> <li>Data may be required to be reset (cleared) due to a new motor installation.</li> <li>Temperature data only (θ S or θ R) may be required to be reset for an emergency restart. Caution should be taken in resetting this data. Motor damage may result.</li> </ol> </li> </ul> |                   |

. ..

### 5.9 Testing



| No.  | ltem    | Description                                                                                | State at<br>lelivery |
|------|---------|--------------------------------------------------------------------------------------------|----------------------|
| 40-1 | Testing | Perform tests on the input/output circuit.                                                 | _                    |
| 40-2 | Input   | Displays the state of contact input from the terminal block.                               | _                    |
|      |         | Displays • when there is an input: and Displays 0 when there is no input.                  |                      |
| 1    |         | The 3-phase input and zero-phase input are checked with the current value displayed on P2. |                      |

-

| No.  | Item                 | Description                                                                                                                                                             | State at<br>delivery |
|------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 40-3 | Analog<br>transducer | Changes the output of the analog transduser.<br>Press [EXE] key. The cursor appears, and enter<br>a current value (4-20 mA) to be output from the<br>analog transducer. | _                    |
|      |                      | The output current is checked externally.                                                                                                                               |                      |

-----

- 82 -

### 5.10 Failure Information

| $\begin{array}{ccc} 50\text{-}1 & \rightarrow \\ 50\text{-}2 & \rightarrow \end{array}$ | P50 OL TRIP<br>07/17 98:29                            |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------|
| 50-3                                                                                    | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|                                                                                         |                                                       |

| No.  | Item                                                                                                               | Description                                                                                                     | State at delivery |
|------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|
| 50-1 | Trip<br>information                                                                                                | Displays information at the date and time of the latest current-associated trip.<br>Cause of trip is displayed. | _                 |
| 50-2 | Time                                                                                                               | Dispiayes the date and time at which the trip occurred.                                                         | -                 |
| 50-3 | information Displays 3-phase current. zero-phase current,<br>temperature rise and unbalance factor at the<br>trip. |                                                                                                                 | -                 |

| $\begin{array}{c} 51-1 \rightarrow \\ 51-2 \rightarrow \end{array}$ | P51<br>00/0000:                                               | T R I P<br>0 0                                                                              |
|---------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 51-3                                                                | RTD 1<br>RTD2<br>RTD3<br>RTD4<br>RTD5<br>RTD6<br>RTD7<br>RTD8 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |

| No.  | Item                | Description                                                   | State at delivery |
|------|---------------------|---------------------------------------------------------------|-------------------|
| 51-1 | Trip<br>information | Displays information at the date and time of the latest trip. | _                 |
|      |                     | RTD number. that has tripped is displayed.                    |                   |
| 51-2 | Time                | Displayes the date and time at which the trip occurred.       |                   |
| 51-3 | Information         | Displays temperature of each RTD at trip.                     |                   |

-

| P52 TRIP CURRENT<br>00/00 00:00                       | $\begin{array}{c} \leftarrow 521  531\text{-}r \\ \leftarrow 522  532 \rightarrow \end{array}$ | P53 TRIP CURRENT<br>00/00 00:00                       |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| SECIR(A)IS(A)                                         |                                                                                                | SEC IT (A) IO(A)                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | ←52-3 53-3→                                                                                    | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |

| No.          | Item                  | Description                                                                                                                                                                                     | State at delivery |
|--------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 52-1<br>53-1 | Trip current<br>trend | Displays the current trend immediately before the trip                                                                                                                                          | -                 |
| 52-2<br>53-2 | Time                  | Displays the date time at which the trip occurred.                                                                                                                                              | _                 |
| 52-3<br>53-3 | Current<br>trend      | Displays 10 seconds of 1 second interval curren<br>trend before trip.<br>Current of R-phase and S-phase are displayed on<br>P52; and current of T-phase and zero-phase are<br>displayed on P53. | t —               |

5.11 Handling of Memory Card

The S2E21s each have a dedicated memory card, which is used for backup of S2E21 settings and as information media for the monitor system (purchased separately) that includes personal computers. The specifications of the memory card are shown in Table 5.

5.11.1 Sack up of Setting

The memory card is utilized as a backup of the setting of the S2E21.

Procedure for backup

- 1. Cancel the write-pretect for the **memory** card. (See 5.11.3 (2).)
- 2. Insert the memory card into the S2E21. (See 5.11.3 (3), )
- 3. Initialize the memory card. (See 5.8 P27.)
- 4. Store the contents of setting into the memory card. (See 5.8 P27.)
- 5. Turn on the write-protect for the memory card. (See 5.11.3 (2).)

The memory card uses S-RAM card with a battery backup that prevents the contents of the backup from being lost when you pull the memory card from the S2E21. The battery backup also allows the memory card to be inserted or withdrawn during the operation of the S2E21.

CAUTION: Removing the memory card from the S2E21 and storing it alone may result in the loss of the backed-up contents when the backup battery is exhausted. The memory card must be left inserted in the S2E21. Procedure for loading the backed-up settings of the memory card into the S2E21.

- Register the MACH ID and PASS ID of the S2E21. (MACH ID and PASS ID must be the same as those when the settings were backed up in the memory card.) (See 5.3.3. 5.4.)
- Insert the memory card into the S2E21.
   (See 5.11.3 (3).)
- 3. Load the backed-up contents from the memory card into the S2E21.

The contents of settings backed up by the memory card are those stored by the above backup procedure. After this, when the settings of the S2E21 are changed, the contents of the memory card do not automatically change. You are reguired to perform the store operation again.

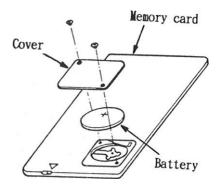
Prior to the loading of the backed-up settings, comparison is made of the MACH. ID and PASS ID between the memory card and the S2E21. When these ID numbers do not agree, the backed-up settings will not be loaded into the S2E21.

5.11.2 Memory Card As Information Media

The memory card may be used as information media for the monitor system including personal computers and for the S2E21.

For detail, see the manual for the monitor system

.....


| Item         |              | Description                |
|--------------|--------------|----------------------------|
| Manufacturer |              | Toshi ba                   |
| Туре         |              | MCA 5101BAA                |
| Memory type  |              | S-RAM                      |
| Capacity     |              | 32 kbytes                  |
| Schene       |              | Menory bus schene          |
| Pin nunber   |              | 40 pins                    |
| Battery      | type         | Lithium coin battery (3 V) |
| Battery life | Not in relay | Approx. 2 years            |
|              | Inserted     | Greater than 10 years      |
|              | in relay     | W control power on relay   |
|              |              | Approx. 2 years            |
|              |              | Wno power to relay         |

#### Table 4 Memory Card Specifications

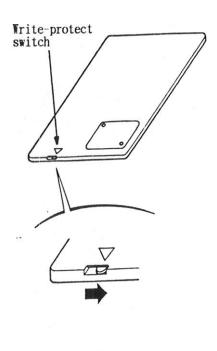
5.11.3 Handling of Memory Card

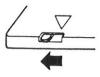
The memory card should be handled as follows.

- (1) Installing battery:
  - Open the battery holder cover of the nenory card with the screwdriver supplied.
  - Place the attached battery in the battery holder, with the positive polarity (+) facing up.
  - Close the battery holder cover in the process reverse to step 1).



(2) Write-protecting the memory card:


The memory card is provided with a writeprotect switch for preventing inadvertent writing. Turn on the write-protect switch (to set the write-protect) except when storing the data into the memory card.


To set the write-protect:

Move the write-protect switch to the right side (to align with the mark " $\nabla$ "). This disables writing into the memory card.

To cancel the write-protect:

Move the write-protect switch to the left side (away from the mark " $\nabla$ "). This enables writing into the memory card.





| 29-1 → | P29 SETTI    | NG     |
|--------|--------------|--------|
|        | O/P RELAY    | CONFIG |
| 29-2 → | 0 (0) NON-   | L-SAFE |
| 29-3 → | • (1) FAIL-S |        |
| ſ      | TRIP         | 0      |
| {      | ALARM        | 0      |
| 29-4   | LOCK         | 0      |
| l      | ERROR        | 0      |
| 1      |              |        |

| No.  | Item                                              | Description                                                                                                                                                                                                   | State at delivery |
|------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 29-1 | Setting                                           | Sets the operation mode of the output relay.                                                                                                                                                                  | -                 |
| 29-2 | Energized-on<br>operation<br>(Non-fai 1-<br>safe) | The output relay is energized on operation.<br>The state of output contact is shown below in<br>the case of tripping.<br><u>State a-contact b-contact</u><br>Control Open Closed<br>supply<br>not<br>provided |                   |
|      |                                                   | Control Open Closed<br>supply<br>provided                                                                                                                                                                     |                   |
|      |                                                   | Trip Closed Open                                                                                                                                                                                              |                   |

- 70 -

## TOSHIBA

| ١o.  | Item                                     | Description                                                                                                                                                                                                                                                                        | State at de livery                     |
|------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 29-3 | Continuously<br>energized<br>(fai lsafe) | The output relay is energized at normal condi-<br>tion. The state of output contact is shown below<br>in the case of tripping.<br>$\underbrace{\text{State a-contact b-contact}}_{\text{Control Open Closed}}$ $\underbrace{\text{State a-contact b-contact}}_{\text{supply not}}$ |                                        |
|      |                                          | Control Closed Open<br>supply<br>provided                                                                                                                                                                                                                                          |                                        |
|      |                                          | Trip Open Closed                                                                                                                                                                                                                                                                   |                                        |
| !9-4 | Setting                                  | Selects between continuously energized and<br>energized-on-operation for 3 outputs-trip.<br>alarm, and lock.<br>Setting is made by moving the cursor to this<br>position and entering "0" or "1. "<br>The setting of the error output is made in<br>hardware.                      | TR I P<br>AL ARM<br>LOCK }<br>ERROR: O |

| 30-1 → | P30SET                                                                                     | TING           |                  |          |
|--------|--------------------------------------------------------------------------------------------|----------------|------------------|----------|
|        | RYO/P<br>- (0)NOP<br>OL<br>OC<br>UC<br>INST<br>UB<br>L.R<br>OCG<br>RTD<br>SPARE1<br>SPARE2 | $P \cdot O(1)$ | OPE.<br>TRP<br>O | ← 30-3   |
|        | 6                                                                                          | 10 11          |                  | <u>L</u> |
| 30-2 — |                                                                                            |                |                  |          |

.

| No.       | Item         | Description                                                                                        | itate <b>at</b><br>lelivery |
|-----------|--------------|----------------------------------------------------------------------------------------------------|-----------------------------|
| 30-1      | jetting      | Sets the operation condition for the output relay.                                                 | -                           |
| -<br>30-2 | \larm output | Selects a unit that drives the alarmoutput<br>relay when an alarm is detected.                     | )                           |
|           |              | Enter either " $0$ " (not operate) or "1" (operate).                                               |                             |
|           |              | The output is an ORed output of alarm detections from the unit that drives the alarm output relay. |                             |
|           |              | Locked-rotor has no alarm But it isdetected<br>as an overload (OL) alarminstead.                   |                             |

| No.  | ltem | Description                                                                                      | State at delivery |
|------|------|--------------------------------------------------------------------------------------------------|-------------------|
| 30-3 | Trip | Specifies a unit that drives the trip output relay when a trip is detected.                      | 0L: 1<br>Others:  |
|      |      | Enter either "0" (not operate) or "1" (operate).                                                 |                   |
|      |      | The output is an ORed output of trip detections from the unit that drives the trip output relay. |                   |



$$31-1 \rightarrow P31 SETTING$$

$$31-2 \rightarrow ATD O/P = 2$$

$$(O = OFF 7 = RTD1 1 = IR 8 = RTD2 2 = IS 9 = RTD3 3 = IT 1 O = RTD4 4 = IAV 11 = RTD5 5 = \theta S 12 = RTD6 6 = \theta R 13 = RTD7 14 = RTD8 ... 15 = IO )$$

| No.  | Item                           | Description                                                          | State at delivery |
|------|--------------------------------|----------------------------------------------------------------------|-------------------|
| 31-1 | Setting                        | Selects an analog transducer output.                                 | -                 |
| 31-2 | Analog<br>transducer<br>output | Selects a measuring unit that outputs data to the analog transducer. | 0                 |

| transducer<br>output   | 4 mA $\sim$ 20 mA                               | transducer<br>putput                 | 4mA   | ~ | <b>20</b> mA                   |
|------------------------|-------------------------------------------------|--------------------------------------|-------|---|--------------------------------|
| I R<br>IS<br>IT<br>IAV | $0 \text{ A} \simeq \text{CT RATIO}$ (No. 20-2) | RTD1<br>RTD2<br>RTD3<br>RTD4<br>RTD5 | -20°C | ~ | 200°C                          |
| θS                     | 0 ℃ ~ θ S M<br>(No. 21-6)                       | RTD6<br>RTD8                         |       |   |                                |
| θ R                    | 0℃ ~ 200℃                                       | 10                                   | 0A    | ~ | <b>ZCT RATIO</b><br>(No. 20-3) |

| 32-1 →        | P32 SETTING                                                                                                                                                                                                    |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>32-2</b> → | $\begin{array}{ccccc} RTD1 & 0 \\ RTD2 & 0 \\ RTD3 & 0 \\ RTD4 & 0 \\ RTD5 & 0 \\ RTD6 & 0 \\ RTD7 & 0 \\ RTD7 & 0 \\ RTD8 & 0 \\ (0=0FF \\ 1=Pt100\Omega \\ 2=Pt100\Omega : JIS \\ 4=Ni120\Omega \end{array}$ |

| No.  | Item        | Description                                                                                               | State at<br>delivery |
|------|-------------|-----------------------------------------------------------------------------------------------------------|----------------------|
| 32-1 | Setting     | Sets the kind of RTD.                                                                                     | -                    |
| 32-2 | Kind of RTD | RTD1 to RTD8: Selects the corresponding RTD<br>type. Different RTD types can be selected on<br>one relay. | 0                    |
|      |             | <b>Example:</b> RTD1 to RTD6 can be Pt100Ω, and<br>RTD? & RTD8 can be Ni120Ω on one<br>individual relay.  |                      |
|      |             | Set to 0 (OFF) those channels that are not used.                                                          |                      |

. -

...

| 33-1 → | P33 SETTING                                                                                                                                                                     | 7    |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 99 Q   | PRE RE<br>ALM TRP SE                                                                                                                                                            | 33-3 |
| 33-2   | RTD1 100 100 100<br>RTD2 100 100 100<br>RTD3 100 100 100<br>RTD4 100 100 100<br>RTD5 100 100 100<br>RTD5 100 100 100<br>RTD7 100 100 100<br>RTD7 100 100 100<br>RTD8 100 1 0 10 |      |

| No.          | Item        | Description                                                                                                                       | State at<br>delivery |
|--------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------|
| <b>33- l</b> | Setting     | <b>Sets the alarm, trip and reset levels for the</b> RTD's.                                                                       | -                    |
| 33-2         | Alarm level | Sets alarm detection temperature for each RTD.<br>Setting range: $0\sim$ 200 $^\circ\!\mathrm{C}$                                 | <b>100 ℃</b>         |
| 33- 3        | Trip level  | Sets trip detection temperature for each RTD.<br>Setting range: 0 $\sim$ 200 $^\circ\!{ m C}$                                     | <b>100</b> ℃         |
| 33- 4        | Reset level | Sets a reset temperature for each KID.                                                                                            | <b>100</b> ℃         |
|              |             | After the temperature goes below the reset<br>level. the S2E21 can then be reset.<br>Setting range: 0 $\sim$ 200 $^\circ\!{ m C}$ |                      |

-----

| 34-1 → | P34 SETT     | ING       |
|--------|--------------|-----------|
|        | *AUTO LE     | EARNING*  |
|        | ○(0)<br>●(1) | OFF<br>ON |
| 34-2 → | 1 s t        | 0         |
| 34-3 → | T s t        | 0         |
| 34-4 → | TR           | 0         |
| 34-5 → | TD           | 0         |

| <b>√o.</b> | Item                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | State at de I i very |
|------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 34-1       | Setting             | Sets whether or not automatic detection is needed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | —                    |
| 34-2       | Starting<br>current | Automatically detects the starting current and<br>specifies whether or not the detected value is<br>taken as the starting current setting.<br>Enter either 0 (OFF) or 1 (ON).<br>When 0 (OFF) is entered, the detected starting<br>current is displayed (P4) but the input value,<br>not the detected value, is used as the setting<br>value in the starting current setting (P25).<br>When 1 (0N) is entered, the detected starting<br>current is displayed (P4) and also taken as the<br>setting value in the starting current setting<br>(P25). | 0                    |

|                          |                                                                                                                                                                                         | delivery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>starting</b><br>time  | Automatically detects the starting time and<br>specifies whether or not the detected starting<br>time is used as the setting value.<br>Enter either 0 (OFF) or 1 (ON).                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                          | When 0 (OFF) is entered, the starting time is displayed $(P4)$ but the input setting value; not the detected value, is used as the setting value in the starting time setting $(P25)$ . |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                          | When 1 $(ON)$ is entered, the detected starting time is displayed $(P4)$ and also taken as the setting value in the starting time setting $(P25)$ .                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Heating time<br>constant | and specifies whether or not the detected value<br>is taken as the heating time constant setting.                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                          | constant is automatically detected and the detected value is taken as the setting value.                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                          | automatically turns off.<br>Automatic detection requires input of RTD1 to<br>RTD3 <sup>-</sup> for stator temperature, and RTD8 for '                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                          | time<br>Heating time                                                                                                                                                                    | timespecifies whether or not the detected starting<br>time is used as the setting value.<br>Enter either 0 (OFF) or 1 (ON).When 0 (OFF) is entered, the starting time is<br>displayed (P4) but the input setting value;<br>not the detected value, is used as the setting<br>value in the starting time setting (P25).When 1 (ON) is entered, the detected starting<br>time is displayed (P4) and also taken as the<br>setting value in the starting time setting<br>(P25).Heating time<br>constantAutomatically detects the heating time constant<br>and specifies whether or not the detected value<br>is taken as the heating time constant setting.When 1 (ON) is entered, the heating time<br>constant is automatically detected and the<br>detected value is taken as the setting value.<br>Upon completion of detection, this setting<br>automatically turns off. |

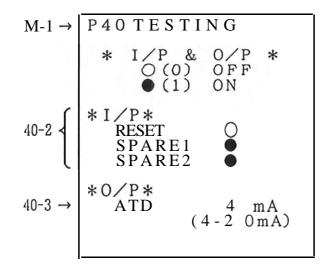
101

-

2

| 10.  | Item                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                           | State at de l i very |
|------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 14-5 | Cooling time<br>constant | Automatically detects the cooling time constant<br>and specifies whether or not the detected value<br>is taken as the cooling time constant setting.<br>When 1 (ON) is entered, the cooling time<br>constant is automatically detected and the<br>detected value is taken as the setting value.<br>Upon completion of detection, this setting<br>automatically turns off.<br>Automatic detection requires input of RTD1 to<br>RTD3, and RTD8 for ambient temperature. | 0                    |

-- 79 --


-

| 35-1 → | P35 SETTING                                                                                                                                           |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 35-2   | Clear data 0<br>(1 : ALL<br>$2 : \theta S, \theta R$<br>3 : IMAX<br>4 : N s t<br>5 : T t r u n<br>6 : LEARNED TR<br>7 : LEARNED TD<br>8 : MAX STARTS) |

| No.  | :tem         | Description                                                                                                                                                                                                                                                                                                                                                                                                              | State at delivery |
|------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 35-1 | Setting<br>- | Clears accumulated data and held data.                                                                                                                                                                                                                                                                                                                                                                                   | _                 |
| 35-2 | )learing     | <ul> <li>Entering the numbers of items whose data you want cleared causes the corresponding data to be cleared.</li> <li>Example: <ol> <li>Data may be required to be reset (cleared) due to a new motor installation.</li> <li>Temperature data only (θ S or θ R) may be required to be reset for an emergency restart. Caution should be taken in resetting this data. Motor damage may result.</li> </ol> </li> </ul> |                   |

. ..

### 5.9 Testing



| No.  | ltem    | Description                                                                                | State at<br>lelivery |
|------|---------|--------------------------------------------------------------------------------------------|----------------------|
| 40-1 | Testing | Perform tests on the input/output circuit.                                                 | _                    |
| 40-2 | Input   | Displays the state of contact input from the terminal block.                               | _                    |
|      |         | Displays • when there is an input: and Displays 0 when there is no input.                  |                      |
| 1    |         | The 3-phase input and zero-phase input are checked with the current value displayed on P2. |                      |

-

| No.  | Item                 | Description                                                                                                                                                             | State at<br>delivery |
|------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 40-3 | Analog<br>transducer | Changes the output of the analog transduser.<br>Press [EXE] key. The cursor appears, and enter<br>a current value (4-20 mA) to be output from the<br>analog transducer. | _                    |
|      |                      | The output current is checked externally.                                                                                                                               |                      |

-----

- 82 -

### 5.10 Failure Information

| $\begin{array}{ccc} 50\text{-}1 & \rightarrow \\ 50\text{-}2 & \rightarrow \end{array}$ | P50 OL TRIP<br>07/17 98:29                            |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------|
| 50-3                                                                                    | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|                                                                                         |                                                       |

| No.  | Item                | Description                                                                                                     | State at delivery |
|------|---------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|
| 50-1 | Trip<br>information | Displays information at the date and time of the latest current-associated trip.<br>Cause of trip is displayed. | _                 |
| 50-2 | Time                | Dispiayes the date and time at which the trip occurred.                                                         | -                 |
| 50-3 | information 1       | Displays 3-phase current. zero-phase current,<br>temperature rise and unbalance factor at the<br>trip.          | -                 |

| $\begin{array}{c} 51-1 \rightarrow \\ 51-2 \rightarrow \end{array}$ | P51<br>00/0000:                                               | TRIP<br>00                                                                                  |
|---------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 51-3                                                                | RTD 1<br>RTD2<br>RTD3<br>RTD4<br>RTD5<br>RTD6<br>RTD7<br>RTD8 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |

| No.  | Item                | Description                                                   | State at delivery |
|------|---------------------|---------------------------------------------------------------|-------------------|
| 51-1 | Trip<br>information | Displays information at the date and time of the latest trip. | _                 |
|      |                     | RTD number. that has tripped is displayed.                    |                   |
| 51-2 | Time                | Displayes the date and time at which the trip occurred.       |                   |
| 51-3 | Information         | Displays temperature of each RTD at trip.                     |                   |

-

| P52 TRIP CURRENT<br>00/00 00:00                       | $\begin{array}{c} \leftarrow 521  531\text{-}r \\ \leftarrow 522  532 \rightarrow \end{array}$ | P53 TRIP CURRENT<br>00/00 00:00                       |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| SECIR(A)IS(A)                                         |                                                                                                | SEC IT (A) IO(A)                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | ←52-3 53-3→                                                                                    | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |

| No.          | Item                  | Description                                                                                                                                                                                     | State at delivery |
|--------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 52-1<br>53-1 | Trip current<br>trend | Displays the current trend immediately before the trip                                                                                                                                          | -                 |
| 52-2<br>53-2 | Time                  | Displays the date time at which the trip occurred.                                                                                                                                              | _                 |
| 52-3<br>53-3 | Current<br>trend      | Displays 10 seconds of 1 second interval curren<br>trend before trip.<br>Current of R-phase and S-phase are displayed on<br>P52; and current of T-phase and zero-phase are<br>displayed on P53. | t —               |

5.11 Handling of Memory Card

The S2E21s each have a dedicated memory card, which is used for backup of S2E21 settings and as information media for the monitor system (purchased separately) that includes personal computers. The specifications of the memory card are shown in Table 5.

5.11.1 Sack up of Setting

The memory card is utilized as a backup of the setting of the S2E21.

Procedure for backup

- 1. Cancel the write-pretect for the **memory** card. (See 5.11.3 (2).)
- 2. Insert the memory card into the S2E21. (See 5.11.3 (3), )
- 3. Initialize the memory card. (See 5.8 P27.)
- 4. Store the contents of setting into the memory card. (See 5.8 P27.)
- 5. Turn on the write-protect for the memory card. (See 5.11.3 (2).)

The memory card uses S-RAM card with a battery backup that prevents the contents of the backup from being lost when you pull the memory card from the S2E21. The battery backup also allows the memory card to be inserted or withdrawn during the operation of the S2E21.

CAUTION: Removing the memory card from the S2E21 and storing it alone may result in the loss of the backed-up contents when the backup battery is exhausted. The memory card must be left inserted in the S2E21. Procedure for loading the backed-up settings of the memory card into the S2E21.

- Register the MACH ID and PASS ID of the S2E21. (MACH ID and PASS ID must be the same as those when the settings were backed up in the memory card.) (See 5.3.3. 5.4.)
- Insert the memory card into the S2E21.
   (See 5.11.3 (3).)
- 3. Load the backed-up contents from the memory card into the S2E21.

The contents of settings backed up by the memory card are those stored by the above backup procedure. After this, when the settings of the S2E21 are changed, the contents of the memory card do not automatically change. You are reguired to perform the store operation again.

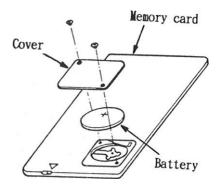
Prior to the loading of the backed-up settings, comparison is made of the MACH. ID and PASS ID between the memory card and the S2E21. When these ID numbers do not agree, the backed-up settings will not be loaded into the S2E21.

5.11.2 Memory Card As Information Media

The memory card may be used as information media for the monitor system including personal computers and for the S2E21.

For detail, see the manual for the monitor system

.....


| Item         |              | Description                |
|--------------|--------------|----------------------------|
| Manufacturer |              | Toshi ba                   |
| Туре         |              | MCA 5101BAA                |
| Memory type  |              | S-RAM                      |
| Capacity     |              | 32 kbytes                  |
| Schene       |              | Menory bus schene          |
| Pin nunber   |              | 40 pins                    |
| Battery      | type         | Lithium coin battery (3 V) |
| Battery life | Not in relay | Approx. 2 years            |
|              | Inserted     | Greater than 10 years      |
|              | in relay     | W control power on relay   |
|              |              | Approx. 2 years            |
|              |              | Wno power to relay         |

### Table 4 Memory Card Specifications

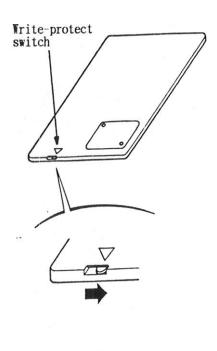
5.11.3 Handling of Memory Card

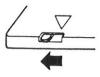
The memory card should be handled as follows.

- (1) Installing battery:
  - Open the battery holder cover of the nenory card with the screwdriver supplied.
  - Place the attached battery in the battery holder, with the positive polarity (+) facing up.
  - Close the battery holder cover in the process reverse to step 1).



(2) Write-protecting the memory card:


The memory card is provided with a writeprotect switch for preventing inadvertent writing. Turn on the write-protect switch (to set the write-protect) except when storing the data into the memory card.


To set the write-protect:

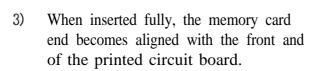
Move the write-protect switch to the right side (to align with the mark " $\nabla$ "). This disables writing into the memory card.

To cancel the write-protect:

Move the write-protect switch to the left side (away from the mark " $\nabla$ "). This enables writing into the memory card.



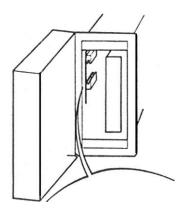


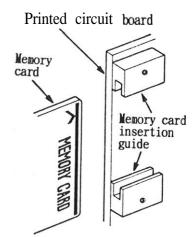

FCF50011A

(3) Inserting and withdrawing the memory card to/from the S2E21:

Inserting the memory card:

Pul I forward the right end of the door of the display control section to open it and then perform the following.


- Insert the memory card into the guide with the upper surface of the card facing toward the right;
- 2) Be sure to insert the memory card to the full stop.




If the memory card still projects from the board (card is not fully inserted), push it further to the complete stop.

Withdrawing the memory card:

Reverse the insertion process.



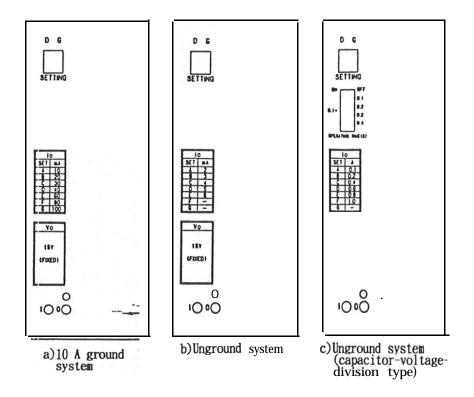


Before insertion



After insertion (fully inserted)

90 -


5.12 Directional Ground Unit (DG)

The directional ground unit has three kinds of directional ground modules. For detail, see the next manuals.

- 1) 6F9E0107 for ungrounded system
- 2) 6F9E0108 for 10 A grounded system
- 3) 6F9E0109 for capacitor-voltage-division type

The terminal numbers 47 to 66 in the above manuals are read as D47 to D66 for S2E21 in this manual.

The front external views of the three directional ground modules are shown in Figure 14.



Fifure 14 Front External View of Directional Ground Modules

### 6. MAINTENANCE AND INSPECTION

This chapter summarizes the method of maintenance and inspection for assuring normal operation of the S2E21 for a long period of service. Consult this chapter when you make periodic inspection and troubleshooting.

### 6.1 Periodic Inspection

Inspection of the S2E21 should be done according to the following criteria.

### 6.1.1 Inspection Interval

- (a) About 1 year when the environments is relatively good (in normal electric rooms).
- (b) About 6 months when the environment is very bad.

-----

#### 6.1.2 Inspection Item

(a) Dust and dirt

When the surrounding portions of the conductors are dirty, wipe them clean with dry cloth. Never use organic solvents such as gasoline or benzine.

(b) Loose screws

Retighten loose screws with screwdriver.

(c) Check of settings

Check the settings against the setting table.

(d) Characteristic and operation check

When required, a check should be made of the protection characteristic.

(e) **Others** 

Check for abnormal indication, damages or other abnormalities.

#### 6.1.3 Replacing Parts

The following parts should be replaced periodically.

### (1) LCD Indicator

Replacement interval: about 5000 hours of lighting

Parts to be replaced:

--

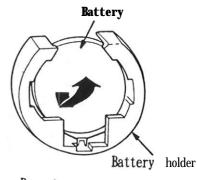
| Part code    | Part name      | Renark                 |
|--------------|----------------|------------------------|
| 4D9E0054G003 | Liquid crystal | TOSHI BA<br>TLX- 341AX |
|              | di spl ay      | with special connector |

### TOSHIBA

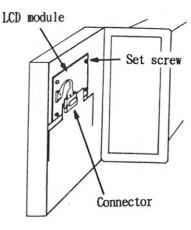
Method of replacement:

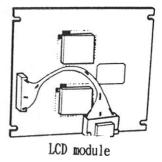
- 1) Turn off the control supply for S2E21.
- 2) Open the display section.
- 3) Disconnect the LCD wire at the connector.
- 4) Remove the four screws that fix the LCD and then remove the LCD.
- 5) Moount a new LCD and fasten the set screws.
- 6) Connect the LCD wire to the connector.
- (2) Battery

FCF50011


Replacement interval: Approximately every 2 years.

Parts to be replaced:


| Part code    | Part nane            | Rating |  |
|--------------|----------------------|--------|--|
| CR 2025      | lithium aain hattany | 0 V    |  |
| equi val ent | Lithium coin battery | 3 V    |  |


Method of replacement:

- 1) **Turn off the control** supply **for the** S2E21.
- 2) Open the display section.
- 3) Remove the battery from the battery holder.



Removing the battery





- 4) Install the new battery.
- 5) Reset the calendar and clock.

--



Installing the battery

### 6.2 Troubleshooting

| Phenomenon                                             | Check point                                                                                                                                                                   | Possible cause                                    | What to do                                                                                             |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Nothing <b>appears</b><br>On <b>the LCD</b><br>Hisplay | Power LED is off.                                                                                                                                                             | Control power is<br>off or incorrect.             | If the control power<br>connection is wrong,<br>correct it. (See<br>Section 4.2.)                      |
|                                                        | Error LED is lit. T                                                                                                                                                           | here is an<br>internal problem<br>with the relay. | -Turn control power off<br>and turn it on again.<br>If LED rennins lit,<br>consult nearest<br>TOSHIBA. |
|                                                        | Operation of the key<br>pad has not been<br>done for about<br>4 min.                                                                                                          | Normal.                                           | Press the [EXE] key.<br>(See Section 5.3.5.)                                                           |
|                                                        | Open the door panel<br>and check if<br>there is a loose<br>connection between<br>the LCD display and<br>the door panel or<br>between the door<br>panel and the relay<br>body. | Bad connection.                                   | Connect firmly. (See<br>Section 6.1.3.)                                                                |
|                                                        | Displ <u>aye</u> d characters<br>are faint.                                                                                                                                   | Brightness A<br>reduced.                          | djust brigtness.<br>(See Section 5.3.4.)                                                               |
|                                                        | LCD display used for<br>nore than<br>5000 hours.                                                                                                                              | LCD life<br>expired.                              | Replace LCD display.<br>(See Section 6.1.3.)                                                           |

- 96 -

## TOSHIBA

| Phenomenon                                                                        | Check point                                                                       | Possible cause               | #hat to do                                                                      |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------|
| LCD indicates<br>P98.                                                             | Error LED is lit.                                                                 | Setting value is incorrct.   | Press the [EXE] key<br>and enter all setting<br>values again. (NOTE)            |
|                                                                                   | Error <b>LED is not</b><br>lit.                                                   | Normal .                     | Display other pages.<br>(See Section 5.3.1.)                                    |
| In LCD indicator                                                                  |                                                                                   |                              |                                                                                 |
| Second cannot<br>be set.                                                          |                                                                                   | Normal .                     | The second setting<br>is not provided.                                          |
| Or P2<br>The display<br>does not<br>change while<br>the metered<br>value changes. | At lower part of<br>LCD,<br>">>>SELECT P2 <<<"<br>is indicated.                   | The page is being<br>turned. | Press the [EXE] key to<br>change to the display<br>mode.                        |
| $\theta$ R remains 0.                                                             | TSC (25-2) on<br>F25 is 0 (OFF).                                                  | Normal .                     | Change value from zero                                                          |
| <b>UB rennins</b><br>0.                                                           | UB (23-2) on<br>F 23 is 0 (OFF).                                                  | Normal .                     | Change value from Zer(                                                          |
| On P3<br>999 is<br>displayed.                                                     | ls item measured<br>in the temperature<br>range_between 20°C<br>and 200°C?        | Cable conection is bad.      | Firnly connect cable<br>and connector.                                          |
| DnP4<br>Ist (4-3)<br>and<br>TSt (4-4)<br>remain at 0.                             | Notor has not been<br>started more than<br>five times. and<br>learned function is | Normal .                     | The measured value is<br>displayed after the<br>motor is started five<br>times. |
| remain at Vi                                                                      | selected.                                                                         |                              | L1 mC3.                                                                         |

NOTE: Pressing the [EXE] key returns the setting to those values set at time of delivery.

FCF50011A

6 F 9 E 0 1 1 1

# TOSHIBA

• .

| Phenonenon                                                          | Check point                                             | Possible cause  | What to do                                                    |
|---------------------------------------------------------------------|---------------------------------------------------------|-----------------|---------------------------------------------------------------|
| Dn P28<br>- PRE-ALM set-<br>ting of UC<br>does not go<br>below 100% |                                                         | Normal.         | PRE-ALM setting of UC<br>has a range between<br>100% and 300% |
| On P30<br>- Cursor will no<br>move to ALM of<br>1 N S T and U B     |                                                         | Normal.         | ALM setting is not<br>provided for I NST<br>and UB.           |
| - Trip output<br>fails to be<br>produced.                           | Protection function<br>is locked.                       | Nornal.         | Activate the protective function.                             |
|                                                                     | Output is not<br>selected at RY O/P<br>SEL (P30).       | Normal.         | Select(l) to activate.                                        |
|                                                                     | In O/P RELAY CONFIG<br>(P29), the logic is<br>inverted. | Normal.         | Match the logic.                                              |
|                                                                     | External connection<br>is incorrect or<br>Ioose.        | Bad connection. | Make proper<br>connection.                                    |
| <ul> <li>Alarm output</li> <li>is not</li> <li>produced.</li> </ul> | Protection function<br>is locked.                       | Normal .        | Activate the<br>protective function.                          |
|                                                                     | Dutput is not<br>selected-at RY O/P<br>SEL (P30).       | Normal.         | Select(l) to activate.                                        |
|                                                                     | In O/P RELAY CONFIG<br>(P29), the logic is<br>inverted. | Normal .        | Match the logic.                                              |
|                                                                     | External connection<br>is incorrect or<br>Ioose.        | Bad connection. | Make proper<br>connection.                                    |

- 98 -

6 F 9 E 0 1 1 1

# TOSHIBA

-

-

-

| 'henomenon                                | Check point                                                                  | Possible cause     | Hhat to do                                                        |
|-------------------------------------------|------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------|
| Cannot be<br>reset.                       | Trip state<br>continues (OC, UC.<br>INST. UB, OCG)                           | Normal.            | Stop the motor and<br>correct the problem                         |
|                                           | After OL. the reset<br>level (28-4) of $\theta$ S<br>and $\theta$ R (2-3) is | Normal .           | Wait for the motor to cool.                                       |
|                                           | still exceeded.                                                              |                    | CAUTION: Since the<br>notor is overheated,<br>take utnost caution |
| Transducer<br>output does<br>not change.  | On P31,<br>ATD O∕P is<br>not set.                                            | Normal .           | Enter the necessary<br>setting.                                   |
|                                           | P40 is displayed.                                                            | Normal.            | <b>Change to page other than</b> P40.                             |
| REP is<br>activated 'when<br>the motor is | On P25, TSC<br>(25-2) is set lower<br>than T s t (25-5).                     | incorrect setting. | Enter the correct setting.                                        |

- - -

111000117

### 6.3 Bench Test

|    | ltem                                   | Test nethod                                                                                                                                                                                                                                                               | Decision                                                                                                                                                                                                                           | Test<br>circuit<br>(single<br>phase) |    |
|----|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----|
| IL | <b>Operat</b> -<br>ing<br><b>point</b> | Gradually increase<br>current and record the<br>current value when the<br>RUN LED begins blinkin<br>at 0.3 s intervals.                                                                                                                                                   | $I_{N} \sqrt{\frac{\theta \text{ SM}}{\theta \text{ SN}}} \pm 10\%$<br><b>I</b> N : Rated current<br><b>g</b> $\theta \text{ SM}$ : Stator allowable<br>temperature rise<br>$\theta \text{ SN}$ : Stator rated<br>temperature rise | Figure                               | 15 |
|    | Operat-<br>ing<br>time                 | <ol> <li>On P2, check that<br/>θ S is 0. When<br/>it is not 0, either<br/>wait, or on P35,<br/>clear θ S.     </li> <li>Apply 6 times the<br/>rated current (I<sub>N</sub>)<br/>abruptly and<br/>measure the time it<br/>takes for the relay<br/>to trip.     </li> </ol> | -60 x TR x $l_n (1 - \frac{\theta SM}{\theta SN} \cdot (\frac{I_N}{I})^2$<br>I = 6 x I <sub>N</sub><br>TR: Heating time constant                                                                                                   | <b>Figure</b> () ±10%                | 15 |
| )C | Operat-<br>ing<br>point                | Gradually increase the<br>current and measure the<br>current value when the<br>relay trips.                                                                                                                                                                               | Setting value ±5%                                                                                                                                                                                                                  | Figure                               | 15 |
|    | Operat-<br>ing<br>time                 | <ol> <li>Apply the rated<br/>current (I<sub>N</sub>).</li> <li>Apply current 1.5<br/>times the setting<br/>value (I<sub>oc</sub>) and<br/>measure the time it<br/>takes for the relay<br/>to trip.</li> </ol>                                                             | Setting value ±10%                                                                                                                                                                                                                 | Figure                               | 15 |

### 6 F 9 E 0 1 1 1

# TOSHIBA

.

|      | [tem                            | Test nethod                                                                                                                                                                                              | Decision                 | Test<br>circuit<br>(single<br>phase) |
|------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------|
| UC   | Operat-<br>ing<br>point         | Apply rated current and<br>gradually lower the<br>current. Measure the<br>current value at which<br>the relay trips.                                                                                     | Setting value ±10%       | Figure 15                            |
|      | Operat-<br>ing<br>tine          | <ol> <li>Apply the rated<br/>current (I<sub>N</sub>).</li> <li>Quickly reduce the<br/>current to 20% of<br/>the rated current<br/>and measure the time<br/>it akes for the<br/>relay to trip.</li> </ol> | Setting value ±10%       | Figure 15                            |
| INST | <b>Operat</b> -<br>ing<br>point | Gradually reduce the<br>current and neasure the<br>current value at which<br>the relay trips.                                                                                                            | Setting value $\pm 15\%$ | Figure 15                            |
|      | Operat-<br>ing<br>time          | Quickly apply current<br>two times the setting<br>value (1>>) and measure<br>the time it takes for<br>the relay to trip.                                                                                 | 50 ms or less            | Figure 15                            |

TOSHIBA

.

-

-

|    | Item                      | Test nethod                                                                                                                                                                           | Decision                                                                                                                                                                                                                                                                                              | Test<br>circuit<br>(single<br>phase) |  |
|----|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
| JB | Operat-<br>ing<br>point   | Slowly reduce the<br>current and neasure<br>the current value at<br>which the relay trips.                                                                                            | 75% $\pm 10$ % of the rated current (I <sub>N</sub> )                                                                                                                                                                                                                                                 | Figure 16                            |  |
|    | Clperat-<br>ing<br>time   | <ol> <li>Apply the rated<br/>current (IN).</li> <li>Quickly change<br/>current in one phase<br/>to 0 and measure the<br/>time it takes for<br/>the relay to trip.</li> </ol>          | Less than 4 s.                                                                                                                                                                                                                                                                                        | Figure 16                            |  |
|    | Unbal- i<br>ance<br>facto | <ul> <li>Apply the rated<br/>current (I<sub>N</sub>).</li> <li>r</li> <li>2) Change current in<br/>one phase and<br/>measure the current<br/>at which the relay<br/>trips.</li> </ul> | I $I_{1} = I_{AVE}$ I x 100%<br>IN<br>The calculated value must be<br>within $\pm 5\%$ of the setting<br>value.<br>Example: When the setting<br>value is 30% the<br>calculated value<br>must be in the<br>range of 25 to 35%<br>1 i: Measured current value.<br>$I_{AVE} = \frac{I_N + I_N + I_t}{3}$ | Figure 16                            |  |

# TOSHIBA

| ]    | Item                    | Test nethod                                                                                                                                                                                                                                                          | Decision                                                                                                                | Test<br>circuit<br>(single<br>phase) |
|------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| ,. R | Opet-at-<br>ing<br>time | $\theta$ R is 0. When<br>not 0, clear $\theta$ R.                                                                                                                                                                                                                    | $\left(\frac{1 \text{ st}}{3}\right)^2$ x TSC (sec) $\pm 10\%$<br>Ist: Starting current<br>TSC: Allowable starting-time | Figure 15                            |
| EP   | Operat-<br>ing<br>point | <ol> <li>1) On P2, check that<br/>θ R is 0. When<br/>not zero, either<br/>wait or clear θ R<br/>on P35.     </li> <li>2) Apply the starting<br/>current (Ist) and<br/>neasure the % value<br/>of θ R on P2 when<br/>the lock output is<br/>produced.     </li> </ol> | 1 - Triang time                                                                                                         | Figure 15                            |

e 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 197

------

-

....

- 103 -

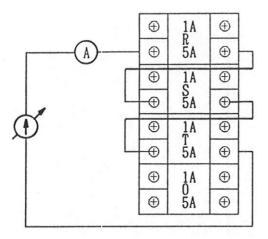



Figure 15 Test Circuit (1)

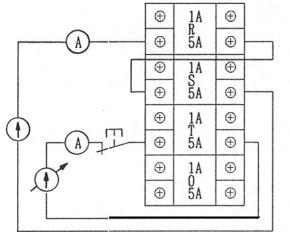



Figure 16 Test Circuit (2)

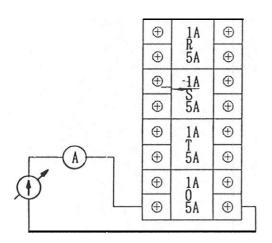
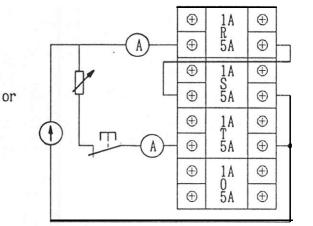
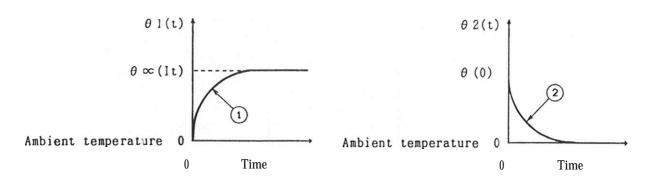




Figure 17 Test Circuit (3)



### 7. PROTECTIVE DETECTION SCHEME


This chapter describes how the protective unit of the S2E21 detects failures.

### 7.1 Overload Unit

This is a function to thermally protect the motor insulations. The component to be protected is mainly the stator. Changes in stator temperature when the motor is in operation and at rest are represented by the following formula.

| [During operation]                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\theta 1 (t) = \theta \infty (lt) \cdot (1 - e^{-t/TR}) \qquad (1)$                                                                                            |
| where                                                                                                                                                           |
| e1(t): Temperature rise in time t                                                                                                                               |
| $\theta \propto (\text{It})$ : Final temperature rise that occurs when the stator current It flows continuously and which is determined by the magnitude of It. |
| TR: Motor's heating time constant                                                                                                                               |
| [At rest]                                                                                                                                                       |
| $\theta 2(t) = \theta (0) \cdot e^{-t/TD}$ (2)                                                                                                                  |
| where                                                                                                                                                           |
| $\theta 2(t)$ : Temperature rise in time t                                                                                                                      |
| $\theta$ (0): Temperature rise when the motor is at rest (t = 0).                                                                                               |
| TD: Motor's cooling time constant                                                                                                                               |
| The equations (1) and (2) are represented in the following diagrams.                                                                                            |

-----



(a) During operation (b) At reset

Figure 15 Stator temperature rise

In other words, the stator temperature rises exponentially during motor operation to a certain temperature that is determined by the current magnitude. When the motor is stopped, the stator temperature falls down to the ambient temperature.

This relay determines whether the notor is running or at rest by checking the presence of the stator current. Then it performs the calculation of equation (1) or (2) to simulate the heated condition of the motor.

The stator current is samlped at predetermined intervals and the sampled currents are successively fed to the calculation process in order to perform the thermal simulation in response to the changes in the motor operating condition.

Figure 16 shows a timechart that represents changes in the simulated temperature rise in response to changes in the motor operating condition (current changes).

-----

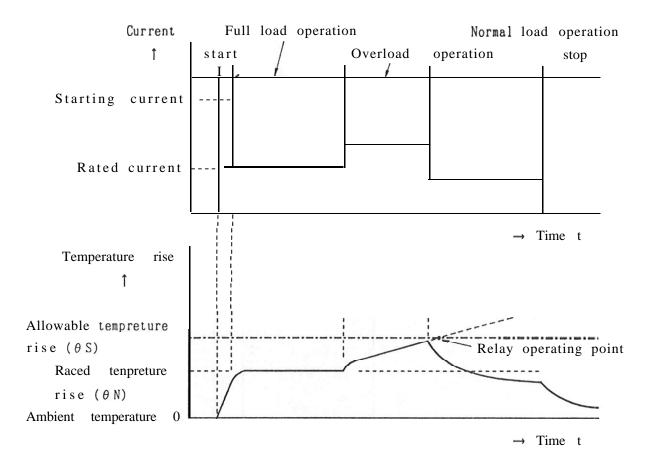



Figure 16 Simulated Temperature Rise Timechart

In Figure 16. the allowable temperature rise ( $\theta$  SM) is a value dependent on the insulation design of the motor and is defined in Table 5 by JIS-4004 and NEMA MG1-1.65.

| Insulation class | Allowable temperature<br>rise $\theta S$ (°C) |
|------------------|-----------------------------------------------|
| Class A          | 60                                            |
| Class E          | 75                                            |
| Class B          | 80                                            |
| Class F          | 100 (105)*                                    |
| Class H          | 125                                           |

| Table 5   | Insulation      | Class | and | Allowable |
|-----------|-----------------|-------|-----|-----------|
| Temperatu | re <b>Ri</b> se |       |     |           |

\*( ): NEMA

The rated temperature rise ( $\theta$  SN) represents a temperature rise for the motor's rated current (full laod current). This value is usually submitted by a motor manufacturer as test data.

This relay requires setting of the notor's heating time constant and the cooling time constant. These values are also supplied as the notor data. When they are not shown. request them from the notor manufacturer.

As a reference. the standard values of Toshiba motors are shown in Table 6.

|       | Motor kind          |                          |                         | Tine constant<br>(minute) |                |  |
|-------|---------------------|--------------------------|-------------------------|---------------------------|----------------|--|
|       | Totally<br>enclosed | Other that<br>enclosed o | an totally<br>outer fan | Heating<br>TR             | foling<br>I) I |  |
|       | outer fan           | 2 poles                  | 4 poles<br>or more      |                           | }              |  |
| Frane |                     | 355                      |                         | 30                        |                |  |
|       | -50 or              | 400                      | 355                     | 45                        |                |  |
|       | 4ess                | 450-630                  | 400- 630                | 60                        | J 3xTR         |  |
|       | 500, <b>560</b> ,   | 710 or<br>more           | 710 or<br>more          | 90                        |                |  |
|       | 710                 | Statistical Contra       |                         | 120                       |                |  |

# Table 6 Heating Time Constant of Motor(Toshiba Standard Values)

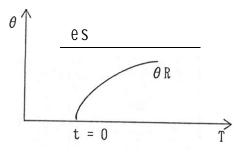
---

#### 7.2 Locked Rotor Unit

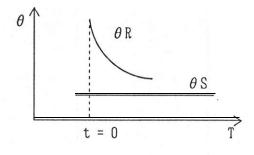
The Locked Rotor Unit (L. R) has a main function of protecting the rotor of a motor as opposed to the Overload (OL) which protects the stator of the motor.

In providing protection, the S2E21 simulates temperature rises of the stator and rotor in a motor independently because each has different thermal characteristics.

For the load currents that are below about 2.5 times the rated current, the heat of the motor is produced mainly by the stator, and for higher load currents, the rotor produces most of the heat,


For this reason. the S2E21 performs the temperature rise simulation for the rotor as follows:

(1) When the load current is less than 2.5 times the rated current  $(0 \le \mathbf{I} \ (t) \le 2.5 \ \mathbf{x} \ I_N)$ :


The temperature rise  $\theta$  R of the rotor is made to converge into the temperature rise  $\theta$  S of the stator by the heating time constant (TR)

(i) When  $\theta R(t) < \theta$  S:

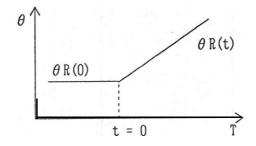
$$\theta \mathbf{R}(\mathbf{t}) = \theta \mathbf{S} (\mathbf{1} - \mathbf{e}^{-\mathbf{t} \mathbf{T} \mathbf{R}}) \cdots (3)$$



(ii) When  $\theta R(t) > \theta S$ :  $\theta R(t) = (\theta R(0) - \theta S) e^{-t/TR} + \theta S \cdots I.$ (4)



-109 -


Where  $\theta R$ : temperature rise of the rotor at time t (°C)  $\theta$  S: temperature rise of the stator at time t (C) TR: heating time constant of the motor (minute) (set value)

(2) When the load current is higher than 2.5 times the rated current (2.5 x IN < ](t)):</li>

From the heating characteristic during locking that is determined by the notor starting current (1st) and the allowable locking time. the temperature rise of the rotor is simulated.

When at time 0 the rotor is locked, then

$$\theta \mathbf{R}(\mathbf{t}) = \theta \mathbf{R}(\mathbf{0}) + \left(\frac{\mathbf{t}\mathbf{t}}{\mathbf{lst}}\right)^{*}, \quad \frac{1}{\mathbf{TSC}}, \quad \theta_{\mathbf{RM}} \cdot \mathbf{t}$$
 (3)



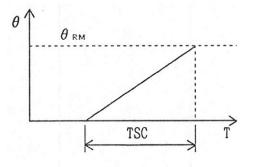
Where  $\theta$  R(t): temperature rise of the rotor at time t (°C)

 $\theta \to \mathbb{R}(0)$ : temperature rise of the rotor before the rotor is locked (C)

I(t): load current at time t (A)

- Ist: \_\_\_\_\_\_\_\_\_ starting current (A) (setting value)
- TSC: allowable locking time in the cold state (sec) (setting value)
- $\theta_{\rm RM}$ : allowable temperature rise of the rotor CC) (fixed at 200°C)

When  $\theta R(t) = \theta_{RM}$ , the trip operation is carried out.,

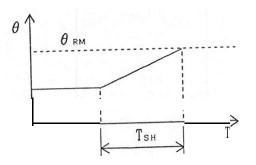

The operation characteristic (operating time) in the locked state varies depending on the heated condition of the motor and the conducting current.

FCI 50011

When the starting current is flowing in the locked state. the operating time will be as follows:

(i) In cold condition (motor is cool):

In equation (5), since  $\theta R(0) = 0$ . the operating time is TSC (sec). TSC: allowable locking time in cold state (sec) (setting value)



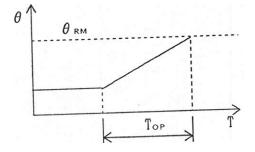

(ii) In hot condition (motor is running at the rated load):

In equation (5), since  $\theta \in \mathbb{R}(0) = \theta SN$ , the operating time will be  $T_{SH} = \frac{\theta_{RM} - \theta SN}{\theta_{RM}} \cdot TSC$  (sec).

Where  $\theta$  SN: rated temperature rise value (sec) (setting value)

TSH: allowable locking time in hot condition (sec)




FCF50011A

(iii) In operating condition:

In reality,  $\theta \in \mathbb{R}(0)$  falls between 0 and  $\theta \in \mathbb{N}$ . The operating time in this case is given by:

 $T_{OP} = \frac{\theta_{RM} - \theta_{R}(0)}{\theta'_{RM}} + TSC \text{ (sec).}$ 

Where TOP: operating time



### 7.3 Repetitive Starting

When the motor is started, the repetitive starting protection checks the starting current and the starting time to see if the temperature rise exceeds the rotor':; allowable temperature rise. If the allowable temperature rise of the rotor is exceeded, this protective function issues a lock signal to prevent the motor from starting.

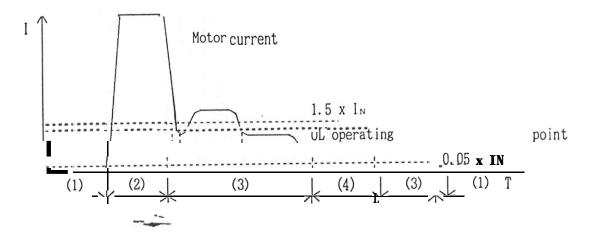
The rotor heating caused by a single starting is expressed by the following equation:


$$\frac{\text{Tst}}{\text{TSC}} \cdot \left(\frac{l(t)}{l\text{st}}\right)^2 \cdot \theta_{\text{RM}} \cdots$$
 (6a)

However, if at starting I(t) = Ist, then the following holds:

$$\frac{\mathbf{Tst}}{\mathsf{TSC}} \cdot \boldsymbol{\theta}_{\mathsf{RM}}$$
 (6b)

Where Tst: motor starting time (sec) (setting value) TSC: allowable rotor locking time (sec) (setting value)  $\theta_{\rm RM}$ : allowable rotor temperature rise (°C) (fixed at 200°C) 1st: starting current (A) (setting value)


Hence, when there is no margin defined in (6b) between the rotor's temperature rise  $\theta R(t)$  and the allowable rotor temperature rise  $\theta RM$ , a lock output is issued.



7.4 Detection of Starting Current and Starting Time

The S2E21 checks a motor current to detect whether the motor is stopped. starting, running or overloaded. The detection conditions are as follows:

- (1) Stopped: When the motor current is less than 5% of the motor's rated current  $(I_N)$ .
- (2) Starting: From the time when the motor current exceeds 1.5 times the motor rated current (I<sub>N</sub>) as it leaves the stopped condition until the motor current falls below 1.5 times the motor rated current.
- (3) Running: Not during the starting period. when the motor current is higher than 5% of the motor rated current. but lower than a current that will trigger the overload (OL) function.
- (4) Overloaded: Not during the starting period, when the motor current exceeds the operating value for the overload (OL) function.



(1) Starting current

The starting current is a current value that exists 100 ms after the relay has detected that the motor is starting. The starting current is obtained by taking an average of five starting currents.

(2) Starting time

The time 2 shown in the diagram above is taken as a starting time. The starting time is obtained by taking an average of five starting times.

7.5 Detection of the Heating Time Constant and Cooling Time Constant

CAUTION:

Detecting the heating time constant and the cooling time constant requires three RTDs in the winding and one RTD for measuring the ambient temperature to determine the motor temperature rise. To enhance the detection accuracy, care should be taken of the following points:

(1) The RTD for measuring the ambient temperature provides a reference temperature for determining the notor temperature rise, so make sure that you measure the ambient temperature precisely.

The measuring error of the ambient temperature will have great effect on the detection accuracy of the heating time constant and the cooling time constant.

- (a) Do not allow the RTD to be affected by heat from the motor.
- (b) Keep the RTD free from direct sun rays or radiant heat.
- (c) Keep the RTD free from influences of cool air and drafts.
- (d) Keep the RTD free from moisture or high humidity.
- (2) To maintain a required level of accuracy, the heating time constant and the cooling time constantare detected under the conditions described later.

The motor must be able to be operated in ways that meet thes<u>e</u>requirements.

The relationship between the motor temperature rise and the heating time constant is given in equation (1) and the relationship between the motor temperature and the cooling time constant is given in equation (2).

 $\theta l(t)$  and  $\theta 2(t)$  represent the notor temperature rises, which can be determined by measuring the notor winding temperature and the ambient temperature using the RTDs.  $\theta$  (lt) is determined by the notor current.

The S2E21 receives signals from the three RTDs in the winding at its inputs RTD1, RTD2, and RTD3 and also the ambient temperature at RTD8 to determine the heating time constant and the cooling time constant from the motor temperature rises. The accuracy of calculating these time constants is about  $\pm 10\%$ .

From equation (1), the heating time constant is expressed as

$$\mathbf{TR} = \frac{\mathbf{t}_2 - \mathbf{t}_1}{\mathcal{L}_n \theta \frac{\partial}{\partial (\mathbf{lt})} - \theta \mathbf{l}(\mathbf{t}_1)}$$
(1')

From equation (2), the cooling time constant is given by

$$TD = \frac{t_2 - t_1}{\frac{\theta 2(t_1)}{\ell_n - \theta 2(t_2)}}$$
(2')

At each start and stop of the motor, the heating time constant and the cooling time constant are detected over a length of time equivalent to these time constants. Five measurements are taken and averaged to determine the heating time constant and the cooling time constant.

[Requirements for detecting the heating time constant]

- The motor is sufficiently cool.

- The motor current is large enough (not too lightly loaded).

- The motor is not overloaded.

[Requirements for detecting the cooling time constant]

- The motor is sufficiently heated.

7.6 Settings Based on Fundamental Information

When setting the protective characteristics of the S2E21 according to fundamental information alone that you can obtain from the rating nameplate of the motor, the following steps should be taken.

In this case. however, use overly conservative characteristics to ensure the notor safety. Note that the temperature rises ( $\theta$  S,  $\theta$  R) are different from the actual notor temperature rises.

To perform accurate temperature rise simulation and protection, it is necessary to set the motor constants.

Fundamental information:

IMFLC: motor rated current (A)

CT: CT cecondary current (A)

 $\theta$  SM: allowable motor temperature rise

TSC : allowable motor locking time during cold condition

Tst: starting time (sec)

1st: starting current (A)

20-Z: CT ratio (given)

20-3: ZCT ratio 50 A This does not affect the protection characteristics.

20-4: rated current setting (IN). This is calculated by the following equation:  $I_N = I_{MFLC} (A)/CT (A)$ 

- 21-2: Setting of the heating time constant (TR) TR (min) > 3 x Tst Hhen Tst is less than 3, setting should be TR = 10 (min)
- 21-4: Setting of the cooling time constant (TD) It should be set to 0 (TD = 3 x TR)

See

21-6: Setting of the allowable motor locking time ( $\theta$  SM) Setting depends on the insulation class of the winding. Table 5 (Table Al).

### 21-T: Setting of the rated temperature rise ( $\theta$ SN)

 $\theta SN = \theta SM \div \mathbf{1.2} (^{\circ}C)$ 

Under this condition, the operating point of OL is given by

**1.1 x** IMFLC 
$$\left(\sqrt{\frac{\theta \text{ SM}}{\theta \text{ SM}}} = 1.1\right)$$

22-2: Setting of the INST current  $(1 \rightarrow)$ 

This function should be locked when a combination starter is used as the motor starter.

When switchgear incorporating a circuit breaker is used as the starter, the following characteristics should be coordinated during the setting procedure:

- Motor starting current

- Motor inrush current

- Switchgear!s overcurrent relay characteristics

22-3: Setting of INST time (T>>)

This is fixed at 0.05 s.

### 22-4: Setting of OC current (loc)

OC is not for the motor protection but for the protection of equipment connected to the motor. OC is locked when the equipment protection is not needed. When OC is equired, set to 1.5 (times).

22-5: Setting of OC time (Toc) Set ()C time to 0.3 s.

..

23-2: Setting of unbalance factor (UB) Set UB to 5%

#### 23-3: Setting of UC current (Iuc)

UC is not for the motor protection, but for preventing an underload or less of load condition. When not necessary, it is locked. When needed, set to 80 (%). It is recommended however that you measure the no-load current  $I_{NLC}$  and set the UC current to 1.2 x  $I_{NLC}$ . 23-4: Setting of UC time (Tuc) Set to 1 S.
24-2: Setting of OCG current (locg) To prevent undesired operation, Set to 10 (%).
24-3: Setting of OCG time (Tocg) Set to 0.1 s.
25-2: Setting of allowable locking time in cold condition (TSC) Given value (Consult motor manufacturer>
25-3: Starting current (Ist) See motor data. Or after one start, read screen P4. (See page 50, 4-2.)
25-4: Starting time (Tst) Varies per application. (motor, load, type of starter) - calculate based on motor torque and load.

- Or after one start, read screen P4. (See page 50, 4-4.)

FCF50011A

----

```
'7.7 Settings For Reduce Voltage Starting
     For reduce voltage starting, the actual starting current is different from
      the nameplate of the motor.
     Perform the following steps for setting of TSC. Ist and Tst for locked-rotor
      protection. In this case, Auto learning function of Tst and 1st should not
     be turned on.
           25-2: Setting of allowable locked-rotor time in cold condition (TSC)
                       Given value (Consult notor manufacturer)
           25-3: Starting current (Ist)
                       See motor data (at full voltage.)
           25-4: Starting time (Tst)
                      Convert the actual starting time to setting value based 1st.
                                  Ist. act
                         Tst = (-----)^2 \cdot Tst.act
                                    1st
                         Where Tst : starting time (setting value)
                                 Tst. act: actual starting time at reduced voltage.
                                 1st : starting current (motor data at full voltage)
                                 Ist.act : actual starting current at reduced voltage.
                      Actual starting time should be calculate based on motor torque
                      and load. or after one start read screen P4. (See manual page 50,
                      4-4.)
                      Actual starting current should be calculated, or after one start
                      read-screen P4. (See manual page 50, 4-4.)
```

Following the above procedure protects the notor under a full voltage locked-rotor condition and allows a longer starting time for reduced voltage (reduced inrush current) starting.

J

### Appendix A

| Relay  | Item                 | Description                                       | Setting range     | Setting  | Setting  |
|--------|----------------------|---------------------------------------------------|-------------------|----------|----------|
| Screen | 10                   |                                                   |                   | Step     |          |
| P20    | CT Ratio             | CT Primary Rating                                 | 5-2000A           | 1A       |          |
| P20    | 2CT Ratio            | ZCT Primary Rating                                | 50-100A           | 1A       |          |
| P20    | IN                   | MFLA/CT Primary Rating                            | 40-100%           | 1%       |          |
| P21    | TR                   | Moter Heating Time Constant                       | 10-165 Min.       | 1 Minute |          |
| F #1   | 10                   | Hoter Section The Constant                        | 10 E00 H          | 8 Ma     |          |
| P21    | θ SN                 | Stator Allowable Temperature Rise                 | 60-125 Deg. C     | 1 Deg. C |          |
| P21    | θSN                  | Stator Norm (100% Load) Temparature Rise          | 10-125 Deg. C     | 1 Deg. C |          |
| P22    | I>>                  | Instantaneous (Short Circivercurrent              | 5-17×1N           | 1.0×IN   |          |
| P22    | ī>>                  | Instantaneous OC Time Delay                       | Fixed             | N/A      | 0.05 Sec |
| P22    | 10C                  | Overcurrent                                       | 1. 5-10. 0×1N     | 0.1×IN   |          |
| P22    | TOC                  | Overcurrent Time Delay                            | 0.3-I. 0 sec.     | 0.1 Sec. |          |
| P23    | UB                   | Unbalance (Current)                               | 5-30%             | 1%       |          |
| P23    | IUC                  | Undercurrent                                      | 30-80%            | 1%       |          |
| P23    | TUC                  | Undercurrent Time Delay                           | 1-5 Sec.          | 1 Sec.   |          |
| P24    | OCG                  | Ground Overcurrent (Trip Value/ZCT Pri. ×100%)    | 5-40%             | 1%       |          |
| P24    | TOCG                 | Ground Overcurrent Time Delay                     | 0.1-1.5 Sec.      | 0.1 Sec. |          |
| P25    | TSC                  | Allowable Starting Time                           | 1-130 Sec.        | 1 Sec.   |          |
| P2. 5  | Ist                  | Starting Current/MFLA                             | 1.5-15.0×IN       | 0.1×IN   |          |
| P25    | Tst                  | starting Time                                     | 1-60 Sec.         | 1 Sec.   |          |
| P26    | ADD.                 | Cummunication Address (Relay #)                   | 1 to 31           | 1        |          |
| P26    | Remote set           | Remote Setting Fro, Computer                      | 0=No, 1=Yes       | -        |          |
| P28    | OL Alarm/Reset       | Scloction of Alam / Reset Values                  | 1-100 %           | I 1%     |          |
| P28    | oc Alar.             |                                                   |                   |          |          |
| P28    | UC Alarm             | Selection of Alarm Value                          | 100- <u>300</u> x | 1%       |          |
| P28    | INST Alarm/Reset     | Not Applicable                                    | I 100             | I        |          |
| P28    | UB Alarm/Reset       | Not Applicable                                    | -                 | -        | -        |
| P28    | OCG Alarm            | Selection of Alarm Value                          | 1-100 %           | 1%       |          |
| P29    | Trip Relay Config.   | Selection of Fall-safe or Non-Fall-safe Operation | U=N. r. J. 1=r. J | -        |          |
| P29    | Alarm Relay Config.  | Selection of Fall-safe or Non-Fail-safe Operation | 0-N. F. S, 1=F. S | -        |          |
| P29    | Lock Relay Config.   | Selection of Fall-safe or Non-Fall-safe Operation | 0=N. F. S. 1=F. S | -        |          |
| P30    | OL Relay Operation   | Selection of Alarm/Trip Relay Operation           | 0=Nop.,1=Oper.    | -        |          |
| P30    | OC Relay Operation   | Selection of Alarm/Trip Relay Operation           | 0=Nop.,1=Oper.    | -        |          |
| P30    | UC Relay Operation   | Selection of Alarm/Trip Relay Operation           | 0=Nop., 1=Oper.   | -        |          |
| P30    | INST Relay Operation | Selection of Trip Relay Operation                 | 0=Nop.,1=Oper.    | -        |          |
| P30    | UB Relay Operation   | Selection of Trip Relay Operation                 | 0=Nop.,1=Oper.    | -        |          |
| P30    | LR Relay Operation   | Selection of Trip Relay Operation                 | 0=Nop., 1=Ope     | r        |          |
| P30    | OCG Relay Operation  | Selection of Alarm/Trip Relay Operation           | 0=Nop.,1=Oper.    | -        |          |
| P30    | RTD Relay Operation  | Selection of Alarm/Trip Relay Operation           | 0=Nop.,1=Oper.    | -        |          |
| P30    | Spare 1 Relay Oper.  | Selection of Alarm/Trip Relay Operation           | 0=Nop.,1=Oper.    | -        |          |
| P30    | Spare 2 Relay Oper.  | Selection of Alarm/Trip Relay Operation           | 0=Nop.,1=Oper.    | -        |          |
| P31    | ATD O/P              | 4-20mA Analog Output Signal Selection             | 4-20 mA           | 1 BA     |          |
| P32    | RTD Type             | Sets RTD Type (Pt100, Pt100 (JIS), Ni100, Ni120)  | 8000              | 1        |          |
| P33    | RTD Alm/Trp/Reset    | Selection of Alarm/Trip/Reset Values              | 0-200 Deg.C       | 1 Deg.C  |          |
| P34    | Ist Auto Learning    | Selection of Auto Learning                        | 0=0ff, 1=0n       |          |          |
| P34    | Tst Auto Learning    | Selection of Auto Learning                        | 0=0ff, 1=0n       |          |          |
| P34    | TR Auto Learning     | Selection of Auto Learning                        | 0=0ff, 1=0n       |          |          |
| P34    | TD Auto Learning     | Selection of Auto Learning                        | 0=0ff, 1=0n       |          |          |
|        |                      |                                                   |                   | 1        | L        |

FCF50011A

-