

TIMING RELAYS

TYPES:

SAM11A, B, C, D, H and J SAM13C SAM99AB, AC, AD, AF, AG, AH

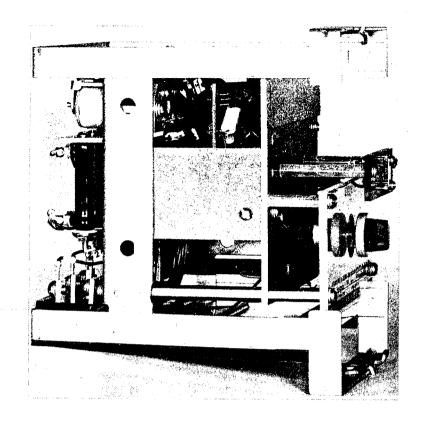


Figure 1A (8039881) SAM11A21A Relay Removed from Case (Right Side View)

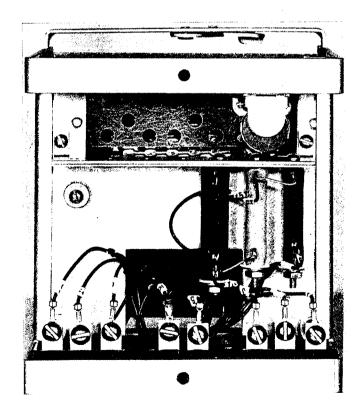


Figure 1B (8039884) SAM11A21A Relay (Rear View)

(Cover Photo 8039883)

TIMING RELAYS TYPES: SAM11A, B, C, D, H and J SAM13C SAM99AB, AC, AD; AF, AG, AH INTRODUCTION

The SAM relays are timing relays that employ solid-state components to provide an extremely stable time-delay function. These relays employ a low energy resistance-capacitance timing circuit that is regulated to make the timing independent of variations in supply voltage. The output of the timing circuit is amplified by solid-state circuitry to provide sufficient energy to operate a small telephone-type relay having two electrically separate transfer contacts.

Table A lists the relays covered by these instructions and gives a brief description of each model. Table B lists the timing ranges normally used on these relays.

TABLE A

	MODEL	TARGET UNIT	T&SI UNIT	NO. OF. TIMERS	OUTPUT** CONTACTS	CASE SIZE	INT'L CONNS.	SPECIAL FEATURES
	11A	-	~	1	2 - N.O.	S1	Fig. 3	
\setminus	11B	1		1	2 - N.C. 2 - N.O. 2 - N.C.	S1	Fig. 4	
	11C 11D	2	1	1 1	2 - N.O. 2 - N.O.	S1 S1	Fig. 5 Fig. 6	
:	11H	1		1	2 - N.C. 2 - N.O.	S1	Fig. 7	Anti-bounce TX relay
	11J 13C	-	1 2	1 2	2 - N.C. 2 - N.O. 2 - N.O.	S1 S1	Fig. 8 Fig. 9	Low voltage operation Two timers
	99AB	-		1	per timer 6 - N.O. 2 - N.C.	S2 .	Fig. 12	11A, with four N.O. additional contacts
	99AC	-	. 1	1	2 - N.O.	S1	Fig. 13	11C with two N.C.
	99AD	1	-	1	2 - N.C. 2 - N.O.	S1	Fig. 14	11H with fast dropout TX relay
)	99AF	3	-	2	2 - N.C. 2 - N.O.	S1	Fig. 20	Used where Z ₁ target
¢ .	99AG	. 1	-	1	2 - N.O. 2 - N.C.	S1	Fig. 21	is needed AC operated - 120V, 60 hertz
ŧ	99AH	_	2	1	5 - N.O.	S2	Fig. 22	Five N.O. contacts
	l .	1		į.	I	I	<u> </u>	I

**Two normally open, two normally closed contact are transfer contacts (form C)

These instructions do not purport to cover all details or variations in equipment nor to provide for every possible contingency to be met in connection with installation, operation or maintenance. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purposes, the matter should be referred to the General Electric Company.

To the extent required the products described herein meet applicable ANSI, IEEE and NEMA standards; but no such assurance is given with respect to local codes and ordinances because they vary greatly.

TABLE B TIME RANGES - SAM RELAYS

.03 - 1.0 .05 - 3.0 .1 - 5.0 .2 - 4.0 0.5 - 3.0 1.5 - 15.0

APPLICATION

These relays can be applied wherever timing functions are required. The negligible overtravel and reset times of these relays, plus their repeatability characteristics regardless of supply voltage variations, make them particularly well suited for applications where consistent operating times are essential under all conditions. Specifically, these relays are ideal for applications in circuit breaker failure backup schemes, where accurate and repeatable time settings are essential. Typical external connections are shown in Figure 2.

RATINGS

CONTROL VOLTAGE

Control voltage ratings are shown in Table C.

TABLE C

DC Voltage	Mode1
24/125	SAM99AF(-)A
24/48/125	SAM11J
125/250	SAM11H, SAM99AD
48/125/250	All other
48/110/220	DC rated models
AC Voltage	Mode I
120V, 60 Hz	SAM99AG(-)A

Relays which are triple rated have a link on the front panel for selecting the control voltage.

CONTACTS

The relay contacts will close and carry momentarily 30 amperes DC at control voltages of 250 volts or less. These contacts will carry three amperes continuously and have interrupting ratings as shown in Table D.

TABLE D

Volts	Current Inductive**	Current Non-Inductive
48 VDC	1.0	3.0
125 VDC	0.5	1.5
250 VDC	0.25	0.75
115V, 60 Cycles	0.75	2.0
230V, 60 cycles	0.5	1.0

^{**}Inductance of average trip coil.

TARGET AND SEAL-IN UNIT

The ratings of the seal-in unit coil are shown in Table E:

TABLE E

		TAP				
		0.2	0.6	2.0		
DC resistance +10% Minimum operating +0, -25%	(ohms) (amps)	8.0 0.2	0.6 0.6	0.24 2.0		
Carry continuously Carry 30 amps for: Carry 10 amps for: 60 hertz impedance	(amps) (seconds) (seconds) (ohms)	0.3 0.03 0.25 52.0	1.5 0.3 4.0 6.0	3.0 4.0 30.0 0.53		

If the tripping current exceeds 30 amperes, an auxiliary relay should be used, with connections made such that the tripping current does not pass through the contacts or the target and seal-in coils of the protective relay.

CHARACTERISTICS

The timing circuits of the SAM relays are designed to provide an extremely accurate and stable time-delay function. The dial for each timing circuit has been calibrated at the factory for seven operating times. For example, the three second timers, which are frequently used in distance relay applications, are calibrated at 0.1, 0.2, 0.3, 0.5, 1.0, 2.0, and 3.0 seconds.

If the calibration knob is reset in the field at one of the factory-set points, the timing circuit will be accurate within plus three percent of the dial marking,

if checked at rated voltage and an ambient temperature of approximately 25° C. If the calibration has not been disturbed, then when the timing circuits are set for a particular time and subsequently rechecked under identical operating conditions, they will repeat within one percent of the original setting.

The use of zener regulators across the input to the timing circuit makes the timing circuits inherently independent of changes in the DC voltage supply. The curves in Figure 15 show a small percentage change in time for control voltage changes from 64 to 120 percent of normal for nominal time settings of 0.05, 0.25 and 0.5 seconds.

The factory calibration points on the dial plate were made in an ambient temperature of approximately 25°C . The relays can be safely operated at ambient temperatures from minus 20°C to plus 60°C . The change in operating time over this ambient range will be less than plus or minus four percent of the time at 25°C for any time setting (see Figure 16).

The timing circuits include a discharge rectifier that provides a low resistance discharge path for the capacitor charge the instant that the initiating contact de-energizes the timing circuit. The reset time is 16 milliseconds. If the timing circuit is de-energized for this interval or longer, subsequent operations will occur within one percent of the nominally set operating time.

The nature of the timing circuit makes overtravel practically nonexistent in the SAM relays. Elimination of overtravel is one advantage this solid state relay has over a similar electromechanical relay.

BURDENS

The relay watts at rated voltage are given in Table F. The target resistance is 0.35 ohms approximately.

TABLE F

VOLTS	MAXIMUM RELAY WATTS
24	2.0
48	2.5
110, 125	7.5
220, 250	15.5

CONSTRUCTION

The relay components are mounted in a cradle assembly which is latched into a drawout case when the relay is in operation. It can be easily removed from the cradle assembly; first disconnect the relay by removing the connection plug which completes the electrical connections between the case block and the cradle block. To test the relay in its case, this connection block can be replaced by a test plug.

The cover, which is attached to front of the relay case, contains the target reset mechanism and an interlock arm which prevents the cover from being replaced until the connection plugs have been inserted.

The relay case is suitable for either semi-flush or surface mounting on all panels up to two inches thick. Appropriate mounting hardware is available; however panel thickness must be indicated on the relay order to insure that the proper hardware will be included. For outline and drilling dimensions, see Figures 18 and 19. Every circuit in the drawout case has an auxiliary brush, as shown in Figure 17 to provide adequate overlap when the connecting plug is withdrawn or inserted. Some circuits are equipped with shorting bars. It is important that the auxiliary brush make contact with adequate pressure (as indicated in Figure 17) on these circuits to prevent the opening of important interlock circuits.

RECEIVING, HANDLING AND STORAGE

When not included as part of a control panel, relays will be shipped in cartons designed to protect them against damage. Immediately upon receipt of a relay, examine it for any damage sustained in transit. If damage resulting from rough handling is evident, file a damage claim at once with the transportation company and promptly notify the nearest General Electric Apparatus Sales Office.

Exercise reasonable care when unpacking the relay. If the relays are not to be installed immediately, they should be stored in their original cartons in a place that is free from moisture, dust and metallic chips. Foreign matter that collects on the outside of the case may find its way inside when the cover is removed and cause problems with the operation of the relay.

Also check the nameplate stamping to insure that the model number and the rating of the relay received agree with the requisition. Check the operation manually. Also, check that the contact gap and wipe agree with values given in the section on ADJUSTMENTS AND INSPECTION.

ACCEPTANCE TESTS

Immediately upon receipt of the relay an inspection and acceptance test should be made to insure that no damage has been sustained in shipment and that the relay calibrations have not been disturbed. If the examination or test indicate that readjustment is necessary, refer to the section on **SERVICING**.

VISUAL INSPECTION

Check the nameplate stamping to insure that the model number and rating of the relay agree with the requisition.

Remove the relay from its case and check that there are no broken or cracked molded parts or other signs of physical damage. The printed circuit cards should be held securely in their receptacles by the grooved clamping plate on the left side of the relay.

MECHANICAL INSPECTION

It is recommended that the following mechanical adjustments be checked:

- 1. Operate each telephone type unit manually to be sure the armatures are moving freely. With the armature closed the normally closed contacts should make with approximately 0.005 inch wipe. This can be checked by inserting a 0.005 inch shim between the residual screw and the pole piece and operating the armature by hand. The normally open contacts should make before the residual screw strikes the shim. With the armature open, each normally open contact should have a gap of 0.010 inch to 0.015 inch.
- 2. Check the location of the contact brushes on the cradle and case blocks against the internal connection diagram.

ELECTRICAL TEST

The relay should be tested before installation and periodically thereafter by connecting a variable source of DC voltage to the coil studs and checking the pickup voltage. The relay should be adjusted by means of the variable resistor (R1) to the time delay required at its final location (see Figures 1 and 2). An electronic timer should be used in making this setting.

A variable source of DC power should be connected to the target circuits if they are present and the pickup amperes checked. The target should pick up at or below its rating.

For the SAM18A, connect the relay to a source of variable AC and check as described above for DC relays.

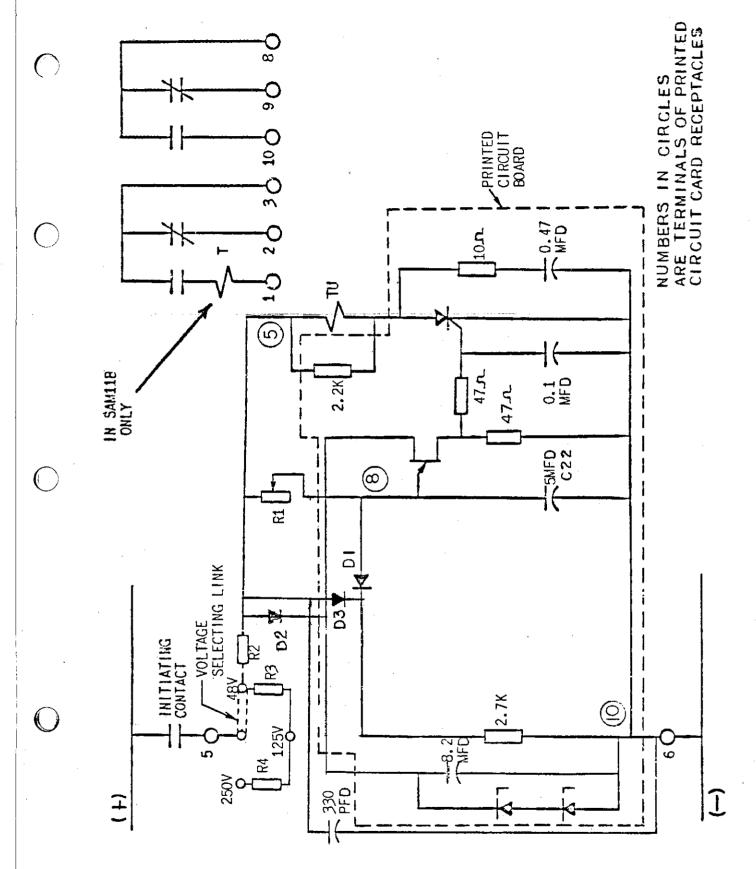
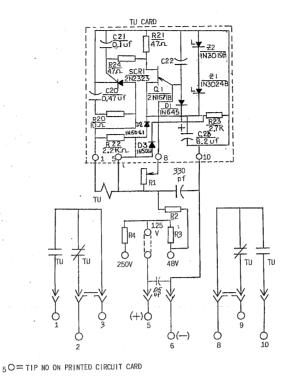
SERVICING

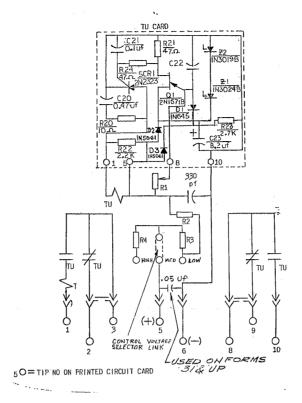
A flexible burnishing tool should be used for cleaning relay contacts. This consists of an etched-roughened strip of flexible metal, resembling a superfine file which removes corroded material quickly without scratching the surface. The flexibility of the tool insures the cleaning of the actual points of contact. Never use knives, files, abrasive paper or cloth to clean relay contacts. A burnishing tool as described above can be obtained from the factory.

RENEWAL PARTS

Sufficient quantities of renewal parts should be carried in stock to enable the prompt replacement of any that are worn, broken, or damaged.

When ordering renewal parts, address the nearest Sales Office of the General Electric Company, specify quantity required, name of the part wanted, and give complete nameplate data. If possible, give the General Electric requisition number on which the relay was furnished.


Figure 2 (0208A2480-1) Typical External Connection Diagram for a SAM Relay

* Figure 3A (0208A2420-7, Sh. 1) Internal Connections for the SAM11A Relay

MODEL		FORM				
12SAM11A(-)A;	21	22	23			
volts D.Ç.	48/125/ 250	48/125/ 250	48/125 250			
RESISTANCE	IN OHMS					
TU COIL	650	650	650			
R1	0.75 MEG.	1:5 MEG	1.5 MEG			
R2	500	500	500			
R3	1200	1200	1200			
R4	2000	2000	2000			
MFD	& VOLT	S				
C 22	5-200	5-200	10-200			

Figure 3B (0208A2420-3, Sh. 2) Internal Connections for the SAM11A Relay

* Figure 4A (0208A2421-5, Sh. 1) Internal Connections for the SAM11B Relay

L.,,555.	Ton						
MODEL	FORM						
12SAM11B(-)A	21	22 <i>£23</i>	24				
VOLTS D.C.	48/ 125/ 250	48/125/ 250	48/110 220				
RESISTANCE	IN OHMS						
TU COIL	650	650	650				
•							
R1	0.75 MEG.	1.5 MEG	0.5 MEG.				
R2	500 -r	500 A	500 IL				
R3	1200 - 2	1200 1	1000 1				
R4	2000 م	2000 5	1750 N				

Figure 4B (0208A2421-3, Sh. 2) Internal Connections for the SAM11B Relay

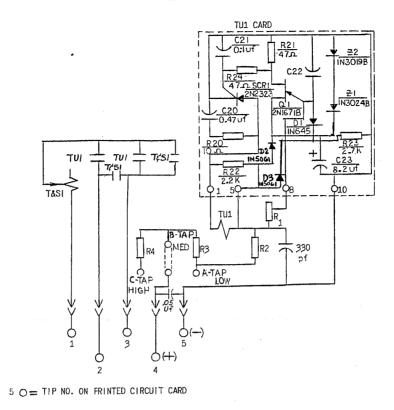
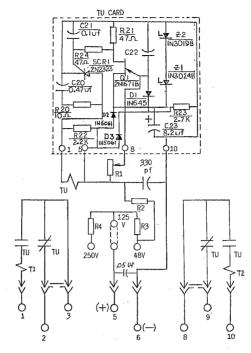
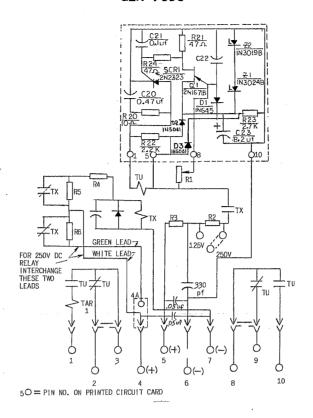



Figure 5A (0208A2422-6, Sh. 1) Internal Connections for the SAM11C Relay

MODEL	FORM					
12SAMIIC()A	21	22	23	24	25	26 .
VOLTS DC A TAP C TAP	48 125 250	48 125 250	48 125 250	48 125 250	48 110 220	48 110 220
	RESI	STANCE I	N OHMS			
TUI COIL	650	650	650	650	650	650
R1	0.75 MEG.	1.5 MEG.	1.5 MEG.	1.5 MEG.	0.75MEG.	0.75MEG.
R2	500	500	500	5.00	500	500
R3	1200	1200	1200	1200	1000	1000
R4	2000	2000	2000	2000	1750	1750

Figure 5B (0208A2422-4, Sh. 2) Internal Connections for the SAM11C Relay



5 O = TIP NO ON PRINTED CIRCUIT CARD

* Figure 6A (0208A2423-5, Sh. 1) Internal Connections for the SAM11D Relay

MODEL		FORM		
12SAM11D(-)A	21	22	23	
VOLTS D.C.	48/125/ 250	48/125/ 250	48/110/ 220	
RESISTANCE	IN OHMS			
TU COIL	650	650	650	
	BC C			
R1	0.75 MEG.	1.5 MEG	1.5 MEG	
R2	500 .	500	500	
R3	1200	1200	900	
R4	2000	2000	2000	
	4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	the state of the s		
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	6 3 3 3			

Figure 6B (0208A2423-1, Sh. 2) Internal Connections for the SAM11D Relay

* Figure 7A (0208A2424-5, Sh. 1) Internal Connections for the SAM11H Relay

MODEL		FORM	1
SAM11H(-)A	11		
VOLTS D.C.	125/250		:
RESISTANCE	IN OHMS		
TX COIL	58		
TU COIL	650		
R1	0.75MEG.		4
R2	2000		
R3	1750		
R4	² 500		
R5	700		
R6	2500		

Figure 7B (0208A2424-1, Sh. 2) Internal Connections for the SAM11H Relay

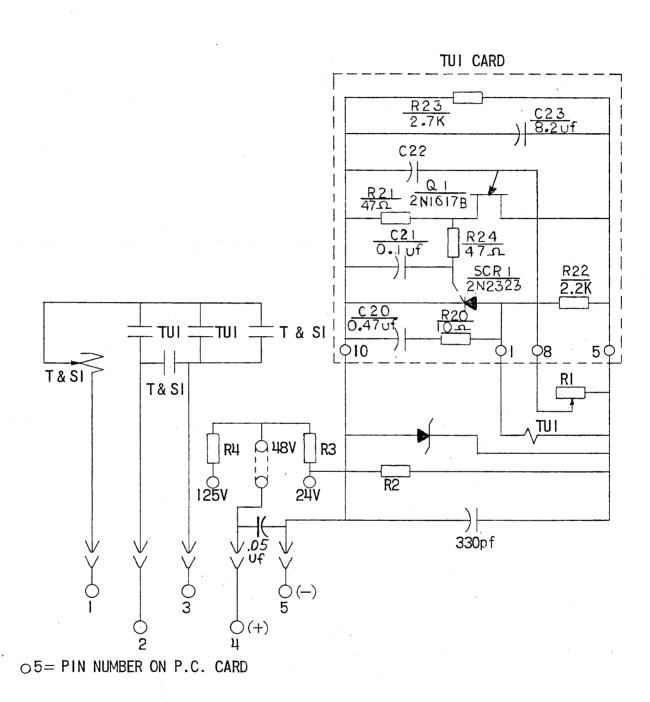
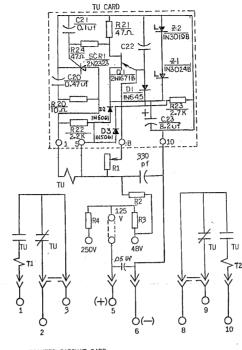
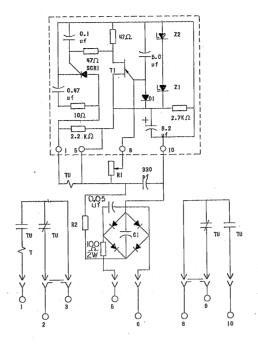



Figure 8 (0227A7169-4) Internal Connections for the SAM11J Relay

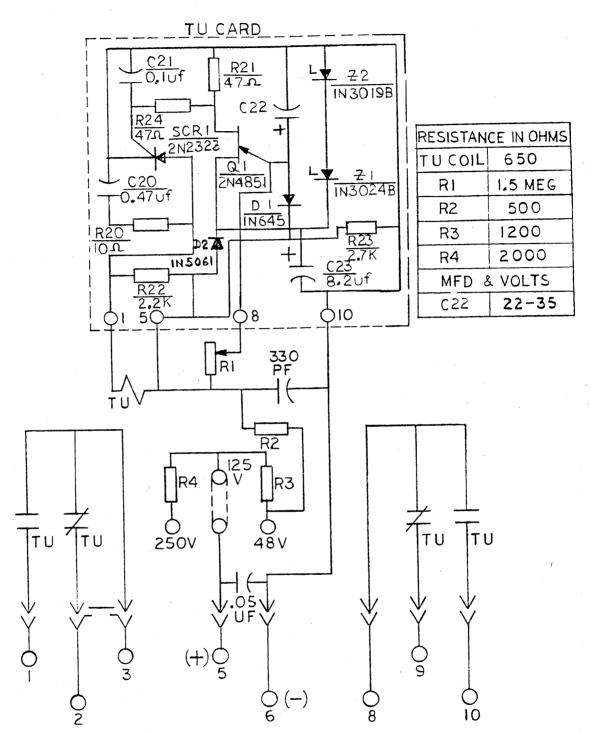


5 O = TIP NO ON PRINTED CIRCUIT CARD

* Figure 9A (0208A2423-5, Sh. 1) Internal Connections for the SAM13C Relay

MODEL		FORM	
12SAM:13C(-)A	21 & 23	22	V
VOLTS D.C.	48/125/ 250	48/125/ 250	
RESISTANCE	IN OHMS		
	·		
TU1 COIL	650	650	
TU.2 COIL	650	650	
R1, R11	0.75 MEG.	1.5 MEG	
R2, R12	500	50 C	·
R3, R13	1200	1200	
R4, R14	2000	2000	
			<u> </u>

Figure 9B (0208A2425-0, Sh. 2) Internal Connections for the SAM13C Relay



5 O = TIP NO. ON PRINTED CIRCUIT CARD

* Figure 10A (0227A2527-3, Sh. 1) Internal Connections for the SAM18A Relay

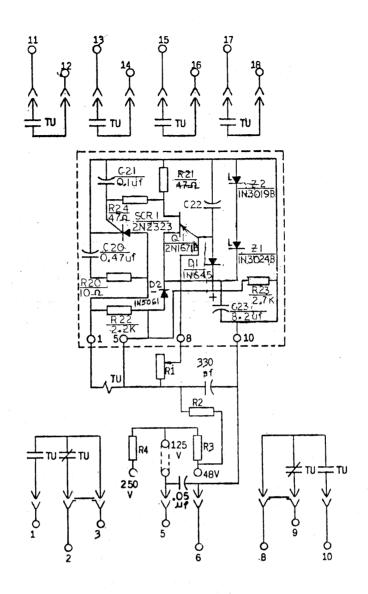
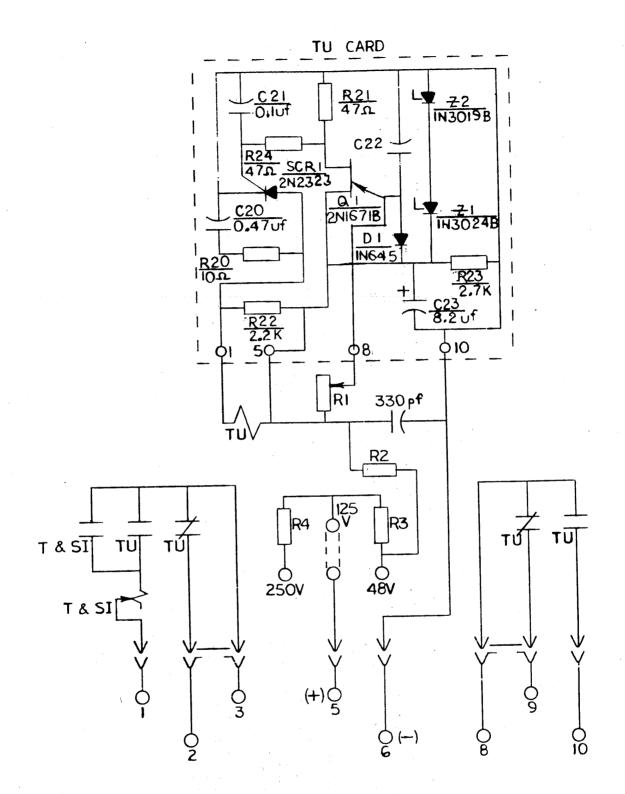
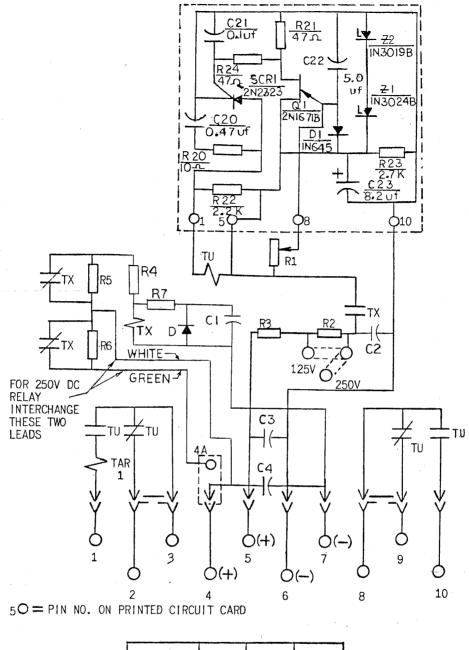

MODEL		FORM	
12SAM18A(-)A	1		
VOLTS	120		
FREQUENCY	60		
RESISTANCE IN	OHMS	<u> </u>	
TU COIL	650		
RI .	1.5 MEG.		
R2	2.5K		
	,		
·			
			١.
CAPACITA	NCE IN MFD.		
Cl	ı		
			2

Figure 10B (0227A2527-0, Sh. 2) Internal Connections for the SAM18A Relay

5 O = TIP NO. ON PRINTED CIRCUIT CARD


Figure 11 (0257A8337-3) Internal Connections for the SAM99AA Relay

MODEL	FORM		
SAM99AB(-)A	001	002	
VOLTS D.C.	48/125/ 250	48/125 / 250	
RESISTANCE 11	OHMS		
TU COIL	650	650	
R1	0.75 MEG	1.5 MEG	
R2	500	500	
R3	1200	1200	
R4	2000	2000	
			· ·
	1		
			ļ
<u> </u>		<u> </u>	
1	l	l	1


Figure 12 (0257A9616-1)

Internal Connections for the SAM99AB Relay

50=TIP NO. ON PRINTED CIRCUIT CARD

Figure 13 (0246A2276-2) Internal Connections for the SAM99AC Relay

VOLTS D.C.	125/250	
RESISTANCE	IN OHMS	
TX COIL	58	
TU COIL	650	
.R1 -	0.75MEG.	
R2	12000	
R3	1750	
R4	500	
R5	700	
_R6	2500	
R7	10	

Figure 14 (0269A3081-1) Internal Connections for the SAM99AD Relay

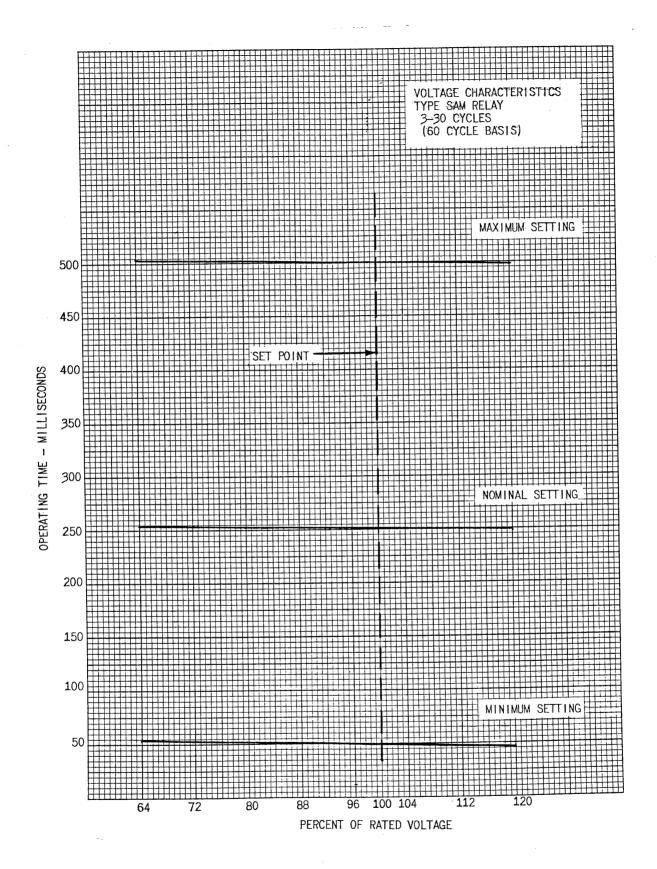


Figure 15 (0165A7626-3) Voltage Characteristics of the SAM Relay

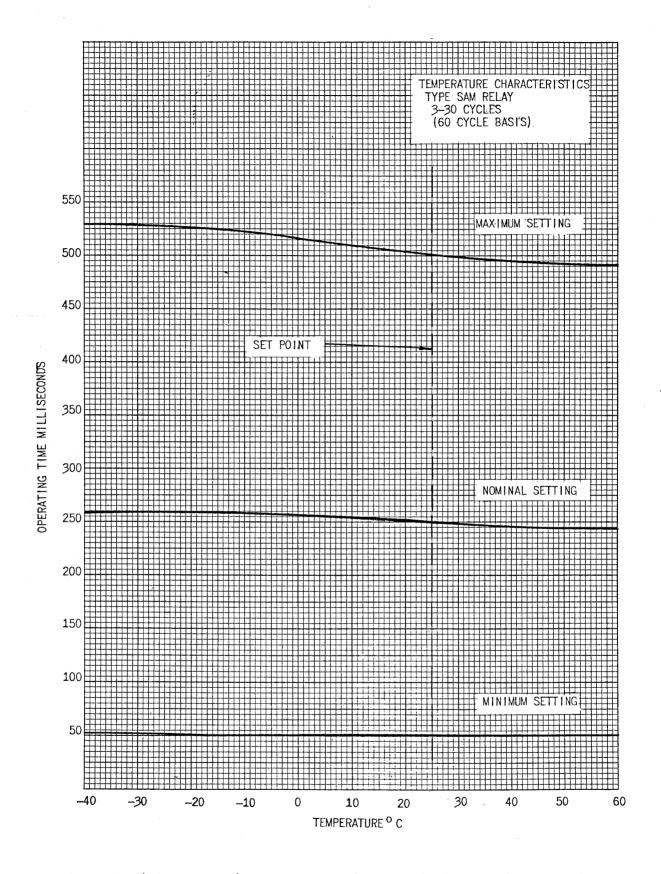
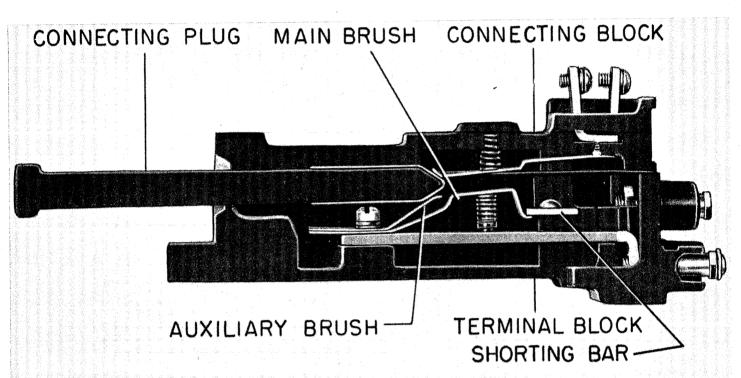



Figure 16 (0165A7625-0) Temperature Characteristics of the SAM Relay

NOTE: AFTER ENGAGING AUXILIARY BRUSH, CONNECTING PLUG TRAVELS 1/4 INCH BEFORE ENGAGING THE MAIN BRUSH ON THE TERMINAL BLOCK

Figure 17 (8025039) Cross-Section of Drawout Case Showing the Position of the Auxiliary Brush

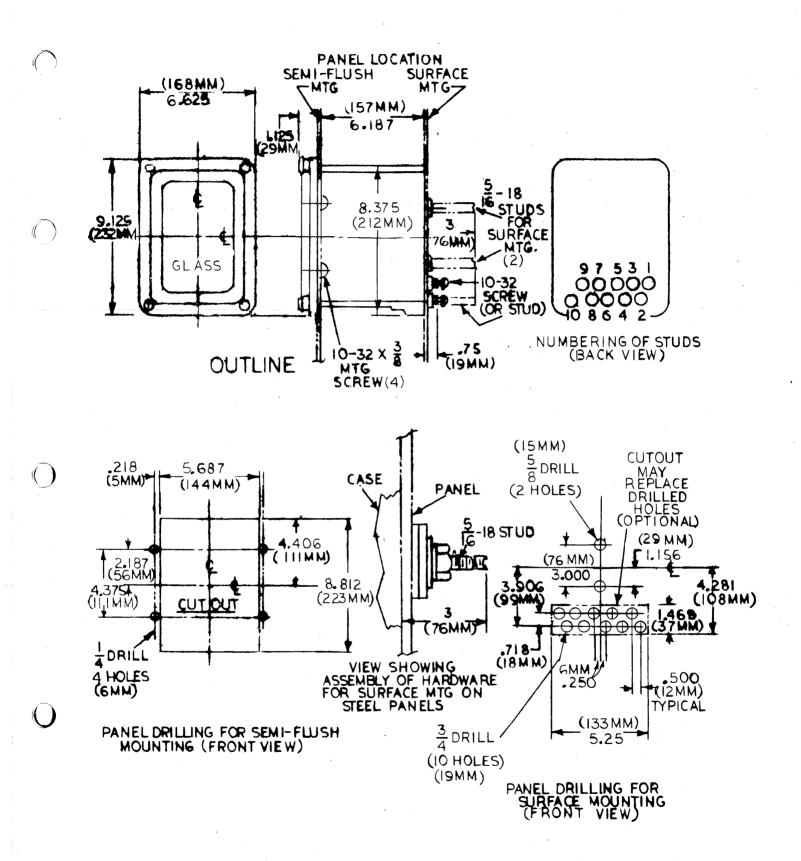


Figure 18 (6209271-6) Outline and Panel Drilling for the S1 Case

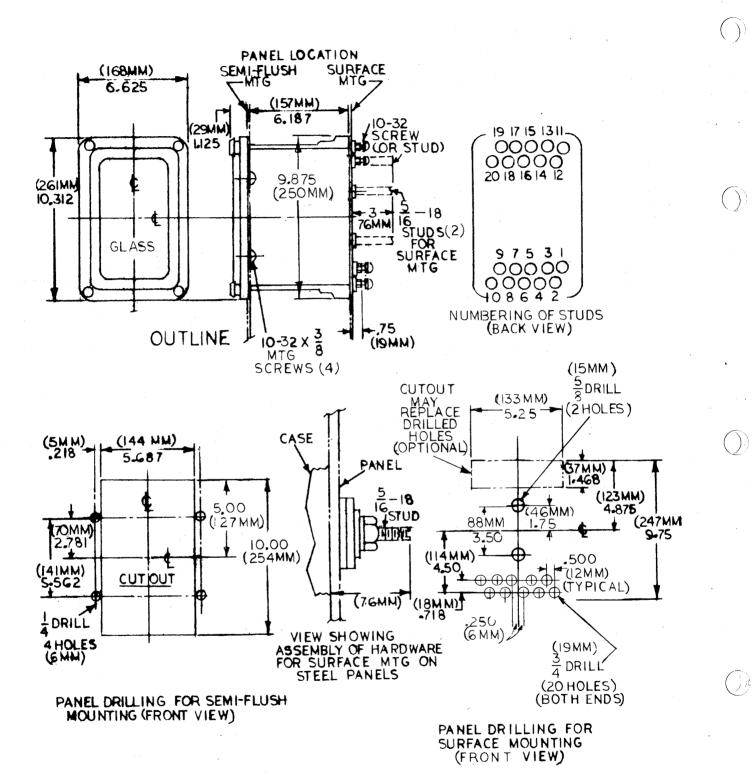


Figure 19 (6209272-5) Outline and Panel Drilling for the S2 Case

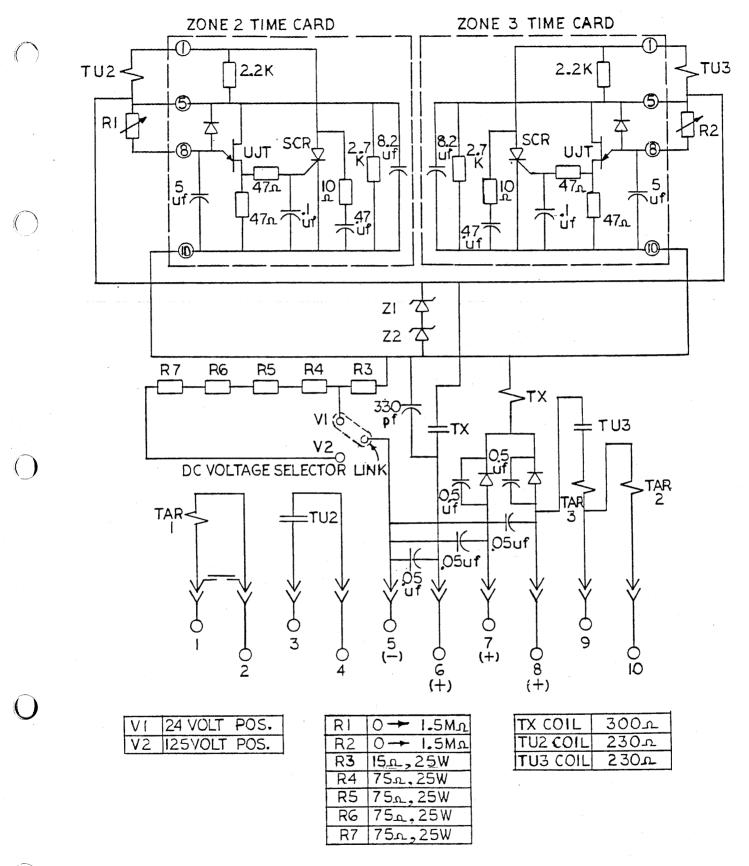
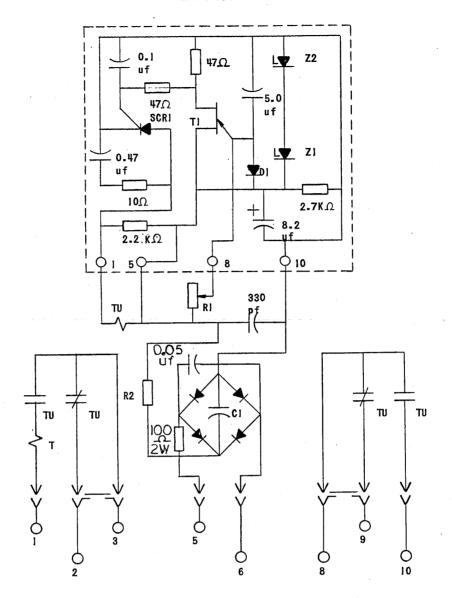



Figure 20 (0258A5622-0) Internal Connections for the SAM99AF Relay

5 O = TIP NO. ON PRINTED CIRCUIT CARD

MODEL		FORM		
12SAM18A(-)A	1			
VOLTS	120			
FREQUENCY	60			
RESISTANCE IN	OHMS			
TU COIL	650			
RI	1.5 MEG.			
R2	2.5K			
	-		 	
CAPACITA	HCE IN MFD.	L		
Cl	I			

Figure 21 (0227A2527-0) Internal Connections for the SAM99AG Relay

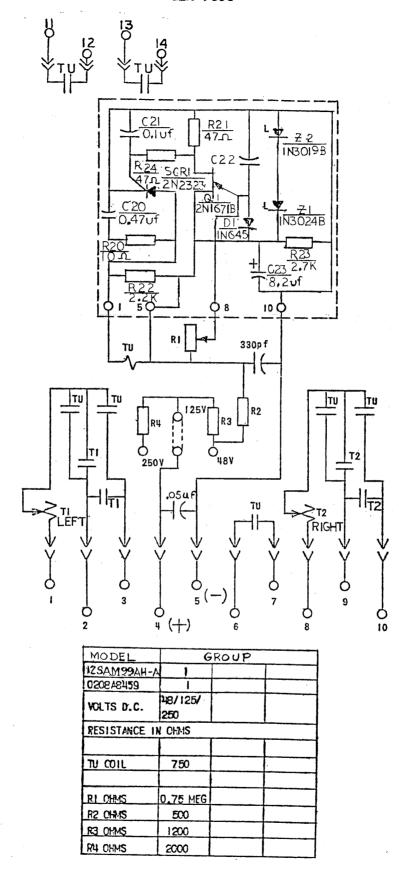


Figure 22 (0246A6836-0) Internal Connections for the SAM99AH Relay

GENERAL ELECTRIC COMPANY POWER SYSTEMS MANAGEMENT BUSINESS DEPT. MALVERN, PA 19355

