

GE Industrial Systems

L90 Line Current Differential System

UR Series Instruction Manual

L90 Revision: 5.5x

Manual P/N: 1601-0081-**S3** (GEK-113417B) Copyright © 2008 GE Multilin

831776A2.CDR

GE Multilin

215 Anderson Avenue, Markham, Ontario Canada L6E 1B3 Tel: (905) 294-6222 Fax: (905) 201-2098 Internet: http://www.GEmultilin.com

GE Industrial Systems

ADDENDUM

This addendum contains information that relates to the L90 Line Current Differential System, version 5.5x. This addendum lists a number of information items that appear in the instruction manual GEK-113417B (revision **S3**) but are not included in the current L90 operations.

The following functions and items are not yet available with the current version of the L90 relay:

• Signal sources SRC 5 and SRC 6.

Version 4.0x and higher releases of the L90 relay includes new hardware (CPU and CT/VT modules).

- The new CPU modules are specified with the following order codes: 9E, 9G, 9H, 9J, 9K, 9L, 9M, 9N, 9P, 9R, and 9S.
- The new CT/VT modules are specified with the following order codes: 8F, 8H 8L, 8N.

The following table maps the relationship between the old CPU and CT/VT modules to the newer versions:

MODULE	OLD	NEW	DESCRIPTION
CPU	9A	9E	RS485 and RS485 (Modbus RTU, DNP)
	9C	9G	RS485 and 10Base-F (Ethernet, Modbus TCP/IP, DNP)
	9D	9H	RS485 and redundant 10Base-F (Ethernet, Modbus TCP/IP, DNP)
		9J	RS485 and multi-mode ST 100Base-FX
		9K	RS485 and multi-mode ST redundant 100Base-FX
		9L	RS485 and single mode SC 100Base-FX
		9M	RS485 and single mode SC redundant 100Base-FX
		9N	RS485 and 10/100Base-T
		9P	RS485 and single mode ST 100Base-FX
		9R	RS485 and single mode ST redundant 100Base-FX
		9S	RS485 and six-port managed Ethernet switch
CT/VT	8A	8F	Standard 4CT/4VT
	8C	8H	Standard 8CT
		8L	Standard 4CT/4VT with enhanced diagnostics
		8N	Standard 8CT with enhanced diagnostics

The new CT/VT modules can only be used with the new CPUs (9E, 9G, 9H, 9J, 9K, 9L, 9M, 9N, 9P, 9R, and 9S), and the old CT/VT modules can only be used with the old CPU modules (9A, 9C, 9D). To prevent any hardware mismatches, the new CPU and CT/VT modules have blue labels and a warning sticker stating "Attn.: Ensure CPU and DSP module label colors are the same!". In the event that there is a mismatch between the CPU and CT/VT module, the relay will not function and a DSP ERROR or HARDWARE MISMATCH error will be displayed.

All other input/output modules are compatible with the new hardware.

With respect to the firmware, firmware versions 4.0x and higher are only compatible with the new CPU and CT/VT modules. Previous versions of the firmware (3.4x and earlier) are only compatible with the older CPU and CT/VT modules.

1.	GETTI	NG ST	ARTED

1.1 IMPORTANT PROCEDURES

	CAUTIONS AND WARNINGS INSPECTION CHECKLIST	
1.2 UR OV	/ERVIEW	
1.2.1	INTRODUCTION TO THE UR	
1.2.2	HARDWARE ARCHITECTURE	
1 0 0		

1.2.3	SOFTWARE ARCHITECTURE	1-4
1.2.4	IMPORTANT CONCEPTS	1-4

1.3 ENERVISTA UR SETUP SOFTWARE

1.3.1	PC REQUIREMENTS	
1.3.2	INSTALLATION	
1.3.3	CONFIGURING THE L90 FOR SOFTWARE ACCESS	
1.3.4	USING THE QUICK CONNECT FEATURE	
1.3.5	CONNECTING TO THE L90 RELAY	1-15

1.4 UR HARDWARE

1.4.1	MOUNTING AND WIRING	. 1-16
1.4.2	COMMUNICATIONS	. 1-16
1.4.3	FACEPI ATE DISPLAY	1-16

1.5 USING THE RELAY

1-17
1-17
1-17
1-17
1-18
1-18
1-19

2. PRODUCT DESCRIPTION

2.1 INTRODUCTION

2.1 IN I I	RODUCTION	
2.1.1	1 OVERVIEW	
2.1.2	2 FEATURES	
2.1.3	0.0220	
2.1.4	4 REPLACEMENT MODULES	
2.2 PILC	OT CHANNEL RELAYING	
2.2.2	1 INTER-RELAY COMMUNICATIONS	
2.2.2	2 CHANNEL MONITOR	
2.2.3		
2.2.4	4 DIRECT TRANSFER TRIPPING	
2.3 FUN	ICTIONALITY	
2.3.1	1 PROTECTION AND CONTROL FUNCTIONS	
2.3.2	2 METERING AND MONITORING FUNCTIONS	
2.3.3	3 OTHER FUNCTIONS	
2.4 SPE	CIFICATIONS	
2.4.1	1 PROTECTION ELEMENTS	
2.4.2	2 USER-PROGRAMMABLE ELEMENTS	
2.4.3	3 MONITORING	
2.4.4	4 METERING	
2.4.5	5 INPUTS	
2.4.6	6 POWER SUPPLY	
2.4.7	7 OUTPUTS	
2.4.8	8 COMMUNICATIONS	
2.4.9	9 INTER-RELAY COMMUNICATIONS	
2.4.1	10 ENVIRONMENTAL	
2.4.1	11 TYPE TESTS	
2.4.1	12 PRODUCTION TESTS	
2.4.1	13 APPROVALS	

3.1 DESC	RIPTION	
3.1.1	PANEL CUTOUT	
3.1.2	MODULE WITHDRAWAL AND INSERTION	3-5
3.1.3	REAR TERMINAL LAYOUT	3-7
3.2 WIRIN	G	
3.2.1	TYPICAL WIRING	
3.2.2	DIELECTRIC STRENGTH	3-10
3.2.3	CONTROL POWER	3-10
3.2.4	CT/VT MODULES	
3.2.5	CONTACT INPUTS AND OUTPUTS	3-13
3.2.6	TRANSDUCER INPUTS AND OUTPUTS	
3.2.7	RS232 FACEPLATE PORT	3-22
3.2.8	CPU COMMUNICATION PORTS	
3.2.9	IRIG-B	3-25
3.3 DIREC	T INPUT AND OUTPUT COMMUNICATIONS	
3.3.1	DESCRIPTION	3-27
3.3.2	FIBER: LED AND ELED TRANSMITTERS	3-28
3.3.3	FIBER-LASER TRANSMITTERS	3-28
3.3.4	G.703 INTERFACE	3-29
3.3.5	RS422 INTERFACE	3-32
3.3.6	RS422 AND FIBER INTERFACE	3-34
3.3.7	G.703 AND FIBER INTERFACE	3-34
3.3.8	IEEE C37.94 INTERFACE	3-35
3.3.9	C37.94SM INTERFACE	3-37
3.4 MANA	GED ETHERNET SWITCH MODULES	
3.4.1	OVERVIEW	
3.4.2	MANAGED ETHERNET SWITCH MODULE HARDWARE	3-39
3.4.3	MANAGED SWITCH LED INDICATORS	3-40
3.4.4	CONFIGURING THE MANAGED ETHERNET SWITCH MODULE	3-40
3.4.5	UPLOADING L90 SWITCH MODULE FIRMWARE	3-42
3.4.6	ETHERNET SWITCH SELF-TEST ERRORS	3-45

4.	HUMAN INTERFACES	4.1 ENER	VISTA UR SETUP SOFTWARE INTERFACE	
		4.1.1	INTRODUCTION	
		4.1.2	CREATING A SITE LIST	4-1
		4.1.3	ENERVISTA UR SETUP OVERVIEW	4-1
		4.1.4	ENERVISTA UR SETUP MAIN WINDOW	4-3
		4.2 EXTE	NDED ENERVISTA UR SETUP FEATURES	
		4.2.1	SETTINGS TEMPLATES	4-4
		4.2.2	SECURING AND LOCKING FLEXLOGIC™ EQUATIONS	4-8
		4.2.3	SETTINGS FILE TRACEABILITY	4-10
		4.3 FACE	PLATE INTERFACE	
		4.3.1	FACEPLATE	4-13
		4.3.2	LED INDICATORS	4-14
		4.3.3	CUSTOM LABELING OF LEDS	4-17
		4.3.4	DISPLAY	4-23
		4.3.5	KEYPAD	4-23
		4.3.6	BREAKER CONTROL	
		4.3.7	MENUS	
		4.3.8	CHANGING SETTINGS	4-26

5. SETTINGS

3. HARDWARE

5.1 OVERVIEW

5.1.1	SETTINGS MAIN MENU	5-1
5.1.2	INTRODUCTION TO ELEMENTS	5-4
5.1.3	INTRODUCTION TO AC SOURCES	5-5
5.2 PRODU	JCT SETUP	
5.2.1	SECURITY	5-8
5.2.2	DISPLAY PROPERTIES	5-11

5.2.3	CLEAR RELAY RECORDS	
5.2.4	COMMUNICATIONS	
5.2.5	MODBUS USER MAP	
5.2.6	REAL TIME CLOCK	
5.2.7	FAULT REPORTS	
5.2.8	OSCILLOGRAPHY	
5.2.9	DATA LOGGER	
5.2.10	DEMAND	
5.2.11	USER-PROGRAMMABLE LEDS	
5.2.12	USER-PROGRAMMABLE SELF-TESTS	
5.2.13	CONTROL PUSHBUTTONS	
5.2.14	USER-PROGRAMMABLE PUSHBUTTONS	
5.2.15	FLEX STATE PARAMETERS	
5.2.16	USER-DEFINABLE DISPLAYS	
5.2.17	INSTALLATION	

5.3 SYSTEM SETUP

5.3.1	AC INPUTS	5-54
5.3.2	POWER SYSTEM	5-55
5.3.3	SIGNAL SOURCES	5-56
5.3.4	L90 POWER SYSTEM	5-59
5.3.5	BREAKERS	5-64
5.3.6	DISCONNECT SWITCHES	5-68
5.3.7	FLEXCURVES™	5-71
5.3.8	PHASOR MEASUREMENT UNIT	5-78

5.4 FLEXLOGIC™

5.4.1	INTRODUCTION TO FLEXLOGIC™	
5.4.2	FLEXLOGIC™ RULES	5-105
5.4.3	FLEXLOGIC™ EVALUATION	5-105
5.4.4	FLEXLOGIC™ EXAMPLE	5-106
5.4.5	FLEXLOGIC™ EQUATION EDITOR	5-110
5.4.6	FLEXLOGIC™ TIMERS	5-110
5.4.7	FLEXELEMENTS [™]	5-112
5.4.8	NON-VOLATILE LATCHES	5-116

5.5 GROUPED ELEMENTS

5.5.1	OVERVIEW	5-117
5.5.2	SETTING GROUP	5-117
5.5.3	LINE DIFFERENTIAL ELEMENTS	5-118
5.5.4	LINE PICKUP	5-123
5.5.5	DISTANCE	5-125
5.5.6	POWER SWING DETECT	5-142
5.5.7	LOAD ENCROACHMENT	5-150
5.5.8	PHASE CURRENT	5-152
5.5.9	NEUTRAL CURRENT	5-162
5.5.10	WATTMETRIC GROUND FAULT	5-170
5.5.11	GROUND CURRENT	5-173
5.5.12	NEGATIVE SEQUENCE CURRENT	5-175
5.5.13	BREAKER FAILURE	5-180
5.5.14	VOLTAGE ELEMENTS	5-189
5.5.15	SUPERVISING ELEMENTS	5-196

5.6 CONTROL ELEMENTS

	5.6.1	OVERVIEW	5-200
	5.6.2	SETTING GROUPS	5-200
	5.6.3	SELECTOR SWITCH	5-201
	5.6.4	TRIP OUTPUT	5-206
	5.6.5	SYNCHROCHECK	5-212
	5.6.6	DIGITAL ELEMENTS	5-216
	5.6.7	DIGITAL COUNTERS	
	5.6.8	MONITORING ELEMENTS	5-221
	5.6.9	PILOT SCHEMES	5-234
	5.6.10	AUTORECLOSE	5-237
	5.6.11	TRIP BUS	5-249
5.7	INPUT	S/OUTPUTS	
	5.7.1	CONTACT INPUTS	5-251
	5.7.2	VIRTUAL INPUTS	5-253
	5.7.3	CONTACT OUTPUTS	5-254

5.7.4	VIRTUAL OUTPUTS	5-256
	REMOTE DEVICES	
5.7.6	REMOTE INPUTS	5-258
5.7.7	REMOTE OUTPUTS	5-259
5.7.8	DIRECT INPUTS/OUTPUTS	5-260
5.7.9	RESETTING	5-262

5.8 TRANSDUCER INPUTS/OUTPUTS

 DCMA INPUTS	5.8.1
 RTD INPUTS	5.8.2
 DCMA OUTPUTS	5.8.3

5.9 TESTING

5.9.1	TEST MODE	5-269
5.9.2	FORCE CONTACT INPUTS	5-269
5.9.3	FORCE CONTACT OUTPUTS	5-270
5.9.4	CHANNEL TESTS	5-271
5.9.5	PHASOR MEASUREMENT UNIT TEST VALUES	5-271

6. ACTUAL VALUES

6.1 OVERVIEW

	6.1.1	ACTUAL VALUES MAIN MENU6-1
6.2	STATU	IS
	6.2.1	CONTACT INPUTS
	6.2.2	VIRTUAL INPUTS
	6.2.3	REMOTE INPUTS
	6.2.4	DIRECT INPUTS
	6.2.5	CONTACT OUTPUTS
	6.2.6	VIRTUAL OUTPUTS6-5
	6.2.7	AUTORECLOSE
	6.2.8	REMOTE DEVICES6-5
	6.2.9	CHANNEL TESTS
	6.2.10	DIGITAL COUNTERS
	6.2.11	SELECTOR SWITCHES6-7
	6.2.12	FLEX STATES6-8
	6.2.13	ETHERNET6-8
	6.2.14	ETHERNET SWITCH6-8
6.3	METER	RING
	6.3.1	METERING CONVENTIONS
	6.3.2	DIFFERENTIAL CURRENT6-12
	6.3.3	SOURCES
	6.3.4	SYNCHROCHECK
	6.3.5	TRACKING FREQUENCY
	6.3.6	FLEXELEMENTS™6-18
	6.3.7	IEC 61580 GOOSE ANALOG VALUES6-19
	6.3.8	WATTMETRIC GROUND FAULT6-19
	6.3.9	PHASOR MEASUREMENT UNIT6-19
	6.3.10	TRANSDUCER INPUTS AND OUTPUTS
6.4	RECO	RDS
	6.4.1	FAULT REPORTS
	6.4.2	EVENT RECORDS6-21
	6.4.3	OSCILLOGRAPHY
	6.4.4	DATA LOGGER6-22
	6.4.5	PHASOR MEASUREMENT UNIT RECORDS6-22
	6.4.6	BREAKER MAINTENANCE6-23
6.5	PROD	JCT INFORMATION
	6.5.1	MODEL INFORMATION
	6.5.2	FIRMWARE REVISIONS6-24

7.	COMMANDS A	ND
	TARGETS	

7.1 COMMANDS

7.1.1	COMMANDS MENU	7-1
7.1.2	VIRTUAL INPUTS	7-1

7.1.3	CLEAR RECORDS	7-1
7.1.4	SET DATE AND TIME	
7.1.5	RELAY MAINTENANCE	7-2
7.1.6	PHASOR MEASUREMENT UNIT ONE-SHOT	7-3
7.2 TARG	ETS	
7.2.1	TARGETS MENU	7-5
7.2.2	TARGET MESSAGES	
7.2.3	RELAY SELF-TESTS	7-5

8. THEORY OF OPERATION

8.1 OVERVIEW

OT LIV		
8.1.1	L90 DESIGN	
8.1.2	L90 ARCHITECTURE	
8.1.3	REMOVAL OF DECAYING OFFSET	
8.1.4	PHASELET COMPUTATION	
8.1.5	DISTURBANCE DETECTION	
8.1.6	FAULT DETECTION	
8.1.7	CLOCK SYNCHRONIZATION	
8.1.8	FREQUENCY TRACKING AND PHASE LOCKING	
8.1.9	FREQUENCY DETECTION	8-5
8.1.10	PHASE DETECTION	
8.1.11	PHASE LOCKING FILTER	
8.1.12	MATCHING PHASELETS	
8.1.13	START-UP	
8.1.14	HARDWARE AND COMMUNICATION REQUIREMENTS	
8.1.15	ONLINE ESTIMATE OF MEASUREMENT ERRORS	
8.1.16	CT SATURATION DETECTION	
8.1.17	CHARGING CURRENT COMPENSATION	
8.1.18	DIFFERENTIAL ELEMENT CHARACTERISTICS	
8.1.19	RELAY SYNCHRONIZATION	
OPER	ATING CONDITION CHARACTERISTICS	

8.2 OPERATING CONDITION CHARACTERISTICS

8.2.1	DESCRIPTION	8-15
8.2.2	TRIP DECISION EXAMPLE	8-17
8.2.3	TRIP DECISION TEST	8-17

8.3 SINGLE-POLE TRIPPING

8.3.1	OVERVIEW	
8.3.2	PHASE SELECTION	
8.4 FAULT	LOCATOR	
8.4.1	OVERVIEW	
812	MULTI-ENDED FAULT LOCATOR	8-23

8.4.Z	MULTI-ENDED FAULT LOCATOR	5-2.	3
8.4.3	SINGLE-ENDED FAULT LOCATOR	3-29	9

9. APPLICATION OF SETTINGS

9.1 CT REQUIREMENTS

9.3

9.1.1	INTRODUCTION	. 9-1
9.1.2	CALCULATION EXAMPLE 1	. 9-1
9.1.3	CALCULATION EXAMPLE 2	. 9-2
9.2 CURR	ENT DIFFERENTIAL (87L) SETTINGS	
9.2.1	INTRODUCTION	. 9-3

9.2.1	INTRODUCTION	
9.2.2	CURRENT DIFFERENTIAL PICKUP	
9.2.3	CURRENT DIFF RESTRAINT 1	
9.2.4	CURRENT DIFF RESTRAINT 2	
9.2.5	CURRENT DIFF BREAK POINT	
9.2.6	CT TAP	
9.2.7	BREAKER-AND-A-HALF	
9.2.8	DISTRIBUTED BUS PROTECTION	
CHAN	NEL ASYMMETRY COMPENSATION USING GPS	
	RECORDERAN	0.40

9.3.1	DESCRIPTION	9-10
9.3.2	COMPENSATION METHOD 1	9-10
9.3.3	COMPENSATION METHOD 3	9-11

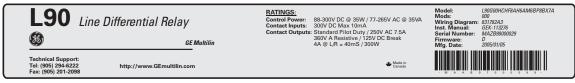
TABLE OF CONTENTS		
	9.4 DISTANCE BACKUP/SUPERVISION	
	9.4.1 DESCRIPTION	9-1:
	9.4.2 PHASE DISTANCE	
	9.4.3 GROUND DISTANCE	9-1
	9.5 POTT SIGNALING SCHEME	
	9.5.1 DESCRIPTION	9-16
	9.6 SERIES COMPENSATED LINES	
		0.45
	9.6.1 DISTANCE SETTINGS ON SERIES COMPENSATED LINES	
	9.7 LINES WITH TAPPED TRANSFORMERS	
	9.7.1 DESCRIPTION 9.7.2 TRANSFORMER LOAD CURRENTS	
	9.7.2 TRANSFORMER LOAD CORRENTS 9.7.3 LV-SIDE FAULTS	
	9.7.4 EXTERNAL GROUND FAULTS	
	9.8 INSTANTANEOUS ELEMENTS 9.8.1 INSTANTANEOUS ELEMENT ERROR DURING L90 SYNCHRONIZATI	ON .9-21
10. COMMISSIONING	10.1 TESTING	
	10.1.1 CHANNEL TESTING	10-1
	10.1.2 CLOCK SYNCHRONIZATION TESTS	
	10.1.3 CURRENT DIFFERENTIAL	10-3
	10.1.4 LOCAL-REMOTE RELAY TESTS	10-4
A. FLEXANALOG PARAMETERS	A.1 PARAMETER LIST A.1.1 FLEXANALOG DATA ITEMS	Δ_1
TARAMETERO		
B. MODBUS	B.1 MODBUS RTU PROTOCOL	
COMMUNICATIONS	B.1.1 INTRODUCTION	B-1
	B.1.2 PHYSICAL LAYER	B-1
	B.1.3 DATA LINK LAYER	
	B.1.4 CRC-16 ALGORITHM	B-2
	B.2 MODBUS FUNCTION CODES	
	B.2.1 SUPPORTED FUNCTION CODES	B-3
	B.2.2 READ ACTUAL VALUES OR SETTINGS (FUNCTION CODE 03/04H)	
	B.2.3 EXECUTE OPERATION (FUNCTION CODE 05H)	
	B.2.4 STORE SINGLE SETTING (FUNCTION CODE 06H)	
	B.2.5 STORE MULTIPLE SETTINGS (FUNCTION CODE 10H)	
	B.2.6 EXCEPTION RESPONSES	в-t
	B.3 FILE TRANSFERS	
	B.3.1 OBTAINING RELAY FILES VIA MODBUS	
	B.3.2 MODBUS PASSWORD OPERATION	B-7
	B.4 MEMORY MAPPING	
	B.4.1 MODBUS MEMORY MAP	B-9
	B.4.2 DATA FORMATS	B-63
C. IEC 61850	C.1 OVERVIEW	
COMMUNICATIONS	C.1.1 INTRODUCTION	-
	C.1.2 COMMUNICATION PROFILES	C-1
	C.2 SERVER DATA ORGANIZATION	
		0.0

	C.2.4	GGIO3: DIGITAL STATUS AND ANALOG VALUES FROM RECEIVED	GOOSE
	C.2.5	DATAC-2 GGIO4: GENERIC ANALOG MEASURED VALUES	C-2
	C.2.6	MMXU: ANALOG MEASURED VALUES	
	C.2.7	PROTECTION AND OTHER LOGICAL NODES	C-3
	C.3 SERV	ER FEATURES AND CONFIGURATION	
	C.3.1	BUFFERED/UNBUFFERED REPORTING	C-5
	C.3.2	FILE TRANSFER	
	C.3.3	TIMESTAMPS AND SCANNING	
	C.3.4 C.3.5	LOGICAL DEVICE NAME	
	C.3.5 C.3.6	LOGICAL NODE NAME PREFIXES	
	C.3.7	CONNECTION TIMING	
	C.3.8	NON-IEC 61850 DATA	C-6
	C.3.9	COMMUNICATION SOFTWARE UTILITIES	C-6
	C.4 GENE	RIC SUBSTATION EVENT SERVICES: GSSE AND GOOS	E
	C.4.1	OVERVIEW	-
	C.4.2	GSSE CONFIGURATION	-
	C.4.3	FIXED GOOSE	
	C.4.4	CONFIGURABLE GOOSE ETHERNET MAC ADDRESS FOR GSSE/GOOSE	
	C.4.5 C.4.6	GSSE ID AND GOOSE ID SETTINGS	
			0-10
	C.5 IEC 6	1850 IMPLEMENTATION VIA ENERVISTA UR SETUP OVERVIEW	C 11
	C.5.2	CONFIGURING IEC 61850 SETTINGS	
	C.5.3	ABOUT ICD FILES	
	C.5.4	CREATING AN ICD FILE WITH ENERVISTA UR SETUP	C-17
	C.5.5	ABOUT SCD FILES	C-17
	C.5.6	IMPORTING AN SCD FILE WITH ENERVISTA UR SETUP	C-20
	C.6 ACSI	CONFORMANCE	
	C.6.1	ACSI BASIC CONFORMANCE STATEMENT	C-22
	C.6.2	ACSI MODELS CONFORMANCE STATEMENT	-
	C.6.3	ACSI SERVICES CONFORMANCE STATEMENT	C-23
	C.7 LOGI	CAL NODES	
	C.7.1	LOGICAL NODES TABLE	C-26
D. IEC 60870-5-104		0870-5-104	
COMMUNICATIONS	D.1.1 D.1.2	INTEROPERABILITY DOCUMENT POINT LIST	
E. DNP COMMUNICATIONS	E.1 DEVIC	E PROFILE DOCUMENT	
	E.1.1	DNP V3.00 DEVICE PROFILE	
	E.1.2	IMPLEMENTATION TABLE	E-4
	E.2 DNP F	POINT LISTS	
	E.2.1	BINARY INPUT POINTS	E-8
	E.2.2	BINARY AND CONTROL RELAY OUTPUT	E-9
	E.2.3	COUNTERS	
	E.2.4	ANALOG INPUTS	E-11
F. MISCELLANEOUS	F.1 CHAN	GE NOTES	
	F.1.1	REVISION HISTORY	F-1
	F.1.2	CHANGES TO THE L90 MANUAL	F-2
	F.2 ABBR	EVIATIONS	
	F.2.1	STANDARD ABBREVIATIONS	F-4
	F.3 WARF	ANTY	

F.3.1	GE MULTILIN WARRANTY	– 6	•
F.3.1	GE MULTILIN WARRANTY	г-c)

1 GETTING STARTED

Please read this chapter to help guide you through the initial setup of your new relay.


1.1.1 CAUTIONS AND WARNINGS

Before attempting to install or use the relay, it is imperative that all WARNINGS and CAUTIONS in this manual are reviewed to help prevent personal injury, equipment damage, and/or downtime.

1.1.2 INSPECTION CHECKLIST

- Open the relay packaging and inspect the unit for physical damage.
- View the rear nameplate and verify that the correct model has been ordered.

831795A1.CDR

Figure 1–1: REAR NAMEPLATE (EXAMPLE)

- Ensure that the following items are included:
 - Instruction manual
 - GE EnerVista CD (includes the EnerVista UR Setup software and manuals in PDF format)
 - mounting screws
 - registration card (attached as the last page of the manual)
- Fill out the registration form and return to GE Multilin (include the serial number located on the rear nameplate).
- For product information, instruction manual updates, and the latest software updates, please visit the GE Multilin website at http://www.GEmultilin.com.

If there is any noticeable physical damage, or any of the contents listed are missing, please contact GE Multilin immediately.

GE MULTILIN CONTACT INFORMATION AND CALL CENTER FOR PRODUCT SUPPORT:

GE Multilin 215 Anderson Avenue Markham, Ontario Canada L6E 1B3 TELEPHONE: (905) 294-6222, 1-800-547-8629 (North America only)

FAX: (905) 201-2098 E-MAIL: gemultilin@ge.com HOME PAGE: http://www.GEmultilin.com 1

GE Multilin

1.2.1 INTRODUCTION TO THE UR

Historically, substation protection, control, and metering functions were performed with electromechanical equipment. This first generation of equipment was gradually replaced by analog electronic equipment, most of which emulated the singlefunction approach of their electromechanical precursors. Both of these technologies required expensive cabling and auxiliary equipment to produce functioning systems.

Recently, digital electronic equipment has begun to provide protection, control, and metering functions. Initially, this equipment was either single function or had very limited multi-function capability, and did not significantly reduce the cabling and auxiliary equipment required. However, recent digital relays have become guite multi-functional, reducing cabling and auxiliaries significantly. These devices also transfer data to central control facilities and Human Machine Interfaces using electronic communications. The functions performed by these products have become so broad that many users now prefer the term IED (Intelligent Electronic Device).

It is obvious to station designers that the amount of cabling and auxiliary equipment installed in stations can be even further reduced, to 20% to 70% of the levels common in 1990, to achieve large cost reductions. This requires placing even more functions within the IEDs.

Users of power equipment are also interested in reducing cost by improving power quality and personnel productivity, and as always, in increasing system reliability and efficiency. These objectives are realized through software which is used to perform functions at both the station and supervisory levels. The use of these systems is growing rapidly.

High speed communications are required to meet the data transfer rates required by modern automatic control and monitoring systems. In the near future, very high speed communications will be required to perform protection signaling with a performance target response time for a command signal between two IEDs, from transmission to reception, of less than 3 milliseconds. This has been established by the IEC 61850 standard.

IEDs with the capabilities outlined above will also provide significantly more power system data than is presently available. enhance operations and maintenance, and permit the use of adaptive system configuration for protection and control systems. This new generation of equipment must also be easily incorporated into automation systems, at both the station and enterprise levels. The GE Multilin Universal Relay (UR) has been developed to meet these goals.

1.2.2 HARDWARE ARCHITECTURE

a) UR BASIC DESIGN

The UR is a digital-based device containing a central processing unit (CPU) that handles multiple types of input and output signals. The UR can communicate over a local area network (LAN) with an operator interface, a programming device, or another UR device.

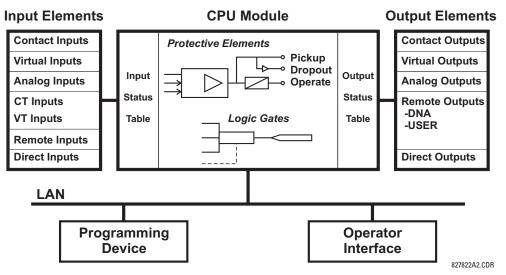


Figure 1–2: UR CONCEPT BLOCK DIAGRAM

The **CPU module** contains firmware that provides protection elements in the form of logic algorithms, as well as programmable logic gates, timers, and latches for control features.

Input elements accept a variety of analog or digital signals from the field. The UR isolates and converts these signals into logic signals used by the relay.

Output elements convert and isolate the logic signals generated by the relay into digital or analog signals that can be used to control field devices.

b) UR SIGNAL TYPES

The **contact inputs and outputs** are digital signals associated with connections to hard-wired contacts. Both 'wet' and 'dry' contacts are supported.

The **virtual inputs and outputs** are digital signals associated with UR-series internal logic signals. Virtual inputs include signals generated by the local user interface. The virtual outputs are outputs of FlexLogic[™] equations used to customize the device. Virtual outputs can also serve as virtual inputs to FlexLogic[™] equations.

The **analog inputs and outputs** are signals that are associated with transducers, such as Resistance Temperature Detectors (RTDs).

The **CT and VT inputs** refer to analog current transformer and voltage transformer signals used to monitor AC power lines. The UR-series relays support 1 A and 5 A CTs.

The **remote inputs and outputs** provide a means of sharing digital point state information between remote UR-series devices. The remote outputs interface to the remote inputs of other UR-series devices. Remote outputs are FlexLogic[™] operands inserted into IEC 61850 GSSE and GOOSE messages.

The **direct inputs and outputs** provide a means of sharing digital point states between a number of UR-series IEDs over a dedicated fiber (single or multimode), RS422, or G.703 interface. No switching equipment is required as the IEDs are connected directly in a ring or redundant (dual) ring configuration. This feature is optimized for speed and intended for pilot-aided schemes, distributed logic applications, or the extension of the input/output capabilities of a single relay chassis.

c) UR SCAN OPERATION

The UR-series devices operate in a cyclic scan fashion. The device reads the inputs into an input status table, solves the logic program (FlexLogic[™] equation), and then sets each output to the appropriate state in an output status table. Any resulting task execution is priority interrupt-driven.

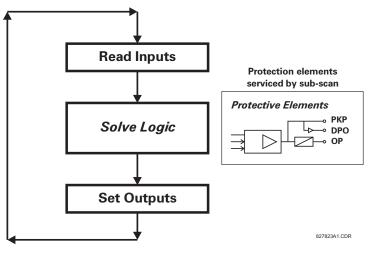


Figure 1–3: UR-SERIES SCAN OPERATION

1.2.3 SOFTWARE ARCHITECTURE

The firmware (software embedded in the relay) is designed in functional modules which can be installed in any relay as required. This is achieved with object-oriented design and programming (OOD/OOP) techniques.

Object-oriented techniques involve the use of *objects* and *classes*. An object is defined as "a logical entity that contains both data and code that manipulates that data". A class is the generalized form of similar objects. By using this concept, one can create a protection class with the protection elements as objects of the class, such as time overcurrent, instantaneous overcurrent, current differential, undervoltage, overvoltage, underfrequency, and distance. These objects represent completely self-contained software modules. The same object-class concept can be used for metering, input/output control, hmi, communications, or any functional entity in the system.

Employing OOD/OOP in the software architecture of the L90 achieves the same features as the hardware architecture: modularity, scalability, and flexibility. The application software for any UR-series device (for example, feeder protection, transformer protection, distance protection) is constructed by combining objects from the various functionality classes. This results in a *common look and feel* across the entire family of UR-series platform-based applications.

1.2.4 IMPORTANT CONCEPTS

As described above, the architecture of the UR-series relays differ from previous devices. To achieve a general understanding of this device, some sections of Chapter 5 are quite helpful. The most important functions of the relay are contained in "elements". A description of the UR-series elements can be found in the *Introduction to elements* section in chapter 5. Examples of simple elements, and some of the organization of this manual, can be found in the *Control elements* section of chapter 5. An explanation of the use of inputs from CTs and VTs is in the *Introduction to AC sources* section in chapter 5. A description of how digital signals are used and routed within the relay is contained in the *Introduction to FlexLogic*[™] section in chapter 5.

1.3 ENERVISTA UR SETUP SOFTWARE

1.3.1 PC REQUIREMENTS

1

The faceplate keypad and display or the EnerVista UR Setup software interface can be used to communicate with the relay. The EnerVista UR Setup software interface is the preferred method to edit settings and view actual values because the PC monitor can display more information in a simple comprehensible format.

The following minimum requirements must be met for the EnerVista UR Setup software to properly operate on a PC.

- Pentium class or higher processor (Pentium II 300 MHz or higher recommended)
- Windows 95, 98, 98SE, ME, NT 4.0 (Service Pack 4 or higher), 2000, XP
- Internet Explorer 4.0 or higher
- 128 MB of RAM (256 MB recommended)
- 200 MB of available space on system drive and 200 MB of available space on installation drive
- Video capable of displaying 800 x 600 or higher in high-color mode (16-bit color)
- RS232 and/or Ethernet port for communications to the relay

The following qualified modems have been tested to be compliant with the L90 and the EnerVista UR Setup software.

- US Robotics external 56K FaxModem 5686
- US Robotics external Sportster 56K X2
- PCTEL 2304WT V.92 MDC internal modem

1.3.2 INSTALLATION

After ensuring the minimum requirements for using EnerVista UR Setup are met (see previous section), use the following procedure to install the EnerVista UR Setup from the enclosed GE EnerVista CD.

- 1. Insert the GE EnerVista CD into your CD-ROM drive.
- 2. Click the **Install Now** button and follow the installation instructions to install the no-charge EnerVista software.
- 3. When installation is complete, start the EnerVista Launchpad application.
- 4. Click the IED Setup section of the Launch Pad window.

5. In the EnerVista Launch Pad window, click the **Add Product** button and select the "L90 Line Current Differential System" from the Install Software window as shown below. Select the "Web" option to ensure the most recent software

release, or select "CD" if you do not have a web connection, then click the **Add Now** button to list software items for the L90.

- 6. EnerVista Launchpad will obtain the software from the Web or CD and automatically start the installation program.
- 7. Select the complete path, including the new directory name, where the EnerVista UR Setup will be installed.
- 8. Click on **Next** to begin the installation. The files will be installed in the directory indicated and the installation program will automatically create icons and add EnerVista UR Setup to the Windows start menu.
- 9. Click **Finish** to end the installation. The UR-series device will be added to the list of installed IEDs in the EnerVista Launchpad window, as shown below.

1.3.3 CONFIGURING THE L90 FOR SOFTWARE ACCESS

a) **OVERVIEW**

The user can connect remotely to the L90 through the rear RS485 port or the rear Ethernet port with a PC running the EnerVista UR Setup software. The L90 can also be accessed locally with a laptop computer through the front panel RS232 port or the rear Ethernet port using the *Quick Connect* feature.

1

1 GETTING STARTED

- To configure the L90 for remote access via the rear RS485 port(s), refer to the Configuring Serial Communications section.
- To configure the L90 for remote access via the rear Ethernet port, refer to the Configuring Ethernet Communications section. An Ethernet module must be specified at the time of ordering.
- To configure the L90 for local access with a laptop through either the front RS232 port or rear Ethernet port, refer to the Using the Quick Connect Feature section. An Ethernet module must be specified at the time of ordering for Ethernet communications.

b) CONFIGURING SERIAL COMMUNICATIONS

Before starting, verify that the serial cable is properly connected to the RS485 terminals on the back of the device. The faceplate RS232 port is intended for local use and is not described in this section; see the *Using the Quick Connect Feature* section for details on configuring the RS232 port.

A GE Multilin F485 converter (or compatible RS232-to-RS485 converter) is will be required. Refer to the F485 instruction manual for additional details.

- 1. Verify that the latest version of the EnerVista UR Setup software is installed (available from the GE EnerVista CD or online from http://www.GEmultilin.com). See the Software Installation section for installation details.
- 2. Select the "UR" device from the EnerVista Launchpad to start EnerVista UR Setup.
- 3. Click the Device Setup button to open the Device Setup window and click the Add Site button to define a new site.
- 4. Enter the desired site name in the "Site Name" field. If desired, a short description of site can also be entered along with the display order of devices defined for the site. In this example, we will use "Location 1" as the site name. Click the **OK** button when complete.
- 5. The new site will appear in the upper-left list in the EnerVista UR Setup window. Click the **Device Setup** button then select the new site to re-open the Device Setup window.
- 6. Click the Add Device button to define the new device.
- 7. Enter the desired name in the "Device Name" field and a description (optional) of the site.
- 8. Select "Serial" from the **Interface** drop-down list. This will display a number of interface parameters that must be entered for proper serial communications.

Device Setup	x
🛓 Add Site 🛛 🖄 Add Device 💼 Delete	Device Name: New Device 1
GE Multilin ☐- Location 1	Description: New device for location 1
-New Device 1	
	Interface: Serial
	Slave address: 254 🕂
	COM Port: 1
	Baud Rate: 19200 🔽 Parity: None 💌
	Bits: 8 💌 Stop Bits: 1 💌
	Post Terminal Window: 🗖
	Order Code:
	Version: Read Order Code
	⊠ Ok X Cancel

Figure 1–4: CONFIGURING SERIAL COMMUNICATIONS

1.3 ENERVISTA UR SETUP SOFTWARE

- 9. Enter the relay slave address, COM port, baud rate, and parity settings from the SETTINGS ⇒ PRODUCT SETUP ⇒ ↓ COM-MUNICATIONS ⇒ ↓ SERIAL PORTS menu in their respective fields.
- Click the Read Order Code button to connect to the L90 device and upload the order code. If an communications error
 occurs, ensure that the EnerVista UR Setup serial communications values entered in the previous step correspond to
 the relay setting values.
- 11. Click "OK" when the relay order code has been received. The new device will be added to the Site List window (or Online window) located in the top left corner of the main EnerVista UR Setup window.

The Site Device has now been configured for RS232 communications. Proceed to the *Connecting to the L90* section to begin communications.

c) CONFIGURING ETHERNET COMMUNICATIONS

Before starting, verify that the Ethernet network cable is properly connected to the Ethernet port on the back of the relay. To setup the relay for Ethernet communications, it will be necessary to define a Site, then add the relay as a Device at that site.

- 1. Verify that the latest version of the EnerVista UR Setup software is installed (available from the GE EnerVista CD or online from http://www.GEmultilin.com). See the Software Installation section for installation details.
- 2. Select the "UR" device from the EnerVista Launchpad to start EnerVista UR Setup.
- 3. Click the **Device Setup** button to open the Device Setup window, then click the **Add Site** button to define a new site.
- 4. Enter the desired site name in the "Site Name" field. If desired, a short description of site can also be entered along with the display order of devices defined for the site. In this example, we will use "Location 2" as the site name. Click the **OK** button when complete.
- 5. The new site will appear in the upper-left list in the EnerVista UR Setup window. Click the **Device Setup** button then select the new site to re-open the Device Setup window.
- 6. Click the Add Device button to define the new device.
- 7. Enter the desired name in the "Device Name" field and a description (optional) of the site.
- 8. Select "Ethernet" from the **Interface** drop-down list. This will display a number of interface parameters that must be entered for proper Ethernet functionality.

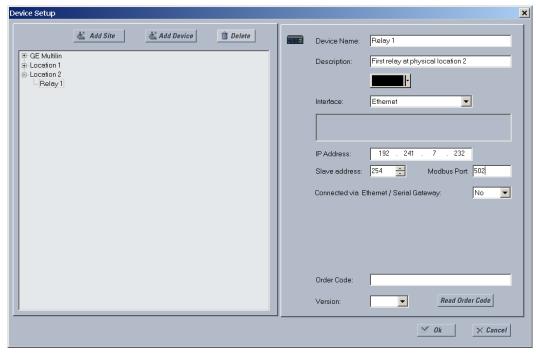


Figure 1–5: CONFIGURING ETHERNET COMMUNICATIONS

1 GETTING STARTED

- 9. Enter the relay IP address specified in the SETTINGS ⇒ PRODUCT SETUP ⇒ ⊕ COMMUNICATIONS ⇒ ⊕ NETWORK ⇒ IP ADDRESS) in the "IP Address" field.
- 10. Enter the relay slave address and Modbus port address values from the respective settings in the SETTINGS ⇒ PROD-UCT SETUP ⇒ ⊕ COMMUNICATIONS ⇒ ⊕ MODBUS PROTOCOL menu.
- 11. Click the **Read Order Code** button to connect to the L90 device and upload the order code. If an communications error occurs, ensure that the three EnerVista UR Setup values entered in the previous steps correspond to the relay setting values.
- 12. Click **OK** when the relay order code has been received. The new device will be added to the Site List window (or Online window) located in the top left corner of the main EnerVista UR Setup window.

The Site Device has now been configured for Ethernet communications. Proceed to the *Connecting to the L90* section to begin communications.

1.3.4 USING THE QUICK CONNECT FEATURE

a) USING QUICK CONNECT VIA THE FRONT PANEL RS232 PORT

Before starting, verify that the serial cable is properly connected from the laptop computer to the front panel RS232 port with a straight-through 9-pin to 9-pin RS232 cable.

- 1. Verify that the latest version of the EnerVista UR Setup software is installed (available from the GE EnerVista CD or online from http://www.GEmultilin.com). See the Software Installation section for installation details.
- 2. Select the "UR" device from the EnerVista Launchpad to start EnerVista UR Setup.
- 3. Click the **Quick Connect** button to open the Quick Connect dialog box.

Quick Connect	×
Quickly connec Device.	t EnerVista UR Setup to a UR
Interface:	Serial 💌
COM Port	COM1
	Using the UR's front port (19200 N 8 1)
	Connect × Cancel

- 4. Select the Serial interface and the correct COM Port, then click Connect.
- 5. The EnerVista UR Setup software will create a site named "Quick Connect" with a corresponding device also named "Quick Connect" and display them on the upper-left corner of the screen. Expand the sections to view data directly from the L90 device.

Each time the EnerVista UR Setup software is initialized, click the **Quick Connect** button to establish direct communications to the L90. This ensures that configuration of the EnerVista UR Setup software matches the L90 model number.

b) USING QUICK CONNECT VIA THE REAR ETHERNET PORTS

To use the Quick Connect feature to access the L90 from a laptop through Ethernet, first assign an IP address to the relay from the front panel keyboard.

- 1. Press the MENU key until the SETTINGS menu is displayed.
- 2. Navigate to the SETTINGS ⇔ PRODUCT SETUP ⇒ ♣ COMMUNICATIONS ⇒ ♣ NETWORK ⇒ IP ADDRESS setting.
- 3. Enter an IP address of "1.1.1.1" and select the ENTER key to save the value.
- 4. In the same menu, select the SUBNET IP MASK setting.
- 5. Enter a subnet IP address of "255.0.0.0" and press the ENTER key to save the value.

1

1.3 ENERVISTA UR SETUP SOFTWARE

3 4 5 6

over cable is shown below.

1

1

END	02	
Pin	Wire color	Diagram
1	White/green	
2	Green	
3	White/orange	
4	Blue	
5	White/blue	
6	Orange	
7	White/brown	
8	Brown	
L	8	8 Brown

Figure 1–6: ETHERNET CROSS-OVER CABLE PIN LAYOUT

Next, use an Ethernet cross-over cable to connect the laptop to the rear Ethernet port. The pinout for an Ethernet cross-

Now, assign the laptop computer an IP address compatible with the relay's IP address.

1. From the Windows desktop, right-click the **My Network Places** icon and select **Properties** to open the network connections window.

S Network Connections
File Edit View Favorites Tools Advanced Help 🧗
🕓 Back 🔻 🕤 👻 🦻 🔎 Search 🌔 Folders 🛛 🕼 🎲 🗙 🏹 🛄 🛛
Address 💊 Network Connections 🗾 🔁 Go
Dial-up 🔺
FgrDun Disconnected Conexant D480 MDC V.92 Mo Earthlink Dial-up Disconnected Conexant D480 MDC V.92 Mo
Local Area Connection 2 Connected Broadcom 570x Gigabit Integr Wireless Network Connection Mot connected Intel(R) PRO/Wireless LAN 21

2. Right-click the Local Area Connection icon and select Properties.

🚣 Local Area Connection 2 Properties 🛛 🔗 🗙
General Authentication Advanced
Connect using:
Broadcom 570x Gigabit Integrated Co Configure
This connection uses the following items:
Pile and Printer Sharing for Microsoft Networks QuS Packet Scheduler Thermet Protocol (TCP/IP)
Install Uninstall Properties
Description Allows your computer to access resources on a Microsoft network.
☐ Show icon in notification area when connected ✓ Notify me when this connection has limited or no connectivity
OK Cancel

1 GETTING STARTED

3. Select the Internet Protocol (TCP/IP) item from the list provided and click the Properties button.

ternet Protocol (TCP/IP) Properties								1	<u>×</u>
General									
You can get IP settings assigned automat capability. Otherwise, you need to ask you appropriate IP settings.									
Obtain an IP address automatically									
 Use the following IP address: 									
IP address:		1.	. 1		1		2		
Subnet mask:	2	55 .	0		0		0		
Default gateway:									
C Obtain DNS server address automat	ticall	/							
─● Use the following DNS server address	sses								
Preferred DNS server:		.			_				
Alternate DNS server:									
						,	Adva	nced	
				Oł	<			Cancel	

- 4. Click on the "Use the following IP address" box.
- 5. Enter an **IP address** with the first three numbers the same as the IP address of the L90 relay and the last number different (in this example, 1.1.1.2).
- 6. Enter a subnet mask equal to the one set in the L90 (in this example, 255.0.0.).
- 7. Click OK to save the values.

Before continuing, it will be necessary to test the Ethernet connection.

- 1. Open a Windows console window by selecting Start > Run from the Windows Start menu and typing "cmd".
- 2. Type the following command:

C: \WI NNT>pi ng 1.1.1.1

3. If the connection is successful, the system will return four replies as follows:

Pinging 1.1.1.1 with 32 bytes of data:

```
Reply from 1.1.1.1: bytes=32 time<10ms TTL=255
Ping statistics for 1.1.1.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip time in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0 ms</pre>
```

4. Note that the values for time and TTL will vary depending on local network configuration.

If the following sequence of messages appears when entering the C: \WI NNT>pi ng 1.1.1.1 command:

```
Pinging 1.1.1.1 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 1.1.1.1:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
Approximate round trip time in milli-seconds:
    Minimum = Oms, Maximum = Oms, Average = 0 ms
Pinging 1.1.1.1 with 32 bytes of data:
```

Verify the physical connection between the L90 and the laptop computer, and double-check the programmed IP address in the **PRODUCT SETUP** ⇒ ⊕ **COMMUNICATIONS** ⇒ ⊕ **NETWORK** ⇒ **IP ADDRESS** setting, then repeat step 2 in the above procedure.

If the following sequence of messages appears when entering the C: \WI NNT>pi ng 1.1.1.1 command:

```
Pinging 1.1.1.1 with 32 bytes of data:
Hardware error.
Hardware error.
Hardware error.
Ping statistics for 1.1.1.1:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
Approximate round trip time in milli-seconds:
    Minimum = Oms, Maximum = Oms, Average = 0 ms
Pinging 1.1.1.1 with 32 bytes of data:
```

Verify the physical connection between the L90 and the laptop computer, and double-check the programmed IP address in the **PRODUCT SETUP** ⇒ ⊕ **COMMUNICATIONS** ⇒ ⊕ **NETWORK** ⇒ **IP ADDRESS** setting, then repeat step 2 in the above procedure.

If the following sequence of messages appears when entering the C: \WI NNT>pi ng 1.1.1.1 command:

Pinging 1.1.1.1 with 32 bytes of data:

```
Destination host unreachable.
Destination host unreachable.
Destination host unreachable.
Destination host unreachable.
Ping statistics for 1.1.1.1:
Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
Approximate round trip time in milli-seconds:
Minimum = Oms, Maximum = Oms, Average = 0 ms
```

Pinging 1.1.1.1 with 32 bytes of data:

Verify the IP address is programmed in the local PC by entering the ipconfig command in the command window.

```
C: \WI NNT>i pconfi g
```

Windows 2000 IP Configuration

Ethernet adapter <F4FE223E-5EB6-4BFB-9E34-1BD7BE7F59FF>:

Connection-specific DNS suffix.	:	
IP Address	:	0.0.0.0
Subnet Mask	:	0.0.0.0
Default Gateway	:	

Ethernet adapter Local Area Connection:

Connecti on-speci	fic	: [DNS	รเ	uft	Fi)	ĸ		:	
IP Address									:	1. 1. 1. 2
Subnet Mask									:	255.0.0.0
Default Gateway					•	•		•	:	

C: \WI NNT>

It may be necessary to restart the laptop for the change in IP address to take effect (Windows 98 or NT).

1.3 ENERVISTA UR SETUP SOFTWARE

1 GETTING STARTED

Before using the Quick Connect feature through the Ethernet port, it is necessary to disable any configured proxy settings in Internet Explorer.

- 1. Start the Internet Explorer software.
- 2. Select the Tools > Internet Options menu item and click on Connections tab.
- 3. Click on the LAN Settings button to open the following window.

Local Area Network (LAN) Settings				
Automatic configuration				
Automatic configuration may override manual settings. To ensure the use of manual settings, disable automatic configuration.				
Automatically detect settings				
Use automatic configuration script				
Address				
Proxy server				
$\hfill\square$ Use a proxy server for your LAN (These settings will not apply to dial-up or VPN connections).				
Address: Port: Advanced				
Bypass proxy server for local addresses				
OK Cancel				

4. Ensure that the "Use a proxy server for your LAN" box is not checked.

If this computer is used to connect to the Internet, re-enable any proxy server settings after the laptop has been disconnected from the L90 relay.

- Verify that the latest version of the EnerVista UR Setup software is installed (available from the GE enerVista CD or online from <u>http://www.GEmultilin.com</u>). See the Software Installation section for installation details.
- 2. Start the Internet Explorer software.
- 3. Select the "UR" device from the EnerVista Launchpad to start EnerVista UR Setup.
- 4. Click the Quick Connect button to open the Quick Connect dialog box.

Quick Connect		×
Quickly connect Device.	EnerVista UR Setup to a UR	
Interface:	Ethernet 💌	
IP Address:	1.1.1.1	
	🕼 Connect 🛛 🗙 Cancel	
-		

- 5. Select the Ethernet interface and enter the IP address assigned to the L90, then click Connect.
- 6. The EnerVista UR Setup software will create a site named "Quick Connect" with a corresponding device also named "Quick Connect" and display them on the upper-left corner of the screen. Expand the sections to view data directly from the L90 device.

Each time the EnerVista UR Setup software is initialized, click the **Quick Connect** button to establish direct communications to the L90. This ensures that configuration of the EnerVista UR Setup software matches the L90 model number.

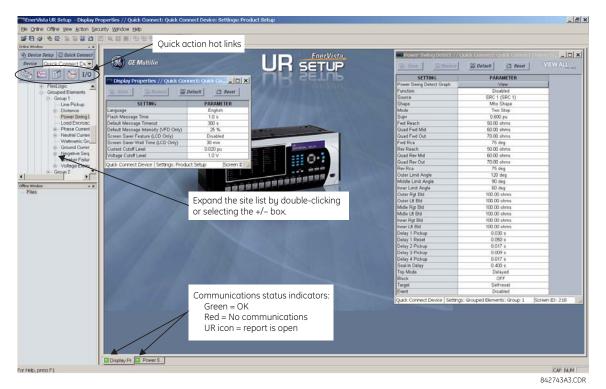
When direct communications with the L90 via Ethernet is complete, make the following changes:

- 1. From the Windows desktop, right-click the **My Network Places** icon and select **Properties** to open the network connections window.
- 2. Right-click the Local Area Connection icon and select the Properties item.
- 3. Select the Internet Protocol (TCP/IP) item from the list provided and click the Properties button.

4. Set the computer to "Obtain a relay address automatically" as shown below.

Internet Protocol (TCP/IP) Properties	? ×
General	
You can get IP settings assigned automatically if your network suppo capability. Otherwise, you need to ask your network administrator for appropriate IP settings.	
Obtain an IP address automatically	
C Use the following IP address:	
IP address;	
Subnet mask:	
Default gateway:	
Obtain DNS server address automatically	
C Use the following DNS server addresses:	
Preferred DNS server:	
Alternate DNS server:	
Adv	anced
ОК	Cancel

If this computer is used to connect to the Internet, re-enable any proxy server settings after the laptop has been disconnected from the L90 relay.


AUTOMATIC DISCOVERY OF ETHERNET DEVICES

The EnerVista UR Setup software can automatically discover and communicate to all UR-series IEDs located on an Ethernet network.

Using the Quick Connect feature, a single click of the mouse will trigger the software to automatically detect any UR-series relays located on the network. The EnerVista UR Setup software will then proceed to configure all settings and order code options in the **Device Setup** menu, for the purpose of communicating to multiple relays. This feature allows the user to identify and interrogate, in seconds, all UR-series devices in a particular location.

1.3.5 CONNECTING TO THE L90 RELAY

1. Open the Display Properties window through the Site List tree as shown below:

- 2. The Display Properties window will open with a status indicator on the lower left of the EnerVista UR Setup window.
- 3. If the status indicator is red, verify that the Ethernet network cable is properly connected to the Ethernet port on the back of the relay and that the relay has been properly setup for communications (steps A and B earlier).

If a relay icon appears in place of the status indicator, than a report (such as an oscillography or event record) is open. Close the report to re-display the green status indicator.

4. The Display Properties settings can now be edited, printed, or changed according to user specifications.

Refer to chapter 4 in this manual and the EnerVista UR Setup Help File for more information about the using the EnerVista UR Setup software interface.

QUICK ACTION HOT LINKS

The EnerVista UR Setup software has several new quick action buttons that provide users with instant access to several functions that are often performed when using L90 relays. From the online window, users can select which relay to interrogate from a pull-down window, then click on the button for the action they wish to perform. The following quick action functions are available:

- View the L90 event record.
- View the last recorded oscillography record.
- View the status of all L90 inputs and outputs.
- View all of the L90 metering values.
- View the L90 protection summary.

1 GETTING STARTED

1.4.1 MOUNTING AND WIRING

Please refer to Chapter 3: Hardware for detailed mounting and wiring instructions. Review all **WARNINGS** and **CAUTIONS** carefully.

1.4.2 COMMUNICATIONS

The EnerVista UR Setup software communicates to the relay via the faceplate RS232 port or the rear panel RS485 / Ethernet ports. To communicate via the faceplate RS232 port, a standard *straight-through* serial cable is used. The DB-9 male end is connected to the relay and the DB-9 or DB-25 female end is connected to the PC COM1 or COM2 port as described in the *CPU communications ports* section of chapter 3.

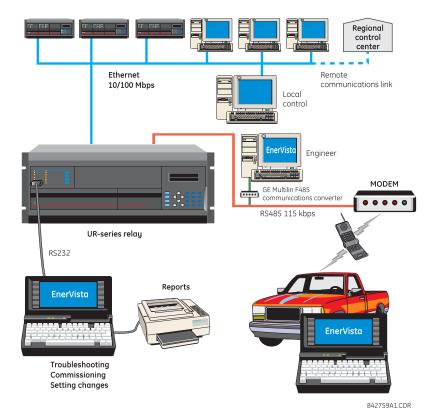


Figure 1–7: RELAY COMMUNICATIONS OPTIONS

To communicate through the L90 rear RS485 port from a PC RS232 port, the GE Multilin RS232/RS485 converter box is required. This device (catalog number F485) connects to the computer using a "straight-through" serial cable. A shielded twisted-pair (20, 22, or 24 AWG) connects the F485 converter to the L90 rear communications port. The converter terminals (+, –, GND) are connected to the L90 communication module (+, –, COM) terminals. Refer to the *CPU communications ports* section in chapter 3 for option details. The line should be terminated with an R-C network (that is, 120 Ω , 1 nF) as described in the chapter 3.

1.4.3 FACEPLATE DISPLAY

All messages are displayed on a 2×20 backlit liquid crystal display (LCD) to make them visible under poor lighting conditions. Messages are descriptive and should not require the aid of an instruction manual for deciphering. While the keypad and display are not actively being used, the display will default to user-defined messages. Any high priority event driven message will automatically override the default message and appear on the display.

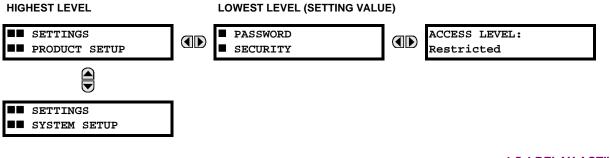
1.5 USING THE RELAY

1.5.1 FACEPLATE KEYPAD

Display messages are organized into pages under the following headings: actual values, settings, commands, and targets. The MENU key navigates through these pages. Each heading page is broken down further into logical subgroups.

The MESSAGE keys navigate through the subgroups. The VALUE keys scroll increment or decrement numerical setting values when in programming mode. These keys also scroll through alphanumeric values in the text edit mode. Alternatively, values may also be entered with the numeric keypad.

The decimal key initiates and advance to the next character in text edit mode or enters a decimal point. The HELP key may be pressed at any time for context sensitive help messages. The ENTER key stores altered setting values.


1.5.2 MENU NAVIGATION

Press the MENU key to select the desired header display page (top-level menu). The header title appears momentarily followed by a header display page menu item. Each press of the MENU key advances through the following main heading pages:

- Actual values.
- Settings.
- Commands.
- Targets.
- User displays (when enabled).

1.5.3 MENU HIERARCHY

The setting and actual value messages are arranged hierarchically. The header display pages are indicated by double scroll bar characters (\blacksquare), while sub-header pages are indicated by single scroll bar characters (\blacksquare). The header display pages represent the highest level of the hierarchy and the sub-header display pages fall below this level. The MESSAGE UP and DOWN keys move within a group of headers, sub-headers, setting values, or actual values. Continually pressing the MESSAGE RIGHT key from a header display displays specific information for the header category. Conversely, continually pressing the MESSAGE LEFT key from a setting value or actual value display returns to the header display.

1.5.4 RELAY ACTIVATION

The relay is defaulted to the "Not Programmed" state when it leaves the factory. This safeguards against the installation of a relay whose settings have not been entered. When powered up successfully, the Trouble LED will be on and the In Service LED off. The relay in the "Not Programmed" state will block signaling of any output relay. These conditions will remain until the relay is explicitly put in the "Programmed" state.

Select the menu message SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow \clubsuit INSTALLATION \Rightarrow RELAY SETTINGS

RELAY	SETTINGS:
Not Pr	rogrammed

To put the relay in the "Programmed" state, press either of the VALUE keys once and then press ENTER. The faceplate Trouble LED will turn off and the In Service LED will turn on. The settings for the relay can be programmed manually (refer to *Chapter 5*) via the faceplate keypad or remotely (refer to the EnerVista UR Setup help file) via the EnerVista UR Setup software interface.

1.5.5 RELAY PASSWORDS

It is recommended that passwords be set up for each security level and assigned to specific personnel. There are two user password security access levels, COMMAND and SETTING:

1. COMMAND

The COMMAND access level restricts the user from making any settings changes, but allows the user to perform the following operations:

- operate breakers via faceplate keypad
- change state of virtual inputs
- clear event records
- clear oscillography records
- operate user-programmable pushbuttons

2. SETTING

The SETTING access level allows the user to make any changes to any of the setting values.

Refer to the *Changing Settings* section in Chapter 4 for complete instructions on setting up security level passwords.

1.5.6 FLEXLOGIC™ CUSTOMIZATION

FlexLogic[™] equation editing is required for setting up user-defined logic for customizing the relay operations. See the *Flex*-*Logic*[™] section in Chapter 5 for additional details.

Commissioning tests are included in the Commissioning chapter of this manual.

The L90 requires a minimum amount of maintenance when it is commissioned into service. Since the L90 is a microprocessor-based relay, its characteristics do not change over time. As such, no further functional tests are required.

Furthermore, the L90 performs a number of continual self-tests and takes the necessary action in case of any major errors (see the *Relay Self-tests* section in chapter 7 for details). However, it is recommended that L90 maintenance be scheduled with other system maintenance. This maintenance may involve the in-service, out-of-service, or unscheduled maintenance.

In-service maintenance:

- 1. Visual verification of the analog values integrity such as voltage and current (in comparison to other devices on the corresponding system).
- 2. Visual verification of active alarms, relay display messages, and LED indications.
- 3. LED test.
- 4. Visual inspection for any damage, corrosion, dust, or loose wires.
- 5. Event recorder file download with further events analysis.

Out-of-service maintenance:

- 1. Check wiring connections for firmness.
- 2. Analog values (currents, voltages, RTDs, analog inputs) injection test and metering accuracy verification. Calibrated test equipment is required.
- 3. Protection elements setting verification (analog values injection or visual verification of setting file entries against relay settings schedule).
- 4. Contact inputs and outputs verification. This test can be conducted by direct change of state forcing or as part of the system functional testing.
- 5. Visual inspection for any damage, corrosion, or dust.
- 6. Event recorder file download with further events analysis.
- 7. LED Test and pushbutton continuity check.

Unscheduled maintenance such as during a disturbance causing system interruption:

1. View the event recorder and oscillography or fault report for correct operation of inputs, outputs, and elements.

If it is concluded that the relay or one of its modules is of concern, contact GE Multilin for prompt service.

1-20

2.1.1 OVERVIEW

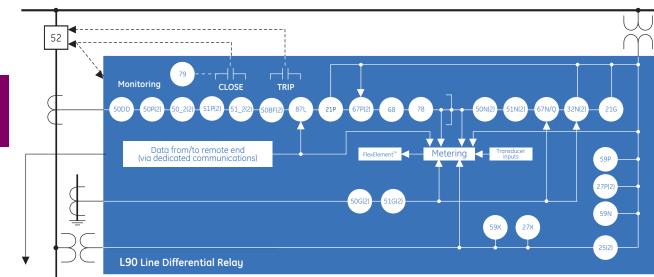
The L90 Line Current Differential System is a digital current differential relay system with an integral communications channel interface.

The L90 is intended to provide complete protection for transmission lines of any voltage level. Both three phase and single phase tripping schemes are available. Models of the L90 are available for application on both two and three terminal lines. The L90 uses per phase differential at 64 kbps transmitting two phaselets per cycle. The current differential scheme is based on innovative patented techniques developed by GE. The L90 algorithms are based on the Fourier transform-phaselet approach and an adaptive statistical restraint. The restraint is similar to a traditional percentage differential scheme, but is adaptive based on relay measurements. When used with a 64 kbps channel, the innovative *phaselets* approach yields an operating time of 1.0 to 1.5 cycles (typical). The adaptive statistical restraint approach provides both more sensitive and more accurate fault sensing. This allows the L90 to detect relatively higher impedance single line to ground faults that existing systems may not. The basic current differential element operates on current input only. Long lines with significant capacitance can benefit from charging current compensation if terminal voltage measurements are applied to the relay. The voltage input is also used for some protection and monitoring features such as directional elements, fault locator, metering, and distance backup.

The L90 is designed to operate over different communications links with various degrees of noise encountered in power systems and communications environments. Since correct operation of the relay is completely dependent on data received from the remote end, special attention must be paid to information validation. The L90 incorporates a high degree of security by using a 32-bit CRC (cyclic redundancy code) inter-relay communications packet.

In addition to current differential protection, the relay provides multiple backup protection for phase and ground faults. For overcurrent protection, the time overcurrent curves may be selected from a selection of standard curve shapes or a custom FlexCurve[™] for optimum co-ordination. Additionally, three zones of phase and ground distance protection with power swing blocking, out-of-step tripping, line pickup, load encroachment, and permissive overreaching transfer trip (POTT) features are included.

The L90 incorporates charging current compensation for applications on very long transmission lines without loss of sensitivity. The line capacitive current is removed from the terminal phasors.


For breaker-and-a-half or ring applications, the L90 design provides secure operation during external faults with possible CT saturation.

Voltage, current, and power metering is built into the relay as a standard feature. Current parameters are available as total waveform RMS magnitude, or as fundamental frequency only RMS magnitude and angle (phasor).

DEVICE	FUNCTION
NUMBER	
21G	Ground Distance
21P	Phase Distance
25	Synchrocheck
27P	Phase Undervoltage
27X	Auxiliary Undervoltage
32N	Wattmetric Zero-Sequence Directional
50BF	Breaker Failure
50DD	Adaptive Fault Detector (sensitive current disturbance detector)
50G	Ground Instantaneous Overcurrent
50N	Neutral Instantaneous Overcurrent
50P	Phase Instantaneous Overcurrent
50_2	Negative Sequence Instantaneous Overcurrent
51G	Ground Time Overcurrent

DEVICE NUMBER	FUNCTION
51N	Neutral Time Overcurrent
51P	Phase Time Overcurrent
51_2	Negative Sequence Time Overcurrent
52	AC Circuit Breaker
59N	Neutral Overvoltage
59P	Phase Overvoltage
59X	Auxiliary Overvoltage
67N	Neutral Directional Overcurrent
67P	Phase Directional Overcurrent
67_2	Negative Sequence Directional Overcurrent
68	Power Swing Blocking
78	Out-of-Step Tripping
79	Automatic Recloser
87L	Segregated Line Current Differential

Table 2–1: DEVICE NUMBERS AND FUNCTIONS

Figure 2–1: SINGLE LINE DIAGRAM

Table 2–2: OTHER DEVICE FUNCTIONS

FUNCTION	FUNCTION	FUNCTION
Breaker Arcing Current (I ² t)	FlexElements [™] (8)	Oscillography
Breaker Control	FlexLogic [™] Equations	Pilot Scheme (POTT)
Contact Inputs (up to 96)	IEC 61850 Communications (optional)	Setting Groups (6)
Contact Outputs (up to 64)	L90 Channel Tests	Stub Bus
Control Pushbuttons	Line Pickup	Synchrophasors
CT Failure Detector	Load Encroachment	Time Synchronization over SNTP
Data Logger	Metering: Current, Voltage, Power, Energy, Frequency, Demand, Power Factor, 87L current, local and remote phasors	Transducer Inputs/Outputs
Digital Counters (8)		User Definable Displays
Digital Elements (48)		User Programmable LEDs
Direct Inputs (8 per L90 comms channel)	Modbus Communications	User Programmable Pushbuttons
Disconnect Switches	Modbus User Map	User Programmable Self-Tests
DNP 3.0 or IEC 60870-5-104 protocol	Non-Volatile Latches	Virtual Inputs (64)
Event Recorder	Non-Volatile Selector Switch	Virtual Outputs (96)
Fault Locator and Fault Reporting	Open Pole Detector	VT Fuse Failure

831706AT.CDR

2

LINE CURRENT DIFFERENTIAL

- Phase segregated, high-speed digital current differential system.
- Overhead and underground AC transmission lines, series compensated lines.
- Two-terminal and three-terminal line applications.
- Zero-sequence removal for application on lines with tapped transformers connected in a grounded wye on the line side.
- GE phaselets approach based on the Discrete Fourier Transform with 64 samples per cycle and transmitting two timestamped phaselets per cycle.
- Adaptive restraint approach improving sensitivity and accuracy of fault sensing.
- Increased security for trip decision using disturbance detector and trip output logic.
- Continuous clock synchronization via the distributed synchronization technique.
- Increased transient stability through DC decaying offset removal.
- Accommodates up to five times CT ratio differences.
- Peer-to-peer (master-master) architecture changing to master-slave via DTT (if channel fails) at 64 kbps.
- Charging current compensation.
- Interfaces direct fiber, multiplexed RS422 and G.703 connections with relay ID check.
- Per-phase line differential protection direct transfer trip plus eight user-assigned pilot signals via the communications channel.
- Secure 32-bit CRC protection against communications errors.
- Channel asymmetry (up to 10 ms) compensation using GPS satellite-controlled clock.

BACKUP PROTECTION:

- DTT provision for pilot schemes.
- Three zones of distance protection with POTT scheme, power swing blocking and out-of-step tripping, line pickup, and load encroachment.
- Two-element time overcurrent and two-element instantaneous overcurrent directional phase overcurrent protection.
- Two-element time overcurrent and two-element instantaneous overcurrent directional zero-sequence protection.
- Two-element time overcurrent and two-element instantaneous overcurrent negative-sequence overcurrent protection.
- Undervoltage and overvoltage protection.

ADDITIONAL PROTECTION:

- Breaker failure protection.
- Stub bus protection.
- VT and CT supervision.
- GE Multilin sources approach allowing grouping of different CTs and VTs from multiple input channels.
- Open pole detection.
- Breaker trip coil supervision and seal-in of trip command.
- FlexLogic[™] allowing creation of user-defined distributed protection and control logic.

CONTROL:

- One and two breaker configuration for breaker-and-a-half and ring bus schemes, pushbutton control from the relay.
- Auto-reclosing and synchrochecking.
- Breaker arcing current.

MONITORING:

- Oscillography of current, voltage, FlexLogic[™] operands, and digital signals (1 × 128 cycles to 31 × 8 cycles configurable).
- Events recorder: 1024 events.
- Fault locator.

METERING:

- Actual 87L remote phasors, differential current, channel delay, and channel asymmetry at all line terminals of line current differential protection.
- Line current, voltage, real power, reactive power, apparent power, power factor, and frequency.

COMMUNICATIONS:

- Front panel RS232 port: 19.2 kbps.
- One or two rear RS485 ports: up to 115 kbps.
- 10Base-F Ethernet port supporting the IEC 61850 protocol.

2.1.3 ORDERING

The relay is available as a 19-inch rack horizontal mount unit or a reduced size (³/₄) vertical mount unit, and consists of the following modules: CPU, faceplate, power supply, CPU, CTs and VTs, digital inputs and outputs, transducer inputs and outputs, and inter-relay communications. Each of these modules can be supplied in a number of configurations specified at the time of ordering. The information required to completely specify the relay is provided in the following tables (see chapter 3 for additional details of relay modules).

Order codes are subject to change without notice. Refer to the GE Multilin ordering page at <u>http://www.GEindus-trial.com/multilin/order.htm</u> for the latest details concerning L90 ordering options.

The order codes for the horizontal mount units are shown below.

Table 2–3: L90 ORDER CODES FOR HORIZONTAL UNITS

L90 - *	** - *		F ** - H	** - L	** - N	** - S	** - U	** - W/X	**	Full Size Horizontal Mount
BASE UNIT L90 CPU E										Base Unit RS485 and RS485
G										RS485 and multi-mode ST 10Base-F
H J										RS485 and multi-mode ST redundant 10Base-F RS485 and multi-mode ST 100Base-FX
ĸ	1		i i			1	i i	1	i i	RS485 and multi-mode ST redundant 100Base-FX
L	1		1	1			1	1	1	RS485 and single mode SC 100Base-FX RS485 and single mode SC redundant 100Base-FX
N						1		1		RS485 and 10/100Base-T
P			į	1	į –	į	į	1	į.	RS485 and single mode ST 100Base-FX
R								}		RS485 and single mode ST redundant 100Base-FX RS485 and six-port managed Ethernet switch
SOFTWARE	00	11				1		1	1	No software options Breaker-and-a-Half software
IEC 61850 options	02 03							1		Breaker-and-a-Half software IEC 61850
not available with type E CPUs)	05	1 1	i	i	1	i i	i	i	i.	Breaker-and-a-Half software and IEC 61850
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	06 07									One phasor measurement unit (PMU) IEC 61850 and one phasor measurement unit (PMU)
	08	1 1	i i	i i				1	i i	Breaker-and-a-Half and phasor measurement unit (PMU)
MOUNT/COATING	09 H									Breaker-and-a-Half, IEC 61850, and phasor measurement unit (PMU)
	A		ł	1		1	ł	1		Horizontal (19" rack) Horizontal (19" rack) with harsh environmental coating
ACEPLATE/ DISPLAY		C D				1	1	1		English display
		R						}		French display Russian display
		A	į	į.	į –	į.	į.	1	į	Chinese display
		P G								English display with 4 small and 12 large programmable pushbuttons French display with 4 small and 12 large programmable pushbuttons
		s	i i	l l			1	1	į.	Russian display with 4 small and 12 large programmable pushbuttons
		B						1		Chinese display with 4 small and 12 large programmable pushbuttons Enhanced front panel with English display
		м			į –	1	1	l .	į.	Enhanced front panel with French display
		G S K Q U								Enhanced front panel with Russian display Enhanced front panel with Chinese display
		Lİ			1	1	1	1		Enhanced front panel with English display and user-programmable pushbuttons
		N T					1			Enhanced front panel with French display and user-programmable pushbuttons Enhanced front panel with Russian display and user-programmable pushbuttons
		V I			1	1	1	1		Enhanced front panel with Chinese display and user-programmable pushbuttons
POWER SUPPLY		Ĥ							İ RH	125 / 250 V AC/DC power supply 125 / 250 V AC/DC with redundant 125 / 250 V AC/DC power supply
redundant supply must be same type as main supply)		H L							1	24 to 48 V (DC only) power supply
CT/VT MODULES		Ē	8F		i SF				RL	24 to 48 V (DC only) with redundant 24 to 48 V DC power supply
CI/VI MODULES			8F 8H		se H					Standard 4CT/4VT Standard 8CT
			8L	j 8	3L	į	į.		į.	Standard 4CT/4VT with enhanced diagnostics (required for PMU option)
DIGITAL INPUTS/OUTPUTS			8N		N XXXX	kx >	x >	I X		Standard 8CT with enhanced diagnostics (required for PMU option)
				4A 4	A 4	1A 4	1A 4	A	į.	4 Solid-State (no monitoring) MOSFET outputs
				4B 4	B 4	4B 4 4C 4	4B 4 4C 4	IB IC		4 Solid-State (voltage with optional current) MOSFET outputs 4 Solid-State (current with optional voltage) MOSFET outputs
				4C 4 4D 4 4L 4	D 4	4D 4	1D 4 1L 4	IC ID IL	i i	16 digital inputs with Auto-Burnishing
				4L 4	4L -	4L 4 67 (4L 4	4L 57	1	14 Form-A (no monitoring) Latching outputs 8 Form-A (no monitoring) outputs
				6A 6 6B 6	A G	6A 6 6B 6	67 6 6A 6 6B 6	SA SB		2 Form-A (voltage with optional current) and 2 Form-C outputs, 8 digital inputs
				6B 6	B	6B 6	B E	B	į.	2 Form-A (voltage with optional current) and 4 Form-C outputs, 4 digital inputs
				6D 6	iC e iD e	5C 6 5D 6 5E 6 6F 6	SD 6	SC SD SE		8 Form-C outputs 16 digital inputs
				6E 6 6F 6	ie i iF i	6E 6	E 6	E	į.	16 digital inputs 4 Form-C outputs, 8 digital inputs
				6F €	iG €	5F € 5G €	SC 6 SD 6 SE 6 SF 6 SG 6	iF iG		8 Fast Form-C outputs 4 Form-A (voltage with optional current) outputs, 8 digital inputs
				6H 6	iH (SH 6	SH F	βH	į.	6 Form-A (voltage with optional current) outputs, 4 digital inputs
					iK (6K 6	SK 6 SL 6 SM 6	SK SL		4 Form-C and 4 Fast Form-C outputs 2 Form-A (current with optional voltage) and 2 Form-C outputs, 8 digital inputs
				6M 6	iM 6	SM 6	6M 6	M	i i	2 Form-A (current with optional voltage) and 4 Form-C outputs, 4 digital inputs
				6N 6 6P 6	iN 6	6N 6 6P 6	SN 6	in iP		4 Form-A (current with optional voltage) outputs, 8 digital inputs 6 Form-A (current with optional voltage) outputs, 4 digital inputs
				6R 6	iR 6	5R 6	א פ	R		2 Form-A (no monitoring) and 2 Form-C outputs, 8 digital inputs
				6S 6 6T 6 6U 6	iS (6S f	is f	iS ST		2 Form-A (no monitoring) and 4 Form-C outputs, 4 digital inputs 4 Form-A (no monitoring) outputs, 8 digital inputs
				6U 6		6T 6 5U 6	6T 6	50 50		6 Form-A (no monitoring) outputs, 8 digital inputs
RANSDUCER				5A 5	A A	5A 5	5A 5	A	1	4 dcmA inputs, 4 dcmA outputs (only one 5A module is allowed)
NPUTS/OUTPUTS select a maximum of 3 per unit)				5C 5D 5	iC t	5C 5 5D 5 5E 5	5A 5 5C 5 5D 5 5E 5 5F 5	SU SA SC SD SE SF		8 RTD inputs 4 RTD inputs, 4 dcmA outputs (only one 5D module is allowed)
senser a maximum or a per unit)				5D 5E 5F 5F	ie s iF s	5E 5	SE 5	E		4 RTD inputs, 4 dcmA inputs
NTER-RELAY				5F €	or i	or (or €	2A	2A	8 dcmA inputs C37.94SM, 1300nm single-mode, ELED, 1 channel single-mode
COMMUNICATIONS							2	2A 2B 2E	2B 2E	C37.94SM, 1300nm single-mode, ELED, 2 channel single-mode
select a maximum of 1 per unit)							2	2E	2E 2F	Bi-phase, single channel Bi-phase, dual channel
							2		2G	IEEE C37.94, 820 nm, 128 kbps, multimode, LED, 1 Channel
							2	2H	2H 2S	IEEE C37.94, 820 nm, 128 kbps, multimode, LED, 2 Channels Six-port managed Ethernet switch with high voltage supply (110 to 250 V DC / 100 to 240 V AC)
								i	2T	Six-port managed Ethernet switch with low voltage supply (48 V DC)
							7	72	72 73	1550 nm, single-mode, LASER, 1 Channel
								74	74	Channel 1 - RS422; Channel 2 - 1550 nm, single-mode, LASER
							1	72 73 74 75 76	75 76	Channel 1 - G.703; Channel 2 - 1550 nm, Single-mode LASER IEEE C37.94, 820 nm, 64 kbps, multimode, LED, 1 Channel
							7	77	76	IEEE C37.94, 820 nm, 64 kbps, multimode, LED, 1 Channel IEEE C37.94, 820 nm, 64 kbps, multimode, LED, 2 Channels
							7	'A 'B	7A 7B	820 nm, multi-mode, LED, 1 Channel 1300 nm, multi-mode, LED, 1 Channel
							7	č	7B 7C	1300 nm, multi-mode, LED, 1 Channel 1300 nm, single-mode, ELED, 1 Channel
							7	Ċ D	7D	1300 nm, single-mode, LASER, 1 Channel
								'E 'F	7E 7F	Channel 1 - G703; Channel 2 - 820 nm, multi-mode Channel 1 - G703; Channel 2 - 1300 nm, multi-mode
							7	νΈ ΥF 'G 'H	7G	Channel 1 - G.703; Channel 2 - 1300 nm, single-mode ELED
							7	'Н 71	7H 7l	820 nm, multi-mode, LED, 2 Channels 1300 nm, multi-mode, LED, 2 Channels
							7	71 7J "K	7J	1300 nm, single-mode, ELED, 2 Channels
							7	'K 'L	7K 7L	1300 nm, single-mode, LASER, 2 Channels Channel 1 - RS422; Channel 2 - 820 nm, multi-mode, LED
							7	M	7M	Channel 1 - RS422; Channel 2 - 1300 nm, multi-mode, LED
							7	'N	7N	Channel 1 - RS422; Channel 2 - 1300 nm, single-mode, ELED
							7	Q	7P 7Q	Channel 1 - RS422; Channel 2 - 1300 nm, single-mode, LASER Channel 1 - G.703; Channel 2 - 1300 nm, single-mode LASER
							7	R	7R	G.703, 1 Channel
							7	ים יר יר יר	7S 7T	G.703, 2 Channels RS422, 1 Channel
							7	V	7V	RS422, 2 Channels, 2 Clock Inputs
							7	W	7W	RS422, 2 Channels

The order codes for the reduced size vertical mount units are shown below.

Table 2-4: L90 ORDER CODES (REDUCED SIZE VERTICAL UNITS)

BASE UNIT L90 - *	** -		- F ** -	Н ** -	L ** - N	** - R **	Reduced Size Vertical Mount Base Unit
CPU E							RS485 and RS485
G H							RS485 and multi-mode ST 10Base-F RS485 and multi-mode ST redundant 10Base-F
J							RS485 and multi-mode ST 100Base-FX RS485 and multi-mode ST redundant 100Base-FX
L	į.						RS485 and single mode SC 100Base-FX RS485 and single mode SC redundant 100Base-FX RS485 and 10/100Base-T
L M N P							RS485 and 10/100Base-T
R							RS485 and single mode ST 100Base-FX RS485 and single mode ST redundant 100Base-FX
SOFTWARE (IEC 61850 options	00						No software options Breaker-and-a-half software
not available with	02 03						IEC 61850
type E CPUs)	03 05 06						Breaker-and-a-half software and IEC 61850 Phasor measurement unit (PMU)
	07 08						IEC 61850 and phasor measurement unit (PMU)
	08						Breaker-and-a-half and phasor measurement unit (PMU) Breaker-and-a-half, IEC 61850, and phasor measurement unit (PMU)
MOUNT/COATING		BII					Vertical (3/4 rack) with harsh environmental coating
FACEPLATE/ DISPLAY		Ċ İ D İ					English display
		RÍ					Russian display
		A İ K İ					Chinese display Enhanced front panel with English display
		M					Enhanced front panel with French display
		Q U					Enhanced front panel with Russian display Enhanced front panel with Chinese display
		L N T					Enhanced front panel with English display and user-programmable pushbuttons
		Ť					Enhanced front panel with French display and user-programmable pushbuttons Enhanced front panel with Russian display and user-programmable pushbuttons
POWER SUPPLY		V į H					Enhanced front panel with Chinese display and user-programmable pushbuttons 125 / 250 V AC/DC power supply
CT/VT MODULES		L	j 8F		i 8F		24 to 48 V (DC only) power supply Standard 4CTV4VT Standard 8CT
			8H		8H		Standard 4CT/4VT Standard 4CT/4VT with enhanced diagnostics (required for PMU option)
			8L 8N		8L 8N		Standard 8CT with enhanced diagnostics (required for PMU option)
DIGITAL INPUTS/OUTPUTS				XX 4A	XX 4A 4B 4C 4D	XX 4A 4B	No Module 4 Solid-State (no monitoring) MOSEET outputs
				4A 4B 4C 4D	4B	4B	4 Solid-State (no monitoring) MOSFET outputs 4 Solid-State (voltage with optional current) MOSFET outputs 4 Solid-State (current with optional voltage) MOSFET outputs 16 digital inputs with Auto-Burnishing
				4C 4D	4C 4D	4C 4D	4 Solid-State (current with optional voltage) MOSFET outputs 16 digital inputs with Auto-Burnishing
				4L 67 6B 6C 6D 6E 6G 6G 6K	4L 67	4L 67	14 Form-A (no monitoring) Latching outputs 8 Form-A (no monitoring) outputs
				6A	6A	6A	2 Form-A (voltage with optional current) and 2 Form-C outputs, 8 digital inputs
				6B 6C	6B 6C	6A 6B 6C	2 Form-A (voltage with optional current) and 4 Form-C outputs, 4 digital inputs 8 Form-C outputs
				6D	6D	6D I	16 digital inputs 4 Form-C outputs, 8 digital inputs
				6F	6F	6E 6F 6G 6H	8 East Form-C outputs
				6G 6H	6G 6H	6G 6H	4 Form-A (voltage with optional current) outputs, 8 digital inputs 6 Form-A (voltage with optional current) outputs, 4 digital inputs 4 Form-C and 4 Fast Form-C outputs
				6K 6L	6K	6K 6L	4 Form-C and 4 Fast Form-C outputs 2 Form-A (current with optional voltage) and 2 Form-C outputs, 8 digital inputs
				6M	6M	6M İ	2 Form-A (current with optional voltage) and 4 Form-C outputs, 4 digital inputs
				6N 6P	6N 6P	6N 6P	4 Form-A (current with optional voltage) outputs, 8 digital inputs 6 Form-A (current with optional voltage) outputs, 4 digital inputs
				6N 6P 6R 6S 6T	6R	6N 6P 6R 6S	2 Form-A (no monitoring) and 2 Form-C outputs, 8 digital inputs
				6T	6T	6T	Form-A (current with optional voltage) outputs, 4 digital inputs 2 Form-A (no monitoring) and 2 Form-C outputs, 8 digital inputs 2 Form-A (no monitoring) and 4 Form-C outputs, 4 digital inputs 4 Form-A (no monitoring) outputs, 8 digital inputs
TRANSDUCER				6U 5A	6U 5A	6U 5A	6 Form-A (no monitoring) outputs, 4 digital inputs 4 dcmA inputs, 4 dcmA outputs (only one 5A module is allowed)
INPUTS/OUTPUTS				6U 5A 5C 5D	4L 67 6A 8B 6C 6D 6E F 6G 6H 6K 6L 6B 6C 6D 6E F 6G 6H 6K 6L 6B 6C 6D 6E F 6G 6H 6K 6L 6B 6C 6C 6C 6D	5A 5C 5D 5E 5F	8 RTD inputs 4 RTD inputs, 4 dcmA outputs (only one 5D module is allowed)
(select a maximum of 3 per unit)				5E 5F	5E	5E	4 RTD inputs, 4 dcmA inputs
INTER-RELAY				5F	5F		8 dcmA inputs C37.94SM, 1300nm single-mode, ELED, 1 channel single-mode
COMMUNICATIONS						2/4 2E 2E 2F	C37.94SM, 1300nm single-mode, ELED, 1 channel single-mode C37.94SM, 1300nm single-mode, ELED, 2 channel single-mode
(select a maximum of 1 per unit)						2E 2F	Bi-phase, single channel Bi-phase, dual channel
						20 2H 72	IEEE C37.94, 820 nm, 128 kbps, multimode, LED, 1 Channel IEEE C37.94, 820 nm, 128 kbps, multimode, LED, 2 Channels
						72	2 1550 nm, single-mode, LASER, 1 Channel
						73 74 76 76 77 74 76 72 70 70 70 70 70 70	IEEE C37.94, 820 nm, 126 kdps, multimode, LEU, 2 channels IS50 nm, single-mode, LASER, 1 Channel Channel 1 - RS422; Channel 2 - 1550 nm, single-mode, LASER Channel 1 - G703; Channel 2 - 1550 nm, single-mode LASER IEEE C37.94, 820 nm, 64 kdps, multimode, LED, 1 Channel IEEE C37.94, 820 nm, 64 kdps, multimode, LED, 1 Channel IEEE C37.94, 820 nm, 64 kdps, multimode, LED, 1 Channel
						75	5 Channel 1 - G.703; Channel 2 - 1550 nm, Single-mode LASER IEEE C37.94, 820 nm, 64 kbps, multimode, I.ED, 1 Channel
						77	IEEE C37.94, 820 nm, 64 kbps, multimode, LED, 2 Channels
						76	820 nm, multi-mode, LED, 1 Channel 1 1300 nm, single-mode, LED, 1 Channel 1 3300 nm, single-mode, LED, 1 Channel 1 3300 nm, single-mode, LASER, 1 Channel
						70	1300 nm, single-mode, ELED, 1 Channel 1300 nm, single-mode, LASER, 1 Channel
						7E	Channel 1 - G.703; Channel 2 - 820 nm, multi-mode
						7F 7G 7H 71 7J 7J	Channel 1 - G.703; Channel 2 - 1300 nm, ingle-mode ELED
						71-	820 nm, multi-mode, LED, 2 Channels 1300 nm, multi-mode, LED, 2 Channels
						75	Citatinet I - G/33, Citatinet 2 - 220 min, multi-mode Crannel I - G/33, Channel 2 - 1300 mm, multi-mode Crannel I - G/33, Channel 2 - 1300 mm, single-mode ELED 820 nm, multi-mode, LED, 2 Channels 1300 nm, single-mode, LED, 2 Channels 1300 nm, single-mode, LED, 2 Channels
						7k 7L	
						7L 7N 7N 7N 7F	Channel 1 - RS422; Channel 2 - 820 nm, multi-mode, LED Channel 1 - RS422; Channel 2 - 820 nm, multi-mode, LED Channel 1 - RS422; Channel 2 - 1300 nm, single-mode, LED Channel 1 - RS422; Channel 2 - 1300 nm, single-mode, LASER
						7N 7F	Channel 1 - RS422, Channel 2 - 1300 nm, single-mode, ELED Channel 1 - RS422; Channel 2 - 1300 nm, single-mode, LASER
						7C 7F	Channel 1 - G.703; Channel 2 - 1300 nm, single-mode LASER G.703, 1 Channel
						75	G.703, 2 Channels
						71 7\	RS422, 1 Channel / RS422, 2 Channels, 2 Clock Inputs
						70	V RS422, 2 Channels

2.1.4 REPLACEMENT MODULES

Replacement modules can be ordered separately as shown below. When ordering a replacement CPU module or faceplate, please provide the serial number of your existing unit.

Not all replacement modules may be applicable to the L90 relay. Only the modules specified in the order codes are available as replacement modules.

NOTE

Replacement module codes are subject to change without notice. Refer to the GE Multilin ordering page at http://www.GEindustrial.com/multilin/order.htm for the latest details concerning L90 ordering options.

The replacement module order codes for the horizontal mount units are shown below.

Table 2–5: ORDER CODES FOR REPLACEMENT MODULES, HORIZONTAL UNITS

	UR - ** - *	
POWER SUPPLY	1H 1L	125 / 250 V AC/DC 24 to 48 V (DC only)
(redundant supply only available in horizontal units; must be same type as main supply)	i RH İ	redundant 125 / 250 V AC/DC
	i RH İ	redundant 24 to 48 V (DC only) RS485 and RS485 (Modbus RTU, DNP 3.0)
CPU	9E 9G 9H	RS485 and RS485 (Modbus RTU, DNP 3.0) RS485 and 10Pane 5 (Ethernet Medhus TCP/IP, DNP 3.0)
	9H	RS465 and IS465 (Modulus K10, DMF 3.0) RS485 and ISBaseF (Ethernet, Modus TCP/IP, DNP 3.0) RS485 and Redundant 10Base-F (Ethernet, Modus TCP/IP, DNP 3.0)
	9J	RS495 and multi-mode ST 100Base-FX (Ethernet, Modbus TCP/IP, DNP 3.0) RS485 and multi-mode ST redundart 100Base-FX (Ethernet, Modbus TCP/IP, DNP 3.0)
	9K 9L	RS485 and multi-mode ST redundant 100Base-FX (Ethernet, Modbus TCP/IP, DNP 3.0) RS485 and single mode SC 100Base-FX (Ethernet, Modbus TCP/IP, DNP 3.0)
	9M	RS485 and single mode SC redundant 100Base-FX (Ethernet, Modbus TCP/IP, DNP 3.0)
	9N	RS485 and 10/100Base-T (Ethernet, Modbus TCP/IP, DNP 3.0)
	9P	RS485 and single mode ST 100Base-FX (Ethernet, Modbus TCP/IP, DNP 3.0)
	98	RS485 and single mode ST redundant 100Base-FX (Ethernet, Modbus TCP/IP, DNP 3.0) RS485 and six-port managed Ethernet switch
FACEPLATE/DISPLAY	9N 9P 9R 9S 3C 3D 3R	RS485 and six-port managed Ethernet switch Horizontal faceplate with keypad and English display Horizontal faceplate with keypad and French display Horizontal faceplate with keypad and Russian display
	3D	Horizontal faceplate with keypad and French display
	3A	Horizontal faceplate with keypad and Russian display Horizontal faceplate with keypad and Chinese display
	3A 3P 3G 3G 3S 3B 3B 3K 3M	Horizontal faceplate with keypad, user-programmable pushbuttons, and English display
	3G	Horizontal faceplate with keypad, user-programmable pushbuttons, and French display
	3B	Horizontal faceplate with keypad, user-programmable pushbuttons, and Russian display Horizontal faceplate with keypad, user-programmable pushbuttons, and Chinese display
	3K	Enhanced front panel with English display Enhanced front panel with French display
	3M	Enhanced front panel with French display
	302	Enhanced front panel with Russian display Enhanced front panel with Chinese display
	3L	Enhanced front panel with English display and user-programmable pushbuttons
	3Q 3U 3L 3N 3N 3T 3V	Enhanced front panel with English display and user-programmable pushbuttons Enhanced front panel with French display and user-programmable pushbuttons
	3T	Enhanced front panel with Chinese display and user-programmable pushbuttons
DIGITAL INPUTS AND OUTPUTS	4A İ	Enhanced front panel with Russian display and user-programmable pushbuttons Enhanced front panel with Chinese display and user-programmable pushbuttons 4 Solid-State (no monitoring) MOSFET output
	i 4B i	4 Solid-State (voltage with optional current) MOSFET outputs
	4C 4D	4 Solid-State (current with optional voltage) MOSFET outputs
	4D 4L	16 digital inputs with Auto-Burnishing 14 Form-A (no monitoring) Latching outputs
	4L 67	8 Form-A (no monitoring) outputs
	6A 6B 6C	2 Form-A (voltage with optional current) and 2 Form-C outputs, 8 digital inputs 2 Form-A (voltage with optional current) and 4 Form-C outputs, 4 digital inputs
	1 6B	2 Form-A (voltage with optional current) and 4 Form-C outputs, 4 digital inputs 8 Form-C outputs
	6D	16 digital inputs
	6E 6F 6G 6H 6K	4 Form-C outputs, 8 digital inputs
	66	8 Fast Form-C outputs 4 Form-A (voltage with optional current) outputs, 8 digital inputs
	6H	Form-A (voltage with optional current) outputs, 4 digital inputs
		6 Form-A (voltage with optional current) outputs, 4 digital inputs 4 Form-C and 4 Fast Form-C outputs
	6L 6M	2 Form-A (current with optional voltage) and 2 Form-C outputs, 8 digital inputs 2 Form-A (current with optional voltage) and 4 Form-C outputs, 4 digital inputs
	6N	4 Form-A (current with optional voltage) outputs, 8 digital inputs
	6P	6 Form-A (current with optional voltage) outputs, 4 digital inputs 2 Form-A (no monitoring) and 2 Form-C outputs, 8 digital inputs
	6R	2 Form-A (no monitoring) and 2 Form-C outputs, 8 digital inputs
	6N 6P 6R 6S 6T 6U	2 Form-A (no monitoring) and 4 Form-C outputs, 4 digital inputs 4 Form-A (no monitoring) outputs, 8 digital inputs
	6U	Form-A (no monitoring) outputs, 4 digital inputs Standard 4CT/4VT
CT/VT MODULES	8F 8G	Standard 4CT/4VT Sensitive Ground 4CT/4VT
(NOT AVAILABLE FOR THE C30)	i 8H i	Sensitive Globild 4C1/4V1 Standard 8CT
(NOT AVAILABLE FOR THE CSU)	8J 8L 8M	Sensitive Ground 8CT
	8L	Standard 4CT/4VT with enhanced diagnostics
	i 8N i	Sensitive Ground 4C/1/4/1 with enhanced diagnostics
	8R	Standard 4CT/4VT with enhanced diagnostics Sensitive Ground 4CT/4VT with enhanced diagnostics Standard 8CT with enhanced diagnostics Standard 8CT with enhanced diagnostics
INTER-RELAY COMMUNICATIONS	2A	C37.94SM, 1300nm single-mode, ELED, 1 channel single-mode C37.94SM, 1300nm single-mode, ELED, 2 channel single-mode
	2B 2E	Bi-phase, single channel
	2A 2B 2E 2G 2G 2H 2S 2T 72 73 74 75 76 77 76 77 76 77 76 77 76 77 77 76 77 77	Bi-phase, dual channel
	2G	IEEE C37.94, 820 nm, 64 kbps, multimode, IED, 1 Channel
	2H 2S	IEEE C37.94, 820 nm, 64 kbps, multimode, LED, 2 Channels Six-port managed Ethemet switch with high voltage power supply (110 to 250 V DC / 100 to 240 V AC) Six-port managed Ethemet switch with low voltage power supply (48 V DC)
	2T	Six-port managed Ethernet switch with low voltage power supply (48 V DC)
	72	1550 nm, single-mode, LASER, 1 Channel
	74	1550 nm, single-mode, LASER, 2 Channel Channel 1 - RS422; Channel 2 - 1550 nm, single-mode, LASER
	75	Channel 1 - G.703: Channel 2 - 1550 nm. Single-mode LASER
	76	IEEE C37.94, 820 nm, multimode, LED, 1 Channel IEEE C37.94, 820 nm, multimode, LED, 2 Channels
		IEEE C37.94, 820 nm, multimode, LED, 2 Channels 820 nm, multi-mode, LED, 1 Channel
	7B	1300 nm, multi-mode, LED, 1 Channel
	7C	1300 nm, single-mode, ELED, 1 Channel
	7D 7E	1300 nm, single-mode, LASER, 1 Channel Channel 1 - G 703: Channel 2 - 820 nm, multi-mode
	/ / / / / / / / / / / / / / / / / / /	Channel 1 - G.703; Channel 2 - 820 nm, multi-mode Channel 1 - G.703; Channel 2 - 1300 nm, multi-mode
	7G	Channel 1 - G 703: Channel 2 - 1300 pm single-mode ELED
	7H	820 nm, multi-mode, LED, 2 Channels
	7.1	1300 nm, multi-mode, LED, 2 Channels 1300 nm, single-mode, ELED, 2 Channels
	j 7κ j	1300 nm, single-mode, LASER, 2 Channels
	7L	Channel 1 - ŘS422; Channel 2 - 820 nm, multi-mode, LED
	/ //// /	Channel 1 - RS422; Channel 2 - 1300 nm, multi-mode, LED Channel 1 - RS422; Channel 2 - 1300 nm, single-mode, ELED
	7P	Channel 1 - RS422; Channel 2 - 1300 nm, single-mode, ELED Channel 1 - RS422; Channel 2 - 1300 nm, single-mode, LASER Channel 1 - G703; Channel 2 - 1300 nm, single-mode LASER
	1 7Q	Channel 1 - G.703; Channel 2 - 1300 nm, single-mode LASER
	/K 7S	G.703, 1 Channel G.703, 2 Channels
	7T	RS422, 1 Channel
	7R 7S 7T 7V 7V	RS422, 2 Channels, 2 Clock Inputs
TRANSDUCER	7W	RS422, 2 Channels 4 dcmA inputs, 4 dcmA outputs (only one 5A module is allowed)
INPUTS/OUTPUTS	5A 5C 5D	8 RTD inputs
	5D	4 RTD inputs, 4 dcmA outputs (only one 5D module is allowed)
	5E	4 dcmA inputs, 4 RTD inputs 8 dcmA inputs
		o data carpato

The replacement module order codes for the reduced-size vertical mount units are shown below.

Table 2–6: ORDER CODES FOR REPLACEMENT MODULES, VERTICAL UNITS

	UR - ** - *	
POWER SUPPLY	1H 1L	125 / 250 V AC/DC 24 to 48 V (DC only)
CPU	9E	24 to 48 V (DC only) RS485 and RS485 (Mobus RTU DNP 3.0)
	9G	RS485 and 10Base-F (Ethernet, Moddus 1CP/IP, DNP 3.0)
	i 9H i 9J i	RS485 and Redundant 10Base-F (Ethernet, Modbus TCP/IP, DNP 3.0) RS485 and multi-mode ST 100Base-FX (Ethernet, Modbus TCP/IP, DNP 3.0)
	j 9K j	RS485 and multi-mode ST redundant 100Base-FX (Ethernet, Modbus TCP/IP, DNP 3.0)
	9L	RS485 and single mode SC 100Base-FX (Ethernet, Modbus TCP/IP, DNP 3.0)
	9M 9N	RS485 and single mode SC redundant 100Base-FX (Ethernet, Modbus TCP/IP, DNP 3.0) RS485 and 10/100Base-T (Ethernet, Modbus TCP/IP, DNP 3.0)
	9P	RS485 and single mode ST 100Base-FX (Ethernet, Modbus TCP/IP, DNP 3.0)
	9R	RS485 and single mode ST redundant 100Base-FX (Ethernet, Modbus TCP/IP, DNP 3.0)
FACEPLATE/DISPLAY	3F 3D	Vertical faceplate with keypad and English display Vertical faceplate with keypad and French display
	3R	Vertical faceplate with keypad and French ospiay Vertical faceplate with keypad and Russian display
	3K	Vertical faceplate with keypad and Russian display Vertical faceplate with keypad and Chinese display
	3K	Enhanced front panel with English display
	30	Enhanced front panel with French display Enhanced front panel with Russian display
	3R 3K 3K 3M 3Q 3Q 3U 3L 3L 3N 3N 3T 3V	Enhanced front panel with Chinese display
	3L	Enhanced front panel with English display and user-programmable pushbuttons Enhanced front panel with French display and user-programmable pushbuttons
	3T	
	3V	Enhanced from panel with Russian display and user-programmable pushbuttons Enhanced from panel with Chinese display and user-programmable pushbuttons 4 Solid-State (no monitoring) MOSFET outputs
DIGITAL	4A 4B	4 Solid-State (no monitoring) MOSFET outputs
INPUTS/OUTPUTS	4B 4C	4 Solid-State (voltage with optional current) MOSFET outputs 4 Solid-State (current with optional voltage) MOSFET outputs
	i 4D i	16 digital inputs with Auto-Burnishing
	4L	14 Form-A (no monitoring) Latching outputs
	67 68	8 Form-A (no monitoring) outputs 2 Form-A (voltage with optional current) and 2 Form-C outputs, 8 digital inputs
	6A 6B	2 Form-A (voltage with optional current) and 4 Form-C outputs, 4 digital inputs
	6C	8 Form-C outputs
	6D 6E	16 digital inputs 4 Form-C outputs, 8 digital inputs
	i 6F i	8 Fast Form-C outputs
	6G	4 Form-A (voltage with optional current) outputs, 8 digital inputs
	i 6H i 6K i	6 Form-A (voltage with optional current) outputs, 4 digital inputs 4 Form-C and 4 Fast Form-C outputs
	6L	2 Form-A (current with optional voltage) and 2 Form-C outputs, 8 digital inputs
	6M	2 Form-A (current with optional voltage) and 2 Form-C outputs, 8 digital inputs 2 Form-A (current with optional voltage) and 4 Form-C outputs, 4 digital inputs
	6N 6P	4 Form-A (current with optional voltage) outputs, 8 digital inputs
	6R	6 Form-A (current with optional voltage) outputs, 4 digital inputs 2 Form-A (no monitoring) and 2 Form-C outputs, 8 digital inputs
	6S	2 Form-A (no monitoring) and 4 Form-C outputs, 4 digital inputs
	6T	4 Form-A (no monitoring) outputs, 8 digital inputs
CT/VT	6U 8F	6 Form-A (no monitoring) outputs, 4 digital inputs Standard 4CT/4VT
MODULES	1 8G 1	Sensitive Ground 4CT/4VT
(NOT AVAILABLE FOR THE C30)	8H 8J	Standard 8CT
	8J	Sensitive Ground 8CT Standard 4CT/4VT with enhanced diagnostics
	8M	Sensitive Ground 4CT/4VT with enhanced diagnostics
	8N 8R	Standard 8CT with enhanced diagnostics
INTER-RELAY COMMUNICATIONS	2A	Sensitive Ground 8CT with enhanced diagnostics C37.94SM, 1300nm single-mode, ELED, 1 channel single-mode
	2B	C37.94SM, 1300nm single-mode, ELED, 2 channel single-mode
	2E 2F 2G 2H 72	Bi-phase, single channel
	2F	Bi-phase, dual channel IEEE C37.94, 820 nm, 128 kbps, multimode, LED, 1 Channel
	20 2H	IEEE C37.94, 820 nm, 128 kbps, multimode, LED, 2 Channels
	72	IEEE C37.94, 820 nm, 128 kbps, multimode, LED, 2 Channels 1550 nm, single-mode, LASER, 1 Channel
	73 74 75	1550 nm, single-mode, LASER, 2 Channel Channel 1 - RS422; Channel 2 - 1550 nm, single-mode, LASER
	75	Channel 1 - G.703; Channel 2 - 1550 nm, Single-mode LASER
	76	IEEE C37.94, 820 nm, 64 kbps, multimode, LĚD, 1 Channel
	76 77 7A 7B 7C 7D	IEEE C37.94, 820 nm, 64 kbps, multimode, LED, 2 Channels 820 nm, multi-mode, LED, 1 Channel
	7A 7B	820 nm, multi-mode, LED, 1 Channel 1300 nm, multi-mode, LED, 1 Channel
	70	1300 nm, single-mode, ELED, 1 Channel
	7D	1300 nm, single-mode, LASER, 1 Channel
	7E 7E	Channel 1 - G703; Channel 2 - 820 nm, multi-mode Channel 1 - G703; Channel 2 - 1300 nm, multi-mode
	7F 7G	Channel 1 - G.703; Channel 2 - 1300 nm, single-mode ELED
	7H	820 nm, multi-mode, LED, 2 Channels
	71	1300 nm, multi-mode, LED, 2 Channels 1300 nm, single-mode, ELED, 2 Channels
	7J 7K	1300 nm, single-mode, LASER, 2 Channels
	7L	Channel 1 - RS422; Channel 2 - 820 nm, multi-mode, LED
	7M 7N	Channel 1 - RS422; Channel 2 - 1300 nm, multi-mode, LED Channel 1 - RS422; Channel 2 - 1300 nm, single-mode, ELED
	7P	Channel 1 - RS422; Channel 2 - 1300 nm, single-mode, LASER
	7Q	Channel 1 - RS422; Channel 2 - 1300 nm, single-mode, LASER Channel 1 - G.703; Channel 2 - 1300 nm, single-mode LASER
	7P 7Q 7R 7R 7S 7S	G.703, 1 Channel G.703, 2 Channels
	7T	RS422, 1 Channel
	j 7V j	RS422, 2 Channels, 2 Clock Inputs
TRANSDUCER	7W	RS422, 2 Channels
INPUTS/OUTPUTS	5A 5C 5D	4 dcmA inputs, 4 dcmA outputs (only one 5A module is allowed) 8 RTD inputs
	5D	4 RTD inputs, 4 dcmA outputs (only one 5D module is allowed)
	5D 5E 5F	4 RTD inputs, 4 dcmA outputs (only one 5D module is allowed) 4 dcmA inputs, 4 RTD inputs 8 dcmA inputs

2.2.1 INTER-RELAY COMMUNICATIONS

Dedicated inter-relay communications may operate over 64 kbps digital channels or dedicated fiber optic channels. Available interfaces include:

- RS422 at 64 kbps
- G.703 at 64 kbps
- Dedicated fiber optics at 64 kbps. The fiber optic options include:
 - 820 nm multi-mode fiber with an LED transmitter.
 - 1300 nm multi-mode fiber with an LED transmitter.
 - 1300 nm single-mode fiber with an ELED transmitter.
 - 1300 nm single-mode fiber with a laser transmitter.
 - 1550 nm single-mode fiber with a laser transmitter.
 - IEEE C37.94 820 nm multi-mode fiber with an LED transmitter.

All fiber optic options use an ST connector. L90 models are available for use on two or three terminal lines. A two terminal line application requires one bidirectional channel. However, in two terminal line applications, it is also possible to use an L90 relay with two bidirectional channels. The second bidirectional channel will provide a redundant backup channel with automatic switchover if the first channel fails.

The L90 current differential relay is designed to function in a peer-to-peer or master-to-master architecture. In the peer-topeer architecture, all relays in the system are identical and perform identical functions in the current differential scheme. In order for every relay on the line to be a peer, each relay must be able to communicate with all of the other relays. If there is a failure in communications among the relays, the relays will revert to a master-to-peer architecture on a three-terminal system, with the master as the relay that has current phasors from all terminals. Using two different operational modes increases the dependability of the current differential scheme on a three-terminal system by reducing reliance on communications.

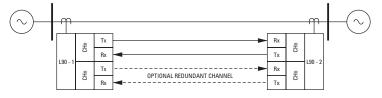
The main difference between a master and a slave L90 is that only a master relay performs the actual current differential calculation, and only a master relay communicates with the relays at all other terminals of the protected line.

At least one master L90 relay must have live communications to all other terminals in the current differential scheme; the other L90 relays on that line may operate as slave relays. All master relays in the scheme will be equal, and each will perform all functions. Each L90 relay in the scheme will determine if it is a master by comparing the number of terminals on the line to the number of active communication channels.

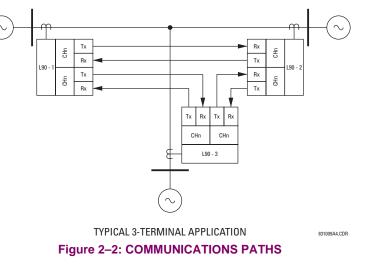
The slave terminals only communicate with the master; there is no slave-to-slave communications path. As a result, a slave L90 relay cannot calculate the differential current. When a master L90 relay issues a local trip signal, it also sends a direct transfer trip (DTT) signal to all of the other L90 relays on the protected line.

If a slave L90 relay issues a trip from one of its backup functions, it can send a transfer trip signal to its master and other slave relays if such option is designated. Because a slave cannot communicate with all the relays in the differential scheme, the master will then "broadcast" the direct transfer trip (DTT) signal to all other terminals.

The slave L90 Relay performs the following functions:


- Samples currents and voltages.
- Removes DC offset from the current via the mimic algorithm.
- Creates phaselets.
- Calculates sum of squares data.
- Transmits current data to all Master L90 relays.
- Performs all local relaying functions.
- Receives current differential DTT and Direct Input signals from all other L90 relays.
- Transmits direct output signals to all communicating relays.
- Sends synchronization information of local clock to all other L90 clocks.

2.2 PILOT CHANNEL RELAYING


The master L90 relay performs the following functions:

- Performs all functions of a slave L90.
- Receives current phasor information from all relays.
- Performs the current differential algorithm.
- Sends a current differential DTT signal to all L90 relays on the protected line.

In the peer-to-peer mode, all L90 relays act as masters.

2.2.2 CHANNEL MONITOR

The L90 has logic to detect that the communications channel is deteriorating or has failed completely. This can provide an alarm indication and disable the current differential protection. Note that a failure of the communications from the master to a slave does not prevent the master from performing the current differential algorithm; failure of the communications from a slave to the master will prevent the master from performing the correct current differential logic. Channel propagation delay is being continuously measured and adjusted according to changes in the communications path. Every relay on the protection system can assigned an unique ID to prevent advertent loopbacks at multiplexed channels.

2.2.3 LOOPBACK TEST

This option allows the user to test the relay at one terminal of the line by *looping* the transmitter output to the receiver input; at the same time, the signal sent to the remote will not change. A local loopback feature is included in the relay to simplify single ended testing.

2.2.4 DIRECT TRANSFER TRIPPING

The L90 includes provision for sending and receiving a single-pole direct transfer trip (DTT) signal from current differential protection between the L90 relays at the line terminals using the pilot communications channel. The user may also initiate an additional eight pilot signals with an L90 communications channel to create trip, block, or signaling logic. A FlexLogic[™] operand, an external contact closure, or a signal over the LAN communication channels can be assigned for that logic.

2.3.1 PROTECTION AND CONTROL FUNCTIONS

- Current differential protection: The current differential algorithms used in the L90 Line Current Differential System
 are based on the Fourier transform *phaselet* approach and an adaptive statistical restraint. The L90 uses per-phase
 differential at 64 kbps with two phaselets per cycle. A detailed description of the current differential algorithms is found
 in chapter 8. The current differential protection can be set in a percentage differential scheme with a single or dual
 slope.
- **Backup protection**: In addition to the primary current differential protection, the L90 Line Current Differential System incorporates backup functions that operate on the local relay current only, such as directional phase overcurrent, directional neutral overcurrent, negative-sequence overcurrent, undervoltage, overvoltage, and distance protection.
- Multiple setting groups: The relay can store six groups of settings. They may be selected by user command, a configurable contact input or a FlexLogic[™] equation to allow the relay to respond to changing conditions.
- User-programmable logic: In addition to the built-in protection logic, the relay may be programmed by the user via FlexLogic[™] equations.
- **Configurable inputs and outputs**: All of the contact converter inputs (digital inputs) to the relay may be assigned by the user to directly block a protection element, operate an output relay or serve as an input to FlexLogic[™] equations. All of the outputs, except for the self test critical alarm contacts, may also be assigned by the user.

2.3.2 METERING AND MONITORING FUNCTIONS

- Metering: The relay measures all input currents and calculates both phasors and symmetrical components. When AC
 potential is applied to the relay via the optional voltage inputs, metering data includes phase and neutral current, phase
 voltage, three phase and per phase W, VA, and var, and power factor. Frequency is measured on either current or voltage inputs. They may be called onto the local display or accessed via a computer. All terminal current phasors and differential currents are also displayed at all relays, allowing the user opportunity to analyze correct polarization of
 currents at all terminals.
- Event records: The relay has a sequence of events recorder which combines the recording of snapshot data and oscillography data. Events consist of a broad range of change of state occurrences, including input contact changes, measuring-element pickup and operation, FlexLogic[™] equation changes, and self-test status. The relay stores up to 1024 events with the date and time stamped to the nearest microsecond. This provides the information needed to determine a sequence of events, which can reduce troubleshooting time and simplify report generation after system events.
- **Oscillography**: The relay stores oscillography data at a sampling rate of 64 times per cycle. The relay can store a maximum of 64 records. Each oscillography file includes a sampled data report consisting of:
 - Instantaneous sample of the selected currents and voltages (if AC potential is used),
 - The status of each selected contact input.
 - The status of each selected contact output.
 - The status of each selected measuring function.
 - The status of various selected logic signals, including virtual inputs and outputs.

The captured oscillography data files can be accessed via the remote communications ports on the relay.

- **CT failure and current unbalance alarm**: The relay has current unbalance alarm logic. The unbalance alarm may be supervised by a zero-sequence voltage detector. The user may block the relay from tripping when the current unbalance alarm operates.
- Trip circuit monitor: On those outputs designed for trip duty, a trip voltage monitor will continuously measure the DC voltage across output contacts to determine if the associated trip circuit is intact. If the voltage dips below the minimum voltage or the breaker fails to open or close after a trip command, an alarm can be activated.
- Self-test: The most comprehensive self testing of the relay is performed during a power-up. Because the system is not
 performing any protection activities at power-up, tests that would be disruptive to protection processing may be performed. The processors in the CPU and all CT/VT modules participate in startup self-testing. Self-testing checks
 approximately 85 to 90% of the hardware, and CRC/check-sum verification of all PROMs is performed. The process-

sors communicate their results to each other so that if any failures are detected, they can be reported to the user. Each processor must successfully complete its self tests before the relay begins protection activities.

During both startup and normal operation, the CPU polls all plug-in modules and checks that every one answers the poll. The CPU compares the module types that identify themselves to the relay order code stored in memory and declares an alarm if a module is either non-responding or the wrong type for the specific slot. When running under normal power system conditions, the relay processors will have idle time. During this time, each processor performs background self-tests that are not disruptive to the foreground processing.

2.3.3 OTHER FUNCTIONS

a) ALARMS

The relay contains a dedicated alarm relay, the critical failure alarm, housed in the power supply module. This output relay is not user programmable. This relay has form-C contacts and is energized under normal operating conditions. The critical failure alarm will become de-energized if the relay self test algorithms detect a failure that would prevent the relay from properly protecting the transmission line.

b) LOCAL USER INTERFACE

The local user interface (on the faceplate) consists of a 2×20 liquid crystal display (LCD) and keypad. The keypad and display may be used to view data from the relay, to change settings in the relay, or to perform control actions. Also, the faceplate provides LED indications of status and events.

c) TIME SYNCHRONIZATION

The relay includes a clock which can run freely from the internal oscillator or be synchronized from an external IRIG-B signal. With the external signal, all relays wired to the same synchronizing signal will be synchronized to within 0.1 millisecond.

d) FUNCTION DIAGRAMS

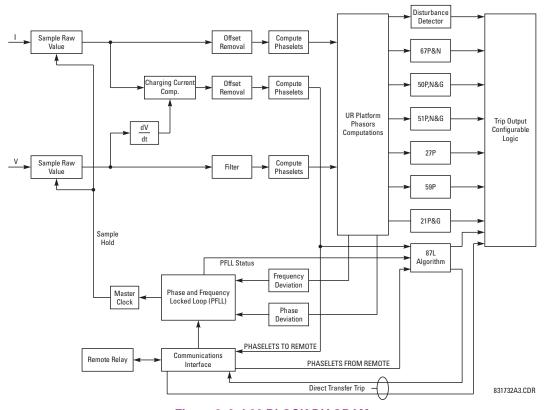
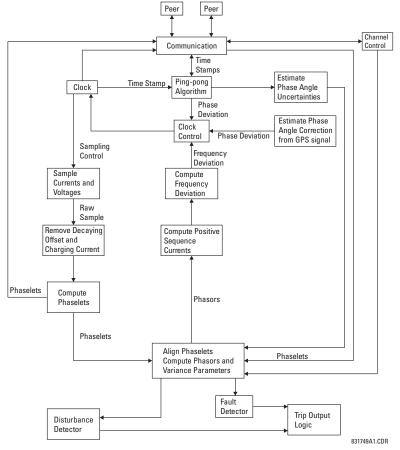



Figure 2–3: L90 BLOCK DIAGRAM

The operating times below include the activation time of a trip rated form-A output contact unless otherwise indicated. FlexLogic[™] operands of a given element are 4 ms faster. This should be taken into account when using FlexLogic[™] to interconnect with other protection or control elements of the relay, building FlexLogic[™] equations, or interfacing with other IEDs or power system devices via communications or different output contacts.

PHASE DISTANCE

PHASE DISTANCE		G
Characteristic:	mho (memory polarized or offset) or quad (memory polarized or non-direc- tional), selectable individually per zone	Cł
Number of zones:	3	Re
Directionality:	forward, reverse, or non-directional	
Reach (secondary Ω):	0.02 to 500.00 Ω in steps of 0.01	No
Reach accuracy:	$\pm 5\%$ including the effect of CVT transients up to an SIR of 30	Nı Di
Distance:		Re
Characteristic angle:	30 to 90° in steps of 1	Re
Comparator limit angle	: 30 to 90° in steps of 1	
Directional supervision:		Di
Characteristic angle:	30 to 90° in steps of 1	Di
Limit angle:	30 to 90° in steps of 1	Di
Right blinder (Quad only):	
Reach:	0.02 to 500 Ω in steps of 0.01	_
Characteristic angle:	60 to 90° in steps of 1	Ze
Left Blinder (Quad only):		
Reach:	0.02 to 500 Ω in steps of 0.01	_
Characteristic angle:	60 to 90° in steps of 1	Ze
Time delay:	0.000 to 65.535 s in steps of 0.001	
Timing accuracy:	±3% or 4 ms, whichever is greater	
Current supervision:		Ri
Level:	line-to-line current	
Pickup:	0.050 to 30.000 pu in steps of 0.001	. (
Dropout:	97 to 98%	Le
Memory duration:	5 to 25 cycles in steps of 1	l
VT location:	all delta-wye and wye-delta transformers	
CT location:	all delta-wye and wye-delta transformers	Tir
Voltage supervision pick	up (series compensation applications): 0 to 5.000 pu in steps of 0.001	Tir Cu
Operation time:	1 to 1.5 cycles (typical)	l
Reset time:	1 power cycle (typical)	I

GROUND DISTANCE

GROUND DISTANCE	
Characteristic:	Mho (memory polarized or offset) or Quad (memory polarized or non-direc- tional)
Reactance polarization:	negative-sequence or zero-sequence current
Non-homogeneity angle:	-40 to 40° in steps of 1
Number of zones:	3
Directionality:	forward, reverse, or non-directional
Reach (secondary Ω):	0.02 to 500.00 Ω in steps of 0.01
Reach accuracy:	$\pm 5\%$ including the effect of CVT transients up to an SIR of 30
Distance characteristic a	ngle: 30 to 90° in steps of 1
Distance comparator lim	it angle: 30 to 90° in steps of 1
Directional supervision:	
Characteristic angle:	30 to 90° in steps of 1
Limit angle:	30 to 90° in steps of 1
Zero-sequence compens	sation
Z0/Z1 magnitude:	0.00 to 10.00 in steps of 0.01
Z0/Z1 angle:	–90 to 90° in steps of 1
Zero-sequence mutual c	ompensation
Z0M/Z1 magnitude:	0.00 to 7.00 in steps of 0.01
Z0M/Z1 angle:	–90 to 90° in steps of 1
Right blinder (Quad only):
Reach:	0.02 to 500 Ω in steps of 0.01
Characteristic angle:	60 to 90° in steps of 1
Left blinder (Quad only):	
Reach:	0.02 to 500 Ω in steps of 0.01
Characteristic angle:	60 to 90° in steps of 1
Time delay:	0.000 to 65.535 s in steps of 0.001
Timing accuracy:	±3% or 4 ms, whichever is greater
Current supervision:	
Level:	neutral current (3I_0)
Pickup:	0.050 to 30.000 pu in steps of 0.001
Dropout:	97 to 98%
Memory duration:	5 to 25 cycles in steps of 1
Voltage supervision pick	up (series compensation applications): 0 to 5.000 pu in steps of 0.001
Operation time:	1 to 1.5 cycles (typical)
Reset time:	1 power cycle (typical)
LINE PICKUP Phase instantaneous over	ercurrent: 0.000 to 30.000 pu

Phase instantaneous overcurrent: 0.000 to 30.000 puUndervoltage pickup:0.000 to 3.000 puOvervoltage delay:0.000 to 65.535 s

2.4 SPECIFICATIONS

LINE CURRENT DI	FFERENTIAL (87L)	PHASE/NEUTRAL/G	ROUND IOC	
Application:	2 or 3 terminal line, series compensated	Pickup level:	0.000 to 30.000 pu in steps of 0.001	
	line, tapped line, with charging current	Dropout level:	97 to 98% of pickup	
	compensation	Level accuracy:		
Pickup current level: CT Tap (CT mismatch	0.20 to 4.00 pu in steps of 0.01 factor): 0.20 to 5.00 in steps of 0.01	0.1 to 2.0 \times CT rating:	±0.5% of reading or ±0.4% of rated (whichever is greater)	
Slope # 1:	1 to 50%	$> 2.0 \times CT$ rating	±1.5% of reading	
Slope # 2:	1 to 70%	Overreach:	<2%	
Breakpoint between sl	opes: 0.0 to 20.0 pu in steps of 0.1	Pickup delay:	0.00 to 600.00 s in steps of 0.01	
DTT:	Direct Transfer Trip (1 and 3 pole) to	Reset delay:	0.00 to 600.00 s in steps of 0.01	
	remote L90	Operate time:	<16 ms at 3 \times pickup at 60 Hz	
Operating Time:	1.0 to 1.5 power cycles duration		(Phase/Ground IOC)	
Asymmetrical channel	delay compensation using GPS: asymmetry up to 10 ms		<20 ms at 3 × pickup at 60 Hz (Neutral IOC)	
LINE CURRENT DI	FFERENTIAL TRIP LOGIC	Timing accuracy:	Operate at 1.5 × pickup	
87L trip:	Adds security for trip decision; creates 1		±3% or ±4 ms (whichever is greater)	
	and 3 pole trip logic	NEGATIVE SEQUEN	ICE TOC	
DTT:	Engaged Direct Transfer Trip (1 and 3	Current:	Phasor	
	pole) from remote L90	Pickup level:	0.000 to 30.000 pu in steps of 0.001	
DD:	Sensitive Disturbance Detector to detect fault occurrence	Dropout level:	97% to 98% of pickup	
Stub bus protection:	Security for ring bus and 1½ breaker	Level accuracy:	$\pm 0.5\%$ of reading or $\pm 0.4\%$ of rated	
Stub bus protection.	configurations		(whichever is greater) from 0.1 to 2.0 x CT rating	
Open pole detector:	Security for sequential and evolving		$\pm 1.5\%$ of reading > 2.0 x CT rating	
	faults	Curve shapes:	IEEE Moderately/Very/Extremely	
PHASE/NEUTRAL/			Inverse; IEC (and BS) A/B/C and Short	
Current:	Phasor or RMS		Inverse; GE IAC Inverse, Short/Very/	
Pickup level:	0.000 to 30.000 pu in steps of 0.001		Extremely Inverse; I ² t; FlexCurves™	
Dropout level:	97% to 98% of pickup		(programmable); Definite Time (0.01 s base curve)	
Level accuracy:		Curve multiplier (Time d	ial): 0.00 to 600.00 in steps of 0.01	
for 0.1 to 2.0 × CT:	±0.5% of reading or ±0.4% of rated (whichever is greater)	Reset type:	Instantaneous/Timed (per IEEE) and Lin-	
for > $2.0 \times CT$:		Timing accuracy:		
Curve shapes:	IEEE Moderately/Very/Extremely	ining accuracy.		
	Inverse; IEC (and BS) A/B/C and Short		(whichever is greater)	
		NEGATIVE SEQUENCE IOC		
		Current:	Phasor	
		Pickup level:	0.000 to 30.000 pu in steps of 0.001	
Curve multiplier:		Dropout level:	97 to 98% of pickup	
	0.01	Level accuracy:		
Reset type:	Instantaneous/Timed (per IEEE)		0.1 to 2.0 \times CT rating: ±0.5% of read-	
Timing accuracy:	Operate at > 1.03 × actual pickup		-	
	$\pm 3.5\%$ of operate time or $\pm \frac{1}{2}$ cycle		· · · · · · · · · · · · · · · · · · ·	
	(whichever is greater)	Overreach:	• •	
		•	•	
for > 2.0 × CT: Curve shapes: Curve multiplier: Reset type:	(whichever is greater) ±1.5% of reading > 2.0 × CT rating IEEE Moderately/Very/Extremely Inverse; IEC (and BS) A/B/C and Short Inverse; GE IAC Inverse, Short/Very/ Extremely Inverse; I ² t; FlexCurves [™] (programmable); Definite Time (0.01 s base curve) Time Dial = 0.00 to 600.00 in steps of 0.01 Instantaneous/Timed (per IEEE) Operate at > 1.03 × actual pickup	Timing accuracy: NEGATIVE SEQUEN Current: Pickup level: Dropout level:	ear Operate at > 1.03 × actual pickup ±3.5% of operate time or ±½ cycle (whichever is greater) ICE IOC Phasor 0.000 to 30.000 pu in steps of 0.001 97 to 98% of pickup	

2

Timing accuracy:

Operate at 1.5 × pickup

±3% or ±4 ms (whichever is greater)

PHASE DIRECTIONAL OVERCURRENT Relay connection: 90° (quadrature) Quadrature voltage: ABC phase seq.: phase B. (/c, -) phase 0. (/c, -)

ABC phase seq.: phase A (V_{BC}), phase B (V_{CA}), phase C (V_{AB}) ACB phase seq.: phase A (V_{CB}), phase B (V_{AC}), phase C (V_{BA})

Polarizing voltage threshold: 0.000 to 3.000 pu in steps of 0.001

Current sensitivity threshold: 0.05 pu Characteristic angle: 0 to 359° in steps of 1

Angle accuracy: ±2°

Operation time (FlexLogic[™] operands):

Tripping (reverse load, forward fault):< 12 ms, typically Blocking (forward load, reverse fault):< 8 ms, typically

NEUTRAL DIRECTIONAL OVERCURRENT

Directionality:	Co-existing forward and reverse
Polarizing:	Voltage, Current, Dual
Polarizing voltage:	V_0 or VX
Polarizing current:	IG
Operating current:	I_0
Level sensing:	$3 \times (I_0 - K \times I_1), IG$
Restraint, K:	0.000 to 0.500 in steps of 0.001
Characteristic angle:	-90 to 90° in steps of 1
Limit angle:	40 to 90° in steps of 1, independent for forward and reverse
Angle accuracy:	±2°
Offset impedance:	0.00 to 250.00 Ω in steps of 0.01
Pickup level:	0.002 to 30.000 pu in steps of 0.01
Dropout level:	97 to 98%
Operation time:	< 16 ms at 3 \times pickup at 60 Hz

NEGATIVE SEQUENCE DIRECTIONAL OC

Co-existing forward and reverse Directionality: Polarizing: Voltage Polarizing voltage: V_2 I_2 Operating current: Level sensing: Zero-sequence: $|I_0| - K \times |I_1|$ Negative-sequence: $|I_2| - K \times |I_1|$ Restraint. K: 0.000 to 0.500 in steps of 0.001 Characteristic angle: 0 to 90° in steps of 1 Limit angle: 40 to 90° in steps of 1, independent for forward and reverse Angle accuracy: ±2° Offset impedance: 0.00 to 250.00 Ω in steps of 0.01 Pickup level: 0.015 to 30.000 pu in steps of 0.01 97 to 98% Dropout level:

< 16 ms at 3 × pickup at 60 Hz

WATTMETRIC ZERO-SEQUENCE DIRECTIONAL

Measured power:	zero-sequence
Number of elements:	2
Characteristic angle:	0 to 360° in steps of 1
Minimum power:	0.001 to 1.200 pu in steps of 0.001
Pickup level accuracy:	$\pm 1\%$ or ± 0.0025 pu, whichever is greater
Hysteresis:	3% or 0.001 pu, whichever is greater
Pickup delay:	definite time (0 to 600.00 s in steps of 0.01), inverse time, or FlexCurve
Inverse time multiplier:	0.01 to 2.00 s in steps of 0.01
Time accuracy:	±3% or ±20 ms, whichever is greater
Operate time:	<30 ms at 60 Hz

PHASE UNDERVOLTAGE

Voltage:	Phasor only
Pickup level:	0.000 to 3.000 pu in steps of 0.001
Dropout level:	102 to 103% of pickup
Level accuracy:	±0.5% of reading from 10 to 208 V
Curve shapes:	GE IAV Inverse; Definite Time (0.1s base curve)
Curve multiplier:	Time dial = 0.00 to 600.00 in steps of 0.01
Timing accuracy:	Operate at < $0.90 \times \text{pickup}$ ±3.5% of operate time or ±4 ms (which- ever is greater)

AUXILIARY UNDERVOLTAGE

Pickup level:	0.000 to 3.000 pu in steps of 0.001
Dropout level:	102 to 103% of pickup
Level accuracy:	±0.5% of reading from 10 to 208 V
Curve shapes:	GE IAV Inverse, Definite Time
Curve multiplier:	Time Dial = 0 to 600.00 in steps of 0.01
Timing accuracy:	±3% of operate time or ±4 ms (whichever is greater)

PHASE OVERVOLTAGE

Voltage:	Phasor only
Pickup level:	0.000 to 3.000 pu in steps of 0.001
Dropout level:	97 to 98% of pickup
Level accuracy:	$\pm 0.5\%$ of reading from 10 to 208 V
Pickup delay:	0.00 to 600.00 in steps of 0.01 s
Operate time:	$<$ 30 ms at 1.10 \times pickup at 60 Hz
Timing accuracy:	±3% or ±4 ms (whichever is greater)

NEUTRAL OVERVOLTAGE

Pickup level:	0.000 to 3.000 pu in steps of 0.001
Dropout level:	97 to 98% of pickup
Level accuracy:	$\pm 0.5\%$ of reading from 10 to 208 V
Pickup delay:	0.00 to 600.00 s in steps of 0.01 (definite
	time) or user-defined curve
Reset delay:	0.00 to 600.00 s in steps of 0.01
Timing accuracy:	±3% or ±20 ms (whichever is greater)
Operate time:	$<$ 30 ms at 1.10 \times pickup at 60 Hz

Operation time:

2.4 SPECIFICATIONS

AUXILIARY OVERVOLTAGE

Pickup level:
Dropout level:
Level accuracy:
Pickup delay:
Reset delay:
Timing accuracy:

Dialuum lauval

Operate time:

BREAKER FAILURE

Mode: Current supervision: Current supv. pickup: Current supv. dropout: Current supv. accuracy: ±0.5% of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms (whichever is greater) < 30 ms at 1.10 × pickup at 60 Hz 1-pole, 3-pole phase, neutral current 0.001 to 30.000 pu in steps of 0.001

0.000 to 3.000 pu in steps of 0.001

97 to 98% of pickup

0.1 to 2.0 \times CT rating: ±0.75% of reading or ±2% of rated (whichever is greater) above $2 \times CT$ rating: ±2.5% of reading

97 to 98% of pickup

BREAKER ARCING CURRENT

Principle:	accumulates breaker duty (I ² t) and mea- sures fault duration	
Initiation:	programmable per phase from any Flex- Logic™ operand	
Compensation for auxiliary relays: 0 to 65.535 s in steps of 0.001		
Alarm threshold:	0 to 50000 kA2-cycle in steps of 1	
Fault duration accuracy:	0.25 of a power cycle	
Availability:	1 per CT bank with a minimum of 2	

BREAKER FLASHOVER

Operating quantity:	phase current, voltage and voltage difference
Pickup level voltage:	0 to 1.500 pu in steps of 0.001
Dropout level voltage:	97 to 98% of pickup
Pickup level current:	0 to 1.500 pu in steps of 0.001
Dropout level current:	97 to 98% of pickup
Level accuracy:	$\pm 0.5\%$ or $\pm 0.1\%$ of rated, whichever is greater
Pickup delay:	0 to 65.535 s in steps of 0.001
Time accuracy:	±3% or ±42 ms, whichever is greater
Operate time:	<42 ms at 1.10 \times pickup at 60 Hz

SYNCHROCHECK

Max angle difference: Max freq. difference: Dead source function:

Max voltage difference: 0 to 400000 V in steps of 1 0 to 100° in steps of 1 0.00 to 2.00 Hz in steps of 0.01 Hysteresis for max. freq. diff.: 0.00 to 0.10 Hz in steps of 0.01 None, LV1 & DV2, DV1 & LV2, DV1 or DV2, DV1 xor DV2, DV1 & DV2 (L = Live, D = Dead)

AUTORECLOSURE

Two breakers applications Single- and three-pole tripping schemes Up to 4 reclose attempts before lockout Selectable reclosing mode and breaker sequence

PILOT-AIDED SCHEMES

PILOT-AIDED SCHEMES Permissive Overreaching Transfer Trip (POTT)		
TRIP OUTPUT		
Collects trip and reclose input requests and issues outputs to con- trol tripping and reclosing.		
Communications timer d	elay: 0 to 65535 s in steps of 0.001	
Evolving fault timer:	0.000 to 65.535 s in steps of 0.001	
Timing accuracy:	±3% or 4 ms, whichever is greater	
POWER SWING DET	ECT	
Functions:	Power swing block, Out-of-step trip	
Characteristic:	Mho or Quad	
Measured impedance:	Positive-sequence	
Blocking / tripping mode	s: 2-step or 3-step	
Tripping mode: Early or Delayed		
Current supervision:		
Pickup level:	0.050 to 30.000 pu in steps of 0.001	
Dropout level:	97 to 98% of pickup	
Fwd / reverse reach (see	c. Ω): 0.10 to 500.00 Ω in steps of 0.01	
Left and right blinders (s	ec. Ω): 0.10 to 500.00 Ω in steps of 0.01	
Impedance accuracy: ±5%		
Fwd / reverse angle imp	edances: 40 to 90° in steps of 1	
Angle accuracy:	±2°	
Characteristic limit angle	es: 40 to 140° in steps of 1	
Timers:	0.000 to 65.535 s in steps of 0.001	
Timing accuracy:	±3% or 4 ms, whichever is greater	
LOAD ENCROACHN	IENT	
Responds to:	Positive-sequence quantities	
Minimum voltage:	0.000 to 3.000 pu in steps of 0.001	
Reach (sec. Ω):	0.02 to 250.00 Ω in steps of 0.01	
Impedance accuracy:	±5%	
Angle:	5 to 50° in steps of 1	
Angle accuracy:	±2°	
Pickup delay:	0 to 65.535 s in steps of 0.001	
Reset delay:	0 to 65.535 s in steps of 0.001	
Time accuracy:	±3% or ±4 ms, whichever is greater	
Operate time:	< 30 ms at 60 Hz	
OPEN POLE DETEC	TOR	
Functionality:	Detects an open pole condition, monitor- ing breaker auxiliary contacts, the cur- rent in each phase and optional voltages on the line	

	rent in each phase and optional voltages on the line	
Current pickup level:	0.000 to 30.000 pu in steps of 0.001	
Line capacitive reactances (X_{C1} , X_{C0}): 300.0 to 9999.9 sec. Ω in steps of 0.1		
Remote current pickup le	evel: 0.000 to 30.000 pu in steps of 0.001	
Current dropout level:	pickup + 3%, not less than 0.05 pu	

TRIP BUS (TRIP WITHOUT FLEXLOGIC™)

Number of elements:	6
Number of inputs:	16
Operate time:	<2 ms at 60 Hz
Time accuracy:	±3% or 10 ms, whichever is greater

2

Programming language: Reverse Polish Notation with graphical

512

input

4 (A through D)

40 (0 through 1 of pickup)

80 (1 through 20 of pickup)

0 to 65535 ms in steps of 1

up to 256 logical variables grouped under 16 Modbus addresses

any logical variable, contact, or virtual

any analog actual value, or two values in

32

64

visualization (keypad programmable)

NOT, XOR, OR (2 to 16 inputs), AND (2

NAND (2 to 16 inputs), latch (reset-domi-

any logical variable, contact, or virtual

0 to 60000 (ms, sec., min.) in steps of 1

0 to 60000 (ms, sec., min.) in steps of 1

to 16 inputs), NOR (2 to 16 inputs),

nant), edge detectors, timers

2 PRODUCT DESCRIPTION

2.4.2 USER-PROGRAMMABLE ELEMENTS

FLEXLOGIC™

2

Lines of code: Internal variables: Supported operations:

Inputs:

Number of timers: Pickup delay: Dropout delay:

FLEXCURVES™

Number: Reset points: Operate points: Time delay:

FLEX STATES

Number:

Programmability:

FLEXELEMENTS™

Number of elements: Operating signal:

1 0 0	differential mode
Operating signal mode:	signed or absolute value
Operating mode:	level, delta
Comparator direction:	over, under
Pickup Level:	-90.000 to 90.000 pu in steps of 0.001
Hysteresis:	0.1 to 50.0% in steps of 0.1
Delta dt:	20 ms to 60 days
Pickup & dropout delay:	0.000 to 65.535 s in steps of 0.001

input

8

NON-VOLATILE LATCHES

Туре:	set-dominant or reset-dominant
Number:	16 (individually programmed)
Output:	stored in non-volatile memory
Execution sequence:	as input prior to protection, control, and FlexLogic™

USER-PROGRAMMABLE I FDS

USER-PROGRAMMABLE LEDS		
Number:	48 plus trip and alarm	
Programmability:	from any logical variable, contact, or vir- tual input	
Reset mode:	self-reset or latched	
LED TEST		
Initiation:	from any digital input or user-program- mable condition	
Number of tests:	3, interruptible at any time	
Duration of full test:	approximately 3 minutes	
Test sequence 1:	all LEDs on	
Test sequence 2:	all LEDs off, one LED at a time on for 1 s	
Test sequence 3:	all LEDs on, one LED at a time off for 1 s $$	
USER-DEFINABLE DISPLAYS		
Number of displays:	16	
Lines of display:	2×20 alphanumeric characters	
Parameters:	up to 5, any Modbus register addresses	
Invoking and scrolling:	keypad, or any user-programmable con- dition, including pushbuttons	

CONTROL PUSHBUTTONS

Number of pushbuttons:	1
Operation:	drive FlexLogic [™] operands

USER-PROGRAMMABLE PUSHBUTTONS (OPTIONAL)

Number of pushbuttons:	12 (standard faceplate); 16 (enhanced faceplate)
Mode:	self-reset, latched
Display message:	2 lines of 20 characters each
Drop-out timer:	0.00 to 60.00 s in steps of 0.05
Autoreset timer:	0.2 to 600.0 s in steps of 0.1
Hold timer:	0.0 to 10.0 s in steps of 0.1

SELECTOR SWITCH Ν

Number of elements:	2
Upper position limit:	1 to 7 in steps of 1
Selecting mode:	time-out or acknowledge
Time-out timer:	3.0 to 60.0 s in steps of 0.1
Control inputs:	step-up and 3-bit
Power-up mode:	restore from non-volatile memory or syn- chronize to a 3-bit control input or synch/ restore mode

2.4 SPECIFICATIONS

2.4.3 MONITORING

OSCILLOGRAPHY Maximum records: Sampling rate: Triggers:	64 64 samples per power cycle any element pickup, dropout, or operate; digital input change of state; digital out- put change of state; FlexLogic [™] equa- tion	DATA LOGGER Number of channels: Parameters: Sampling rate: Trigger: Mode: Storage capacity:	1 to 16 any available analog actual value 15 to 3600000 ms in steps of 1 any FlexLogic™ operand continuous or triggered (NN is dependent on memory)
Data: Data storage:	AC input channels; element state; digital input state; digital output state in non-volatile memory		1-second rate: 01 channel for NN days
EVENT RECORDER Capacity: Time-tag: Triggers:	1024 events to 1 microsecond any element pickup, dropout, or operate;		16 channels for NN days ↓ 60-minute rate: 01 channel for NN days 16 channels for NN days
Data storage:	digital input change of state; digital out- put change of state; self-test events in non-volatile memory	FAULT LOCATOR Method:	multi-ended or single-ended during channel failure
		Voltage source:	wye-connected VTs, delta-connected VTs and neutral voltage, delta-connected VTs and zero-sequence current (approxi- mation)
		Maximum accuracy if:	fault resistance is zero or fault currents from all line terminals are in phase
		Relay accuracy: Worst-case accuracy:	±1.5% (V > 10 V, I > 0.1 pu)
		VT _{%error} + CT _{%error} + Z _{Line%error} + METHOD _{%error} +	user data user data user data 0.5% (multi-ended method), see chapter 8 (single-ended method)

RELAY ACCURACY_{%error} + (1.5%)

2.4.4 METERING

RMS CURRENT: PHASE, NEUTRAL, AND GROUND

Accuracy at	
0.1 to $2.0 \times CT$ rating:	±0.25% of reading or ±0.1% of rated
	(whichever is greater)

(whichever is greater) ±1.0% of reading

RMS VOLTAGE Accuracy:

 $> 2.0 \times CT$ rating:

REAL POWER (WATTS)

Accuracy:

±1.0% of reading at $-0.8 < PF \leq -1.0$ and $0.8 < PF \leq 1.0$

REACTIVE POWER (VARS)

 $\pm 1.0\%$ of reading at $-0.2 \le PF \le 0.2$

 $\pm 0.5\%$ of reading from 10 to 208 V

APPARENT POWER (VA) ±1.0% of reading

Accuracy:

Accuracy:

WATT-HOURS (POSITIVE AND NEGATIVE)

±2.0% of reading Accuracy: ± 0 to 1×10^{6} MWh Range: three-phase only Parameters: Update rate: 50 ms

VAR-HOURS (POSITIVE AND NEGATIVE)

Accuracy:	±2.0% of reading
Range:	± 0 to 1×10^{6} Mvarh
Parameters:	three-phase only
Update rate:	50 ms

FREQUENCY

Accuracy at V = 0.8 to 1.2 pu:

	for frequency measurement)
= 0.1 to 0.25 pu:	±0.05 Hz
> 0.25 pu:	±0.001 Hz (when current signal is used

for frequency measurement)

DEMAND

I

I

Measurements:

Accuracy:

Phases A, B, and C present and maximum measured currents 3-Phase Power (P, Q, and S) present

±0.001 Hz (when voltage signal is used

and maximum measured currents ±2.0%

2

2.4.5 INPUTS

AC CURRENT		CONTACT INPUTS	WITH AUTO-BURNISHING
CT rated primary:	1 to 50000 A	Dry contacts:	1000 Ω maximum
CT rated secondary:	1 A or 5 A by connection	Wet contacts:	300 V DC maximum
Nominal frequency:	20 to 65 Hz	Selectable thresholds:	17 V, 33 V, 84 V, 166 V
Relay burden:	< 0.2 VA at rated secondary	Tolerance:	±10%
Conversion range:		Contacts per common re	eturn: 2
Standard CT:	0.02 to $46 \times CT$ rating RMS symmetrical	Recognition time:	< 1 ms
Sensitive Ground CT		Debounce time:	0.0 to 16.0 ms in steps of 0.5
	002 to $4.6 \times CT$ rating RMS symmetrical	Continuous current drav	v:3 mA (when energized)
Current withstand:	20 ms at 250 times rated 1 sec. at 100 times rated	Auto-burnish impulse cu	irrent: 50 to 70 mA
	continuous at 3 times rated	Duration of auto-burnish	n impulse: 25 to 50 ms
		DCMA INPUTS	
AC VOLTAGE VT rated secondary:	50.0 to 240.0 V	Current input (mA DC):	0 to -1, 0 to +1, -1 to +1, 0 to 5, 0 to 10,
VT ratio:	1.00 to 24000.00	o di loit inpat (ini 1 2 0).	0 to 20, 4 to 20 (programmable)
		Input impedance:	379 Ω ±10%
Nominal frequency:	20 to 65 Hz; the nominal system fre- quency should be chosen as 50 Hz or	Conversion range:	-1 to + 20 mA DC
	60 Hz only.	Accuracy:	±0.2% of full scale
Relay burden:	< 0.25 VA at 120 V	Туре:	Passive
Conversion range:	1 to 275 V	RTD INPUTS	
Voltage withstand:	continuous at 260 V to neutral	Types (3-wire):	100 Ω Platinum, 100 & 120 Ω Nickel, 10
	1 min./hr at 420 V to neutral		Ω Copper
CONTACT INPUTS		Sensing current:	5 mA
Dry contacts:	1000 Ω maximum	Range:	–50 to +250°C
Wet contacts:	300 V DC maximum	Accuracy:	±2°C
Selectable thresholds:	17 V, 33 V, 84 V, 166 V	Isolation:	36 V pk-pk
Tolerance:	±10%	IRIG-B INPUT	
Contacts per common r	return: 4	Amplitude modulation:	1 to 10 V pk-pk
Recognition time:	< 1 ms	DC shift:	TTL
Debounce time:	0.0 to 16.0 ms in steps of 0.5	Input impedance:	22 kΩ
Continuous current drav	w:3 mA (when energized)	Isolation:	2 kV

REMOTE INPUTS (IEC 61850 GSSE/GOOSE)

Number of input points: 32, configured from 64 incoming bit pairs Number of remote devices:16

Default states on loss of comms.: On, Off, Latest/Off, Latest/On

2.4.6 POWER SUPPLY

ALL RANGES

Volt withstand: Power consumption: 2 × Highest Nominal Voltage for 10 ms typical = 15 to 20 W/VA maximum = 50 W/VA contact factory for exact order code consumption

INTERNAL FUSE

RATINGS Low range power supply: 8 A / 250 V High range power supply: 4 A / 250 V INTERRUPTING CAPACITY 100 000 A RMS symmetrical AC: DC: 10 000 A

2

Dry contacts:	1000 Ω maximum		
Wet contacts:	300 V DC maximum		
Selectable thresholds:	17 V, 33 V, 84 V, 166 V		
Tolerance:	±10%		
Contacts per common return: 4			
Recognition time: < 1 ms			
Debounce time:	0.0 to 16.0 ms in steps of 0.5		
Continuous current draw:3 mA (when energized)			

24 to 48 V

20 / 60 V

125 to 250 V

88 / 300 V

20 ms duration at nominal

100 to 240 V at 50/60 Hz

88 / 265 V at 25 to 100 Hz

200 ms duration at nominal

L90 Line Current Differential System

LOW RANGE

HIGH RANGE

Nominal DC voltage:

Min/max DC voltage:

Voltage loss hold-up:

Nominal DC voltage:

Min/max DC voltage:

Nominal AC voltage:

Min/max AC voltage:

Voltage loss hold-up:

NOTE: Low range is DC only.

2.4.7 OUTPUTS

FORM-A RELAY

Make and carry for 0.2 s: 30 A as per ANSI C37.90 Carry continuous: 6 A

Break (DC inductive, L/R = 40 ms):

	VOLTAGE	CURRENT
	24 V	1 A
48 V		0.5 A
125 V		0.3 A
250 V		0.2 A
Operate time:		< 4 ms

Contact material:

silver alloy

LATCHING RELAY

Make and carry for 0.2 s: 30 A as per ANSI C37.90

Carry continuous:	6 A
Break at L/R of 40 ms:	0.25 A DC max.
Operate time:	< 4 ms
Contact material:	silver alloy
Control:	separate operate and reset inputs
Control mode:	operate-dominant or reset-dominant

approx. 15 to 250 V DC

approx. 80 to 100 mA

FORM-A VOLTAGE MONITOR

Applicable voltage: Trickle current:

Trickle current: approx. 1 to 2.5 mA FORM-A CURRENT MONITOR

Threshold current:

FORM-C AND CRITICAL FAILURE RELAY

Make and carry for 0.2 s: 30 A as per ANSI C37.90 Carry continuous: 8 A

Break (DC inductive, L/R = 40 ms):

	VOLTAGE	CURRENT
24 V		1 A
	48 V	0.5 A
125 V		0.3 A
	250 V	0.2 A
Op	Operate time: < 8 r	

Contact material:

silver alloy

FAST FORM-C RELAY

Make and carry: 0.1 A max. (resistive load) Minimum load impedance:

INPUT VOLTAGE	IMPEDANCE	
VOLTAGE	2 W RESISTOR	1 W RESISTOR
250 V DC	20 KΩ	50 KΩ
120 V DC	5 KΩ	2 ΚΩ
48 V DC	2 KΩ	2 KΩ
24 V DC	2 KΩ	2 KΩ

Note: values for 24 V and 48 V are the same due to a required 95% voltage drop across the load impedance.

Operate time: < 0.6 ms Internal Limiting Resistor: 100 Ω , 2 W SOLID-STATE OUTPUT RELAY

Operate and release time: <100 μs

Maximum voltage: 265 V DC

Maximum continuous current: 5 A at 45°C; 4 A at 65°C

300 A

Make and carry:

for 0.2 s:

for 0.03 s

Breaking capacity:

	UL508	Utility application (autoreclose scheme)	Industrial application
Operations/ interval	5000 ops / 1 s-On, 9 s-Off	5 ops / 0.2 s-On, 0.2 s-Off	10000 ops / 0.2 s-On,
	1000 ops / 0.5 s-On, 0.5 s-Off	within 1 minute	30 s-Off
Break capability (0 to 250 V	3.2 A L/R = 10 ms		
DC)	1.6 A L/R = 20 ms	10 A L/R = 40 ms	10 A L/R = 40 ms
	0.8 A L/R = 40 ms		

30 A as per ANSI C37.90

IRIG-B OUTPUT

Amplitude:	10 V peak-peak RS485 level
Maximum load:	100 ohms
Time delay:	1 ms for AM input 40 μs for DC-shift input
Isolation:	2 kV

CONTROL POWER EXTERNAL OUTPUT (FOR DRY CONTACT INPUT)

Capacity: 100 mA D

Isolation:

100 mA DC at 48 V DC ±300 Vpk

REMOTE OUTPUTS (IEC 61850 GSSE/GOOSE)

Standard output points: 32 User output points: 32

DCMA OUTPUTS

Range:	-1 to 1 mA, 0 to 1 mA, 4 to 20 mA
Max. load resistance:	12 k Ω for -1 to 1 mA range 12 k Ω for 0 to 1 mA range 600 Ω for 4 to 20 mA range
Accuracy:	$\pm 0.75\%$ of full-scale for 0 to 1 mA range $\pm 0.5\%$ of full-scale for -1 to 1 mA range $\pm 0.75\%$ of full-scale for 0 to 20 mA range
99% Settling time to a st	ep change: 100 ms
Isolation:	1.5 kV
Driving signal:	any FlexAnalog quantity
Upper and lower limit for	the driving signal: –90 to 90 pu in steps of 0.001

ETHERNET SWITCH (HIGH VOLTAGE, TYPE 2S)

110 to 240 V DC

Nominal DC voltage: Minimum DC voltage: Maximum DC voltage: Input Current: Nominal AC voltage:

Minimum AC voltage: Maximum AC voltage: Internal fuse:

88 V DC 300 V DC 0.9 A DC maximum 100 to 240 V AC, 0.26 to 0.16 A/26 to 39 VA at 50/60 Hz 85 V AC, 0.31 A/22 VA at 50/60 Hz 265 V AC. 0.16 A/42 VA at 50/60 Hz 3 A / 350 V AC, Ceramic, Axial SLO BLO; Manufacturer: Conquer; Part number: SCD-A 003

ETHERNET SWITCH (LOW VOLTAGE, TYPE 2T)

Nominal voltage:
Minimum voltage:
Maximum voltage:
Internal fuse:

48 V DC, 0.31 A/15 W 30 V DC, 0.43 A/16 W 60 V DC 5 A / 350 V AC, Ceramic, Axial SLO BLO; Manufacturer: Conquer; Part number: SCD-A 005

2.4.8 COMMUNICATIONS

RS232

Front port:

19.2 kbps, Modbus[®] RTU

RS485

1 or 2 rear ports:

Typical distance: Isolation:

Up to 115 kbps, Modbus® RTU, isolated together at 36 Vpk 1200 m

ETHERNET (FIBER)

PARAMETER	FIBER TYPE		
	10MB MULTI- MODE	100MB MULTI- MODE ¹	100MB SINGLE- MODE
Wavelength	820 nm	1310 nm	1310 nm
Connector	ST	ST	SC
Transmit power	–20 dBm	-20 dBm	–15 dBm
Receiver sensitivity	-30 dBm	-30 dBm	–30 dBm
Power budget	10 dB	10 dB	15 dB
Maximum input power	-7.6 dBm	–14 dBm	−7 dBm
Typical distance	1.65 km	2 km	15 km
Duplex	full/half	full/half	full/half
Redundancy	yes	yes	yes

1. UR-2S and UR-2T only support 100 Mb multimode

2 kV

ETHERNET (10/100 MB TWISTED PAIR)

Modes:	10 MB, 10/100 MB (auto-detect)
Connector:	RJ45

SNTP clock synchronization error: <10 ms (typical)

ETHERNET SWITCH FIBER OPTIC PORTS

Maximum fiber segment length calculation:

The maximum fiber segment length between two adjacent switches or between a switch and a device is calculated as follows. First, calculate the optical power budget (OPB) of each device using the manufacturer's data sheets.

$$\mathsf{OPB} = P_{T(MIN)} - P_{R(MIN)}$$

where OPB = optical power budget, $P_T = transmitter output power$, and P_R = receiver sensitivity.

The worst case optical power budget (OPB_{WORST}) is then calculated by taking the lower of the two calculated power budgets, subtracting 1 dB for LED aging, and then subtracting the total insertion loss. The total insertion loss is calculated by multiplying the number of connectors in each single fiber path by 0.5 dB. For example, with a single fiber cable between the two devices, there will be a minimum of two connections in either transmit or receive fiber paths for a total insertion loss of 1db for either direction:

Total insertion loss = number of connectors
$$\times$$
 0.5 dB

$$= 2 \times 0.5 \text{ dB} = 1.0 \text{ dB}$$

The worst-case optical power budget between two type 2T or 2S modules using a single fiber cable is:

$$10dB - 1dB - 1dB = 8dB$$

To calculate the maximum fiber length, divide the worst-case optical power budget by the cable attenuation per unit distance specified in the manufacturer data sheets. For example, typical attenuation for 62.5/125 µm glass fiber optic cable is approximately 2.8 dB per km. In our example, this would result in the following maximum fiber length:

~ ~ ~

Maximum fiber length =
$$\frac{OPB_{WORST} \text{ (in dB)}}{\text{cable loss (in dB/km)}}$$

= $\frac{8 \text{ dB}}{2.8 \text{ dB/km}}$ = 2.8 km

The customer must use the attenuation specified within the manufacturer data sheets for accurate calculation of the maximum fiber length.

ETHERNET SWITCH 10/100BASE-T PORTS

Connector type: RJ45 MAXIMUM 10 MBPS ETHERNET SEGMENT LENGTHS Unshielded twisted pair: 100 m (328 ft.) Shielded twisted pair: 150 m (492 ft.) MAXIMUM STANDARD FAST ETHERNET SEGMENT LENGTHS 10Base-T (CAT 3, 4, 5 UTP): 100 m (328 ft.) 100Base-TX (CAT 5 UTP):100 m (328 ft.)

Shielded twisted pair: 150 m (492 ft.)

SHIELDED TWISTED-PAIR INTERFACE OPTIONS

INTERFACE TYPE	TYPICAL DISTANCE	
RS422	1200 m	
G.703	100 m	

RS422 distance is based on transmitter power and does not take into consideration the clock source provided by the user.

LINK POWER BUDGET

EMITTER, FIBER TYPE	TRANSMIT POWER	RECEIVED SENSITIVITY	POWER BUDGET
820 nm LED, Multimode	–20 dBm	–30 dBm	10 dB
1300 nm LED, Multimode	–21 dBm	–30 dBm	9 dB
1300 nm ELED, Singlemode	–23 dBm	-32 dBm	9 dB
1300 nm Laser, Singlemode	−1 dBm	–30 dBm	29 dB
1550 nm Laser, Singlemode	+5 dBm	–30 dBm	35 dB

These power budgets are calculated from the manufacturer's worst-case transmitter power and worst case receiver sensitivity.

The power budgets for the 1300nm ELED are calculated from the manufacturer's transmitter power and receiver sensitivity at ambient temperature. At extreme temperatures these values will deviate based on component tolerance. On average, the output power will decrease as the temperature is increased by a factor 1dB / 5°C.

MAXIMUM OPTICAL INPUT POWER

EMITTER, FIBER TYPE	MAX. OPTICAL INPUT POWER
820 nm LED, Multimode	–7.6 dBm
1300 nm LED, Multimode	–11 dBm
1300 nm ELED, Singlemode	–14 dBm
1300 nm Laser, Singlemode	–14 dBm
1550 nm Laser, Singlemode	–14 dBm

TYPICAL LINK DISTANCE

EMITTER TYPE	CABLE TYPE	CONNECTOR TYPE	TYPICAL DISTANCE
820 nm LED, multimode	62.5/125 μm	ST	1.65 km
1300 nm LED, multimode	62.5/125 μm	ST	3.8 km
1300 nm ELED, single mode	9/125 µm	ST	11.4 km
1300 nm Laser, single mode	9/125 µm	ST	64 km
1550 nm Laser, single-mode	9/125 µm	ST	105 km

2.4.9 INTER-RELAY COMMUNICATIONS

Typical distances listed are based on the following assumptions for system loss. As actual losses will vary from one installation to another, the distance covered by your system may vary.

CONNECTOR LOSSES (TOTAL OF BOTH ENDS)

ST connector 2 dB

FIBER LOSSES

Ë

NOTE

820 nm multimode	3 dB/km
1300 nm multimode	1 dB/km
1300 nm singlemode	0.35 dB/km
1550 nm singlemode	0.25 dB/km
Splice losses:	One splice every 2 km, at 0.05 dB loss per splice.

SYSTEM MARGIN

3 dB additional loss added to calculations to compensate for all other losses.

Compensated difference in transmitting and receiving (channel asymmetry) channel delays using GPS satellite clock: 10 ms

2.4.10 ENVIRONMENTAL

AMBIENT TEMPERATURES

Storage: -40 to 80°C

OPERATING TEMPERATURES

IEC 60068-2-1, 16 h at -40°C Cold: Dry Heat: IEC 60068-2-2, 16 h at +85°C The LCD contrast may be impaired at temperatures less 8 than -20°C.

OTHER

Humidity (non-condensing): IEC 60068-2-30, 95%, Variant 1, 6 days Altitude: Up to 2000 m Installation Category: Ш

2.4.11 TYPE TESTS

RFI susceptibility:	ANSI/IEEE C37.90.2 IEC 61000-4-3 IEC 60255-22-3	Cold:	IEEE C37.98 IEC 60028-2-1, 16 h at –40°C
Surge immunity:	EN 61000-4-5	Seismic:	IEC 60255-21-3
Electrostatic discharge:	EN 61000-4-2	Shock and bump:	IEC 60255-21-2
0	ANSI/IEEE C37.90	Vibration test (sinuso	idal): IEC 60255-21-1
Dielectric strength:	IEC 60255-6	Pulse magnetic field i	immunity: IEC 61000-4-9
Insulation resistance:	IEC 60255-5		IEC 61000-4-8
Oscillatory transient.	IEC 61000-4-12	Power frequency mag	
Oscillatory transient:	IEC 60255-22-4 ANSI/IEEE C37.90.1		IEC 61000-4-11 IEC 60255-11
	IEC 61000-4-4	Voltage dips/interrupt	
Electrical fast transient:	ANSI/IEEE C37.90.1	Conducted RFI:	IEC 61000-4-6

2.4.12 PRODUCTION TESTS

THERMAL

Products go through an environmental test based upon an Accepted Quality Level (AQL) sampling process.

2.4.13 APPROVALS

APPROVALS

UL Listed for the USA and Canada CE: LVD 73/23/EEC: IEC 1010-1 EMC 81/336/EEC: EN 50081-2, EN 50082-2

2.4.14 MAINTENANCE

MOUNTING

Attach mounting brackets using 20 inch-pounds (±2 inch-pounds) of torque.

CLEANING

Normally, cleaning is not required; but for situations where dust has accumulated on the faceplate display, a dry cloth can be used.

N. NOTE

> Units that are stored in a de-energized state should be powered up once per year, for one hour continuously, to avoid deterioration of electrolytic capacitors.

NOTE

a) HORIZONTAL UNITS

The L90 Line Current Differential System is available as a 19-inch rack horizontal mount unit with a removable faceplate. The faceplate can be specified as either standard or enhanced at the time of ordering. The enhanced faceplate contains additional user-programmable pushbuttons and LED indicators.

The modular design allows the relay to be easily upgraded or repaired by a qualified service person. The faceplate is hinged to allow easy access to the removable modules, and is itself removable to allow mounting on doors with limited rear depth. There is also a removable dust cover that fits over the faceplate, which must be removed when attempting to access the keypad or RS232 communications port.

The case dimensions are shown below, along with panel cutout details for panel mounting. When planning the location of your panel cutout, ensure that provision is made for the faceplate to swing open without interference to or from adjacent equipment.

The relay must be mounted such that the faceplate sits semi-flush with the panel or switchgear door, allowing the operator access to the keypad and the RS232 communications port. The relay is secured to the panel with the use of four screws supplied with the relay.

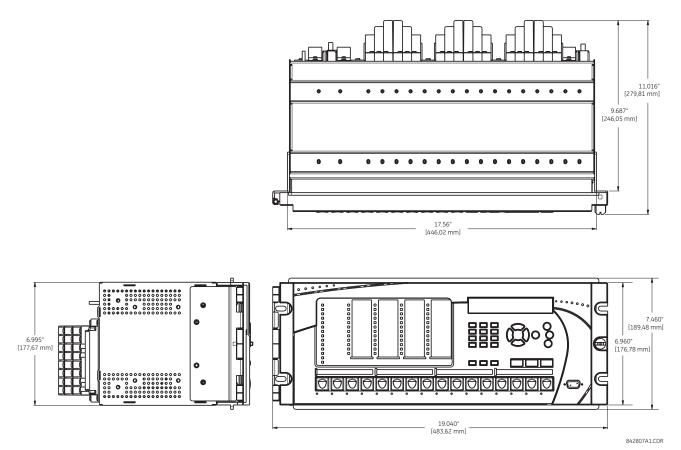


Figure 3–1: L90 HORIZONTAL DIMENSIONS (ENHANCED PANEL)

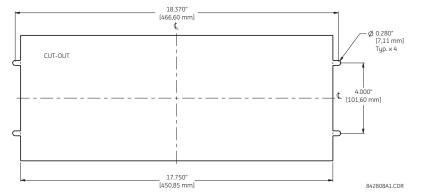
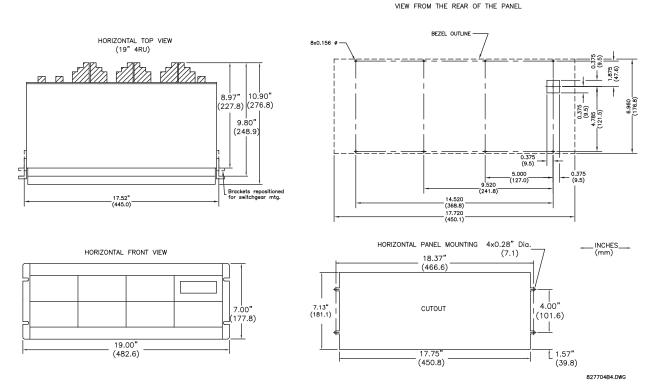



Figure 3–2: L90 HORIZONTAL MOUNTING (ENHANCED PANEL)

REMOTE MOUNTING

b) VERTICAL UNITS

The L90 Line Current Differential System is available as a reduced size (¾) vertical mount unit, with a removable faceplate. The modular design allows the relay to be easily upgraded or repaired by a qualified service person. The faceplate is hinged to allow easy access to the removable modules, and is itself removable to allow mounting on doors with limited rear depth. There is also a removable dust cover that fits over the faceplate, which must be removed when attempting to access the keypad or RS232 communications port.

The case dimensions are shown below, along with panel cutout details for panel mounting. When planning the location of your panel cutout, ensure that provision is made for the faceplate to swing open without interference to or from adjacent equipment.

The relay must be mounted such that the faceplate sits semi-flush with the panel or switchgear door, allowing the operator access to the keypad and the RS232 communications port. The relay is secured to the panel with the use of four screws supplied with the relay.

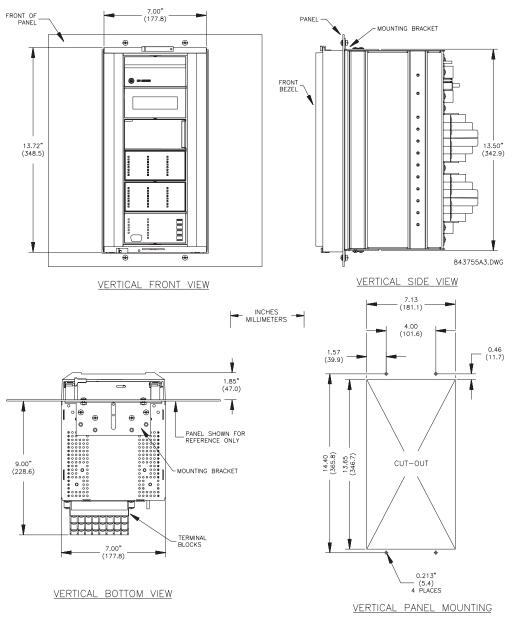
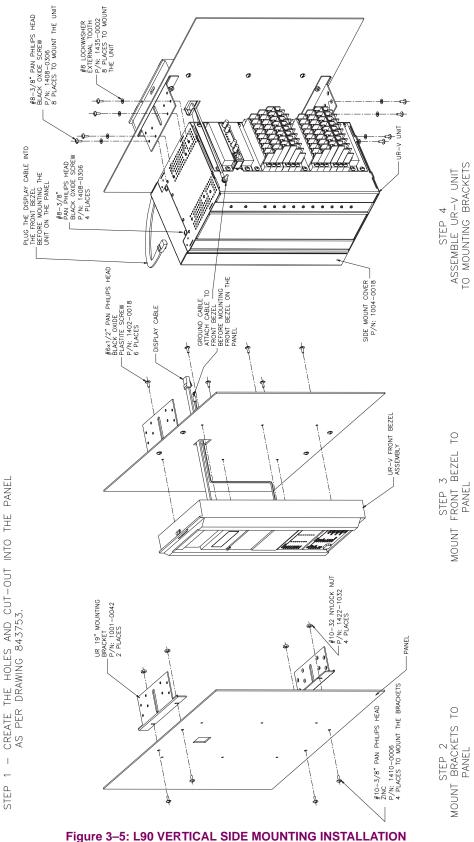



Figure 3-4: L90 VERTICAL MOUNTING AND DIMENSIONS

3

T ~

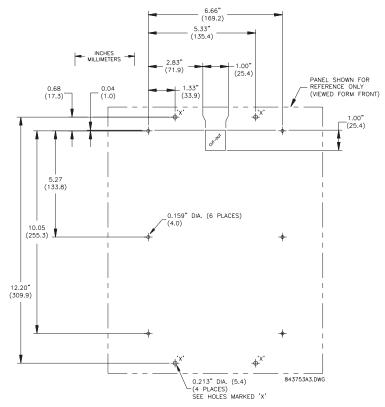


Figure 3–6: L90 VERTICAL SIDE MOUNTING REAR DIMENSIONS

3.1.2 MODULE WITHDRAWAL AND INSERTION

Module withdrawal and insertion may only be performed when control power has been removed from the unit. Inserting an incorrect module type into a slot may result in personal injury, damage to the unit or connected equipment, or undesired operation!

Proper electrostatic discharge protection (for example, a static strap) must be used when coming in contact with modules while the relay is energized!

The relay, being modular in design, allows for the withdrawal and insertion of modules. Modules must only be replaced with like modules in their original factory configured slots.

The enhanced faceplate can be opened to the left, once the thumb screw has been removed, as shown below. This allows for easy accessibility of the modules for withdrawal. The new wide-angle hinge assembly in the enhanced front panel opens completely and allows easy access to all modules in the L90.

3

Figure 3–7: UR MODULE WITHDRAWAL AND INSERTION (ENHANCED FACEPLATE)

The standard faceplate can be opened to the left, once the sliding latch on the right side has been pushed up, as shown below. This allows for easy accessibility of the modules for withdrawal.

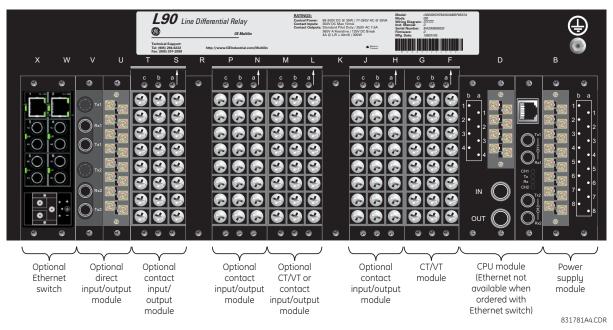
Figure 3–8: UR MODULE WITHDRAWAL AND INSERTION (STANDARD FACEPLATE)

To properly remove a module, the ejector/inserter clips, located at the top and bottom of each module, must be pulled simultaneously. Before performing this action, **control power must be removed from the relay**. Record the original location of the module to ensure that the same or replacement module is inserted into the correct slot. Modules with current input provide automatic shorting of external CT circuits.

To properly insert a module, ensure that the **correct** module type is inserted into the **correct** slot position. The ejector/ inserter clips located at the top and at the bottom of each module must be in the disengaged position as the module is smoothly inserted into the slot. Once the clips have cleared the raised edge of the chassis, engage the clips simultaneously. When the clips have locked into position, the module will be fully inserted.

All CPU modules except the 9E are equipped with 10/100Base-T or 100Base-F Ethernet connectors. These connectors must be individually disconnected from the module before it can be removed from the chassis.

3 HARDWARE



The 4.0x release of the L90 relay includes new hardware modules. The new CPU modules are specified with codes 9E and higher. The new CT/VT modules are specified with the codes 8F and higher.

The new CT/VT modules can only be used with new CPUs; similarly, old CT/VT modules can only be used with old CPUs. To prevent hardware mismatches, the new modules have blue labels and a warning sticker stating "Attn.: Ensure CPU and DSP module label colors are the same!". In the event that there is a mismatch between the CPU and CT/VT module, the relay will not function and a DSP ERROR or HARDWARE MISMATCH error will be displayed.

All other input and output modules are compatible with the new hardware. Firmware versions 4.0x and higher are only compatible with the new hardware modules. Previous versions of the firmware (3.4x and earlier) are only compatible with the older hardware modules.

3.1.3 REAR TERMINAL LAYOUT

Figure 3–9: REAR TERMINAL VIEW

Do not touch any rear terminals while the relay is energized!

The relay follows a convention with respect to terminal number assignments which are three characters long assigned in order by module slot position, row number, and column letter. Two-slot wide modules take their slot designation from the first slot position (nearest to CPU module) which is indicated by an arrow marker on the terminal block. See the following figure for an example of rear terminal assignments.

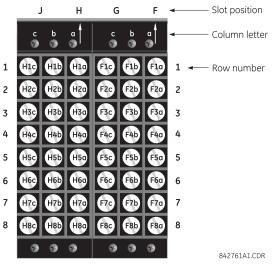


Figure 3–10: EXAMPLE OF MODULES IN F AND H SLOTS

3

3

3.2.1 TYPICAL WIRING

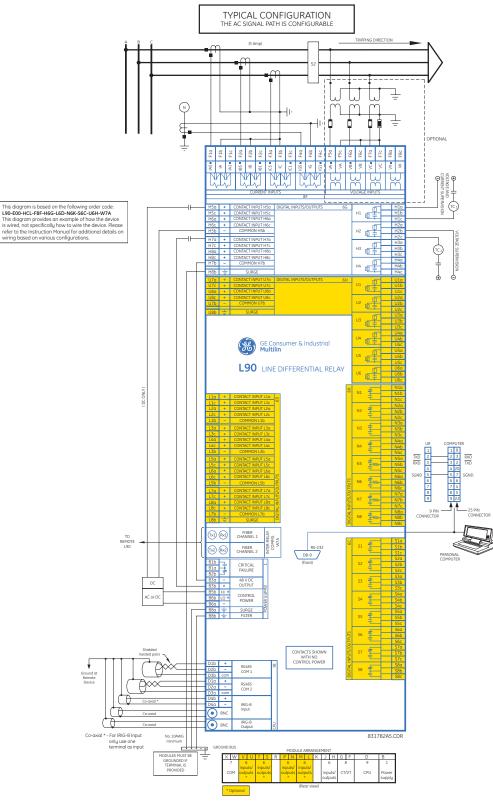


Figure 3–11: TYPICAL WIRING DIAGRAM

The dielectric strength of the UR-series module hardware is shown in the following table:

Table 3–1: DIELECTRIC STRENGTH OF UR-SERIES MODULE HARDWARE

MODULE	MODULE FUNCTION	TERMINALS		DIELECTRIC STRENGTH
TYPE		FROM	то	(AC)
1	Power supply	High (+); Low (+); (–)	Chassis	2000 V AC for 1 minute
1	Power supply	48 V DC (+) and (-)	Chassis	2000 V AC for 1 minute
1	Power supply	Relay terminals	Chassis	2000 V AC for 1 minute
2	Reserved	N/A	N/A	N/A
3	Reserved	N/A	N/A	N/A
4	Reserved	N/A	N/A	N/A
5	Analog inputs/outputs	All except 8b	Chassis	< 50 V DC
6	Digital inputs/outputs	All	Chassis	2000 V AC for 1 minute
7	G.703	All except 2b, 3a, 7b, 8a	Chassis	2000 V AC for 1 minute
1	RS422	All except 6a, 7b, 8a	Chassis	< 50 V DC
8	CT/VT	All	Chassis	2000 V AC for 1 minute
9	CPU	All	Chassis	2000 V AC for 1 minute

Filter networks and transient protection clamps are used in the hardware to prevent damage caused by high peak voltage transients, radio frequency interference (RFI), and electromagnetic interference (EMI). These protective components **can be damaged** by application of the ANSI/IEEE C37.90 specified test voltage for a period longer than the specified one minute.

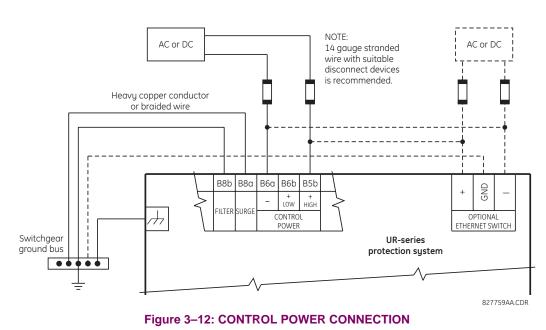
3.2.3 CONTROL POWER

CONTROL POWER SUPPLIED TO THE RELAY MUST BE CONNECTED TO THE MATCHING POWER SUPPLY RANGE OF THE RELAY. IF THE VOLTAGE IS APPLIED TO THE WRONG TERMINALS, DAMAGE MAY OCCUR!

The L90 relay, like almost all electronic relays, contains electrolytic capacitors. These capacitors are well known to be subject to deterioration over time if voltage is not applied periodically. Deterioration can be avoided by powering the relays up once a year.

The power supply module can be ordered for two possible voltage ranges, with or without a redundant power option. Each range has a dedicated input connection for proper operation. The ranges are as shown below (see the *Technical specifica-tions* section of chapter 2 for additional details):

- Low (LO) range: 24 to 48 V (DC only) nominal.
- High (HI) range: 125 to 250 V nominal.


The power supply module provides power to the relay and supplies power for dry contact input connections.

The power supply module provides 48 V DC power for dry contact input connections and a critical failure relay (see the *Typical wiring diagram* earlier). The critical failure relay is a form-C device that will be energized once control power is applied and the relay has successfully booted up with no critical self-test failures. If on-going self-test diagnostic checks detect a critical failure (see the *Self-test errors* section in chapter 7) or control power is lost, the relay will de-energize.

For high reliability systems, the L90 has a redundant option in which two L90 power supplies are placed in parallel on the bus. If one of the power supplies become faulted, the second power supply will assume the full load of the relay without any interruptions. Each power supply has a green LED on the front of the module to indicate it is functional. The critical fail relay of the module will also indicate a faulted power supply.

An LED on the front of the control power module shows the status of the power supply:

LED INDICATION	POWER SUPPLY
CONTINUOUS ON	OK
ON / OFF CYCLING	Failure
OFF	Failure

3.2.4 CT/VT MODULES

A CT/VT module may have voltage inputs on channels 1 through 4 inclusive, or channels 5 through 8 inclusive. Channels 1 and 5 are intended for connection to phase A, and are labeled as such in the relay. Likewise, channels 2 and 6 are intended for connection to phase B, and channels 3 and 7 are intended for connection to phase C.

Channels 4 and 8 are intended for connection to a single-phase source. For voltage inputs, these channel are labelled as auxiliary voltage (VX). For current inputs, these channels are intended for connection to a CT between system neutral and ground, and are labelled as ground current (IG).

Verify that the connection made to the relay nominal current of 1 A or 5 A matches the secondary rating of the connected CTs. Unmatched CTs may result in equipment damage or inadequate protection.

CT/VT modules may be ordered with a standard ground current input that is the same as the phase current input. Each AC current input has an isolating transformer and an automatic shorting mechanism that shorts the input when the module is withdrawn from the chassis. There are no internal ground connections on the current inputs. Current transformers with 1 to 50000 A primaries and 1 A or 5 A secondaries may be used.

The above modules are available with enhanced diagnostics. These modules can automatically detect CT/VT hardware failure and take the relay out of service.

CT connections for both ABC and ACB phase rotations are identical as shown in the Typical wiring diagram.

The exact placement of a zero-sequence core balance CT to detect ground fault current is shown below. Twisted-pair cabling on the zero-sequence CT is recommended.

3

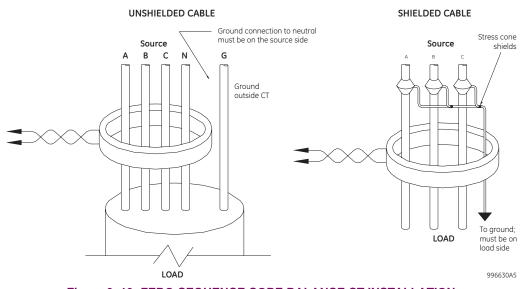


Figure 3–13: ZERO-SEQUENCE CORE BALANCE CT INSTALLATION

The phase voltage channels are used for most metering and protection purposes. The auxiliary voltage channel is used as input for the synchrocheck and volts-per-hertz features.

Substitute the tilde "~" symbol with the slot position of the module in the following figure.

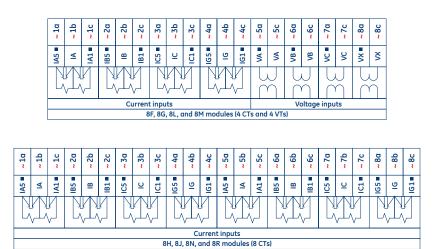
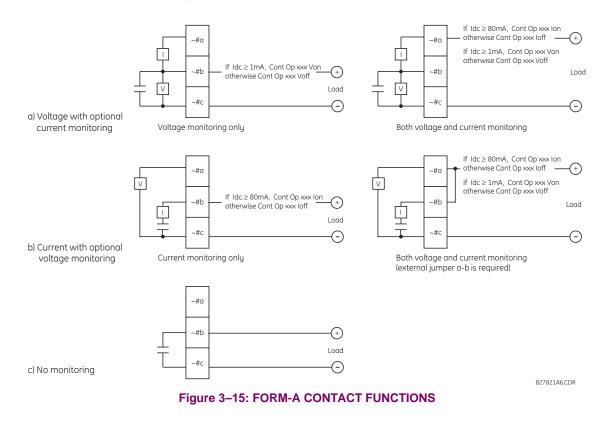


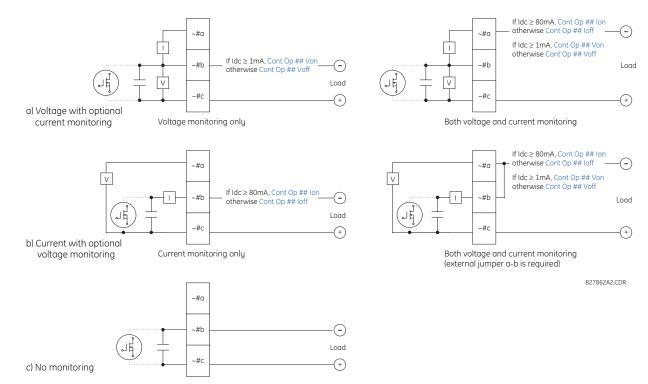
Figure 3–14: CT/VT MODULE WIRING

NOTE

842766A3.CDR

3.2.5 CONTACT INPUTS AND OUTPUTS


Every digital input/output module has 24 terminal connections. They are arranged as three terminals per row, with eight rows in total. A given row of three terminals may be used for the outputs of one relay. For example, for form-C relay outputs, the terminals connect to the normally open (NO), normally closed (NC), and common contacts of the relay. For a form-A output, there are options of using current or voltage detection for feature supervision, depending on the module ordered. The terminal configuration for contact inputs is different for the two applications.


The digital inputs are grouped with a common return. The L90 has two versions of grouping: four inputs per common return and two inputs per common return. When a digital input/output module is ordered, four inputs per common is used. The four inputs per common allows for high-density inputs in combination with outputs, with a compromise of four inputs sharing one common. If the inputs must be isolated per row, then two inputs per common return should be selected (4D module).

The tables and diagrams on the following pages illustrate the module types (6A, etc.) and contact arrangements that may be ordered for the relay. Since an entire row is used for a single contact output, the name is assigned using the module slot position and row number. However, since there are two contact inputs per row, these names are assigned by module slot position, row number, and column position.

Some form-A / solid-state relay outputs include circuits to monitor the DC voltage across the output contact when it is open, and the DC current through the output contact when it is closed. Each of the monitors contains a level detector whose output is set to logic "On = 1" when the current in the circuit is above the threshold setting. The voltage monitor is set to "On = 1" when the current is above about 1 to 2.5 mA, and the current monitor is set to "On = 1" when the current exceeds about 80 to 100 mA. The voltage monitor is intended to check the health of the overall trip circuit, and the current monitor can be used to seal-in the output contact until an external contact has interrupted current flow.

Block diagrams are shown below for form-A and form-A / solid-state relay outputs with optional voltage monitor, optional current monitor, and with no monitoring

Figure 3–16: FORM-A AND SOLID STATE CONTACT FUNCTIONS

The operation of voltage and current monitors is reflected with the corresponding FlexLogic[™] operands (CONT OP # VON, CONT OP # VOFF, CONT OP # ION, and CONT OP # IOFF) which can be used in protection, control and alarm logic. The typical application of the voltage monitor is breaker trip circuit integrity monitoring; a typical application of the current monitor is seal-in of the control command.

Refer to the *Digital elements* section of chapter 5 for an example of how form-A and solid-state relay contacts can be applied for breaker trip circuit integrity monitoring.

NOTE

Relay contacts must be considered unsafe to touch when the unit is energized! If the relay contacts need to be used for low voltage accessible applications, it is the customer's responsibility to ensure proper insulation levels!

For form-A and solid-state relay output contacts internally equipped with a voltage measuring clrcuit across the contact, the circuit has an impedance that can cause a problem when used in conjunction with external high input impedance monitoring equipment such as modern relay test set trigger circuits. These monitoring circuits may continue to read the form-A contact as being closed after it has closed and subsequently opened, when measured as an impedance.

The solution to this problem is to use the voltage measuring trigger input of the relay test set, and connect the form-A contact through a voltage-dropping resistor to a DC voltage source. If the 48 V DC output of the power supply is used as a source, a 500 Ω , 10 W resistor is appropriate. In this configuration, the voltage across either the form-A contact or the resistor can be used to monitor the state of the output.

Wherever a tilde "~" symbol appears, substitute with the slot position of the module; wherever a number sign "#" appears, substitute the contact number

When current monitoring is used to seal-in the form-A and solid-state relay contact outputs, the Flex-Logic[™] operand driving the contact output should be given a reset delay of 10 ms to prevent damage of the output contact (in situations when the element initiating the contact output is bouncing, at values in the region of the pickup value).

Table 3–2: DIGITAL INPUT/OUTPUT MODULE ASSIGNMENTS

~6A MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~1	Form-A
~2	Form-A
~3	Form-C
~4	Form-C
~5a, ~5c	2 Inputs
~6a, ~6c	2 Inputs
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

~6B MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~1	Form-A
~2	Form-A
~3	Form-C
~4	Form-C
~5	Form-C
~6	Form-C
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

~6C MODULE	
TERMINAL ASSIGNMENT	OUTPUT
~1	Form-C
~2	Form-C
~3	Form-C
~4	Form-C
~5	Form-C
~6	Form-C
~7	Form-C
~8	Form-C

~6D MODULE	
TERMINAL ASSIGNMENT	OUTPUT
~1a, ~1c	2 Inputs
~2a, ~2c	2 Inputs
~3a, ~3c	2 Inputs
~4a, ~4c	2 Inputs
~5a, ~5c	2 Inputs
~6a, ~6c	2 Inputs
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

~6E MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~1	Form-C
~2	Form-C
~3	Form-C
~4	Form-C
~5a, ~5c	2 Inputs
~6a, ~6c	2 Inputs
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

~6F MODULE	
TERMINAL ASSIGNMENT	OUTPUT
~1	Fast Form-C
~2	Fast Form-C
~3	Fast Form-C
~4	Fast Form-C
~5	Fast Form-C
~6	Fast Form-C
~7	Fast Form-C
~8	Fast Form-C

~6G MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~1	Form-A
~2	Form-A
~3	Form-A
~4	Form-A
~5a, ~5c	2 Inputs
~6a, ~6c	2 Inputs
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

~6H MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~1	Form-A
~2	Form-A
~3	Form-A
~4	Form-A
~5	Form-A
~6	Form-A
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

~6K MODULE	
TERMINAL ASSIGNMENT	OUTPUT
~1	Form-C
~2	Form-C
~3	Form-C
~4	Form-C
~5	Fast Form-C
~6	Fast Form-C
~7	Fast Form-C
~8	Fast Form-C

~6L MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~1	Form-A
~2	Form-A
~3	Form-C
~4	Form-C
~5a, ~5c	2 Inputs
~6a, ~6c	2 Inputs
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

~6M MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~1	Form-A
~2	Form-A
~3	Form-C
~4	Form-C
~5	Form-C
~6	Form-C
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

~6N MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~1	Form-A
~2	Form-A
~3	Form-A
~4	Form-A
~5a, ~5c	2 Inputs
~6a, ~6c	2 Inputs
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

~6P MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~1	Form-A
~2	Form-A
~3	Form-A
~4	Form-A
~5	Form-A
~6	Form-A
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

~6R MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~1	Form-A
~2	Form-A
~3	Form-C
~4	Form-C
~5a, ~5c	2 Inputs
~6a, ~6c	2 Inputs
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

~6S MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~1	Form-A
~2	Form-A
~3	Form-C
~4	Form-C
~5	Form-C
~6	Form-C
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

~6T MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~1	Form-A
~2	Form-A
~3	Form-A
~4	Form-A
~5a, ~5c	2 Inputs
~6a, ~6c	2 Inputs
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

3.2 WIRING

~6U MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~1	Form-A
~2	Form-A
~3	Form-A
~4	Form-A
~5	Form-A
~6	Form-A
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

~67 MODULE	
TERMINAL ASSIGNMENT	OUTPUT
~1	Form-A
~2	Form-A
~3	Form-A
~4	Form-A
~5	Form-A
~6	Form-A
~7	Form-A
~8	Form-A

~4A MODULE	
TERMINAL ASSIGNMENT	OUTPUT
~1	Not Used
~2	Solid-State
~3	Not Used
~4	Solid-State
~5	Not Used
~6	Solid-State
~7	Not Used
~8	Solid-State

~4B MODULE	
~40 101	JDULE
TERMINAL ASSIGNMENT	OUTPUT
~1	Not Used
~2	Solid-State
~3	Not Used
~4	Solid-State
~5	Not Used
~6	Solid-State
~7	Not Used
~8	Solid-State

~4C MODULE	
TERMINAL ASSIGNMENT	OUTPUT
~1	Not Used
~2	Solid-State
~3	Not Used
~4	Solid-State
~5	Not Used
~6	Solid-State
~7	Not Used

~8

Solid-State

~4D MODULE	
TERMINAL ASSIGNMENT	OUTPUT
~1a, ~1c	2 Inputs
~2a, ~2c	2 Inputs
~3a, ~3c	2 Inputs
~4a, ~4c	2 Inputs
~5a, ~5c	2 Inputs
~6a, ~6c	2 Inputs
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

~4L MODULE	
TERMINAL ASSIGNMENT	OUTPUT
~1	2 Outputs
~2	2 Outputs
~3	2 Outputs
~4	2 Outputs
~5	2 Outputs
~6	2 Outputs
~7	2 Outputs
~8	Not Used

3 HARDWARE

1a 1	b 1c	Not Used	~ 1	4
~ 2a	-			4
~ 2b	-	(Jil)	~ 2	
~ 2c	+			
3a 3	b 3c	Not Used	~ 3	
~ 4a	-			
~ 4b	-	(Jil)	~ 4	
~ 4c	+			
5a 5	b 5c	Not Used	~ 5	
~ 6a	-			
~ 6b	-	()	~ 6	
~ 6c	+			
7a 7	b 7c	Not Used	~ 7	
~ 8a	-			¥.
~ 8b	-	(4)	~ 8	IGITAL I/O
~ 8c	+			ă

1a 1	b 1c	Not Used	~ 1	#
~ 2a	-			4
~ 2b	-	(-f) V	~ 2	
~ 2c	+	Ŷ Ŧ		
3a 3	b 3c	Not Used	~ 3	
~ 4a	-			
~ 4b	-	(4) V	~ 4	
~ 4c	+			
5a 5	b 5c	Not Used	~ 5	
5a 5 ~6a	b 5c -	Not Used	~ 5	
_	ib 5c - -		~ 5	
~ 6a ~ 6b ~ 6c	- - +		~ 6	
~ 6a ~ 6b ~ 6c	- - +			
~ 6a ~ 6b ~ 6c	- - +		~ 6	0/1-
~6a ~6b ~6c 7a 7	- - +		~ 6	SITAL I/O

1a 1	b 1c	Not Used	~ 1	ç
~ 2a	-	- V -		4
~ 2b	-	Ū.	~ 2	
~ 2c	+	-		
3a 3	b 3c	Not Used	~ 3	
~ 4a	-	- V -		
~ 4b	-	Ū.	~ 4	
~ 4c	+	-		
5a 5	b 5c	Not Used	~ 5	
~ 6a	-	-V-		
~ 6b	-	빛	~ 6	
~ 6b ~ 6c	+			
~ 6c	- + b 7c		~ 6	
~ 6c	- + b 7c -			L 1/0
~6c 7a 7	- + - -			DIGITAL I/O

~1a	+	CONTACT IN ~ 1a	
~ 1b	-	COMMON ~ 1b	4
~ 1c	+	CONTACT IN ~ 10	
~ 2a	+	CONTACT IN ~ 2a	
~ 2b	-	COMMON ~ 2b	
~2c	+	CONTACT IN ~ 20	
~3a	+	CONTACT IN ~ 3a	
~3b		COMMON ~ 3b	
~3c	+	CONTACT IN ~ 30	
~4a	+	CONTACT IN ~ 4a	
~ 4b	-	COMMON ~4b	
~ 4c	+	CONTACT IN ~ 40	
~ 5a	+	CONTACT IN ~ 5a	
~ 5b		COMMON ~ 5b	
~ 5c	+	CONTACT IN ~ 50	
~6a	+	CONTACT IN ~ 6a	
~6b	-	COMMON ~ 6b	
~6c	+	CONTACT IN ~ 60	
~7a	+	CONTACT IN ~ 7a	
~7b		COMMON ~ 7b	19
~7c	+	CONTACT IN ~ 70	Ŀ
~8a	+	CONTACT IN ~ 8a	Ē
~8b	-	COMMON ~ 8b	g
~8c	+	CONTACT IN ~ 80	-

	 	-
~ 1a	- <u>1</u>	1
~ 1b	<u> </u>	1
~ 1c		L
~ 2a	3	Т
~ 2b	4	L
~ 2c	*	
~ 3a	÷ 5	1
~ 3b	Ξ°	L
~ 3c	°	
~ 4a	± 7	Т
~ 4b	Ξí.	L
~ 4c	°	
~ 5a	<u> </u>	1
~ 5b	10 I	L
~ 5c		
~ 6a	± 11	Τ.
~ 6b		L
~ 6c	"	
~ 7a	± 13	1
~ 7b	13 14	9
~ 7c	"*	DIGITAL I/C
~ 8a	Not	٦P
~ 8b	Used	C
~ 8c	Used	٩

3

~ 1a			5
~ 1b	<u>}</u>	~ 1	۳
~ 1c			
~ 2a			
~ 2b		~ 2	
~ 2c	<u> </u>		
~ 3a			
~ 3b		~ 3	
~ 3c			
~ 4a			11
~ 4b		~ 4	
~ 4c			
~ 5a			11
~ 5b		~ 5	
~ 5c			
~ 6a			11
~ 6b		~ 6	
~ 6c			
~ 7a			ĽSI.
~ 7b		~ 7	H
~ 7c			DIGITAL I/O
~ 8b	<u> </u>	~ 8	
~ 8c	<u> </u>	•	Е

~ 5a	+	CONTACT IN ~ 5a	DIGITAL I/O 6A		г'n	~ 1a
~ 5c	+	CONTACT IN ~ 5c		~ 1	m ±	~ 1b
~ 6a	+	CONTACT IN ~ 6a			친구	~ 1c
~ 6c	+	CONTACT IN ~ 6c			ſſ	~ 2a
~ 5b	-	COMMON ~ 5b		~ 2	ĺΩ ∓	~ 2b
~7a		CONTACT IN ~ 7a			친구	~ 2c
~7c	+	CONTACT IN ~ 7c			ţ	~ 3a
~8a		CONTACT IN ~ 8a		~ 3	Ē	~ 3b
~ 8c		CONTACT IN ~ 8a			τ	~ 3c
~ 80 ~ 7b	*	COMMON ~ 7b			-	~ 4a
~ 70	<u> </u>			~ 4	É –	~ 4b
~8b	÷	SURGE			τ	~ 4c

+	CONTACT IN 🛩	7a	DIGITAL I/O	6B		rfn -	~ 1a
+	CONTACT IN ~	7c			~ 1	ø∓	~ 1b
+	CONTACT IN 🛩	8a				변구	~ 1c
+	CONTACT IN ~	8c				rfi -	~ 2a
-	COMMON ~	7b			~ 2	₫Ŧ	~ 2b
<u>_</u>	SURGE	_				변구	~ 2c
-	SUNGE			_			~ 3a
				~3 1	1 I	~ 3b	
						T	~ 3c
						1	~ 4a
					~ 4	- É-	~ 4b
						T	~ 4c
				- 1			~ 5a
					~ 5	1 -	~ 5b
						T	~ 5c
						1	~ 6a
					~ 6	1 -	~ 6b
						T	~ 6c

~ 1a	-		ပ္စ	
~ 1b ~ 1c	<u>]</u> →Ì	~ 1	۵	
~ 1c				
~ 2a			11	
~ 2b	T-Ì	~ 2	11	
~ 2c				
~ 3a	_		11	
~ 3b	<u> </u>	~ 3	11	
~ 3c			11	
~ 4a	-		11	
~ 4b	<u> </u>	~ 4	11	
~ 4c				
~ 5a			11	
~ 5b	<u> </u>	~ 5	11	
~ 5c				
~ 6a			11	
~ 6b	Ĩ	~ 6	11	
~ 6c			11	
~ 7a	4			
~ 7b	<u> </u>	~ 7	2	
~ 7c			11	
~ 8a	4		DIGITAL I/O	
~ 8b	<u> </u>	~ 8	9	
~ 8c			<u> </u>	

~ 1a	+	CONTACT IN 🛛 – 1a	le
~ 1c	+	CONTACT IN ~ 1c	I۵
~ 2a	+	CONTACT IN 🛛 – 2a	
~ 2c	+	CONTACT IN ~ 2c	
~ 1b	-	COMMON ~ 1b	
~3a	+	CONTACT IN ~ 3a	1
~3c	+	CONTACT IN ~ 3c	1
~4a	+	CONTACT IN 🛛 4a	1
~4c	+	CONTACT IN ~ 4c	1
~3b	-	COMMON ~ 3b	
~ 5a	+	CONTACT IN 🛛 – 5a	1
~ 5c	+	CONTACT IN ~ 5c	1
~ 6a	+	CONTACT IN ~ 6a	
~ 6c	+	CONTACT IN ~ 6c	
~ 5b	-	COMMON ~ 5b	
~7a	+	CONTACT IN 🛛 – 7a	1
~7c	+	CONTACT IN ~ 7c	19
~8a	+	CONTACT IN ~ 8a	Ę
~8c	+	CONTACT IN ~ 8c]≙
~7b	-	COMMON ~7b	g
~8b	÷	SURGE	P

~ 5a	+	CONTACT IN ~ 5a	DIGITAL I/O 6E		×	~ 1a
~ 5c	+	CONTACT IN ~ 5c		~ 1	- Í-	~ 1b
~ 6a		CONTACT IN ~ 6a			τ	~ 1c
~ 6c	+	CONTACT IN ~ 6c				~ 2a
~ 5b	-	COMMON ~ 5b		~ 2	<u> </u>	~ 2b
~7a		CONTACT IN ~ 7a			τ	~ 2c
~7c		CONTACT IN ~ 7a			-	~ 3a
~ 8a		CONTACT IN ~ 8a		~ 3	1 I	~ 3b
					- T	~ 3c
~ 8c	+	CONTACT IN ~ 8c				~ 4a
~7b	-	COMMON ~7b		~ 4	Z	~ 4b
~ 8b	놑	SURGE			÷	~ 4c

~8a

~7b

~8b 📥

+

~7a + CONTACT IN ~7a DIGITAL I/O ~7c + CONTACT IN ~7c

7b

ONTACT IN - 8a - 8c

SURG

~7a ~7c ~8a ~8c

~7b

~ 1a	4		Ь
~ 1b	-w-Ŧ	~ 1	۳
~ 1c			
~ 2a	4		
~ 2b	-w-E	~ 2	
~ 2c			
~ 3a	4		
~ 3b	-wvŦ	~ 3	
~ 3c			
~ 4a			
~ 4b	-w-È	~ 4	
~ 4c			
~ 5a	1		
~ 5b	-w-È	~ 5	
~ 5c			
~ 6a	1		
~ 6b	-w-È	~ 6	
~ 6c			
~ 7a			
~ 7b	-w-È	~ 7	2
~ 7c			-
~ 8a			DIGITAL I/O
~ 8b	-w-È	~ 8	g
~ 8c			2

ų į

ų ÷ ~ 2

ų ₽ ~ 3

Ū ₽∓ ~ 4

¢ ₽ ~ 5

ф ф ~ 6

~ 1a

~ 1b ~ 1c ~ 2a ~ 2b

~ 2c ~ 3a ~ 3b ~ 3c ~ 4a

~ 4b ~ 4c ~ 5a ~ 5b

~ 5c ~ 6a ~ 6b ~ 6c

6H

~ 1

~ 5a	+	CONTACT IN ~ 5a	DIGITAL I/O 6G		n –	~ 1a
~ 5c	+	CONTACT IN ~ 5c		~ 1	ø∓	~ 1b
~ 6a	+	CONTACT IN ~ 6a			Ψ <u></u> Τ	~ 1c
~ 6c	+	CONTACT IN ~ 6c			ſſ	~ 2a
~ 5b	-	COMMON ~5b		~ 2	w ≟	~ 2b
~7a		CONTACT IN ~ 7a			친구.	~ 2c
~7c	-	CONTACT IN ~ 7a			ſ	~ 3a
~8a		CONTACT IN ~ 8a	•	~ 3	ivî ∔	~ 3b
~ 8c	+	CONTACT IN ~ 8a			ΨŢ	~ 3c
~7b		COMMON ~ 7b	1		ſ	~ 4a
-75		COMMON - 75		~ 4	ſn∰	~ 4b
~8b	÷	SURGE			Ψ <u></u> Τ	~ 4c

Figure 3–17: DIGITAL INPUT/OUTPUT MODULE WIRING (1 of 2)

A // /	lti.	lin
iviu	ıuı	
	Mu	Multil

~ 1a			\geq
~ 1b	<u> </u>	~ 1	ĕ
~ 1c			
~ 2a			11
~ 2b	T-Ì	~ 2	11
~ 2c			
~ 3a			11
~ 3b	<u>ì</u>	~ 3	11
~ 3c			
~ 4a			11
~ 4b	<u> </u>	~ 4	11
~ 4c			
~ 5a	_		11
~ 5b	-w-È	~ 5	11
~ 5c			
~ 6a			11
~ 6b	-w-È	~ 6	11
~ 6c			
~ 7a			1.1
~ 7b	-w-È	~ 7	9
~ 7c			EI.
~ 8a			DIGITAI
~ 8b	-w-È	~ 8	g
~ 8c			

TACT IN ~ 5a	DIGITAL I/O	6L			~ 1a
TACT IN ~ 5c			~ 1	₽-E	~ 1b
TACT IN 🛛 – 6a					~ 1c
TACT IN 🛹 6c					~ 2a
MMON ~5b			~ 2		~ 2b
TACT IN 🛛 7a				ļ 🛱 🗖	~ 2c
TACT IN ~ 7c					~ 3a
TACT IN ~ 8a			~ 3	1 E	~ 3b
TACT IN ~ 8c				τ	~ 3c
MMON ~ 7b				L	~ 4a
			~ 4	- I	~ 4b
SURGE					~ 4c

~7a	+	CONTACT IN	~ 7a	DIGITAL I/O	6M			~ 1a
~7c	+	CONTACT IN	~ 7c			~ 1	_ ₽ _	~ 1b
~8a	+	CONTACT IN	~ 8a				L‡_	~ 1c
~ 8c	+	CONTACT IN	~ 8c		[~ 2a
~7b	-	COMMON	~ 7b			~ 2	₽_	~ 2b
~ 8b	+	SURGE	_				L‡_	~ 2c
- 00		JONGE					ł	~ 3a
						~ 3	1	~ 3b
							τ	~ 3c
							ł	~ 4a
						~ 4	1	~ 4b
							τ	~ 4c
							ł	~ 5a
						~ 5	1	~ 5b
							τ	~ 5c
							ţ	~ 6a
						~ 6	1	~ 6b
							τ	~ 6c

~7a	+	CONTACT IN ~ 7a	DIGITAL I/O	6P			~ 1a
~7c	+	CONTACT IN ~ 7c			~ 1	Φ-	~ 1b
~8a	+	CONTACT IN ~ 8a				L÷	~ 1c
~ 8c	+	CONTACT IN ~ 8c		[~ 2a
~7b	-	COMMON ~7b			~ 2	Щ—	~ 2b
~ 8b	÷	SURGE				L÷.	~ 2c
- 00	-	SONGE		_			~ 3a
					~ 3	Щ—	~ 3b
				_ [LŦ.	~ 3c
							~ 4a
					~ 4	_₽	~ 4b
				_ [L÷.	~ 4c
							~ 5a
					~ 5	_₽_	~ 5b
							~ 5c
							~ 6a
					~ 6	_ <u>₽</u> _	~ 6b
				- 1		LŦ_	~ 6c

			_					_	
~7a	+	CONTACT IN	~ 7a	DIGITAL I/O	6S				~ 1a
~7c	+	CONTACT IN	~ 7c			~ 1	_		~ 1b
~8a	+	CONTACT IN	~ 8a				τ		~ 1c
~ 8c	+	CONTACT IN	~ 8c						~ 2a
~7b	-	COMMON	~ 7b			~ 2	_		~ 2b
01	+	SURGE	_				τ		~ 2c
~ 8b	-	SURGE							~ 3a
						~ 3			~ 3b
							-		~ 3c
							_		~ 4a
						~ 4	- E		~ 4b
							T		~ 4c
							_		~ 5a
						~ 5	Ť-		~ 5b
							- T		~ 5c
							-		~ 6a
						~ 6	-		~ 6b
							- T		~ 6c
								_	

~7a	+	CONTACT IN 🛛 7a	DIGITAL I/O	6U			~ 1a
~7c	+	CONTACT IN ~ 7c			~ 1	÷	~ 1b
~8a	+	CONTACT IN ~ 8a				τ	~ 1c
~ 8c	+	CONTACT IN ~ 8c					~ 2a
~7b	-	COMMON ~7b			~ 2	_	~ 2b
~ 8b	÷	SURGE				÷	~ 2c
~80	Ŧ	SURGE					~ 3a
					~ 3	_	~ 3b
						τ	~ 3c
							~ 4a
					~ 4	_	~ 4b
						τ	~ 4c
							~ 5a
					~ 5		~ 5b
						ŧ	~ 5c
							~ 6a
					~ 6		~ 6b
						τ	~ 6c
						842	763A1.CDR

Figure 3–18: DIGITAL INPUT/OUTPUT MODULE WIRING (2 of 2)

CORRECT POLARITY MUST BE OBSERVED FOR ALL CONTACT INPUT AND SOLID STATE OUTPUT CONNECTIONS FOR PROPER FUNCTIONALITY.

~ 5a	+	CONTACT IN ~ 5a	DIGITAL I/O	PIN 1			~ Ia	
~ 5c	+	CONTACT IN ~ 5c			~ 1	₽-	~ 1b	
~ 6a	+	CONTACT IN ~ 6a				LŦ_	~ 1c	
~ 6c	+	CONTACT IN ~ 6c					~ 2a	
~ 5b	-	COMMON ~ 5b			~ 2	₽-	~ 2b	
_						1 -	~ 2c	
~7a	+	CONTACT IN 🛛 7a					~ 3a	
~7c	+	CONTACT IN ~ 7c						
~8a	+	CONTACT IN ~ 8a			~ 3	<u>u</u> –	~ 3b	
						LŦ.	~ 3c	
~8c	+	CONTACT IN ~ 8c		- 1			~ 4a	
~7b	-	COMMON ~7b				_		
					~ 4	<u>u</u> –	~ 4b	
~ 8h	1	SURGE				三	~ 4c	

DICITAL

~ 5a	+	CONTACT IN ~ 5a	DIGITAL I/O 6R			~ 1a
~ 5c	+	CONTACT IN ~ 5c		~ 1		~ 1b
~ 6a	+	CONTACT IN 🛛 - 6a	1		τ	~ 1c
~ 6c	+	CONTACT IN ~ 6c				~ 2a
~ 5b	-	COMMON ~ 5b		~ 2		~ 2b
~7a		CONTACT IN ~ 7a			τ	~ 2c
		CONTACT IN ~ 7a	•		-	~ 3a
~7c	+	CONTACT IN ~ 7c		~ 3	1	~ 3b
~8a	+	CONTACT IN ~ 8a			τ	~ 3c
~8c	+	CONTACTIN ~ 8c			-	~ 4a
~ /D	-	COMINION ~76		~ 4	1	~ 4b
~8b	ᆂ	SURGE			τ	~ 4c

~ 5a	+	CONTACT IN ~ 5a	DIGITAL I/O 6T		~ 1a
~ 5c	+	CONTACT IN ~ 5c		~ 1	- 1b
~ 6a	+	CONTACT IN ~ 6a			T ~ 1c
~ 6c	+	CONTACT IN ~ 6c			~ 2a
~ 5b	-	COMMON ~ 5b		~ 2	~ 2b
~7a	+	CONTACT IN ~ 7a			
~7c	+	CONTACT IN ~ 7c			~ 3a
~8a	+	CONTACT IN ~ 8a		~ 3	- 3b
~8c	+	CONTACT IN ~ 8c			~ 3c
~7b		COMMON ~ 7b			~ 4a
~70	-	COMMON ~75		~ 4	- 4b
~8b	÷	SURGE			- 4c

CONTACT INPUTS:

A dry contact has one side connected to terminal B3b. This is the positive 48 V DC voltage rail supplied by the power supply module. The other side of the dry contact is connected to the required contact input terminal. Each contact input group has its own common (negative) terminal which must be connected to the DC negative terminal (B3a) of the power supply module. When a dry contact closes, a current of 1 to 3 mA will flow through the associated circuit.

A wet contact has one side connected to the positive terminal of an external DC power supply. The other side of this contact is connected to the required contact input terminal. If a wet contact is used, then the negative side of the external source must be connected to the relay common (negative) terminal of each contact group. The maximum external source voltage for this arrangement is 300 V DC.

The voltage threshold at which each group of four contact inputs will detect a closed contact input is programmable as 17 V DC for 24 V sources, 33 V DC for 48 V sources, 84 V DC for 110 to 125 V sources, and 166 V DC for 250 V sources.

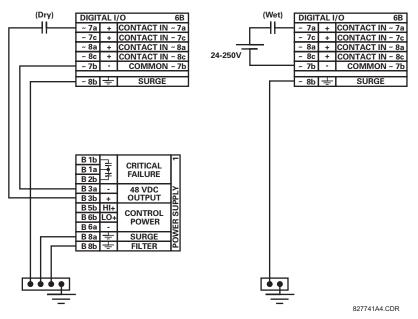
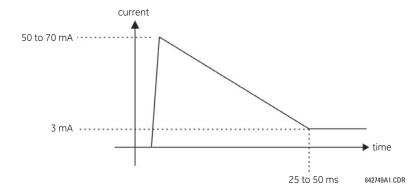


Figure 3–19: DRY AND WET CONTACT INPUT CONNECTIONS

Wherever a tilde "~" symbol appears, substitute with the slot position of the module.

Contact outputs may be ordered as form-a or form-C. The form-A contacts may be connected for external circuit supervision. These contacts are provided with voltage and current monitoring circuits used to detect the loss of DC voltage in the circuit, and the presence of DC current flowing through the contacts when the form-A contact closes. If enabled, the current monitoring can be used as a seal-in signal to ensure that the form-A contact does not attempt to break the energized inductive coil circuit and weld the output contacts.


There is no provision in the relay to detect a DC ground fault on 48 V DC control power external output. We recommend using an external DC supply.

3

USE OF CONTACT INPUTS WITH AUTO-BURNISHING:

The contact inputs sense a change of the state of the external device contact based on the measured current. When external devices are located in a harsh industrial environment (either outdoor or indoor), their contacts can be exposed to various types of contamination. Normally, there is a thin film of insulating sulfidation, oxidation, or contaminates on the surface of the contacts, sometimes making it difficult or impossible to detect a change of the state. This film must be removed to establish circuit continuity – an impulse of higher than normal current can accomplish this.

The contact inputs with auto-burnish create a high current impulse when the threshold is reached to burn off this oxidation layer as a maintenance to the contacts. Afterwards the contact input current is reduced to a steady-state current. The impulse will have a 5 second delay after a contact input changes state.

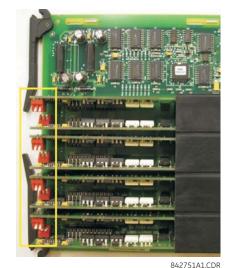


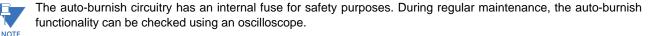
Figure 3–20: CURRENT THROUGH CONTACT INPUTS WITH AUTO-BURNISHING

Regular contact inputs limit current to less than 3 mA to reduce station battery burden. In contrast, contact inputs with autoburnishing allow currents up to 50 to 70 mA at the first instance when the change of state was sensed. Then, within 25 to 50 ms, this current is slowly reduced to 3 mA as indicated above. The 50 to 70 mA peak current burns any film on the contacts, allowing for proper sensing of state changes. If the external device contact is bouncing, the auto-burnishing starts when external device contact bouncing is over.

Another important difference between the auto-burnishing input module and the regular input modules is that only two contact inputs have common ground, as opposed to four contact inputs sharing one common ground (refer to the *Digital Input/ Output Module Wiring* diagrams). This is beneficial when connecting contact inputs to separate voltage sources. Consequently, the threshold voltage setting is also defined per group of two contact inputs.

The auto-burnish feature can be disabled or enabled using the DIP switches found on each daughter card. There is a DIP switch for each contact, for a total of 16 inputs.

CONTACT INPUT 1 AUTO-BURNISH = ON CONTACT INPUT 2 AUTO-BURNISH = OFF


CONTACT INPUT 1 AUTO-BURNISH = OFF CONTACT INPUT 2 AUTO-BURNISH = OFF

CONTACT INPUT 1 AUTO-BURNISH = OFF CONTACT INPUT 2 AUTO-BURNISH = ON

CONTACT INPUT 1 AUTO-BURNISH = ON CONTACT INPUT 2 AUTO-BURNISH = ON

Figure 3–21: AUTO-BURNISH DIP SWITCHES

3.2.6 TRANSDUCER INPUTS AND OUTPUTS

Transducer input modules can receive input signals from external dcmA output transducers (dcmA In) or resistance temperature detectors (RTD). Hardware and software is provided to receive signals from these external transducers and convert these signals into a digital format for use as required.

Transducer output modules provide DC current outputs in several standard dcmA ranges. Software is provided to configure virtually any analog quantity used in the relay to drive the analog outputs.

Every transducer input/output module has a total of 24 terminal connections. These connections are arranged as three terminals per row with a total of eight rows. A given row may be used for either inputs or outputs, with terminals in column "a" having positive polarity and terminals in column "c" having negative polarity. Since an entire row is used for a single input/ output channel, the name of the channel is assigned using the module slot position and row number.

Each module also requires that a connection from an external ground bus be made to terminal 8b. The current outputs require a twisted-pair shielded cable, where the shield is grounded at one end only. The figure below illustrates the transducer module types (5A, 5C, 5D, 5E, and 5F) and channel arrangements that may be ordered for the relay.

Wherever a tilde "~" symbol appears, substitute with the slot position of the module.

NOTE

1°Zu		dcmAln ~2	
~2c	-		
~3a	+	dcmAln ∼3	
~3c	Ι	dema in ~5	
~4a	+	dcmA In ∼4	
~4c	-	acma in ~4	
~5a	+	dcmA Out ~5	
~5c	-	dema Out ~5	
~6a	+	dcmA Out ~6	
~6c	-	dema Out ~6	
~7a	+	dcmA Out ~7	
~7c	-	dema out ~/	9
~8a	+	dcmA Out ~8	-
~8c	-	ucma Out ~8	ANALOG 1/0
			₹
~8b	÷	SURGE	AN

dcmA In ~1

~1a	Hot		RTD		~1	ç
~1c	Comp		RID		~1	[
~1b	Return	for	RTD	~1&	~2	
~2a	Hot		RTD		~2	1
~2c	Comp		RID		~2	
_						
~3a	Hot		RTD		~3	
~3c	Comp					
~3b	Return	for	RTD	~3&	~4	
~4a	Hot		RTD		~4	1
~4c	Comp		RID			
						Ł
~5a	Hot		RTD		~5	
~5c	Comp				-	
~5b	Return	for	RTD	~5&	~6	
~6a	Hot		RTD		~6	1
~6c	Comp		RID		100	
7-		-				1
~7a	Hot		RTD		~7	
~7c	Comp					
~7b	Return	for	RTD	~7&	~8	1
~8a	Hot		RTD		~8	17
~8c	Comp		KID		0	ļ
~8b	-		SU	RGE		UC IVINV
00	Ξ		30	NUL.		1

~1 ~2 ~2 ~3		Hot Comp	RTD ~1 for RTD ~1& ~2 RTD ~2 RTD ~3	2
~3	b	Return	for RTD ~3& ~4	1
~4 ~4	-	Hot Comp	RTD ~4]
~5	0			F
~5		_	dcmA Out ~5	
~6 ~6		+	dcmA Out ~6	
~7	~	+	dcmA Out ~7	T_
~7		-		4
_	-	+	dcmA Out ~8	00
~8				

~1a	+	dcmA In	~1	Ξ
~1c	-	ucma m	101	- /
~2a	+	dcmA In	~2	
~2c	-	ucmA in	/sz	
~3a	+			
~3c	-	dcmA In	~3	
~4a	+			
~4c	-	dcmA In	~4	
~5a	Hot	RTD	~5	
~5c				
~5b	Return	for RTD ~5&	~6	
~6a	Hot	RTD	~6	
~6c	Comp	KID		
7				
~7a	Hot	RTD	~7	
~7c	Comp		· ·	
~7b	Return	for RTD ~7&	~8	\leq
~8a	Hot	RTD	~8	LOG
~8c	Comp	RID ~8		ALO
01		0110.05		Ż
~8b		SURGE		14

~1a	+			ЧĽ
~1c	-	dcmA In	~1	20
~2a	+	1		1
~2c	-	dcmA In	~2	
~3a	+			
~3c	-	dcmA In	~3	
~4a	+			1
~4c	-	dcmA In	~4	
				1
~5a	+	dcmA In	~5	
~5c	-	dema in	~5	
~6a	+	dcmA In	~6	
~6c	-	denix in		
~7a	+			
~7c	-	dcmA In	~7	Ы
				$ \leq $
~8a	+	dcmA In	~8	6
~8c	-	Genia III	0	ANALOG 1/0
-				I≹I
~8b	+	SURGE		

842764A1.CDR

Figure 3–22: TRANSDUCER INPUT/OUTPUT MODULE WIRING

3

3.2.7 RS232 FACEPLATE PORT

A 9-pin RS232C serial port is located on the L90 faceplate for programming with a personal computer. All that is required to use this interface is a personal computer running the EnerVista UR Setup software provided with the relay. Cabling for the RS232 port is shown in the following figure for both 9-pin and 25-pin connectors.

The baud rate for this port is fixed at **19200 bps**.

NC

Front panel 9 pin RS232 Program port N/A 1: (TXD) 2: 3: (RXD) RELAY 4: N/A PERSONAL COMPUTER 5: (SGND) Signal Ground 6: N/A FRONT PANEL PROGRAM PORT 7: N/A 8: N/A N/A 9: PIN 5232 RS232 D CONNECTOR D CONNEC RS232 INTERFACE COM1 OR COM2 RELA COMPUTER 1 1 8 827758A3.DWG 3 RXD 2 TXD 20 2 3 4 2 3 4 SGN 56789 5 7 6 6 4 8 5 25 PIN CONNECTOR TOR

Figure 3–23: RS232 FACEPLATE PORT CONNECTION

3.2.8 CPU COMMUNICATION PORTS

a) OPTIONS

In addition to the faceplate RS232 port, the L90 provides two additional communication ports or a managed six-port Ethernet switch, depending on the installed CPU module.

NOTE Th

The CPU modules do not require a surge ground connection.

Table 3–3: CPU MODULE COMMUNICATIONS

CPU TYPE	COM1	COM2
9E	RS485	RS485
9G	10Base-F and 10Base-T	RS485
9H	Redundant 10Base-F	RS485
9J	100Base-FX	RS485
9K	Redundant 100Base-FX	RS485
9L	100Base-FX	RS485
9M	Redundant 100Base-FX	RS485
9N	10/100Base-T	RS485
9P	100Base-FX	RS485
9R	Redundant 100Base-FX	RS485
9S	Ethernet switch module with two 10/100Base-T and four 100Base-FX ports	RS485

3-22

3 HARDWARE

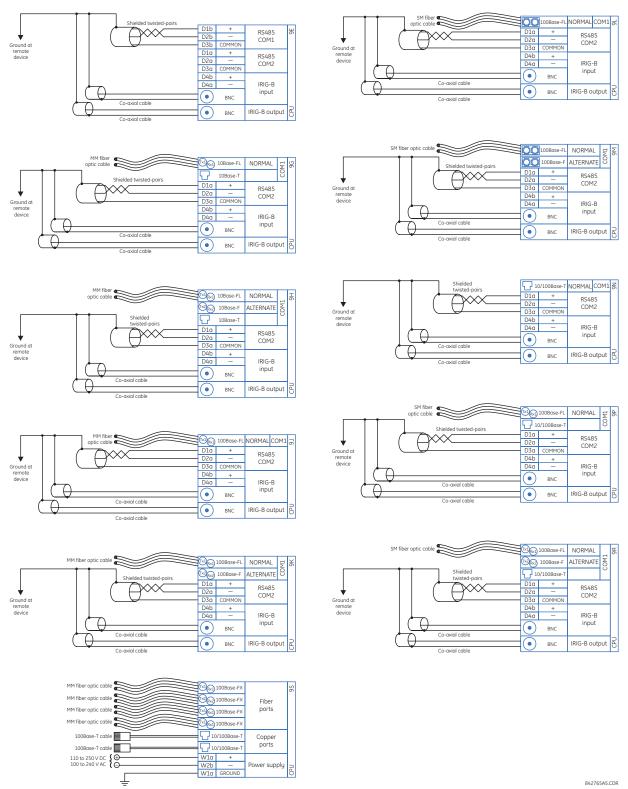


Figure 3–24: CPU MODULE COMMUNICATIONS WIRING

b) RS485 PORTS

RS485 data transmission and reception are accomplished over a single twisted pair with transmit and receive data alternating over the same two wires. Through the use of these ports, continuous monitoring and control from a remote computer, SCADA system or PLC is possible.

To minimize errors from noise, the use of shielded twisted pair wire is recommended. Correct polarity must also be observed. For instance, the relays must be connected with all RS485 "+" terminals connected together, and all RS485 "-" terminals connected together. The COM terminal should be connected to the common wire inside the shield, when provided. To avoid loop currents, the shield should be grounded at one point only. Each relay should also be daisy chained to the next one in the link. A maximum of 32 relays can be connected in this manner without exceeding driver capability. For larger systems, additional serial channels must be added. It is also possible to use commercially available repeaters to increase the number of relays on a single channel to more than 32. Star or stub connections should be avoided entirely.

Lightning strikes and ground surge currents can cause large momentary voltage differences between remote ends of the communication link. For this reason, surge protection devices are internally provided at both communication ports. An isolated power supply with an optocoupled data interface also acts to reduce noise coupling. To ensure maximum reliability, all equipment should have similar transient protection devices installed.

Both ends of the RS485 circuit should also be terminated with an impedance as shown below.

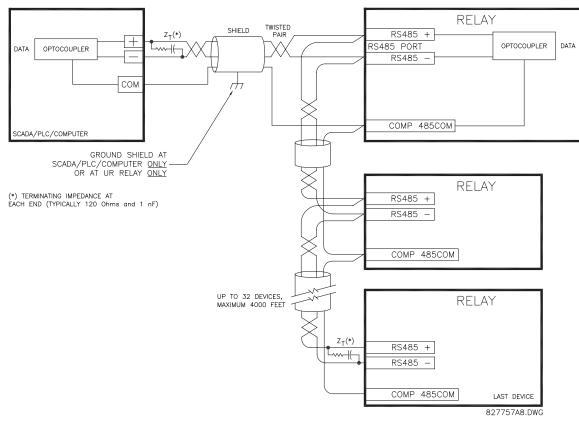
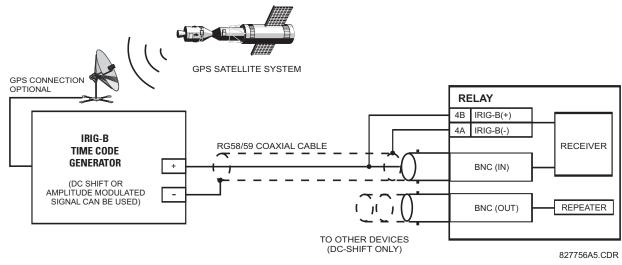


Figure 3–25: RS485 SERIAL CONNECTION

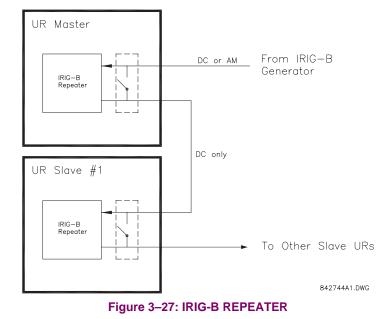
c) 10BASE-FL AND 100BASE-FX FIBER OPTIC PORTS

ENSURE THE DUST COVERS ARE INSTALLED WHEN THE FIBER IS NOT IN USE. DIRTY OR SCRATCHED CONNECTORS CAN LEAD TO HIGH LOSSES ON A FIBER LINK.


OBSERVING ANY FIBER TRANSMITTER OUTPUT MAY CAUSE INJURY TO THE EYE.

The fiber optic communication ports allow for fast and efficient communications between relays at 10 Mbps or 100 Mbps. Optical fiber may be connected to the relay supporting a wavelength of 820 nm in multi-mode or 1310 nm in multi-mode and single-mode. The 10 Mbps rate is available for CPU modules 9G and 9H; 100Mbps is available for modules 9H, 9J, 9K, 9L, 9M, 9N, 9P, and 9R. The 9H, 9K, 9M, and 9R modules have a second pair of identical optical fiber transmitter and receiver for redundancy.

The optical fiber sizes supported include $50/125 \mu m$, $62.5/125 \mu m$ and $100/140 \mu m$ for 10 Mbps. The fiber optic port is designed such that the response times will not vary for any core that is 100 μm or less in diameter, $62.5 \mu m$ for 100 Mbps. For optical power budgeting, splices are required every 1 km for the transmitter/receiver pair. When splicing optical fibers, the diameter and numerical aperture of each fiber must be the same. In order to engage or disengage the ST type connector, only a quarter turn of the coupling is required.


3.2.9 IRIG-B

IRIG-B is a standard time code format that allows stamping of events to be synchronized among connected devices within 1 millisecond. The IRIG time code formats are serial, width-modulated codes which can be either DC level shifted or amplitude modulated (AM). Third party equipment is available for generating the IRIG-B signal; this equipment may use a GPS satellite system to obtain the time reference so that devices at different geographic locations can also be synchronized.

The IRIG-B repeater provides an amplified DC-shift IRIG-B signal to other equipment. By using one IRIG-B serial connection, several UR-series relays can be synchronized. The IRIG-B repeater has a bypass function to maintain the time signal even when a relay in the series is powered down.

Using an amplitude modulated receiver will cause errors up to 1 ms in event time-stamping.

NOTE

Ę NOTE

> Using an amplitude modulated receiver will also cause errors of up to 1 ms in metered synchrophasor values. Using the IRIG-B repeater function in conjunction with synchrophasors is not recommended, as the repeater adds a 40 µs delay to the IRIG-B signal. This results in a 1° error for each consecutive device in the string as reported in synchrophasors.

A special inter-relay communications module is available for the L90. This module is plugged into slot "W" in horizontally mounted units and slot "R" in vertically mounted units. Inter-relay channel communications is not the same as 10/100Base-F interface communications (available as an option with the CPU module). Channel communication is used for sharing data among relays.

The inter-relay communications modules are available with several interfaces as shown in the table below.

Table 3–4: CHANNEL COMMUNICATION OPTIONS

MODULE	SPECIFICATION			
2A	C37.94SM, 1300 nm, single-mode, ELED, 1 channel single-mode			
2B	C37.94SM, 1300 nm, single-mode, ELED, 2 channel single-mode			
2E	Bi-phase, 1 channel			
2F	Bi-phase, 2 channel			
2G	IEEE C37.94, 820 nm, 128 kbps, multi-mode, LED, 1 channel			
2H	IEEE C37.94, 820 nm, 128 kbps, multi-mode, LED, 2 channels			
2S	Managed Ethernet switch with high voltage power supply			
2T	Managed Ethernet switch with low voltage power supply			
72	1550 nm, single-mode, laser, 1 channel			
73	1550 nm, single-mode, laser, 2 channels			
74	Channel 1 - RS422; channel 2 - 1550 nm, single-mode, laser			
75	Channel 1 - G.703; channel 2 - 1550 nm, single-mode, laser			
76	IEEE C37.94, 820 nm, 64 kbps, multi-mode, LED, 1 channel			
77	IEEE C37.94, 820 nm, 64 kbps, multi-mode, LED, 2 channels			
7A	820 nm, multi-mode, LED, 1 channel			
7B	1300 nm, multi-mode, LED, 1 channel			
7C	1300 nm, single-mode, ELED, 1 channel			
7D	1300 nm, single-mode, laser, 1 channel			
7E	Channel 1: G.703, Channel 2: 820 nm, multi-mode			
7F	Channel 1: G.703, Channel 2: 1300 nm, multi-mode			
7G	Channel 1: G.703, Channel 2: 1300 nm, single-mode ELED			
7H	820 nm, multi-mode, LED, 2 channels			
71	1300 nm, multi-mode, LED, 2 channels			
7J	1300 nm, single-mode, ELED, 2 channels			
7K	1300 nm, single-mode, LASER, 2 channels			
7L	Channel 1: RS422, channel: 820 nm, multi-mode, LED			
7M	Channel 1: RS422, channel 2: 1300 nm, multi-mode, LED			
7N	Channel 1: RS422, channel 2: 1300 nm, single-mode, ELED			
7P	Channel 1: RS422, channel 2: 1300 nm, single-mode, laser			
7Q	Channel 1: G.703, channel 2: 1300 nm, single-mode, laser			
7R	G.703, 1 channel			
7S	G.703, 2 channels			
7T	RS422, 1 channel			
7V	RS422, 2 channels, 2 clock inputs			
7W	RS422, 2 channels			

All of the fiber modules use ST type connectors. For two-terminal applications, each L90 relay requires at least one communications channel.

3.3 DIRECT INPUT AND OUTPUT COMMUNICATIONS

The current differential function must be "Enabled" for the communications module to properly operate. Refer to SETTINGS ⇔ ⊕ GROUPED ELEMENTS ⇔ LINE DIFFERENTIAL ⇔ CURRENT DIFFERENTIAL menu.

CAUTION

The fiber optic modules (7A to 7W) are designed for back-to-back connections of UR-series relays only. For connections to higher-order systems, use the 72 to 77 modules or the 2A and 2B modules.

OBSERVING ANY FIBER TRANSMITTER OUTPUT MAY CAUSE INJURY TO THE EYE.

3.3.2 FIBER: LED AND ELED TRANSMITTERS

The following figure shows the configuration for the 7A, 7B, 7C, 7H, 7I, and 7J fiber-only modules.

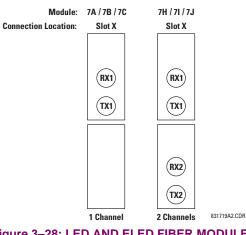


Figure 3–28: LED AND ELED FIBER MODULES

3.3.3 FIBER-LASER TRANSMITTERS

The following figure shows the configuration for the 72, 73, 7D, and 7K fiber-laser module.

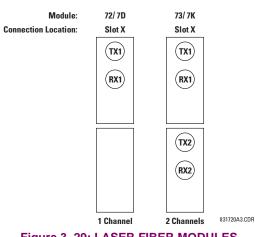


Figure 3–29: LASER FIBER MODULES

When using a laser Interface, attenuators may be necessary to ensure that you do not exceed the maximum optical input power to the receiver.

a) **DESCRIPTION**

The following figure shows the 64K ITU G.703 co-directional interface configuration.

The G.703 module is fixed at 64 kbps. The SETTINGS ⇔ PRODUCT SETUP ⇔ ⊕ DIRECT I/O ⇔ ⊕ DIRECT I/O DATA RATE setting is not applicable to this module.

AWG 24 twisted shielded pair is recommended for external connections, with the shield grounded only at one end. Connecting the shield to pin X1a or X6a grounds the shield since these pins are internally connected to ground. Thus, if pin X1a or X6a is used, do not ground at the other end. This interface module is protected by surge suppression devices.

_			
7 R		Shield	X1a
2		Tx –	X1b
	G.703 channel 1	Rx –	X2a
suo	channel 1	Tx +	X2b
ati		Rx +	X3a
ju	Surge	÷	X3b
Inter-relay communications		Shield	X6a
		Tx –	X6b
ay	G.703 channel 2	Rx –	X7a
ē	chunner 2	Tx +	X7b
ter-		Rx +	X8a
Ē	Surge	+	X8b
		842	773A1.CDR

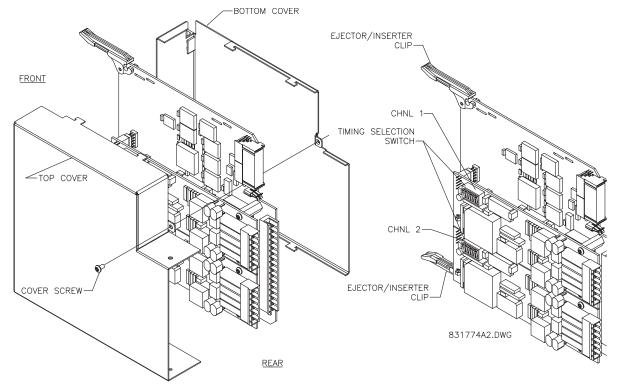
Figure 3–30: G.703 INTERFACE CONFIGURATION

The following figure shows the typical pin interconnection between two G.703 interfaces. For the actual physical arrangement of these pins, see the *Rear terminal assignments* section earlier in this chapter. All pin interconnections are to be maintained for a connection to a multiplexer.

¥	Shld.	X1a	X1a	Shld.		Ж
	Tx -	X 1b	 X1b	Tx -		-
G.703 CHANNEL 1	Rx -	X2a	X2a	Rx -	G.703 CHANNEL 1	
	Tx +	X2b	 X2b	Tx +		
	Rx +	X3a	X3a	Rx +		
SURGE	÷	X3b	X3b	÷	SURGE	
	Shld.	X6a	X6a	Shld.		
	Tx -	X6b	X6b	Tx -		
G.703	Rx -	X7a	X7a	Rx -	G.703 CHANNEL 2	Ŀ.
CHANNEL 2	Tx +	X7b	X7b	Tx +	OTANILE 2	COMM
8	Rx +	X8a	X8a	Rx +		8
SURGE	±	X8b	X8b	1	SURGE	
					831727A2.0	CDR

Figure 3–31: TYPICAL PIN INTERCONNECTION BETWEEN TWO G.703 INTERFACES

Pin nomenclature may differ from one manufacturer to another. Therefore, it is not uncommon to see pinouts numbered TxA, TxB, RxA and RxB. In such cases, it can be assumed that "A" is equivalent to "+" and "B" is equivalent to "-".


b) G.703 SELECTION SWITCH PROCEDURES

- Remove the G.703 module (7R or 7S). The ejector/inserter clips located at the top and at the bottom of each module, must be pulled simultaneously in order to release the module for removal. Before performing this action, **control power must be removed from the relay**. The original location of the module should be recorded to help ensure that the same or replacement module is inserted into the correct slot.
- 2. Remove the module cover screw.
- 3. Remove the top cover by sliding it towards the rear and then lift it upwards.
- 4. Set the timing selection switches (channel 1, channel 2) to the desired timing modes.
- 5. Replace the top cover and the cover screw.

3

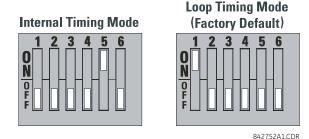
3.3 DIRECT INPUT AND OUTPUT COMMUNICATIONS

6. Re-insert the G.703 module. Take care to ensure that the **correct** module type is inserted into the **correct** slot position. The ejector/inserter clips located at the top and at the bottom of each module must be in the disengaged position as the module is smoothly inserted into the slot. Once the clips have cleared the raised edge of the chassis, engage the clips simultaneously. When the clips have locked into position, the module will be fully inserted.

Table 3-5:	G.703	TIMING	SELECTIONS

SWITCHES	FUNCTION
S1	$OFF \rightarrow octet timing disabled ON \rightarrow octet timing 8 kHz$
S5 and S6	S5 = OFF and S6 = OFF \rightarrow loop timing mode S5 = ON and S6 = OFF \rightarrow internal timing mode S5 = OFF and S6 = ON \rightarrow minimum remote loopback mode S5 = ON and S6 = ON \rightarrow dual loopback mode

c) G.703 OCTET TIMING


If octet timing is enabled (on), this 8 kHz signal will be asserted during the violation of bit 8 (LSB) necessary for connecting to higher order systems. When L90s are connected back to back, octet timing should be disabled (off).

d) G.703 TIMING MODES

There are two timing modes for the G.703 module: internal timing mode and loop timing mode (default).

- Internal Timing Mode: The system clock is generated internally. Therefore, the G.703 timing selection should be in the internal timing mode for back-to-back (UR-to-UR) connections. For back-to-back connections, set for octet timing (S1 = OFF) and timing mode to internal timing (S5 = ON and S6 = OFF).
- Loop Timing Mode: The system clock is derived from the received line signal. Therefore, the G.703 timing selection should be in loop timing mode for connections to higher order systems. For connection to a higher order system (URto-multiplexer, factory defaults), set to octet timing (S1 = ON) and set timing mode to loop timing (S5 = OFF and S6 = OFF).

The switch settings for the internal and loop timing modes are shown below:

e) G.703 TEST MODES

In *minimum remote loopback* mode, the multiplexer is enabled to return the data from the external interface without any processing to assist in diagnosing G.703 line-side problems irrespective of clock rate. Data enters from the G.703 inputs, passes through the data stabilization latch which also restores the proper signal polarity, passes through the multiplexer and then returns to the transmitter. The differential received data is processed and passed to the G.703 transmitter module after which point the data is discarded. The G.703 receiver module is fully functional and continues to process data and passes it to the differential Manchester transmitter module. Since timing is returned as it is received, the timing source is expected to be from the G.703 line side of the interface.

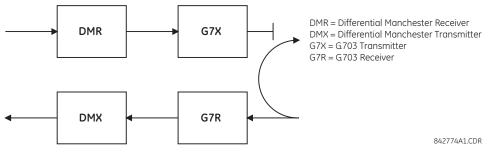
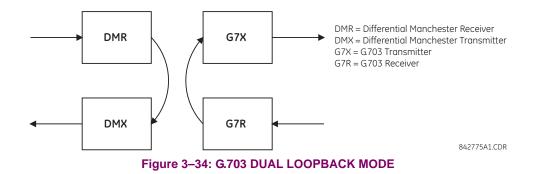



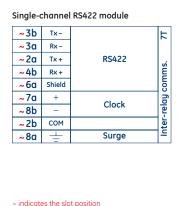
Figure 3–33: G.703 MINIMUM REMOTE LOOPBACK MODE

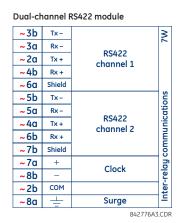
In *dual loopback mode*, the multiplexers are active and the functions of the circuit are divided into two with each receiver/ transmitter pair linked together to deconstruct and then reconstruct their respective signals. Differential Manchester data enters the Differential Manchester receiver module and then is returned to the differential Manchester transmitter module. Likewise, G.703 data enters the G.703 receiver module and is passed through to the G.703 transmitter module to be returned as G.703 data. Because of the complete split in the communications path and because, in each case, the clocks are extracted and reconstructed with the outgoing data, in this mode there must be two independent sources of timing. One source lies on the G.703 line side of the interface while the other lies on the differential Manchester side of the interface.

3

a) **DESCRIPTION**

There are three RS422 inter-relay communications modules available: single-channel RS422 (module 7T), dual-channel RS422 (module 7W), and dual-channel dual-clock RS422 (module 7V). The modules can be configured to run at 64 or 128 kbps. AWG 24 twisted shielded pair cable is recommended for external connections. These modules are protected by optically-isolated surge suppression devices.


3


The two-channel two-clock RS422 interface (module 7V) is intended for use with two independent channel banks with two independent clocks.

The shield pins (6a and 7b) are internally connected to the ground pin (8a). Proper shield termination is as follows:

- Site 1: Terminate shield to pins 6a or 7b or both.
- Site 2: Terminate shield to COM pin 2b.

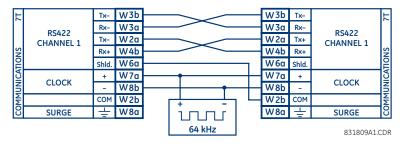
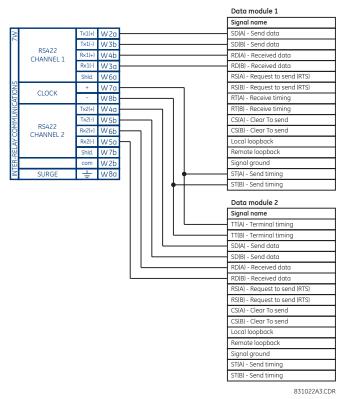

The clock terminating impedance should match the impedance of the line.

Figure 3–35: RS422 INTERFACE CONNECTIONS

The following figure shows the typical pin interconnection between two single-channel RS422 interfaces installed in slot W. All pin interconnections are to be maintained for a connection to a multiplexer.



b) TWO-CHANNEL APPLICATION VIA MULTIPLEXERS

The RS422 interface may be used for single channel or two channel applications over SONET/SDH or multiplexed systems. When used in single-channel applications, the RS422 interface links to higher order systems in a typical fashion observing transmit (Tx), receive (Rx), and send timing (ST) connections. However, when used in two-channel applications, certain criteria must be followed since there is one clock input for the two RS422 channels. The system will function correctly if the following connections are observed and your data module has a terminal timing feature. Terminal timing is a common feature to most synchronous data units that allows the module to accept timing from an external source. Using the terminal timing feature, two channel applications can be achieved if these connections are followed: The send timing outputs from the multiplexer (data module 1), will connect to the clock inputs of the UR–RS422 interface in the usual fashion. In addition, the send timing outputs of data module 1 will also be paralleled to the terminal timing inputs of data module 2.

By using this configuration, the timing for both data modules and both UR–RS422 channels will be derived from a single clock source. As a result, data sampling for both of the UR–RS422 channels will be synchronized via the send timing leads on data module 1 as shown below. If the terminal timing feature is not available or this type of connection is not desired, the G.703 interface is a viable option that does not impose timing restrictions.

Figure 3–37: TIMING CONFIGURATION FOR RS422 TWO-CHANNEL, 3-TERMINAL APPLICATION

Data module 1 provides timing to the L90 RS422 interface via the ST(A) and ST(B) outputs. Data module 1 also provides timing to data module 2 TT(A) and TT(B) inputs via the ST(A) and AT(B) outputs. The data module pin numbers have been omitted in the figure above since they may vary depending on the manufacturer.

c) TRANSMIT TIMING

The RS422 interface accepts one clock input for transmit timing. It is important that the rising edge of the 64 kHz transmit timing clock of the multiplexer interface is sampling the data in the center of the transmit data window. Therefore, it is important to confirm clock and data transitions to ensure proper system operation. For example, the following figure shows the positive edge of the Tx clock in the center of the Tx data bit.

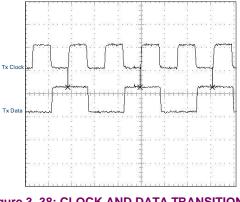
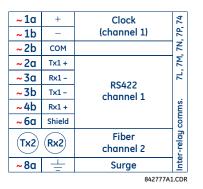


Figure 3–38: CLOCK AND DATA TRANSITIONS

d) RECEIVE TIMING

The RS422 interface utilizes NRZI-MARK modulation code and; therefore, does not rely on an Rx clock to recapture data. NRZI-MARK is an edge-type, invertible, self-clocking code.

To recover the Rx clock from the data-stream, an integrated DPLL (digital phase lock loop) circuit is utilized. The DPLL is driven by an internal clock, which is 16-times over-sampled, and uses this clock along with the data-stream to generate a data clock that can be used as the SCC (serial communication controller) receive clock.

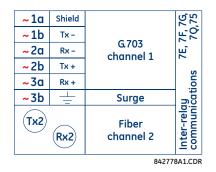

3.3.6 RS422 AND FIBER INTERFACE

The following figure shows the combined RS422 plus Fiber interface configuration at 64K baud. The 7L, 7M, 7N, 7P, and 74 modules are used in two-terminal with a redundant channel or three-terminal configurations where channel 1 is employed via the RS422 interface (possibly with a multiplexer) and channel 2 via direct fiber.

AWG 24 twisted shielded pair is recommended for external RS422 connections and the shield should be grounded only at one end. For the direct fiber channel, power budget issues should be addressed properly.

When using a LASER Interface, attenuators may be necessary to ensure that you do not exceed maximum optical input power to the receiver.

Figure 3–39: RS422 AND FIBER INTERFACE CONNECTION

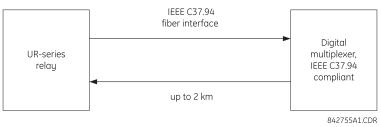

Connections shown above are for multiplexers configured as DCE (data communications equipment) units.

3.3.7 G.703 AND FIBER INTERFACE

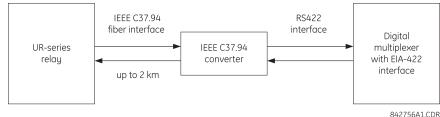
The figure below shows the combined G.703 plus fiber interface configuration at 64 kbps. The 7E, 7F, 7G, 7Q, and 75 modules are used in configurations where channel 1 is employed via the G.703 interface (possibly with a multiplexer) and channel 2 via direct fiber. AWG 24 twisted shielded pair is recommended for external G.703 connections connecting the shield to pin 1a at one end only. For the direct fiber channel, power budget issues should be addressed properly. See previous sections for additional details on the G.703 and fiber interfaces.

When using a laser Interface, attenuators may be necessary to ensure that you do *not* exceed the maximum optical input power to the receiver.

3

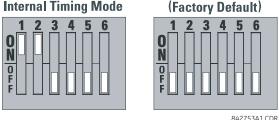

3.3.8 IEEE C37.94 INTERFACE

The UR-series IEEE C37.94 communication modules (modules types 2G, 2H, 76, and 77) are designed to interface with IEEE C37.94 compliant digital multiplexers or an IEEE C37.94 compliant interface converter for use with direct input and output applications for firmware revisions 3.30 and higher. The IEEE C37.94 standard defines a point-to-point optical link for synchronous data between a multiplexer and a teleprotection device. This data is typically 64 kbps, but the standard provides for speeds up to 64n kbps, where $n = 1, 2, \dots, 12$. The UR-series C37.94 communication modules are either 64 kbps (with n fixed at 1) for 128 kbps (with n fixed at 2). The frame is a valid International Telecommunications Union (ITU-T) recommended G.704 pattern from the standpoint of framing and data rate. The frame is 256 bits and is repeated at a frame rate of 8000 Hz, with a resultant bit rate of 2048 kbps.


The specifications for the module are as follows:.

- IEEE standard: C37.94 for 1 × 64 kbps optical fiber interface (for 2G and 2H modules) or C37.94 for 2 × 64 kbps optical fiber interface (for 76 and 77 modules).
- Fiber optic cable type: 50 mm or 62.5 mm core diameter optical fiber.
- Fiber optic mode: multi-mode. .
- . Fiber optic cable length: up to 2 km.
- Fiber optic connector: type ST.
- Wavelength: 830 ±40 nm.
- Connection: as per all fiber optic connections, a Tx to Rx connection is required.

The UR-series C37.94 communication module can be connected directly to any compliant digital multiplexer that supports the IEEE C37.94 standard as shown below.


The UR-series C37.94 communication module can be connected to the electrical interface (G.703, RS422, or X.21) of a non-compliant digital multiplexer via an optical-to-electrical interface converter that supports the IEEE C37.94 standard, as shown below.

The UR-series C37.94 communication module has six (6) switches that are used to set the clock configuration. The functions of these control switches is shown below.

Loop Timing Mode

Internal Timing Mode

For the internal timing mode, the system clock is generated internally. therefore, the timing switch selection should be internal timing for relay 1 and loop timed for relay 2. There must be only one timing source configured.

For the looped timing mode, the system clock is derived from the received line signal. Therefore, the timing selection should be in loop timing mode for connections to higher order systems.

The IEEE C37.94 communications module cover removal procedure is as follows:

1. Remove the IEEE C37.94 module (type 2G, 2H, 76, or 77 module):

The ejector/inserter clips located at the top and at the bottom of each module, must be pulled simultaneously in order to release the module for removal. Before performing this action, **control power must be removed from the relay**. The original location of the module should be recorded to help ensure that the same or replacement module is inserted into the correct slot.

- 2. Remove the module cover screw.
- 3. Remove the top cover by sliding it towards the rear and then lift it upwards.
- 4. Set the timing selection switches (channel 1, channel 2) to the desired timing modes (see description above).
- 5. Replace the top cover and the cover screw.
- 6. Re-insert the IEEE C37.94 module. Take care to ensure that the correct module type is inserted into the correct slot position. The ejector/inserter clips located at the top and at the bottom of each module must be in the disengaged position as the module is smoothly inserted into the slot. Once the clips have cleared the raised edge of the chassis, engage the clips simultaneously. When the clips have locked into position, the module will be fully inserted.

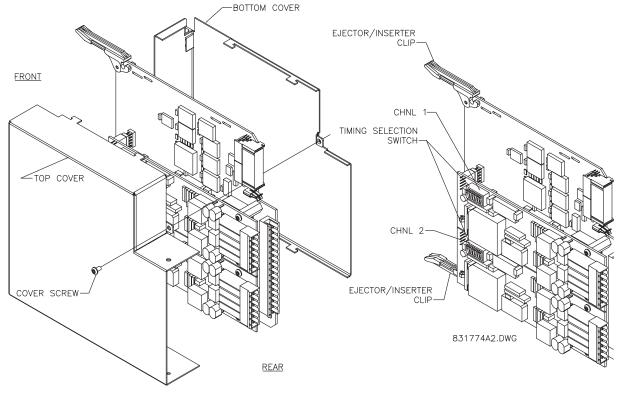
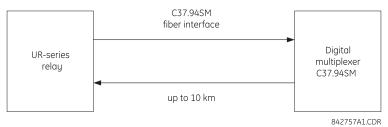
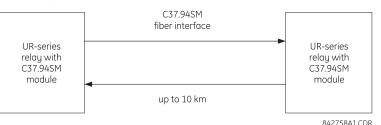


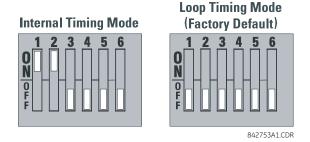
Figure 3-41: IEEE C37.94 TIMING SELECTION SWITCH SETTING


3.3.9 C37.94SM INTERFACE

The UR-series C37.94SM communication modules (2A and 2B) are designed to interface with modified IEEE C37.94 compliant digital multiplexers or IEEE C37.94 compliant interface converters that have been converted from 820 nm multi-mode fiber optics to 1300 nm ELED single-mode fiber optics. The IEEE C37.94 standard defines a point-to-point optical link for synchronous data between a multiplexer and a teleprotection device. This data is typically 64 kbps, but the standard provides for speeds up to 64*n* kbps, where n = 1, 2, ..., 12. The UR-series C37.94SM communication module is 64 kbps only with *n* fixed at 1. The frame is a valid International Telecommunications Union (ITU-T) recommended G.704 pattern from the standpoint of framing and data rate. The frame is 256 bits and is repeated at a frame rate of 8000 Hz, with a resultant bit rate of 2048 kbps.


The specifications for the module are as follows:

- Emulated IEEE standard: emulates C37.94 for 1 × 64 kbps optical fiber interface (modules set to n = 1 or 64 kbps).
- Fiber optic cable type: 9/125 µm core diameter optical fiber.
- Fiber optic mode: single-mode, ELED compatible with HP HFBR-1315T transmitter and HP HFBR-2316T receiver.
- Fiber optic cable length: up to 10 km.
- Fiber optic connector: type ST.
- Wavelength: 1300 ±40 nm.
- Connection: as per all fiber optic connections, a Tx to Rx connection is required.


The UR-series C37.94SM communication module can be connected *directly* to any compliant digital multiplexer that supports C37.94SM as shown below.

It can also can be connected directly to any other UR-series relay with a C37.94SM module as shown below.

The UR-series C37.94SM communication module has six (6) switches that are used to set the clock configuration. The functions of these control switches is shown below.

For the internal timing mode, the system clock is generated internally. Therefore, the timing switch selection should be internal timing for relay 1 and loop timed for relay 2. There must be only one timing source configured.

3.3 DIRECT INPUT AND OUTPUT COMMUNICATIONS

For the looped timing mode, the system clock is derived from the received line signal. Therefore, the timing selection should be in loop timing mode for connections to higher order systems.

The C37.94SM communications module cover removal procedure is as follows:

1. Remove the C37.94SM module (modules 2A or 2B):

The ejector/inserter clips located at the top and at the bottom of each module, must be pulled simultaneously in order to release the module for removal. Before performing this action, **control power must be removed from the relay**. The original location of the module should be recorded to help ensure that the same or replacement module is inserted into the correct slot.

- 2. Remove the module cover screw.
- 3. Remove the top cover by sliding it towards the rear and then lift it upwards.
- 4. Set the timing selection switches (channel 1, channel 2) to the desired timing modes (see description above).
- 5. Replace the top cover and the cover screw.
- 6. Re-insert the C37.94SM module. Take care to ensure that the correct module type is inserted into the correct slot position. The ejector/inserter clips located at the top and at the bottom of each module must be in the disengaged position as the module is smoothly inserted into the slot. Once the clips have cleared the raised edge of the chassis, engage the clips simultaneously. When the clips have locked into position, the module will be fully inserted.

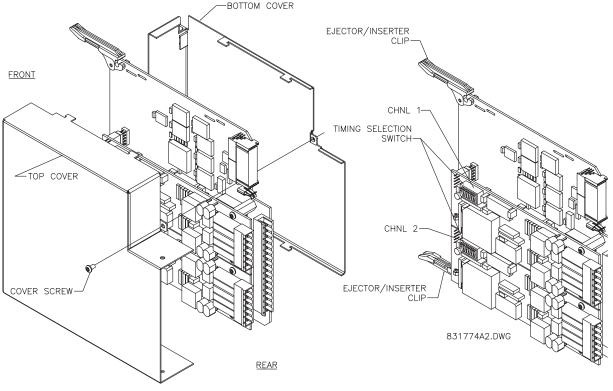


Figure 3–42: C37.94SM TIMING SELECTION SWITCH SETTING

The type 2S and 2T embedded managed switch modules are supported by UR-series relays containing type 9S CPU modules with revisions 5.5x and higher. The modules communicate to the L90 through an internal Ethernet port (referred to as the UR port or port 7) and provide an additional six external Ethernet ports: two 10/100Base-T ports and four multimode ST 100Base-FX ports.

The Ethernet switch module should be powered up before or at the same time as the L90. Otherwise, the switch module will not be detected on power up and the EQUIPMENT MISMATCH: ORDERCODE XXX self-test warning will be issued.

3.4.2 MANAGED ETHERNET SWITCH MODULE HARDWARE

The type 2S and 2T managed Ethernet switch modules provide two 10/100Base-T and four multimode ST 100Base-FX external Ethernet ports accessible through the rear of the module. In addition, a serial console port is accessible from the front of the module (requires the front panel faceplate to be open).

The pin assignment for the console port signals is shown in the following table.

PIN	SIGNAL	DESCRIPTION	
1	CD	Carrier detect (not used)	
2	RXD	RXD Receive data (input)	
3	TXD	Transmit data (output)	
4	N/A	Not used	
5	GND	Signal ground	
6 to 9	N/A	Not used	

Table 3-6: CONSOLE PORT PIN ASSIGNMENT

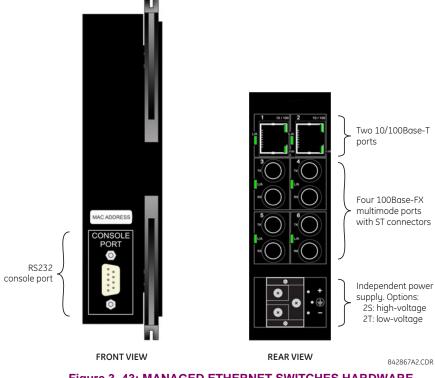


Figure 3–43: MANAGED ETHERNET SWITCHES HARDWARE

3.4.3 MANAGED SWITCH LED INDICATORS

The 10/100Base-T and 100Base-FX ports have LED indicators to indicate the port status.

The 10/100Base-T ports have three LEDs to indicate connection speed, duplex mode, and link activity. The 100Base-FX ports have one LED to indicate linkup and activity.

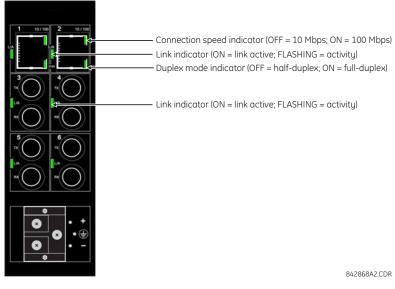


Figure 3–44: ETHERNET SWITCH LED INDICATORS

3.4.4 CONFIGURING THE MANAGED ETHERNET SWITCH MODULE

A suitable IP/gateway and subnet mask must be assigned to both the switch and the UR relay for correct operation. The Switch has been shipped with a default IP address of 192.168.1.2 and a subnet mask of 255.255.255.0. Consult your network administrator to determine if the default IP address, subnet mask or default gateway needs to be modified.

Do not connect to network while configuring the switch module.

a) CONFIGURING THE SWITCH MODULE IP SETTINGS

In our example configuration of both the Switch's IP address and subnet mask must be changed to 3.94.247.229 and 255.255.252.0 respectively. The IP address, subnet mask and default gateway can be configured using either EnerVista UR Setup software, the Switch's Secure Web Management (SWM), or through the console port using CLI.

1. Select the **Settings > Product Setup > Communications > Ethernet Switch > Configure IP** menu item to open the Ethernet switch configuration window.

С	onfigure Ethernet Switd	h IP A	d	dres	5				×
	MAC Address:	00 20	06) 2B C	DE F	4	_		
	IP Address:	3	•	94	÷	247	•	229	
	Subnet Mask:	255	•	255	•	252	•	0	
	Gateway IP Address:	3	•	94	•	244		1	
	Save				Car	ncel			

2. Select the Settings > Product Setup > Communications > Ethernet Switch > Ethernet Switch Settings File > Retreive Settings File item from the device settings tree.

The system will request the name and destination path for the settings file.

Device Files

Save in: 🗀 Data

ave Settings File

2

R

3. Cycle power to the L90 and switch module to activate the new settings.

b) SAVING THE ETHERNET SWITCH SETTINGS TO A SETTINGS FILE

Enter an appropriate folder and file name and click Save.
 All settings files will be saved as text files and the corresponding file extension automatically assigned.

c) UPLOADING ETHERNET SWITCH SETTINGS FILES TO THE MODULE

File name

Save as type

The following procedure describes how to upload local settings files to the Ethernet switch module. It is highly recommended that the current settings are saved to a settings file before uploading a new settings file.

Text Files (*.txt)

It is highly recommended to place the switch offline while transferring setting files to the switch. When transferring settings files from one switch to another, the user must reconfigure the IP address.

- 1. Select the desired device from site tree in the online window.
- 2. Select the Settings > Product Setup > Communications > Ethernet Switch > Ethernet Switch Settings File > Transfer Settings File item from the device settings tree.

? ×

+ 🗈 💣 🎟 🔻

▼

•

Save Cancel

•

2. Enter "3.94.247.229" in the IP Address field and "255.255.252.0" in the Subnet Mask field, then click OK.

The software will send the new settings to the L90 and prompt as follows when complete.

EnerVist	a UR Setup	×
i	Ethernet Switch was successfully configu	ired.
	OK	

The L90 allows the settings information for the Ethernet switch module to be saved locally as a settings file. This file con-

This feature allows the switch module settings to be saved locally before performing firmware upgrades. Saving settings files is also highly recommended before making any change to the module configuration or creating new setting files.

tains the advanced configuration details for the switch not contained within the standard L90 settings file.

The following procedure describes how to save local settings files for the Ethernet switch module.

3 HARDWARE

The system will request the name and destination path for the settings file.

Get Settings File					? ×
Look in:	C Device Files		•	⇐ 🗈 💣 🎟 ◄	
My Recent Documents Desktop My Documents My Computer My Network Places	₽ UR_001				
	File name:	UR_001		•	Open
	Files of type:	Text Files (*.txt)		•	Cancel

3

Navigate to the folder containing the Ethernet switch settings file, select the file, then click **Open**. 3.

The settings file will be transferred to the Ethernet switch and the settings uploaded to the device.

3.4.5 UPLOADING L90 SWITCH MODULE FIRMWARE

a) **DESCRIPTION**

This section describes the process for upgrading firmware on a UR-2S or UR-2T switch module.

There are several ways of updating firmware on a switch module:

- Using the EnerVista UR Setup software.
- Serially using the L90 switch module console port.
- Using FTP or TFTP through the L90 switch module console port.

It is highly recommended to use the EnerVista UR Setup software to upgrade firmware on a L90 switch module.

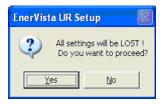
Firmware upgrades using the serial port, TFTP, and FTP are described in detail in the switch module manual. NOTE

b) SELECTING THE PROPER SWITCH FIRMWARE VERSION

The latest switch module firmware is available as a download from the GE Multilin web site. Use the following procedure to determine the version of firmware currently installed on your switch

Log into the switch using the EnerVista web interface. 1.

B


The default switch login ID is "manager" and the default password is "manager".

Configuration Device Ports Logical View	
EnerVista MultiLink Software, combined with the MultiLink I	
Ethernet platform. A full range of industry-standard softwar versatile MultiLink products to perform effectively in a wide	ncy in a managed re functions enables the
Boot Mode: manual Gateway:	3.94.244.1
▶ IP Address: 3.94.247.179 ► Mac Addres	s: 00:a0:c9:36:52:70
Subnet Mask: 255,255,252,0 Uptime:	0 Days 00:08:28
ion: 2.1beta	

The firmware version installed on the switch will appear on the lower left corner of the screen.

2. Using the EnerVista UR Setup program, select the Settings > Product Setup > Communications > Ethernet Switch > Firmware Upload menu item.

The following popup screen will appear warning that the settings will be lost when the firmware is upgraded.

It is highly recommended that you save the switch settings before upgrading the firmware.

 After saving the settings file, proceed with the firmware upload by selecting Yes to the above warning. Another window will open, asking you to point to the location of the firmware file to be uploaded.

3.4 MANAGED ETHERNET SWITCH MODULES

4. Select the firmware file to be loaded on to the Switch, and select the **Open** option.

The following window will pop up, indicating that the firmware file transfer is in progress.

TFTP File Transfer In Progress	

If the firmware load was successful, the following window will appear:

Ener¥ista	UR Setup	×
⚠	Firmware uploa	ided
	OK	

The switch will automatically reboot after a successful firmware file transfer.

NOTE

5. Once the firmware has been successfully uploaded to the switch module, load the settings file using the procedure described earlier.

3.4.6 ETHERNET SWITCH SELF-TEST ERRORS

The following table provides details about Ethernet module self-test errors.

Be sure to enable the ETHERNET SWITCH FAIL setting in the PRODUCT SETUP $\Rightarrow \oplus$ USER-PROGRAMMABLE SELF-TESTS menu and the relevant PORT 1 EVENTS through PORT 6 EVENTS settings under the PRODUCT SETUP $\Rightarrow \oplus$ COMMUNICATIONS $\Rightarrow \oplus$ ETH-ERNET SWITCH menu.

Table 3–7: ETHERNET SWITCH SELF-TEST ERRORS

ACTIVATION SETTING (SET AS ENABLED)	EVENT NAME	EVENT CAUSE	POSSIBLE CAUSES
ETHERNET SWITCH FAIL	ETHERNET MODULE OFFLINE	No response has been received from the Ethernet module after five successive polling attempts.	 Loss of switch power. IP/gateway/subnet. Incompatibility between the CPU and the switch module. UR port (port 7) configured incorrectly or blocked Switch IP address assigned to another device in the same network.
PORT 1 EVENTS to PORT 6 EVENTS	ETHERNET PORT 1 OFFLINE to ETHERNET PORT 6 OFFLINE	An active Ethernet port has returned a FAILED status.	 Ethernet connection broken. An inactive port's events have been enabled.
No setting required; the L90 will read the state of a general purpose input/output port on the main CPU upon power-up and create the error if there is a conflict between the input/ output state and the order code.	EQUIPMENT MISMATCH: Card XXX Missing	The L90 has not detected the presence of the Ethernet switch via the bus board.	The L90 failed to see the switch module on power-up, because switch won't power up or is still powering up. To clear the fault, cycle power to the L90.

4.1.1 INTRODUCTION

The EnerVista UR Setup software provides a graphical user interface (GUI) as one of two human interfaces to a UR device. The alternate human interface is implemented via the device's faceplate keypad and display (refer to the *Faceplate interface* section in this chapter).

The EnerVista UR Setup software provides a single facility to configure, monitor, maintain, and trouble-shoot the operation of relay functions, connected over local or wide area communication networks. It can be used while disconnected (off-line) or connected (on-line) to a UR device. In off-line mode, settings files can be created for eventual downloading to the device. In on-line mode, you can communicate with the device in real-time.

The EnerVista UR Setup software, provided with every L90 relay, can be run from any computer supporting Microsoft Windows[®] 95, 98, NT, 2000, ME, and XP. This chapter provides a summary of the basic EnerVista UR Setup software interface features. The EnerVista UR Setup Help File provides details for getting started and using the EnerVista UR Setup software interface.

4.1.2 CREATING A SITE LIST

To start using the EnerVista UR Setup software, a site definition and device definition must first be created. See the EnerVista UR Setup Help File or refer to the *Connecting EnerVista UR Setup with the L90* section in Chapter 1 for details.

4.1.3 ENERVISTA UR SETUP OVERVIEW

a) ENGAGING A DEVICE

The EnerVista UR Setup software may be used in on-line mode (relay connected) to directly communicate with the L90 relay. Communicating relays are organized and grouped by communication interfaces and into sites. Sites may contain any number of relays selected from the UR-series of relays.

b) USING SETTINGS FILES

The EnerVista UR Setup software interface supports three ways of handling changes to relay settings:

- In off-line mode (relay disconnected) to create or edit relay settings files for later download to communicating relays.
- While connected to a communicating relay to directly modify any relay settings via relay data view windows, and then save the settings to the relay.
- You can create/edit settings files and then write them to the relay while the interface is connected to the relay.

Settings files are organized on the basis of file names assigned by the user. A settings file contains data pertaining to the following types of relay settings:

- Device definition
- Product setup
- System setup
- FlexLogic[™]
- Grouped elements
- Control elements
- Inputs/outputs
- Testing

Factory default values are supplied and can be restored after any changes.

c) CREATING AND EDITING FLEXLOGIC™

You can create or edit a FlexLogic[™] equation in order to customize the relay. You can subsequently view the automatically generated logic diagram.

d) VIEWING ACTUAL VALUES

You can view real-time relay data such as input/output status and measured parameters.

e) VIEWING TRIGGERED EVENTS

While the interface is in either on-line or off-line mode, you can view and analyze data generated by triggered specified parameters, via one of the following:

- Event Recorder facility: The event recorder captures contextual data associated with the last 1024 events, listed in chronological order from most recent to oldest.
- **Oscillography facility:** The oscillography waveform traces and digital states are used to provide a visual display of power system and relay operation data captured during specific triggered events.

f) FILE SUPPORT

- **Execution:** Any EnerVista UR Setup file which is double clicked or opened will launch the application, or provide focus to the already opened application. If the file was a settings file (has a URS extension) which had been removed from the Settings List tree menu, it will be added back to the Settings List tree menu.
- **Drag and Drop:** The Site List and Settings List control bar windows are each mutually a drag source and a drop target for device-order-code-compatible files or individual menu items. Also, the Settings List control bar window and any Windows Explorer directory folder are each mutually a file drag source and drop target.

New files which are dropped into the Settings List window are added to the tree which is automatically sorted alphabetically with respect to settings file names. Files or individual menu items which are dropped in the selected device menu in the Site List window will automatically be sent to the on-line communicating device.

g) FIRMWARE UPGRADES

The firmware of a L90 device can be upgraded, locally or remotely, via the EnerVista UR Setup software. The corresponding instructions are provided by the EnerVista UR Setup Help file under the topic "Upgrading Firmware".

Modbus addresses assigned to firmware modules, features, settings, and corresponding data items (i.e. default values, minimum/maximum values, data type, and item size) may change slightly from version to version of firmware. The addresses are rearranged when new features are added or existing features are enhanced or modified. The **EEPROM DATA ERROR** message displayed after upgrading/downgrading the firmware is a resettable, self-test message intended to inform users that the Modbus addresses have changed with the upgraded firmware. This message does not signal any problems when appearing after firmware upgrades.

4 HUMAN INTERFACES

4.1 ENERVISTA UR SETUP SOFTWARE INTERFACE

4.1.4 ENERVISTA UR SETUP MAIN WINDOW

The EnerVista UR Setup software main window supports the following primary display components:

- 1. Title bar which shows the pathname of the active data view.
- 2. Main window menu bar.
- 3. Main window tool bar.
- 4. Site list control bar window.
- 5. Settings list control bar window.
- 6. Device data view windows, with common tool bar.
- 7. Settings file data view windows, with common tool bar.
- 8. Workspace area with data view tabs.
- 9. Status bar.
- 10. Quick action hot links.

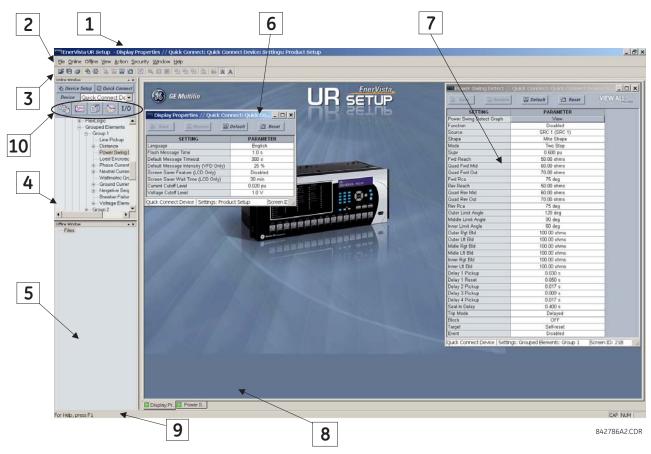


Figure 4–1: ENERVISTA UR SETUP SOFTWARE MAIN WINDOW

Setting file templates simplify the configuration and commissioning of multiple relays that protect similar assets. An example of this is a substation that has ten similar feeders protected by ten UR-series F60 relays.

In these situations, typically 90% or greater of the settings are identical between all devices. The templates feature allows engineers to configure and test these common settings, then lock them so they are not available to users. For example, these locked down settings can be hidden from view for field engineers, allowing them to quickly identify and concentrate on the specific settings.

The remaining settings (typically 10% or less) can be specified as editable and be made available to field engineers installing the devices. These will be settings such as protection element pickup values and CT and VT ratios.

The settings template mode allows the user to define which settings will be visible in EnerVista UR Setup. Settings templates can be applied to both settings files (settings file templates) and online devices (online settings templates). The functionality is identical for both purposes.

Δ

The settings template feature requires that *both* the EnerVista UR Setup software and the L90 firmware are at versions 5.40 or higher.

a) ENABLING THE SETTINGS TEMPLATE

The settings file template feature is disabled by default. The following procedure describes how to enable the settings template for UR-series settings files.

- 1. Select a settings file from the offline window of the EnerVista UR Setup main screen.
- 2. Right-click on the selected device or settings file and select the **Template Mode > Create Template** option.

The settings file template is now enabled and the file tree displayed in light blue. The settings file is now in template editing mode.

Alternatively, the settings template can also be applied to online settings. The following procedure describes this process.

- 1. Select an installed device from the online window of the EnerVista UR Setup main screen.
- 2. Right-click on the selected device and select the Template Mode > Create Template option.

Enter Template Password	×
Encrypted Password:	yizy suf
New Password:	
Re-enter New Password:	
ОК	Cancel

The software will prompt for a template password. This password is required to use the template feature and must be at least four characters in length.

3. Enter and re-enter the new password, then click **OK** to continue.

The online settings template is now enabled. The device is now in template editing mode.

b) EDITING THE SETTINGS TEMPLATE

The settings template editing feature allows the user to specify which settings are available for viewing and modification in EnerVista UR Setup. By default, all settings except the FlexLogic[™] equation editor settings are locked.

- 1. Select an installed device or a settings file from the tree menu on the left of the EnerVista UR Setup main screen.
- 2. Select the Template Mode > Edit Template option to place the device in template editing mode.
- 3. Enter the template password then click OK.
- 4. Open the relevant settings windows that contain settings to be specified as viewable.

By default, all settings are specified as locked and displayed against a grey background. The icon on the upper right of the settings window will also indicate that EnerVista UR Setup is in **EDIT mode**. The following example shows the phase time overcurrent settings window in edit mode.

Save Restore	Default EDIT mode
PARAMETER	PHASE TOC1
Function	Enabled
Signal Source	SRC 1 (SRC 1)
Input	Phasor
Pickup	2.300 pu
Curve	IEEE Ext Inv
TD Multiplier	1.00
Reset	Instantaneous
Voltage Restraint	Disabled
Block A	OFF
Block B	OFF
Block C	OFF
Target	Self-reset
Events	Enabled
•	

Figure 4–2: SETTINGS TEMPLATE VIEW, ALL SETTINGS SPECIFIED AS LOCKED

5. Specify which settings to make viewable by clicking on them.

The setting available to view will be displayed against a yellow background as shown below.

Phase TOC // F60 Feeder.urs : C:\Documents and Setting Default Save Bestore Default EDIT mod			
PARAMETER	PHASE TOC1		
Function	Enabled		
Signal Source	SRC 1 (SRC 1)		
Input	Phasor		
Pickup	2.300 pu		
Curve	IEEE Ext Inv		
TD Multiplier	1.00		
Reset	Instantaneous		
Voltage Restraint	Disabled		
Block A	OFF		
Block B	OFF		
Block C	OFF		
Target	Self-reset		
Events	Enabled		

Figure 4–3: SETTINGS TEMPLATE VIEW, TWO SETTINGS SPECIFIED AS EDITABLE

- 6. Click on **Save** to save changes to the settings template.
- 7. Proceed through the settings tree to specify all viewable settings.

c) ADDING PASSWORD PROTECTION TO A TEMPLATE

It is highly recommended that templates be saved with password protection to maximize security.

The following procedure describes how to add password protection to a settings file template.

- 1. Select a settings file from the offline window on the left of the EnerVista UR Setup main screen.
- 2. Selecting the **Template Mode > Password Protect Template** option.

The software will prompt for a template password. This password must be at least four characters in length.

Enter Template Password	×
Encrypted Password:	yizy suf
New Password:	
Re-enter New Password:	
ОК	Cancel

3. Enter and re-enter the new password, then click OK to continue.

The settings file template is now secured with password protection.

Δ

When templates are created for online settings, the password is added during the initial template creation step. It does not need to be added after the template is created.

d) VIEWING THE SETTINGS TEMPLATE

Once all necessary settings are specified for viewing, users are able to view the settings template on the online device or settings file. There are two ways to specify the settings view with the settings template feature:

- Display only those settings available for editing.
- Display all settings, with settings not available for editing greyed-out.

Use the following procedure to only display settings available for editing.

- 1. Select an installed device or a settings file from the tree menu on the left of the EnerVista UR Setup main screen.
- 2. Apply the template by selecting the **Template Mode > View In Template Mode** option.
- 3. Enter the template password then click **OK** to apply the template.

Once the template has been applied, users will only be able to view and edit the settings specified by the template. The effect of applying the template to the phase time overcurrent settings is shown below.

🔤 Phase TOC // F60 Feeder.urs : C:\Documents and Setting 💶			
📑 Save 📑 Restore	Default Reset VIEW ALL		
PARAMETER	PHASE TOC1		
Function	Enabled		
Signal Source	SRC 1 (SRC 1)		
Input	Phasor		
Pickup	2.300 pu		
Curve	IEEE Ext Inv		
TD Multiplier	1.00		
Reset	Instantaneous		
Voltage Restraint	Disabled		
Block A	OFF		
Block B	OFF		
Block C	OFF		
Target	Self-reset		
Events	Enabled		
	Þ		
=60 Feeder.urs Grouped Elements: 0	Group 1: Phase Curren Screen ID: 215		

Phase time overcurrent settings window without template applied.

Phase TOC // F60 Feeder.urs : C:\Documents and Setting	
PARAMETER	PHASE TOC1
Pickup	2.300 pu
Curve	IEEE Ext Inv
4	
F60 Feeder.urs Grouped Elements: 0	Group 1: Phase Curren Screen ID: 215

Phase time overcurrent window with template applied via the **Template Mode > View In Template Mode** command. The template specifies that only the Pickup and Curve settings be available.

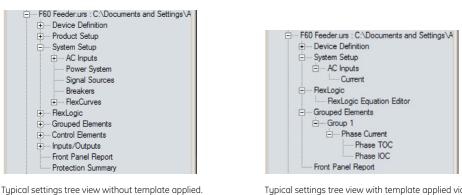

842858A1.CDR

Figure 4–4: APPLYING TEMPLATES VIA THE VIEW IN TEMPLATE MODE COMMAND

4 HUMAN INTERFACES

4.2 EXTENDED ENERVISTA UR SETUP FEATURES

Viewing the settings in template mode also modifies the settings tree, showing only the settings categories that contain editable settings. The effect of applying the template to a typical settings tree view is shown below.

Typical settings tree view with template applied via the **Template Mode > View In Template Mode** command.

842860A1.CDR

Figure 4–5: APPLYING TEMPLATES VIA THE VIEW IN TEMPLATE MODE SETTINGS COMMAND

Use the following procedure to display settings available for editing and settings locked by the template.

- 1. Select an installed device or a settings file from the tree menu on the left of the EnerVista UR Setup main screen.
- 2. Apply the template by selecting the **Template Mode > View All Settings** option.
- 3. Enter the template password then click **OK** to apply the template.

Once the template has been applied, users will only be able to edit the settings specified by the template, but all settings will be shown. The effect of applying the template to the phase time overcurrent settings is shown below.

Save Bestore	: C:\Documents and Setting X Default P: Reset VIEW ALL		
PARAMETER	PHASE TOC1		
Function	Enabled		
Signal Source	SRC 1 (SRC 1)		
Input	Phasor		
Pickup	2.300 pu		
Curve	IEEE Ext Inv		
TD Multiplier	1.00		
Reset	Instantaneous		
Voltage Restraint	Disabled		
Block A	OFF		
Block B	OFF		
Block C	OFF		
Target	Self-reset		
Events	Enabled		
•			

Phase time overcurrent settings window without template applied.

🖙 Phase TOC // F60 Feeder.urs : C:\Documents and Setting 💶 🗙						
🖹 Save 🔛 Restore	Default 💾 Reset VIEW ALL					
PARAMETER	PHASE TOC1					
Function	Enabled					
Signal Source	SRC 1 (SRC 1)					
Input	Phasor					
Pickup	2.300 pu					
Curve	IEEE Ext Inv					
TD Multiplier	1.00					
Reset	Instantaneous					
Voltage Restraint	Disabled					
Block A	OFF					
Block B	OFF					
Block C	OFF					
Target	Self-reset					
Events	Enabled					
•	Þ					
F60 Feeder.urs Grouped Elements: Group 1: Phase Currer Screen ID: 215						

Phase time overcurrent window with template applied via the **Template Mode > View All Settings** command. The template specifies that only the Pickup and Curve settings be available.

Figure 4–6: APPLYING TEMPLATES VIA THE VIEW ALL SETTINGS COMMAND

e) REMOVING THE SETTINGS TEMPLATE

It may be necessary at some point to remove a settings template. Once a template is removed, it cannot be reapplied and it will be necessary to define a new settings template.

- 1. Select an installed device or settings file from the tree menu on the left of the EnerVista UR Setup main screen.
- 2. Select the Template Mode > Remove Settings Template option.
- 3. Enter the template password and click **OK** to continue.

4.2 EXTENDED ENERVISTA UR SETUP FEATURES

4. Verify one more time that you wish to remove the template by clicking Yes.

Attenti	ion
2	The operation will remove the template information from the device. The operation is not reversible. Do you want to continue?
	Yes No

The EnerVista software will remove all template information and all settings will be available.

4.2.2 SECURING AND LOCKING FLEXLOGIC[™] EQUATIONS

The UR allows users to secure parts or all of a FlexLogic[™] equation, preventing unauthorized viewing or modification of critical FlexLogic[™] applications. This is accomplished using the settings template feature to lock individual entries within FlexLogic[™] equations.

Secured FlexLogic[™] equations will remain secure when files are sent to and retrieved from any UR-series device.

a) LOCKING FLEXLOGIC[™] EQUATION ENTRIES

The following procedure describes how to lock individual entries of a FlexLogic[™] equation.

- 1. Right-click the settings file or online device and select the **Template Mode > Create Template** item to enable the settings template feature.
- 2. Select the FlexLogic > FlexLogic Equation Editor settings menu item.

By default, all FlexLogic[™] entries are specified as viewable and displayed against a yellow background. The icon on the upper right of the window will also indicate that EnerVista UR Setup is in **EDIT mode**.

3. Specify which entries to lock by clicking on them.

The locked entries will be displayed against a grey background as shown in the example below.

Bestore Defauit					
FLEXLOGIC ENTRY	ТҮРЕ	SYNTAX			
View Graphic	View	View			
FlexLogic Entry 1	Virtual Inputs On	Close HMI On (VI1)			
FlexLogic Entry 2	Virtual Inputs On	Close SCADA On (VI2)			
FlexLogic Entry 3	Contact Inputs On	Manual Close On(H5A)			
FlexLogic Entry 4	OR	3 Input			
FlexLogic Entry 5	Assign Virtual Output	= Close 52-1 (VO1)			
FlexLogic Entry 6	Contact Inputs On	52-1 Closed On(H5C)			
FlexLogic Entry 7	Contact Inputs On	52-1 Rack In On(H6A)			
FlexLogic Entry 8	AND	2 Input			
FlexLogic Entry 9	Protection Element	PHASE IOC1 OP			
FlexLogic Entry 10	Protection Element	PHASE TOC1 OP			
FlexLogic Entry 11	Protection Element	GROUND IOC1 OP			
FlexLogic Entry 12	Protection Element	NEUTRAL IOC1 OP			
FlexLogic Entry 13	OR	4 Input			
FlexLogic Entry 14	AND	2 Input			
FlexLogic Entry 15	Assign Virtual Output	= Trip 52-1 (VO2)			
FlexLogic Entry 16	Protection Element	ANY MAJOR ERROR			
FlexLogic Entry 17	POSITIVE ONE SHOT	1 Input			
FlexLogic Entry 18	Protection Element	ANY MAJOR ERROR			

Figure 4–7: LOCKING FLEXLOGIC[™] ENTRIES IN EDIT MODE

- 4. Click on **Save** to save and apply changes to the settings template.
- 5. Select the **Template Mode > View In Template Mode** option to view the template.
- 6. Apply a password to the template then click **OK** to secure the FlexLogic[™] equation.

4-8

4.2 EXTENDED ENERVISTA UR SETUP FEATURES

4 HUMAN INTERFACES

Once the template has been applied, users will only be able to view and edit the FlexLogic[™] entries not locked by the template. The effect of applying the template to the FlexLogic[™] entries in the above procedure is shown below.

Save Restore	Default Reset VIEW AL	node	
FLEXLOGIC ENTRY	TYPE	SYNTAX	
View Graphic	View	View -	
FlexLogic Entry 1	Virtual Inputs On	Close HMI On (VI1)	
FlexLogic Entry 2	Virtual Inputs On	Close SCADA On (VI2)	
FlexLogic Entry 3	Contact Inputs On	Manual Close On(H5A)	
FlexLogic Entry 4	OR	3 Input	
FlexLogic Entry 5	Assign Virtual Output	= Close 52-1 (VO1)	
FlexLogic Entry 6	Contact Inputs On	52-1 Closed On(H5C)	
FlexLogic Entry 7	Contact Inputs On	52-1 Rack In On(H6A)	
FlexLogic Entry 8	AND	2 Input	
FlexLogic Entry 9	Protection Element	PHASE IOC1 OP	
FlexLogic Entry 10	Protection Element	PHASE TOC1 OP	
FlexLogic Entry 11	Protection Element	GROUND IOC1 OP	
FlexLogic Entry 12	try 12 Protection Element NEUTRAL IC		
FlexLogic Entry 13	OR 4 Input		
FlexLogic Entry 14	AND	2 Input	
FlexLogic Entry 15	Assign Virtual Output	= Trip 52-1 (VO2)	
FlexLogic Entry 16	Protection Element	ANY MAJOR ERROR	
FlexLogic Entry 17	POSITIVE ONE SHOT	1 Input	

FLEXLOGIC ENTRY	TYPE	SYNTAX	
View Graphic	View	View	
FlexLogic Entry 1	Virtual Inputs On	Close HMI On (VI1)	
FlexLogic Entry 2	Virtual Inputs On	Close SCADA On (VI2)	
FlexLogic Entry 3	Contact Inputs On	Manual Close On(H5a)	
FlexLogic Entry 4	OR	3 Input	
FlexLogic Entry 5	Assign Virtual Output	= Close 52-1 (V01)	
FlexLogic Entry 6	Locked	Locked	
FlexLogic Entry 7	Locked	Locked	
FlexLogic Entry 8	Locked	Locked	
FlexLogic Entry 9	Locked	Locked	
FlexLogic Entry 10	Locked	Locked	
FlexLogic Entry 11	Locked	Locked	
FlexLogic Entry 12	Locked	Locked	
FlexLogic Entry 13	Locked	Locked	
FlexLogic Entry 14	Locked	Locked	
FlexLogic Entry 15	Locked	Locked	
FlexLogic Entry 16	Protection Element	ANY MAJOR ERROR	
FlexLogic Entry 17	POSITIVE ONE SHOT	1 Input	
FlexLogic Entry 18	Protection Element	ANY MAJOR ERROR	

Typical FlexLogic™ entries without template applied.

Typical FlexLogic[™] entries locked with template via the **Template Mode > View In Template Mode** command.

842861A1.CDR

4

Figure 4–8: LOCKING FLEXLOGIC ENTRIES THROUGH SETTING TEMPLATES

The FlexLogic[™] entries are also shown as locked in the graphical view (as shown below) and on the front panel display.

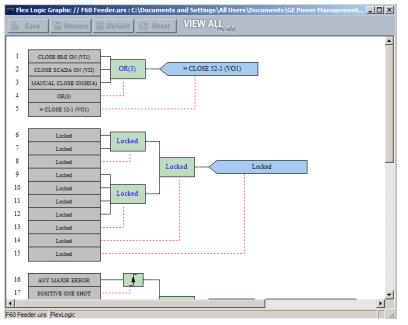


Figure 4–9: SECURED FLEXLOGIC[™] IN GRAPHICAL VIEW

b) LOCKING FLEXLOGIC[™] EQUATIONS TO A SERIAL NUMBER

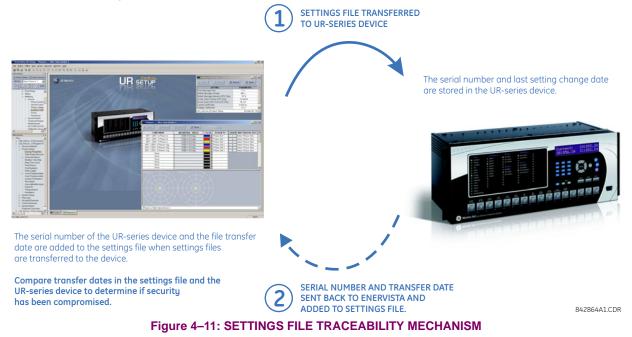
A settings file and associated FlexLogic[™] equations can also be locked to a specific UR serial number. Once the desired FlexLogic[™] entries in a settings file have been secured, use the following procedure to lock the settings file to a specific serial number.

- 1. Select the settings file in the offline window.
- 2. Right-click on the file and select the Edit Settings File Properties item.

The following window is displayed.

Edit Settings I	File Properties
File Name:	L60_542.urs : C:\Program Files\GE Power Manage
Order Code:	L60-H05-HCH-F8P-H6B-M8F-P6A-U7S
Version:	5.4x
Description:	
Serial # Lock:	
	OK Cancel

Figure 4–10: TYPICAL SETTINGS FILE PROPERTIES WINDOW


3. Enter the serial number of the L90 device to lock to the settings file in the **Serial # Lock** field.

The settings file and corresponding secure FlexLogic[™] equations are now locked to the L90 device specified by the serial number.

4.2.3 SETTINGS FILE TRACEABILITY

A traceability feature for settings files allows the user to quickly determine if the settings in a L90 device have been changed since the time of installation from a settings file. When a settings file is transferred to a L90 device, the date, time, and serial number of the L90 are sent back to EnerVista UR Setup and added to the settings file on the local PC. This information can be compared with the L90 actual values at any later date to determine if security has been compromised.

The traceability information is only included in the settings file if a complete settings file is either transferred to the L90 device or obtained from the L90 device. Any partial settings transfers by way of drag and drop do not add the traceability information to the settings file.

With respect to the above diagram, the traceability feature is used as follows.

Δ

4 HUMAN INTERFACES

- 1. The transfer date of a setting file written to a L90 is logged in the relay and can be viewed via EnerVista UR Setup or the front panel display. Likewise, the transfer date of a setting file saved to a local PC is logged in EnerVista UR Setup.
- 2. Comparing the dates stored in the relay and on the settings file at any time in the future will indicate if any changes have been made to the relay configuration since the settings file was saved.

a) SETTINGS FILE TRACEABILITY INFORMATION

The serial number and file transfer date are saved in the settings files when they sent to an L90 device.

The L90 serial number and file transfer date are included in the settings file device definition within the EnerVista UR Setup offline window as shown in the example below.

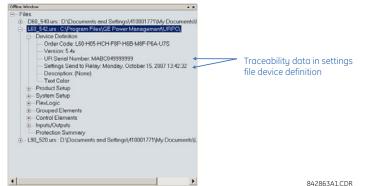


Figure 4–12: DEVICE DEFINITION SHOWING TRACEABILITY DATA

This information is also available in printed settings file reports as shown in the example below.

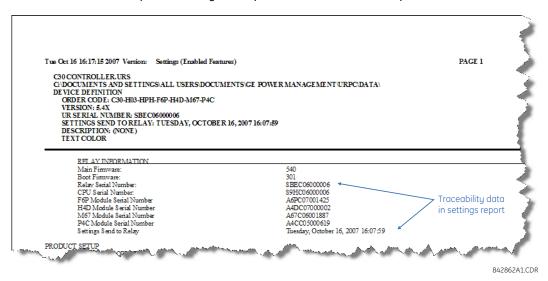


Figure 4–13: SETTINGS FILE REPORT SHOWING TRACEABILITY DATA

4.2 EXTENDED ENERVISTA UR SETUP FEATURES

b) ONLINE DEVICE TRACEABILITY INFORMATION

The L90 serial number and file transfer date are available for an online device through the actual values. Select the **Actual Values > Product Info > Model Information** menu item within the EnerVista UR Setup online window as shown in the example below.

Figure 4–14: TRACEABILITY DATA IN ACTUAL VALUES WINDOW

This infomormation if also available from the front panel display through the following actual values:

ACTUAL VALUES \Rightarrow \$ PRODUCT INFO \Rightarrow MODEL INFORMATION \Rightarrow \$ SERIAL NUMBER ACTUAL VALUES \Rightarrow \$ PRODUCT INFO \Rightarrow MODEL INFORMATION \Rightarrow \$ LAST SETTING CHANGE

c) ADDITIONAL TRACEABILITY RULES

The following additional rules apply for the traceability feature

- If the user changes any settings within the settings file in the offline window, then the traceability information is removed from the settings file.
- If the user creates a new settings file, then no traceability information is included in the settings file.
- If the user converts an existing settings file to another revision, then any existing traceability information is removed from the settings file.
- If the user duplicates an existing settings file, then any traceability information is transferred to the duplicate settings file.

a) ENHANCED FACEPLATE

The front panel interface is one of two supported interfaces, the other interface being EnerVista UR Setup software. The front panel interface consists of LED panels, an RS232 port, keypad, LCD display, control pushbuttons, and optional user-programmable pushbuttons.

The faceplate is hinged to allow easy access to the removable modules.

b) STANDARD FACEPLATE

The front panel interface is one of two supported interfaces, the other interface being EnerVista UR Setup software. The front panel interface consists of LED panels, an RS232 port, keypad, LCD display, control pushbuttons, and optional user-programmable pushbuttons.

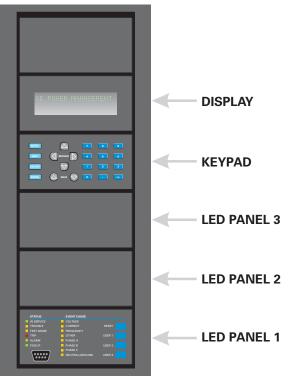

The faceplate is hinged to allow easy access to the removable modules. There is also a removable dust cover that fits over the faceplate which must be removed in order to access the keypad panel. The following figure shows the horizontal arrangement of the faceplate panels.

Figure 4–16: UR-SERIES STANDARD HORIZONTAL FACEPLATE PANELS

4.3 FACEPLATE INTERFACE

The following figure shows the vertical arrangement of the faceplate panels for relays ordered with the vertical option.

Figure 4–17: UR-SERIES STANDARD VERTICAL FACEPLATE PANELS

4.3.2 LED INDICATORS

a) ENHANCED FACEPLATE

The enhanced front panel display provides five columns of LED indicators. The first column contains 14 status and event cause LEDs, and the next four columns contain the 48 user-programmable LEDs.

The RESET key is used to reset any latched LED indicator or target message, once the condition has been cleared (these latched conditions can also be reset via the **SETTINGS** \Rightarrow **INPUT/OUTPUTS** \Rightarrow **RESETTING** menu). The RS232 port is intended for connection to a portable PC.

The USER keys are used by the breaker control feature.

	SETTINGS IN USE	BREAKER 1	SYNCHROCHECK	
IN SERVICE	GROUP 1	BR 1 OPEN	NO1 IN-SYNCH	
TROUBLE	GROUP 2	BR 1 CLOSED	NO2 IN-SYNCH	
TEST MODE	GROUP 3	BR 1 TROUBLE		
TRIP	GROUP 4			
ALARM	GROUP 5	BREAKER 2	RCL ENABLED	
РІСКИР	GROUP 6	BR 2 OPEN	RCL DISABLED	
VOLTAGE	GROUP 7	BR 2 CLOSED	RCL IN PROGRESS	
CURRENT	GROUP 8	BR 2 TROUBLE	RCL LOCKED OUT	
FREQUENCY				
OTHER				
PHASE A				
PHASE 8				
PHASE C	the state of the second			
NEUTRAL / GROUND				

842811A1.CDR

Figure 4–18: TYPICAL LED INDICATOR PANEL FOR ENHANCED FACEPLATE

The status indicators in the first column are described below.

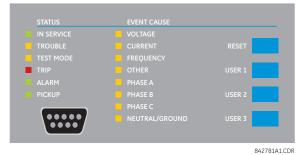
 IN SERVICE: This LED indicates that control power is applied, all monitored inputs, outputs, and internal systems are OK, and that the device has been programmed.

4 HUMAN INTERFACES

- TROUBLE: This LED indicates that the relay has detected an internal problem.
- TEST MODE: This LED indicates that the relay is in test mode.
- **TRIP**: This LED indicates that the FlexLogic[™] operand serving as a trip switch has operated. This indicator always latches; as such, a reset command must be initiated to allow the latch to be reset.
- ALARM: This LED indicates that the FlexLogic[™] operand serving as an alarm switch has operated. This indicator is never latched.
- **PICKUP**: This LED indicates that an element is picked up. This indicator is never latched.

The event cause indicators in the first column are described below. These indicate the input type that was involved in a condition detected by an element that is operated or has a latched flag waiting to be reset.

- VOLTAGE: This LED indicates voltage was involved.
- **CURRENT**: This LED indicates current was involved.
- FREQUENCY: This LED indicates frequency was involved.
- **OTHER**: This LED indicates a composite function was involved.
- **PHASE A**: This LED indicates phase A was involved.
- **PHASE B**: This LED indicates phase B was involved.
- **PHASE C**: This LED indicates phase C was involved.
- **NEUTRAL/GROUND**: This LED indicates that neutral or ground was involved.


The user-programmable LEDs consist of 48 amber LED indicators in four columns. The operation of these LEDs is userdefined. Support for applying a customized label beside every LED is provided. Default labels are shipped in the label package of every L90, together with custom templates. The default labels can be replaced by user-printed labels.

User customization of LED operation is of maximum benefit in installations where languages other than English are used to communicate with operators. Refer to the *User-programmable LEDs* section in chapter 5 for the settings used to program the operation of the LEDs on these panels.

b) STANDARD FACEPLATE

The standar faceplate consists of three panels with LED indicators, keys, and a communications port. The RESET key is used to reset any latched LED indicator or target message, once the condition has been cleared (these latched conditions can also be reset via the **SETTINGS** \Rightarrow \oplus **INPUT/OUTPUTS** \Rightarrow \oplus **RESETTING** menu). The RS232 port is intended for connection to a portable PC.

The USER keys are used by the breaker control feature.

STATUS INDICATORS:

- **IN SERVICE**: Indicates that control power is applied; all monitored inputs/outputs and internal systems are OK; the relay has been programmed.
- **TROUBLE**: Indicates that the relay has detected an internal problem.
- **TEST MODE**: Indicates that the relay is in test mode.

4

4.3 FACEPLATE INTERFACE

- **TRIP**: Indicates that the selected FlexLogic[™] operand serving as a Trip switch has operated. This indicator always latches; the reset command must be initiated to allow the latch to be reset.
- ALARM: Indicates that the selected FlexLogic[™] operand serving as an Alarm switch has operated. This indicator is never latched.
- **PICKUP**: Indicates that an element is picked up. This indicator is never latched.

EVENT CAUSE INDICATORS:

These indicate the input type that was involved in a condition detected by an element that is operated or has a latched flag waiting to be reset.

- VOLTAGE: Indicates voltage was involved.
- **CURRENT**: Indicates current was involved.
- FREQUENCY: Indicates frequency was involved.
- **OTHER**: Indicates a composite function was involved.
- PHASE A: Indicates phase A was involved.
- **PHASE B**: Indicates phase B was involved.
- **PHASE C**: Indicates phase C was involved.
- **NEUTRAL/GROUND**: Indicates that neutral or ground was involved.

USER-PROGRAMMABLE INDICATORS:

The second and third provide 48 amber LED indicators whose operation is controlled by the user. Support for applying a customized label beside every LED is provided.

User customization of LED operation is of maximum benefit in installations where languages other than English are used to communicate with operators. Refer to the *User-programmable LEDs* section in chapter 5 for the settings used to program the operation of the LEDs on these panels.

(1)	(9)	(17)
(2)	(10)	(18)
(3)	(11)	(19)
(4)	(12)	(20)
(5)	(13)	(21)
(6)	(14)	(22)
(7)	(15)	(23)
(8)	(16)	(24)

	RAMMABLE LEDS	
(25)	(33)	(41)
(26)	(34)	(42)
(27)	(35)	(43)
(28)	(36)	(44)
(29)	(37)	(45)
(30)	(38)	(46)
(31)	(39)	(47)
(32)	(40)	(48)

842782A1.CDR

Figure 4–20: LED PANELS 2 AND 3 (INDEX TEMPLATE)

DEFAULT LABELS FOR LED PANEL 2:

The default labels are intended to represent:

- **GROUP 1...6**: The illuminated GROUP is the active settings group.
- BREAKER 1(2) OPEN: The breaker is open.
- BREAKER 1(2) CLOSED: The breaker is closed.
- BREAKER 1(2) TROUBLE: A problem related to the breaker has been detected.
- SYNCHROCHECK NO1(2) IN-SYNCH: Voltages have satisfied the synchrocheck element.
- **RECLOSE ENABLED**: The recloser is operational.
- **RECLOSE DISABLED**: The recloser is not operational.
- RECLOSE IN PROGRESS: A reclose operation is in progress.
- **RECLOSE LOCKED OUT**: The recloser is not operational and requires a reset.

Firmware revisions 2.9x and earlier support eight user setting groups; revisions 3.0x and higher support six setting groups. For convenience of users using earlier firmware revisions, the relay panel shows eight setting groups. Please note that the LEDs, despite their default labels, are fully user-programmable.

The relay is shipped with the default label for the LED panel 2. The LEDs, however, are not pre-programmed. To match the pre-printed label, the LED settings must be entered as shown in the *User-programmable LEDs* section of chapter 5. The LEDs are fully user-programmable. The default labels can be replaced by user-printed labels for both panels as explained in the following section.

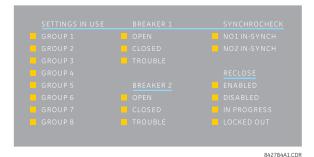


Figure 4–21: LED PANEL 2 (DEFAULT LABELS)

4.3.3 CUSTOM LABELING OF LEDS

a) ENHANCED FACEPLATE

The following procedure requires the pre-requisites listed below.

- EnerVista UR Setup software is installed and operational.
- The L90 settings have been saved to a settings file.
- The L90 front panel label cutout sheet (GE Multilin part number 1006-0047) has been downloaded from http://www.GEindustrial.com/multilin/support/ur and printed.
- Small-bladed knife.

This procedure describes how to create custom LED labels for the enhanced front panel display.

1. Start the EnerVista UR Setup software.

4.3 FACEPLATE INTERFACE

2. Select the **Front Panel Report** item at the bottom of the menu tree for the settings file. The front panel report window will be displayed.

📼 Front Panel Report // D60	_540.urs : D:\Do				
Save Restore	🛱 Default	Reset	VIEW AL	mode	
	LED L		_		
	ED Group 2	LED 25		LED Group 4 LED 37	
	:D 14	LED 26		LED 38	
	D 15	LED 27		LED 39	
LED 4	D 16	LED 28		LED 40	
LED 5 LE	ED 17	LED 29		LED 41	
LED 6 LE	ED 18	LED 30		LED 42	
LED 7 LE	D 19	LED 31		LED 43	
	ED 20	LED 32		LED 44	
	:D 21	LED 33		LED 45	
	:D 22	LED 34		LED 46	
	:D 23 :D 24	LED 35		LED 47 LED 48	
	.0 24	22000			
To adjust printout alignment, edit t	ne offse LED Offsets	Button Offsets	To print:	Print	-
D60_540.urs					

Figure 4–22: FRONT PANEL REPORT WINDOW

- 3. Enter the text to appear next to each LED and above each user-programmable pushbuttons in the fields provided.
- 4. Feed the L90 front panel label cutout sheet into a printer and press the **Print** button in the front panel report window.
- 5. When printing is complete, fold the sheet along the perforated lines and punch out the labels.
- 6. Remove the L90 label insert tool from the package and bend the tabs as described in the following procedures. These tabs will be used for removal of the default and custom LED labels.

It is important that the tool be used EXACTLY as shown below, with the printed side containing the GE part number facing the user.

The label package shipped with every L90 contains the three default labels shown below, the custom label template sheet, and the label removal tool.

If the default labels are suitable for your application, insert them in the appropriate slots and program the LEDs to match them. If you require custom labels, follow the procedures below to remove the original labels and insert the new ones.

The following procedure describes how to setup and use the label removal tool.

1. Bend the tabs at the left end of the tool upwards as shown below.

4 HUMAN INTERFACES

2. Bend the tab at the center of the tool tail as shown below.

The following procedure describes how to remove the LED labels from the L90 enhanced front panel and insert the custom labels.

1. Use the knife to lift the LED label and slide the label tool underneath. Make sure the bent tabs are pointing away from the relay.

2. Slide the label tool under the LED label until the tabs snap out as shown below. This will attach the label tool to the LED label.

4.3 FACEPLATE INTERFACE

3. Remove the tool and attached LED label as shown below.

4. Slide the new LED label inside the pocket until the text is properly aligned with the LEDs, as shown below.

The following procedure describes how to remove the user-programmable pushbutton labels from the L90 enhanced front panel and insert the custom labels.

1. Use the knife to lift the pushbutton label and slide the tail of the label tool underneath, as shown below. Make sure the bent tab is pointing away from the relay.

4 HUMAN INTERFACES

4.3 FACEPLATE INTERFACE

2. Slide the label tool under the user-programmable pushbutton label until the tabs snap out as shown below. This will attach the label tool to the user-programmable pushbutton label.

3. Remove the tool and attached user-programmable pushbutton label as shown below.

4.3 FACEPLATE INTERFACE

4. Slide the new user-programmable pushbutton label inside the pocket until the text is properly aligned with the buttons, as shown below.

b) STANDARD FACEPLATE

Δ

Custom labeling of an LED-only panel is facilitated through a Microsoft Word file available from the following URL:

http://www.GEindustrial.com/multilin/support/ur/

This file provides templates and instructions for creating appropriate labeling for the LED panel. The following procedures are contained in the downloadable file. The panel templates provide relative LED locations and located example text (x) edit boxes. The following procedure demonstrates how to install/uninstall the custom panel labeling.

1. Remove the clear Lexan Front Cover (GE Multilin part number: 1501-0014).

2. Pop out the LED module and/or the blank module with a screwdriver as shown below. Be careful not to damage the plastic covers.

_				
	Free Out Office 8 Statk 0 Statk 9 Statk 0 Statk 9 Statk 0 Statk 9 Statk 0 Statk 9 Statk 0 Statk 9 Statk 0 Statk 9 Statk 0 Statk 9 Statk 0 Statk 9 Statk 0 Statk 9 Statk 0 Statk 9 Statk 0 Statk 9 Statk 0 Statk	(LED MODULE)	(BLANK MODULE)	BE POLEP HOMOLENENT
-	R0 mon assante no.		e for days	<u> </u>
				842722A1.CDR

- 3. Place the left side of the customized module back to the front panel frame, then snap back the right side.
- 4. Put the clear Lexan front cover back into place.

4-22

The following items are required to customize the L90 display module:

- Black and white or color printer (color preferred).
- Microsoft Word 97 or later software for editing the template.
- 1 each of: 8.5" x 11" white paper, exacto knife, ruler, custom display module (GE Multilin Part Number: 1516-0069), and a custom module cover (GE Multilin Part Number: 1502-0015).

The following procedure describes how to customize the L90 display module:

- 1. Open the LED panel customization template with Microsoft Word. Add text in places of the LED x text placeholders on the template(s). Delete unused place holders as required.
- 2. When complete, save the Word file to your local PC for future use.
- 3. Print the template(s) to a local printer.
- 4. From the printout, cut-out the Background Template from the three windows, using the cropmarks as a guide.
- 5. Put the Background Template on top of the custom display module (GE Multilin Part Number: 1513-0069) and snap the clear custom module cover (GE Multilin Part Number: 1502-0015) over it and the templates.

4.3.4 DISPLAY

All messages are displayed on a 2×20 backlit liquid crystal display (LCD) to make them visible under poor lighting conditions. Messages are descriptive and should not require the aid of an instruction manual for deciphering. While the keypad and display are not actively being used, the display will default to user-defined messages. Any high priority event driven message will automatically override the default message and appear on the display.

4.3.5 KEYPAD

Display messages are organized into pages under the following headings: actual values, settings, commands, and targets. The MENU key navigates through these pages. Each heading page is broken down further into logical subgroups.

The MESSAGE keys navigate through the subgroups. The VALUE keys scroll increment or decrement numerical setting values when in programming mode. These keys also scroll through alphanumeric values in the text edit mode. Alternatively, values may also be entered with the numeric keypad.

The decimal key initiates and advance to the next character in text edit mode or enters a decimal point. The HELP key may be pressed at any time for context sensitive help messages. The ENTER key stores altered setting values.

4.3.6 BREAKER CONTROL

a) INTRODUCTION

The L90 can interface with associated circuit breakers. In many cases the application monitors the state of the breaker, which can be presented on faceplate LEDs, along with a breaker trouble indication. Breaker operations can be manually initiated from faceplate keypad or automatically initiated from a FlexLogic[™] operand. A setting is provided to assign names to each breaker; this user-assigned name is used for the display of related flash messages. These features are provided for two breakers; the user may use only those portions of the design relevant to a single breaker, which must be breaker 1.

For the following discussion it is assumed the SETTINGS \Rightarrow \$ SYSTEM SETUP \Rightarrow \$ BREAKERS \Rightarrow BREAKER 1(2) \Rightarrow BREAKER 1

b) CONTROL MODE SELECTION AND MONITORING

Installations may require that a breaker is operated in the three-pole only mode (3-pole), or in the one and three-pole (1-pole) mode, selected by setting. If the mode is selected as three-pole, a single input tracks the breaker open or closed position. If the mode is selected as one-pole, all three breaker pole states must be input to the relay. These inputs must be in agreement to indicate the position of the breaker.

For the following discussion it is assumed the SETTINGS $\Rightarrow \emptyset$ SYSTEM SETUP $\Rightarrow \emptyset$ BREAKERS \Rightarrow BREAKER 1(2) $\Rightarrow \emptyset$ BREAKER 1(2)

4

c) FACEPLATE (USER KEY) CONTROL

After the 30 minute interval during which command functions are permitted after a correct command password, the user cannot open or close a breaker via the keypad. The following discussions begin from the not-permitted state.

d) CONTROL OF TWO BREAKERS

For the following example setup, the (Name) field represents the user-programmed variable name.

For this application (setup shown below), the relay is connected and programmed for both breaker 1 and breaker 2. The USER 1 key performs the selection of which breaker is to be operated by the USER 2 and USER 3 keys. The USER 2 key is used to manually close the breaker and the USER 3 key is used to manually open the breaker.

ENTER COMMAND PASSWORD	This message appears when the USER 1, USER 2, or USER 3 key is pressed and a COMMAND PASSWORD is required; i.e. if COMMAND PASSWORD is enabled and no commands have been issued within the last 30 minutes.
Press USER 1 To Select Breaker	This message appears if the correct password is entered or if none is required. This mes- sage will be maintained for 30 seconds or until the USER 1 key is pressed again.
BKR1-(Name) SELECTED USER 2=CLS/USER 3=OP	This message is displayed after the USER 1 key is pressed for the second time. Three possible actions can be performed from this state within 30 seconds as per items (1), (2) and (3) below:
(1)	
USER 2 OFF/ON To Close BKR1-(Name)	If the USER 2 key is pressed, this message appears for 20 seconds. If the USER 2 key is pressed again within that time, a signal is created that can be programmed to operate an output relay to close breaker 1.
(2)	

(2)	
USER 3 OFF/ON	lf
To Open BKR1-(Name)	р
	0

If the USER 3 key is pressed, this message appears for 20 seconds. If the USER 3 key is pressed again within that time, a signal is created that can be programmed to operate an output relay to open breaker 1.

EXER2-(Name) SELECTED USER 2=CLS/USER 3=OP If the USER 1 key is pressed at this step, this message appears showing that a different breaker is selected. Three possible actions can be performed from this state as per (1), (2) and (3). Repeatedly pressing the USER 1 key alternates between available breakers. Pressing keys other than USER 1, 2 or 3 at any time aborts the breaker control function.

e) CONTROL OF ONE BREAKER

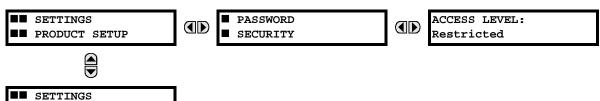
For this application the relay is connected and programmed for breaker 1 only. Operation for this application is identical to that described above for two breakers.

4.3.7 MENUS

a) NAVIGATION

Press the MENU key to select the desired header display page (top-level menu). The header title appears momentarily followed by a header display page menu item. Each press of the MENU key advances through the following main heading pages:

- Actual values.
- Settings.
- Commands.
- Targets.
- User displays (when enabled).


b) HIERARCHY

The setting and actual value messages are arranged hierarchically. The header display pages are indicated by double scroll bar characters (■■), while sub-header pages are indicated by single scroll bar characters (■). The header display pages represent the highest level of the hierarchy and the sub-header display pages fall below this level. The MESSAGE UP and DOWN keys move within a group of headers, sub-headers, setting values, or actual values. Continually pressing the MESSAGE RIGHT key from a header display displays specific information for the header category. Conversely, continually pressing the MESSAGE LEFT key from a setting value or actual value display returns to the header display.

HIGHEST LEVEL

SYSTEM SETUP

LOWEST LEVEL (SETTING VALUE)

c) EXAMPLE MENU NAVIGATION

,	
ACTUAL VALUESSTATUS	Press the MENU key until the header for the first Actual Values page appears. This page contains system and relay status information. Repeatedly press the MESSAGE keys to display the other actual value headers.
Û	
SETTINGSPRODUCT SETUP	Press the MENU key until the header for the first page of Settings appears. This page contains settings to configure the relay.
Û	
SETTINGS SYSTEM SETUP	Press the MESSAGE DOWN key to move to the next Settings page. This page con- tains settings for System Setup. Repeatedly press the MESSAGE UP and DOWN keys to display the other setting headers and then back to the first Settings page header.
Û	
PASSWORDSECURITY	From the Settings page one header (Product Setup), press the MESSAGE RIGHT key once to display the first sub-header (Password Security).
Û	
ACCESS LEVEL: Restricted	Press the MESSAGE RIGHT key once more and this will display the first setting for Password Security. Pressing the MESSAGE DOWN key repeatedly will display the remaining setting messages for this sub-header.
PASSWORDSECURITY	Press the MESSAGE LEFT key once to move back to the first sub-header message.
Û	
DISPLAYPROPERTIES	Pressing the MESSAGE DOWN key will display the second setting sub-header asso- ciated with the Product Setup header.
Û	
FLASH MESSAGE TIME: 1.0 s	Press the MESSAGE RIGHT key once more and this will display the first setting for Display Properties.
Û	
DEFAULT MESSAGE INTENSITY: 25%	To view the remaining settings associated with the Display Properties subheader, repeatedly press the MESSAGE DOWN key. The last message appears as shown.

a) ENTERING NUMERICAL DATA

Each numerical setting has its own minimum, maximum, and increment value associated with it. These parameters define what values are acceptable for a setting.

		For example, select the SETTINGS ⇔ PRODUCT SETUP ⇔
	Û	-
MINIMUM: MAXIMUM:	0.5 10.0	Press the HELP key to view the minimum and maximum values. Press the HELP key again to view the next context sensitive help message.

Two methods of editing and storing a numerical setting value are available.

- **0 to 9 and decimal point**: The relay numeric keypad works the same as that of any electronic calculator. A number is entered one digit at a time. The leftmost digit is entered first and the rightmost digit is entered last. Pressing the MES-SAGE LEFT key or pressing the ESCAPE key, returns the original value to the display.
- VALUE keys: The VALUE UP key increments the displayed value by the step value, up to the maximum value allowed. While at the maximum value, pressing the VALUE UP key again will allow the setting selection to continue upward from the minimum value. The VALUE DOWN key decrements the displayed value by the step value, down to the minimum value. While at the minimum value, pressing the VALUE DOWN key again will allow the setting selection to continue downward from the maximum value.

TIME: 2.5 s	As an example, set the flash message time setting to 2.5 seconds. Press the appropriate numeric keys in the sequence "2 . 5". The display message will change as the digits are being entered.
	Until ENTER is pressed, editing changes are not registered by the relay. Therefore, press ENTER to store the new value in memory. This flash message will momentarily appear

Until ENTER is pressed, editing changes are not registered by the relay. Therefore, press ENTER to store the new value in memory. This flash message will momentarily appear as confirmation of the storing process. Numerical values which contain decimal places will be rounded-off if more decimal place digits are entered than specified by the step value.

b) ENTERING ENUMERATION DATA

Enumeration settings have data values which are part of a set, whose members are explicitly defined by a name. A set is comprised of two or more members.

ACCESS LEVEL: Restricted For example, the selections available for **ACCESS LEVEL** are "Restricted", "Command", "Setting", and "Factory Service".

Enumeration type values are changed using the VALUE keys. The VALUE UP key displays the next selection while the VALUE DOWN key displays the previous selection.

ACCESS LEVEL: Setting	If the ACCESS LEVEL needs to be "Setting", press the VALUE keys until the proper selec- tion is displayed. Press HELP at any time for the context sensitive help messages.	
Û		
NEW SETTING	Changes are not registered by the relay until the ENTER key is pressed. Pressing	
HAS BEEN STORED	ENTER stores the new value in memory. This flash message momentarily appears as	
	confirmation of the storing process.	

c) ENTERING ALPHANUMERIC TEXT

Text settings have data values which are fixed in length, but user-defined in character. They may be comprised of upper case letters, lower case letters, numerals, and a selection of special characters.

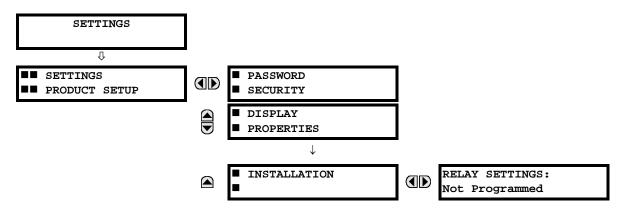
4-26

Δ

4 HUMAN INTERFACES

There are several places where text messages may be programmed to allow the relay to be customized for specific applications. One example is the Message Scratchpad. Use the following procedure to enter alphanumeric text messages.

For example: to enter the text, "Breaker #1".


- 1. Press the decimal to enter text edit mode.
- 2. Press the VALUE keys until the character 'B' appears; press the decimal key to advance the cursor to the next position.
- 3. Repeat step 2 for the remaining characters: r,e,a,k,e,r, ,#,1.
- 4. Press ENTER to store the text.
- 5. If you have any problem, press HELP to view context sensitive help. Flash messages will sequentially appear for several seconds each. For the case of a text setting message, pressing HELP displays how to edit and store new values.

d) ACTIVATING THE RELAY

 RELAY SETTINGS:
 When the relay is powered up, the Trouble LED will be on, the In Service LED off, and this message displayed, indicating the relay is in the "Not Programmed" state and is safe-guarding (output relays blocked) against the installation of a relay whose settings have not been entered. This message remains until the relay is explicitly put in the "Programmed" state.

To change the **RELAY SETTINGS**: "Not Programmed" mode to "Programmed", proceed as follows:

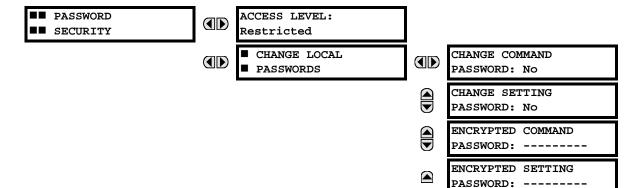
- 1. Press the MENU key until the **SETTINGS** header flashes momentarily and the **PRODUCT SETUP** message appears on the display.
- 2. Press the MESSAGE RIGHT key until the PASSWORD SECURITY message appears on the display.
- 3. Press the MESSAGE DOWN key until the INSTALLATION message appears on the display.
- 4. Press the MESSAGE RIGHT key until the RELAY SETTINGS: Not Programmed message is displayed.

- After the RELAY SETTINGS: Not Programmed message appears on the display, press the VALUE keys change the selection to "Programmed".
- 6. Press the ENTER key.

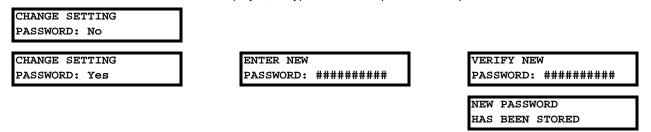
RELAY SETTINGS:	RELAY SETTINGS:	NEW SETTING
Not Programmed	Programmed	HAS BEEN STORED

7. When the "NEW SETTING HAS BEEN STORED" message appears, the relay will be in "Programmed" state and the In Service LED will turn on.

e) ENTERING INITIAL PASSWORDS


The L90 supports password entry from a local or remote connection.

4.3 FACEPLATE INTERFACE


Local access is defined as any access to settings or commands via the faceplate interface. This includes both keypad entry and the faceplate RS232 connection. Remote access is defined as any access to settings or commands via any rear communications port. This includes both Ethernet and RS485 connections. Any changes to the local or remote passwords enables this functionality.

To enter the initial setting (or command) password, proceed as follows:

- 1. Press the MENU key until the SETTINGS header flashes momentarily and the PRODUCT SETUP message appears on the display.
- 2. Press the MESSAGE RIGHT key until the ACCESS LEVEL message appears on the display.
- 3. Press the MESSAGE DOWN key until the CHANGE LOCAL PASSWORDS message appears on the display.
- 4. Press the MESSAGE RIGHT key until the CHANGE SETTING PASSWORD or CHANGE COMMAND PASSWORD message appears on the display.

- 5. After the CHANGE...PASSWORD message appears on the display, press the VALUE UP or DOWN key to change the selection to "Yes".
- 6. Press the ENTER key and the display will prompt you to ENTER NEW PASSWORD.
- 7. Type in a numerical password (up to 10 characters) and press the ENTER key.
- 8. When the VERIFY NEW PASSWORD is displayed, re-type in the same password and press ENTER.

9. When the **NEW PASSWORD HAS BEEN STORED** message appears, your new Setting (or Command) Password will be active.

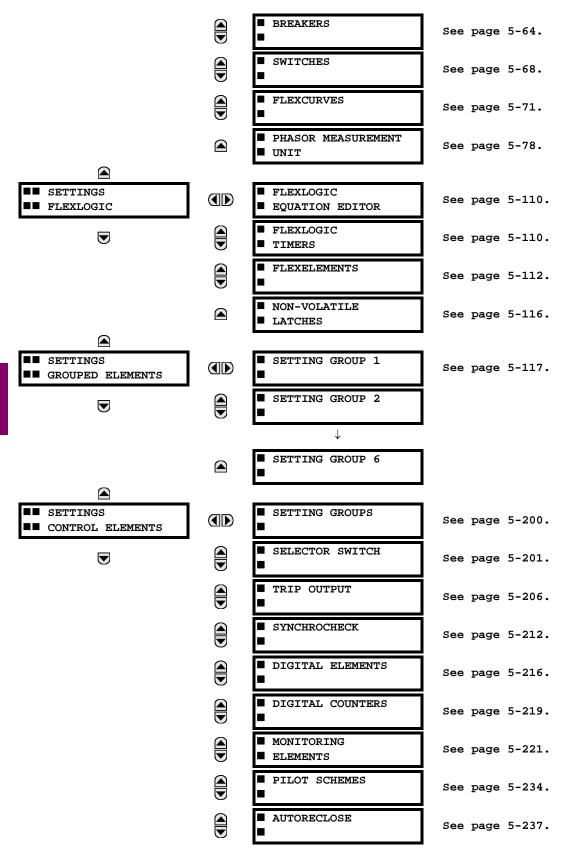
f) CHANGING EXISTING PASSWORD

To change an existing password, follow the instructions in the previous section with the following exception. A message will prompt you to type in the existing password (for each security level) before a new password can be entered.

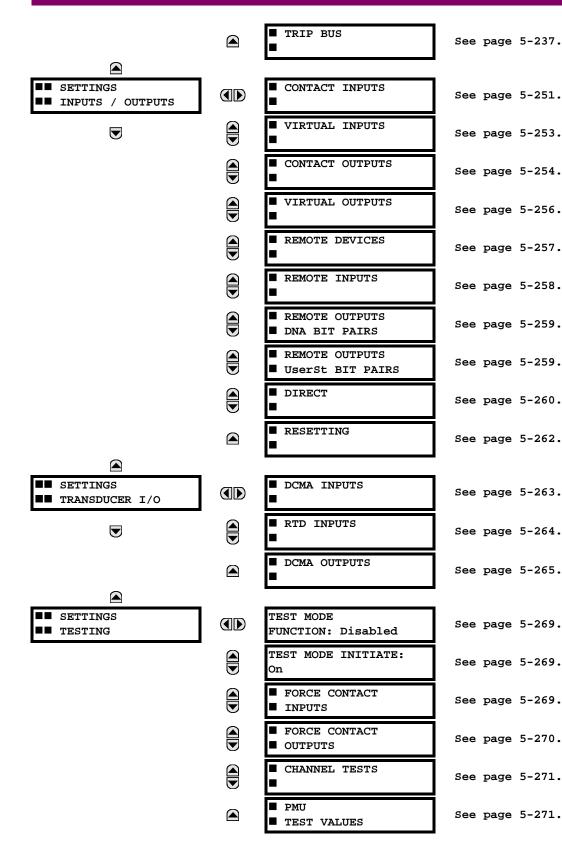
In the event that a password has been lost (forgotten), submit the corresponding encrypted password from the **PASSWORD SECURITY** menu to the Factory for decoding.

g) INVALID PASSWORD ENTRY

In the event that an incorrect Command or Setting password has been entered via the faceplate interface three times within a three-minute time span, the LOCAL ACCESS DENIED FlexLogic[™] operand will be set to "On" and the L90 will not allow Settings or Command access via the faceplate interface for the next ten minutes. The **TOO MANY ATTEMPTS – BLOCKED**


FOR 10 MIN! flash message will appear upon activation of the ten minute timeout or any other time a user attempts any change to the defined tier during the ten minute timeout. The LOCAL ACCESS DENIED FlexLogic[™] operand will be set to "Off" after the expiration of the ten-minute timeout.

In the event that an incorrect Command or Setting password has been entered via the any external communications interface three times within a three-minute time span, the REMOTE ACCESS DENIED FlexLogic[™] operand will be set to "On" and the L90 will not allow Settings or Command access via the any external communications interface for the next ten minutes. The REMOTE ACCESS DENIED FlexLogic[™] operand will be set to "Off" after the expiration of the ten-minute timeout.


5 SETTINGS

5.1.1 SETTINGS MAIN MENU

SETTINGSPRODUCT SETUP	■ SECURITY	See page 5-8.
	DISPLAY PROPERTIES	See page 5-11.
	CLEAR RELAY RECORDS	See page 5-13.
	COMMUNICATIONS	See page 5-14.
	MODBUS USER MAP	See page 5-31.
	REAL TIMECLOCK	See page 5-32.
	■ FAULT REPORTS	See page 5-33.
	■ OSCILLOGRAPHY	See page 5-35.
	DATA LOGGER	See page 5-37.
	DEMAND	See page 5-39.
	USER-PROGRAMMABLE LEDS	See page 5-40.
	USER-PROGRAMMABLE SELF TESTS	See page 5-43.
	CONTROL PUSHBUTTONS	See page 5-44.
	USER-PROGRAMMABLE PUSHBUTTONS	See page 5-45.
	<pre>FLEX STATE PARAMETERS</pre>	See page 5-50.
	USER-DEFINABLE DISPLAYS	See page 5-51.
_	<pre>INSTALLATION</pre>	See page 5-53.
SETTINGSSYSTEM SETUP	AC INPUTS	See page 5-54.
	■ POWER SYSTEM	See page 5-55.
	SIGNAL SOURCES	See page 5-56.
	■ L90 POWER SYSTEM ■	See page 5-59.

5 SETTINGS

5

5.1.2 INTRODUCTION TO ELEMENTS

In the design of UR relays, the term *element* is used to describe a feature that is based around a comparator. The comparator is provided with an input (or set of inputs) that is tested against a programmed setting (or group of settings) to determine if the input is within the defined range that will set the output to logic 1, also referred to as "setting the flag". A single comparator may make multiple tests and provide multiple outputs; for example, the time overcurrent comparator sets a pickup flag when the current input is above the setting and sets an operate flag when the input current has been at a level above the pickup setting for the time specified by the time-current curve settings. All comparators use analog parameter actual values as the input.

The exception to the above rule are the digital elements, which use logic states as inputs.

Elements are arranged into two classes, *grouped* and *control*. Each element classed as a grouped element is provided with six alternate sets of settings, in setting groups numbered 1 through 6. The performance of a grouped element is defined by the setting group that is active at a given time. The performance of a control element is independent of the selected active setting group.

The main characteristics of an element are shown on the element logic diagram. This includes the inputs, settings, fixed logic, and the output operands generated (abbreviations used on scheme logic diagrams are defined in Appendix F).

Some settings for current and voltage elements are specified in per-unit (pu) calculated quantities:

pu quantity = (actual quantity) / (base quantity)

For current elements, the 'base quantity' is the nominal secondary or primary current of the CT.

Where the current source is the sum of two CTs with different ratios, the 'base quantity' will be the common secondary or primary current to which the sum is scaled (that is, normalized to the larger of the two rated CT inputs). For example, if CT1 = 300 / 5 A and CT2 = 100 / 5 A, then in order to sum these, CT2 is scaled to the CT1 ratio. In this case, the base quantity will be 5 A secondary or 300 A primary.

For voltage elements the 'base quantity' is the nominal primary voltage of the protected system which corresponds (based on VT ratio and connection) to secondary VT voltage applied to the relay.

For example, on a system with a 13.8 kV nominal primary voltage and with 14400:120 V delta-connected VTs, the secondary nominal voltage (1 pu) would be:

$$\frac{13800}{14400} \times 120 = 115 \text{ V} \tag{EQ 5.1}$$

For Wye-connected VTs, the secondary nominal voltage (1 pu) would be:

$$\frac{13800}{14400} \times \frac{120}{\sqrt{3}} = 66.4 \text{ V}$$
 (EQ 5.2)

Many settings are common to most elements and are discussed below:

- FUNCTION setting: This setting programs the element to be operational when selected as "Enabled". The factory
 default is "Disabled". Once programmed to "Enabled", any element associated with the function becomes active and all
 options become available.
- **NAME setting:** This setting is used to uniquely identify the element.
- SOURCE setting: This setting is used to select the parameter or set of parameters to be monitored.
- **PICKUP setting:** For simple elements, this setting is used to program the level of the measured parameter above or below which the pickup state is established. In more complex elements, a set of settings may be provided to define the range of the measured parameters which will cause the element to pickup.
- **PICKUP DELAY setting:** This setting sets a time-delay-on-pickup, or on-delay, for the duration between the pickup and operate output states.
- **RESET DELAY setting:** This setting is used to set a time-delay-on-dropout, or off-delay, for the duration between the Operate output state and the return to logic 0 after the input transits outside the defined pickup range.

5 SETTINGS

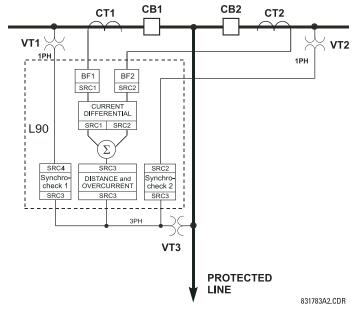
- **BLOCK setting:** The default output operand state of all comparators is a logic 0 or "flag not set". The comparator remains in this default state until a logic 1 is asserted at the RUN input, allowing the test to be performed. If the RUN input changes to logic 0 at any time, the comparator returns to the default state. The RUN input is used to supervise the comparator. The BLOCK input is used as one of the inputs to RUN control.
- **TARGET setting:** This setting is used to define the operation of an element target message. When set to Disabled, no target message or illumination of a faceplate LED indicator is issued upon operation of the element. When set to Self-Reset, the target message and LED indication follow the Operate state of the element, and self-resets once the operate element condition clears. When set to Latched, the target message and LED indication will remain visible after the element output returns to logic 0 until a RESET command is received by the relay.
- **EVENTS setting:** This setting is used to control whether the Pickup, Dropout or Operate states are recorded by the event recorder. When set to Disabled, element pickup, dropout or operate are not recorded as events. When set to Enabled, events are created for:

(Element) PKP (pickup) (Element) DPO (dropout) (Element) OP (operate)

The DPO event is created when the measure and decide comparator output transits from the pickup state (logic 1) to the dropout state (logic 0). This could happen when the element is in the operate state if the reset delay time is not '0'.

5.1.3 INTRODUCTION TO AC SOURCES

a) **BACKGROUND**


The L90 may be used on systems with breaker-and-a-half or ring bus configurations.

In these applications, each of the two three-phase sets of individual phase currents (one associated with each breaker) can be used as an input to a breaker failure element. The sum of both breaker phase currents and 3I_0 residual currents may be required for the circuit relaying and metering functions. Two separate synchrocheck elements can be programmed to check synchronization between two different buses VT and the line VT. These requirements can be satisfied with a single L90, equipped with sufficient CT and VT input channels, by selecting proper parameter to measure. A mechanism is provided to specify the AC parameter (or group of parameters) used as the input to protection/control comparators and some metering elements. Selection of the measured parameter(s) is partially performed by the design of a measuring element or protection/control comparator by identifying the measured parameter type (fundamental frequency phasor, harmonic phasor, symmetrical component, total waveform RMS magnitude, phase-phase or phase-ground voltage, etc.). The user completes the process by selecting the instrument transformer input channels to use and some parameters calculated from these channels. The input parameters available include the summation of currents from multiple input channels. For the summed currents of phase, 3I_0, and ground current, current from CTs with different ratios are adjusted to a single ratio before summation. A mechanism called a "Source" configures the routing of CT and VT input channels to measurement sub-systems.

Sources, in the context of L90 series relays, refer to the logical grouping of current and voltage signals such that one source contains all the signals required to measure the load or fault in a particular power apparatus. A given source may contain all or some of the following signals: three-phase currents, single-phase ground current, three-phase voltages and an auxiliary voltages from a single-phase VT for checking for synchronism.

To illustrate the concept of Sources, as applied to current inputs only, consider the breaker-and-a-half scheme below. Some protection elements, like breaker failure, require individual CT current as an input. Other elements, like distance, require the sum of both current as an input. The line differential function requires the CT currents to be processed individually to cope with a possible CT saturation of one CT during an external fault on the upper bus. The current into protected line is the phasor sum (or difference) of the currents in CT1 and CT2, depending on the current distribution on the upper bus.

5

In conventional analog or electronic relays, the sum of the currents is obtained from an appropriate external connection of all CTs through which any portion of the current for the element being protected could flow. Auxiliary CTs are required to perform ratio matching if the ratios of the primary CTs to be summed are not identical. In the L90 relay, provisions have been included for all the current signals to be brought to the device where grouping, CT ratio correction, and summation are applied internally via configuration settings. Up to 4 currents can be brought into L90 relay; current summation and CT ratio matching is performed internally. A major advantage of internal summation is that individual currents are available to the protection device (for example, as additional information to apply a restraint current properly, or to allow the provision of additional features that operate on the individual currents, such as breaker failure). Given the flexibility of this approach, it becomes necessary to add configuration settings to the platform to allow the user to select which sets of CT inputs will be added to form the net current into the protected device. The internal grouping of current and voltage signals forms an internal source. This source can be assigned a specific name and becomes available to protection and metering elements in the relay. Individual names can be given to each source to identify them for later use. For example, in the scheme shown above, three different sources are be configured as inputs for separate elements:

- Source 1: CT1 current, for the breaker failure 1 element and first current source for the line differential element
- Source 2: CT2 current, for breaker failure 2 element and second current source for the line differential element
- Source 3: the sum of the CT1 and CT2 currents for the distance function

In addition, two separate synchrocheck elements can be programmed to check synchronization between line voltage and two different bus voltages (SRC3–SRC1 and SRC3–SRC2).

b) CT/VT MODULE CONFIGURATION

CT and VT input channels are contained in CT/VT modules. The type of input channel can be phase/neutral/other voltage, phase/ground current, or sensitive ground current. The CT/VT modules calculate total waveform RMS levels, fundamental frequency phasors, symmetrical components and harmonics for voltage or current, as allowed by the hardware in each channel. These modules may calculate other parameters as directed by the CPU module.

A CT/VT module contains up to eight input channels, numbered 1 through 8. The channel numbering corresponds to the module terminal numbering 1 through 8 and is arranged as follows: Channels 1, 2, 3 and 4 are always provided as a group, hereafter called a "bank," and all four are either current or voltage, as are channels 5, 6, 7 and 8. Channels 1, 2, 3 and 5, 6, 7 are arranged as phase A, B and C respectively. Channels 4 and 8 are either another current or voltage.

Banks are ordered sequentially from the block of lower-numbered channels to the block of higher-numbered channels, and from the CT/VT module with the lowest slot position letter to the module with the highest slot position letter, as follows:

INCREASING SLOT POSIT	ION LETTER>	
CT/VT MODULE 1	CT/VT MODULE 2	CT/VT MODULE 3
< bank 1 >	< bank 3 >	< bank 5 >
< bank 2 >	< bank 4 >	< bank 6 >

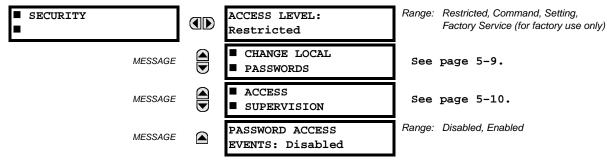
The UR platform allows for a maximum of three sets of three-phase voltages and six sets of three-phase currents. The result of these restrictions leads to the maximum number of CT/VT modules in a chassis to three. The maximum number of sources is six. A summary of CT/VT module configurations is shown below.

ITEM	MAXIMUM NUMBER
CT/VT Module	2
CT Bank (3 phase channels, 1 ground channel)	8
VT Bank (3 phase channels, 1 auxiliary channel)	4

c) CT/VT INPUT CHANNEL CONFIGURATION

Upon relay startup, configuration settings for every bank of current or voltage input channels in the relay are automatically generated from the order code. Within each bank, a channel identification label is automatically assigned to each bank of channels in a given product. The 'bank' naming convention is based on the physical location of the channels, required by the user to know how to connect the relay to external circuits. Bank identification consists of the letter designation of the slot in which the CT/VT module is mounted as the first character, followed by numbers indicating the channel, either 1 or 5.

For three-phase channel sets, the number of the lowest numbered channel identifies the set. For example, F1 represents the three-phase channel set of F1/F2/F3, where F is the slot letter and 1 is the first channel of the set of three channels.


Upon startup, the CPU configures the settings required to characterize the current and voltage inputs, and will display them in the appropriate section in the sequence of the banks (as described above) as follows for a maximum configuration: F1, F5, L1, L5, S1, and S5.

The above section explains how the input channels are identified and configured to the specific application instrument transformers and the connections of these transformers. The specific parameters to be used by each measuring element and comparator, and some actual values are controlled by selecting a specific source. The source is a group of current and voltage input channels selected by the user to facilitate this selection. With this mechanism, a user does not have to make multiple selections of voltage and current for those elements that need both parameters, such as a distance element or a watt calculation. It also gathers associated parameters for display purposes.

The basic idea of arranging a source is to select a point on the power system where information is of interest. An application example of the grouping of parameters in a source is a transformer winding, on which a three phase voltage is measured, and the sum of the currents from CTs on each of two breakers is required to measure the winding current flow.

a) MAIN MENU

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ SECURITY

Two levels of password security are provided via the ACCESS LEVEL setting: command and setting. The factory service level is not available and intended for factory use only.

The following operations are under command password supervision:

- Operating the breakers via faceplate keypad.
- · Changing the state of virtual inputs.
- Clearing the event records.
- Clearing the oscillography records.
- Clearing fault reports.

5

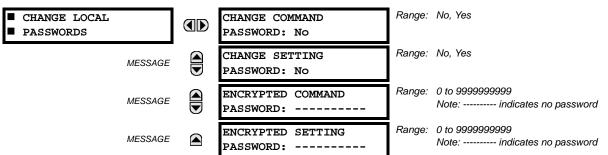
- Changing the date and time.
- Clearing the breaker arcing current.
- Clearing energy records.
- Clearing the data logger.
- Clearing the user-programmable pushbutton states.

The following operations are under setting password supervision:

- Changing any setting.
- Test mode operation.

The command and setting passwords are defaulted to "0" when the relay is shipped from the factory. When a password is set to "0", the password security feature is disabled.

The L90 supports password entry from a local or remote connection.


Local access is defined as any access to settings or commands via the faceplate interface. This includes both keypad entry and the through the faceplate RS232 port. Remote access is defined as any access to settings or commands via any rear communications port. This includes both Ethernet and RS485 connections. Any changes to the local or remote passwords enables this functionality.

When entering a settings or command password via EnerVista or any serial interface, the user must enter the corresponding connection password. If the connection is to the back of the L90, the remote password must be used. If the connection is to the RS232 port of the faceplate, the local password must be used.

The PASSWORD ACCESS EVENTS settings allows recording of password access events in the event recorder.

b) LOCAL PASSWORDS

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ SECURITY ⇒ ↓ CHANGE LOCAL PASSWORDS

Proper password codes are required to enable each access level. A password consists of 1 to 10 numerical characters. When a **CHANGE COMMAND PASSWORD** or **CHANGE SETTING PASSWORD** setting is programmed to "Yes" via the front panel interface, the following message sequence is invoked:

- 1. ENTER NEW PASSWORD: _____
- 2. VERIFY NEW PASSWORD: _____
- 3. NEW PASSWORD HAS BEEN STORED.

To gain write access to a "Restricted" setting, program the ACCESS LEVEL setting in the main security menu to "Setting" and then change the setting, or attempt to change the setting and follow the prompt to enter the programmed password. If the password is correctly entered, access will be allowed. Accessibility automatically reverts to the "Restricted" level according to the access level timeout setting values.

If an entered password is lost (or forgotten), consult the factory with the corresponding ENCRYPTED PASSWORD.

If the setting and command passwords are identical, then this one password allows access to both commands and settings.

c) REMOTE PASSWORDS

The remote password settings are only visible from a remote connection via the EnerVista UR Setup software. Select the **Settings > Product Setup > Password Security** menu item to open the remote password settings window.

Password Security // Site 1: UR IED 3: Settings: Product Setup				
Save Restore Default Reset VIEW All mode				
PARAMETER	ENCRYPTED PASSWORD	ENTER NEW PASSWORD	CONFIRM NEW PASSWORD	CHANGE PASSWORD
Command Password	0			Change
Setting Password	0			Change
UR IED 3 Settings: Product Setup Screen ID: 248				11.

Figure 5–2: REMOTE PASSWORD SETTINGS WINDOW

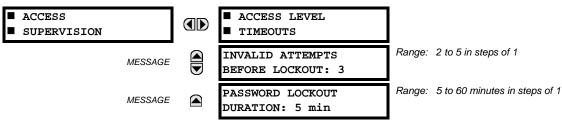
Proper passwords are required to enable each command or setting level access. A command or setting password consists of 1 to 10 numerical characters and are initially programmed to "0". The following procedure describes how the set the command or setting password.

- 1. Enter the new password in the Enter New Password field.
- 2. Re-enter the password in the **Confirm New Password** field.
- 3. Click the Change button. This button will not be active until the new password matches the confirmation password.

5

4. If the original password is not "0", then enter the original password in the **Enter Password** field and click the **Send Password to Device** button.

Enter Password For COMMANDS				
Encripted password:	1709472037	1		
Status:	Disabled			
Enter Password:	skok			
	Send Password To Device			
	OK Cancel			


5. The new password is accepted and a value is assigned to the ENCRYPTED PASSWORD item.

🔤 Password Security // Site 1: UR IED 3: Settings: Product Setup				_ 🗆 ×	
Save Bestore E Default Beset VIEW ALL mode					
PARAMETER	ENCRYPTED PASSWORD	ENTER NEW PASSWORD	CONFIRM NEW PASSWORD	CHANGE PASSWORD	
Command Password	796162341			Change	
Setting Password	0			Change	
UR IED 3 Settings: Product Setup			Screen ID: 248	1.	

If a command or setting password is lost (or forgotten), consult the factory with the corresponding **Encrypted Password** value.

d) ACCESS SUPERVISION

PATH: SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow SECURITY \Rightarrow \clubsuit ACCESS SUPERVISION

The following access supervision settings are available.

- INVALID ATTEMPTS BEFORE LOCKOUT: This setting specifies the number of times an incorrect password can be entered within a three-minute time span before lockout occurs. When lockout occurs, the LOCAL ACCESS DENIED and REMOTE ACCESS DENIED FlexLogic[™] operands are set to "On". These operands are returned to the "Off" state upon expiration of the lockout.
- PASSWORD LOCKOUT DURATION: This setting specifies the time that the L90 will lockout password access after the number of invalid password entries specified by the INVALID ATTEMPS BEFORE LOCKOUT setting has occurred.

The L90 provides a means to raise an alarm upon failed password entry. Should password verification fail while accessing a password-protected level of the relay (either settings or commands), the UNAUTHORIZED ACCESS FlexLogic[™] operand is asserted. The operand can be programmed to raise an alarm via contact outputs or communications. This feature can be used to protect against both unauthorized and accidental access attempts.

The UNAUTHORIZED ACCESS operand is reset with the **COMMANDS** \Rightarrow **ULLAR RECORDS** \Rightarrow **ULLAR RECORDS** \Rightarrow **ULLAR RESET UNAUTHORIZED ALARMS** command. Therefore, to apply this feature with security, the command level should be password-protected. The operand does not generate events or targets.

If events or targets are required, the UNAUTHORIZED ACCESS operand can be assigned to a digital element programmed with event logs or targets enabled.

The access level timeout settings are shown below.

5 SETTINGS

$\textbf{PATH: SETTINGS} \Rightarrow \textbf{PRODUCT SETUP} \Rightarrow \textbf{SECURITY} \Rightarrow \textcircled{} \textbf{ACCESS SUPERVISION} \Rightarrow \textbf{ACCESS LEVEL TIMEOUTS}$

ACCESS	LEVEL			
TIMEOUTS				

MESSAGE

COMMAND LEVEL ACCESS TIMEOUT: 5 min SETTING LEVEL ACCESS TIMEOUT: 30 min

Range: 5 to 480 minutes in steps of 1

Range: 5 to 480 minutes in steps of 1

These settings allow the user to specify the length of inactivity required before returning to the restricted access level. Note that the access level will set as restricted if control power is cycled.

- **COMMAND LEVEL ACCESS TIMEOUT**: This setting specifies the length of inactivity (no local or remote access) required to return to restricted access from the command password level.
- **SETTING LEVEL ACCESS TIMEOUT**: This setting specifies the length of inactivity (no local or remote access) required to return to restricted access from the command password level.

5.2.2 DISPLAY PROPERTIES

DISPLAYPROPERTIES	LANGUAGE: English	Range:	English; English, French; English, Russian; English, Chinese (range dependent on order code)
MESSAGE	FLASH MESSAGE TIME: 1.0 s	Range:	
MESSAGE	DEFAULT MESSAGE TIMEOUT: 300 s	Range:	10 to 900 s in steps of 1
MESSAGE	DEFAULT MESSAGE INTENSITY: 25 %	Range:	25%, 50%, 75%, 100% Visible only if a VFD is installed
MESSAGE	SCREEN SAVER FEATURE: Disabled	Range:	Disabled, Enabled Visible only if an LCD is installed
MESSAGE	SCREEN SAVER WAIT TIME: 30 min	Range:	1 to 65535 min. in steps of 1 Visible only if an LCD is installed
MESSAGE	CURRENT CUT-OFF LEVEL: 0.020 pu	Range:	0.002 to 0.020 pu in steps of 0.001
MESSAGE	VOLTAGE CUT-OFF LEVEL: 1.0 V	Range:	0.1 to 1.0 V secondary in steps of 0.1

PATH: SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow \bigcirc DISPLAY PROPERTIES

Some relay messaging characteristics can be modified to suit different situations using the display properties settings.

- LANGUAGE: This setting selects the language used to display settings, actual values, and targets. The range is dependent on the order code of the relay.
- FLASH MESSAGE TIME: Flash messages are status, warning, error, or information messages displayed for several seconds in response to certain key presses during setting programming. These messages override any normal messages. The duration of a flash message on the display can be changed to accommodate different reading rates.
- DEFAULT MESSAGE TIMEOUT: If the keypad is inactive for a period of time, the relay automatically reverts to a
 default message. The inactivity time is modified via this setting to ensure messages remain on the screen long enough
 during programming or reading of actual values.
- **DEFAULT MESSAGE INTENSITY**: To extend phosphor life in the vacuum fluorescent display, the brightness can be attenuated during default message display. During keypad interrogation, the display always operates at full brightness.
- SCREEN SAVER FEATURE and SCREEN SAVER WAIT TIME: These settings are only visible if the L90 has a liquid crystal display (LCD) and control its backlighting. When the SCREEN SAVER FEATURE is "Enabled", the LCD backlighting is turned off after the DEFAULT MESSAGE TIMEOUT followed by the SCREEN SAVER WAIT TIME, providing that no keys have been pressed and no target messages are active. When a keypress occurs or a target becomes active, the LCD backlighting is turned on.

5.2 PRODUCT SETUP

- CURRENT CUT-OFF LEVEL: This setting modifies the current cut-off threshold. Very low currents (1 to 2% of the rated value) are very susceptible to noise. Some customers prefer very low currents to display as zero, while others prefer the current be displayed even when the value reflects noise rather than the actual signal. The L90 applies a cut-off value to the magnitudes and angles of the measured currents. If the magnitude is below the cut-off level, it is substituted with zero. This applies to phase and ground current phasors as well as true RMS values and symmetrical components. The cut-off operation applies to quantities used for metering, protection, and control, as well as those used by communications protocols. Note that the cut-off level for the sensitive ground input is 10 times lower that the CURRENT CUT-OFF LEVEL setting value. Raw current samples available via oscillography are not subject to cut-off. This setting does not affect the 87L metering cutoff, which is constantly at 0.02 pu.
- VOLTAGE CUT-OFF LEVEL: This setting modifies the voltage cut-off threshold. Very low secondary voltage measurements (at the fractional volt level) can be affected by noise. Some customers prefer these low voltages to be displayed as zero, while others prefer the voltage to be displayed even when the value reflects noise rather than the actual signal. The L90 applies a cut-off value to the magnitudes and angles of the measured voltages. If the magnitude is below the cut-off level, it is substituted with zero. This operation applies to phase and auxiliary voltages, and symmetrical components. The cut-off operation applies to quantities used for metering, protection, and control, as well as those used by communications protocols. Raw samples of the voltages available via oscillography are not subject cut-off.

The **CURRENT CUT-OFF LEVEL** and the **VOLTAGE CUT-OFF LEVEL** are used to determine the metered power cut-off levels. The power cut-off level is calculated as shown below. For Delta connections:

3-phase power cut-off =	$\sqrt{3}$ × CURRENT CUT-OFF LEVEL × VOLTAGE CUT-OFF LEVEL × VT primary × CT primary	
	VT secondary	(EQ 5.3)

For Wye connections:

3-phase power cut-off =	3 × CURRENT CUT-OFF LEVEL × VOLTAGE CUT-OFF LEVEL × VT primary × CT primary		
	VT secondary	(EQ 5.4)	

per-phase power cut-off = CURRENT CUT-OFF LEVEL × VOLTAGE CUT-OFF LEVEL × VT primary × CT primary VT secondary
(EQ 5.5)

where VT primary = VT secondary \times VT ratio and CT primary = CT secondary \times CT ratio.

For example, given the following settings:

CURRENT CUT-OFF LEVEL: "0.02 pu" VOLTAGE CUT-OFF LEVEL: "1.0 V" PHASE CT PRIMARY: "100 A" PHASE VT SECONDARY: "66.4 V" PHASE VT RATIO: "208.00 : 1" PHASE VT CONNECTION: "Delta".

We have:

CT primary = "100 A", and

VT primary = PHASE VT SECONDARY x PHASE VT RATIO = 66.4 V x 208 = 13811.2 V

The power cut-off is therefore:

power cut-off = (CURRENT CUT-OFF LEVEL × VOLTAGE CUT-OFF LEVEL × CT primary × VT primary)/VT secondary = $(\sqrt{3} \times 0.02 \text{ pu} \times 1.0 \text{ V} \times 100 \text{ A} \times 13811.2 \text{ V}) / 66.4 \text{ V}$ = 720.5 watts

Any calculated power value below this cut-off will not be displayed. As well, the three-phase energy data will not accumulate if the total power from all three phases does not exceed the power cut-off.

Lower the VOLTAGE CUT-OFF LEVEL and CURRENT CUT-OFF LEVEL with care as the relay accepts lower signals as valid measurements. Unless dictated otherwise by a specific application, the default settings of "0.02 pu" for CURRENT CUT-OFF LEVEL and "1.0 V" for VOLTAGE CUT-OFF LEVEL are recommended.

5

5.2.3 CLEAR RELAY RECORDS

CLEAR RELAY RECORDS		CLEAR FAULT REPORTS: Off	Range:	FlexLogic [™] operand
MESSA	GE	CLEAR EVENT RECORDS: Off	Range:	FlexLogic™ operand
MESSA	GE	CLEAR OSCILLOGRAPHY? No	Range:	FlexLogic™ operand
MESSA	GE	CLEAR DATA LOGGER: Off	Range:	FlexLogic™ operand
MESSA	GE	CLEAR ARC AMPS 1: Off	Range:	FlexLogic™ operand
MESSA	GE	CLEAR ARC AMPS 2: Off	Range:	FlexLogic™ operand
MESSA	GE	CLEAR DEMAND: Off	Range:	FlexLogic™ operand
MESSA	GE	CLEAR CHNL STATUS: Off	Range:	FlexLogic™ operand
MESSA	GE	CLEAR ENERGY: Off	Range:	FlexLogic™ operand
MESSA	GE 🛕	RESET UNAUTH ACCESS: Off	Range:	FlexLogic™ operand

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \bigcirc \bigcirc$ CLEAR RELAY RECORDS

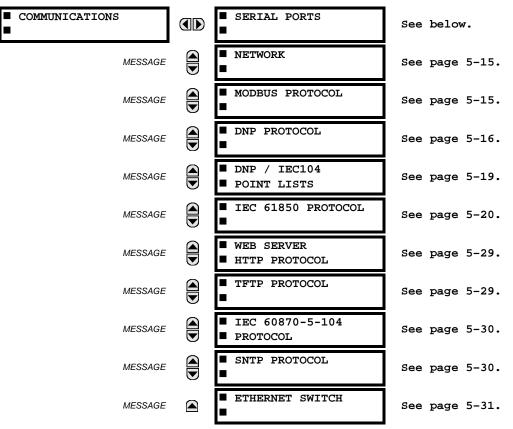
Selected records can be cleared from user-programmable conditions with FlexLogic[™] operands. Assigning user-programmable pushbuttons to clear specific records are typical applications for these commands. Since the L90 responds to rising edges of the configured FlexLogic[™] operands, they must be asserted for at least 50 ms to take effect.

Clearing records with user-programmable operands is not protected by the command password. However, user-programmable pushbuttons are protected by the command password. Thus, if they are used to clear records, the user-programmable pushbuttons can provide extra security if required.

For example, to assign User-Programmable Pushbutton 1 to clear demand records, the following settings should be applied.

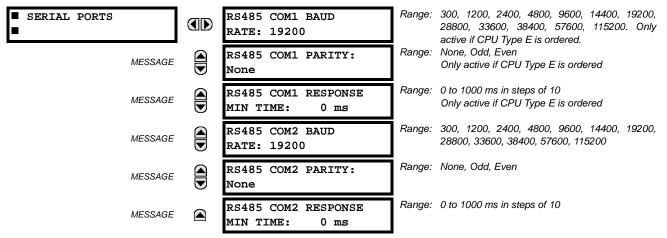
1. Assign the clear demand function to Pushbutton 1 by making the following change in the SETTINGS ⇒ PRODUCT SETUP ⇒ ⊕ CLEAR RELAY RECORDS menu:

CLEAR DEMAND: "PUSHBUTTON 1 ON"


2. Set the properties for User-Programmable Pushbutton 1 by making the following changes in the SETTINGS ⇒ PRODUCT SETUP ⇒ USER-PROGRAMMABLE PUSHBUTTONS ⇒ USER PUSHBUTTON 1 menu:

PUSHBUTTON 1 FUNCTION: "Self-reset" PUSHBTN 1 DROP-OUT TIME: "0.20 s"

5.2.4 COMMUNICATIONS

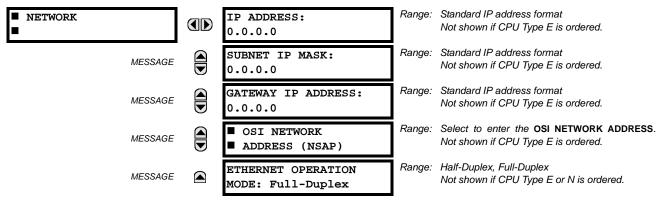

a) MAIN MENU

PATH: SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow \bigcirc COMMUNICATIONS

b) SERIAL PORTS

PATH: SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow \bigcirc COMMUNICATIONS \Rightarrow SERIAL PORTS

The L90 is equipped with up to three independent serial communication ports. The faceplate RS232 port is intended for local use and is fixed at 19200 baud and no parity. The rear COM1 port type is selected when ordering: either an Ethernet or RS485 port. The rear COM2 port is RS485. The RS485 ports have settings for baud rate and parity. It is important that these parameters agree with the settings used on the computer or other equipment that is connected to these ports. Any of


these ports may be connected to a computer running EnerVista UR Setup. This software can download and upload setting files, view measured parameters, and upgrade the relay firmware. A maximum of 32 relays can be daisy-chained and connected to a DCS, PLC or PC using the RS485 ports.

For each RS485 port, the minimum time before the port will transmit after receiving data from a host can be set. This feature allows operation with hosts which hold the RS485 transmitter active for some time after each transmission.

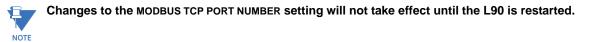
c) NETWORK

PATH: SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow \bigcirc COMMUNICATIONS \Rightarrow \bigcirc NETWORK

These messages appear only if the L90 is ordered with an Ethernet card.

The IP addresses are used with the DNP, Modbus/TCP, IEC 61580, IEC 60870-5-104, TFTP, and HTTP protocols. The NSAP address is used with the IEC 61850 protocol over the OSI (CLNP/TP4) stack only. Each network protocol has a setting for the TCP/UDP port number. These settings are used only in advanced network configurations and should normally be left at their default values, but may be changed if required (for example, to allow access to multiple UR-series relays behind a router). By setting a different **TCP/UDP PORT NUMBER** for a given protocol on each UR-series relay, the router can map the relays to the same external IP address. The client software (EnerVista UR Setup, for example) must be configured to use the correct port number if these settings are used.

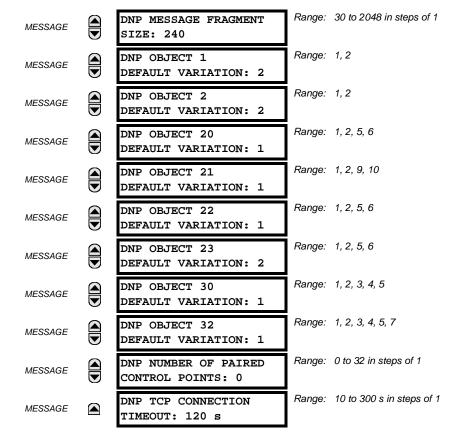
When the NSAP address, any TCP/UDP port number, or any user map setting (when used with DNP) is changed, it will not become active until power to the relay has been cycled (off-on).


Do not set more than one protocol to the same TCP/UDP PORT NUMBER, as this will result in unreliable operation of those protocols.

d) MODBUS PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow \bigcirc COMMUNICATIONS \Rightarrow \bigcirc MODBUS PROTOCOL

MODBUS PROTOCOL	MODBUS SLAVE ADDRESS: 254		1 to 254 in steps of 1
MESSAGE	MODBUS TCP PORT NUMBER: 502	Range:	1 to 65535 in steps of 1


The serial communication ports utilize the Modbus protocol, unless configured for DNP or IEC 60870-5-104 operation (see descriptions below). This allows the EnerVista UR Setup software to be used. The UR operates as a Modbus slave device only. When using Modbus protocol on the RS232 port, the L90 will respond regardless of the **MODBUS SLAVE ADDRESS** programmed. For the RS485 ports each L90 must have a unique address from 1 to 254. Address 0 is the broadcast address which all Modbus slave devices listen to. Addresses do not have to be sequential, but no two devices can have the same address or conflicts resulting in errors will occur. Generally, each device added to the link should use the next higher address starting at 1. Refer to Appendix B for more information on the Modbus protocol.

e) DNP PROTOCOL

DNP PROTOCOL		DNP CHANNELS	Range:	see sub-menu below
	MESSAGE	DNP ADDRESS: 65519	Range:	0 to 65519 in steps of 1
	MESSAGE	DNP NETWORKCLIENT ADDRESSES	Range:	see sub-menu below
	MESSAGE	DNP TCP/UDP PORT NUMBER: 20000	Range:	1 to 65535 in steps of 1
	MESSAGE	DNP UNSOL RESPONSE FUNCTION: Disabled	Range:	Enabled, Disabled
	MESSAGE	DNP UNSOL RESPONSE TIMEOUT: 5 s	Range:	0 to 60 s in steps of 1
	MESSAGE	DNP UNSOL RESPONSE MAX RETRIES: 10	Range:	1 to 255 in steps of 1
	MESSAGE	DNP UNSOL RESPONSE DEST ADDRESS: 1	Range:	0 to 65519 in steps of 1
	MESSAGE	DNP CURRENT SCALE FACTOR: 1	Range:	0.001, 0.01. 0.1, 1, 10, 100, 1000, 10000, 100000
	MESSAGE	DNP VOLTAGE SCALE FACTOR: 1	Range:	0.001, 0.01. 0.1, 1, 10, 100, 1000, 10000, 100000
	MESSAGE	DNP POWER SCALE FACTOR: 1	Range:	0.001, 0.01. 0.1, 1, 10, 100, 1000, 10000, 100000
	MESSAGE	DNP ENERGY SCALE FACTOR: 1	Range:	0.001, 0.01. 0.1, 1, 10, 100, 1000, 10000, 100000
	MESSAGE	DNP PF SCALE FACTOR: 1	Range:	0.001, 0.01. 0.1, 1, 10, 100, 1000, 10000, 100000
	MESSAGE	DNP OTHER SCALE FACTOR: 1	Range:	0.001, 0.01. 0.1, 1, 10, 100, 1000, 10000, 100000
	MESSAGE	DNP CURRENT DEFAULT DEADBAND: 30000	Range:	0 to 100000000 in steps of 1
	MESSAGE	DNP VOLTAGE DEFAULT DEADBAND: 30000	Range:	0 to 100000000 in steps of 1
	MESSAGE	DNP POWER DEFAULT DEADBAND: 30000	Range:	0 to 100000000 in steps of 1
	MESSAGE	DNP ENERGY DEFAULT DEADBAND: 30000	Range:	0 to 100000000 in steps of 1
	MESSAGE	DNP PF DEFAULT DEADBAND: 30000	Range:	0 to 100000000 in steps of 1
	MESSAGE	DNP OTHER DEFAULT DEADBAND: 30000	Range:	0 to 100000000 in steps of 1
	MESSAGE	DNP TIME SYNC IIN PERIOD: 1440 min	Range:	1 to 10080 min. in steps of 1

The L90 supports the Distributed Network Protocol (DNP) version 3.0. The L90 can be used as a DNP slave device connected to multiple DNP masters (usually an RTU or a SCADA master station). Since the L90 maintains two sets of DNP data change buffers and connection information, two DNP masters can actively communicate with the L90 at one time.

The IEC 60870-5-104 and DNP protocols cannot be simultaneously. When the IEC 60870-5-104 FUNCTION setting is set to "Enabled", the DNP protocol will not be operational. When this setting is changed it will not NOTE become active until power to the relay has been cycled (off-to-on).

The DNP Channels sub-menu is shown below.

PATH: SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow \bigcirc COMMUNICATIONS \Rightarrow \bigcirc DNP PROTOCOL \Rightarrow DNP CHANNELS

DNP CHANNELS	DNP CHANNEL 1 PORT: NETWORK	Range:	NONE, COM1 - RS485, COM2 - RS485, FRONT PANEL - RS232, NETWORK - TCP, NETWORK - UDP
MESSAGE	DNP CHANNEL 2 PORT: COM2 - RS485	Range:	NONE, COM1 - RS485, COM2 - RS485, FRONT PANEL - RS232, NETWORK - TCP, NETWORK - UDP

The DNP CHANNEL 1 PORT and DNP CHANNEL 2 PORT settings select the communications port assigned to the DNP protocol for each channel. Once DNP is assigned to a serial port, the Modbus protocol is disabled on that port. Note that COM1 can be used only in non-Ethernet UR relays. When this setting is set to "Network - TCP", the DNP protocol can be used over TCP/IP on channels 1 or 2. When this value is set to "Network - UDP", the DNP protocol can be used over UDP/IP on channel 1 only. Refer to Appendix E for additional information on the DNP protocol.

Ħ

Changes to the DNP CHANNEL 1 PORT and DNP CHANNEL 2 PORT settings will take effect only after power has been cycled to the relay.

The DNP NETWORK CLIENT ADDRESS settings can force the L90 to respond to a maximum of five specific DNP masters. The settings in this sub-menu are shown below.

Range: standard IP address DNP NETWORK CLIENT ADDRESS 1: CLIENT ADDRESSES 0.0.0.0 Range: standard IP address CLIENT ADDRESS 2: MESSAGE 0.0.0.0 Range: standard IP address CLIENT ADDRESS 3: MESSAGE 0.0.0.0 Range: standard IP address CLIENT ADDRESS 4: MESSAGE 0.0.0.0 Range: standard IP address CLIENT ADDRESS 5: MESSAGE 0.0.0.0

PATH: SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow \clubsuit COMMUNICATIONS \Rightarrow \clubsuit DNP PROTOCOL \Rightarrow DNP NETWORK CLIENT ADDRESSES

The **DNP UNSOL RESPONSE FUNCTION** should be "Disabled" for RS485 applications since there is no collision avoidance mechanism. The **DNP UNSOL RESPONSE TIMEOUT** sets the time the L90 waits for a DNP master to confirm an unsolicited response. The **DNP UNSOL RESPONSE MAX RETRIES** setting determines the number of times the L90 retransmits an unsolicited response without receiving confirmation from the master; a value of "255" allows infinite re-tries. The **DNP UNSOL RESPONSE DEST ADDRESS** is the DNP address to which all unsolicited responses are sent. The IP address to which unsolicited responses are sent is determined by the L90 from the current TCP connection or the most recent UDP message.

The DNP scale factor settings are numbers used to scale analog input point values. These settings group the L90 analog input data into the following types: current, voltage, power, energy, power factor, and other. Each setting represents the scale factor for all analog input points of that type. For example, if the DNP VOLTAGE SCALE FACTOR setting is set to "1000", all DNP analog input points that are voltages will be returned with values 1000 times smaller (for example, a value of 72000 V on the L90 will be returned as 72). These settings are useful when analog input values must be adjusted to fit within certain ranges in DNP masters. Note that a scale factor of 0.1 is equivalent to a multiplier of 10 (that is, the value will be 10 times larger).

The **DNP DEFAULT DEADBAND** settings determine when to trigger unsolicited responses containing analog input data. These settings group the L90 analog input data into the following types: current, voltage, power, energy, power factor, and other. Each setting represents the default deadband value for all analog input points of that type. For example, to trigger unsolicited responses from the L90 when any current values change by 15 A, the **DNP CURRENT DEFAULT DEADBAND** setting should be set to "15". Note that these settings are the deadband default values. DNP object 34 points can be used to change deadband values, from the default, for each individual DNP analog input point. Whenever power is removed and re-applied to the L90, the default deadbands will be in effect.

The **DNP TIME SYNC IIN PERIOD** setting determines how often the Need Time Internal Indication (IIN) bit is set by the L90. Changing this time allows the DNP master to send time synchronization commands more or less often, as required.

The **DNP MESSAGE FRAGMENT SIZE** setting determines the size, in bytes, at which message fragmentation occurs. Large fragment sizes allow for more efficient throughput; smaller fragment sizes cause more application layer confirmations to be necessary which can provide for more robust data transfer over noisy communication channels.

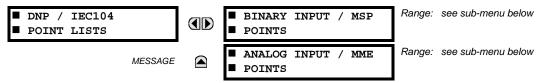
When the DNP data points (analog inputs and/or binary inputs) are configured for Ethernet-enabled relays, check the "DNP Points Lists" L90 web page to view the points lists. This page can be viewed with a web browser by entering the L90 IP address to access the L90 "Main Menu", then by selecting the "Device Information Menu" > "DNP Points Lists" menu item.

The **DNP OBJECT 1 DEFAULT VARIATION** to **DNP OBJECT 32 DEFAULT VARIATION** settings allow the user to select the DNP default variation number for object types 1, 2, 20, 21, 22, 23, 30, and 32. The default variation refers to the variation response when variation 0 is requested and/or in class 0, 1, 2, or 3 scans. Refer to the *DNP implementation* section in appendix E for additional details.

The DNP binary outputs typically map one-to-one to IED data points. That is, each DNP binary output controls a single physical or virtual control point in an IED. In the L90 relay, DNP binary outputs are mapped to virtual inputs. However, some legacy DNP implementations use a mapping of one DNP binary output to two physical or virtual control points to support the concept of trip/close (for circuit breakers) or raise/lower (for tap changers) using a single control point. That is, the DNP master can operate a single point for both trip and close, or raise and lower, operations. The L90 can be configured to sup-

port paired control points, with each paired control point operating two virtual inputs. The **DNP NUMBER OF PAIRED CONTROL POINTS** setting allows configuration of from 0 to 32 binary output paired controls. Points not configured as paired operate on a one-to-one basis.

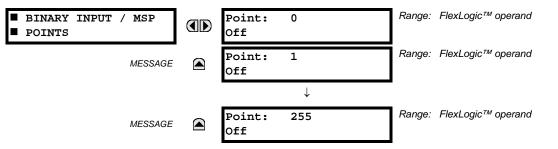
The **DNP ADDRESS** setting is the DNP slave address. This number identifies the L90 on a DNP communications link. Each DNP slave should be assigned a unique address.


The **DNP TCP CONNECTION TIMEOUT** setting specifies a time delay for the detection of dead network TCP connections. If there is no data traffic on a DNP TCP connection for greater than the time specified by this setting, the connection will be aborted by the L90. This frees up the connection to be re-used by a client.

NOTE

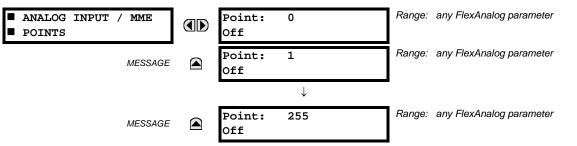
Relay power must be re-cycled after changing the **DNP TCP CONNECTION TIMEOUT** setting for the changes to take effect.

f) DNP / IEC 60870-5-104 POINT LISTS


PATH: SETTINGS ⇔ PRODUCT SETUP ⇔ ⊕ COMMUNICATIONS ⇔ ⊕ DNP / IEC104 POINT LISTS

The binary and analog inputs points for the DNP protocol, or the MSP and MME points for IEC 60870-5-104 protocol, can configured to a maximum of 256 points. The value for each point is user-programmable and can be configured by assigning FlexLogic[™] operands for binary inputs / MSP points or FlexAnalog parameters for analog inputs / MME points.

The menu for the binary input points (DNP) or MSP points (IEC 60870-5-104) is shown below.

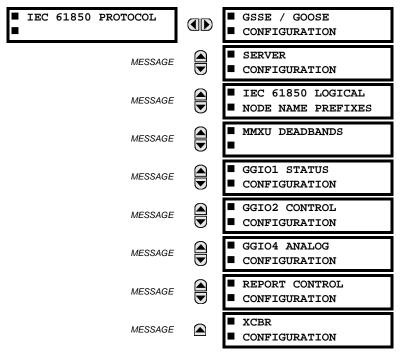

PATH: SETTINGS ⇔ PRODUCT SETUP ⇔ ⊕ COMMUNICATIONS ⇔ ⊕ DNP / IEC104 POINT LISTS ⇔ BINARY INPUT / MSP POINTS

Up to 256 binary input points can be configured for the DNP or IEC 60870-5-104 protocols. The points are configured by assigning an appropriate $FlexLogic^{TM}$ operand. Refer to the *Introduction to FlexLogicTM* section in this chapter for the full range of assignable operands.

The menu for the analog input points (DNP) or MME points (IEC 60870-5-104) is shown below.

 $\textbf{PATH: SETTINGS} \Leftrightarrow \textbf{PRODUCT SETUP} \Rightarrow \emptyset \textbf{ COMMUNICATIONS} \Rightarrow \emptyset \textbf{ DNP / IEC104 POINT LISTS} \Rightarrow \emptyset \textbf{ ANALOG INPUT / MME POINTS}$

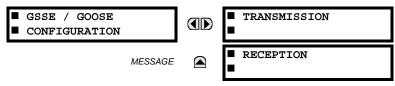
Up to 256 analog input points can be configured for the DNP or IEC 60870-5-104 protocols. The analog point list is configured by assigning an appropriate FlexAnalog parameter to each point. Refer to Appendix A: *FlexAnalog Parameters* for the full range of assignable parameters. NOTE


The DNP / IEC 60870-5-104 point lists always begin with point 0 and end at the first "Off" value. Since DNP / IEC 60870-5-104 point lists must be in one continuous block, any points assigned after the first "Off" point are ignored.

Changes to the DNP / IEC 60870-5-104 point lists will not take effect until the L90 is restarted.

g) IEC 61850 PROTOCOL

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ ⊕ COMMUNICATIONS ⇒ ⊕ IEC 61850 PROTOCOL



The L90 Line Current Differential System is provided with optional IEC 61850 communications capability. This feature is specified as a software option at the time of ordering. Refer to the *Ordering* section of chapter 2 for additional details. The IEC 61850 protocol features are not available if CPU type E is ordered.

The L90 supports the Manufacturing Message Specification (MMS) protocol as specified by IEC 61850. MMS is supported over two protocol stacks: TCP/IP over ethernet and TP4/CLNP (OSI) over ethernet. The L90 operates as an IEC 61850 server. The *Remote inputs and outputs* section in this chapter describe the peer-to-peer GSSE/GOOSE message scheme.

The GSSE/GOOSE configuration main menu is divided into two areas: transmission and reception.

 $\textbf{PATH: SETTINGS} \Rightarrow \textbf{PRODUCT SETUP} \Rightarrow \clubsuit \textbf{ COMMUNICATIONS} \Rightarrow \clubsuit \textbf{ IEC 61850 PROTOCOL} \Rightarrow \textbf{GSSE/GOOSE CONFIGURATION}$

The main transmission menu is shown below:

PATH: SETTINGS ⇔ PRODUCT SETUP ⇔ ♣ COMMUNICATIONS ⇔ ♣ IEC 61850 PROTOCOL ⇔ GSSE/GOOSE... ⇔ TRANSMISSION

TRANSMISSION	GENERAL
MESSAGE	■ GSSE ■
MESSAGE	■ FIXED GOOSE
MESSAGE	CONFIGURABLEGOOSE

The general transmission settings are shown below:

 $\mathsf{PATH:} \mathsf{SETTINGS} \Rightarrow \mathsf{PRODUCT} \mathsf{SETUP} \Rightarrow \Downarrow \mathsf{COMMUNICATIONS} \Rightarrow \Downarrow \mathsf{IEC} \mathsf{ 61850...} \Rightarrow \mathsf{GSSE/GOOSE...} \Rightarrow \mathsf{TRANSMISSION} \Rightarrow \mathsf{GENERAL}$

The **DEFAULT GSSE/GOOSE UPDATE TIME** sets the time between GSSE or GOOSE messages when there are no remote output state changes to be sent. When remote output data changes, GSSE or GOOSE messages are sent immediately. This setting controls the steady-state *heartbeat* time interval.

The DEFAULT GSSE/GOOSE UPDATE TIME setting is applicable to GSSE, fixed L90 GOOSE, and configurable GOOSE.

The GSSE settings are shown below:

 $\mathsf{PATH:} \mathsf{SETTINGS} \Leftrightarrow \mathsf{PRODUCT} \mathsf{SETUP} \Rightarrow \Downarrow \mathsf{COMMUNICATIONS} \Rightarrow \Downarrow \mathsf{IEC} \mathsf{ 61850...} \Rightarrow \mathsf{GSSE/GOOSE...} \Rightarrow \mathsf{TRANSMISSION} \Rightarrow \Downarrow \mathsf{GSEE} \mathsf{ GSEE} \mathsf GSEE \mathsf GSEE \mathsf GSEE \mathsf GSEE \mathsf GSEE \mathsf GSEE \mathsf GSEE \mathsf G$

GSSE	GSSE FUNCTION: Enabled	Range: Enabled, Disabled
MESSAGE	GSSE ID: GSSEOut	Range: 65-character ASCII string
MESSAGE	DESTINATION MAC: 000000000000	Range: standard MAC address

These settings are applicable to GSSE only. If the fixed GOOSE function is enabled, GSSE messages are not transmitted.

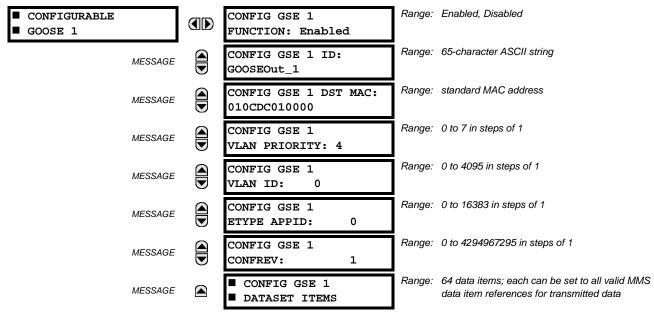
The **GSSE ID** setting represents the IEC 61850 GSSE application ID name string sent as part of each GSSE message. This string identifies the GSSE message to the receiving device. In L90 releases previous to 5.0x, this name string was represented by the **RELAY NAME** setting.

The fixed GOOSE settings are shown below:

 $\mathsf{PATH:} \mathsf{SETTINGS} \Leftrightarrow \mathsf{PRODUCT...} \Leftrightarrow \texttt{U} \mathsf{ COMMUNICATIONS} \Leftrightarrow \texttt{U} \mathsf{ IEC 61850...} \Leftrightarrow \mathsf{GSSE/GOOSE...} \Leftrightarrow \mathsf{TRANSMISSION} \Rightarrow \texttt{U} \mathsf{ FIXED GOOSE} \mathsf{ COMMUNICATIONS} \Rightarrow \texttt{U} \mathsf{ IEC 61850...} \Rightarrow \mathsf{COMMUNICATIONS} \Rightarrow \mathsf{U} \mathsf{ IEC 61850...} \Rightarrow \mathsf{COMMUNICATIONS} \Rightarrow \mathsf{U} \mathsf{ IEC 61850...} \Rightarrow \mathsf{COMMUNICATIONS} \Rightarrow \mathsf{U} \mathsf{ IEC 61850...} \Rightarrow \mathsf{ IEC 61850...} \Rightarrow \mathsf$

■ FIXED GOOSE	GOOSE FUNCTION: Disabled	Range:	Enabled, Disabled
MESSAGE	GOOSE ID: GOOSEOut	Range:	65-character ASCII string
MESSAGE	DESTINATION MAC: 000000000000	Range:	standard MAC address
MESSAGE	GOOSE VLAN PRIORITY: 4	Range:	0 to 7 in steps of 1
MESSAGE	GOOSE VLAN ID: 0	Range:	0 to 4095 in steps of 1
MESSAGE	GOOSE ETYPE APPID: 0	Range:	0 to 16383 in steps of 1

These settings are applicable to fixed (DNA/UserSt) GOOSE only.


The **GOOSE ID** setting represents the IEC 61850 GOOSE application ID (GoID) name string sent as part of each GOOSE message. This string identifies the GOOSE message to the receiving device. In revisions previous to 5.0x, this name string was represented by the **RELAY NAME** setting.

The **DESTINATION MAC** setting allows the destination Ethernet MAC address to be set. This address must be a multicast address; the least significant bit of the first byte must be set. In L90 releases previous to 5.0x, the destination Ethernet MAC address was determined automatically by taking the sending MAC address (that is, the unique, local MAC address of the L90) and setting the multicast bit.

The **GOOSE VLAN PRIORITY** setting indicates the Ethernet priority of GOOSE messages. This allows GOOSE messages to have higher priority than other Ethernet data. The **GOOSE ETYPE APPID** setting allows the selection of a specific application ID for each GOOSE sending device. This value can be left at its default if the feature is not required. Both the **GOOSE VLAN PRIORITY** and **GOOSE ETYPE APPID** settings are required by IEC 61850.

The configurable GOOSE settings are shown below.

PATH: SETTINGS... ⇔ ^① COMMUNICATIONS ⇔ ^① IEC 61850... ⇔ GSSE... ⇔ TRANSMISSION ⇔ ^① CONFIGURABLE GOOSE 1(8)

The configurable GOOSE settings allow the L90 to be configured to transmit a number of different datasets within IEC 61850 GOOSE messages. Up to eight different configurable datasets can be configured and transmitted. This is useful for intercommunication between L90 IEDs and devices from other manufacturers that support IEC 61850.

The configurable GOOSE feature allows for the configuration of the datasets to be transmitted or received from the L90. The L90 supports the configuration of eight (8) transmission and reception datasets, allowing for the optimization of data transfer between devices.

Items programmed for dataset 1 will have changes in their status transmitted as soon as the change is detected. Dataset 1 should be used for high-speed transmission of data that is required for applications such as transfer tripping, blocking, and breaker fail initiate. At least one digital status value needs to be configured in dataset 1 to enable transmission of all data configured for dataset 1. Configuring analog data only to dataset 1 will not activate transmission.

Items programmed for datasets 2 through 8 will have changes in their status transmitted at a maximum rate of every 100 ms. Datasets 2 through 8 will regularly analyze each data item configured within them every 100 ms to identify if any changes have been made. If any changes in the data items are detected, these changes will be transmitted through a GOOSE message. If there are no changes detected during this 100 ms period, no GOOSE message will be sent.

For all datasets 1 through 8, the integrity GOOSE message will still continue to be sent at the pre-configured rate even if no changes in the data items are detected.

The GOOSE functionality was enhanced to prevent the relay from flooding a communications network with GOOSE messages due to an oscillation being created that is triggering a message. The L90 has the ability of detecting if a data item in one of the GOOSE datasets is erroneously oscillating. This can be caused by events such as errors in logic programming, inputs improperly being asserted and de-asserted, or failed station components. If erroneously oscillation is detected, the L90 will stop sending GOOSE messages from the dataset for a minimum period of one second. Should the oscillation persist after the one second time-out period, the L90 will continue to block transmission of the dataset. The L90 will assert the MAINTENANCE ALERT: GGIO Ind XXX oscill self-test error message on the front panel display, where XXX denotes the data item detected as oscillating.

The configurable GOOSE feature is recommended for applications that require GOOSE data transfer between UR-series IEDs and devices from other manufacturers. Fixed GOOSE is recommended for applications that require GOOSE data transfer between UR-series IEDs.

IEC 61850 GOOSE messaging contains a number of configurable parameters, all of which must be correct to achieve the successful transfer of data. It is critical that the configured datasets at the transmission and reception devices are an exact match in terms of data structure, and that the GOOSE addresses and name strings match exactly. Manual configuration is possible, but third-party substation configuration software may be used to automate the process. The EnerVista UR Setup-software can produce IEC 61850 ICD files and import IEC 61850 SCD files produced by a substation configurator (refer to the *IEC 61850 IED configuration* section later in this appendix).

The following example illustrates the configuration required to transfer IEC 61850 data items between two devices. The general steps required for transmission configuration are:

- 1. Configure the transmission dataset.
- 2. Configure the GOOSE service settings.
- 3. Configure the data.

The general steps required for reception configuration are:

- 1. Configure the reception dataset.
- 2. Configure the GOOSE service settings.
- 3. Configure the data.

This example shows how to configure the transmission and reception of three IEC 61850 data items: a single point status value, its associated quality flags, and a floating point analog value.

The following procedure illustrates the transmission configuration.

- 1. Configure the transmission dataset by making the following changes in the PRODUCT SETUP ⇔ ⊕ COMMUNICATION ⇔ ⊕ IEC 61850 PROTOCOL ⇔ GSSE/GOOSE CONFIGURATION ⇔ TRANSMISSION ⇔ ⊕ CONFIGURABLE GOOSE ⇒ CONFIGURABLE GOOSE 1 ⇔ ⊕ CONFIG GSE 1 DATASET ITEMS settings menu:
 - Set ITEM 1 to "GGIO1.ST.Ind1.q" to indicate quality flags for GGIO1 status indication 1.
 - Set ITEM 2 to "GGIO1.ST.Ind1.stVal" to indicate the status value for GGIO1 status indication 1.

The transmission dataset now contains a set of quality flags and a single point status Boolean value. The reception dataset on the receiving device must exactly match this structure.

- 2. Configure the GOOSE service settings by making the following changes in the PRODUCT SETUP ⇔⊕ COMMUNICATION ⇔⊕ IEC 61850 PROTOCOL ⇔ GSSE/GOOSE CONFIGURATION ⇔ TRANSMISSION ⇔⊕ CONFIGURABLE GOOSE ⇔ CONFIGU-RABLE GOOSE 1 settings menu:
 - Set CONFIG GSE 1 FUNCTION to "Enabled".
 - Set CONFIG GSE 1 ID to an appropriate descriptive string (the default value is "GOOSEOut_1").
 - Set CONFIG GSE 1 DST MAC to a multicast address (for example, 01 00 00 12 34 56).
 - Set the CONFIG GSE 1 VLAN PRIORITY; the default value of "4" is OK for this example.
 - Set the CONFIG GSE 1 VLAN ID value; the default value is "0", but some switches may require this value to be "1".
 - Set the CONFIG GSE 1 ETYPE APPID value. This setting represents the ETHERTYPE application ID and must match the configuration on the receiver (the default value is "0").
 - Set the CONFIG GSE 1 CONFREV value. This value changes automatically as described in IEC 61850 part 7-2. For this example it can be left at its default value.

5.2 PRODUCT SETUP

- 3. Configure the data by making the following changes in the **PRODUCT SETUP** ⇒ ^① **COMMUNICATION** ⇒ ^① **IEC 61850 PROTO-COL** ⇒ **GGIO1 STATUS CONFIGURATION** settings menu:
 - Set GGIO1 INDICATION 1 to a FlexLogic[™] operand used to provide the status of GGIO1.ST.Ind1.stVal (for example, a contact input, virtual input, a protection element status, etc.).
- The L90 must be rebooted (control power removed and re-applied) before these settings take effect.

The following procedure illustrates the reception configuration.

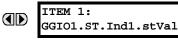
- 1. Configure the reception dataset by making the following changes in the PRODUCT SETUP ⇔⊕ COMMUNICATION ⇔⊕ IEC 61850 PROTOCOL ⇔ GSSE/GOOSE CONFIGURATION ⇔⊕ RECEPTION ⇔⊕ CONFIGURABLE GOOSE ⇔ CONFIGURABLE GOOSE 1 ⇔⊕ CONFIG GSE 1 DATASET ITEMS settings menu:
 - Set ITEM 1 to "GGIO3.ST.Ind1.q" to indicate quality flags for GGIO3 status indication 1.
 - Set ITEM 2 to "GGIO3.ST.Ind1.stVal" to indicate the status value for GGIO3 status indication 1.

The reception dataset now contains a set of quality flags, a single point status Boolean value, and a floating point analog value. This matches the transmission dataset configuration above.

- 2. Configure the GOOSE service settings by making the following changes in the INPUTS/OUTPUTS ⇔ ♣ REMOTE DEVICES ⇔ ♣ REMOTE DEVICE 1 settings menu:
 - Set **REMOTE DEVICE 1 ID** to match the GOOSE ID string for the transmitting device. Enter "GOOSEOut_1".
 - Set REMOTE DEVICE 1 ETYPE APPID to match the ETHERTYPE application ID from the transmitting device. This is "0" in the example above.
 - Set the REMOTE DEVICE 1 DATASET value. This value represents the dataset number in use. Since we are using configurable GOOSE 1 in this example, program this value as "GOOSEIn 1".
- 3. Configure the data by making the following changes in the INPUTS/OUTPUTS ⇔ ♣ REMOTE INPUT 1 settings menu:
 - Set REMOTE IN 1 DEVICE to "GOOSEOut_1".
 - Set **REMOTE IN 1 ITEM** to "Dataset Item 2". This assigns the value of the GGIO3.ST.Ind1.stVal single point status item to remote input 1.

Remote input 1 can now be used in FlexLogic[™] equations or other settings. The L90 must be rebooted (control power removed and re-applied) before these settings take effect.

The value of remote input 1 (Boolean on or off) in the receiving device will be determined by the GGIO1.ST.Ind1.stVal value in the sending device. The above settings will be automatically populated by the EnerVista UR Setup software when a complete SCD file is created by third party substation configurator software.


For intercommunication between L90 IEDs, the fixed (DNA/UserSt) dataset can be used. The DNA/UserSt dataset contains the same DNA and UserSt bit pairs that are included in GSSE messages. All GOOSE messages transmitted by the L90 (DNA/UserSt dataset and configurable datasets) use the IEC 61850 GOOSE messaging services (for example, VLAN support).

Set the **CONFIG GSE 1 FUNCTION** function to "Disabled" when configuration changes are required. Once changes are entered, return the **CONFIG GSE 1 FUNCTION** to "Enabled" and restart the unit for changes to take effect.

PATH:...TRANSMISSION ⇔↓ CONFIGURABLE GOOSE 1(8) ⇔↓ CONIFIG GSE 1(64) DATA TIMES ⇔ ITEM 1(64)

CONFIG GSE 1
DATASET ITEMS

Range: 1.stVal

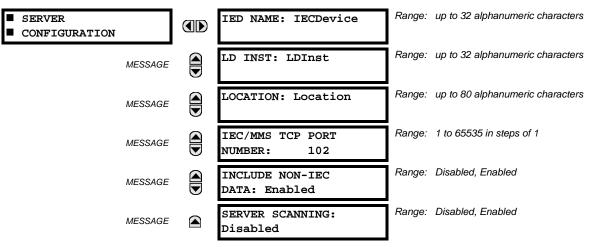
Range: all valid MMS data item references for transmitted data

To create a configurable GOOSE dataset that contains an IEC 61850 Single Point Status indication and its associated quality flags, the following dataset items can be selected: "GGIO1.ST.Ind1.stVal" and "GGIO1.ST.Ind1.q". The L90 will then create a dataset containing these two data items. The status value for GGIO1.ST.Ind1.stVal is determined by the FlexLogic[™] operand assigned to GGIO1 indication 1. Changes to this operand will result in the transmission of GOOSE messages containing the defined dataset. The main reception menu is applicable to configurable GOOSE only and contains the configurable GOOSE dataset items for reception:

PATH:...RECEPTION ⇔ ⊕ CONFIGURABLE GOOSE 1(8) ⇔ ⊕ CONIFIG GSE 1(64) DATA ITEMS

CONFIG GSE 1	ITEM 1:	Range:	
DATASET ITEMS	GGI01.ST.Ind1.stVal		transmitted data

The configurable GOOSE settings allow the L90 to be configured to receive a number of different datasets within IEC 61850 GOOSE messages. Up to eight different configurable datasets can be configured for reception. This is useful for intercommunication between L90 IEDs and devices from other manufacturers that support IEC 61850.


For intercommunication between L90 IEDs, the fixed (DNA/UserSt) dataset can be used. The DNA/UserSt dataset contains the same DNA and UserSt bit pairs that are included in GSSE messages.

To set up a L90 to receive a configurable GOOSE dataset that contains two IEC 61850 single point status indications, the following dataset items can be selected (for example, for configurable GOOSE dataset 1): "GGIO3.ST.Ind1.stVal" and "GGIO3.ST.Ind2.stVal". The L90 will then create a dataset containing these two data items. The Boolean status values from these data items can be utilized as remote input FlexLogic[™] operands. First, the **REMOTE DEVICE 1(16) DATASET** setting must be set to contain dataset "GOOSEIn 1" (that is, the first configurable dataset). Then **REMOTE IN 1(16) ITEM** settings must be set to "Dataset Item 1" and "Dataset Item 2". These remote input FlexLogic[™] operands will then change state in accordance with the status values of the data items in the configured dataset.

Floating point analog values originating from MMXU logical nodes may be included in GOOSE datasets. Deadband (noninstantaneous) values can be transmitted. Received values are used to populate the GGIO3.XM.AnIn1 and higher items. Received values are also available as FlexAnalog parameters (GOOSE analog In1 and up).

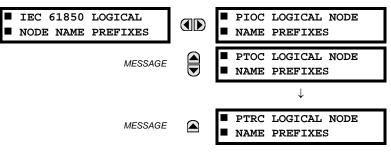
The main menu for the IEC 61850 server configuration is shown below.

PATH: SETTINGS ⇔ PRODUCT SETUP ⇔ ⊕ COMMUNICATIONS ⇔ ⊕ IEC 61850 PROTOCOL ⇔ ⊕ SERVER CONFIGURATION

The IED NAME and LD INST settings represent the MMS domain name (IEC 61850 logical device) where all IEC/MMS logical nodes are located. Valid characters for these values are upper and lowercase letters, numbers, and the underscore (_) character, and the first character in the string must be a letter. This conforms to the IEC 61850 standard. The LOCATION is a variable string and can be composed of ASCII characters. This string appears within the PhyName of the LPHD node.

The IEC/MMS TCP PORT NUMBER setting allows the user to change the TCP port number for MMS connections. The INCLUDE NON-IEC DATA setting determines whether or not the "UR" MMS domain will be available. This domain contains a large number of UR-series specific data items that are not available in the IEC 61850 logical nodes. This data does not follow the IEC 61850 naming conventions. For communications schemes that strictly follow the IEC 61850 standard, this setting should be "Disabled".

The **SERVER SCANNING** feature should be set to "Disabled" when IEC 61850 client/server functionality is not required. IEC 61850 has two modes of functionality: GOOSE/GSSE inter-device communication and client/server communication. If the GOOSE/GSSE functionality is required without the IEC 61850 client server feature, then server scanning can be disabled to increase CPU resources. When server scanning is disabled, there will be not updated to the IEC 61850 logical node status values in the L90. Clients will still be able to connect to the server (L90 relay), but most data values will not be updated. This setting does not affect GOOSE/GSSE operation.


5.2 PRODUCT SETUP

NOTE

Changes to the IED NAME setting, LD INST setting, and GOOSE dataset will not take effect until the L90 is restarted.

The main menu for the IEC 61850 logical node name prefixes is shown below.

PATH: SETTINGS ⇔ PRODUCT SETUP ⇔ ♣ COMMUNICATIONS ⇔ ♣ IEC 61850... ⇔ ♣ IEC 61850 LOGICAL NODE NAME PREFIXES

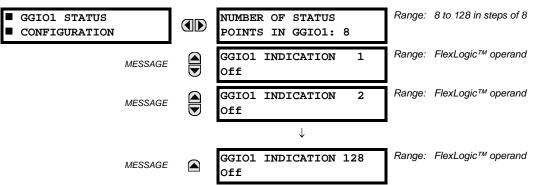
The IEC 61850 logical node name prefix settings are used to create name prefixes to uniquely identify each logical node. For example, the logical node "PTOC1" may have the name prefix "abc". The full logical node name will then be "abcMMXU1". Valid characters for the logical node name prefixes are upper and lowercase letters, numbers, and the underscore (_) character, and the first character in the prefix must be a letter. This conforms to the IEC 61850 standard.

Changes to the logical node prefixes will not take effect until the L90 is restarted.

The main menu for the IEC 61850 MMXU deadbands is shown below.

$\textbf{PATH: SETTINGS} \Rightarrow \textbf{PRODUCT SETUP} \Rightarrow \textcircled{0} \textbf{ COMMUNICATIONS} \Rightarrow \textcircled{0} \textbf{ IEC 61850 PROTOCOL} \Rightarrow \textcircled{0} \textbf{ MMXU DEADBANDS}$

MMXU DEADBANDS	MMXU1 DEADBANDS
MESSAGE	MMXU2 DEADBANDS
MESSAGE	MMXU3 DEADBANDS
MESSAGE	MMXU4 DEADBANDS


The MMXU deadband settings represent the deadband values used to determine when the update the MMXU "mag" and "cVal" values from the associated "instmag" and "instcVal" values. The "mag" and "cVal" values are used for the IEC 61850 buffered and unbuffered reports. These settings correspond to the associated "db" data items in the CF functional constraint of the MMXU logical node, as per the IEC 61850 standard. According to IEC 61850-7-3, the db value "shall represent the percentage of difference between the maximum and minimum in units of 0.001%". Thus, it is important to know the maximum value for each MMXU measured quantity, since this represents the 100.00% value for the deadband.

The minimum value for all quantities is 0; the maximum values are as follows:

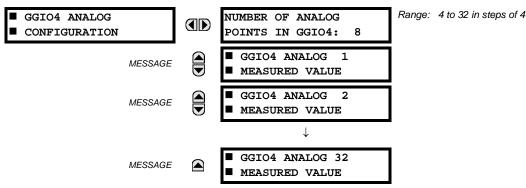
- phase current: 46 × phase CT primary setting
- neutral current: 46 × ground CT primary setting
- voltage: 275 × VT ratio setting
- power (real, reactive, and apparent): 46 × phase CT primary setting × 275 × VT ratio setting
- frequency: 90 Hz
- power factor: 2

The GGIO1 status configuration points are shown below:

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ ⊕ COMMUNICATIONS ⇒ ⊕ IEC 61850... ⇒ ⊕ GGIO1 STATUS CONFIGURATION

The NUMBER OF STATUS POINTS IN GGIO1 setting specifies the number of "Ind" (single point status indications) that are instantiated in the GGIO1 logical node. Changes to the NUMBER OF STATUS POINTS IN GGIO1 setting will not take effect until the L90 is restarted.

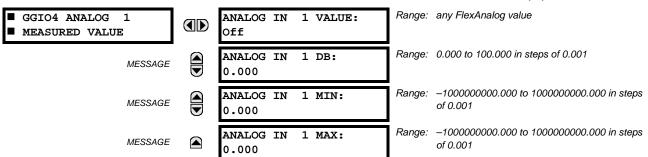
The GGIO2 control configuration points are shown below:


PATH: SETTINGS ⇔ PRODUCT SETUP ⇔ ♣ COMMUNICATIONS ⇔ ♣ IEC 61850... ⇔ ♣ GGIO2 CONTROL... ⇔ GGIO2 CF SPSCO 1(64)

■ GGIO2 CF SPCSO 1	GGIO2 CF SPCSO 1 CTLMODEL 1	Range: 0, 1, or 2
	CTLMODEL: 1	

The GGIO2 control configuration settings are used to set the control model for each input. The available choices are "0" (status only), "1" (direct control), and "2" (SBO with normal security). The GGIO2 control points are used to control the L90 virtual inputs.

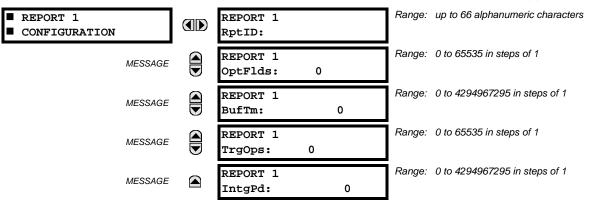
The GGIO4 analog configuration points are shown below:


PATH: SETTINGS ⇔ PRODUCT SETUP ⇔ ♣ COMMUNICATIONS ⇔ ♣ IEC 61850... ⇔ ♣ GGIO4 ANALOG CONFIGURATION

The **NUMBER OF ANALOG POINTS** setting determines how many analog data points will exist in GGIO4. When this value is changed, the L90 must be rebooted in order to allow the GGIO4 logical node to be re-instantiated and contain the newly configured number of analog points.

The measured value settings for each of the 32 analog values are shown below.

$\textbf{PATH: SETTINGS} \Rightarrow \textbf{PRODUCT...} \Rightarrow \textcircled{O} \textbf{ COMMUNICATIONS} \Rightarrow \textcircled{O} \textbf{ IEC 61850...} \Rightarrow \textcircled{O} \textbf{ GGIO4...} \Rightarrow \textbf{ GGIO4 ANALOG 1(32) MEASURED VALUE}$

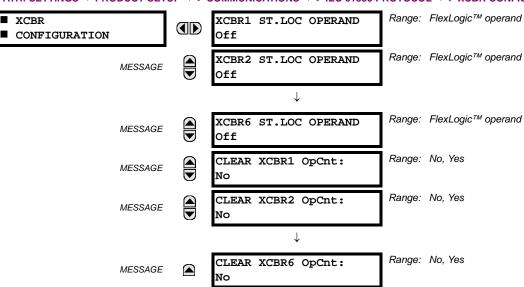

These settings are configured as follows.

- ANALOG IN 1 VALUE: This setting selects the FlexAnalog value to drive the instantaneous value of each GGIO4 analog status value (GGIO4.MX.AnIn1.instMag.f).
- **ANALOG IN 1 DB**: This setting specifies the deadband for each analog value. Refer to IEC 61850-7-1 and 61850-7-3 for details. The deadband is used to determine when to update the deadbanded magnitude from the instantaneous magnitude. The deadband is a percentage of the difference between the maximum and minimum values.
- ANALOG IN 1 MIN: This setting specifies the minimum value for each analog value. Refer to IEC 61850-7-1 and 61850-7-3 for details. This minimum value is used to determine the deadband. The deadband is used in the determination of the deadbanded magnitude from the instantaneous magnitude.
- ANALOG IN 1 MAX: This setting defines the maximum value for each analog value. Refer to IEC 61850-7-1 and 61850-7-3 for details. This maximum value is used to determine the deadband. The deadband is used in the determination of the deadbanded magnitude from the instantaneous magnitude.

Note that the ANALOG IN 1 MIN and ANALOG IN 1 MAX settings are stored as IEEE 754 / IEC 60559 floating point numbers. Because of the large range of these settings, not all values can be stored. Some values may be rounded to the closest possible floating point number.

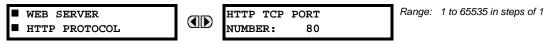
The report control configuration settings are shown below:

PATH: SETTINGS ⇔ PRODUCT SETUP ⇔ ⊕ COMMUNICATIONS ⇔ ⊕ IEC 61850... ⇔ ⊕ REPORT... ⇔ REPORT 1(6) CONFIGURATION



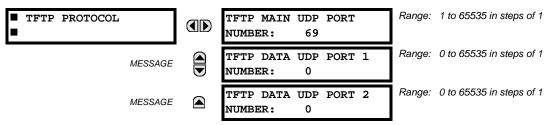
Changes to the report configuration will not take effect until the L90 is restarted.

Please disconnect any IEC 61850 client connection to the L90 prior to making setting changes to the report configuration. Disconnecting the rear Ethernet connection from the L90 will disconnect the IEC 61850 client connection. The breaker configuration settings are shown below. Changes to these values will not take effect until the UR is restarted:


The **CLEAR XCBR1 OpCnt** setting represents the breaker operating counter. As breakers operate by opening and closing, the XCBR operating counter status attribute (OpCnt) increments with every operation. Frequent breaker operation may result in very large OpCnt values over time. This setting allows the OpCnt to be reset to "0" for XCBR1.

Since GSSE/GOOSE messages are multicast Ethernet by specification, they will not usually be forwarded by network routers. However, GOOSE messages may be fowarded by routers if the router has been configured for VLAN functionality.

h) WEB SERVER HTTP PROTOCOL


PATH: SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow \bigcirc COMMUNICATIONS \Rightarrow \bigcirc WEB SERVER HTTP PROTOCOL

The L90 contains an embedded web server and is capable of transferring web pages to a web browser such as Microsoft Internet Explorer or Mozilla Firefox. This feature is available only if the L90 has the ethernet option installed. The web pages are organized as a series of menus that can be accessed starting at the L90 "Main Menu". Web pages are available showing DNP and IEC 60870-5-104 points lists, Modbus registers, event records, fault reports, etc. The web pages can be accessed by connecting the UR and a computer to an ethernet network. The main menu will be displayed in the web browser on the computer simply by entering the IP address of the L90 into the "Address" box on the web browser.

i) TFTP PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow \bigcirc COMMUNICATIONS \Rightarrow \bigcirc TFTP PROTOCOL

The Trivial File Transfer Protocol (TFTP) can be used to transfer files from the L90 over a network. The L90 operates as a TFTP server. TFTP client software is available from various sources, including Microsoft Windows NT. The dir.txt file obtained from the L90 contains a list and description of all available files (event records, oscillography, etc.).

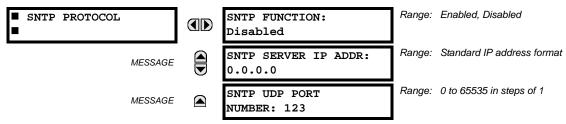
j) IEC 60870-5-104 PROTOCOL

Range: Enabled, Disabled IEC 60870-5-104 IEC 60870-5-104 PROTOCOL FUNCTION: Disabled Range: 1 to 65535 in steps of 1 IEC TCP PORT MESSAGE NUMBER: 2404 IEC NETWORK MESSAGE CLIENT ADDRESSES Range: 0 to 65535 in steps of 1 IEC COMMON ADDRESS MESSAGE OF ASDU: 0 Range: 1 to 65535 s in steps of 1 IEC CYCLIC DATA MESSAGE PERIOD: 60 s IEC CURRENT DEFAULT Range: 0 to 65535 in steps of 1 MESSAGE THRESHOLD: 30000 Range: 0 to 65535 in steps of 1 IEC VOLTAGE DEFAULT MESSAGE THRESHOLD: 30000 Range: 0 to 65535 in steps of 1 IEC POWER DEFAULT MESSAGE THRESHOLD: 30000 Range: 0 to 65535 in steps of 1 IEC ENERGY DEFAULT MESSAGE THRESHOLD: 30000 Range: 0 to 65535 in steps of 1 IEC OTHER DEFAULT MESSAGE THRESHOLD: 30000

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ ♣ COMMUNICATIONS ⇒ ♣ IEC 60870-5-104 PROTOCOL

The L90 supports the IEC 60870-5-104 protocol. The L90 can be used as an IEC 60870-5-104 slave device connected to a maximum of two masters (usually either an RTU or a SCADA master station). Since the L90 maintains two sets of IEC 60870-5-104 data change buffers, no more than two masters should actively communicate with the L90 at one time.

The IEC ----- DEFAULT THRESHOLD settings are used to determine when to trigger spontaneous responses containing M_ME_NC_1 analog data. These settings group the L90 analog data into types: current, voltage, power, energy, and other. Each setting represents the default threshold value for all M_ME_NC_1 analog points of that type. For example, to trigger spontaneous responses from the L90 when any current values change by 15 A, the IEC CURRENT DEFAULT THRESHOLD setting should be set to 15. Note that these settings are the default values of the deadbands. P_ME_NC_1 (parameter of measured value, short floating point value) points can be used to change threshold values, from the default, for each individual M_ME_NC_1 analog point. Whenever power is removed and re-applied to the L90, the default thresholds will be in effect.


The IEC 60870-5-104 and DNP protocols cannot be used simultaneously. When the IEC 60870-5-104 FUNCTION setting is set to "Enabled", the DNP protocol will not be operational. When this setting is changed it will not become active until power to the relay has been cycled (off-to-on).

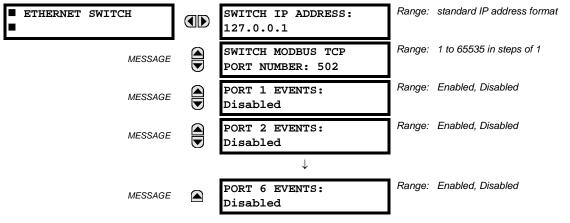
k) SNTP PROTOCOL

E

NOTE

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ ^① COMMUNICATIONS ⇒ ^① SNTP PROTOCOL

The L90 supports the Simple Network Time Protocol specified in RFC-2030. With SNTP, the L90 can obtain clock time over an Ethernet network. The L90 acts as an SNTP client to receive time values from an SNTP/NTP server, usually a dedicated product using a GPS receiver to provide an accurate time. Both unicast and broadcast SNTP are supported.


If SNTP functionality is enabled at the same time as IRIG-B, the IRIG-B signal provides the time value to the L90 clock for as long as a valid signal is present. If the IRIG-B signal is removed, the time obtained from the SNTP server is used. If either SNTP or IRIG-B is enabled, the L90 clock value cannot be changed using the front panel keypad.

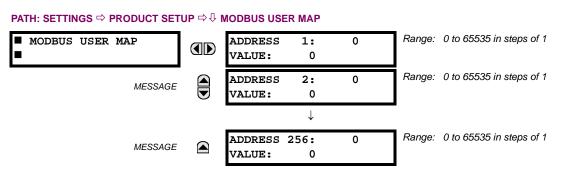
To use SNTP in unicast mode, **SNTP SERVER IP ADDR** must be set to the SNTP/NTP server IP address. Once this address is set and **SNTP FUNCTION** is "Enabled", the L90 attempts to obtain time values from the SNTP/NTP server. Since many time values are obtained and averaged, it generally takes three to four minutes until the L90 clock is closely synchronized with the SNTP/NTP server. It may take up to two minutes for the L90 to signal an SNTP self-test error if the server is offline.

To use SNTP in broadcast mode, set the **SNTP SERVER IP ADDR** setting to "0.0.0.0" and **SNTP FUNCTION** to "Enabled". The L90 then listens to SNTP messages sent to the "all ones" broadcast address for the subnet. The L90 waits up to eighteen minutes (>1024 seconds) without receiving an SNTP broadcast message before signaling an SNTP self-test error.

The UR-series relays do not support the multicast or anycast SNTP functionality.

I) ETHERNET SWITCH

PATH: SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow \bigcirc COMMUNICATIONS \Rightarrow \bigcirc ETHERNET SWITCH


These settings appear only if the L90 is ordered with an Ethernet switch module (type 2S or 2T).

The IP address and Modbus TCP port number for the Ethernet switch module are specified in this menu. These settings are used in advanced network configurations. Please consult the network administrator before making changes to these settings. The client software (EnerVista UR Setup, for example) is the preferred interface to configure these settings.

The **PORT 1 EVENTS** through **PORT 6 EVENTS** settings allow Ethernet switch module events to be logged in the event recorder.

5.2.5 MODBUS USER MAP

5

The Modbus user map provides read-only access for up to 256 registers. To obtain a memory map value, enter the desired address in the **ADDRESS** line (this value must be converted from hex to decimal format). The corresponding value is displayed in the **VALUE** line. A value of "0" in subsequent register **ADDRESS** lines automatically returns values for the previous **ADDRESS** lines incremented by "1". An address value of "0" in the initial register means "none" and values of "0" will be displayed for all registers. Different **ADDRESS** values can be entered as required in any of the register positions.

5.2.6 REAL TIME CLOCK

REAL TIMECLOCK	IRIG-B SIGNAL TYPE: None	Range:	None, DC Shift, Amplitude Modulated
MESSAGE	REAL TIME CLOCK EVENTS: Disabled	Range:	Disabled, Enabled
MESSAGE	LOCAL TIME OFFSET FROM UTC: 0.0 hrs	Range:	–24.0 to 24.0 hrs in steps of 0.5
MESSAGE	DAYLIGHT SAVINGS TIME: Disabled	Range:	Disabled, Enabled
MESSAGE	DST START MONTH: April	Range:	January to December (all months)
MESSAGE	DST START DAY: Sunday	Range:	Sunday to Saturday (all days of the week)
MESSAGE	DST START DAY INSTANCE: First	Range:	First, Second, Third, Fourth, Last
MESSAGE	DST START HOUR: 2:00	Range:	0:00 to 23:00
MESSAGE	DST STOP MONTH: April	Range:	January to December (all months)
MESSAGE	DST STOP DAY: Sunday	Range:	Sunday to Saturday (all days of the week)
MESSAGE	DST STOP DAY INSTANCE: First	Range:	First, Second, Third, Fourth, Last
MESSAGE	DST STOP HOUR: 2:00	Range:	0:00 to 23:00

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ ^①, REAL TIME CLOCK

If the L90 Channel Asymmetry function is enabled, the IRIG-B input must be connected to the GPS receiver and the proper receiver signal type assigned.

The date and time can be synchronized a known time base and to other relays using an IRIG-B signal. It has the same accuracy as an electronic watch, approximately ± 1 minute per month. If an IRIG-B signal is connected to the relay, only the current year needs to be entered. See the **COMMANDS** \Rightarrow \mathbb{Q} **SET DATE AND TIME** menu to manually set the relay clock.

The REAL TIME CLOCK EVENTS setting allows changes to the date and/or time to be captured in the event record.

The LOCAL TIME OFFSET FROM UTC setting is used to specify the local time zone offset from Universal Coordinated Time (Greenwich Mean Time) in hours. This setting has two uses. When the L90 is time synchronized with IRIG-B, or has no permanent time synchronization, the offset is used to calculate UTC time for IEC 61850 features. When the L90 is time synchronized with SNTP, the offset is used to determine the local time for the L90 clock, since SNTP provides UTC time.

The daylight savings time (DST) settings can be used to allow the L90 clock can follow the DST rules of the local time zone. Note that when IRIG-B time synchronization is active, the DST settings are ignored. The DST settings are used when the L90 is synchronized with SNTP, or when neither SNTP nor IRIG-B is used.

Only timestamps in the event recorder and communications protocols are affected by the daylight savings time settings. The reported real-time clock value does not change.

5

 FAULT REPORT 1 	FAULT REPORT 1 SOURCE: SRC 1	Range: SRC 1, SRC 2, SRC 3, SRC 4
MESSAGE	FAULT REPORT 1 TRIG: Off	Range: FlexLogic™ operand
MESSAGE	FAULT REPORT 1 Z1 MAG: 3.00 Ω	Range: 0.01 to 250.00 ohms in steps of 0.01
MESSAGE	FAULT REPORT 1 Z1 ANGLE: 75°	Range: 25 to 90° in steps of 1
MESSAGE	FAULT REPORT 1 Z0 MAG: 9.00 Ω	Range: 0.01 to 650.00 ohms in steps of 0.01
MESSAGE	FAULT REPORT 1 Z0 ANGLE: 75°	Range: 25 to 90° in steps of 1
MESSAGE	FAULT REPORT 1 LINE LENGTH UNITS: km	Range: km, miles
MESSAGE	FAULT REP 1 LENGTH (km): 100.0	Range: 0.0 to 2000.0 in steps of 0.1
MESSAGE	FAULT REP 1 REM1-TAP Z1 MAG: 3.00 Ω	Range: 0.01 to 250.00 ohms in steps of 0.01
MESSAGE	FAULT REP 1 REM1-TAP Z1 ANG: 75°	Range: 25 to 90° in steps of 1
MESSAGE	FAULT REP 1 REM1-TAP LENGTH (km): 100.0	Range: 0.0 to 2000.0 in steps of 0.1
MESSAGE	FAULT REP 1 REM2-TAP Z1 MAG: 3.00 Ω	Range: 0.01 to 250.00 ohms in steps of 0.01
MESSAGE	FAULT REP 1 REM2-TAP Z1 ANG: 75°	Range: 25 to 90° in steps of 1
MESSAGE	FAULT REP 1 REM2-TAP LENGTH (km): 100.0	Range: 0.0 to 2000.0 in steps of 0.1
MESSAGE	FAULT REPORT 1 VT SUBSTITUTION: None	Range: None, I0, V0
MESSAGE	FAULT REP 1 SYSTEM Z0 MAG: 2.00 Ω	Range: 0.01 to 650.00 ohms in steps of 0.01
MESSAGE	FAULT REP 1 SYSTEM Z0 ANGLE: 75°	Range: 25 to 90° in steps of 1

PATH: SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow \bigcirc FAULT REPORTS \Rightarrow FAULT REPORT 1

The L90 incorporates a multi-ended fault locator method based on the synchronized voltage and current measurements at all ends of the transmission line. This makes it possible to compute the fault location without assumptions or approximations. This fault locator method is applicable on both two-terminal and three-terminal applications, with results computed independently at each terminal. For three-terminal line applications, the fault locator is reports the exact line segment at which the fault occurred and the distance to the fault from the terminal adjacent to the fault.

if charging current compensation is configured and enabled, the line charging current is removed at each terminal for improved accuracy.

During communication channel failures, the L90 uses the single-ended algorithm to calculate and report fault location. When the single-ended algorithm is used for three-terminal line applications, the faulted segment of the line is not determined and reported.

The L90 relay supports one fault report and an associated fault locator. The signal source and trigger condition, as well as the characteristics of the line or feeder, are entered in this menu.

The fault report stores data, in non-volatile memory, pertinent to an event when triggered. The captured data contained in the FaultReport.txt file includes:

- Fault report number
- Name of the relay, programmed by the user
- Firmware revision of the relay
- Date and time of trigger
- Name of trigger (specific operand)
- Line/feeder ID via the name of a configured signal source
- Active setting group at the time of trigger
- Pre-fault current and voltage phasors (two cycles before either a 50DD disturbance associated with fault report source or the trigger operate)
- Fault current and voltage phasors (one cycle after the trigger)
- Elements operated at the time of triggering
- Events: 9 before trigger and 7 after trigger (only available via the relay webpage)
- Fault duration times for each breaker (created by the breaker arcing current feature)

The captured data also includes the fault type and the distance to the fault location, as well as the reclose shot number (when applicable) To include fault duration times in the fault report, the user must enable and configure breaker arcing current feature for each of the breakers. Fault duration is reported on a per-phase basis.

The relay allows locating faults, including ground faults, from delta-connected VTs. In this case, the missing zero-sequence voltage is substituted either by the externally provided neutral voltage (broken delta VT) connected to the auxiliary voltage channel of a VT bank, or by the zero-sequence voltage approximated as a voltage drop developed by the zero-sequence current, and user-provided zero-sequence equivalent impedance of the system behind the relay.

The trigger can be any FlexLogic[™] operand, but in most applications it is expected to be the same operand, usually a virtual output, that is used to drive an output relay to trip a breaker. To prevent the overwriting of fault events, the disturbance detector should not be used to trigger a fault report. A FAULT RPT TRIG event is automatically created when the report is triggered.

If a number of protection elements are ORed to create a fault report trigger, the first operation of any element causing the OR gate output to become high triggers a fault report. However, If other elements operate during the fault and the first operated element has not been reset (the OR gate output is still high), the fault report is not triggered again. Considering the reset time of protection elements, there is very little chance that fault report can be triggered twice in this manner. As the fault report must capture a usable amount of pre and post-fault data, it can not be triggered faster than every 20 ms.

Each fault report is stored as a file; the relay capacity is fifteen (15) files. An sixteenth (16th) trigger overwrites the oldest file.

The EnerVista UR Setup software is required to view all captured data. The relay faceplate display can be used to view the date and time of trigger, the fault type, the distance location of the fault, and the reclose shot number.

The **FAULT REPORT 1 SOURCE** setting selects the source for input currents and voltages and disturbance detection. For dualbreaker applications where the line current is supplied individually from two breaker CTs, the fault locator source should include the sum of currents from both CTs as well as the line voltage.

The FAULT 1 REPORT TRIG setting assigns the FlexLogic[™] operand representing the protection element/elements requiring operational fault location calculations. The distance to fault calculations are initiated by this signal. The FAULT REPORT 1 Z1 MAG and FAULT REPORT 1 Z0 MAG impedances are entered in secondary ohms.

For a two-terminal line application, the FAULT REPORT 1 Z1 MAG, FAULT REPORT 1 Z1 ANG, FAULT REPORT 1 Z0 MAG, FAULT REPORT 1 Z0 MAG and FAULT REPORT 1 LENGTH settings for the entire line must to be entered for fault location calculations. For a three-terminal application, these settings are used to enter the line segment impedance and length from the local terminal to the tap point only.

The FAULT REP 1 REM1-TAP Z1 MAG and FAULT REP 1 REM1-TAP Z1 ANG settings are used for three-terminal applications to enter positive sequence section impedances (in secondary ohms) for the line segment from remote terminal 1 to the tap point. The length of the line section from remote terminal 1 to the tap point is entered in the FAULT REP 1 REM1-TAP LENGTH setting.

The FAULT REP 1 REM2-TAP Z1 MAG, FAULT REP 1 REM2-TAP Z1 ANG, and FAULT REP 1 REM2-TAP LENGTH settings are used as above, but for the line segment from remote terminal 2 to the tap point.

The FAULT REPORT 1 VT SUBSTITUTION setting shall be set to "None" if the relay is fed from wye-connected VTs. If delta-connected VTs are used, and the relay is supplied with the neutral (3V0) voltage, this setting shall be set to "V0". The method is still exact, as the fault locator would combine the line-to-line voltage measurements with the neutral voltage measurement to re-create the line-to-ground voltages. See the ACTUAL VALUES \Rightarrow RECORDS \Rightarrow FAULT REPORTS menu for additional details. It required to configure the delta and neutral voltages under the source indicated as input for the fault report. Also, the relay will check if the auxiliary signal configured is marked as "Vn" by the user (under VT setup), and inhibit the fault location if the auxiliary signal is labeled differently.

If the broken-delta neutral voltage is not available to the relay, an approximation is possible by assuming the missing zero-sequence voltage to be an inverted voltage drop produced by the zero-sequence current and the user-specified equivalent zero-sequence system impedance behind the relay: $V0 = -Z0 \times 10$. In order to enable this mode of operation, the **FAULT REPORT 1 VT SUBSTITUTION** setting shall be set to "10".

The FAULT REP 1 SYSTEM Z0 MAG and FAULT REP 1 SYSTEM Z0 ANGLE settings are used only when the VT SUBSTITUTION setting value is "I0". The magnitude is to be entered in secondary ohms. This impedance is an average system equivalent behind the relay. It can be calculated as zero-sequence Thevenin impedance at the local bus with the protected line/feeder disconnected. The method is accurate only if this setting matches perfectly the actual system impedance during the fault. If the system exhibits too much variability, this approach is questionable and the fault location results for single-line-to-ground faults shall be trusted with accordingly. It should be kept in mind that grounding points in vicinity of the installation impact the system zero-sequence impedance (grounded loads, reactors, zig-zag transformers, shunt capacitor banks, etc.).

NOTE

For proper operation of the multi-ended fault locator, the nominal primary voltage is expected to appear identical at all line terminals as seen from the nominal secondary voltage, VT ratio, and VT connection settings of the first 87L source.

5.2.8 OSCILLOGRAPHY

a) MAIN MENU

Range: 1 to 64 in steps of 1 OSCILLOGRAPHY NUMBER OF RECORDS: 15 Range: Automatic Overwrite, Protected TRIGGER MODE: MESSAGE Automatic Overwrite Range: 0 to 100% in steps of 1 TRIGGER POSITION: MESSAGE 50% Range: FlexLogic[™] operand TRIGGER SOURCE: MESSAGE Off Range: Off; 8, 16, 32, 64 samples/cycle AC INPUT WAVEFORMS: MESSAGE 16 samples/cycle DIGITAL CHANNELS MESSAGE ANALOG CHANNELS MESSAGE

PATH: SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow \bigcirc OSCILLOGRAPHY

GE Multilin

Oscillography records contain waveforms captured at the sampling rate as well as other relay data at the point of trigger. Oscillography records are triggered by a programmable FlexLogic[™] operand. Multiple oscillography records may be captured simultaneously.

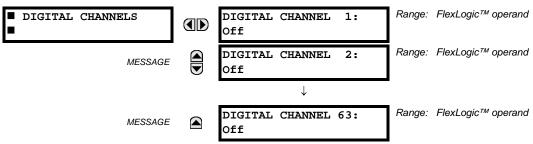
The **NUMBER OF RECORDS** is selectable, but the number of cycles captured in a single record varies considerably based on other factors such as sample rate and the number of operational modules. There is a fixed amount of data storage for oscillography; the more data captured, the less the number of cycles captured per record. See the **ACTUAL VALUES** $\Rightarrow \oplus$ **RECORDS** $\Rightarrow \oplus$ **OSCILLOGRAPHY** menu to view the number of cycles captured per record. The following table provides sample configurations with corresponding cycles/record.

RECORDS	CT/VTS	SAMPLE RATE	DIGITALS	ANALOGS	CYCLES/ RECORD
1	1	8	0	0	1872.0
1	1	16	16	0	1685.0
8	1	16	16	0	276.0
8	1	16	16	4	219.5
8	2	16	16	4	93.5
8	2	16	64	16	93.5
8	2	32	64	16	57.6
8	2	64	64	16	32.3
32	2	64	64	16	9.5

Table 5–1: OSCILLOGRAPHY CYCLES/RECORD EXAMPLE

A new record may automatically overwrite an older record if TRIGGER MODE is set to "Automatic Overwrite".

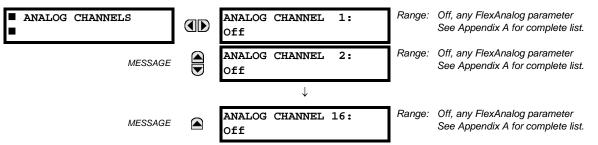
Set the **TRIGGER POSITION** to a percentage of the total buffer size (for example, 10%, 50%, 75%, etc.). A trigger position of 25% consists of 25% pre- and 75% post-trigger data. The **TRIGGER SOURCE** is always captured in oscillography and may be any FlexLogic[™] parameter (element state, contact input, virtual output, etc.). The relay sampling rate is 64 samples per cycle.


The AC INPUT WAVEFORMS setting determines the sampling rate at which AC input signals (that is, current and voltage) are stored. Reducing the sampling rate allows longer records to be stored. This setting has no effect on the internal sampling rate of the relay which is always 64 samples per cycle; that is, it has no effect on the fundamental calculations of the device.

When changes are made to the oscillography settings, all existing oscillography records will be CLEARED.

b) DIGITAL CHANNELS

WARNIN


PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ ↓ OSCILLOGRAPHY ⇒ ↓ DIGITAL CHANNELS

A **DIGITAL 1(63) CHANNEL** setting selects the FlexLogic[™] operand state recorded in an oscillography trace. The length of each oscillography trace depends in part on the number of parameters selected here. Parameters set to "Off" are ignored. Upon startup, the relay will automatically prepare the parameter list.

c) ANALOG CHANNELS

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ ↓ OSCILLOGRAPHY ⇒ ↓ ANALOG CHANNELS

These settings select the metering actual value recorded in an oscillography trace. The length of each oscillography trace depends in part on the number of parameters selected here. Parameters set to "Off" are ignored. The parameters available in a given relay are dependent on:

- The type of relay,
- The type and number of CT/VT hardware modules installed, et
- The type and number of analog input hardware modules installed.

Upon startup, the relay will automatically prepare the parameter list. A list of all possible analog metering actual value parameters is presented in Appendix A: *FlexAnalog parameters*. The parameter index number shown in any of the tables is used to expedite the selection of the parameter on the relay display. It can be quite time-consuming to scan through the list of parameters via the relay keypad and display - entering this number via the relay keypad will cause the corresponding parameter to be displayed.

All eight CT/VT module channels are stored in the oscillography file. The CT/VT module channels are named as follows:

<slot_letter><terminal_number>---<l or V><phase A, B, or C, or 4th input>

The fourth current input in a bank is called IG, and the fourth voltage input in a bank is called VX. For example, F2-IB designates the IB signal on terminal 2 of the CT/VT module in slot F.

If there are no CT/VT modules and analog input modules, no analog traces will appear in the file; only the digital traces will appear.

5.2.9 DATA LOGGER

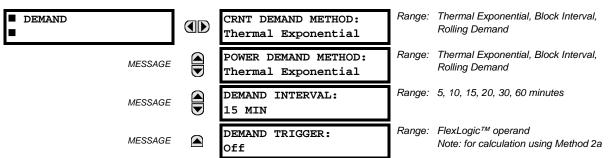
PATH: SETTINGS 🖓 🖗 PRODUCT SETUP 🖓 🖗 DATA LOGGER						
DATA LOGGER		DATA LOGGER MODE: Continuous	Range: Continuous, Trigger			
MESSAGE		DATA LOGGER TRIGGER: Off	Range: FlexLogic™ operand			
MESSAGE		DATA LOGGER RATE: 60000 ms	Range: 15 to 3600000 ms in steps of 1			
MESSAGE		DATA LOGGER CHNL 1: Off	Range: Off, any FlexAnalog parameter. See Appendix A: FlexAnalog Parameters for complete list.			
MESSAGE		DATA LOGGER CHNL 2: Off	Range: Off, any FlexAnalog parameter. See Appendix A: FlexAnalog Parameters for complete list.			
		\downarrow				
MESSAGE		DATA LOGGER CHNL 16: Off	Range: Off, any FlexAnalog parameter. See Appendix A: FlexAnalog Parameters for complete list.			
MESSAGE		DATA LOGGER CONFIG: 0 CHNL x 0.0 DAYS	Range: Not applicable - shows computed data only			

PATH: SETTINGS ⇔ ♣ PRODUCT SETUP ⇒ ♣ DATA LOGGER

The data logger samples and records up to 16 analog parameters at a user-defined sampling rate. This recorded data may be downloaded to EnerVista UR Setup and displayed with *parameters* on the vertical axis and *time* on the horizontal axis. All data is stored in non-volatile memory, meaning that the information is retained when power to the relay is lost.

For a fixed sampling rate, the data logger can be configured with a few channels over a long period or a larger number of channels for a shorter period. The relay automatically partitions the available memory between the channels in use. Example storage capacities for a system frequency of 60 Hz are shown in the following table.

SAMPLING RATE	CHANNELS	DAYS	STORAGE CAPACITY
15 ms	1	0.1	954 s
	8	0.1	120 s
	9	0.1	107 s
	16	0.1	60 s
1000 ms	1	0.7	65457 s
	8	0.1	8182 s
	9	0.1	7273 s
	16	0.1	4091 s
60000 ms	1	45.4	3927420 s
	8	5.6	490920 s
	9	5	436380 s
	16	2.8	254460 s
3600000 ms	1	2727.5	235645200 s
	8	340.9	29455200 s
	9	303	26182800 s


Table 5–2: DATA LOGGER STORAGE CAPACITY EXAMPLE

NOTE

Changing any setting affecting data logger operation will clear any data that is currently in the log.

- DATA LOGGER MODE: This setting configures the mode in which the data logger will operate. When set to "Continuous", the data logger will actively record any configured channels at the rate as defined by the DATA LOGGER RATE. The data logger will be idle in this mode if no channels are configured. When set to "Trigger", the data logger will begin to record any configured channels at the instance of the rising edge of the DATA LOGGER TRIGGER source FlexLogicTM operand. The data logger will ignore all subsequent triggers and will continue to record data until the active record is full. Once the data logger is full a CLEAR DATA LOGGER Command is required to clear the data logger record before a new record can be started. Performing the CLEAR DATA LOGGER command will also stop the current record and reset the data logger to be ready for the next trigger.
- DATA LOGGER TRIGGER: This setting selects the signal used to trigger the start of a new data logger record. Any FlexLogic[™] operand can be used as the trigger source. The DATA LOGGER TRIGGER setting only applies when the mode is set to "Trigger".
- DATA LOGGER RATE: This setting selects the time interval at which the actual value data will be recorded.
- DATA LOGGER CHNL 1(16): This setting selects the metering actual value that is to be recorded in Channel 1(16) of the data log. The parameters available in a given relay are dependent on: the type of relay, the type and number of CT/ VT hardware modules installed, and the type and number of Analog Input hardware modules installed. Upon startup, the relay will automatically prepare the parameter list. A list of all possible analog metering actual value parameters is shown in Appendix A: *FlexAnalog Parameters*. The parameter index number shown in any of the tables is used to expedite the selection of the parameter on the relay display. It can be quite time-consuming to scan through the list of parameters via the relay keypad/display entering this number via the relay keypad will cause the corresponding parameter to be displayed.
- DATA LOGGER CONFIG: This display presents the total amount of time the Data Logger can record the channels not selected to "Off" without over-writing old data.

PATH: SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow \bigcirc DEMAND

The relay measures current demand on each phase, and three-phase demand for real, reactive, and apparent power. Current and Power methods can be chosen separately for the convenience of the user. Settings are provided to allow the user to emulate some common electrical utility demand measuring techniques, for statistical or control purposes. If the CRNT DEMAND METHOD is set to "Block Interval" and the DEMAND TRIGGER is set to "Off", Method 2 is used (see below). If DEMAND TRIGGER is assigned to any other FlexLogic[™] operand, Method 2a is used (see below).

The relay can be set to calculate demand by any of three methods as described below:

CALCULATION METHOD 1: THERMAL EXPONENTIAL

This method emulates the action of an analog peak recording thermal demand meter. The relay measures the quantity (RMS current, real power, reactive power, or apparent power) on each phase every second, and assumes the circuit quantity remains at this value until updated by the next measurement. It calculates the 'thermal demand equivalent' based on the following equation:

$$d(t) = D(1 - e^{-kt})$$
 (EQ 5.6)

where: d = demand value after applying input quantity for time *t* (in minutes) D = input quantity (constant), and k = 2.3 / thermal 90% response time.

The 90% thermal response time characteristic of 15 minutes is illustrated below. A setpoint establishes the time to reach 90% of a steady-state value, just as the response time of an analog instrument. A steady state value applied for twice the response time will indicate 99% of the value.

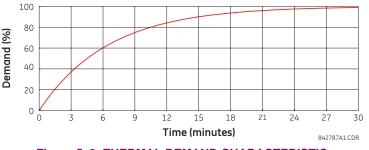


Figure 5–3: THERMAL DEMAND CHARACTERISTIC

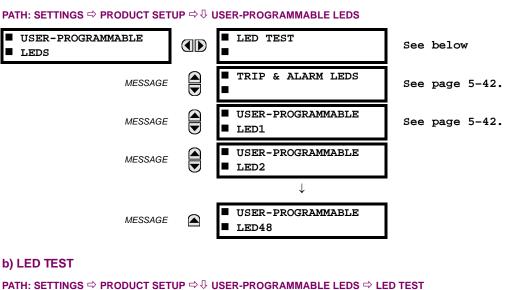
CALCULATION METHOD 2: BLOCK INTERVAL

This method calculates a linear average of the quantity (RMS current, real power, reactive power, or apparent power) over the programmed demand time interval, starting daily at 00:00:00 (i.e. 12:00 am). The 1440 minutes per day is divided into the number of blocks as set by the programmed time interval. Each new value of demand becomes available at the end of each time interval.

CALCULATION METHOD 2a: BLOCK INTERVAL (with Start Demand Interval Logic Trigger)

This method calculates a linear average of the quantity (RMS current, real power, reactive power, or apparent power) over the interval between successive Start Demand Interval logic input pulses. Each new value of demand becomes available at the end of each pulse. Assign a FlexLogic[™] operand to the **DEMAND TRIGGER** setting to program the input for the new demand interval pulses.

5


a) MAIN MENU

If no trigger is assigned in the DEMAND TRIGGER setting and the CRNT DEMAND METHOD is "Block Interval", use calculating method #2. If a trigger is assigned, the maximum allowed time between 2 trigger signals is 60 minutes. If no trigger signal appears within 60 minutes, demand calculations are performed and available and the algorithm resets and starts the new cycle of calculations. The minimum required time for trigger contact closure is 20 µs.

CALCULATION METHOD 3: ROLLING DEMAND

This method calculates a linear average of the quantity (RMS current, real power, reactive power, or apparent power) over the programmed demand time interval, in the same way as Block Interval. The value is updated every minute and indicates the demand over the time interval just preceding the time of update.

5.2.11 USER-PROGRAMMABLE LEDS

■ LED TEST	LED TEST FUNCTION: Disabled	Range:	Disabled, Enabled.
MESSAGE	LED TEST CONTROL: Off	Range:	FlexLogic™ operand

When enabled, the LED test can be initiated from any digital input or user-programmable condition such as user-programmable pushbutton. The control operand is configured under the LED TEST CONTROL setting. The test covers all LEDs, including the LEDs of the optional user-programmable pushbuttons.

The test consists of three stages.

- 1. All 62 LEDs on the relay are illuminated. This is a quick test to verify if any of the LEDs is "burned". This stage lasts as long as the control input is on, up to a maximum of 1 minute. After 1 minute, the test will end.
- 2. All the LEDs are turned off, and then one LED at a time turns on for 1 second, then back off. The test routine starts at the top left panel, moving from the top to bottom of each LED column. This test checks for hardware failures that lead to more than one LED being turned on from a single logic point. This stage can be interrupted at any time.
- 3. All the LEDs are turned on. One LED at a time turns off for 1 second, then back on. The test routine starts at the top left panel moving from top to bottom of each column of the LEDs. This test checks for hardware failures that lead to more than one LED being turned off from a single logic point. This stage can be interrupted at any time.

When testing is in progress, the LEDs are controlled by the test sequence, rather than the protection, control, and monitoring features. However, the LED control mechanism accepts all the changes to LED states generated by the relay and stores the actual LED states (on or off) in memory. When the test completes, the LEDs reflect the actual state resulting from relay response during testing. The reset pushbutton will not clear any targets when the LED Test is in progress.

A dedicated FlexLogic[™] operand, LED TEST IN PROGRESS, is set for the duration of the test. When the test sequence is initiated, the LED TEST INITIATED event is stored in the event recorder.

The entire test procedure is user-controlled. In particular, stage 1 can last as long as necessary, and stages 2 and 3 can be interrupted. The test responds to the position and rising edges of the control input defined by the **LED TEST CONTROL** setting. The control pulses must last at least 250 ms to take effect. The following diagram explains how the test is executed.

Figure 5–4: LED TEST SEQUENCE

APPLICATION EXAMPLE 1:

Assume one needs to check if any of the LEDs is "burned" through user-programmable pushbutton 1. The following settings should be applied. Configure user-programmable pushbutton 1 by making the following entries in the SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow USER-PROGRAMMABLE PUSHBUTTONS \Rightarrow USER PUSHBUTTON 1 menu:

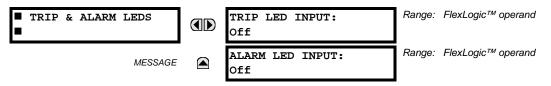
```
PUSHBUTTON 1 FUNCTION: "Self-reset"
PUSHBTN 1 DROP-OUT TIME: "0.10 s"
```

Configure the LED test to recognize user-programmable pushbutton 1 by making the following entries in the SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow USER-PROGRAMMABLE LEDS \Rightarrow LED TEST menu:

LED TEST FUNCTION: "Enabled" LED TEST CONTROL: "PUSHBUTTON 1 ON"

The test will be initiated when the user-programmable pushbutton 1 is pressed. The pushbutton should remain pressed for as long as the LEDs are being visually inspected. When finished, the pushbutton should be released. The relay will then automatically start stage 2. At this point forward, test may be aborted by pressing the pushbutton.

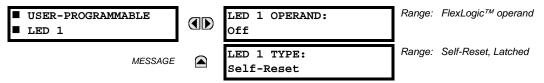
APPLICATION EXAMPLE 2:


Assume one needs to check if any LEDs are "burned" as well as exercise one LED at a time to check for other failures. This is to be performed via user-programmable pushbutton 1.

5.2 PRODUCT SETUP

After applying the settings in application example 1, hold down the pushbutton as long as necessary to test all LEDs. Next, release the pushbutton to automatically start stage 2. Once stage 2 has started, the pushbutton can be released. When stage 2 is completed, stage 3 will automatically start. The test may be aborted at any time by pressing the pushbutton.

c) TRIP AND ALARM LEDS


PATH: SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow \clubsuit USER-PROGRAMMABLE LEDS \Rightarrow \clubsuit TRIP & ALARM LEDS

The trip and alarm LEDs are in the first LED column (enhanced faceplate) and on LED panel 1 (standard faceplate). Each indicator can be programmed to become illuminated when the selected FlexLogic[™] operand is in the logic 1 state.

d) USER-PROGRAMMABLE LED 1(48)

PATH: SETTINGS ⇔ PRODUCT SETUP ⇔ USER-PROGRAMMABLE LEDS ⇔ USER-PROGRAMMABLE LED 1(48)

There are 48 amber LEDs across the relay faceplate LED panels. Each of these indicators can be programmed to illuminate when the selected FlexLogic[™] operand is in the logic 1 state.

For the standard faceplate, the LEDs are located as follows.

- LED Panel 2: user-programmable LEDs 1 through 24
- LED Panel 3: user programmable LEDs 25 through 48

For the enhanced faceplate, the LEDs are located as follows.

- LED column 2: user-programmable LEDs 1 through 12
- LED column 3: user-programmable LEDs 13 through 24
- LED column 4: user-programmable LEDs 25 through 36
- LED column 5: user-programmable LEDs 37 through 48

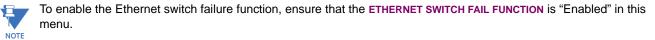
Refer to the LED indicators section in chapter 4 for additional information on the location of these indexed LEDs.

The user-programmable LED settings select the FlexLogic[™] operands that control the LEDs. If the LED 1 TYPE setting is "Self-Reset" (the default setting), the LED illumination will track the state of the selected LED operand. If the LED 1 TYPE setting is "Latched", the LED, once lit, remains so until reset by the faceplate RESET button, from a remote device via a communications channel, or from any programmed operand, even if the LED operand state de-asserts.

Table 5–3: RECOMMENDED SETTINGS FOR USER-PROGRAMMABLE LEDS

SETTING	PARAMETER	SETTING	PARAMETER
LED 1 operand	SETTING GROUP ACT 1	LED 13 operand	Off
LED 2 operand	SETTING GROUP ACT 2	LED 14 operand	BREAKER 2 OPEN
LED 3 operand	SETTING GROUP ACT 3	LED 15 operand	BREAKER 2 CLOSED
LED 4 operand	SETTING GROUP ACT 4	LED 16 operand	BREAKER 2 TROUBLE
LED 5 operand	SETTING GROUP ACT 5	LED 17 operand	SYNC 1 SYNC OP
LED 6 operand	SETTING GROUP ACT 6	LED 18 operand	SYNC 2 SYNC OP
LED 7 operand	Off	LED 19 operand	Off
LED 8 operand	Off	LED 20 operand	Off
LED 9 operand	BREAKER 1 OPEN	LED 21 operand	AR ENABLED
LED 10 operand	BREAKER 1 CLOSED	LED 22 operand	AR DISABLED
LED 11 operand	BREAKER 1 TROUBLE	LED 23 operand	AR RIP
LED 12 operand	Off	LED 24 operand	AR LO

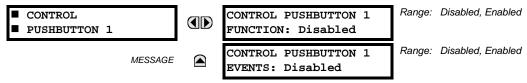
Refer to the Control of setting groups example in the Control elements section of this chapter for group activation.


5.2.12 USER-PROGRAMMABLE SELF-TESTS

USER-PROGRAMMABLESELF TESTS	DIRECT RING BREAK FUNCTION: Enabled	Range:	Disabled, Enabled. Valid for units equipped with Direct Input/Output module.
MESSAGE	DIRECT DEVICE OFF FUNCTION: Enabled	Range:	Disabled, Enabled. Valid for units equipped with Direct Input/Output module.
MESSAGE	REMOTE DEVICE OFF FUNCTION: Enabled	Range:	Disabled, Enabled. Valid for units that contain a CPU with Ethernet capability.
MESSAGE	PRI. ETHERNET FAIL FUNCTION: Disabled	Range:	Disabled, Enabled. Valid for units that contain a CPU with a primary fiber port.
MESSAGE	SEC. ETHERNET FAIL FUNCTION: Disabled	Range:	Disabled, Enabled. Valid for units that contain a CPU with a redundant fiber port.
MESSAGE	BATTERY FAIL FUNCTION: Enabled	Range:	Disabled, Enabled.
MESSAGE	SNTP FAIL FUNCTION: Enabled	Range:	Disabled, Enabled. Valid for units that contain a CPU with Ethernet capability.
MESSAGE	IRIG-B FAIL FUNCTION: Enabled	Range:	Disabled, Enabled.
MESSAGE	ETHERNET SWITCH FAIL FUNCTION: Disabled	Range:	Disabled, Enabled.

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ ^① USER-PROGRAMMABLE SELF TESTS

All major self-test alarms are reported automatically with their corresponding FlexLogic[™] operands, events, and targets. Most of the minor alarms can be disabled if desired.

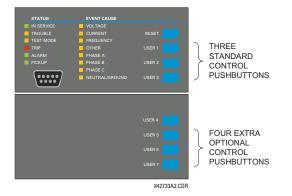

When in the "Disabled" mode, minor alarms will not assert a FlexLogic[™] operand, write to the event recorder, or display target messages. Moreover, they will not trigger the **ANY MINOR ALARM** or **ANY SELF-TEST** messages. When in the "Enabled" mode, minor alarms continue to function along with other major and minor alarms. Refer to the *Relay self-tests* section in chapter 7 for additional information on major and minor self-test alarms.

5.2 PRODUCT SETUP

5.2.13 CONTROL PUSHBUTTONS

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ ^① CONTROL PUSHBUTTONS ⇒ CONTROL PUSHBUTTON 1(7)

There are three standard control pushbuttons, labeled USER 1, USER 2, and USER 3, on the standard and enhanced front panels. These are user-programmable and can be used for various applications such as performing an LED test, switching setting groups, and invoking and scrolling though user-programmable displays.


Firmware revisions 3.2x and older use these three pushbuttons for manual breaker control. This functionality has been retained – if the breaker control feature is configured to use the three pushbuttons, they cannot be used as user-programmable control pushbuttons. The location of the control pushbuttons are shown in the following figures.

ontrol pushbuttons 842813A1.CDR

Figure 5–5: CONTROL PUSHBUTTONS (ENHANCED FACEPLATE)

An additional four control pushbuttons are included on the standard faceplate when the L90 is ordered with the twelve userprogrammable pushbutton option.

Figure 5–6: CONTROL PUSHBUTTONS (STANDARD FACEPLATE)

Control pushbuttons are not typically used for critical operations and are not protected by the control password. However, by supervising their output operands, the user can dynamically enable or disable control pushbuttons for security reasons.

Each control pushbutton asserts its own FlexLogic[™] operand. These operands should be configured appropriately to perform the desired function. The operand remains asserted as long as the pushbutton is pressed and resets when the pushbutton is released. A dropout delay of 100 ms is incorporated to ensure fast pushbutton manipulation will be recognized by various features that may use control pushbuttons as inputs.

An event is logged in the event record (as per user setting) when a control pushbutton is pressed. No event is logged when the pushbutton is released. The faceplate keys (including control keys) cannot be operated simultaneously – a given key must be released before the next one can be pressed.

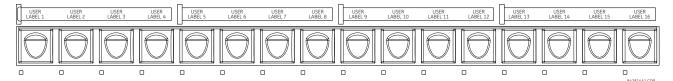
The control pushbuttons become user-programmable only if the breaker control feature is not configured for manual control via the USER 1 through 3 pushbuttons as shown below. If configured for manual control, breaker control typically uses the larger, optional user-programmable pushbuttons, making the control pushbuttons available for other user applications.

Figure 5–7: CONTROL PUSHBUTTON LOGIC

5.2.14 USER-PROGRAMMABLE PUSHBUTTONS

PATH: SETTINGS ⇔ PRODUCT SETUP ⇔ USER-PROGRAMMABLE PUSHBUTTONS ⇔ USER PUSHBUTTON 1(16)

USER PUSHBUTTON 1	PUSHBUTTON 1 FUNCTION: Disabled	Range:	Self-Reset, Latched, Disabled
MESSAGE	PUSHBTN 1 ID TEXT:	Range:	Up to 20 alphanumeric characters
MESSAGE	PUSHBTN 1 ON TEXT:	Range:	Up to 20 alphanumeric characters
MESSAGE	PUSHBTN 1 OFF TEXT:	Range:	Up to 20 alphanumeric characters
MESSAGE	PUSHBTN 1 HOLD: 0.0 s	Range:	0.0 to 10.0 s in steps of 0.1
MESSAGE	PUSHBTN 1 SET: Off	Range:	FlexLogic™ operand
MESSAGE	PUSHBTN 1 RESET: Off	Range:	FlexLogic™ operand
MESSAGE	PUSHBTN 1 AUTORST: Disabled	Range:	Disabled, Enabled
MESSAGE	PUSHBTN 1 AUTORST DELAY: 1.0 s	Range:	0.2 to 600.0 s in steps of 0.1
MESSAGE	PUSHBTN 1 REMOTE: Off	Range:	FlexLogic™ operand
MESSAGE	PUSHBTN 1 LOCAL: Off	Range:	FlexLogic™ operand
MESSAGE	PUSHBTN 1 DROP-OUT TIME: 0.00 s	Range:	0 to 60.00 s in steps of 0.05
MESSAGE	PUSHBTN 1 LED CTL: Off	Range:	FlexLogic™ operand
MESSAGE	PUSHBTN 1 MESSAGE: Disabled	Range:	Disabled, Normal, High Priority
MESSAGE	PUSHBUTTON 1 EVENTS: Disabled	Range:	Disabled, Enabled


5.2 PRODUCT SETUP

The optional user-programmable pushbuttons (specified in the order code) provide an easy and error-free method of entering digital state (on, off) information. The number of available pushbuttons is dependent on the faceplate module ordered with the relay.

- Type P faceplate: standard horizontal faceplate with 12 user-programmable pushbuttons.
- Type Q faceplate: enhanced horizontal faceplate with 16 user-programmable pushbuttons.

The digital state can be entered locally (by directly pressing the front panel pushbutton) or remotely (via FlexLogic[™] operands) into FlexLogic[™] equations, protection elements, and control elements. Typical applications include breaker control, autorecloser blocking, and setting groups changes. The user-programmable pushbuttons are under the control level of password protection.

The user-configurable pushbuttons for the enhanced faceplate are shown below.

The user-configurable pushbuttons for the standard faceplate are shown below.

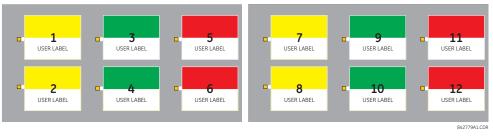


Figure 5–9: USER-PROGRAMMABLE PUSHBUTTONS (STANDARD FACEPLATE)

Both the standard and enhanced faceplate pushbuttons can be custom labeled with a factory-provided template, available online at <u>http://www.GEmultilin.com</u>. The EnerVista UR Setup software can also be used to create labels for the enhanced faceplate.

Each pushbutton asserts its own "On" and "Off" FlexLogic[™] operands (for example, PUSHBUTTON 1 ON and PUSHBUTTON 1 OFF). These operands are available for each pushbutton and are used to program specific actions. If any pushbutton is active, the ANY PB ON operand will be asserted.

Each pushbutton has an associated LED indicator. By default, this indicator displays the present status of the corresponding pushbutton (on or off). However, each LED indicator can be assigned to any FlexLogic[™] operand through the **PUSHBTN 1 LED CTL** setting.

The pushbuttons can be automatically controlled by activating the operands assigned to the **PUSHBTN 1 SET** (for latched and self-reset mode) and **PUSHBTN 1 RESET** (for latched mode only) settings. The pushbutton reset status is declared when the PUSHBUTTON 1 OFF operand is asserted. The activation and deactivation of user-programmable pushbuttons is dependent on whether latched or self-reset mode is programmed.

 Latched mode: In latched mode, a pushbutton can be set (activated) by asserting the operand assigned to the PUSH-BTN 1 SET setting or by directly pressing the associated front panel pushbutton. The pushbutton maintains the set state until deactivated by the reset command or after a user-specified time delay. The state of each pushbutton is stored in non-volatile memory and maintained through a loss of control power.

The pushbutton is reset (deactivated) in latched mode by asserting the operand assigned to the **PUSHBTN 1 RESET** setting or by directly pressing the associated active front panel pushbutton.

It can also be programmed to reset automatically through the **PUSHBTN 1 AUTORST** and **PUSHBTN 1 AUTORST DELAY** settings. These settings enable the autoreset timer and specify the associated time delay. The autoreset timer can be used in select-before-operate (SBO) breaker control applications, where the command type (close/open) or breaker location (feeder number) must be selected prior to command execution. The selection must reset automatically if control is not executed within a specified time period.

• Self-reset mode: In self-reset mode, a pushbutton will remain active for the time it is pressed (the *pulse duration*) plus the dropout time specified in the **PUSHBTN 1 DROP-OUT TIME** setting. If the pushbutton is activated via FlexLogic[™], the pulse duration is specified by the **PUSHBTN 1 DROP-OUT TIME** only. The time the operand remains assigned to the **PUSH-BTN 1 SET** setting has no effect on the pulse duration.

The pushbutton is reset (deactivated) in self-reset mode when the dropout delay specified in the **PUSHBTN 1 DROP-OUT TIME** setting expires.

The pulse duration of the remote set, remote reset, or local pushbutton must be at least 50 ms to operate the pushbutton. This allows the user-programmable pushbuttons to properly operate during power cycling events and various system disturbances that may cause transient assertion of the operating signals.

The local and remote operation of each user-programmable pushbutton can be inhibited through the **PUSHBTN 1 LOCAL** and **PUSHBTN 1 REMOTE** settings, respectively. If local locking is applied, the pushbutton will ignore set and reset commands executed through the front panel pushbuttons. If remote locking is applied, the pushbutton will ignore set and reset commands executed through FlexLogic[™] operands.

The locking functions are not applied to the autorestart feature. In this case, the inhibit function can be used in SBO control operations to prevent the pushbutton function from being activated and ensuring "one-at-a-time" select operation.

The locking functions can also be used to prevent the accidental pressing of the front panel pushbuttons. The separate inhibit of the local and remote operation simplifies the implementation of local/remote control supervision.

Pushbutton states can be logged by the event recorder and displayed as target messages. In latched mode, user-defined messages can also be associated with each pushbutton and displayed when the pushbutton is on or changing to off.

 PUSHBUTTON 1 FUNCTION: This setting selects the characteristic of the pushbutton. If set to "Disabled", the pushbutton is not active and the corresponding FlexLogic[™] operands (both "On" and "Off") are de-asserted. If set to "Self-Reset", the control logic is activated by the pulse (longer than 100 ms) issued when the pushbutton is being physically pressed or virtually pressed via a FlexLogic[™] operand assigned to the PUSHBTN 1 SET setting.

When in "Self-Reset" mode and activated locally, the pushbutton control logic asserts the "On" corresponding Flex-Logic[™] operand as long as the pushbutton is being physically pressed, and after being released the deactivation of the operand is delayed by the drop out timer. The "Off" operand is asserted when the pushbutton element is deactivated. If the pushbutton is activated remotely, the control logic of the pushbutton asserts the corresponding "On" Flex-Logic[™] operand only for the time period specified by the **PUSHBTN 1 DROP-OUT TIME** setting.

If set to "Latched", the control logic alternates the state of the corresponding FlexLogic[™] operand between "On" and "Off" on each button press or by virtually activating the pushbutton (assigning set and reset operands). When in the "Latched" mode, the states of the FlexLogic[™] operands are stored in a non-volatile memory. Should the power supply be lost, the correct state of the pushbutton is retained upon subsequent power up of the relay.

- PUSHBTN 1 ID TEXT: This setting specifies the top 20-character line of the user-programmable message and is
 intended to provide ID information of the pushbutton. Refer to the User-definable displays section for instructions on
 how to enter alphanumeric characters from the keypad.
- PUSHBTN 1 ON TEXT: This setting specifies the bottom 20-character line of the user-programmable message and is displayed when the pushbutton is in the "on" position. Refer to the User-definable displays section for instructions on entering alphanumeric characters from the keypad.
- **PUSHBTN 1 OFF TEXT:** This setting specifies the bottom 20-character line of the user-programmable message and is displayed when the pushbutton is activated from the on to the off position and the **PUSHBUTTON 1 FUNCTION** is "Latched". This message is not displayed when the **PUSHBUTTON 1 FUNCTION** is "Self-reset" as the pushbutton operand status is implied to be "Off" upon its release. The length of the "Off" message is configured with the **PRODUCT SETUP** \$\overline{\Public}\$ USPLAY PROPERTIES \$\overline{\Public}\$ FLASH MESSAGE TIME setting.
- **PUSHBTN 1 HOLD**: This setting specifies the time required for a pushbutton to be pressed before it is deemed active. This timer is reset upon release of the pushbutton. Note that any pushbutton operation will require the pushbutton to be pressed a minimum of 50 ms. This minimum time is required prior to activating the pushbutton hold timer.

5.2 PRODUCT SETUP

- **PUSHBTN 1 SET**: This setting assigns the FlexLogic[™] operand serving to operate the pushbutton element and to assert PUSHBUTTON 1 ON operand. The duration of the incoming set signal must be at least 100 ms.
- **PUSHBTN 1 RESET**: This setting assigns the FlexLogic[™] operand serving to reset pushbutton element and to assert PUSHBUTTON 1 OFF operand. This setting is applicable only if pushbutton is in latched mode. The duration of the incoming reset signal must be at least 50 ms.
- **PUSHBTN 1 AUTORST**: This setting enables the user-programmable pushbutton autoreset feature. This setting is applicable only if the pushbutton is in the "Latched" mode.
- **PUSHBTN 1 AUTORST DELAY**: This setting specifies the time delay for automatic reset of the pushbutton when in the latched mode.
- **PUSHBTN 1 REMOTE**: This setting assigns the FlexLogic[™] operand serving to inhibit pushbutton operation from the operand assigned to the **PUSHBTN 1 SET** or **PUSHBTN 1 RESET** settings.
- **PUSHBTN 1 LOCAL**: This setting assigns the FlexLogic[™] operand serving to inhibit pushbutton operation from the front panel pushbuttons. This locking functionality is not applicable to pushbutton autoreset.
- **PUSHBTN 1 DROP-OUT TIME**: This setting applies only to "Self-Reset" mode and specifies the duration of the pushbutton active status after the pushbutton has been released. When activated remotely, this setting specifies the entire activation time of the pushbutton status; the length of time the operand remains on has no effect on the pulse duration. This setting is required to set the duration of the pushbutton operating pulse.
- **PUSHBTN 1 LED CTL**: This setting assigns the FlexLogic[™] operand serving to drive pushbutton LED. If this setting is "Off", then LED operation is directly linked to PUSHBUTTON 1 ON operand.
- **PUSHBTN 1 MESSAGE**: If pushbutton message is set to "High Priority", the message programmed in the **PUSHBTN 1 ID** and **PUSHBTN 1 ON TEXT** settings will be displayed undisturbed as long as PUSHBUTTON 1 ON operand is asserted. The high priority option is not applicable to the **PUSHBTN 1 OFF TEXT** setting.

The high priority This message c

This message can be temporary removed if any front panel keypad button is pressed. However, ten seconds of keypad inactivity will restore the message if the PUSHBUTTON 1 ON operand is still active.

If the **PUSHBTN 1 MESSAGE** is set to "Normal", the message programmed in the **PUSHBTN 1 ID** and **PUSHBTN 1 ON TEXT** settings will be displayed as long as PUSHBUTTON 1 ON operand is asserted, but not longer than time period specified by **FLASH MESSAGE TIME** setting. After the flash time is expired, the default message or other active target message is displayed. The instantaneous reset of the flash message will be executed if any relay front panel button is pressed or any new target or message becomes active.

The **PUSHBTN 1 OFF TEXT** setting is linked to PUSHBUTTON 1 OFF operand and will be displayed in conjunction with **PUSHBTN 1 ID** only if pushbutton element is in the "Latched" mode. The **PUSHBTN 1 OFF TEXT** message will be displayed as "Normal" if the **PUSHBTN 1 MESSAGE** setting is "High Priority" or "Normal".

• **PUSHBUTTON 1 EVENTS**: If this setting is enabled, each pushbutton state change will be logged as an event into event recorder.

5 SETTINGS

5.2 PRODUCT SETUP

The user-programmable pushbutton logic is shown below.

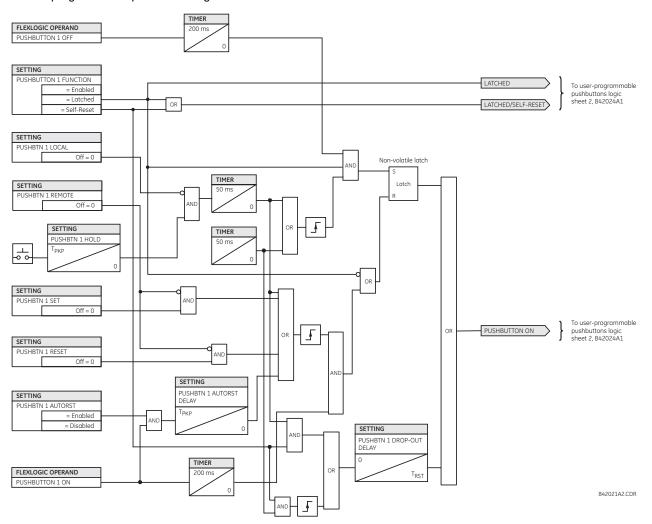
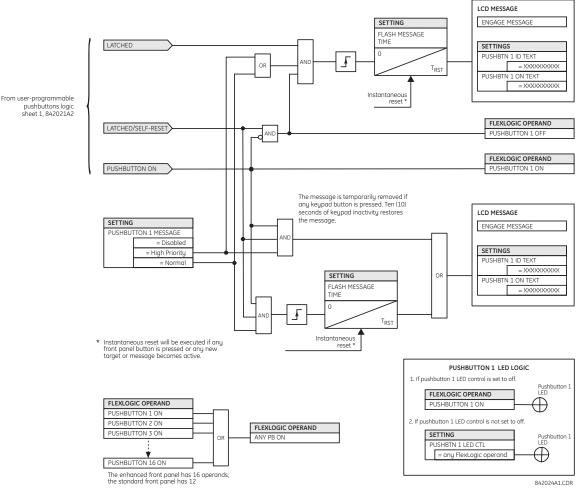



Figure 5–10: USER-PROGRAMMABLE PUSHBUTTON LOGIC (Sheet 1 of 2)

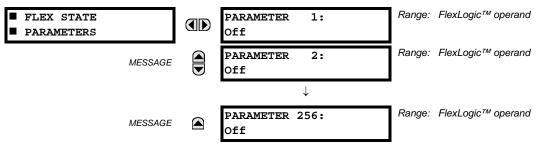


Figure 5–11: USER-PROGRAMMABLE PUSHBUTTON LOGIC (Sheet 2 of 2)

User-programmable pushbuttons require a type HP or HQ faceplate. If an HP or HQ type faceplate was ordered separately, the relay order code must be changed to indicate the correct faceplate option. This can be done via EnerVista UR Setup with the **Maintenance > Enable Pushbutton** command.

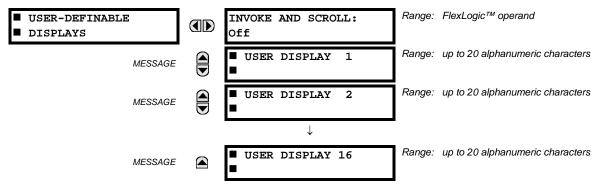
5.2.15 FLEX STATE PARAMETERS

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ ↓ FLEX STATE PARAMETERS

This feature provides a mechanism where any of 256 selected FlexLogic[™] operand states can be used for efficient monitoring. The feature allows user-customized access to the FlexLogic[™] operand states in the relay. The state bits are packed so that 16 states may be read out in a single Modbus register. The state bits can be configured so that all of the states which are of interest to the user are available in a minimum number of Modbus registers.

Ц

NOTE


5 SETTINGS

The state bits may be read out in the "Flex States" register array beginning at Modbus address 0900h. Sixteen states are packed into each register, with the lowest-numbered state in the lowest-order bit. There are sixteen registers to accommodate the 256 state bits.

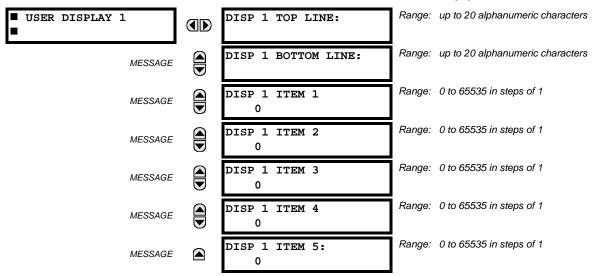
5.2.16 USER-DEFINABLE DISPLAYS

a) MAIN MENU

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ ^① USER-DEFINABLE DISPLAYS

This menu provides a mechanism for manually creating up to 16 user-defined information displays in a convenient viewing sequence in the **USER DISPLAYS** menu (between the **TARGETS** and **ACTUAL VALUES** top-level menus). The sub-menus facilitate text entry and Modbus register data pointer options for defining the user display content.

Once programmed, the user-definable displays can be viewed in two ways.


- **KEYPAD**: Use the MENU key to select the USER DISPLAYS menu item to access the first user-definable display (note that only the programmed screens are displayed). The screens can be scrolled using the UP and DOWN keys. The display disappears after the default message time-out period specified by the PRODUCT SETUP ⇔ DISPLAY PROPERTIES ⇔ DEFAULT MESSAGE TIMEOUT setting.
- USER-PROGRAMMABLE CONTROL INPUT: The user-definable displays also respond to the INVOKE AND SCROLL setting. Any FlexLogic[™] operand (in particular, the user-programmable pushbutton operands), can be used to navigate the programmed displays.

On the rising edge of the configured operand (such as when the pushbutton is pressed), the displays are invoked by showing the last user-definable display shown during the previous activity. From this moment onward, the operand acts exactly as the down key and allows scrolling through the configured displays. The last display wraps up to the first one. The INVOKE AND SCROLL input and the DOWN key operate concurrently.

When the default timer expires (set by the **DEFAULT MESSAGE TIMEOUT** setting), the relay will start to cycle through the user displays. The next activity of the **INVOKE AND SCROLL** input stops the cycling at the currently displayed user display, not at the first user-defined display. The **INVOKE AND SCROLL** pulses must last for at least 250 ms to take effect.

b) USER DISPLAY 1(16)

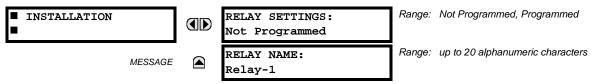
PATH: SETTINGS ⇔ PRODUCT SETUP ⇔ USER-DEFINABLE DISPLAYS ⇔ USER DISPLAY 1(16)

Any existing system display can be automatically copied into an available user display by selecting the existing display and pressing the ENTER key. The display will then prompt **ADD TO USER DISPLAY LIST**? After selecting "Yes", a message indicates that the selected display has been added to the user display list. When this type of entry occurs, the sub-menus are automatically configured with the proper content – this content may subsequently be edited.

This menu is used to enter user-defined text and user-selected Modbus-registered data fields into the particular user display. Each user display consists of two 20-character lines (top and bottom). The tilde (\sim) character is used to mark the start of a data field - the length of the data field needs to be accounted for. Up to five separate data fields can be entered in a user display - the *n*th tilde (\sim) refers to the *n*th item.

A User Display may be entered from the faceplate keypad or the EnerVista UR Setup interface (preferred for convenience). The following procedure shows how to enter text characters in the top and bottom lines from the faceplate keypad:

- 1. Select the line to be edited.
- 2. Press the decimal key to enter text edit mode.
- 3. Use either VALUE key to scroll through the characters. A space is selected like a character.
- 4. Press the decimal key to advance the cursor to the next position.
- 5. Repeat step 3 and continue entering characters until the desired text is displayed.
- 6. The HELP key may be pressed at any time for context sensitive help information.
- 7. Press the ENTER key to store the new settings.


To enter a numerical value for any of the five items (the *decimal form* of the selected Modbus address) from the faceplate keypad, use the number keypad. Use the value of '0' for any items not being used. Use the HELP key at any selected system display (setting, actual value, or command) which has a Modbus address, to view the *hexadecimal form* of the Modbus address, then manually convert it to decimal form before entering it (EnerVista UR Setup usage conveniently facilitates this conversion).

Use the MENU key to go to the user displays menu to view the user-defined content. The current user displays will show in sequence, changing every 4 seconds. While viewing a user display, press the ENTER key and then select the 'Yes' option to remove the display from the user display list. Use the MENU key again to exit the user displays menu.

An example user display setup and result is shown below:

USER DISPLAY 1		DISP 1 TOP LINE: Current X ~ A	Shows user-defined text with first Tilde marker.
MESSAGE		DISP 1 BOTTOM LINE: Current Y ~ A	Shows user-defined text with second Tilde marker.
MESSAGE		DISP 1 ITEM 1: 6016	Shows decimal form of user-selected Modbus Register Address, corresponding to first Tilde marker.
MESSAGE		DISP 1 ITEM 2: 6357	Shows decimal form of user-selected Modbus Register Address, corresponding to 2nd Tilde marker.
MESSAGE		DISP 1 ITEM 3: 0	This item is not being used - there is no corresponding Tilde marker in Top or Bottom lines.
MESSAGE		DISP 1 ITEM 4: 0	This item is not being used - there is no corresponding Tilde marker in Top or Bottom lines.
MESSAGE		DISP 1 ITEM 5: 0	This item is not being used - there is no corresponding Tilde marker in Top or Bottom lines.
USER DISPLAYS	\rightarrow	Current X 0.850 A Current Y 0.327 A	Shows the resultant display content.
			5.2.17 INSTALLATION

PATH: SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow \bigcirc INSTALLATION

To safeguard against the installation of a relay without any entered settings, the unit will not allow signaling of any output relay until **RELAY SETTINGS** is set to "Programmed". This setting is defaulted to "Not Programmed" when at the factory. The **UNIT NOT PROGRAMMED** self-test error message is displayed until the relay is put into the "Programmed" state.

The **RELAY NAME** setting allows the user to uniquely identify a relay. This name will appear on generated reports. This name is also used to identify specific devices which are engaged in automatically sending/receiving data over the Ethernet communications channel using the IEC 61850 protocol.

Four banks of phase and ground CTs can be set, where the current banks are denoted in the following format (X represents the module slot position letter):

Xa, where *X* = {**F**, **L**} and *a* = {1, 5}.

See the Introduction to AC Sources section at the beginning of this chapter for additional details.

These settings are critical for all features that have settings dependent on current measurements. When the relay is ordered, the CT module must be specified to include a standard or sensitive ground input. As the phase CTs are connected in wye (star), the calculated phasor sum of the three phase currents (IA + IB + IC = neutral current = 3Io) is used as the input for the neutral overcurrent elements. In addition, a zero-sequence (core balance) CT which senses current in all of the circuit primary conductors, or a CT in a neutral grounding conductor may also be used. For this configuration, the ground CT primary rating must be entered. To detect low level ground fault currents, the sensitive ground input may be used. In this case, the sensitive ground CT primary rating must be entered. Refer to chapter 3 for more details on CT connections.

Enter the rated CT primary current values. For both 1000:5 and 1000:1 CTs, the entry would be 1000. For correct operation, the CT secondary rating must match the setting (which must also correspond to the specific CT connections used).

The following example illustrates how multiple CT inputs (current banks) are summed as one source current. Given If the following current banks:

- F1: CT bank with 500:1 ratio.
- F5: CT bank with 1000: ratio.

The following rule applies:

1 pu is the highest primary current. In this case, 1000 is entered and the secondary current from the 500:1 ratio CT will be adjusted to that created by a 1000:1 CT before summation. If a protection element is set up to act on SRC 1 currents, then a pickup level of 1 pu will operate on 1000 A primary.

The same rule applies for current sums from CTs with different secondary taps (5 A and 1 A).

b) VOLTAGE BANKS

PATH: SETTINGS $\Rightarrow \oplus$ SYSTEM SETUP \Rightarrow AC INPUTS $\Rightarrow \oplus$ VOLTAGE BANK F5(L5)

■ VOLTAGE BANK F5	PHASE VT F5 CONNECTION: Wye	Range: Wye, Delta
MESSAGE	PHASE VT F5 SECONDARY: 66.4 V	Range: 25.0 to 240.0 V in steps of 0.1
MESSAGE	PHASE VT F5 RATIO: 1.00 :1	Range: 1.00 to 24000.00 in steps of 0.01
MESSAGE	AUXILIARY VT F5 CONNECTION: Vag	Range: Vn, Vag, Vbg, Vcg, Vab, Vbc, Vca
MESSAGE	AUXILIARY VT F5 SECONDARY: 66.4 V	Range: 25.0 to 240.0 V in steps of 0.1
MESSAGE	AUXILIARY VT F5 RATIO: 1.00 :1	Range: 1.00 to 24000.00 in steps of 0.01

NOTE

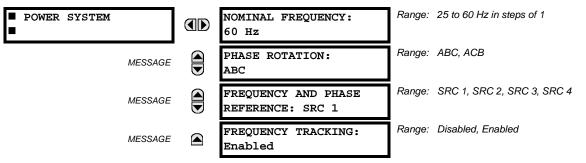
Because energy parameters are accumulated, these values should be recorded and then reset immediately prior to changing VT characteristics.

Two banks of phase/auxiliary VTs can be set, where voltage banks are denoted in the following format (*X* represents the module slot position letter):

Xa, where $X = \{F, L\}$ and $a = \{5\}$.

See the Introduction to AC sources section at the beginning of this chapter for additional details.

With VTs installed, the relay can perform voltage measurements as well as power calculations. Enter the **PHASE VT F5 CON-NECTION** made to the system as "Wye" or "Delta". An open-delta source VT connection would be entered as "Delta".


The nominal **PHASE VT F5 SECONDARY** voltage setting is the voltage across the relay input terminals when nominal voltage is applied to the VT primary.

For example, on a system with a 13.8 kV nominal primary voltage and with a 14400:120 volt VT in a delta connection, the secondary voltage would be 115; that is, $(13800 / 14400) \times 120$. For a wye connection, the voltage value entered must be the phase to neutral voltage which would be $115 / \sqrt{3} = 66.4$.

On a 14.4 kV system with a delta connection and a VT primary to secondary turns ratio of 14400:120, the voltage value entered would be 120; that is, 14400 / 120.

5.3.2 POWER SYSTEM

PATH: SETTINGS ⇔ ♣ SYSTEM SETUP ⇒ ♣ POWER SYSTEM

The power system **NOMINAL FREQUENCY** value is used as a default to set the digital sampling rate if the system frequency cannot be measured from available signals. This may happen if the signals are not present or are heavily distorted. Before reverting to the nominal frequency, the frequency tracking algorithm holds the last valid frequency measurement for a safe period of time while waiting for the signals to reappear or for the distortions to decay.

The phase sequence of the power system is required to properly calculate sequence components and power parameters. The PHASE ROTATION setting matches the power system phase sequence. Note that this setting informs the relay of the actual system phase sequence, either ABC or ACB. CT and VT inputs on the relay, labeled as A, B, and C, must be connected to system phases A, B, and C for correct operation.

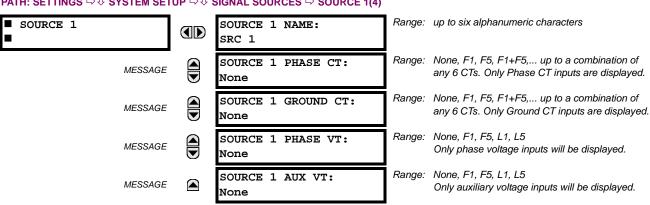
The FREQUENCY AND PHASE REFERENCE setting determines which signal source is used (and hence which AC signal) for phase angle reference. The AC signal used is prioritized based on the AC inputs that are configured for the signal source: phase voltages takes precedence, followed by auxiliary voltage, then phase currents, and finally ground current.

For three phase selection, phase A is used for angle referencing ($V_{ANGLE REF} = V_A$), while Clarke transformation of the phase signals is used for frequency metering and tracking ($V_{\text{FREQUENCY}} = (2V_A - V_B - V_C)/3$) for better performance during fault, open pole, and VT and CT fail conditions.

The phase reference and frequency tracking AC signals are selected based upon the Source configuration, regardless of whether or not a particular signal is actually applied to the relay.

Phase angle of the reference signal will always display zero degrees and all other phase angles will be relative to this signal. If the pre-selected reference signal is not measurable at a given time, the phase angles are not referenced.

The phase angle referencing is done via a phase locked loop, which can synchronize independent UR-series relays if they have the same AC signal reference. These results in very precise correlation of time tagging in the event recorder between different UR-series relays provided the relays have an IRIG-B connection.


FREQUENCY TRACKING should only be set to "Disabled" in very unusual circumstances; consult the factory for special variable-frequency applications.

5

The nominal system frequency should be selected as 50 Hz or 60 Hz only. The FREQUENCY AND PHASE REFERENCE setting, used as a reference for calculating all angles, must be identical for all terminals. Whenever the 87L function is "Enabled", the frequency tracking function is disabled, and frequency tracking is driven by the L90 algorithm (see the Theory of operation chapter). Whenever the 87L function is "Disabled", the frequency tracking mechanism reverts to the UR-series mechanism which uses the FREQUENCY TRACKING setting to provide frequency tracking for all other elements and functions.

5.3.3 SIGNAL SOURCES

PATH: SETTINGS ⇔ ^① SYSTEM SETUP ⇒ ^① SIGNAL SOURCES ⇒ SOURCE 1(4)

Identical menus are available for each source. The "SRC 1" text can be replaced by with a user-defined name appropriate for the associated source.

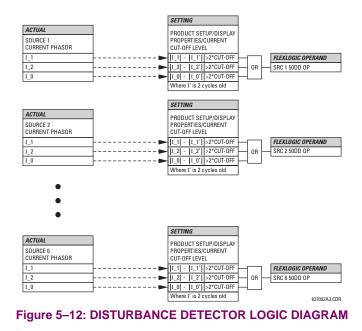
The first letter in the source identifier represents the module slot position. The number directly following this letter represents either the first bank of four channels (1, 2, 3, 4) called "1" or the second bank of four channels (5, 6, 7, 8) called "5" in a particular CT/VT module. Refer to the Introduction to AC sources section at the beginning of this chapter for additional details on this concept.

It is possible to select the sum of all CT combinations. The first channel displayed is the CT to which all others will be referred. For example, the selection "F1+F5" indicates the sum of each phase from channels "F1" and "F5", scaled to whichever CT has the higher ratio. Selecting "None" hides the associated actual values.

The approach used to configure the AC sources consists of several steps; first step is to specify the information about each CT and VT input. For CT inputs, this is the nominal primary and secondary current. For VTs, this is the connection type, ratio and nominal secondary voltage. Once the inputs have been specified, the configuration for each source is entered, including specifying which CTs will be summed together.

User selection of AC parameters for comparator elements:

CT/VT modules automatically calculate all current and voltage parameters from the available inputs. Users must select the specific input parameters to be measured by every element in the relevant settings menu. The internal design of the element specifies which type of parameter to use and provides a setting for source selection. In elements where the parameter may be either fundamental or RMS magnitude, such as phase time overcurrent, two settings are provided. One setting specifies the source, the second setting selects between fundamental phasor and RMS.


AC input actual values:

The calculated parameters associated with the configured voltage and current inputs are displayed in the current and voltage sections of actual values. Only the phasor quantities associated with the actual AC physical input channels will be displayed here. All parameters contained within a configured source are displayed in the sources section of the actual values.

DISTURBANCE DETECTORS (INTERNAL):

The disturbance detector (ANSI 50DD) element is a sensitive current disturbance detector that detects any disturbance on the protected system. The 50DD function is intended for use in conjunction with measuring elements, blocking of current based elements (to prevent maloperation as a result of the wrong settings), and starting oscillography data capture. A disturbance detector is provided for each source.

The 50DD function responds to the changes in magnitude of the sequence currents. The disturbance detector scheme logic is as follows:

The disturbance detector responds to the change in currents of twice the current cut-off level. The default cut-off threshold is 0.02 pu; thus by default the disturbance detector responds to a change of 0.04 pu. The metering sensitivity setting (**PROD-UCT SETUP** \Rightarrow **DISPLAY PROPERTIES** \Rightarrow **UCRENT CUT-OFF LEVEL**) controls the sensitivity of the disturbance detector accordingly.

EXAMPLE USE OF SOURCES:

An example of the use of sources is shown in the diagram below. A relay could have the following hardware configuration:

INCREASING SLOT POSITION LETTER>					
CT/VT MODULE 1	CT/VT MODULE 2	CT/VT MODULE 3			
CTs VTs not applicable					

5

This configuration could be used on a two-winding transformer, with one winding connected into a breaker-and-a-half system. The following figure shows the arrangement of sources used to provide the functions required in this application, and the CT/VT inputs that are used to provide the data.

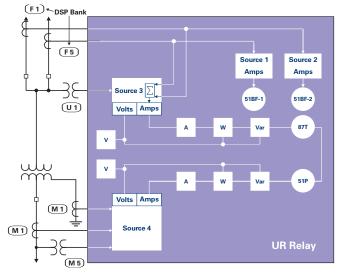
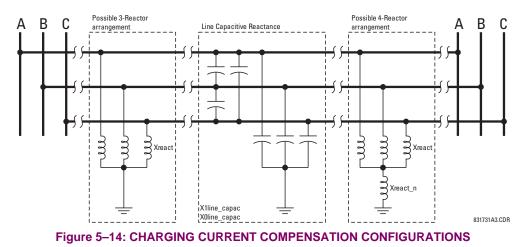


Figure 5–13: EXAMPLE USE OF SOURCES


5.3.4 L90 POWER SYSTEM

■ L90 POWER SYSTEM	NUMBER OF TERMINALS: 2	Range: 2, 3
MESSAGE	NUMBER OF CHANNELS: 1	Range: 1, 2
MESSAGE	CHARGING CURRENT COMPENSATN: Disabled	Range: Disabled, Enabled
MESSAGE	POS SEQ CAPACITIVE REACTANCE: 0.100 k Ω	Range: 0.100 to 65.535 k Ω in steps of 0.001
MESSAGE	ZERO SEQ CAPACITIVE REACTANCE: 0.100 k Ω	Range: 0.100 to 65.535 k Ω in steps of 0.001
MESSAGE	ZERO SEQ CURRENT REMOVAL: Disabled	Range: Disabled, Enabled
MESSAGE	LOCAL RELAY ID NUMBER: 0	Range: 0 to 255 in steps of 1
MESSAGE	TERMINAL 1 RELAY ID NUMBER: 0	Range: 0 to 255 in steps of 1
MESSAGE	TERMINAL 2 RELAY ID NUMBER: 0	Range: 0 to 255 in steps of 1
MESSAGE	CHNL ASYM COMP: Off	Range: FlexLogic™ operand
MESSAGE	BLOCK GPS TIME REF: Off	Range: FlexLogic™ operand
MESSAGE	MAX CHNL ASYMMETRY: 1.5 ms	Range: 0.0 to 10.0 ms in steps of 0.1
MESSAGE	ROUND TRIP TIME CHANGE: 1.5 ms	Range: 0.0 to 10.0 ms in steps of 0.1

PATH: SETTINGS $\Rightarrow 0$ SYSTEM SETUP $\Rightarrow 0$ L90 POWER SYSTEM

Any changes to the L90 power system settings will change the protection system configuration. As such, the 87L protection at all L90 protection system terminals must be temporarily disabled to allow the relays to acknowledge the new settings.

- **NUMBER OF TERMINALS:** This setting is the number of the terminals of the associated protected line.
- NUMBER OF CHANNELS: This setting should correspond to the type of communications module installed. If the relay
 is applied on two terminal lines with a single communications channel, this setting should be selected as "1". For a two
 terminal line with a second redundant channel for increased dependability, or for three terminal line applications, this
 setting should be selected as "2".
- CHARGING CURRENT COMPENSATION: This setting enables and disables the charging current calculations and corrections of current phasors. The voltage signals used for charging current compensation are taken from the source assigned with the CURRENT DIFF SIGNAL SOURCE 1 setting. As such, it's critical to ensure that three-phase line voltage is assigned to this source. The following diagram shows possible configurations.

POSITIVE and ZERO SEQUENCE CAPACITIVE REACTANCE: The values of positive and zero-sequence capacitive
reactance of the protected line are required for charging current compensation calculations. The line capacitive reactance values should be entered in primary kohms for the total line length. Details of the charging current compensation algorithm can be found in Chapter 8: Theory of operation.

If shunt reactors are also installed on the line, the resulting value entered in the **POS SEQ CAPACITIVE REACTANCE** and **ZERO SEQ CAPACITIVE REACTANCE** settings should be calculated as follows:

1. **Three-reactor arrangement:** three identical line reactors (X_{react}) solidly connected phase to ground:

$$X_{C1} = \frac{X_{1\text{line}_capac} \cdot X_{react}}{X_{react} - X_{1\text{line}_capac}} \quad , X_{C0} = \frac{X_{0\text{line}_capac} \cdot X_{react}}{X_{react} - X_{0\text{line}_capac}}$$
(EQ 5.8)

Four-reactor arrangement: three identical line reactors (X_{react}) wye-connected with the fourth reactor (X_{react_n}) connected between reactor-bank neutral and the ground.

$$X_{C1} = \frac{X_{1 \text{ line}_capac} \cdot X_{\text{react}}}{X_{\text{react}} - X_{1 \text{ line}_capac}} \quad , X_{C0} = \frac{X_{0 \text{ line}_capac} \cdot (X_{\text{react}} + 3X_{\text{react}_n})}{X_{\text{react}} + 3X_{\text{react}_n} - X_{0 \text{ line}_capac}}$$
(EQ 5.9)

 $X_{1\text{line}_\text{capac}}$ = the total line positive-sequence capacitive reactance $X_{0\text{line}_\text{capac}}$ = the total line zero-sequence capacitive reactance

- X_{react} = the total reactor inductive reactance per phase. If identical reactors are installed at both line ends, the value of the inductive reactance is divided by 2 (or 3 for a three-terminal line) before using in the above equations. If the reactors installed at both ends of the line are different, the following equations apply:
 - 1. For 2 terminal line: $X_{\text{react}} = 1/\left(\frac{1}{X_{\text{react_terminal1}}} + \frac{1}{X_{\text{react_terminal2}}}\right)$ 2. For 3 terminal line: $X_{\text{react}} = 1/\left(\frac{1}{X_{\text{react_terminal1}}} + \frac{1}{X_{\text{react_terminal2}}} + \frac{1}{X_{\text{react_terminal2}}}\right)$
- X_{react_n} = the total neutral reactor inductive reactance. If identical reactors are installed at both line ends, the value of the inductive reactance is divided by 2 (or 3 for a three-terminal line) before using in the above equations. If the reactors installed at both ends of the line are different, the following equations apply:
 - 1. For 2 terminal line: $X_{\text{react_n}} = 1/\left(\frac{1}{X_{\text{react_n_terminal1}}} + \frac{1}{X_{\text{react_n_terminal2}}}\right)$ 2. For 3 terminal line: $X_{\text{react_n}} = 1/\left(\frac{1}{X_{\text{react_n_terminal1}}} + \frac{1}{X_{\text{react_n_terminal2}}} + \frac{1}{X_{\text{react_n_terminal3}}}\right)$

NOTE

Charging current compensation calculations should be performed for an arrangement where the VTs are connected to the line side of the circuit; otherwise, opening the breaker at one end of the line will cause a calculation error.

Differential current is significantly decreased when **CHARGING CURRENT COMPENSATION** is "Enabled" and the proper reactance values are entered. The effect of charging current compensation is viewed in the **METERING** \Rightarrow **37L DIFFERENTIAL CURRENT** actual values menu. This effect is very dependent on CT and VT accuracy.

ZERO-SEQUENCE CURRENT REMOVAL: This setting facilitates application of the L90 to transmission lines with one
or more tapped transformers without current measurement at the taps. If the tapped transformer is connected in a
grounded wye on the line side, it becomes a source of the zero-sequence current for external ground faults. As the
transformer current is not measured by the L90 protection system, the zero-sequence current would create a spurious
differential signal and may cause a false trip.

If enabled, this setting forces the L90 to remove zero-sequence current from the phase currents prior to forming their differential signals, ensuring protection stability on external ground faults. However, zero-sequence current removal may cause all three phases to trip for internal ground faults. Consequently, a phase selective operation of the L90 is not retained if the setting is enabled. This does not impose any limitation, as single-pole tripping is not recommended for lines with tapped transformers. Refer to chapter 9 for guidelines.

• LOCAL (TERMINAL 1 and TERMINAL 2) ID NUMBER: In installations using multiplexers or modems for communication, it is desirable to ensure the data used by the relays protecting a given line comes from the correct relays. The L90 performs this check by reading the ID number contained in the messages sent by transmitting relays and comparing this ID to the programmed correct ID numbers by the receiving relays. This check is used to block the differential element of a relay, if the channel is inadvertently set to loopback mode, by recognizing its own ID on a received channel. If an incorrect ID is found on a either channel during normal operation, the FlexLogic[™] operand 87 CH1(2) ID FAIL is set, driving the event with the same name. The result of channel identification is also available in ACTUAL VALUES ⇒ STATUS ⇒ U CHANNEL TESTS ⇒ U VALIDITY OF CHANNEL CONFIGURATION for commissioning purposes. The default value "0" at local relay ID setting indicates that the channel ID number is not to be checked. Refer to the *Current differential* section in this chapter for additional information.

For two-terminal applications, only the LOCAL ID NUMBER and TERMINAL 1 ID NUMBER should be used. The TERMINAL 2 ID NUMBER is used for three-terminal applications.

CHNL ASYM COMP: This setting enables/disables channel asymmetry compensation. The compensation is based on absolute time referencing provided by GPS-based clocks via the L90 IRIG-B inputs. This feature should be used on multiplexed channels where channel asymmetry can be expected and would otherwise cause errors in current differential calculations. The feature takes effect if all terminals are provided with reliable IRIG-B signals. If the IRIG-B signal is lost at any terminal of the L90 protection system, or the real time clock not configured, then the compensation is not calculated. If the compensation is in place prior to losing the GPS time reference, the last (memorized) correction is applied as long as the value of CHNL ASYM COMP is "On". See chapter 9 for additional information.

The GPS-based compensation for channel asymmetry can take three different effects:

- If CHNL ASYM COMP (GPS) is "Off", compensation is not applied and the L90 uses only the ping-pong technique.
- If CHNL ASYM COMP (GPS) is "On" and all L90 terminals have a valid time reference (BLOCK GPS TIME REF not set), then compensation is applied and the L90 effectively uses GPS time referencing tracking channel asymmetry if the latter fluctuates.
- If CHNL ASYM COMP (GPS) is "On" and not all L90 terminals have a valid time reference (BLOCK GPS TIME REF not set or IRIG-B FAILURE operand is not asserted), then compensation is not applied (if the system was not compensated prior to the problem), or the memorized (last valid) compensation is used if compensation was in effect prior to the problem.

The CHNL ASYM COMP setting dynamically turns the GPS compensation on and off. A FlexLogic[™] operand that combines several factors is typically used. The L90 protection system does not incorporate any pre-defined way of treating certain conditions, such as failure of the GPS receiver, loss of satellite signal, channel asymmetry prior to the loss of reference time, or change of the round trip time prior to loss of the time reference. Virtually any philosophy can be programmed by selecting the CHNL ASYM COMP setting. Factors to consider are:

- Fail-safe output of the GPS receiver. Some receivers may be equipped with the fail-safe output relay. The L90 system requires a maximum error of 250 μs. The fail-safe output of the GPS receiver may be connected to the local L90 via an input contact. In the case of GPS receiver fail, the channel compensation function can be effectively disabled by using the input contact in conjunction with the BLOCK GPS TIME REF (GPS) setting.
- Channel asymmetry prior to losing the GPS time reference. This value is measured by the L90 and a user-programmable threshold is applied to it. The corresponding FlexLogic[™] operands are produced if the asymmetry is above the threshold (87L DIFF MAX 1 ASYM and 87L DIFF 2 MAX ASYM). These operands can be latched in Flex-Logic[™] and combined with other factors to decide, upon GPS loss, if the relays continue to compensate using the memorized correction. Typically, one may decide to keep compensating if the pre-existing asymmetry was low.

- Change in the round trip travel time. This value is measured by the L90 and a user-programmable threshold applied to it. The corresponding FlexLogic[™] operands are produced if the delta change is above the threshold (87L DIFF 1 TIME CHNG and 87L DIFF 2 TIME CHNG). These operands can be latched in FlexLogic[™] and combined with other factors to decide, upon GPS loss, if the relays continue to compensate using the memorized correction. Typically, one may decide to disable compensation if the round trip time changes.
- BLOCK GPS TIME REF: This setting signals to the L90 that the time reference is not valid. The time reference may be not accurate due to problems with the GPS receiver. The user must to be aware of the case when a GPS satellite receiver loses its satellite signal and reverts to its own calibrated crystal oscillator. In this case, accuracy degrades in time and may eventually cause relay misoperation. Verification from the manufacturer of receiver accuracy not worse than 250 µs and the presence of an alarm contact indicating loss of the satellite signal is strongly recommended. If the time reference accuracy cannot be guaranteed, it should be relayed to the L90 via contact inputs and GPS compensation effectively blocked using the contact position in conjunction with the BLOCK GPS TIME REF setting. This setting is typically a signal from the GPS receiver signaling problems or time inaccuracy.

Some GPS receivers can supply erroneous IRIG-B signals during power-up and before locking to satellites. If the receiver's failsafe contact opens during power-up (allowing for an erroneous IRIG-B signal), then set a dropout delay up to 15 minutes (depending on GPS receiver specifications) to the failsafe contact via FlexLogic[™] to prevent incorrect relay response.

MAX CHNL ASYMMETRY: This setting detects excessive channel asymmetry. The same threshold is applied to both
the channels, while the following per-channel FlexLogic[™] operands are generated: 87L DIFF 1 MAX ASYM and 87L DIFF
2 MAX ASYM. These operands can be used to alarm on problems with communication equipment and/or to decide
whether channel asymmetry compensation remains in operation should the GPS-based time reference be lost. Channel asymmetry is measured if both terminals of a given channel have valid time reference.

If the memorized asymmetry value is much greater than expected (indicating a significant problem with IRIG-B timing), then this operand can be also used to block GPS compensation, forcing the relay to use the memorized asymmetry value.

• ROUND TRIP TIME CHANGE: This setting detects changes in round trip time. This threshold is applied to both channels, while the 87L DIFF 1 TIME CHNG and 87L DIFF 2 TIME CHNG ASYM per-channel FlexLogic[™] operands are generated. These operands can be used to alarm on problems with communication equipment and/or to decide whether channel asymmetry compensation remains in operation should the GPS-based time reference be lost.

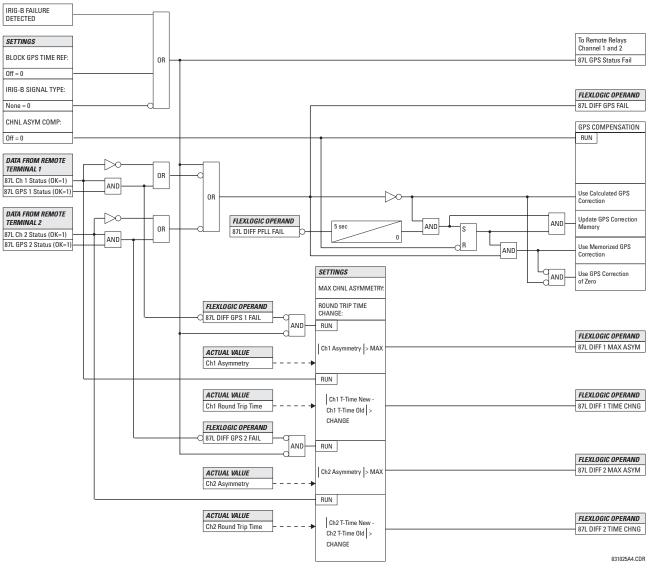


Figure 5–15: CHANNEL ASYMMETRY COMPENSATION LOGIC

5.3 SYSTEM SETUP

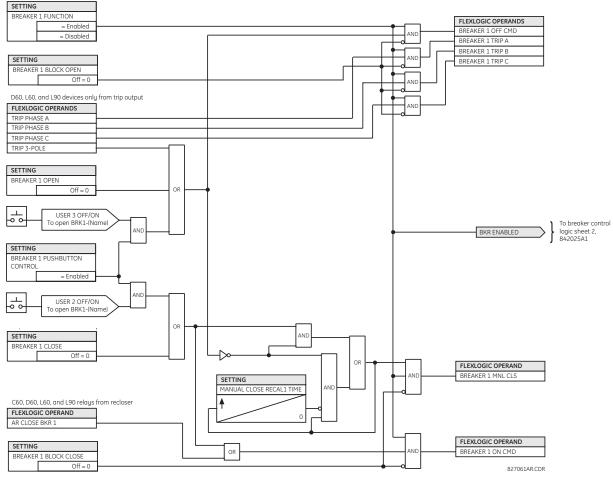
5.3.5 BREAKERS

	BREAKERS ⇔ BREAKER 1(4)	
■ BREAKER 1	BREAKER 1 FUNCTION: Disabled	Range: Disabled, Enabled
MESSAGE	BREAKER1 PUSH BUTTON CONTROL: Disabled	Range: Disabled, Enabled
MESSAGE	BREAKER 1 NAME: Bkr 1	Range: up to 6 alphanumeric characters
MESSAGE	BREAKER 1 MODE: 3-Pole	Range: 3-Pole, 1-Pole
MESSAGE	BREAKER 1 OPEN: Off	Range: FlexLogic™ operand
MESSAGE	BREAKER 1 BLK OPEN: Off	Range: FlexLogic™ operand
MESSAGE	BREAKER 1 CLOSE: Off	Range: FlexLogic™ operand
MESSAGE	BREAKER 1 BLK CLOSE: Off	Range: FlexLogic™ operand
MESSAGE	BREAKER 1 Φ A/3P CLSD: Off	Range: FlexLogic™ operand
MESSAGE	BREAKER 1 Φ A/3P OPND: Off	Range: FlexLogic™ operand
MESSAGE	BREAKER 1 Φ B CLOSED: Off	Range: FlexLogic™ operand
MESSAGE	BREAKER 1 Φ B OPENED: Off	Range: FlexLogic™ operand
MESSAGE	BREAKER 1 Φ C CLOSED: Off	Range: FlexLogic™ operand
MESSAGE	BREAKER 1 Φ C OPENED: Off	Range: FlexLogic™ operand
MESSAGE	BREAKER 1 Toperate: 0.070 s	Range: 0.000 to 2.000 s in steps of 0.001
MESSAGE	BREAKER 1 EXT ALARM: Off	Range: FlexLogic™ operand
MESSAGE	BREAKER 1 ALARM DELAY: 0.000 s	Range: 0.000 to 1 000 000.000 s in steps of 0.001
MESSAGE	MANUAL CLOSE RECAL1 TIME: 0.000 s	Range: 0.000 to 1 000 000.000 s in steps of 0.001
MESSAGE	BREAKER 1 OUT OF SV: Off	Range: FlexLogic™ operand
MESSAGE	BREAKER 1 EVENTS: Disabled	Range: Disabled, Enabled

PATH: SETTINGS \Rightarrow \bigcirc SYSTEM SETUP \Rightarrow \bigcirc BREAKERS \Rightarrow BREAKER 1(4)

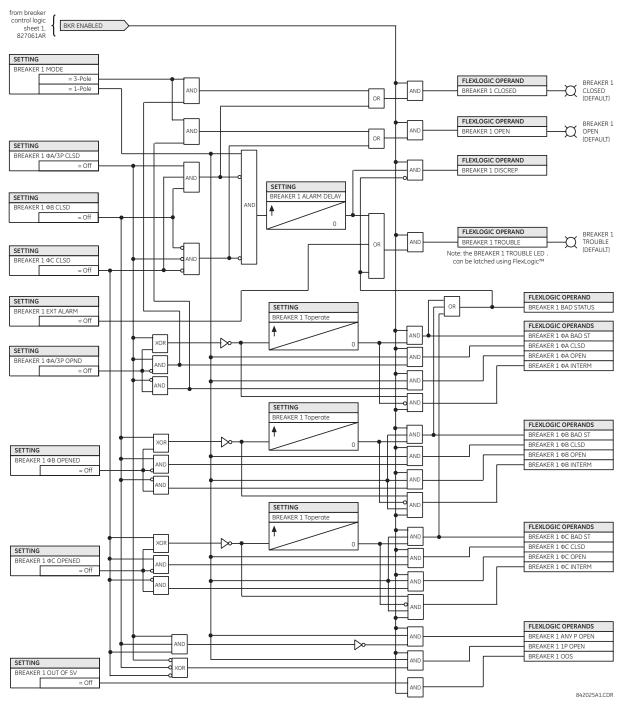
A description of the operation of the breaker control and status monitoring features is provided in chapter 4. Only information concerning programming of the associated settings is covered here. These features are provided for two or more breakers; a user may use only those portions of the design relevant to a single breaker, which must be breaker 1.

The number of breaker control elements is dependent on the number of CT/VT modules specified with the L90. The following settings are available for each breaker control element.


- **BREAKER 1 FUNCTION:** This setting enables and disables the operation of the breaker control feature.
- BREAKER1 PUSH BUTTON CONTROL: Set to "Enable" to allow faceplate push button operations.
- BREAKER 1 NAME: Assign a user-defined name (up to six characters) to the breaker. This name will be used in flash messages related to breaker 1.
- BREAKER 1 MODE: This setting selects "3-pole" mode, where all breaker poles are operated simultaneously, or "1pole" mode where all breaker poles are operated either independently or simultaneously.
- BREAKER 1 OPEN: This setting selects an operand that creates a programmable signal to operate an output relay to open breaker 1.
- BREAKER 1 BLK OPEN: This setting selects an operand that prevents opening of the breaker. This setting can be . used for select-before-operate functionality or to block operation from a panel switch or from SCADA.
- BREAKER 1 CLOSE: This setting selects an operand that creates a programmable signal to operate an output relay to close breaker 1.
- BREAKER 1 BLK CLOSE: This setting selects an operand that prevents closing of the breaker. This setting can be used for select-before-operate functionality or to block operation from a panel switch or from SCADA.
- BREAKER 1 0A/3P CLOSED: This setting selects an operand, usually a contact input connected to a breaker auxiliary position tracking mechanism. This input should be a normally-open 52/a status input to create a logic 1 when the breaker is closed. If the BREAKER 1 MODE setting is selected as "3-Pole", this setting selects a single input as the operand used to track the breaker open or closed position. If the mode is selected as "1-Pole", the input mentioned above is used to track phase A and the BREAKER 1 DB and BREAKER 1 DC settings select operands to track phases B and C, respectively.

5

- BREAKER 1 0A/3P OPND: This setting selects an operand, usually a contact input, that should be a normally-closed • 52/b status input to create a logic 1 when the breaker is open. If a separate 52/b contact input is not available, then the inverted BREAKER 1 CLOSED status signal can be used.
- BREAKER 1 OB CLOSED: If the mode is selected as three-pole, this setting has no function. If the mode is selected . as single-pole, this input is used to track the breaker phase B closed position as above for phase A.
- BREAKER 1 OB OPENED: If the mode is selected as three-pole, this setting has no function. If the mode is selected as single-pole, this input is used to track the breaker phase B opened position as above for phase A.
- BREAKER 1 OC CLOSED: If the mode is selected as three-pole, this setting has no function. If the mode is selected as single-pole, this input is used to track the breaker phase C closed position as above for phase A.
- BREAKER 1 OC OPENED: If the mode is selected as three-pole, this setting has no function. If the mode is selected as single-pole, this input is used to track the breaker phase C opened position as above for phase A.
- BREAKER 1 Toperate: This setting specifies the required interval to overcome transient disagreement between the . 52/a and 52/b auxiliary contacts during breaker operation. If transient disagreement still exists after this time has expired, the BREAKER 1 BAD STATUS FlexLogic[™] operand is asserted from alarm or blocking purposes.
- BREAKER 1 EXT ALARM: This setting selects an operand, usually an external contact input, connected to a breaker alarm reporting contact.
- BREAKER 1 ALARM DELAY: This setting specifies the delay interval during which a disagreement of status among the three-pole position tracking operands will not declare a pole disagreement. This allows for non-simultaneous operation of the poles.


If single-pole tripping and reclosing is used, the breaker may trip unsymmetrically for faults. In this case, the minimum alarm delay setting must exceed the maximum time required for fault clearing and reclosing by a suitable margin.

- MANUAL CLOSE RECAL1 TIME: This setting specifies the interval required to maintain setting changes in effect after an operator has initiated a manual close command to operate a circuit breaker.
- BREAKER 1 OUT OF SV: Selects an operand indicating that breaker 1 is out-of-service.

5 SETTINGS

5.3.6 DISCONNECT SWITCHES

SWITCH 1	SWITCH 1 FUNCTION: Disabled	Range: Disabled, Enabled
MESSAGE	SWITCH 1 NAME: SW 1	Range: up to 6 alphanumeric characters
MESSAGE	SWITCH 1 MODE: 3-Pole	Range: 3-Pole, 1-Pole
MESSAGE	SWITCH 1 OPEN: Off	Range: FlexLogic™ operand
MESSAGE	SWITCH 1 BLK OPEN: Off	Range: FlexLogic™ operand
MESSAGE	SWITCH 1 CLOSE: Off	Range: FlexLogic™ operand
MESSAGE	SWITCH 1 BLK CLOSE: Off	Range: FlexLogic™ operand
MESSAGE	SWTCH 1 Φ A/3P CLSD: Off	Range: FlexLogic™ operand
MESSAGE	SWTCH 1 Φ A/3P OPND: Off	Range: FlexLogic™ operand
MESSAGE	SWITCH 1 Φ B CLOSED: Off	Range: FlexLogic™ operand
MESSAGE	SWITCH 1 Φ B OPENED: Off	Range: FlexLogic™ operand
MESSAGE	SWITCH 1 Φ C CLOSED: Off	Range: FlexLogic™ operand
MESSAGE	SWITCH 1 Φ C OPENED: Off	Range: FlexLogic™ operand
MESSAGE	SWITCH 1 Toperate: 0.070 s	Range: 0.000 to 2.000 s in steps of 0.001
MESSAGE	SWITCH 1 ALARM DELAY: 0.000 s	Range: 0.000 to 1 000 000.000 s in steps of 0.001
MESSAGE	SWITCH 1 EVENTS: Disabled	Range: Disabled, Enabled

PATH: SETTINGS $\Rightarrow \square$ SYSTEM SETUP $\Rightarrow \square$ SWITCHES \Rightarrow SWITCH 1(16)

The disconnect switch element contains the auxiliary logic for status and serves as the interface for opening and closing of disconnect switches from SCADA or through the front panel interface. The disconnect switch element can be used to create an interlocking functionality. For greater security in determination of the switch pole position, both the 52/a and 52/b auxiliary contacts are used with reporting of the discrepancy between them. The number of available disconnect switches depends on the number of the CT/VT modules ordered with the L90.

- SWITCH 1 FUNCTION: This setting enables and disables the operation of the disconnect switch element.
- **SWITCH 1 NAME:** Assign a user-defined name (up to six characters) to the disconnect switch. This name will be used in flash messages related to disconnect switch 1.
- **SWITCH 1 MODE:** This setting selects "3-pole" mode, where all disconnect switch poles are operated simultaneously, or "1-pole" mode where all disconnect switch poles are operated either independently or simultaneously.

5

5 SETTINGS

- SWITCH 1 OPEN: This setting selects an operand that creates a programmable signal to operate an output relay to open disconnect switch 1.
- **SWITCH 1 BLK OPEN**: This setting selects an operand that prevents opening of the disconnect switch. This setting can be used for select-before-operate functionality or to block operation from a panel switch or from SCADA.
- SWITCH 1 CLOSE: This setting selects an operand that creates a programmable signal to operate an output relay to close disconnect switch 1.
- **SWITCH 1 BLK CLOSE**: This setting selects an operand that prevents closing of the disconnect switch. This setting can be used for select-before-operate functionality or to block operation from a panel switch or from SCADA.
- SWTCH 1 ΦA/3P CLSD: This setting selects an operand, usually a contact input connected to a disconnect switch auxiliary position tracking mechanism. This input should be a normally-open 52/a status input to create a logic 1 when the disconnect switch is closed. If the SWITCH 1 MODE setting is selected as "3-Pole", this setting selects a single input as the operand used to track the disconnect switch open or closed position. If the mode is selected as "1-Pole", the input mentioned above is used to track phase A and the SWITCH 1 ΦB and SWITCH 1 ΦC settings select operands to track phases B and C, respectively.
- SWITCH 1 ΦA/3P OPND: This setting selects an operand, usually a contact input, that should be a normally-closed 52/b status input to create a logic 1 when the disconnect switch is open. If a separate 52/b contact input is not available, then the inverted SWITCH 1 CLOSED status signal can be used.
- SWITCH 1 **DB CLOSED:** If the mode is selected as three-pole, this setting has no function. If the mode is selected as single-pole, this input is used to track the disconnect switch phase B closed position as above for phase A.
- SWITCH 1 ΦB OPENED: If the mode is selected as three-pole, this setting has no function. If the mode is selected as single-pole, this input is used to track the disconnect switch phase B opened position as above for phase A.
- SWITCH 1 ΦC CLOSED: If the mode is selected as three-pole, this setting has no function. If the mode is selected as single-pole, this input is used to track the disconnect switch phase C closed position as above for phase A.
- SWITCH 1 ΦC OPENED: If the mode is selected as three-pole, this setting has no function. If the mode is selected as single-pole, this input is used to track the disconnect switch phase C opened position as above for phase A.
- SWITCH 1 Toperate: This setting specifies the required interval to overcome transient disagreement between the 52/a and 52/b auxiliary contacts during disconnect switch operation. If transient disagreement still exists after this time has expired, the SWITCH 1 BAD STATUS FlexLogic[™] operand is asserted from alarm or blocking purposes.
- SWITCH 1 ALARM DELAY: This setting specifies the delay interval during which a disagreement of status among the three-pole position tracking operands will not declare a pole disagreement. This allows for non-simultaneous operation of the poles.

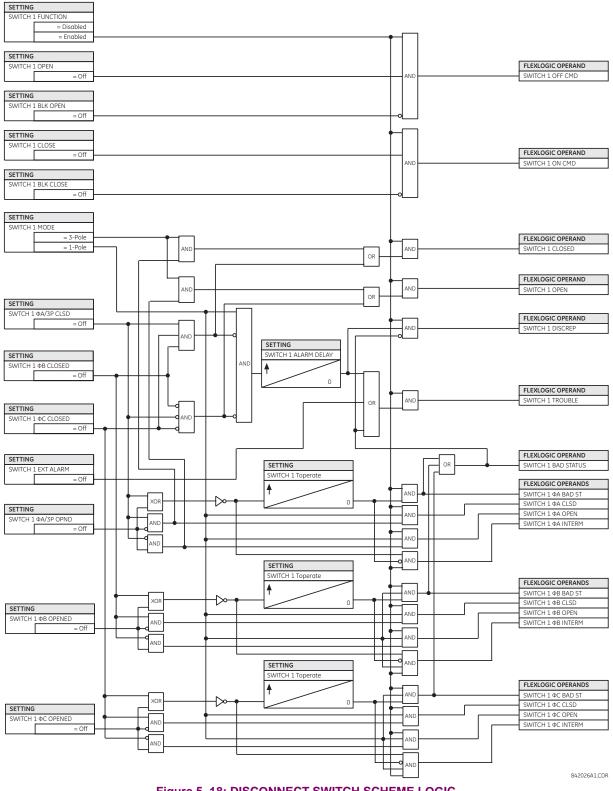


Figure 5–18: DISCONNECT SWITCH SCHEME LOGIC

a) SETTINGS

PATH: SETTINGS ⇔ ^① SYSTEM SETUP ⇒ ^① FLEXCURVES ⇒ FLEXCURVE A(D)

FLEXCURVE	A

FLEXCURVE A TIME AT 0.00 xPKP: 0 ms Range: 0 to 65535 ms in steps of 1

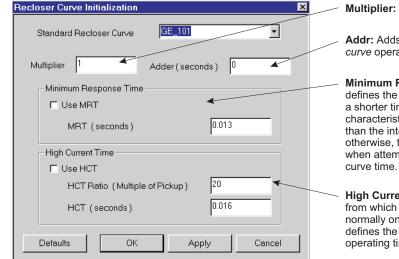
FlexCurves[™] A through D have settings for entering times to reset and operate at the following pickup levels: 0.00 to 0.98 and 1.03 to 20.00. This data is converted into two continuous curves by linear interpolation between data points. To enter a custom FlexCurve[™], enter the reset and operate times (using the VALUE keys) for each selected pickup point (using the MESSAGE UP/DOWN keys) for the desired protection curve (A, B, C, or D).

Table 5–4: FLEXCURVE™ TABLE

RESET	TIME MS	RESET	TIME MS	OPERATE	TIME MS	OPERATE	TIME MS	OPERATE	TIME MS	OPERATE	TIME MS
0.00		0.68		1.03		2.9		4.9		10.5	
0.05		0.70		1.05		3.0		5.0		11.0	
0.10		0.72		1.1		3.1		5.1		11.5	
0.15		0.74		1.2		3.2		5.2		12.0	
0.20		0.76		1.3		3.3		5.3		12.5	
0.25		0.78		1.4		3.4		5.4		13.0	
0.30		0.80		1.5		3.5		5.5		13.5	
0.35		0.82		1.6		3.6		5.6		14.0	
0.40		0.84		1.7		3.7		5.7		14.5	
0.45		0.86		1.8		3.8		5.8		15.0	
0.48		0.88		1.9		3.9		5.9		15.5	
0.50		0.90		2.0		4.0		6.0		16.0	
0.52		0.91		2.1		4.1		6.5		16.5	
0.54		0.92		2.2		4.2		7.0		17.0	
0.56		0.93		2.3		4.3		7.5		17.5	
0.58		0.94		2.4		4.4		8.0		18.0	
0.60		0.95		2.5		4.5		8.5		18.5	
0.62		0.96		2.6		4.6		9.0		19.0	
0.64		0.97		2.7		4.7		9.5		19.5	
0.66		0.98		2.8		4.8		10.0		20.0	

The relay using a given FlexCurve[™] applies linear approximation for times between the user-entered points. Special care must be applied when setting the two points that are close to the multiple of pickup of 1; that is, 0.98 pu and 1.03 pu. It is recommended to set the two times to a similar value; otherwise, the linear approximation may result in undesired behavior for the operating quantity that is close to 1.00 pu.

5


b) FLEXCURVE™ CONFIGURATION WITH ENERVISTA UR SETUP

The EnerVista UR Setup software allows for easy configuration and management of FlexCurves[™] and their associated data points. Prospective FlexCurves[™] can be configured from a selection of standard curves to provide the best approximate fit, then specific data points can be edited afterwards. Alternately, curve data can be imported from a specified file (.csv format) by selecting the **Import Data From** EnerVista UR Setup setting.

Curves and data can be exported, viewed, and cleared by clicking the appropriate buttons. FlexCurves[™] are customized by editing the operating time (ms) values at pre-defined per-unit current multiples. Note that the pickup multiples start at zero (implying the "reset time"), operating time below pickup, and operating time above pickup.

c) RECLOSER CURVE EDITING

Recloser curve selection is special in that recloser curves can be shaped into a composite curve with a minimum response time and a fixed time above a specified pickup multiples. There are 41 recloser curve types supported. These definite operating times are useful to coordinate operating times, typically at higher currents and where upstream and downstream protective devices have different operating characteristics. The recloser curve configuration window shown below appears when the Initialize From EnerVista UR Setup setting is set to "Recloser Curve" and the **Initialize FlexCurve** button is clicked.

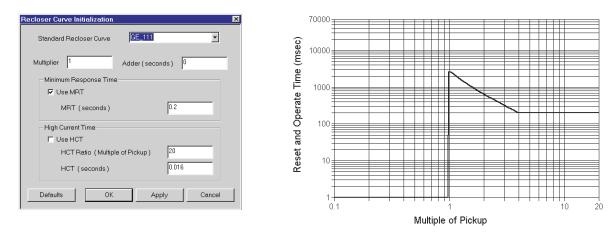
Multiplier: Scales (multiplies) the curve operating times

Addr: Adds the time specified in this field (in ms) to each *curve* operating time value.

Minimum Response Time (MRT): If enabled, the MRT setting defines the shortest operating time even if the curve suggests a shorter time at higher current multiples. A composite operating characteristic is effectively defined. For current multiples lower than the intersection point, the curve dictates the operating time; otherwise, the MRT does. An information message appears when attempting to apply an MRT shorter than the minimum curve time.

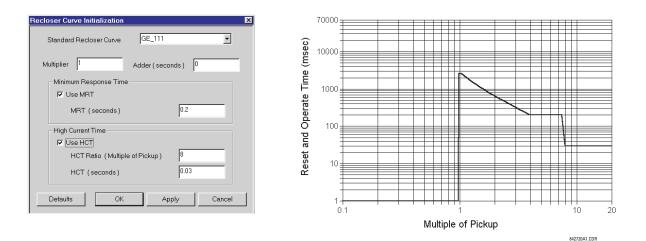
High Current Time: Allows the user to set a pickup multiple from which point onwards the operating time is fixed. This is normally only required at higher current levels. The **HCT Ratio** defines the high current pickup multiple; the **HCT** defines the operating time.

842721A1.CDR


Figure 5–19: RECLOSER CURVE INITIALIZATION

The multiplier and adder settings only affect the curve portion of the characteristic and not the MRT and HCT settings. The HCT settings override the MRT settings for multiples of pickup greater than the HCT ratio.

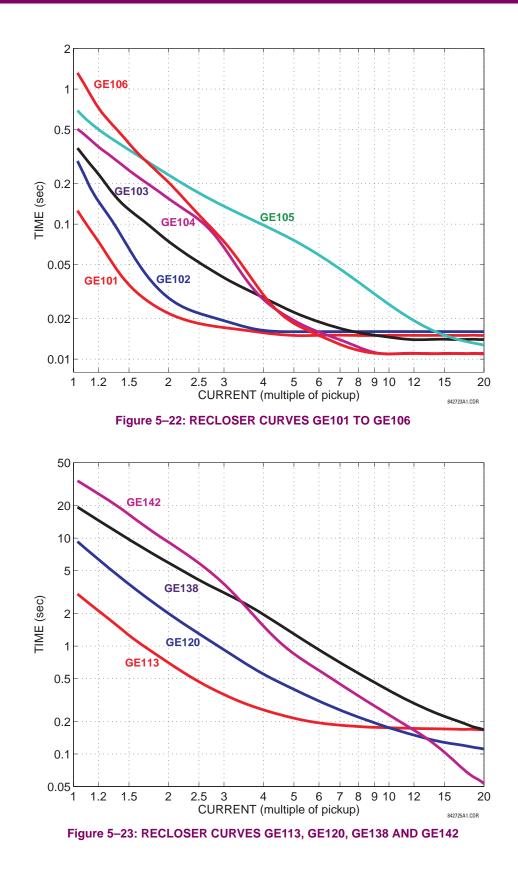
d) EXAMPLE


A composite curve can be created from the GE_111 standard with MRT = 200 ms and HCT initially disabled and then enabled at eight (8) times pickup with an operating time of 30 ms. At approximately four (4) times pickup, the curve operating time is equal to the MRT and from then onwards the operating time remains at 200 ms (see below).

842719A1.CDR

Figure 5–20: COMPOSITE RECLOSER CURVE WITH HCT DISABLED

With the HCT feature enabled, the operating time reduces to 30 ms for pickup multiples exceeding 8 times pickup.


Figure 5–21: COMPOSITE RECLOSER CURVE WITH HCT ENABLED

Configuring a composite curve with an increase in operating time at increased pickup multiples is not allowed. If this is attempted, the EnerVista UR Setup software generates an error message and discards the proposed changes.

e) STANDARD RECLOSER CURVES

The standard recloser curves available for the L90 are displayed in the following graphs.

NOTE

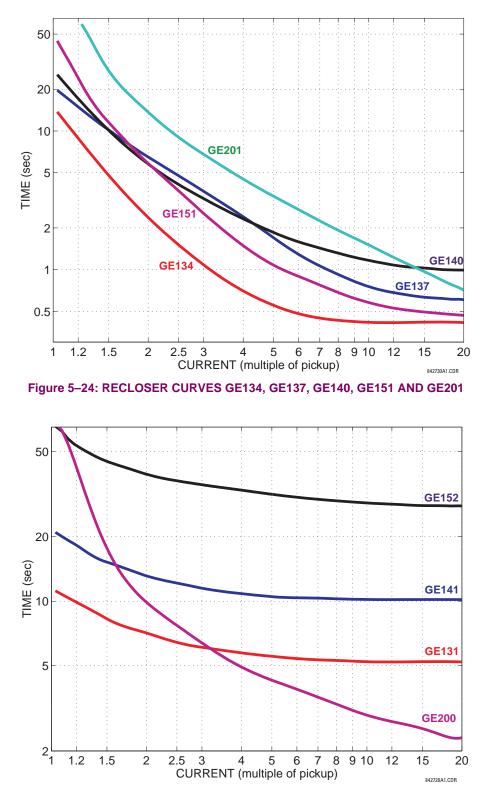


Figure 5-25: RECLOSER CURVES GE131, GE141, GE152, AND GE200

5

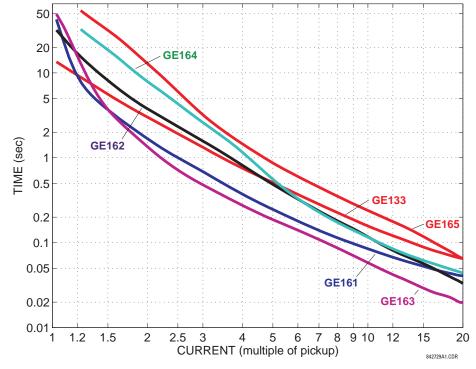


Figure 5-26: RECLOSER CURVES GE133, GE161, GE162, GE163, GE164 AND GE165

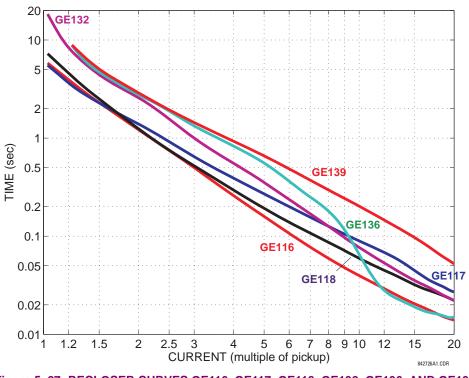


Figure 5-27: RECLOSER CURVES GE116, GE117, GE118, GE132, GE136, AND GE139

5

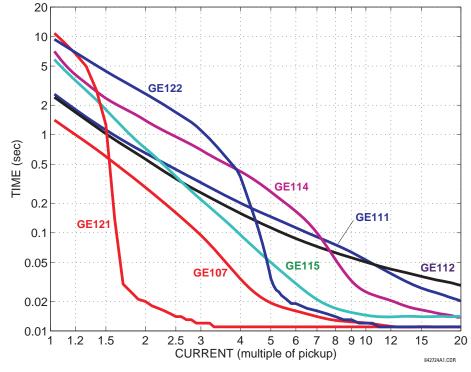
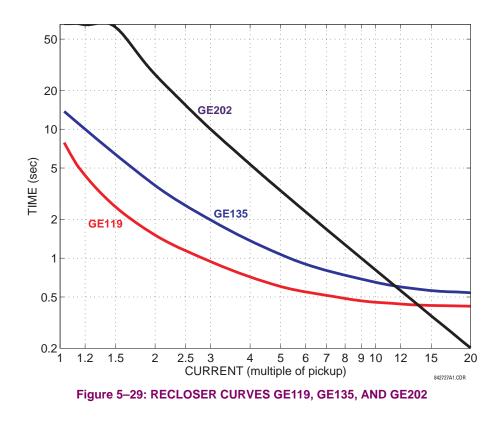
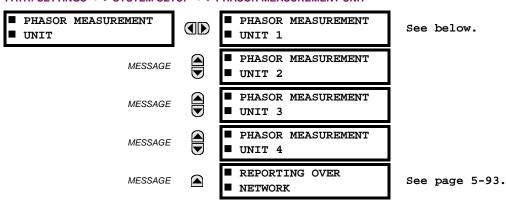




Figure 5–28: RECLOSER CURVES GE107, GE111, GE112, GE114, GE115, GE121, AND GE122

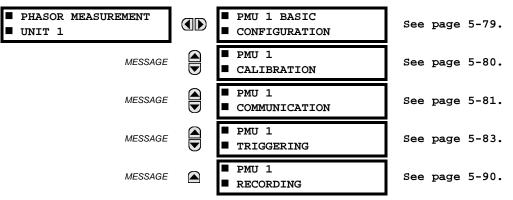
5.3.8 PHASOR MEASUREMENT UNIT

a) MAIN MENU

PATH: SETTINGS ⇔ ♣ SYSTEM SETUP ⇔ ♣ PHASOR MEASUREMENT UNIT

The L90 Line Current Differential System is provided with an optional phasor measurement unit feature. This feature is specified as a software option at the time of ordering. The number of phasor measurement units available is also dependent on this option. Refer to the *Ordering* section of chapter 2 for additional details.

5


The **PHASOR MEASUREMENT UNIT** menu allows specifying basic parameters of the measurements process such as signal source, ID and station name, calibration data, triggering, recording, and content for transmission on each of the supported ports. The reporting ports menus allow specifying the content and rate of reporting on each of the supported ports.

NOTE Prec

Precise IRIG-B input is vital for correct synchrophasor measurement and reporting. A DC level shift IRIG-B receiver *must* be used for the phasor measurement unit to output proper synchrophasor values.

The PMU settings are organized in five logical groups as follows.

PATH: SETTINGS ⇔ 𝔅 SYSTEM SETUP ⇔ 𝔅 PHASOR MEASUREMENT UNIT ⇒ 𝔅 PHASOR MEASUREMENT UNIT 1(4)

b) BASIC CONFIGURATION

PATH: SETTINGS ⇔ ♣ SYSTEM SETUP ⇒ ♣ PHASOR... ⇒ ♣ PHASOR MEASUREMENT UNIT 1(4) ⇒ PMU 1 BASIC CONFIGURATION

PMU 1 BASICCONFIGURATION		PMU 1 FUNCTION: Disabled	Range:	Enabled, Disabled
MESS	AGE	PMU 1 IDCODE: 1	Range:	1 to 65534 in steps of 1
MESS	AGE	PMU 1 STN: GE-UR-PMU	Range:	16 alphanumeric characters
MESS	AGE	PMU 1 SIGNAL SOURCE: SRC 1	Range:	SRC 1, SRC 2, SRC 3, SRC 4
MESS	AGE	PMU 1 POST-FILTER: Symm-3-point	Range:	available post-filters as per table below

This section contains basic phasor measurement unit (PMU) data, such as functions, source settings, and names.

- PMU 1 FUNCTION: This setting enables the PMU 1 functionality. Any associated functions (such as the recorder or triggering comparators) will not function if this setting is "Disabled". Use the command frame to force the communication portion of the feature to start/stop transmission of data. When the transmission is turned off, the PMU is fully operational in terms of calculating and recording the phasors.
- PMU 1 IDCODE: This setting assigns a numerical ID to the PMU. It corresponds to the IDCODE field of the data, configuration, header, and command frames of the C37.118 protocol. The PMU uses this value when sending data, configuration, and header frames and responds to this value when receiving the command frame.
- PMU 1 STN: This setting assigns an alphanumeric ID to the PMU station. It corresponds to the STN field of the configuration frame of the C37.118 protocol. This value is a 16-character ASCII string as per the C37.118 standard.
- PMU 1 SIGNAL SOURCE: This setting specifies one of the available L90 signal sources for processing in the PMU. Note that any combination of voltages and currents can be configured as a source. The current channels could be configured as sums of physically connected currents. This facilitates PMU applications in breaker-and-a-half, ring-bus, and similar arrangements. The PMU feature calculates voltage phasors for actual voltage (A, B, C, and auxiliary) and current (A, B, C, and ground) channels of the source, as well as symmetrical components (0, 1, and 2) of both voltages and currents. When configuring communication and recording features of the PMU, the user could select – from the above superset – the content to be sent out or recorded.
- **PMU 1 POST-FILTER**: This setting specifies amount of post-filtering applied to raw synchrophasor measurements. The raw measurements are produced at the rate of nominal system frequency using one-cycle data windows. This setting is provided to deal with interfering frequencies and to balance speed and accuracy of synchrophasor measurements for different applications. The following filtering choices are available:

SELECTION	CHARACTERISTIC OF THE FILTER
None	No post-filtering
Symm-3-point	Symmetrical 3-point filter (1 historical point, 1 present point, 1 future point)
Symm-5-point	Symmetrical 5-point filter (2 historical points, 1 present point, 2 future points)
Symm-7-point	Symmetrical 7-point filter (3 historical points, 1 present point, 3 future points)

Table 5–5: POST-FILTER CHOICES

This setting applies to all channels of the PMU. It is effectively for recording and transmission on all ports configured to use data of this PMU.

c) CALIBRATION

PATH: SETTINGS - V STSTEM	SETUP 4	PHASUR> >> PHASUR MEASURE	$(MENTONIT(4) \rightarrow \diamond PWOTCALIBRATIO)$
PMU 1CALIBRATION		PMU 1 VA CALIBRATION ANGLE: 0.00°	Range: −5.00 to 5.00° in steps of 0.05
MESS		PMU 1 VB CALIBRATION ANGLE: 0.00°	Range: -5.00 to 5.00° in steps of 0.05
MESS		PMU 1 VC CALIBRATION ANGLE: 0.00°	Range: -5.00 to 5.00° in steps of 0.05
MESS		PMU 1 VX CALIBRATION ANGLE: 0.00°	Range: -5.00 to 5.00° in steps of 0.05
MESS		PMU 1 IA CALIBRATION ANGLE: 0.00°	Range: -5.00 to 5.00° in steps of 0.05
MESS		PMU 1 IB CALIBRATION ANGLE: 0.00°	Range: -5.00 to 5.00° in steps of 0.05
MESS		PMU 1 IC CALIBRATION ANGLE: 0.00°	Range: -5.00 to 5.00° in steps of 0.05
MESS		PMU 1 IG CALIBRATION ANGLE: 0.00°	Range: -5.00 to 5.00° in steps of 0.05
MESS		PMU 1 SEQ VOLT SHIFT ANGLE: 0°	Range: -180 to 180° in steps of 30
MESS	AGE	PMU 1 SEQ CURR SHIFT ANGLE: 0°	Range: -180 to 180° in steps of 30

PATH: SETTINGS ⇔⊕ SYSTEM SETUP ⇔⊕ PHASOR ⇒⊕ PHASOR MEASUREMENT UNIT 1(4) ⇔⊕ PMU 1 CAU BRATION

This menu contains user angle calibration data for the phasor measurement unit (PMU). This data is combined with the factory adjustments to shift the phasors for better accuracy.

- PMU 1 VA... IG CALIBRATION ANGLE: These settings recognize applications with protection class voltage and current sources, and allow the user to calibrate each channel (four voltages and four currents) individually to offset errors introduced by VTs, CTs, and cabling. The setting values are effectively added to the measured angles. Therefore, enter a positive correction of the secondary signal lags the true signal; and negative value if the secondary signal leads the true signal.
- PMU 1 SEQ VOLT SHIFT ANGLE: This setting allows correcting positive- and negative-sequence voltages for vector groups of power transformers located between the PMU voltage point, and the reference node. This angle is effectively added to the positive-sequence voltage angle, and subtracted from the negative-sequence voltage angle. Note that:
 - 1. When this setting is not "0°", the phase and sequence voltages will not agree. Unlike sequence voltages, the phase voltages cannot be corrected in a general case, and therefore are reported as measured.
 - 2. When receiving synchrophasor date at multiple locations, with possibly different reference nodes, it may be more beneficial to allow the central locations to perform the compensation of sequence voltages.
 - 3. This setting applies to PMU data only. The L90 calculates symmetrical voltages independently for protection and control purposes without applying this correction.
 - 4. When connected to line-to-line voltages, the PMU calculates symmetrical voltages with the reference to the AG voltage, and not to the physically connected AB voltage (see the *Metering Conventions* section in Chapter 6).
- PMU 1 SEQ CURR SHIFT ANGLE: This setting allows correcting positive and negative-sequence currents for vector groups of power transformers located between the PMU current point and the reference node. The setting has the same meaning for currents as the PMU 1 SEQ VOLT SHIFT ANGLE setting has for voltages. Normally, the two correcting angles are set identically, except rare applications when the voltage and current measuring points are located at different windings of a power transformer.

d) PMU COMMUNICATION

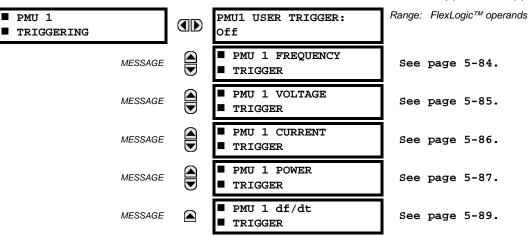
PMU 1COMM PORT 1	PMU1 COMM PORT: None	Range:	None, Network
MESSAGE	PMU1 PORT PHS-1 PMU 1 V1	Range:	available synchrophasor values
MESSAGE	PMU1 PORT PHS-1 NM: GE-UR-PMU1-V1	Range:	16-character ASCII string
	\downarrow	-	
MESSAGE	PMU1 PORT PHS-14 PMU 1 V1	Range:	available synchrophasor values
MESSAGE	PMU1 PORT PHS-14 NM: GE-UR-PMU1-V1	Range:	16 alphanumeric characters
MESSAGE	PMU1 PORT A-CH-1: Off	Range:	available FlexAnalog values
MESSAGE	PMU1 PORT A-CH-1 NM: AnalogChannel1	Range:	16 alphanumeric characters
	\downarrow	-	
MESSAGE	PMU1 PORT A-CH-8: Off	Range:	available FlexAnalog values
MESSAGE	PMU1 PORT A-CH-8 NM: AnalogChannel8	Range:	16 alphanumeric characters
MESSAGE	PMU1 PORT D-CH-1: Off	Range:	FlexLogic [™] operands
MESSAGE	PMU1 PORT D-CH-1 NM: DigitalChannel1	Range:	16 alphanumeric characters
MESSAGE	PMU1 PORT D-CH-1 NORMAL STATE: Off	Range:	On, Off
	\downarrow	-	
MESSAGE	PMU1 PORT D-CH-16: Off	Range:	FlexLogic [™] operands
MESSAGE	PMUl PORT D-CH-16 NM: DigitalChannel16	Range:	16 alphanumeric characters
MESSAGE	PMU1 PORT D-CH-16 NORMAL STATE: Off	Range:	On, Off

This section configures the phasor measurement unit (PMU) communication functions.

• PMU1 COMM PORT: This setting specifies the communication port for transmission of the PMU data.

5

 PMU1 PORT PHS-1 to PMU1 PORT PHS-14: These settings specify synchrophasors to be transmitted from the superset of all synchronized measurements. The available synchrophasor values are tabulated below.


SELECTION	MEANING
Va	First voltage channel, either Va or Vab
Vb	Second voltage channel, either Vb or Vbc
Vc	Third voltage channel, either Vc or Vca
Vx	Fourth voltage channel
la	Phase A current, physical channel or summation as per the source settings
lb	Phase B current, physical channel or summation as per the source settings
lc	Phase C current, physical channel or summation as per the source settings
lg	Fourth current channel, physical or summation as per the source settings
V1	Positive-sequence voltage, referenced to Va
V2	Negative-sequence voltage, referenced to Va
V0	Zero-sequence voltage
11	Positive-sequence current, referenced to la
12	Negative-sequence current, referenced to la
10	Zero-sequence current

These settings allow for optimizing the frame size and maximizing transmission channel usage, depending on a given application. Select "Off" to suppress transmission of a given value.

- PMU1 PORT PHS-1 NM to PMU1 PORT PHS-14 NM: These settings allow for custom naming of the synchrophasor channels. Sixteen-character ASCII strings are allowed as in the CHNAM field of the configuration frame. These names are typically based on station, bus, or breaker names.
- PMU1 PORT A-CH-1 to PMU1 PORT A-CH-8: These settings specify any analog data measured by the relay to be
 included as a user-selectable analog channel of the data frame. Up to eight analog channels can be configured to send
 any FlexAnalog value from the relay. Examples include active and reactive power, per phase or three-phase power,
 power factor, temperature via RTD inputs, and THD. The configured analog values are sampled concurrently with the
 synchrophasor instant and sent as 32-bit floating point values.
- **PMU1 PORT A-CH-1 NM** to **PMU1 PORT A-CH-8 NM**: These settings allow for custom naming of the analog channels. Sixteen-character ASCII strings are allowed as in the CHNAM field of the configuration frame.
- PMU1 PORT D-CH-1 to PMU1 PORT D-CH-16: These settings specify any digital flag measured by the relay to be
 included as a user-selectable digital channel of the data frame. Up to sixteen digital channels can be configured to
 send any FlexLogic[™] operand from the relay. The configured digital flags are sampled concurrently with the synchrophasor instant. The values are mapped into a two-byte integer number, with byte 1 LSB corresponding to the digital
 channel 1 and byte 2 MSB corresponding to digital channel 16.
- **PMU1 PORT D-CH-1 NM** to **PMU1 PORT D-CH-16 NM**: These settings allow for custom naming of the digital channels. Sixteen-character ASCII strings are allowed as in the CHNAM field of the configuration frame.
- PMU1 PORT D-CH-1 NORMAL STATE to PMU1 PORT D-CH-16 NORMAL STATE: These settings allow for specifying a normal state for each digital channel. These states are transmitted in configuration frames to the data concentrator.

e) PMU TRIGGERING OVERVIEW

PATH: SETTINGS ⇔ ♣ SYSTEM SETUP ⇒ ♣ PHASOR... ⇔ ♣ PHASOR MEASUREMENT UNIT 1(4) ⇔ ♣ PMU 1(4) TRIGGERING

Each logical phasor measurement unit (PMU) contains five triggering mechanisms to facilitate triggering of the associated PMU recorder, or cross-triggering of other PMUs of the system. They are:

- Overfrequency and underfrequency.
- Overvoltage and undervoltage.
- Overcurrent.
- Overpower.
- High rate of change of frequency.

The pre-configured triggers could be augmented with a user-specified condition built freely using programmable logic of the relay. The entire triggering logic is refreshed once every two power system cycles.

All five triggering functions and the user-definable condition are consolidated (ORed) and connected to the PMU recorder. Each trigger can be programmed to log its operation into the event recorder, and to signal its operation via targets. The five triggers drive the STAT bits of the data frame to inform the destination of the synchrophasor data regarding the cause of trigger. The following convention is adopted to drive bits 11, 3, 2, 1, and 0 of the STAT word.

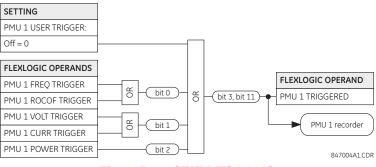
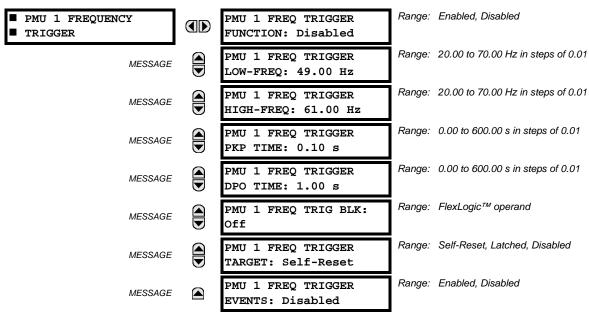
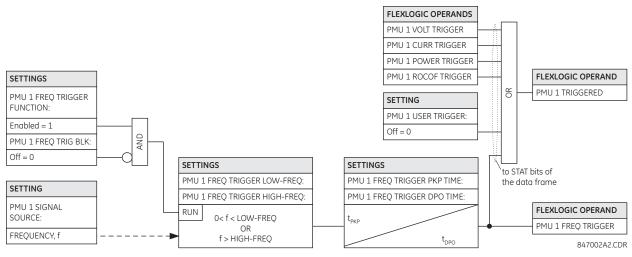



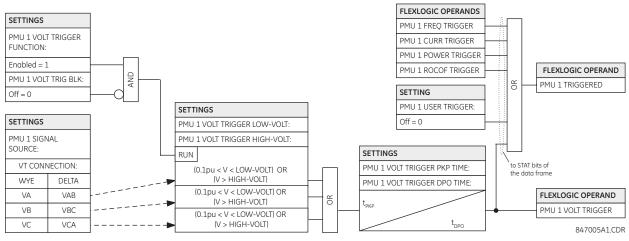
Figure 5–30: STAT BITS LOGIC


f) FREQUENCY TRIGGERING

5

The trigger responds to the frequency signal of the phasor measurement unit (PMU) source. The frequency is calculated from either phase voltages, auxiliary voltage, phase currents and ground current, in this hierarchy, depending on the source configuration as per L90 standards. This element requires the frequency is above the minimum measurable value. If the frequency is below this value, such as when the circuit is de-energized, the trigger will drop out.

- **PMU 1 FREQ TRIGGER LOW-FREQ**: This setting specifies the low threshold for the abnormal frequency trigger. The comparator applies a 0.03 Hz hysteresis.
- **PMU 1 FREQ TRIGGER HIGH-FREQ**: This setting specifies the high threshold for the abnormal frequency trigger. The comparator applies a 0.03 Hz hysteresis.
- PMU 1 FREQ TRIGGER PKP TIME: This setting could be used to filter out spurious conditions and avoid unnecessary triggering of the recorder.
- PMU 1 FREQ TRIGGER DPO TIME: This setting could be used to extend the trigger after the situation returned to normal. This setting is of particular importance when using the recorder in the forced mode (recording as long as the triggering condition is asserted).


g) VOLTAGE TRIGGERING

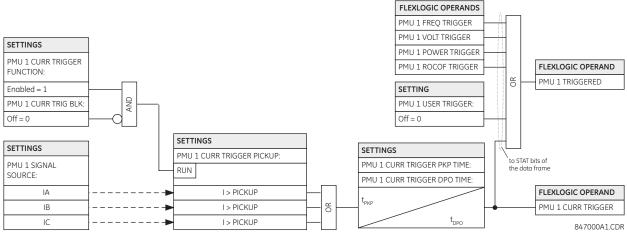
PATH: SETTINGS ⇔ ↓ SYSTEM SETUP ⇒ ↓ PHASOR MEASUREMENT 🛱	⇒
--	---

PMU 1 VOLTAGETRIGGER	PMU 1 VOLT TRIGGER FUNCTION: Disabled	Range: Enabled, Disabled
MESSAGE	PMU 1 VOLT TRIGGER LOW-VOLT: 0.800 pu	Range: 0.250 to 1.250 pu in steps of 0.001
MESSAGE	PMU 1 VOLT TRIGGER HIGH-VOLT: 1.200 pu	Range: 0.750 to 1.750 pu in steps of 0.001
MESSAGE	PMU 1 VOLT TRIGGER PKP TIME: 0.10 s	Range: 0.00 to 600.00 s in steps of 0.01
MESSAGE	PMU 1 VOLT TRIGGER DPO TIME: 1.00 s	Range: 0.00 to 600.00 s in steps of 0.01
MESSAGE	PMU 1 VOLT TRIG BLK: Off	Range: FlexLogic™ operand
MESSAGE	PMU 1 VOLT TRIGGER TARGET: Self-Reset	Range: Self-Reset, Latched, Disabled
MESSAGE	PMU 1 VOLT TRIGGER EVENTS: Disabled	Range: Enabled, Disabled

This element responds to abnormal voltage. Separate thresholds are provided for low and high voltage. In terms of signaling its operation, the element does not differentiate between the undervoltage and overvoltage events. The trigger responds to the phase voltage signal of the phasor measurement unit (PMU) source. All voltage channels (A, B, and C or AB, BC, and CA) are processed independently and could trigger the recorder. A minimum voltage supervision of 0.1 pu is implemented to prevent pickup on a de-energized circuit, similarly to the undervoltage protection element.

- PMU 1 VOLT TRIGGER LOW-VOLT: This setting specifies the low threshold for the abnormal voltage trigger, in perunit of the PMU source. 1 pu is a nominal voltage value defined as the nominal secondary voltage times VT ratio. The comparator applies a 3% hysteresis.
- **PMU 1 VOLT TRIGGER HIGH-VOLT**: This setting specifies the high threshold for the abnormal voltage trigger, in perunit of the PMU source. 1 pu is a nominal voltage value defined as the nominal secondary voltage times VT ratio. The comparator applies a 3% hysteresis.
- **PMU 1 VOLT TRIGGER PKP TIME**: This setting could be used to filter out spurious conditions and avoid unnecessary triggering of the recorder.
- **PMU 1 VOLT TRIGGER DPO TIME**: This setting could be used to extend the trigger after the situation returned to normal. This setting is of particular importance when using the recorder in the forced mode (recording as long as the triggering condition is asserted).

Figure 5–32: VOLTAGE TRIGGER SCHEME LOGIC


h) CURRENT TRIGGERING

$\textbf{PATH: SETTINGS} \Rightarrow \clubsuit \textbf{ SYSTEM SETUP} \Rightarrow \clubsuit \textbf{ PHASOR MEASUREMENT...} \Rightarrow \clubsuit \textbf{ PMU 1 TRIGGERING} \Rightarrow \clubsuit \textbf{ PMU 1 CURRENT TRIGGER}$

PMU 1 CURRENTTRIGGER		PMU 1 CURR TRIGGER FUNCTION: Disabled	Range:	Enabled, Disabled
	MESSAGE	PMU 1 CURR TRIGGER PICKUP: 1.800 pu	Range:	0.100 to 30.000 pu in steps of 0.001
	MESSAGE	PMU 1 CURR TRIGGER PKP TIME: 0.10 s	Range:	0.00 to 600.00 s in steps of 0.01
	MESSAGE	PMU 1 CURR TRIGGER DPO TIME: 1.00 s	Range:	0.00 to 600.00 s in steps of 0.01
	MESSAGE	PMU 1 CURR TRIG BLK: Off	Range:	FlexLogic™ operand
	MESSAGE	PMU 1 CURR TRIGGER TARGET: Self-Reset	Range:	Self-Reset, Latched, Disabled
	MESSAGE	PMU 1 CURR TRIGGER EVENTS: Disabled	Range:	Enabled, Disabled

This element responds to elevated current. The trigger responds to the phase current signal of the phasor measurement unit (PMU) source. All current channel (A, B, and C) are processed independently and could trigger the recorder.

- **PMU 1 CURR TRIGGER PICKUP**: This setting specifies the pickup threshold for the overcurrent trigger, in per unit of the PMU source. A value of 1 pu is a nominal primary current. The comparator applies a 3% hysteresis.
- PMU 1 CURR TRIGGER PKP TIME: This setting could be used to filter out spurious conditions and avoid unnecessary triggering of the recorder.
- PMU 1 CURR TRIGGER DPO TIME: This setting could be used to extend the trigger after the situation returned to normal. This setting is of particular importance when using the recorder in the forced mode (recording as long as the triggering condition is asserted).

Figure 5–33: CURRENT TRIGGER SCHEME LOGIC

i) POWER TRIGGERING

 $\textbf{PATH: SETTINGS} \Rightarrow \clubsuit \textbf{ SYSTEM SETUP} \Rightarrow \clubsuit \textbf{ PHASOR MEASUREMENT...} \Rightarrow \clubsuit \textbf{ PMU 1 TRIGGERING} \Rightarrow \clubsuit \textbf{ PMU 1 POWER TRIGGER}$

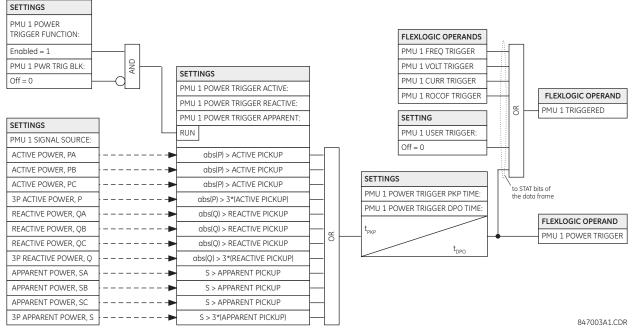
PMU 1 POWERTRIGGER	PMU 1 POWER TRIGGER FUNCTION: Disabled	Range:	Enabled, Disabled
MESSAGE	PMU 1 POWER TRIGGER ACTIVE: 1.250 pu	Range:	0.250 to 3.000 pu in steps of 0.001
MESSAGE	PMU 1 POWER TRIGGER REACTIVE: 1.250 pu	Range:	0.250 to 3.000 pu in steps of 0.001
MESSAGE	PMU 1 POWER TRIGGER APPARENT: 1.250 pu	Range:	0.250 to 3.000 pu in steps of 0.001
MESSAGE	PMU 1 POWER TRIGGER PKP TIME: 0.10 s	Range:	0.00 to 600.00 s in steps of 0.01
MESSAGE	PMU 1 POWER TRIGGER DPO TIME: 1.00 s	Range:	0.00 to 600.00 s in steps of 0.01
MESSAGE	PMU 1 PWR TRIG BLK: Off	Range:	FlexLogic™ operand
MESSAGE	PMU 1 POWER TRIGGER TARGET: Self-Reset	Range:	Self-Reset, Latched, Disabled
MESSAGE	PMU 1 POWER TRIGGER EVENTS: Disabled	Range:	Enabled, Disabled

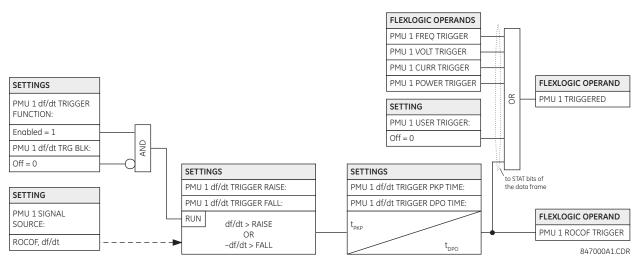
This element responds to abnormal power. Separate thresholds are provided for active, reactive, and apparent powers. In terms of signaling its operation the element does not differentiate between the three types of power. The trigger responds to the single-phase and three-phase power signals of the phasor measurement unit (PMU) source.

- **PMU 1 POWER TRIGGER ACTIVE**: This setting specifies the pickup threshold for the active power of the source. For single-phase power, 1 pu is a product of 1 pu voltage and 1 pu current, or the product of nominal secondary voltage, the VT ratio and the nominal primary current. For the three-phase power, 1 pu is three times that for a single-phase power. The comparator applies a 3% hysteresis.
- **PMU 1 POWER TRIGGER REACTIVE**: This setting specifies the pickup threshold for the reactive power of the source. For single-phase power, 1 pu is a product of 1 pu voltage and 1 pu current, or the product of nominal second-ary voltage, the VT ratio and the nominal primary current. For the three-phase power, 1 pu is three times that for a single-phase power. The comparator applies a 3% hysteresis.

5.3 SYSTEM SETUP

- **PMU 1 POWER TRIGGER APPARENT**: This setting specifies the pickup threshold for the apparent power of the source. For single-phase power, 1 pu is a product of 1 pu voltage and 1 pu current, or the product of nominal second-ary voltage, the VT ratio and the nominal primary current. For the three-phase power, 1 pu is three times that for a single-phase power. The comparator applies a 3% hysteresis.
- **PMU 1 POWER TRIGGER PKP TIME**: This setting could be used to filter out spurious conditions and avoid unnecessary triggering of the recorder.
- **PMU 1 POWER TRIGGER DPO TIME**: This setting could be used to extend the trigger after the situation returned to normal. This setting is of particular importance when using the recorder in the forced mode (recording as long as the triggering condition is asserted).



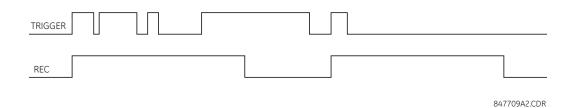

Figure 5–34: POWER TRIGGER SCHEME LOGIC

j) DF/DT TRIGGERING

 PMU 1 df/dt TRIGGER 		PMU 1 df/dt TRIGGER FUNCTION: Disabled	Range: Enabled, Disabled
	MESSAGE	PMU 1 df/dt TRIGGER RAISE: 0.25 Hz/s	Range: 0.10 to 15.00 Hz/s in steps of 0.01
	MESSAGE	PMU 1 df/dt TRIGGER FALL: 0.25 Hz/s	Range: 0.10 to 15.00 Hz/s in steps of 0.01
	MESSAGE	PMU 1 df/dt TRIGGER PKP TIME: 0.10 s	Range: 0.00 to 600.00 s in steps of 0.01
	MESSAGE	PMU 1 df/dt TRIGGER DPO TIME: 1.00 s	Range: 0.00 to 600.00 s in steps of 0.01
	MESSAGE	PMU 1 df/dt TRG BLK: Off	Range: FlexLogic™ operand
	MESSAGE	PMU 1 df/dt TRIGGER TARGET: Self-Reset	Range: Self-Reset, Latched, Disabled
	MESSAGE	PMU 1 df/dt TRIGGER EVENTS: Disabled	Range: Enabled, Disabled

This element responds to frequency rate of change. Separate thresholds are provided for rising and dropping frequency. The trigger responds to the rate of change of frequency (df/dt) of the phasor measurement unit (PMU) source.

- **PMU 1 df/dt TRIGGER RAISE**: This setting specifies the pickup threshold for the rate of change of frequency in the raising direction (positive df/dt). The comparator applies a 3% hysteresis.
- PMU 1 df/dt TRIGGER FALL: This setting specifies the pickup threshold for the rate of change of frequency in the falling direction (negative df/dt). The comparator applies a 3% hysteresis.
- PMU 1 df/dt TRIGGER PKP TIME: This setting could be used to filter out spurious conditions and avoid unnecessary triggering of the recorder.
- PMU 1 df/dt TRIGGER DPO TIME: This setting could be used to extend the trigger after the situation returned to normal. This setting is of particular importance when using the recorder in the forced mode (recording as long as the triggering condition is asserted).



k) PMU RECORDING

PATH: SETTINGS $\Rightarrow 0$ System setup $\Rightarrow 0$ Phasor... $\Rightarrow 0$ Phasor measurement unit 1 $\Rightarrow 0$ PMU 1 recording

PMU 1RECORDING	PMU 1 RECORDING RATE: 10/sec	Range:	1, 2, 5, 10, 12, 15, 20, 25, 30, 50, or 60 times per second
MESSAGE	PMU 1 NO OF TIMED RECORDS: 10	Range:	2 to 128 in steps of 1
MESSAGE	PMU 1 TRIGGER MODE: Automatic Overwrite	Range:	Automatic Overwrite, Protected
MESSAGE	PMU 1 TIMED TRIGGER POSITION: 10%	Range:	1 to 50% in steps of 1
MESSAGE	PMU 1 REC PHS-1: PMU 1 V1	Range:	available synchrophasor values
MESSAGE	PMU 1 REC PHS-1 NM: GE-UR-PMU-V1	Range:	16 character ASCII string
	\downarrow		
MESSAGE	PMU 1 REC PHS-14: Off	Range:	available synchrophasor values
MESSAGE	PMU 1 REC PHS-14 NM: GE-UR-PMU-PHS-14	Range:	16 character ASCII string
MESSAGE	PMU 1 REC A-CH-1: Off	Range:	available FlexAnalog values
MESSAGE	PMU 1 REC A-CH-1 NM: AnalogChannel1	Range:	16 character ASCII string
	\downarrow		
MESSAGE	PMU 1 REC A-CH-8: Off	Range:	available FlexAnalog values
MESSAGE	PMU 1 REC A-CH-8 NM: AnalogChannel8	Range:	16 character ASCII string
MESSAGE	PMU 1 REC D-CH-1: Off	Range:	FlexLogic™ operand
MESSAGE	PMU 1 REC D-CH-1 NM: DigitalChannel1	Range:	16 character ASCII string
	\downarrow	_	
MESSAGE	PMU 1 REC D-CH-16: Off	Range:	FlexLogic™ operand
MESSAGE	PMU 1 REC D-CH-16 NM: DigitalChannel16	Range:	16 character ASCII string

Each logical phasor measurement unit (PMU) is associated with a recorder. The triggering condition is programmed via the **PMU 1 TRIGGERING** menu. The recorder works with polar values using resolution as in the PMU actual values.

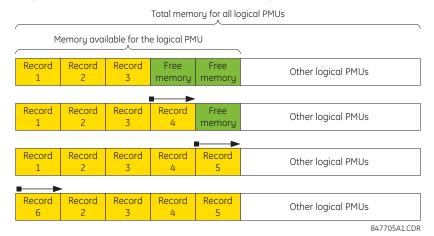


Figure 5–36: PMU RECORDING

- PMU 1 RECORDING RATE: This setting specifies the recording rate for the record content. Not all recording rates are applicable to either 50 or 60 Hz systems (for example, recording at 25 phasors a second in a 60 Hz system). The relay supports decimation by integer number of phasors from the nominal system frequency. If the rate of 25 is selected for the 60 Hz system, the relay would decimate the rate of 60 phasors a second by round (60 / 25) = 2; that is, it would record at 60 / 2 = 30 phasors a second.
- **PMU 1 NO OF TIMED RECORDS**: This setting specifies how many timed records are available for a given logical PMU. The length of each record equals available memory divided by the content size and number of records. The higher the number of records, the shorter each record. The relay supports a maximum of 128 records.
- **PMU 1 TRIGGER MODE**: This setting specifies what happens when the recorder uses its entire available memory storage. If set to "Automatic Overwrite", the last record is erased to facilitate new recording, when triggered.

If set to "Protected", the recorder stops creating new records when the entire memory is used up by the old un-cleared records. Refer to chapter 7 for more information on clearing PMU records.

The following set of figures illustrate the concept of memory management via the PMU 1 TRIGGER MODE setting.

Figure 5–37: "AUTOMATIC OVERWRITE" MODE

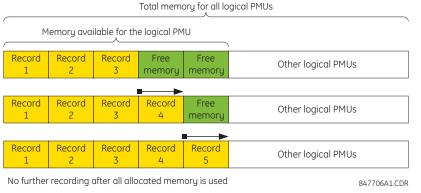


Figure 5–38: "PROTECTED" MODE

5.3 SYSTEM SETUP

- **PMU 1 TIMED TRIGGER POSITION**: This setting specifies the amount of pre-trigger data in percent of the entire record.
- **PMU1 PORT 1 PHS-1** to **PMU1 PORT 1 PHS-14**: These settings specify synchrophasors to be recorded from the superset of all synchronized measurements as indicated in the following table. These settings allow for optimizing the record size and content depending on a given application. Select "Off" to suppress recording of a given value.

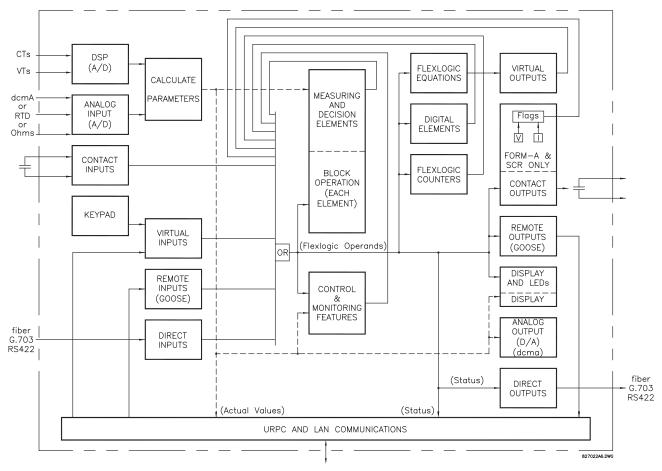
VALUE	DESCRIPTION
Va	First voltage channel, either Va or Vab
Vb	Second voltage channel, either Vb or Vbc
Vc	Third voltage channel, either Vc or Vca
Vx	Fourth voltage channel
la	Phase A current, physical channel or summation as per the source settings
lb	Phase B current, physical channel or summation as per the source settings
lc	Phase C current, physical channel or summation as per the source settings
lg	Fourth current channel, physical or summation as per the source settings
V1	Positive-sequence voltage, referenced to Va
V2	Negative-sequence voltage, referenced to Va
V0	Zero-sequence voltage
11	Positive-sequence current, referenced to la
12	Negative-sequence current, referenced to la
10	Zero-sequence current

- PMU 1 REC PHS-1 NM to PMU 1 REC PHS-14 NM: These settings allow for custom naming of the synchrophasor channels. Sixteen-character ASCII strings are allowed as in the CHNAM field of the configuration frame. Typically these names would be based on station, bus, or breaker names.
- PMU 1 REC A-CH-1 to PMU 1 REC A-CH-8: These settings specify analog data measured by the relay to be included as a user-selectable analog channel of the record. Up to eight analog channels can be configured to record any Flex-Analog value from the relay. Examples include active and reactive power, per phase or three-phase power, power factor, temperature via RTD inputs, and THD. The configured analogs are sampled concurrently with the synchrophasor instant.
- **PMU 1 REC A-CH-1 NM** to **PMU 1 REC A-CH-8 NM**: These settings allow for custom naming of the analog channels. Sixteen-character ASCII strings are allowed as in the CHNAM field of the configuration frame.
- PMU 1 REC D-CH-1 to PMU 1 REC D-CH-16: These settings specify any digital flag measured by the relay to be included as a user-selectable digital channel in the record. Up to digital analog channels can be configured to record any FlexLogic[™] operand from the relay. The configured digital flags are sampled concurrently with the synchrophasor instant.
- PMU 1 REC D-CH-1 NM to PMU 1 REC D-CH-16 NM: This setting allows custom naming of the digital channels. Sixteen-character ASCII strings are allowed as in the CHNAM field of the configuration frame.

I) NETWORK CONNECTION

REPORTING OVERNETWORK	NETWORK REPORTING FUNCTION: Disabled	Range:	Enabled, Disabled
MESSAGE	NETWORK REPORTING IDCODE: 1	Range:	1 to 65534 in steps of 1
MESSAGE	NETWORK REPORTING RATE: 10 per sec	Range:	1, 2, 5, 10, 12, 15, 20, 25, 30, 50, or 60 times per second
MESSAGE	NETWORK REPORTING STYLE: Polar	Range:	Polar, Rectangular
MESSAGE	NETWORK REPORTING FORMAT: Integer	Range:	Integer, Floating
MESSAGE	NETWORK PDC CONTROL: Disabled	Range:	Enabled, Disabled
MESSAGE	NETWORK TCP PORT: 4712	Range:	1 to 65535 in steps of 1
MESSAGE	NETWORK UDP PORT: 4713	Range:	1 to 65535 in steps of 1

The Ethernet connection works simultaneously with other communication means working over the Ethernet and is configured as follows.


- NETWORK REPORTING IDCODE: This setting specifies an IDCODE for the entire port. Individual PMU streams
 transmitted over this port are identified via their own IDCODES as per the device settings. This IDCODE is to be used
 by the command frame to start or stop transmission, and request configuration or header frames.
- NETWORK REPORTING RATE: This setting specifies the reporting rate for the network (Ethernet) port. This value
 applies to all PMU streams of the device that are assigned to transmit over this port.
- NETWORK REPORTING STYLE: This setting selects between reporting synchrophasors in rectangular (real and imaginary) or in polar (magnitude and angle) coordinates. This setting complies with bit-0 of the format field of the C37.118 configuration frame.
- NETWORK REPORTING FORMAT: This setting selects between reporting synchrophasors as 16-bit integer or 32-bit IEEE floating point numbers. This setting complies with bit 1 of the format field of the C37.118 configuration frame. Note that this setting applies to synchrophasors only – the user-selectable FlexAnalog channels are always transmitted as 32-bit floating point numbers.
- NETWORK PDC CONTROL: The synchrophasor standard allows for user-defined controls originating at the PDC, to be executed on the PMU. The control is accomplished via an extended command frame. The relay decodes the first word of the extended field, EXTFRAME, to drive 16 dedicated FlexLogic operands: PDC NETWORK CNTRL 1 (from the least significant bit) to PDC NETWORK CNTRL 16 (from the most significant bit). Other words, if any, in the EXTFRAME are ignored. The operands are asserted for 5 seconds following reception of the command frame. If the new command frame arrives within the 5 second period, the FlexLogic[™] operands are updated, and the 5 second timer is re-started.

This setting enables or disables the control. When enabled, all 16 operands are active; when disabled all 16 operands remain reset.

- NETWORK TCP PORT: This setting selects the TCP port number that will be used for network reporting.
- NETWORK UDP PORT: This setting selects the UDP port number that will be used for network reporting.

5.4.1 INTRODUCTION TO FLEXLOGIC™

To provide maximum flexibility to the user, the arrangement of internal digital logic combines fixed and user-programmed parameters. Logic upon which individual features are designed is fixed, and all other logic, from digital input signals through elements or combinations of elements to digital outputs, is variable. The user has complete control of all variable logic through FlexLogic[™]. In general, the system receives analog and digital inputs which it uses to produce analog and digital outputs. The major sub-systems of a generic UR-series relay involved in this process are shown below.

Figure 5–39: UR ARCHITECTURE OVERVIEW

The states of all digital signals used in the L90 are represented by flags (or FlexLogic[™] operands, which are described later in this section). A digital "1" is represented by a 'set' flag. Any external contact change-of-state can be used to block an element from operating, as an input to a control feature in a FlexLogic[™] equation, or to operate a contact output. The state of the contact input can be displayed locally or viewed remotely via the communications facilities provided. If a simple scheme where a contact input is used to block an element is desired, this selection is made when programming the element. This capability also applies to the other features that set flags: elements, virtual inputs, remote inputs, schemes, and human operators.

If more complex logic than presented above is required, it is implemented via FlexLogic[™]. For example, if it is desired to have the closed state of contact input H7a and the operated state of the phase undervoltage element block the operation of the phase time overcurrent element, the two control input states are programmed in a FlexLogic[™] equation. This equation ANDs the two control inputs to produce a virtual output which is then selected when programming the phase time overcurrent to be used as a blocking input. Virtual outputs can only be created by FlexLogic[™] equations.

Traditionally, protective relay logic has been relatively limited. Any unusual applications involving interlocks, blocking, or supervisory functions had to be hard-wired using contact inputs and outputs. FlexLogic[™] minimizes the requirement for auxiliary components and wiring while making more complex schemes possible.

5-94

The logic that determines the interaction of inputs, elements, schemes and outputs is field programmable through the use of logic equations that are sequentially processed. The use of virtual inputs and outputs in addition to hardware is available internally and on the communication ports for other relays to use (distributed FlexLogicTM).

FlexLogic[™] allows users to customize the relay through a series of equations that consist of *operators* and *operands*. The operands are the states of inputs, elements, schemes and outputs. The operators are logic gates, timers and latches (with set and reset inputs). A system of sequential operations allows any combination of specified operands to be assigned as inputs to specified operators to create an output. The final output of an equation is a numbered register called a *virtual output*. Virtual outputs can be used as an input operand in any equation, including the equation that generates the output, as a seal-in or other type of feedback.

A FlexLogic[™] equation consists of parameters that are either operands or operators. Operands have a logic state of 1 or 0. Operators provide a defined function, such as an AND gate or a Timer. Each equation defines the combinations of parameters to be used to set a Virtual Output flag. Evaluation of an equation results in either a 1 (=ON, i.e. flag set) or 0 (=OFF, i.e. flag not set). Each equation is evaluated at least 4 times every power system cycle.

Some types of operands are present in the relay in multiple instances; e.g. contact and remote inputs. These types of operands are grouped together (for presentation purposes only) on the faceplate display. The characteristics of the different types of operands are listed in the table below.

OPERAND TYPE	STATE	EXAMPLE FORMAT	CHARACTERISTICS [INPUT IS '1' (= ON) IF]
Contact Input	On	Cont Ip On	Voltage is presently applied to the input (external contact closed).
	Off	Cont Ip Off	Voltage is presently not applied to the input (external contact open).
Contact Output	Voltage On	Cont Op 1 VOn	Voltage exists across the contact.
(type Form-À contact only)	Voltage Off	Cont Op 1 VOff	Voltage does not exists across the contact.
.,	Current On	Cont Op 1 IOn	Current is flowing through the contact.
	Current Off	Cont Op 1 IOff	Current is not flowing through the contact.
Direct Input	On	DIRECT INPUT 1 On	The direct input is presently in the ON state.
Element (Analog)	Pickup	PHASE TOC1 PKP	The tested parameter is presently above the pickup setting of an element which responds to rising values or below the pickup setting of an element which responds to falling values.
	Dropout	PHASE TOC1 DPO	This operand is the logical inverse of the above PKP operand.
	Operate	PHASE TOC1 OP	The tested parameter has been above/below the pickup setting of the element for the programmed delay time, or has been at logic 1 and is now at logic 0 but the reset timer has not finished timing.
	Block	PHASE TOC1 BLK	The output of the comparator is set to the block function.
Element	Pickup	Dig Element 1 PKP	The input operand is at logic 1.
(Digital)	Dropout	Dig Element 1 DPO	This operand is the logical inverse of the above PKP operand.
	Operate	Dig Element 1 OP	The input operand has been at logic 1 for the programmed pickup delay time, or has been at logic 1 for this period and is now at logic 0 but the reset timer has not finished timing.
Element	Higher than	Counter 1 HI	The number of pulses counted is above the set number.
(Digital Counter)	Equal to	Counter 1 EQL	The number of pulses counted is equal to the set number.
	Lower than	Counter 1 LO	The number of pulses counted is below the set number.
Fixed	On	On	Logic 1
	Off	Off	Logic 0
Remote Input	On	REMOTE INPUT 1 On	The remote input is presently in the ON state.
Virtual Input	On	Virt lp 1 On	The virtual input is presently in the ON state.
Virtual Output	On	Virt Op 1 On	The virtual output is presently in the set state (i.e. evaluation of the equation which produces this virtual output results in a "1").

Table 5–6: L90 FLEXLOGIC[™] OPERAND TYPES

The operands available for this relay are listed alphabetically by types in the following table.

Table 5–7: L90 FLEXLOGIC[™] OPERANDS (Sheet 1 of 9)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION
CONTROL PUSHBUTTONS	CONTROL PUSHBTN 1 ON CONTROL PUSHBTN 2 ON CONTROL PUSHBTN 3 ON CONTROL PUSHBTN 4 ON CONTROL PUSHBTN 5 ON CONTROL PUSHBTN 5 ON CONTROL PUSHBTN 6 ON CONTROL PUSHBTN 7 ON	Control pushbutton 1 is being pressed Control pushbutton 2 is being pressed Control pushbutton 3 is being pressed Control pushbutton 4 is being pressed Control pushbutton 5 is being pressed Control pushbutton 6 is being pressed Control pushbutton 7 is being pressed
ELEMENT: 50DD supervision	50DD SV	Disturbance detector has operated
ELEMENT: 87L current differential	87L DIFF OP 87L DIFF OP A 87L DIFF OP B 87L DIFF OP C 87L DIFF RECVD DTT A 87L DIFF RECVD DTT B 87L DIFF RECVD DTT C 87L DIFF RECVD DTT C 87L DIFF RECVD DTT C 87L DIFF CH1 FAIL 87L DIFF CH1 FAIL 87L DIFF CH1 SAYM DET 87L DIFF CH2 FAIL 87L DIFF CH2 LOSTPKT 87L DIFF CH1 CRCFAIL 87L DIFF CH1 CRCFAIL 87L DIFF CH1 CRCFAIL 87L DIFF CH2 CRCFAIL 87L DIFF CH2 ID FAIL 87L DIFF CH2 ID FAIL 87L DIFF 1 MAX ASYM 87L DIFF 2 MAX ASYM 87L DIFF 2 TIME CHNG 87L DIFF GPS 1 FAIL 87L DIFF GPS 1 FAIL 87L DIFF GPS 1 FAIL 87L DIFF GPS 2 FAIL 87L DIFF GPS 2 FAIL 87L DIFF BLOCKED	At least one phase of current differential is operated Phase A of current differential has operated Phase B of current differential has operated Phase C of current differential has operated Direct transfer trip phase A has received Direct transfer trip phase C has received Direct transfer trip base C has received Direct transfer trip is keyed Phase and frequency lock loop (PFLL) has failed Channel asymmetry greater than 1.5 ms detected Channel 1 has failed Channel 2 has failed Exceeded maximum lost packet threshold on channel 1 Exceeded maximum lost packet threshold on channel 2 Exceeded maximum CRC error threshold on channel 1 Exceeded maximum CRC error threshold on channel 2 The ID check for a peer L90 on channel 1 has failed The ID check for a peer L90 on channel 2 has failed The GPS signal failed or is not configured properly at any terminal Asymmetry on channel 1 exceeded preset value Change in round trip delay on channel 1 exceeded preset value GPS failed at remote terminal 1 (channel 1) GPS failed at remote terminal 1 (channel 2) The 87L function is blocked due to communication problems
ELEMENT: 87L differential trip	87L TRIP OP 87L TRIP OP A 87L TRIP OP B 87L TRIP OP C 87L TRIP 1P OP 87L TRIP 3P OP	At least one phase of the trip output element has operated Phase A of the trip output element has operated Phase B of the trip output element has operated Phase C of the trip output element has operated Single-pole trip is initiated Three-pole trip is initiated
ELEMENT: Autoreclose (1P/3P)	AR ENABLED AR DISABLED AR RIP AR 1-P RIP AR 3-P/1 RIP AR 3-P/2 RIP AR 3-P/2 RIP AR 3-P/2 RIP AR 3-P/4 RIP AR LO AR BKR1 BLK AR CLOSE BKR1 AR CLOSE BKR1 AR CLOSE BKR2 AR FORCE 3-P TRIP AR SHOT CNT > 0 AR SHOT CNT = 1 AR SHOT CNT = 2 AR SHOT CNT = 3 AR SHOT CNT = 4 AR SHOT CNT = 4 AR ZONE 1 EXTENT AR INCOMPLETE SEQ AR RESET	Autoreclosure is enabled and ready to perform Autoreclosure is disabled Autoreclosure is in "reclose-in-progress" state A single-pole reclosure is in progress A three-pole reclosure is in progress, via dead time 1 A three-pole reclosure is in progress, via dead time 2 A three-pole reclosure is in progress, via dead time 3 A three-pole reclosure is in progress, via dead time 4 Autoreclosure is in lockout state Reclosure of breaker 1 is blocked Reclosure of breaker 2 is blocked Reclose breaker 1 signal Reclose breaker 2 signal Force any trip to a three-phase trip The first 'CLOSE BKR X' signal has been issued Shot count is equal to 1 Shot count is equal to 2 Shot count is equal to 3 Shot count is equal to 4 The zone 1 distance function must be set to the extended overreach value The incomplete sequence timer timed out Autoreclose has been reset either manually or by the reset timer
ELEMENT: Auxiliary overvoltage	AUX OV1 PKP AUX OV1 DPO AUX OV1 OP	Auxiliary overvoltage element has picked up Auxiliary overvoltage element has dropped out Auxiliary overvoltage element has operated
	AUX OV2 to AUX OV3	Same set of operands as shown for AUX OV1

Table 5–7: L90 FLEXLOGIC[™] OPERANDS (Sheet 2 of 9)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION			
ELEMENT: Auxiliary undervoltage	AUX UV1 PKP AUX UV1 DPO AUX UV1 OP	Auxiliary undervoltage element has picked up Auxiliary undervoltage element has dropped out Auxiliary undervoltage element has operated			
	AUX UV2 to AUX UV3	Same set of operands as shown for AUX UV1			
ELEMENT Breaker flashover	BKR 1 FLSHOVR PKP A BKR 1 FLSHOVR PKP B BKR 1 FLSHOVR PKP C BKR 1 FLSHOVR OP A BKR 1 FLSHOVR OP B BKR 1 FLSHOVR OP C BKR 1 FLSHOVR OP C BKR 1 FLSHOVR DPO A BKR 1 FLSHOVR DPO B BKR 1 FLSHOVR DPO C BKR 1 FLSHOVR DPO BKR 1 FLSHOVR DPO BKR 1 FLSHOVR DPO	Breaker 1 flashover element phase A has picked up Breaker 1 flashover element phase B has picked up Breaker 1 flashover element phase C has picked up Breaker 1 flashover element has picked up Breaker 1 flashover element phase A has operated Breaker 1 flashover element phase B has operated Breaker 1 flashover element phase C has operated Breaker 1 flashover element phase A has dropped out Breaker 1 flashover element phase B has dropped out Breaker 1 flashover element phase C has dropped out Breaker 1 flashover element phase C has dropped out Breaker 1 flashover element phase C has dropped out Breaker 1 flashover element phase C has dropped out Breaker 1 flashover element phase C has dropped out			
ELEMENT:	BKR 2 PLSHOVR BKR ARC 1 OP	Same set of operands as shown for BKR 1 FLSHOVR			
Breaker arcing	BKR ARC 2 OP	Breaker arcing current 1 has operated Breaker arcing current 2 has operated			
ELEMENT Breaker failure	BKR FAIL 1 RETRIPA BKR FAIL 1 RETRIPB BKR FAIL 1 RETRIPC BKR FAIL 1 RETRIP BKR FAIL 1 T1 OP BKR FAIL 1 T2 OP BKR FAIL 1 T3 OP BKR FAIL 1 TRIP OP	Breaker failure 1 re-trip phase A (only for 1-pole schemes) Breaker failure 1 re-trip phase B (only for 1-pole schemes) Breaker failure 1 re-trip 3-phase C (only for 1-pole schemes) Breaker failure 1 re-trip 3-phase Breaker failure 1 timer 1 is operated Breaker failure 1 timer 2 is operated Breaker failure 1 timer 3 is operated Breaker failure 1 timer 3 is operated			
	BKR FAIL 2	Same set of operands as shown for BKR FAIL 1			
Breaker control	BREAKER 1 ON CMD BREAKER 1 ΦA BAD ST BREAKER 1 ΦA INTERM BREAKER 1 ΦA CLSD BREAKER 1 ΦA OPEN BREAKER 1 ΦB BAD ST BREAKER 1 ΦB CLSD BREAKER 1 ΦB CLSD BREAKER 1 ΦC BAD ST BREAKER 1 ΦC BAD ST BREAKER 1 ΦA INTERM BREAKER 1 ΦC CLSD	Breaker 1 close command initiated Breaker 1 phase A bad status is detected (discrepancy between the 52/a and 52/b contacts) Breaker 1 phase A intermediate status is detected (transition from one position to another) Breaker 1 phase A is closed Breaker 1 phase A is open Breaker 1 phase B bad status is detected (discrepancy between the 52/a and 52/b contacts) Breaker 1 phase A intermediate status is detected (transition from one position to another) Breaker 1 phase B is closed Breaker 1 phase A intermediate status is detected (discrepancy between the 52/a and 52/b contacts) Breaker 1 phase A intermediate status is detected (transition from one position to another) Breaker 1 phase A intermediate status is detected (transition from one position to another) Breaker 1 phase A intermediate status is detected (transition from one position to another)			
	BREAKER 1 OC OPEN BREAKER 1 DO STATUS BREAKER 1 CLOSED BREAKER 1 DPEN BREAKER 1 DISCREP BREAKER 1 TROUBLE BREAKER 1 MNL CLS BREAKER 1 TRIP A BREAKER 1 TRIP A BREAKER 1 TRIP C BREAKER 1 ANY P OPEN BREAKER 1 ONE P OPEN BREAKER 1 OOS BREAKER 2	Breaker 1 phase C is open Breaker 1 bad status is detected on any pole Breaker 1 is closed Breaker 1 is open Breaker 1 has discrepancy Breaker 1 trouble alarm Breaker 1 trouble alarm Breaker 1 trip phase A command Breaker 1 trip phase B command Breaker 1 trip phase B command At least one pole of breaker 1 is open Only one pole of breaker 1 is open Breaker 1 is out of service Same set of operands as shown for BREAKER 1			
ELEMENT:	CONT MONITOR PKP	Continuous monitor has picked up			
Continuous monitor ELEMENT: CT fail	CONT MONITOR OP CT FAIL PKP CT FAIL OP	Continuous monitor has operated CT fail has picked up CT fail has dropped out			
ELEMENT: Digital counters	Counter 1 HI Counter 1 EQL Counter 1 LO	Digital counter 1 output is 'more than' comparison value Digital counter 1 output is 'equal to' comparison value Digital counter 1 output is 'less than' comparison value			
	Counter 2 to Counter 8	Same set of operands as shown for Counter 1			

Table 5–7: L90 FLEXLOGIC[™] OPERANDS (Sheet 3 of 9)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION		
ELEMENT: Digital elements	Dig Element 1 PKP Dig Element 1 OP Dig Element 1 DPO	Digital Element 1 is picked up Digital Element 1 is operated Digital Element 1 is dropped out		
	Dig Element 2 to Dig Element 48	Same set of operands as shown for Dig Element 1		
ELEMENT: FlexElements™	FxE 1 PKP FxE 1 OP FxE 1 DPO	FlexElement [™] 1 has picked up FlexElement [™] 1 has operated FlexElement [™] 1 has dropped out		
	FxE 2 to FxE 8	Same set of operands as shown for FxE 1		
ELEMENT: Ground distance GND DIST Z1 PKP GND DIST Z1 OP GND DIST Z1 OP A GND DIST Z1 OP C GND DIST Z1 OP C GND DIST Z1 PKP A GND DIST Z1 PKP B GND DIST Z1 PKP C GND DIST Z1 PKP C GND DIST Z1 DPO A GND DIST Z1 DPO B GND DIST Z1 DPO C GND DIST Z2 DIR SUPN		Ground distance zone 1 has picked up Ground distance zone 1 has operated Ground distance zone 1 phase A has operated Ground distance zone 1 phase B has operated Ground distance zone 1 phase C has operated Ground distance zone 1 phase A has picked up Ground distance zone 1 phase C has picked up Ground distance zone 1 phase C has picked up Ground distance zone 1 phase C has picked up Ground distance zone 1 phase A has picked up Ground distance zone 1 phase A has picked up Ground distance zone 1 phase A has dropped out Ground distance zone 1 phase B has dropped out Ground distance zone 1 phase C has dropped out Ground distance zone 1 phase C has dropped out Ground distance zone 2 directional is supervising		
	GND DIST Z2 to Z3	Same set of operands as shown for GND DIST Z1		
ELEMENT: Ground instantaneous	GROUND IOC1 PKP GROUND IOC1 OP GROUND IOC1 DPO	Ground instantaneous overcurrent 1 has picked up Ground instantaneous overcurrent 1 has operated Ground instantaneous overcurrent 1 has dropped out		
overcurrent	GROUND IOC2	Same set of operands as shown for GROUND IOC 1		
ELEMENT: Ground time overcurrent	GROUND TOC1 PKP GROUND TOC1 OP GROUND TOC1 DPO	Ground time overcurrent 1 has picked up Ground time overcurrent 1 has operated Ground time overcurrent 1 has dropped out		
	GROUND TOC2	Same set of operands as shown for GROUND TOC1		
ELEMENT Non-volatile latches	LATCH 1 ON LATCH 1 OFF	Non-volatile latch 1 is ON (Logic = 1) Non-voltage latch 1 is OFF (Logic = 0)		
	LATCH 2 to LATCH 16	Same set of operands as shown for LATCH 1		
ELEMENT: Line pickup	LINE PICKUP OP LINE PICKUP PKP LINE PICKUP I <a LINE PICKUP I<a LINE PICKUP I<c LINE PICKUP I<c LINE PICKUP UV PKP LINE PICKUP LEO PKP LINE PICKUP RCL TRIP</c </c </a </a 	Line pickup has operated Line pickup has picked up Line pickup has dropped out Line pickup detected phase A current below 5% of nominal Line pickup detected phase B current below 5% of nominal Line pickup detected phase C current below 5% of nominal Line pickup detected phase C current below 5% of nominal Line pickup undervoltage has picked up Line pickup line end open has picked up Line pickup operated from overreaching zone 2 when reclosing the line (zone 1 extension functionality)		
ELEMENT: Load encroachment	LOAD ENCHR PKP LOAD ENCHR OP LOAD ENCHR DPO	Load encroachment has picked up Load encroachment has operated Load encroachment has dropped out		
ELEMENT: Negative-sequence directional overcurrent	NEG SEQ DIR OC1 FWD NEG SEQ DIR OC1 REV NEG SEQ DIR OC2 FWD NEG SEQ DIR OC2 REV	Negative-sequence directional overcurrent 1 forward has operated Negative-sequence directional overcurrent 1 reverse has operated Negative-sequence directional overcurrent 1 forward has operated Negative-sequence directional overcurrent 1 reverse has operated		
ELEMENT: Negative-sequence instantaneous overcurrent	NEG SEQ IOC1 PKP NEG SEQ IOC1 OP NEG SEQ IOC1 DPO	Negative-sequence instantaneous overcurrent 1 has picked up Negative-sequence instantaneous overcurrent 1 has operated Negative-sequence instantaneous overcurrent 1 has dropped out		
	NEG SEQ IOC2	Same set of operands as shown for NEG SEQ IOC1		
ELEMENT: Negative-sequence time overcurrent	NEG SEQ TOC1 PKP NEG SEQ TOC1 OP NEG SEQ TOC1 DPO	Negative-sequence time overcurrent 1 has picked up Negative-sequence time overcurrent 1 has operated Negative-sequence time overcurrent 1 has dropped out		
	NEG SEQ TOC2	Same set of operands as shown for NEG SEQ TOC1		
ELEMENT: Neutral instantaneous	NEUTRAL IOC1 PKP NEUTRAL IOC1 OP NEUTRAL IOC1 DPO	Neutral instantaneous overcurrent 1 has picked up Neutral instantaneous overcurrent 1 has operated Neutral instantaneous overcurrent 1 has dropped out		
overcurrent	NEUTRAL IOC2	Same set of operands as shown for NEUTRAL IOC1		

Table 5–7: L90 FLEXLOGIC[™] OPERANDS (Sheet 4 of 9)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION		
ELEMENT:	NEUTRAL OV1 PKP	Neutral overvoltage element 1 has picked up		
Neutral overvoltage	NEUTRAL OV1 DPO NEUTRAL OV1 OP	Neutral overvoltage element 1 has dropped out Neutral overvoltage element 1 has operated		
ELEMENT: Neutral time	NEUTRAL TOC1 PKP NEUTRAL TOC1 OP	Neutral time overcurrent 1 has picked up Neutral time overcurrent 1 has operated		
overcurrent	NEUTRAL TOCT OP	Neutral time overcurrent 1 has dropped out		
	NEUTRAL TOC2	Same set of operands as shown for NEUTRAL TOC1		
ELEMENT: Neutral directional	NTRL DIR OC1 FWD NTRL DIR OC1 REV	Neutral directional overcurrent 1 forward has operated Neutral directional overcurrent 1 reverse has operated		
overcurrent	NTRL DIR OC2	Same set of operands as shown for NTRL DIR OC1		
ELEMENT: Open pole detector	OPEN POLE OP ΦΑ OPEN POLE OP ΦΒ OPEN POLE OP ΦC OPEN POLE BKR ΦΑ OP	Open pole condition is detected in phase A Open pole condition is detected in phase B Open pole condition is detected in phase C Based on the breaker(s) auxiliary contacts, an open pole condition is detected on phase A		
		Based on the breaker(s) auxiliary contacts, an open pole condition is detected on phase B		
	OPEN POLE BKR OC OP	Based on the breaker(s) auxiliary contacts, an open pole condition is detected on phase C		
	OPEN POLE BLK N	Blocking signal for neutral, ground, and negative-sequence overcurrent element is established		
	OPEN POLE BLK AB OPEN POLE BLK BC OPEN POLE BLK CA OPEN POLE REM OP ΦA OPEN POLE REM OP ΦB OPEN POLE REM OP ΦC OPEN POLE OP	Blocking signal for the AB phase distance elements is established Blocking signal for the BC phase distance elements is established Blocking signal for the CA phase distance elements is established Remote open pole condition detected in phase A Remote open pole condition detected in phase B Remote open pole condition detected in phase C Open pole detector is operated		
ELEMENT: Synchrophasor phasor data concentrator	PDC DIR CH1 CNTRL 1 PDC DIR CH1 CNTRL 2	Phasor data concentrator asserts control bit 1 as received via direct channel 1 Phasor data concentrator asserts control bit 2 as received via direct channel 1		
	PDC DIR CH1 CNTRL 16 PDC DIR CH2 CNTRL 1 PDC DIR CH2 CNTRL 2	Phasor data concentrator asserts control bit 16 received via direct channel 1 Phasor data concentrator asserts control bit 1 as received via direct channel 2 Phasor data concentrator asserts control bit 2 as received via direct channel 2		
	PDC DIR CH2 CNTRL 16 PDC NETWORK CNTRL 1 PDC NETWORK CNTRL 2	Phasor data concentrator asserts control bit 16 received via direct channel 2 Phasor data concentrator asserts control bit 1 as received via the network Phasor data concentrator asserts control bit 2 as received via the network		
	PDC NETWORK CNTRL 16 PDC RS485 CNTRL 1 PDC RS485 CNTRL 2	Phasor data concentrator asserts control bit 16 as received via the network Phasor data concentrator asserts control bit 1 as received via RS485 Phasor data concentrator asserts control bit 2 as received via RS485		
	PDC RS485 CNTRL 16	Phasor data concentrator asserts control bit 16 as received via RS485		
ELEMENT: Phase directional overcurrent	PH DIR1 BLK A PH DIR1 BLK B PH DIR1 BLK C PH DIR1 BLK	Phase A directional 1 block Phase B directional 1 block Phase C directional 1 block Phase directional 1 block		
	PH DIR2	Same set of operands as shown for PH DIR1		
ELEMENT: Phase distance	PH DIST Z1 PKP PH DIST Z1 OP PH DIST Z1 OP AB PH DIST Z1 OP BC PH DIST Z1 OP CA PH DIST Z1 PKP AB PH DIST Z1 PKP BC PH DIST Z1 PKP CA PH DIST Z1 SUPN IAB PH DIST Z1 SUPN IBC PH DIST Z1 SUPN ICA PH DIST Z1 DPO AB PH DIST Z1 DPO BC PH DIST Z1 DPO CA	Phase distance zone 1 has picked up Phase distance zone 1 has operated Phase distance zone 1 phase AB has operated Phase distance zone 1 phase BC has operated Phase distance zone 1 phase BC has operated Phase distance zone 1 phase AB has picked up Phase distance zone 1 phase BC has picked up Phase distance zone 1 phase BC has picked up Phase distance zone 1 phase AB IOC is supervising Phase distance zone 1 phase BC IOC is supervising Phase distance zone 1 phase BC IOC is supervising Phase distance zone 1 phase AB has dropped out Phase distance zone 1 phase CA IoC is supervising Phase distance zone 1 phase CA IoC out Phase distance zone 1 phase CA IoC out Phase distance zone 1 phase CA IoC out Phase distance zone 1 phase CA IoC out		
	PH DIST Z2 to Z3	Same set of operands as shown for PH DIST Z1		

Table 5–7: L90 FLEXLOGIC[™] OPERANDS (Sheet 5 of 9)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION
ELEMENT: Phase instantaneous overcurrent	PHASE IOC1 PKP PHASE IOC1 OP PHASE IOC1 DPO PHASE IOC1 PKP A PHASE IOC1 PKP B PHASE IOC1 PKP C PHASE IOC1 OP A PHASE IOC1 OP C PHASE IOC1 DPO A PHASE IOC1 DPO B PHASE IOC1 DPO C	At least one phase of phase instantaneous overcurrent 1 has picked up At least one phase of phase instantaneous overcurrent 1 has operated At least one phase of phase instantaneous overcurrent 1 has dropped out Phase A of phase instantaneous overcurrent 1 has picked up Phase B of phase instantaneous overcurrent 1 has picked up Phase C of phase instantaneous overcurrent 1 has picked up Phase A of phase instantaneous overcurrent 1 has operated Phase B of phase instantaneous overcurrent 1 has operated Phase B of phase instantaneous overcurrent 1 has operated Phase C of phase instantaneous overcurrent 1 has operated Phase A of phase instantaneous overcurrent 1 has operated Phase A of phase instantaneous overcurrent 1 has dropped out Phase B of phase instantaneous overcurrent 1 has dropped out Phase B of phase instantaneous overcurrent 1 has dropped out Phase C of phase instantaneous overcurrent 1 has dropped out Phase B of phase instantaneous overcurrent 1 has dropped out
ELEMENT: Phase overvoltage	PHASE IOC2 PHASE OV1 PKP PHASE OV1 OP PHASE OV1 DPO PHASE OV1 PKP A PHASE OV1 PKP B PHASE OV1 PKP C PHASE OV1 OP A PHASE OV1 OP C PHASE OV1 OP C PHASE OV1 DPO A PHASE OV1 DPO B PHASE OV1 DPO C	Same set of operands as shown for PHASE IOC1 At least one phase of overvoltage 1 has picked up At least one phase of overvoltage 1 has operated At least one phase of overvoltage 1 has dropped out Phase A of overvoltage 1 has picked up Phase B of overvoltage 1 has picked up Phase C of overvoltage 1 has operated Phase A of overvoltage 1 has operated Phase B of overvoltage 1 has operated Phase C of overvoltage 1 has operated Phase A of overvoltage 1 has operated Phase A of overvoltage 1 has dropped out Phase B of overvoltage 1 has dropped out Phase B of overvoltage 1 has dropped out Phase C of overvoltage 1 has dropped out
ELEMENT Phase select	PHASE SELECT AG PHASE SELECT BG PHASE SELECT CG PHASE SELECT SLG PHASE SELECT AB PHASE SELECT BC PHASE SELECT CA PHASE SELECT ABG PHASE SELECT AGG PHASE SELECT CAG PHASE SELECT 3P PHASE SELECT MULTI-P PHASE SELECT WOID	Phase A to ground fault is detected. Phase B to ground fault is detected. Phase C to ground fault is detected. Single line to ground fault is detected. Phase A to B fault is detected. Phase B to C fault is detected. Phase C to A fault is detected. Phase A to B to ground fault is detected. Phase B to C to ground fault is detected. Phase B to C to ground fault is detected. Phase C to A to ground fault is detected. Three-phase symmetrical fault is detected. Multi-phase fault is detected Fault type cannot be detected
ELEMENT: Phase time overcurrent	PHASE TOC1 PKP PHASE TOC1 OP PHASE TOC1 DPO PHASE TOC1 PKP A PHASE TOC1 PKP B PHASE TOC1 PKP C PHASE TOC1 OP A PHASE TOC1 OP C PHASE TOC1 DPO A PHASE TOC1 DPO B PHASE TOC1 DPO C PHASE TOC1 DPO C	At least one phase of phase time overcurrent 1 has picked up At least one phase of phase time overcurrent 1 has operated At least one phase of phase time overcurrent 1 has dropped out Phase A of phase time overcurrent 1 has picked up Phase B of phase time overcurrent 1 has picked up Phase C of phase time overcurrent 1 has picked up Phase A of phase time overcurrent 1 has operated Phase B of phase time overcurrent 1 has operated Phase C of phase time overcurrent 1 has operated Phase C of phase time overcurrent 1 has operated Phase A of phase time overcurrent 1 has dropped out Phase B of phase time overcurrent 1 has dropped out Phase B of phase time overcurrent 1 has dropped out Phase C of phase time overcurrent 1 has dropped out Phase C of phase time overcurrent 1 has dropped out Phase C of phase time overcurrent 1 has dropped out Phase C of phase time overcurrent 1 has dropped out
ELEMENT: Phase undervoltage	PHASE UV1 PKP PHASE UV1 OP PHASE UV1 DPO PHASE UV1 PKP A PHASE UV1 PKP C PHASE UV1 OP A PHASE UV1 OP B PHASE UV1 OP C PHASE UV1 DPO A PHASE UV1 DPO B PHASE UV1 DPO C	At least one phase of phase undervoltage 1 has picked up At least one phase of phase undervoltage 1 has operated At least one phase of phase undervoltage 1 has dropped out Phase A of phase undervoltage 1 has picked up Phase B of phase undervoltage 1 has picked up Phase C of phase undervoltage 1 has picked up Phase A of phase undervoltage 1 has operated Phase B of phase undervoltage 1 has operated Phase C of phase undervoltage 1 has operated Phase C of phase undervoltage 1 has operated Phase C of phase undervoltage 1 has operated Phase C of phase undervoltage 1 has dropped out Phase B of phase undervoltage 1 has dropped out Phase B of phase undervoltage 1 has dropped out Phase C of phase undervoltage 1 has dropped out
	PHASE UV2	Same set of operands as shown for PHASE UV1
ELEMENT: Synchrophasor phasor measurement unit (PMU)	PMU 1 CURR TRIGGER PMU 1 FREQ TRIGGER PMU 1 POWER TRIGGER PMU 1 ROCOF TRIGGER PMU 1 VOLT TRIGGER PMU 1 TRIGGERED	Overcurrent trigger of phasor measurement unit 1 has operated Abnormal frequency trigger of phasor measurement unit 1 has operated Overpower trigger of phasor measurement unit 1 has operated Rate of change of frequency trigger of phasor measurement unit 1 has operated Abnormal voltage trigger of phasor measurement unit 1 has operated Phasor measurement unit 1 triggered; no events or targets are generated by this operand

Table 5–7: L90 FLEXLOGIC[™] OPERANDS (Sheet 6 of 9)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION
ELEMENT: Synchrophasor one- shot	PMU ONE-SHOT EXPIRED PMU ONE-SHOT OP PMU ONE-SHOT PENDING	Indicates the one-shot operation has been executed, and the present time is at least 30 seconds past the scheduled one-shot time Indicates the one-shot operation is pending; that is, the present time is before the scheduled one-shot time Indicates the one-shot operation and remains asserted for 30 seconds afterwards
ELEMENT: POTT (Permissive overreach transfer trip)	POTT OP POTT TX	Permissive over-reaching transfer trip has operated Permissive signal sent
ELEMENT: Power swing detect	POWER SWING OUTER POWER SWING MIDDLE POWER SWING INNER POWER SWING DLOCK POWER SWING TMR1 PKP POWER SWING TMR2 PKP POWER SWING TMR3 PKP POWER SWING TMR4 PKP POWER SWING TMR4 PKP POWER SWING 50DD POWER SWING 50DD POWER SWING INCOMING POWER SWING OUTGOING POWER SWING UN/BLOCK	Positive-sequence impedance in outer characteristic Positive-sequence impedance in middle characteristic Positive-sequence impedance in inner characteristic Power swing blocking element operated Power swing timer 1 picked up Power swing timer 2 picked up Power swing timer 3 picked up Power swing timer 4 picked up Out-of-step tripping operated The power swing element detected a disturbance other than power swing An unstable power swing has been detected (incoming locus) An unstable power swing has been detected (outgoing locus) Asserted when a fault occurs after the power swing blocking condition has been established
ELEMENT: Selector switch	SELECTOR 1 POS Y SELECTOR 1 BIT 0 SELECTOR 1 BIT 1 SELECTOR 1 BIT 2 SELECTOR 1 STP ALARM SELECTOR 1 BIT ALARM SELECTOR 1 ALARM SELECTOR 1 PWR ALARM	 Selector switch 1 is in Position Y (mutually exclusive operands) First bit of the 3-bit word encoding position of selector 1 Second bit of the 3-bit word encoding position of selector 1 Third bit of the 3-bit word encoding position of selector 1 Position of selector 1 has been pre-selected with the stepping up control input but not acknowledged Position of selector 1 has been pre-selected with the 3-bit control input but not acknowledged Position of selector 1 has been pre-selected but not acknowledged Position of selector 1 has been pre-selected but not acknowledged Position of selector 1 has been pre-selected but not acknowledged Position of selector switch 1 is undetermined or restored from memory when the relay powers up and synchronizes to the three-bit input
	SELECTOR 2	Same set of operands as shown above for SELECTOR 1
ELEMENT: Setting group	SETTING GROUP ACT 1 SETTING GROUP ACT 2 SETTING GROUP ACT 3 SETTING GROUP ACT 4 SETTING GROUP ACT 5 SETTING GROUP ACT 6	Setting group 1 is active Setting group 2 is active Setting group 3 is active Setting group 4 is active Setting group 5 is active Setting group 6 is active
ELEMENT: Disturbance detector	SRC1 50DD OP SRC2 50DD OP SRC3 50DD OP SRC4 50DD OP	Source 1 disturbance detector has operated Source 2 disturbance detector has operated Source 3 disturbance detector has operated Source 4 disturbance detector has operated
ELEMENT: VTFF (Voltage transformer fuse failure)	SRC1 VT FUSE FAIL OP SRC1 VT FUSE FAIL DPO SRC1 VT FUSE FAIL VOL LOSS	Source 1 VT fuse failure detector has operated Source 1 VT fuse failure detector has dropped out Source 1 has lost voltage signals (V2 below 15% AND V1 below 5% of nominal)
	SRC2 VT FUSE FAIL to SRC4 VT FUSE FAIL	Same set of operands as shown for SRC1 VT FUSE FAIL
ELEMENT: Stub bus	STUB BUS OP	Stub bus is operated

Table 5–7: L90 FLEXLOGIC[™] OPERANDS (Sheet 7 of 9)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION
ELEMENT: Disconnect switch	SWITCH 1 OFF CMD SWITCH 1 ON CMD SWITCH 1 ФА BAD ST	Disconnect switch 1 open command initiated Disconnect switch 1 close command initiated Disconnect switch 1 phase A bad status is detected (discrepancy between the 52/a and 52/b contacts)
	SWITCH 1 ΦA INTERM	Disconnect switch 1 phase A intermediate status is detected (transition from one position to another)
	SWITCH 1 ΦA CLSD SWITCH 1 ΦA OPEN SWITCH 1 ΦB BAD ST	Disconnect switch 1 phase A is closed Disconnect switch 1 phase A is open Disconnect switch 1 phase B bad status is detected (discrepancy between the 52/a and 52/b contacts)
	SWITCH 1 ØA INTERM SWITCH 1 ØB CLSD	Disconnect switch 1 phase A intermediate status is detected (transition from one position to another) Disconnect switch 1 phase B is closed
	SWITCH 1 Φ B OPEN SWITCH 1 Φ C BAD ST	Disconnect switch 1 phase B is open Disconnect switch 1 phase C bad status is detected (discrepancy between the 52/a and 52/b contacts)
	SWITCH 1 ΦA INTERM SWITCH 1 ΦC CLSD SWITCH 1 ΦC OPEN	Disconnect switch 1 phase A intermediate status is detected (transition from one position to another) Disconnect switch 1 phase C is closed Disconnect switch 1 phase C is open
	SWITCH 1 BAD STATUS SWITCH 1 CLOSED SWITCH 1 OPEN SWITCH 1 DISCREP SWITCH 1 TROUBLE	Disconnect switch 1 bad status is detected on any pole Disconnect switch 1 is closed Disconnect switch 1 is open Disconnect switch 1 has discrepancy Disconnect switch 1 trouble alarm
	SWITCH 2	Same set of operands as shown for SWITCH 1
ELEMENT: Synchrocheck	SYNC 1 DEAD S OP SYNC 1 DEAD S DPO SYNC 1 SYNC OP SYNC 1 SYNC DPO SYNC 1 CLS OP SYNC 1 CLS DPO SYNC 1 V1 ABOVE MIN SYNC 1 V1 BELOW MAX SYNC 1 V2 ABOVE MIN SYNC 1 V2 BELOW MAX	Synchrocheck 1 dead source has operated Synchrocheck 1 dead source has dropped out Synchrocheck 1 in synchronization has operated Synchrocheck 1 in synchronization has dropped out Synchrocheck 1 close has operated Synchrocheck 1 close has dropped out Synchrocheck 1 V1 is above the minimum live voltage Synchrocheck 1 V1 is below the maximum dead voltage Synchrocheck 1 V2 is above the minimum live voltage Synchrocheck 1 V2 is below the maximum dead voltage
	SYNC 2	Same set of operands as shown for SYNC 1
ELEMENT Trip output	TRIP 3-POLE TRIP 1-POLE TRIP PHASE A TRIP PHASE B TRIP PHASE C TRIP AR INIT 3-POLE TRIP FORCE 3-POLE	Trip all three breaker poles A single-pole trip-and-reclose operation is initiated Trip breaker pole A, initiate phase A breaker fail and reclose Trip breaker pole B, initiate phase B breaker fail and reclose Trip breaker pole C, initiate phase C breaker fail and reclose Initiate a three-pole reclose Three-pole trip must be initiated
ELEMENT Trip bus	TRIP BUS 1 PKP TRIP BUS 1 OP	Asserted when the trip bus 1 element picks up. Asserted when the trip bus 1 element operates.
	TRIP BUS 2	Same set of operands as shown for TRIP BUS 1
ELEMENT: Wattmetric zero-	WATTMETRIC 1 PKP WATTMETRIC 1 OP	Wattmetric directional element 1 has picked up Wattmetric directional element 1 has operated
sequence directional	WATTMETRIC 2	Same set of operands as per WATTMETRIC 1 above
FIXED OPERANDS	Off	Logic = 0. Does nothing and may be used as a delimiter in an equation list; used as 'Disable' by other features.
	On	Logic = 1. Can be used as a test setting.
INPUTS/OUTPUTS: Contact inputs	Cont Ip 1 On Cont Ip 2 On	(will not appear unless ordered) (will not appear unless ordered) ↓
	Cont lp 1 Off Cont lp 2 Off	(will not appear unless ordered) (will not appear unless ordered) ↓
INPUTS/OUTPUTS: Contact outputs, current	Cont Op 1 IOn Cont Op 2 IOn	(will not appear unless ordered) (will not appear unless ordered) ↓
(from detector on form-A output only)	Cont Op 1 IOff Cont Op 2 IOff ↓	(will not appear unless ordered) (will not appear unless ordered) ↓

Table 5–7: L90 FLEXLOGIC[™] OPERANDS (Sheet 8 of 9)

Cont Op 1 VOn Cont Op 2 VOn Cont Op 1 VOff Cont Op 2 VOff	(will not appear unless ordered) (will not appear unless ordered) ↓ (will not appear unless ordered)		
	(will not appear unless ordered)		
	(will not appear unless ordered) (will not appear unless ordered) ↓		
Direct I/P 1-1 On ↓	(appears only when an L90 communications card is used) \downarrow		
Direct I/P 1-8 On	(appears only when L90 communications card is used)		
Direct I/P 2-1 On ↓	(appears only when L90 communications card is used) \downarrow		
Direct I/P 2-8 On	(appears only when L90 communications card is used)		
REMOTE INPUT 1 On ↓	Flag is set, logic=1 ↓		
REMOTE INPUT 32 On	Flag is set, logic=1		
Virt Ip 1 On ↓	Flag is set, logic=1 ↓		
Virt lp 64 On	Flag is set, logic=1		
Virt Op 1 On ↓	Flag is set, logic=1		
Virt Op 96 On	Flag is set, logic=1		
LED IN SERVICE LED TROUBLE LED TEST MODE LED TRIP LED ALARM LED PICKUP LED VOLTAGE LED CURRENT LED FREQUENCY LED OTHER LED PHASE A LED PHASE B LED PHASE C LED NEUTRAL/GROUND	Asserted when the front panel IN SERVICE LED is on. Asserted when the front panel TROUBLE LED is on. Asserted when the front panel TEST MODE LED is on. Asserted when the front panel TRIP LED is on. Asserted when the front panel ALARM LED is on. Asserted when the front panel PICKUP LED is on. Asserted when the front panel PICKUP LED is on. Asserted when the front panel PICKUP LED is on. Asserted when the front panel CURRENT LED is on. Asserted when the front panel FREQUENCY LED is on. Asserted when the front panel OTHER LED is on. Asserted when the front panel PHASE A LED is on. Asserted when the front panel PHASE B LED is on. Asserted when the front panel PHASE C LED is on. Asserted when the front panel PHASE C LED is on.		
LED TEST IN PROGRESS	An LED test has been initiated and has not finished.		
LED USER 1	Asserted when user-programmable LED 1 is on.		
LED USER 2 to 48	The operand above is available for user-programmable LEDs 2 through 48.		
REMOTE DEVICE 1 On	Flag is set, logic=1		
REMOTE DEVICE 16 On	Flag is set, logic=1		
REMOTE DEVICE 1 Off	Flag is set, logic=1		
REMOTE DEVICE 16 Off	Flag is set, logic=1		
RESET OP RESET OP (COMMS) RESET OP (OPERAND)	Reset command is operated (set by all three operands below). Communications source of the reset command. Operand (assigned in the INPUTS/OUTPUTS ⇔ RESETTING menu) sou of the reset command. Reset key (pushbutton) source of the reset command.		
	Direct I/P 1-8 On Direct I/P 2-1 On Direct I/P 2-8 On REMOTE INPUT 1 On REMOTE INPUT 32 On Virt Ip 1 On Virt lp 64 On Virt Op 96 On LED IN SERVICE LED TROUBLE LED TROUBLE LED TROUBLE LED TROUBLE LED TROUBLE LED TROUBLE LED TROUBLE LED TROUBLE LED TROUBLE LED TROUBLE LED TROUBLE LED TROUBLE LED TROUBLE LED TROUBLE LED TROUBLE LED VOLTAGE LED VOLTAGE LED PHASE A LED PHASE A LED PHASE A LED PHASE C LED NEUTRAL/GROUND LED USER 1 LED USER 1 LED USER 2 to 48 REMOTE DEVICE 1 ON REMOTE DEVICE 1 Off REMOTE DEVICE 16 Off RESET OP RESET OP (COMMS)		

Table 5–7: L90 FLEXLOGIC[™] OPERANDS (Sheet 9 of 9)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION
SELF- DIAGNOSTICS	ANY MAJOR ERROR ANY MINOR ERROR ANY SELF-TESTS BATTERY FAIL DSP ERROR EEPROM DATA ERROR EQUIPMENT MISMATCH ETHERNET SWITCH FAIL FLEXLOGIC ERR TOKEN IRIG-B FAILURE LATCHING OUT ERROR LOW ON MEMORY NO DSP INTERRUPTS PRI ETHERNET FAIL PROGRAM MEMORY PROTOTYPE FIRMWARE REMOTE DEVICE OFF SEC ETHERNET FAIL SNTP FAILURE SYSTEM EXCEPTION UNIT NOT CALIBRATED UNIT NOT PROGRAMMED WATCHDOG ERROR	Any of the major self-test errors generated (major error) Any of the minor self-test errors generated (minor error) Any self-test errors generated (generic, any error) See description in Chapter 7: Commands and targets
UNAUTHORIZED ACCESS ALARM	UNAUTHORIZED ACCESS	Asserted when a password entry fails while accessing a password protected level of the relay.
USER- PROGRAMMABLE PUSHBUTTONS	PUSHBUTTON 1 ON PUSHBUTTON 1 OFF ANY PB ON	Pushbutton number 1 is in the "On" position Pushbutton number 1 is in the "Off" position Any of twelve pushbuttons is in the "On" position
	PUSHBUTTON 2 to 12	Same set of operands as PUSHBUTTON 1

Some operands can be re-named by the user. These are the names of the breakers in the breaker control feature, the ID (identification) of contact inputs, the ID of virtual inputs, and the ID of virtual outputs. If the user changes the default name or ID of any of these operands, the assigned name will appear in the relay list of operands. The default names are shown in the FlexLogic[™] operands table above.

The characteristics of the logic gates are tabulated below, and the operators available in FlexLogic[™] are listed in the Flex-Logic[™] operators table.

GATES	NUMBER OF INPUTS	OUTPUT IS '1' (= ON) IF	
NOT	1	input is '0'	
OR	2 to 16	any input is '1'	
AND	2 to 16	all inputs are '1'	
NOR	2 to 16	all inputs are '0'	
NAND	2 to 16	any input is '0'	
XOR	2	only one input is '1'	

Table 5–8: FLEXLOGIC[™] GATE CHARACTERISTICS

Table 5–9: FLEXLOGIC[™] OPERATORS

TYPE	SYNTAX	DESCRIPTION	NOTES	
Editor	INSERT	Insert a parameter in an equation list.		
	DELETE	Delete a parameter from an equation list.		
End	END	The first END encountered signifies the last entry in the list of processed FlexLogic [™] parameters.		
One-shot	POSITIVE ONE SHOT	One shot that responds to a positive going edge.	A 'one shot' refers to a single input gate	
	NEGATIVE ONE SHOT	One shot that responds to a negative going edge.	that generates a pulse in response to an edge on the input. The output from a 'one shot' is True (positive) for only one pass	
	DUAL ONE SHOT	One shot that responds to both the positive and negative going edges.	through the FlexLogić™ equation. There is a maximum of 64 'one shots'.	
Logic	NOT	Logical NOT	Operates on the previous parameter.	
gate	OR(2)	2 input OR gate	Operates on the 2 previous parameters.	
	OR(16)	16 input OR gate	$\stackrel{\vee}{Operates}$ on the 16 previous parameters.	
	AND(2)	2 input AND gate	Operates on the 2 previous parameters.	
	AND(16)	16 input AND gate	$\stackrel{\vee}{}$ Operates on the 16 previous parameters.	
	NOR(2)	2 input NOR gate	Operates on the 2 previous parameters.	
	NOR(16)	16 input NOR gate	Operates on the 16 previous parameters.	
	NAND(2)	2 input NAND gate	Operates on the 2 previous parameters.	
	NAND(16)	16 input NAND gate	Operates on the 16 previous parameters.	
	XOR(2)	2 input Exclusive OR gate	Operates on the 2 previous parameters.	
	LATCH (S,R)	Latch (set, reset): reset-dominant	The parameter preceding LATCH(S,R) is the reset input. The parameter preceding the reset input is the set input.	
Timer	TIMER 1	Timer set with FlexLogic™ timer 1 settings.	The timer is started by the preceding parameter. The output of the timer is TIMER #.	
	TIMER 32	↓ Timer set with FlexLogic [™] timer 32 settings.		
Assign virtual output	= Virt Op 1 ↓ = Virt Op 96	Assigns previous FlexLogic [™] operand to virtual output 1.	The virtual output is set by the preceding parameter	
σαιραί	– viit Op 90	Assigns previous FlexLogic™ operand to virtual output 96.		

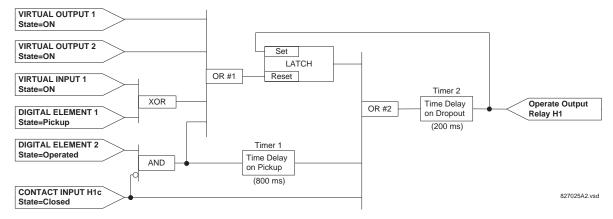
5.4.2 FLEXLOGIC[™] RULES

When forming a FlexLogic[™] equation, the sequence in the linear array of parameters must follow these general rules:

- 1. Operands must precede the operator which uses the operands as inputs.
- 2. Operators have only one output. The output of an operator must be used to create a virtual output if it is to be used as an input to two or more operators.
- 3. Assigning the output of an operator to a virtual output terminates the equation.
- 4. A timer operator (for example, "TIMER 1") or virtual output assignment (for example, " = Virt Op 1") may only be used once. If this rule is broken, a syntax error will be declared.

5.4.3 FLEXLOGIC[™] EVALUATION

Each equation is evaluated in the order in which the parameters have been entered.

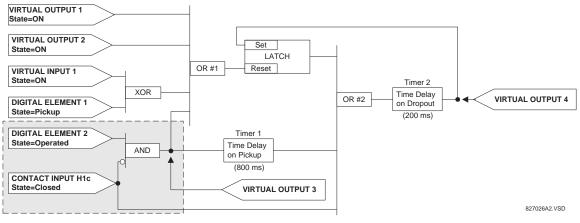


FlexLogic[™] provides latches which by definition have a memory action, remaining in the set state after the set input has been asserted. However, they are *volatile*; that is, they reset on the re-application of control power.

When making changes to settings, all FlexLogic[™] equations are re-compiled whenever any new setting value is entered, so all latches are automatically reset. If it is necessary to re-initialize FlexLogic[™] during testing, for example, it is suggested to power the unit down and then back up.

This section provides an example of implementing logic for a typical application. The sequence of the steps is quite important as it should minimize the work necessary to develop the relay settings. Note that the example presented in the figure below is intended to demonstrate the procedure, not to solve a specific application situation.

In the example below, it is assumed that logic has already been programmed to produce virtual outputs 1 and 2, and is only a part of the full set of equations used. When using $FlexLogic^{TM}$, it is important to make a note of each virtual output used – a virtual output designation (1 to 96) can only be properly assigned once.


Figure 5–40: EXAMPLE LOGIC SCHEME

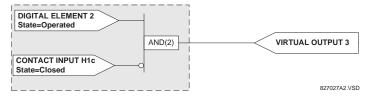
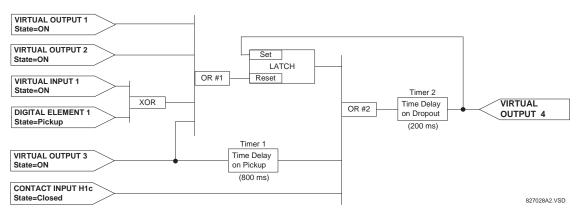
Inspect the example logic diagram to determine if the required logic can be implemented with the FlexLogic[™] operators. If this is not possible, the logic must be altered until this condition is satisfied. Once this is done, count the inputs to each gate to verify that the number of inputs does not exceed the FlexLogic[™] limits, which is unlikely but possible. If the number of inputs is too high, subdivide the inputs into multiple gates to produce an equivalent. For example, if 25 inputs to an AND gate are required, connect Inputs 1 through 16 to AND(16), 17 through 25 to AND(9), and the outputs from these two gates to AND(2).

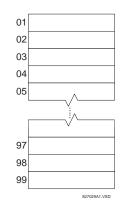
Inspect each operator between the initial operands and final virtual outputs to determine if the output from the operator is used as an input to more than one following operator. If so, the operator output must be assigned as a virtual output.

For the example shown above, the output of the AND gate is used as an input to both OR#1 and Timer 1, and must therefore be made a virtual output and assigned the next available number (i.e. Virtual Output 3). The final output must also be assigned to a virtual output as virtual output 4, which will be programmed in the contact output section to operate relay H1 (that is, contact output H1).

Therefore, the required logic can be implemented with two FlexLogic[™] equations with outputs of virtual output 3 and virtual output 4 as shown below.

2. Prepare a logic diagram for the equation to produce virtual output 3, as this output will be used as an operand in the virtual output 4 equation (create the equation for every output that will be used as an operand first, so that when these operands are required they will already have been evaluated and assigned to a specific virtual output). The logic for virtual output 3 is shown below with the final output assigned.

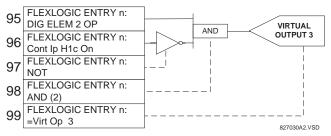

Figure 5–42: LOGIC FOR VIRTUAL OUTPUT 3

3. Prepare a logic diagram for virtual output 4, replacing the logic ahead of virtual output 3 with a symbol identified as virtual output 3, as shown below.

Figure 5–43: LOGIC FOR VIRTUAL OUTPUT 4

4. Program the FlexLogic[™] equation for virtual output 3 by translating the logic into available FlexLogic[™] parameters. The equation is formed one parameter at a time until the required logic is complete. It is generally easier to start at the output end of the equation and work back towards the input, as shown in the following steps. It is also recommended to list operator inputs from bottom to top. For demonstration, the final output will be arbitrarily identified as parameter 99, and each preceding parameter decremented by one in turn. Until accustomed to using FlexLogic[™], it is suggested that a worksheet with a series of cells marked with the arbitrary parameter numbers be prepared, as shown below.

Figure 5–44: FLEXLOGIC[™] WORKSHEET

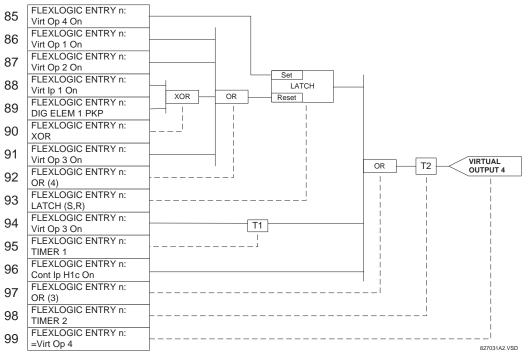

- 5. Following the procedure outlined, start with parameter 99, as follows:
 - 99: The final output of the equation is virtual output 3, which is created by the operator "= Virt Op n". This parameter is therefore "= Virt Op 3."

- 98: The gate preceding the output is an AND, which in this case requires two inputs. The operator for this gate is a 2-input AND so the parameter is "AND(2)". Note that FlexLogic[™] rules require that the number of inputs to most types of operators must be specified to identify the operands for the gate. As the 2-input AND will operate on the two operands preceding it, these inputs must be specified, starting with the lower.
- 97: This lower input to the AND gate must be passed through an inverter (the NOT operator) so the next parameter is "NOT". The NOT operator acts upon the operand immediately preceding it, so specify the inverter input next.
- 96: The input to the NOT gate is to be contact input H1c. The ON state of a contact input can be programmed to be set when the contact is either open or closed. Assume for this example the state is to be ON for a closed contact. The operand is therefore "Cont lp H1c On".
- 95: The last step in the procedure is to specify the upper input to the AND gate, the operated state of digital element 2. This operand is "DIG ELEM 2 OP".

Writing the parameters in numerical order can now form the equation for virtual output 3:

[95] DIG ELEM 2 OP [96] Cont Ip H1c On [97] NOT [98] AND(2) [99] = Virt Op 3

It is now possible to check that this selection of parameters will produce the required logic by converting the set of parameters into a logic diagram. The result of this process is shown below, which is compared to the logic for virtual output 3 diagram as a check.


Figure 5–45: FLEXLOGIC™ EQUATION FOR VIRTUAL OUTPUT 3

- 6. Repeating the process described for virtual output 3, select the FlexLogic[™] parameters for Virtual Output 4.
 - 99: The final output of the equation is virtual output 4 which is parameter "= Virt Op 4".
 - 98: The operator preceding the output is timer 2, which is operand "TIMER 2". Note that the settings required for the timer are established in the timer programming section.
 - 97: The operator preceding timer 2 is OR #2, a 3-input OR, which is parameter "OR(3)".
 - 96: The lowest input to OR #2 is operand "Cont Ip H1c On".
 - 95: The center input to OR #2 is operand "TIMER 1".
 - 94: The input to timer 1 is operand "Virt Op 3 On".
 - 93: The upper input to OR #2 is operand "LATCH (S,R)".
 - 92: There are two inputs to a latch, and the input immediately preceding the latch reset is OR #1, a 4-input OR, which is parameter "OR(4)".
 - 91: The lowest input to OR #1 is operand "Virt Op 3 On".
 - 90: The input just above the lowest input to OR #1 is operand "XOR(2)".
 - 89: The lower input to the XOR is operand "DIG ELEM 1 PKP".
 - 88: The upper input to the XOR is operand "Virt Ip 1 On".
 - 87: The input just below the upper input to OR #1 is operand "Virt Op 2 On".
 - 86: The upper input to OR #1 is operand "Virt Op 1 On".
 - 85: The last parameter is used to set the latch, and is operand "Virt Op 4 On".

The equation for virtual output 4 is:

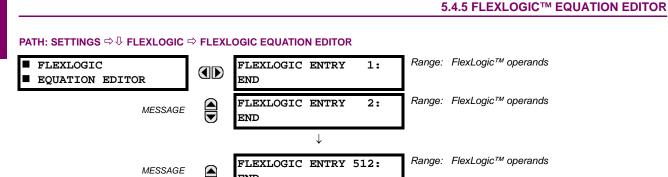
[85]	Virt Op 4 On
[86]	Virt Op 1 On
[87]	Virt Op 2 On
[88]	Virt Ip 1 On
[89]	DIG ELEM 1 PKP
[90]	XOR (2)
[91]	Virt Op 3 On
[92]	OR(4)
[93]	LATCH (S,R)
[94]	Virt Op 3 On
[95]	TIMER 1
[96]	Cont Ip Hlc On
[97]	OR(3)
[98]	TIMER 2
[99]	= Virt Op 4

It is now possible to check that the selection of parameters will produce the required logic by converting the set of parameters into a logic diagram. The result of this process is shown below, which is compared to the logic for virtual output 4 diagram as a check.

Figure 5–46: FLEXLOGIC[™] EQUATION FOR VIRTUAL OUTPUT 4

7. Now write the complete FlexLogic[™] expression required to implement the logic, making an effort to assemble the equation in an order where Virtual Outputs that will be used as inputs to operators are created before needed. In cases where a lot of processing is required to perform logic, this may be difficult to achieve, but in most cases will not cause problems as all logic is calculated at least four times per power frequency cycle. The possibility of a problem caused by sequential processing emphasizes the necessity to test the performance of FlexLogic[™] before it is placed in service.

In the following equation, virtual output 3 is used as an input to both latch 1 and timer 1 as arranged in the order shown below:

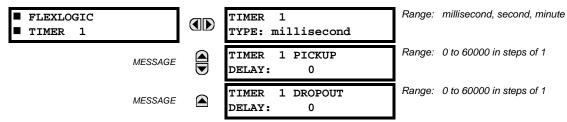

DIG ELEM 2 OP Cont Ip Hlc On NOT AND(2)

= Virt Op 3 Virt Op 4 On Virt Op 1 On Virt Op 2 On Virt Ip 1 On DIG ELEM 1 PKP XOR(2) Virt Op 3 On OR(4) LATCH (S,R) Virt Op 3 On TIMER 1 Cont Ip H1c On OR(3) TIMER 2 = Virt Op 4 END

In the expression above, the virtual output 4 input to the four-input OR is listed before it is created. This is typical of a form of feedback, in this case, used to create a seal-in effect with the latch, and is correct.

8. The logic should always be tested after it is loaded into the relay, in the same fashion as has been used in the past. Testing can be simplified by placing an "END" operator within the overall set of FlexLogic[™] equations. The equations will then only be evaluated up to the first "END" operator.

The "On" and "Off" operands can be placed in an equation to establish a known set of conditions for test purposes, and the "INSERT" and "DELETE" commands can be used to modify equations.



There are 512 FlexLogic[™] entries available, numbered from 1 to 512, with default END entry settings. If a "Disabled" Element is selected as a FlexLogic[™] entry, the associated state flag will never be set to '1'. The '+/-' key may be used when editing FlexLogic[™] equations from the keypad to quickly scan through the major parameter types.

5.4.6 FLEXLOGIC[™] TIMERS

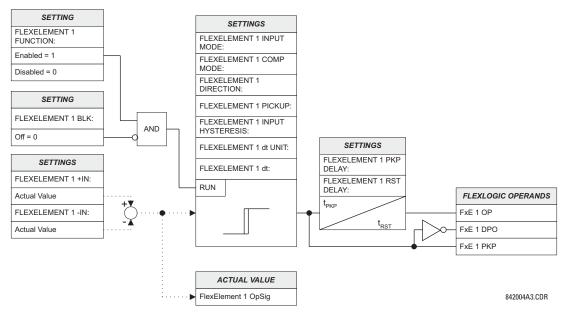
PATH: SETTINGS ⇔ ⊕ FLEXLOGIC ⇒ ⊕ FLEXLOGIC TIMERS ⇒ FLEXLOGIC TIMER 1(32)

END

There are 32 identical FlexLogic[™] timers available. These timers can be used as operators for FlexLogic[™] equations.

- TIMER 1 TYPE: This setting is used to select the time measuring unit.
- TIMER 1 PICKUP DELAY: Sets the time delay to pickup. If a pickup delay is not required, set this function to "0".

• TIMER 1 DROPOUT DELAY: Sets the time delay to dropout. If a dropout delay is not required, set this function to "0".


5.4.7 FLEXELEMENTS™

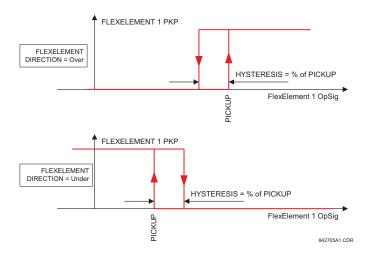
■ FLEXELEMENT 1	FLEXELEMENT 1 FUNCTION: Disabled	Range:	Disabled, Enabled
MESSAGI	FLEXELEMENT 1 NAME: FxE1	Range:	up to 6 alphanumeric characters
MESSAG	FLEXELEMENT 1 +IN: Off	Range:	Off, any analog actual value parameter
MESSAGI	FLEXELEMENT 1 -IN: Off	Range:	Off, any analog actual value parameter
MESSAGI	FLEXELEMENT 1 INPUT MODE: Signed	Range:	Signed, Absolute
MESSAGI	FLEXELEMENT 1 COMP MODE: Level	Range:	Level, Delta
MESSAGI	FLEXELEMENT 1 DIRECTION: Over	Range:	Over, Under
MESSAGI	FLEXELEMENT 1 PICKUP: 1.000 pu	Range:	–90.000 to 90.000 pu in steps of 0.001
MESSAGI	FLEXELEMENT 1 HYSTERESIS: 3.0%	Range:	0.1 to 50.0% in steps of 0.1
MESSAGI	FLEXELEMENT 1 dt UNIT: milliseconds	Range:	milliseconds, seconds, minutes
MESSAGI	FLEXELEMENT 1 dt: 20	Range:	20 to 86400 in steps of 1
MESSAGI	FLEXELEMENT 1 PKP DELAY: 0.000 s	Range:	0.000 to 65.535 s in steps of 0.001
MESSAGI	FLEXELEMENT 1 RST DELAY: 0.000 s	Range:	0.000 to 65.535 s in steps of 0.001
MESSAGI	FLEXELEMENT 1 BLK: Off	Range:	FlexLogic™ operand
MESSAGI	FLEXELEMENT 1 TARGET: Self-reset	Range:	Self-reset, Latched, Disabled
MESSAGI	FLEXELEMENT 1 EVENTS: Disabled	Range:	Disabled, Enabled

PATH: SETTING \Rightarrow \bigcirc FLEXLOGIC \Rightarrow \bigcirc FLEXELEMENTS \Rightarrow FLEXELEMENT 1(8)

A FlexElement[™] is a universal comparator that can be used to monitor any analog actual value calculated by the relay or a net difference of any two analog actual values of the same type. The effective operating signal could be treated as a signed number or its absolute value could be used as per user's choice.

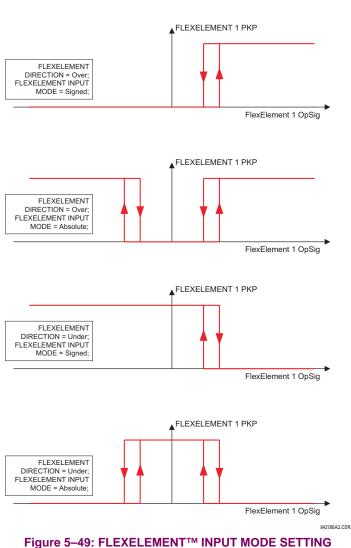
The element can be programmed to respond either to a signal level or to a rate-of-change (delta) over a pre-defined period of time. The output operand is asserted when the operating signal is higher than a threshold or lower than a threshold as per user's choice.

Figure 5–47: FLEXELEMENT[™] SCHEME LOGIC


The FLEXELEMENT 1 +IN setting specifies the first (non-inverted) input to the FlexElement[™]. Zero is assumed as the input if this setting is set to "Off". For proper operation of the element at least one input must be selected. Otherwise, the element will not assert its output operands.

This FLEXELEMENT 1 –IN setting specifies the second (inverted) input to the FlexElement[™]. Zero is assumed as the input if this setting is set to "Off". For proper operation of the element at least one input must be selected. Otherwise, the element will not assert its output operands. This input should be used to invert the signal if needed for convenience, or to make the element respond to a differential signal such as for a top-bottom oil temperature differential alarm. The element will not operate if the two input signals are of different types, for example if one tries to use active power and phase angle to build the effective operating signal.

The element responds directly to the differential signal if the **FLEXELEMENT 1 INPUT MODE** setting is set to "Signed". The element responds to the absolute value of the differential signal if this setting is set to "Absolute". Sample applications for the "Absolute" setting include monitoring the angular difference between two phasors with a symmetrical limit angle in both directions; monitoring power regardless of its direction, or monitoring a trend regardless of whether the signal increases of decreases.


The element responds directly to its operating signal – as defined by the FLEXELEMENT 1 +IN, FLEXELEMENT 1 –IN and FLEX-ELEMENT 1 INPUT MODE settings – if the FLEXELEMENT 1 COMP MODE setting is set to "Level". The element responds to the rate of change of its operating signal if the FLEXELEMENT 1 COMP MODE setting is set to "Delta". In this case the FLEXELE-MENT 1 dt UNIT and FLEXELEMENT 1 dt settings specify how the rate of change is derived.

The FLEXELEMENT 1 DIRECTION setting enables the relay to respond to either high or low values of the operating signal. The following figure explains the application of the FLEXELEMENT 1 DIRECTION, FLEXELEMENT 1 PICKUP and FLEXELEMENT 1 HYS-TERESIS settings.

Figure 5–48: FLEXELEMENT™ DIRECTION, PICKUP, AND HYSTERESIS

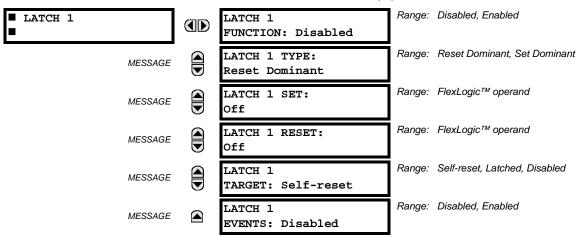
In conjunction with the **FLEXELEMENT 1 INPUT MODE** setting the element could be programmed to provide two extra characteristics as shown in the figure below.

The FLEXELEMENT 1 PICKUP setting specifies the operating threshold for the effective operating signal of the element. If set to "Over", the element picks up when the operating signal exceeds the FLEXELEMENT 1 PICKUP value. If set to "Under", the element picks up when the operating signal falls below the FLEXELEMENT 1 PICKUP value.

The **FLEXELEMENT 1 HYSTERESIS** setting controls the element dropout. It should be noticed that both the operating signal and the pickup threshold can be negative facilitating applications such as reverse power alarm protection. The FlexElement[™] can be programmed to work with all analog actual values measured by the relay. The **FLEXELEMENT 1 PICKUP** setting is entered in per-unit values using the following definitions of the base units:

Table 5–10: FLEXELEMENT™ BASE UNITS

87L SIGNALS (Local IA Mag, IB, and IC) (Diff Curr IA Mag, IB, and IC) (Terminal 1 IA Mag, IB, and IC) (Terminal 2 IA Mag, IB and IC)	<i>I</i> _{BASE} = maximum primary RMS value of the +IN and –IN inputs (CT primary for source currents, and 87L source primary current for line differential currents)
87L SIGNALS (Op Square Curr IA, IB, and IC) (Rest Square Curr IA, IB, and IC)	BASE = Squared CT secondary of the 87L source
BREAKER ARCING AMPS (Brk X Arc Amp A, B, and C)	$BASE = 2000 \text{ kA}^2 \times \text{cycle}$
dcmA	BASE = maximum value of the DCMA INPUT MAX setting for the two transducers configured under the +IN and –IN inputs.
FREQUENCY	f _{BASE} = 1 Hz
PHASE ANGLE	φ_{BASE} = 360 degrees (see the UR angle referencing convention)
POWER FACTOR	PF _{BASE} = 1.00
RTDs	BASE = 100°C
SOURCE CURRENT	I _{BASE} = maximum nominal primary RMS value of the +IN and –IN inputs
SOURCE ENERGY (Positive and Negative Watthours, Positive and Negative Varhours)	E _{BASE} = 10000 MWh or MVAh, respectively
SOURCE POWER	P_{BASE} = maximum value of $V_{BASE} \times I_{BASE}$ for the +IN and –IN inputs
SOURCE VOLTAGE	V _{BASE} = maximum nominal primary RMS value of the +IN and -IN inputs
SYNCHROCHECK (Max Delta Volts)	V_{BASE} = maximum primary RMS value of all the sources related to the +IN and –IN inputs


The **FLEXELEMENT 1 HYSTERESIS** setting defines the pickup–dropout relation of the element by specifying the width of the hysteresis loop as a percentage of the pickup value as shown in the *FlexElement™ direction, pickup, and hysteresis* diagram.

The FLEXELEMENT 1 DT UNIT setting specifies the time unit for the setting FLEXELEMENT 1 dt. This setting is applicable only if FLEXELEMENT 1 COMP MODE is set to "Delta". The FLEXELEMENT 1 DT setting specifies duration of the time interval for the rate of change mode of operation. This setting is applicable only if FLEXELEMENT 1 COMP MODE is set to "Delta".

This FLEXELEMENT 1 PKP DELAY setting specifies the pickup delay of the element. The FLEXELEMENT 1 RST DELAY setting specifies the reset delay of the element.

5.4.8 NON-VOLATILE LATCHES

PATH: SETTINGS ⇔ ⊕ FLEXLOGIC ⇔ ⊕ NON-VOLATILE LATCHES ⇔ LATCH 1(16)

The non-volatile latches provide a permanent logical flag that is stored safely and will not reset upon reboot after the relay is powered down. Typical applications include sustaining operator commands or permanently block relay functions, such as Autorecloser, until a deliberate interface action resets the latch. The settings element operation is described below:

- LATCH 1 TYPE: This setting characterizes Latch 1 to be Set- or Reset-dominant.
- LATCH 1 SET: If asserted, the specified FlexLogic[™] operands 'sets' Latch 1.
- LATCH 1 RESET: If asserted, the specified FlexLogic[™] operand 'resets' Latch 1.

LATCH N TYPE	LATCH N SET	LATCH N RESET	LATCH N ON	LATCH N OFF
Reset Dominant	ON	OFF	ON	OFF
	OFF	OFF OFF Previous State		Previous State
	ON	ON	OFF	ON
	OFF	ON	OFF	ON
Set Dominant	ON	OFF	ON	OFF
	ON	ON	ON	OFF
			Previous State	Previous State
	OFF	ON	OFF	ON

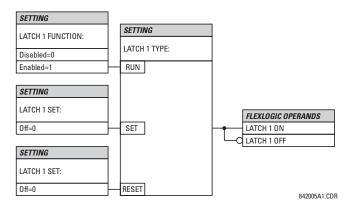
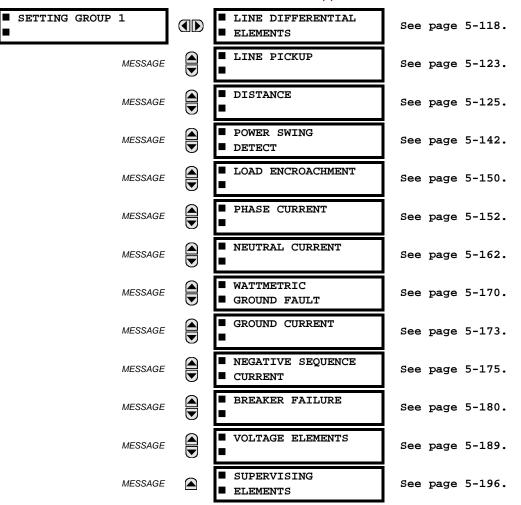
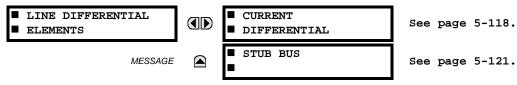



Figure 5-50: NON-VOLATILE LATCH OPERATION TABLE (N = 1 to 16) AND LOGIC

5.5.1 OVERVIEW

Each protection element can be assigned up to six different sets of settings according to setting group designations 1 to 6. The performance of these elements is defined by the active setting group at a given time. Multiple setting groups allow the user to conveniently change protection settings for different operating situations (for example, altered power system configuration, season of the year, etc.). The active setting group can be preset or selected via the **SETTING GROUPS** menu (see the *Control elements* section later in this chapter). See also the *Introduction to elements* section at the beginning of this chapter.

5.5.2 SETTING GROUP


PATH: SETTINGS $\Rightarrow \bigcirc \bigcirc \bigcirc$ GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6)

Each of the six setting group menus is identical. Setting group 1 (the default active group) automatically becomes active if no other group is active (see the *Control elements* section for additional details).

5.5.3 LINE DIFFERENTIAL ELEMENTS

a) MAIN MENU

PATH: SETTINGS \bigcirc GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6) \Rightarrow LINE DIFFERENTIAL ELEMENTS

b) CURRENT DIFFERENTIAL

PATH: SETTINGS \Rightarrow \bigcirc GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6) \Rightarrow LINE DIFFERENTIAL \Rightarrow CURRENT DIFFERENTIAL
--

CURRENT DIFFERENTIAL	CURRENT DIFF FUNCTION: Disabled	Range:	Disabled, Enabled
MESSAGE	CURRENT DIFF SIGNAL SOURCE 1: SRC 1	Range:	SRC 1, SRC 2, SRC 3, SRC 4
MESSAGE	CURRENT DIFF SIGNAL SOURCE 2: None	Range:	None, SRC 1, SRC 2, SRC 3, SRC 4
MESSAGE	CURRENT DIFF SIGNAL SOURCE 3: None	Range:	None, SRC 1, SRC 2, SRC 3, SRC 4
MESSAGE	CURRENT DIFF SIGNAL SOURCE 4: None	Range:	None, SRC 1, SRC 2, SRC 3, SRC 4
MESSAGE	CURRENT DIFF BLOCK: Off	Range:	FlexLogic™ operand
MESSAGE	CURRENT DIFF PICKUP: 0.20 pu	Range:	0.10 to 4.00 pu in steps of 0.01
MESSAGE	CURRENT DIFF CT TAP 1: 1.00	Range:	0.20 to 5.00 in steps of 0.01
MESSAGE	CURRENT DIFF CT TAP 2: 1.00	Range:	0.20 to 5.00 in steps of 0.01
MESSAGE	CURRENT DIFF RESTRAINT 1: 30%	Range:	1 to 50% in steps of 1
MESSAGE	CURRENT DIFF RESTRAINT 2: 50%	Range:	1 to 70% in steps of 1
MESSAGE	CURRENT DIFF BREAK PT: 1.0 pu	Range:	0.0 to 20.0 pu in steps of 0.1
MESSAGE	CURRENT DIFF DTT: Enabled	Range:	Disabled, Enabled
MESSAGE	CURRENT DIFF KEY DTT: Off	Range:	FlexLogic™ operand
MESSAGE	CURRENT DIFF TARGET: Self-reset	Range:	Self-reset, Latched, Disabled
MESSAGE	CURRENT DIFF EVENTS: Disabled	Range:	Disabled, Enabled

The following settings are available for current differential protection.

- CURRENT DIFF SIGNAL SOURCE 1: This setting selects the first source for the current differential element local operating current. If more than one source is configured, the other source currents are scaled to the CT with the maximum primary current assigned by the CURRENT DIFF SIGNAL SOURCE 1 to CURRENT DIFF SIGNAL SOURCE 4 settings. This source is mandatory and is assigned with the SYSTEM SETUP ⇔ SIGNAL SOURCES ⇒ SOURCE 1 menu.
- CURRENT DIFF SIGNAL SOURCE 2: This setting selects the second source for current differential function for applications where more than one set of CT circuitry is connected directly to L90.
- CURRENT DIFF SIGNAL SOURCE 3: This setting selects the third source for the current differential function for applications where more than two sets of CT circuitry are connected directly to L90.
- CURRENT DIFF SIGNAL SOURCE 4: This setting selects the fourth source for the current differential function for applications where four sets of CT circuitry are connected directly to L90.
- **CURRENT DIFF BLOCK**: This setting selects a FlexLogic[™] operand to block the operation of the current differential element.
- **CURRENT DIFF PICKUP**: This setting is used to select current differential pickup value.
- CURRENT DIFF CT TAP 1 and CURRENT DIFF CT TAP 2: These settings adapt the remote terminal 1 or 2 (communication channel) CT ratio to the local ratio if the CT ratios for the local and remote terminals are different. The setting value is determined by CT_{prim_rem} / CT_{prim_loc} for local and remote terminal CTs (where CT_{prim_rem} / CT_{prim_loc} is referred to as the CT primary rated current). Ratio matching must always be performed against the remote CT with the maximum CT primary defined by the CURRENT DIFF SIGNAL SOURCE 1 through CURRENT DIFF SIGNAL SOURCE 4 settings. See the Current differential settings application example in chapter 9 for additional details.
- CURRENT DIFF RESTRAINT 1 and CURRENT DIFF RESTRAINT 2: These settings select the bias characteristic for the first and second slope, respectively.
- **CURRENT DIFF BREAK PT**: This setting is used to select an intersection point between the two slopes.
- CURRENT DIFF DTT: This setting enables and disables the sending of a DTT by the current differential element on per single-phase basis to remote relays. To allow the L90 to restart from master-master to master-slave mode (very important on three-terminal applications), CURR DIFF DTT must be set to "Enabled".
- CURRENT DIFF KEY DTT: This setting selects an additional protection element (besides the current differential element; for example, distance element or breaker failure) which keys the DTT on a per three-phase basis.

For the current differential element to function properly, it is imperative that all L90 relays on the protected line have exactly identical firmware revisions. For example, revision 5.02 in only compatible with 5.02, not 5.01 or 5.03.

5.5 GROUPED ELEMENTS

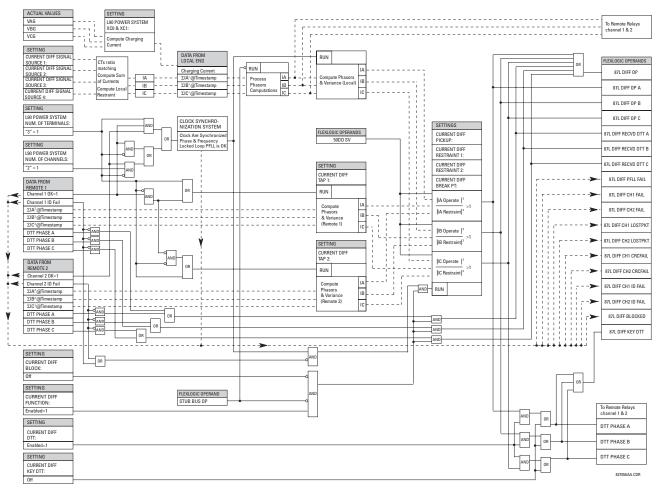
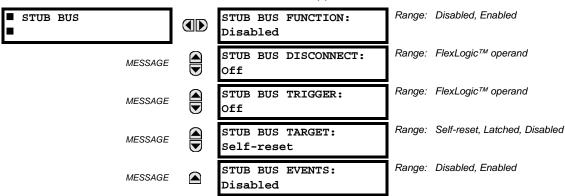
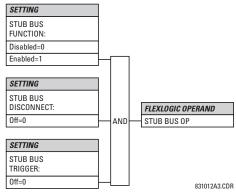



Figure 5–51: CURRENT DIFFERENTIAL SCHEME LOGIC

GE Multilin


c) STUB BUS

PATH: SETTINGS \Rightarrow GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6) \Rightarrow LINE DIFFERENTIAL ELEMENTS \Rightarrow 𝔅 STUB BUS

The stub bus element protects for faults between two breakers in a breaker-and-a-half or ring bus configuration when the line disconnect switch is open. At the same time, if the line is still energized through the remote terminal(s), differential protection is still required (the line may still need to be energized because there is a tapped load on a two terminal line or because the line is a three terminal line with two of the terminals still connected). Correct operation for this condition is achieved by the local relay sending zero current values to the remote end(s) so that a local bus fault does not result in tripping the line. At the local end, the differential element is disabled and stub bus protection is provided by a user-selected overcurrent element. If there is a line fault, the remote end(s) will trip on differential but local differential function and DTT signal (if enabled) to the local end, will be blocked by the stub bus logic allowing the local breakers to remain closed.

- STUB BUS FUNCTION: There are three requirements for stub bus operation: the element must be enabled, an indication that the line disconnect is open, and the STUB BUS TRIGGER setting is set as indicated below. There are two methods of setting the stub bus trigger and thus setting up stub bus operation:
 - 1. If **STUB BUS TRIGGER** is "On", the STUB BUS OPERATE operand picks up as soon as the disconnect switch opens, causing zero currents to be transmitted to remote end(s) and DTT receipt from remote end(s) to be permanently blocked. An overcurrent element, blocked by disconnect switch closed, provides protection for the local bus.
 - 2. An alternate method is to set STUB BUS TRIGGER to be the pickup of an assigned instantaneous overcurrent element. The instantaneous overcurrent element must operate quickly enough to pick up the STUB BUS OPERATE operand, disable the local differential, and send zero currents to the other terminal(s). If the bus minimum fault current is above five times the instantaneous overcurrent pickup, tests have confirmed that the STUB BUS OPERATE operand always pick up correctly for a stub bus fault and prevents tripping of the remote terminal. If minimum stub bus fault current is below this value, then method 1 should be used. Note also that correct testing of stub bus operation, when this method is used, requires sudden injection of a fault currents above five times instantaneous overcurrent pickup. The assigned current element should be mapped to appropriate output contact(s) to trip the stub bus breakers. It should be blocked unless disconnect is open. To prevent 87L tripping from remote L90 relays still protecting the line, the auxiliary contact of line disconnect switch (logic "1" when line switch is open) should be assigned to block the local 87L function by using the CURRENT DIFF BLOCK setting.
- STUB BUS DISCONNECT: Selects a FlexLogic[™] operand to represent the open state of auxiliary contact of line disconnect switch (logic "1" when line disconnect switch is open). If necessary, simple logic representing not only line disconnect switch but also the closed state of the breakers can be created with FlexLogic[™] and assigned to this setting.
- STUB BUS TRIGGER: Selects a FlexLogic[™] operand that causes the STUB BUS OPERATE operand to pick up if the line disconnect is open. It can be set either to "On" or to an instantaneous overcurrent element (see above). If the instantaneous overcurrent used for the stub bus protection is set with a time delay, then STUB BUS TRIGGER should use the associated instantaneous overcurrent pickup operand. The source assigned for the current of this element must cover the stub between CTs of the associated breakers and disconnect switch.

5.5.4 LINE PICKUP

■ LINE PICKUP	LINE PICKUP FUNCTION: Disabled	Range:	Disabled, Enabled
MESSAGE	LINE PICKUP SIGNAL SOURCE: SRC 1	Range:	SRC 1, SRC 2, SRC 3, SRC 4
MESSAGE	PHASE IOC LINE PICKUP: 1.000 pu	Range:	0.000 to 30.000 pu in steps of 0.001
MESSAGE	LINE PICKUP UV PKP: 0.700 pu	Range:	0.000 to 3.000 pu in steps of 0.001
MESSAGE	LINE END OPEN PICKUP DELAY: 0.150 s	Range:	0.000 to 65.535 s in steps of 0.001
MESSAGE	LINE END OPEN RESET DELAY: 0.090 s	Range:	0.000 to 65.535 s in steps of 0.001
MESSAGE	LINE PICKUP OV PKP DELAY: 0.040 s	Range:	0.000 to 65.535 s in steps of 0.001
MESSAGE	AR CO-ORD BYPASS: Enabled	Range:	Disabled, Enabled
MESSAGE	AR CO-ORD PICKUP DELAY: 0.045 s	Range:	0.000 to 65.535 s in steps of 0.001
MESSAGE	AR CO-ORD RESET DELAY: 0.005 s	Range:	0.000 to 65.535 s in steps of 0.001
MESSAGE	TERMINAL OPEN: Off	Range:	FlexLogic™ operand
MESSAGE	AR ACCELERATE: Off	Range:	FlexLogic [™] operand
MESSAGE	LINE PICKUP DISTANCE TRIP: Enabled	Range:	Disabled, Enabled
MESSAGE	LINE PICKUP BLOCK: Off	Range:	FlexLogic™ operand
MESSAGE	LINE PICKUP TARGET: Self-reset	Range:	Self-reset, Latched, Disabled
MESSAGE	LINE PICKUP EVENTS: Disabled	Range:	Disabled, Enabled

PATH: SETTINGS \Rightarrow \bigcirc GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6) \Rightarrow \bigcirc LINE PICKUP

The line pickup feature uses a combination of undercurrent and undervoltage to identify a line that has been de-energized (line end open). Alternately, the user may assign a FlexLogic[™] operand to the **TERMINAL OPEN** setting that specifies the terminal status. Three instantaneous overcurrent elements are used to identify a previously de-energized line that has been closed onto a fault. Faults other than close-in faults can be identified satisfactorily with the distance elements.

Co-ordination features are included to ensure satisfactory operation when high speed automatic reclosure (AR) is employed. The **AR CO-ORD DELAY** setting allows the overcurrent setting to be below the expected load current seen after reclose. Co-ordination is achieved by all of the **LINE PICKP UV** elements resetting and blocking the trip path before the **AR CO-ORD DELAY** times out. The **AR CO-ORD BYPASS** setting is normally enabled. It is disabled if high speed autoreclosure is implemented.

The line pickup protection incorporates zone 1 extension capability. When the line is being re-energized from the local terminal, pickup of an overreaching zone 2 or excessive phase current within eight power cycles after the autorecloser issues a close command results in the LINE PICKUP RCL TRIP FlexLogic[™] operand. For security, the overcurrent trip is supervised by an undervoltage condition, which in turn is controlled by the VT FUSE FAIL OP operand with a 10 ms coordination timer. If a trip from distance in not required, then it can be disabled with the **LINE PICKUP DISTANCE TRIP** setting. Configure the LINE PICKUP RCL TRIP operand to perform a trip action if the intent is apply zone 1 extension.

The zone 1 extension philosophy used here normally operates from an under-reaching zone, and uses an overreaching distance zone when reclosing the line with the other line end open. The **AR ACCELERATE** setting is provided to achieve zone 1 extension functionality if external autoreclosure is employed. Another zone 1 extension approach is to permanently apply an overreaching zone, and reduce the reach when reclosing. This philosophy can be programmed via the autoreclose scheme.

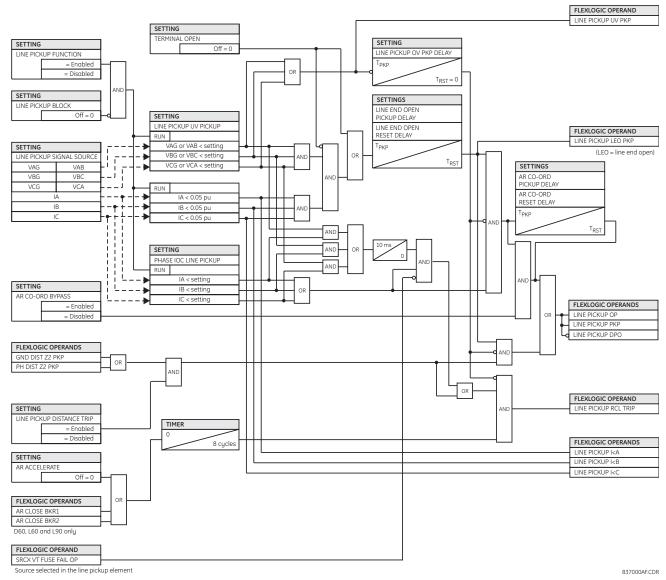


Figure 5–53: LINE PICKUP SCHEME LOGIC

PATH: SETTINGS ⇔∜ GROUPED EI	LEMENTS	S \Rightarrow SETTING GROUP 1(6) \Rightarrow \Downarrow DIST	ANCE
DISTANCE		DISTANCE SOURCE: SRC 1	Range: SRC 1, SRC 2, SRC 3, SRC 4
MESSAGE		MEMORY DURATION: 10 cycles	Range: 5 to 25 cycles in steps of 1
MESSAGE		FORCE SELF-POLAR: Off	Range: FlexLogic™ operand
MESSAGE		FORCE MEM-POLAR: Off	Range: FlexLogic™ operand
MESSAGE		<pre>PHASE DISTANCE Z1</pre>	See page 5-126.
MESSAGE		<pre>PHASE DISTANCE Z2</pre>	See page 5-126.
MESSAGE		<pre>PHASE DISTANCE Z3</pre>	See page 5-126.
MESSAGE		GROUND DISTANCE Z1	See page 5-134.
MESSAGE		GROUND DISTANCE Z2	See page 5-134.
MESSAGE		GROUND DISTANCE Z3	See page 5-134.

a) MAIN MENU

Four common settings are available for distance protection. The DISTANCE SOURCE identifies the signal source for all distance functions. The mho distance functions use a dynamic characteristic: the positive-sequence voltage - either memorized or actual - is used as a polarizing signal. The memory voltage is also used by the built-in directional supervising functions applied for both the mho and quad characteristics.

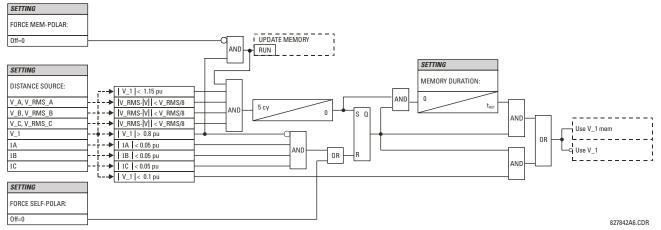
The MEMORY DURATION setting specifies the length of time a memorized positive-sequence voltage should be used in the distance calculations. After this interval expires, the relay checks the magnitude of the actual positive-sequence voltage. If it is higher than 10% of the nominal, the actual voltage is used, if lower - the memory voltage continues to be used.

The memory is established when the positive-sequence voltage stays above 80% of its nominal value for five power system cycles. For this reason it is important to ensure that the nominal secondary voltage of the VT is entered correctly under the SETTINGS ⇔ ^① SYSTEM SETUP ⇒ AC INPUTS ⇒ ^① VOLTAGE BANK menu.

Set MEMORY DURATION long enough to ensure stability on close-in reverse three-phase faults. For this purpose, the maximum fault clearing time (breaker fail time) in the substation should be considered. On the other hand, the MEMORY DURA-TION cannot be too long as the power system may experience power swing conditions rotating the voltage and current phasors slowly while the memory voltage is static, as frozen at the beginning of the fault. Keeping the memory in effect for too long may eventually lead to incorrect operation of the distance functions.

The distance zones can be forced to become self-polarized through the FORCE SELF-POLAR setting. Any user-selected condition (FlexLogic[™] operand) can be configured to force self-polarization. When the selected operand is asserted (logic 1), the distance functions become self-polarized regardless of other memory voltage logic conditions. When the selected operand is de-asserted (logic 0), the distance functions follow other conditions of the memory voltage logic as shown below.

The distance zones can be forced to become memory-polarized through the FORCE MEM-POLAR setting. Any user-selected condition (any FlexLogic[™] operand) can be configured to force memory polarization. When the selected operand is asserted (logic 1), the distance functions become memory-polarized regardless of the positive-sequence voltage magnitude at this time. When the selected operand is de-asserted (logic 0), the distance functions follow other conditions of the memory voltage logic.


The **FORCE SELF-POLAR** and **FORCE MEM-POLAR** settings should never be asserted simultaneously. If this happens, the logic will give higher priority to forcing self-polarization as indicated in the logic below. This is consistent with the overall philosophy of distance memory polarization.

The memory polarization cannot be applied permanently but for a limited time only; the self-polarization may be applied permanently and therefore should take higher priority.

The distance zones of the L90 are identical to that of the UR-series D60 Line Distance Relay. For additional information on the L90 distance functions, please refer to Chapter 8 of the D60 manual, available on the GE EnerVista CD or free of charge on the GE Multilin web page.

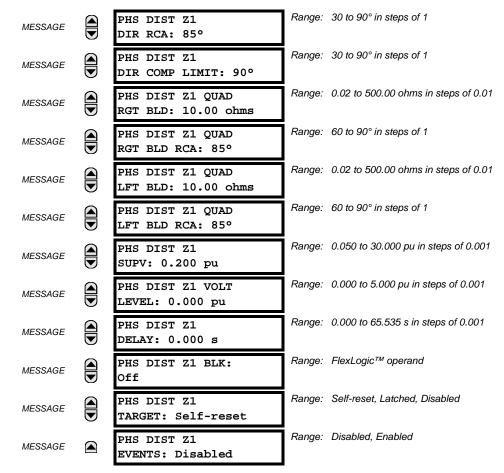


Figure 5–54: MEMORY VOLTAGE LOGIC

b) PHASE DISTANCE (ANSI 21P)

PATH: SETTINGS ⇔ ♣ GROUPED ELEMENTS ⇔ SETTING GROUP 1(6) ⇔ ♣ DISTANCE ⇒ ♣ PHASE DISTANCE Z1(Z3)

<pre>PHASE DISTANCE Z1</pre>	PHS DIST Z1 FUNCTION: Disabled	Range: Disabled, Enabled
MESSAGE	PHS DIST Z1 DIR: Forward	Range: Forward, Reverse, Non-directional
MESSAGE	PHS DIST Z1 SHAPE: Mho	Range: Mho, Quad
MESSAGE	PHS DIST Z1 XFMR VOL CONNECTION: None	Range: None, Dy1, Dy3, Dy5, Dy7, Dy9, Dy11, Yd1, Yd3, Yd5, Yd7, Yd9, Yd11
MESSAGE	PHS DIST Z1 XFMR CUR CONNECTION: None	Range: None, Dy1, Dy3, Dy5, Dy7, Dy9, Dy11, Yd1, Yd3, Yd5, Yd7, Yd9, Yd11
MESSAGE	PHS DIST Z1 REACH: 2.00 ohms	Range: 0.02 to 500.00 ohms in steps of 0.01
MESSAGE	PHS DIST Z1 RCA: 85°	Range: 30 to 90° in steps of 1
MESSAGE	PHS DIST Z1 REV REACH: 2.00 ohms	Range: 0.02 to 500.00 ohms in steps of 0.01
MESSAGE	PHS DIST Z1 REV REACH RCA: 85°	Range: 30 to 90° in steps of 1
MESSAGE	PHS DIST Z1 COMP LIMIT: 90°	Range: 30 to 90° in steps of 1

The phase mho distance function uses a dynamic 100% memory-polarized mho characteristic with additional reactance, directional, and overcurrent supervising characteristics. When set to "Non-directional", the mho function becomes an offset mho with the reverse reach controlled independently from the forward reach, and all the directional characteristics removed.

The phase quadrilateral distance function is comprised of a reactance characteristic, right and left blinders, and 100% memory-polarized directional and current supervising characteristics. When set to "Non-directional", the quadrilateral function applies a reactance line in the reverse direction instead of the directional comparators. Refer to Chapter 8 for additional information.

Each phase distance zone is configured individually through its own setting menu. All of the settings can be independently modified for each of the zones except:

- 1. The SIGNAL SOURCE setting (common for the distance elements of all zones as entered under SETTINGS ⇔ ⊕ GROUPED ELEMENTS ⇔ SETTING GROUP 1(6) ⇔ ⊕ DISTANCE).
- 2. The MEMORY DURATION setting (common for the distance elements of all zones as entered under SETTINGS ⇔ ⊕ GROUPED ELEMENTS ⇔ SETTING GROUP 1(6) ⇔ ⊕ DISTANCE).

The common distance settings described earlier must be properly chosen for correct operation of the phase distance elements. Additional details may be found in chapter 8: *Theory of operation*.

Although all zones can be used as either instantaneous elements (pickup [PKP] and dropout [DPO] FlexLogic[™] operands) or time-delayed elements (operate [OP] FlexLogic[™] operands), only zone 1 is intended for the instantaneous under-reaching tripping mode.

Ensure that the PHASE VT SECONDARY VOLTAGE setting (see the SETTINGS ⇔∜ SYSTEM SETUP ⇔ AC INPUTS ⇔∜ VOLTAGE BANK menu) is set correctly to prevent improper operation of associated memory action.

- PHS DIST Z1 DIR: All phase distance zones are reversible. The forward direction is defined by the PHS DIST Z1 RCA setting, whereas the reverse direction is shifted 180° from that angle. The non-directional zone spans between the forward reach impedance defined by the PHS DIST Z1 REACH and PHS DIST Z1 RCA settings, and the reverse reach impedance defined by PHS DIST Z1 REV REACH and PHS DIST Z1 REV REACH RCA as illustrated below.
- **PHS DIST Z1 SHAPE:** This setting selects the shape of the phase distance function between the mho and quadrilateral characteristics. The selection is available on a per-zone basis. The two characteristics and their possible variations are shown in the following figures.

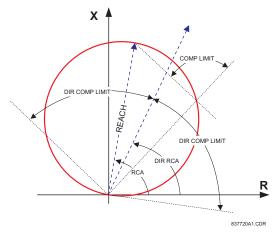


Figure 5–55: DIRECTIONAL MHO DISTANCE CHARACTERISTIC

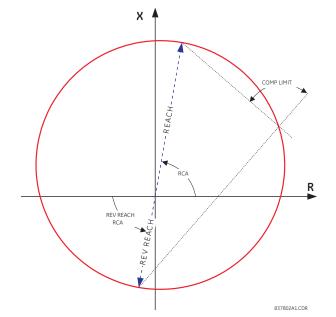
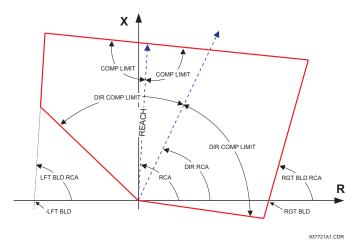



Figure 5–56: NON-DIRECTIONAL MHO DISTANCE CHARACTERISTIC

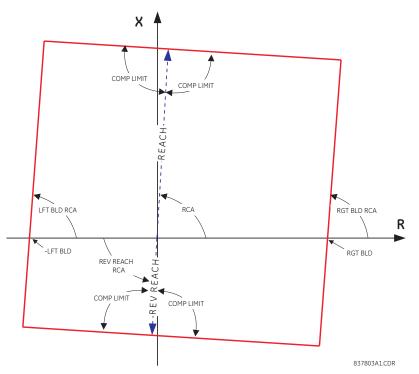


Figure 5–58: NON-DIRECTIONAL QUADRILATERAL PHASE DISTANCE CHARACTERISTIC

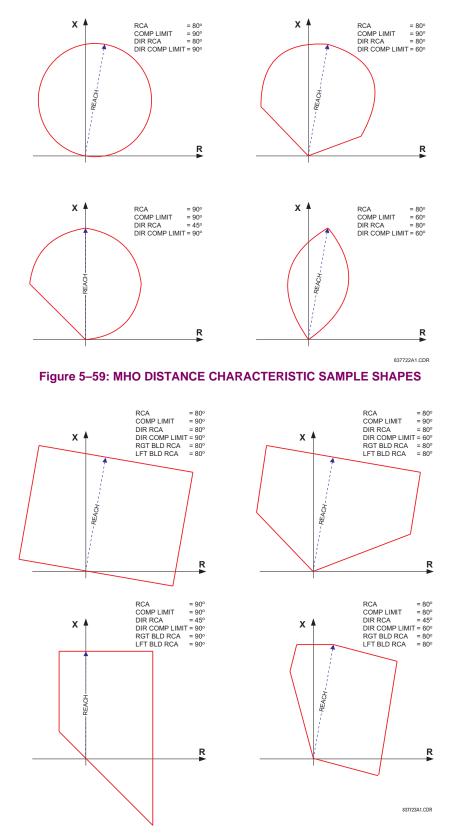
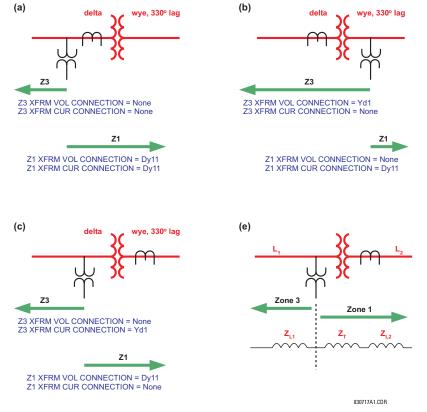


Figure 5-60: QUADRILATERAL DISTANCE CHARACTERISTIC SAMPLE SHAPES


5 SETTINGS

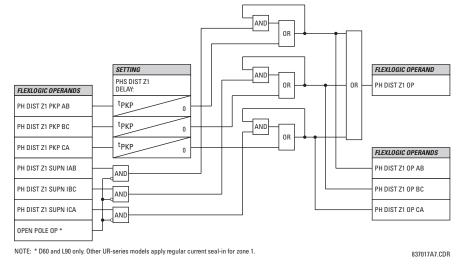
 PHS DIST Z1 XFMR VOL CONNECTION: The phase distance elements can be applied to look through a three-phase delta-wye or wye-delta power transformer. In addition, VTs and CTs could be located independently from one another at different windings of the transformer. If the potential source is located at the correct side of the transformer, this setting shall be set to "None".

This setting specifies the location of the voltage source with respect to the involved power transformer in the direction of the zone. The following figure illustrates the usage of this setting. In section (a), zone 1 is looking through a transformer from the delta into the wye winding. Therefore, the Z1 setting shall be set to "Dy11". In section (b), Zone 3 is looking through a transformer from the wye into the delta winding. Therefore, the Z3 setting shall be set to "Yd1". The zone is restricted by the potential point (location of the VTs) as illustrated in Figure (e).

PHS DIST Z1 XFMR CUR CONNECTION: This setting specifies the location of the current source with respect to the involved power transformer in the direction of the zone. In section (a) of the following figure, zone 1 is looking through a transformer from the delta into the wye winding. Therefore, the Z1 setting shall be set to "Dy11". In section (b), the CTs are located at the same side as the read point. Therefore, the Z3 setting shall be set to "None".

See the *Theory of operation* chapter for more details, and the *Application of settings* chapter for information on calculating distance reach settings in applications involving power transformers.

Figure 5-61: APPLICATIONS OF THE PH DIST XFMR VOL/CUR CONNECTION SETTINGS


- PHS DIST Z1 REACH: This setting defines the zone reach for the forward and reverse applications. In the non-directional applications, this setting defines the forward reach of the zone. The reverse reach impedance in non-directional applications is set independently. The reach impedance is entered in secondary ohms. The reach impedance angle is entered as the PHS DIST Z1 RCA setting.
- PHS DIST Z1 RCA: This setting specifies the characteristic angle (similar to the 'maximum torque angle' in previous technologies) of the phase distance characteristic for the forward and reverse applications. In the non-directional applications, this setting defines the angle of the forward reach impedance. The reverse reach impedance in the non-directional applications is set independently. The setting is an angle of reach impedance as shown in the distance characteristic figures shown earlier. This setting is independent from PHS DIST Z1 DIR RCA, the characteristic angle of an extra directional supervising function.

5

- PHS DIST Z1 REV REACH: This setting defines the reverse reach of the zone set to non-directional (PHS DIST Z1 DIR setting). The value must be entered in secondary ohms. This setting does not apply when the zone direction is set to "Forward" or "Reverse".
- PHS DIST Z1 REV REACH RCA: This setting defines the angle of the reverse reach impedance if the zone is set to non-directional (PHS DIST Z1 DIR setting). This setting does not apply when the zone direction is set to "Forward" or "Reverse".
- PHS DIST Z1 COMP LIMIT: This setting shapes the operating characteristic. In particular, it produces the lens-type characteristic of the mho function and a tent-shaped characteristic of the reactance boundary of the quadrilateral function. If the mho shape is selected, the same limit angle applies to both the mho and supervising reactance comparators. In conjunction with the mho shape selection, the setting improves loadability of the protected line. In conjunction with the quadrilateral characteristic, this setting improves security for faults close to the reach point by adjusting the reactance boundary into a tent-shape.
- PHS DIST Z1 DIR RCA: This setting selects the characteristic angle (or maximum torque angle) of the directional supervising function. If the mho shape is applied, the directional function is an extra supervising function as the dynamic mho characteristic is itself directional. In conjunction with the quadrilateral shape, this setting defines the only directional function built into the phase distance element. The directional function uses the memory voltage for polar-ization. This setting typically equals the distance characteristic angle PHS DIST Z1 RCA.
- **PHS DIST Z1 DIR COMP LIMIT:** Selects the comparator limit angle for the directional supervising function.
- PHS DIST Z1 QUAD RGT BLD: This setting defines the right blinder position of the quadrilateral characteristic along the resistive axis of the impedance plane (see the *Quadrilateral distance characteristic* figures). The angular position of the blinder is adjustable with the use of the PHS DIST Z1 QUAD RGT BLD RCA setting. This setting applies only to the quadrilateral characteristic and should be set giving consideration to the maximum load current and required resistive coverage.
- **PHS DIST Z1 QUAD RGT BLD RCA:** This setting defines the angular position of the right blinder of the quadrilateral characteristic (see the *Quadrilateral distance characteristic* figures).
 - PHS DIST Z1 QUAD LFT BLD: This setting defines the left blinder position of the quadrilateral characteristic along the resistive axis of the impedance plane (see the *Quadrilateral distance characteristic* figures). The angular position of the blinder is adjustable with the use of the PHS DIST Z1 QUAD LFT BLD RCA setting. This setting applies only to the quadrilateral characteristic and should be set with consideration to the maximum load current.
- **PHS DIST Z1 QUAD LFT BLD RCA:** This setting defines the angular position of the left blinder of the quadrilateral characteristic (see the *Quadrilateral distance characteristic* figures).
- **PHS DIST Z1 SUPV:** The phase distance elements are supervised by the magnitude of the line-to-line current (fault loop current used for the distance calculations). For convenience, $\sqrt{3}$ is accommodated by the pickup (that is, before being used, the entered value of the threshold setting is multiplied by $\sqrt{3}$).

If the minimum fault current level is sufficient, the current supervision pickup should be set above maximum full load current preventing maloperation under VT fuse fail conditions. This requirement may be difficult to meet for remote faults at the end of zones 2 and above. If this is the case, the current supervision pickup would be set below the full load current, but this may result in maloperation during fuse fail conditions.

- PHS DIST Z1 VOLT LEVEL: This setting is relevant for applications on series-compensated lines, or in general, if series capacitors are located between the relaying point and a point where the zone shall not overreach. For plain (non-compensated) lines, set to zero. Otherwise, the setting is entered in per unit of the phase VT bank configured under the DISTANCE SOURCE. Effectively, this setting facilitates dynamic current-based reach reduction. In non-directional applications (PHS DIST Z1 DIR set to "Non-directional"), this setting applies only to the forward reach of the non-directional zone. See chapters 8 and 9 for information on calculating this setting for series compensated lines.
- PHS DIST Z1 DELAY: This setting allows the user to delay operation of the distance elements and implement stepped distance protection. The distance element timers for zones 2 and higher apply a short dropout delay to cope with faults located close to the zone boundary when small oscillations in the voltages or currents could inadvertently reset the timer. Zone 1 does not need any drop out delay since it is sealed-in by the presence of current.
- **PHS DIST Z1 BLK:** This setting enables the user to select a FlexLogic[™] operand to block a given distance element. VT fuse fail detection is one of the applications for this setting.

Figure 5–62: PHASE DISTANCE ZONE 1 OP SCHEME

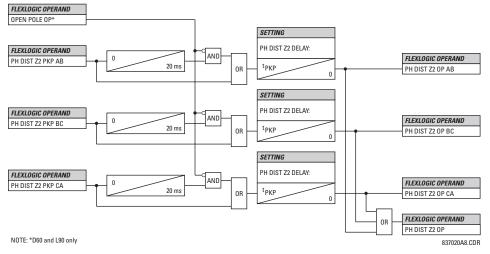


Figure 5-63: PHASE DISTANCE ZONES 2 AND HIGHER OP SCHEME

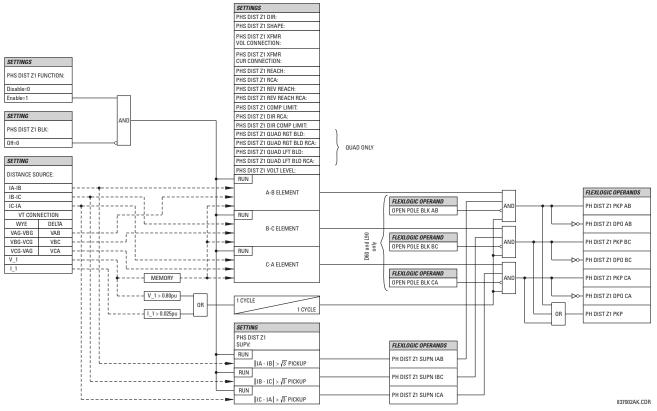


Figure 5–64: PHASE DISTANCE SCHEME LOGIC

c) GROUND DISTANCE (ANSI 21G)

PATH: SETTINGS ⇔ ♣ GROUPED ELEMENTS ⇔ SETTING GROUP 1(6) ⇔ ♣ DISTANCE ⇔ ♣ GROUND DISTANCE Z1(Z3)

GROUND DISTANCE Z1	GND DIST Z1 FUNCTION: Disabled	Range:	Disabled, Enabled
MESSAGE	GND DIST Z1 DIR: Forward	Range:	Forward, Reverse, Non-directional
MESSAGE	GND DIST Z1 SHAPE: Mho	Range:	Mho, Quad
MESSAGE	GND DIST Z1 Z0/Z1 MAG: 2.70	Range:	0.00 to 10.00 in steps of 0.01
MESSAGE	GND DIST Z1 Z0/Z1 ANG: 0°	Range:	–90 to 90° in steps of 1
MESSAGE	GND DIST Z1 ZOM/Z1 MAG: 0.00	Range:	0.00 to 7.00 in steps of 0.01
MESSAGE	GND DIST Z1 ZOM/Z1 ANG: 0°	Range:	–90 to 90° in steps of 1
MESSAGE	GND DIST Z1 REACH: 2.00 Ω	Range:	0.02 to 500.00 ohms in steps of 0.01
MESSAGE	GND DIST Z1 RCA: 85°	Range:	30 to 90° in steps of 1

MESSAGE	GND DIST Z1 REV REACH: 2.00 Ω	Range:	0.02 to 500.00 ohms in steps of 0.01
MESSAGE	GND DIST Z1 REV REACH RCA: 85°	Range:	30 to 90° in steps of 1
MESSAGE	GND DIST Z1 POL CURRENT: Zero-seq	Range:	Zero-seq, Neg-seq
MESSAGE	GND DIST Z1 NON- HOMOGEN ANG: 0.0°	Range:	-40.0 to 40.0° in steps of 0.1
MESSAGE	GND DIST Z1 COMP LIMIT: 90°	Range:	30 to 90° in steps of 1
MESSAGE	GND DIST Z1 DIR RCA: 85°	Range:	30 to 90° in steps of 1
MESSAGE	GND DIST Z1 DIR COMP LIMIT: 90°	Range:	30 to 90° in steps of 1
MESSAGE	GND DIST Z1 QUAD RGT BLD: 10.00 Ω	Range:	0.02 to 500.00 ohms in steps of 0.01
MESSAGE	GND DIST Z1 QUAD RGT BLD RCA: 85°	Range:	60 to 90° in steps of 1
MESSAGE	GND DIST Z1 QUAD LFT BLD: 10.00 Ω	Range:	0.02 to 500.00 ohms in steps of 0.01
MESSAGE	GND DIST Z1 QUAD LFT BLD RCA: 85°	Range:	60 to 90° in steps of 1
MESSAGE	GND DIST Z1 SUPV: 0.200 pu	Range:	0.050 to 30.000 pu in steps of 0.001
MESSAGE	GND DIST Z1 VOLT LEVEL: 0.000 pu	Range:	0.000 to 5.000 pu in steps of 0.001
MESSAGE	GND DIST Z1 DELAY: 0.000 s	Range:	0.000 to 65.535 s in steps of 0.001
MESSAGE	GND DIST Z1 BLK: Off	Range:	FlexLogic™ operand
MESSAGE	GND DIST Z1 TARGET: Self-Reset	Range:	Self-Rest, Latched, Disabled
MESSAGE	GND DIST Z1 EVENTS: Disabled	Range:	Disabled, Enabled

The ground mho distance function uses a dynamic 100% memory-polarized mho characteristic with additional reactance, directional, current, and phase selection supervising characteristics. The ground quadrilateral distance function is composed of a reactance characteristic, right and left blinders, and 100% memory-polarized directional, overcurrent, and phase selection supervising characteristics.

When set to non-directional, the mho function becomes an offset mho with the reverse reach controlled independently from the forward reach, and all the directional characteristics removed. When set to non-directional, the quadrilateral function applies a reactance line in the reverse direction instead of the directional comparators.

The reactance supervision for the mho function uses the zero-sequence current for polarization. The reactance line of the quadrilateral function uses either zero-sequence or negative-sequence current as a polarizing quantity. The selection is controlled by a user setting and depends on the degree of non-homogeneity of the zero-sequence and negative-sequence equivalent networks.

The directional supervision uses memory voltage as polarizing quantity and both zero- and negative-sequence currents as operating quantities.

The phase selection supervision restrains the ground elements during double-line-to-ground faults as they – by principles of distance relaying – may be inaccurate in such conditions. Ground distance zones 1 through 3 apply additional zero-sequence directional supervision. See chapter 8 for additional details.

Each ground distance zone is configured individually through its own setting menu. All of the settings can be independently modified for each of the zones except:

- 1. The SIGNAL SOURCE setting (common for both phase and ground elements for all zones as entered under the SETTINGS ⇔ ⊕ GROUPED ELEMENTS ⇔ SETTING GROUP 1(6) ⇔ ⊕ DISTANCE menu).
- 2. The **MEMORY DURATION** setting (common for both phase and ground elements for all zones as entered under the **SET-TINGS** ⇒ ⊕ **GROUPED ELEMENTS** ⇒ **SETTING GROUP 1(6)** ⇒ ⊕ **DISTANCE** menu).

The common distance settings noted at the start of this section must be properly chosen for correct operation of the ground distance elements.

Although all ground distance zones can be used as either instantaneous elements (pickup [PKP] and dropout [DPO] Flex-Logic[™] signals) or time-delayed elements (operate [OP] FlexLogic[™] signals), only zone 1 is intended for the instantaneous under-reaching tripping mode.

Ensure that the PHASE VT SECONDARY VOLTAGE (see the SETTINGS $\Rightarrow \emptyset$ SYSTEM SETUP \Rightarrow AC INPUTS $\Rightarrow \emptyset$ VOLTAGE BANK menu) is set correctly to prevent improper operation of associated memory action.

- **GND DIST Z1 DIR:** All ground distance zones are reversible. The forward direction is defined by the **GND DIST Z1 RCA** setting and the reverse direction is shifted by 180° from that angle. The non-directional zone spans between the forward reach impedance defined by the **GND DIST Z1 REACH** and **GND DIST Z1 RCA** settings, and the reverse reach impedance defined by the **GND DIST Z1 REV REACH** and **GND DIST Z1 REV REACH** actings.
- **GND DIST Z1 SHAPE:** This setting selects the shape of the ground distance characteristic between the mho and quadrilateral characteristics. The selection is available on a per-zone basis.

The directional and non-directional quadrilateral ground distance characteristics are shown below. The directional and non-directional mho ground distance characteristics are the same as those shown for the phase distance element in the previous sub-section.

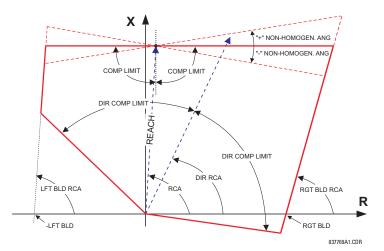
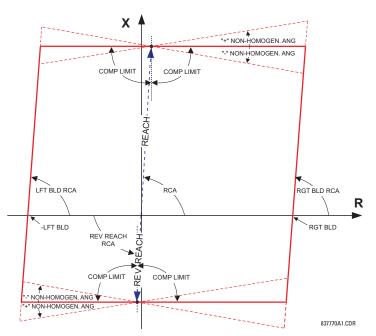
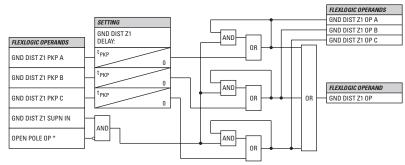



Figure 5–65: DIRECTIONAL QUADRILATERAL GROUND DISTANCE CHARACTERISTIC

Figure 5–66: NON-DIRECTIONAL QUADRILATERAL GROUND DISTANCE CHARACTERISTIC

- GND DIST Z1 Z0/Z1 MAG: This setting specifies the ratio between the zero-sequence and positive-sequence impedance required for zero-sequence compensation of the ground distance elements. This setting is available on a perzone basis, enabling precise settings for tapped, non-homogeneous, and series compensated lines.
- GND DIST Z1 Z0/Z1 ANG: This setting specifies the angle difference between the zero-sequence and positivesequence impedance required for zero-sequence compensation of the ground distance elements. The entered value is the zero-sequence impedance angle minus the positive-sequence impedance angle. This setting is available on a perzone basis, enabling precise values for tapped, non-homologous, and series-compensated lines.
- **GND DIST Z1 ZOM/Z1 MAG:** The ground distance elements can be programmed to apply compensation for the zerosequence mutual coupling between parallel lines. If this compensation is required, the ground current from the parallel line (31_0) measured in the direction of the zone being compensated must be connected to the ground input CT of the CT bank configured under the **DISTANCE SOURCE**. This setting specifies the ratio between the magnitudes of the mutual zero-sequence impedance between the lines and the positive-sequence impedance of the protected line. It is imperative to set this setting to zero if the compensation is not to be performed.
- **GND DIST Z1 ZOM/Z1 ANG:** This setting specifies the angle difference between the mutual zero-sequence impedance between the lines and the positive-sequence impedance of the protected line.
- GND DIST Z1 REACH: This setting defines the reach of the zone for the forward and reverse applications. In nondirectional applications, this setting defines the forward reach of the zone. The reverse reach impedance in non-directional applications is set independently. The angle of the reach impedance is entered as the GND DIST Z1 RCA setting. The reach impedance is entered in secondary ohms.
- GND DIST Z1 RCA: This setting specifies the characteristic angle (similar to the maximum torque angle in previous technologies) of the ground distance characteristic for the forward and reverse applications. In the non-directional applications this setting defines the forward reach of the zone. The reverse reach impedance in the non-directional applications is set independently. This setting is independent from the GND DIST Z1 DIR RCA setting (the characteristic angle of an extra directional supervising function).


The relay internally performs zero-sequence compensation for the protected circuit based on the values entered for GND DIST Z1 Z0/Z1 MAG and GND DIST Z1 Z0/Z1 ANG, and if configured to do so, zero-sequence compensation for mutual coupling based on the values entered for GND DIST Z1 Z0M/Z1 MAG and GND DIST Z1 Z0M/Z1 ANG. The GND DIST Z1 REACH and GND DIST Z1 RCA should, therefore, be entered in terms of positive sequence quantities. Refer to chapters 8 for additional information

- GND DIST Z1 REV REACH: This setting defines the reverse reach of the zone set to non-directional (GND DIST Z1 DIR setting). The value must be entered in secondary ohms. This setting does not apply when the zone direction is set to "Forward" or "Reverse".
- GND DIST Z1 REV REACH RCA: This setting defines the angle of the reverse reach impedance if the zone is set to non-directional (GND DIST Z1 DIR setting). This setting does not apply when the zone direction is set to "Forward" or "Reverse".
- **GND DIST Z1 POL CURRENT**: This setting applies only if the **GND DIST Z1 SHAPE** is set to "Quad" and controls the polarizing current used by the reactance comparator of the quadrilateral characteristic. Either the zero-sequence or negative-sequence current could be used. In general, a variety of system conditions must be examined to select an optimum polarizing current. This setting becomes less relevant when the resistive coverage and zone reach are set conservatively. Also, this setting is more relevant in lower voltage applications such as on distribution lines or cables, as compared with high-voltage transmission lines. This setting applies to both the **Z1** and reverse reactance lines if the zone is set to non-directional. Refer to chapters 8 and 9 for additional information.
- GND DIST Z1 NON-HOMOGEN ANG: This setting applies only if the GND DIST Z1 SHAPE is set to "Quad" and provides a method to correct the angle of the polarizing current of the reactance comparator for non-homogeneity of the zero-sequence or negative-sequence networks. In general, a variety of system conditions must be examined to select this setting. In many applications this angle is used to reduce the reach at high resistances in order to avoid overreaching under far-out reach settings and/or when the sequence networks are greatly non-homogeneous. This setting applies to both the forward and reverse reactance lines if the zone is set to non-directional. Refer to chapters 8 and 9 for additional information.
- **GND DIST Z1 COMP LIMIT:** This setting shapes the operating characteristic. In particular, it enables a lens-shaped characteristic of the mho function and a tent-shaped characteristic of the quadrilateral function reactance boundary. If the mho shape is selected, the same limit angle applies to mho and supervising reactance comparators. In conjunction with the mho shape selection, this setting improves loadability of the protected line. In conjunction with the quadrilateral characteristic, this setting improves security for faults close to the reach point by adjusting the reactance boundary into a tent-shape.
- **GND DIST Z1 DIR RCA:** Selects the characteristic angle (or 'maximum torque angle') of the directional supervising function. If the mho shape is applied, the directional function is an extra supervising function, as the dynamic mho characteristic itself is a directional one. In conjunction with the quadrilateral shape selection, this setting defines the only directional function built into the ground distance element. The directional function uses memory voltage for polarization.
- GND DIST Z1 DIR COMP LIMIT: This setting selects the comparator limit angle for the directional supervising function.
- **GND DIST Z1 QUAD RGT BLD**: This setting defines the right blinder position of the quadrilateral characteristic along the resistive axis of the impedance plane (see the *Quadrilateral distance characteristic* figure). The angular position of the blinder is adjustable with the use of the **GND DIST Z1 QUAD RGT BLD RCA** setting. This setting applies only to the quadrilateral characteristic and should be set with consideration to the maximum load current and required resistive coverage.
- **GND DIST Z1 QUAD RGT BLD RCA**: This setting defines the angular position of the right blinder of the quadrilateral characteristic (see the *Quadrilateral distance characteristic* figure).
- **GND DIST Z1 QUAD LFT BLD**: This setting defines the left blinder position of the quadrilateral characteristic along the resistive axis of the impedance plane (see the *Quadrilateral distance characteristic* figure). The angular position of the blinder is adjustable with the use of the **GND DIST Z1 QUAD LFT BLD RCA** setting. This setting applies only to the quadrilateral characteristic and should be set with consideration to the maximum load current.
- **GND DIST Z1 QUAD LFT BLD RCA**: This setting defines the angular position of the left blinder of the quadrilateral characteristic (see the *Quadrilateral distance characteristic* figure).
- GND DIST Z1 SUPV: The ground distance elements are supervised by the magnitude of the neutral (3I_0) current. The current supervision pickup should be set above the maximum unbalance current under maximum load conditions preventing maloperation due to VT fuse failure.
- GND DIST Z1 VOLT LEVEL: This setting is relevant for applications on series-compensated lines, or in general, if
 series capacitors are located between the relaying point and a point for which the zone shall not overreach. For plain
 (non-compensated) lines, this setting shall be set to zero. Otherwise, the setting is entered in per unit of the VT bank
 configured under the DISTANCE SOURCE. Effectively, this setting facilitates dynamic current-based reach reduction. In
 non-directional applications (GND DIST Z1 DIR set to "Non-directional"), this setting applies only to the forward reach of

5 SETTINGS

the non-directional zone. See chapters 8 and 9 for additional details and information on calculating this setting value for applications on series compensated lines.

- GND DIST Z1 DELAY: This setting enables the user to delay operation of the distance elements and implement a
 stepped distance backup protection. The distance element timer applies a short drop out delay to cope with faults
 located close to the boundary of the zone when small oscillations in the voltages or currents could inadvertently reset
 the timer.
- **GND DIST Z1 BLK:** This setting enables the user to select a FlexLogic[™] operand to block the given distance element. VT fuse fail detection is one of the applications for this setting.

NOTE: * D60 and L90 only. Other UR-series models apply regular current seal-in for zone 1.

837018A6.CDR

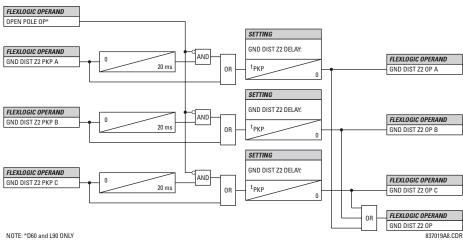


Figure 5–68: GROUND DISTANCE ZONES 2 AND HIGHER OP SCHEME

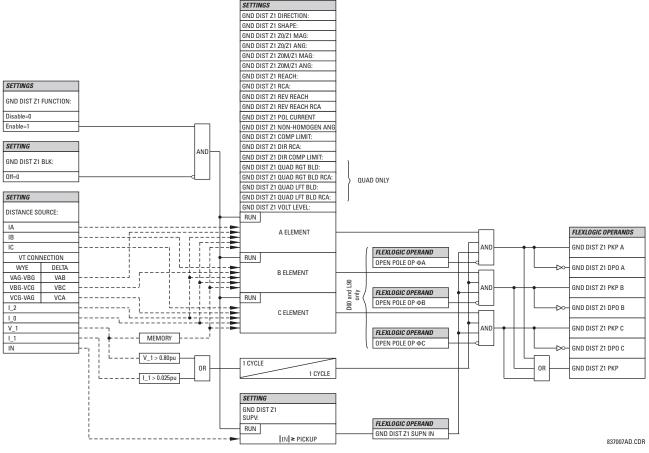
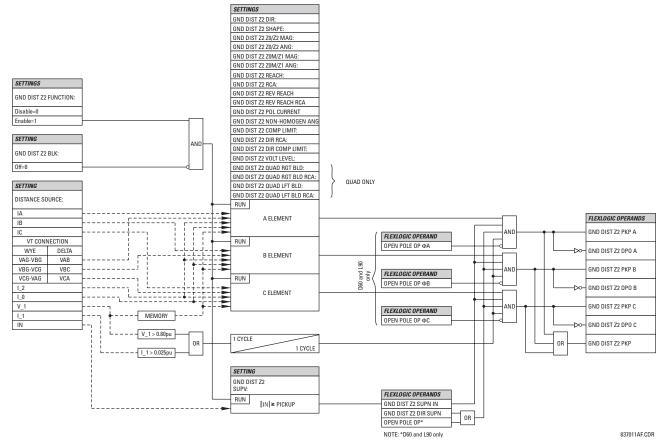
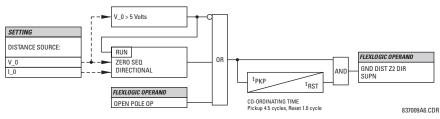


Figure 5–69: GROUND DISTANCE ZONE 1 SCHEME LOGIC



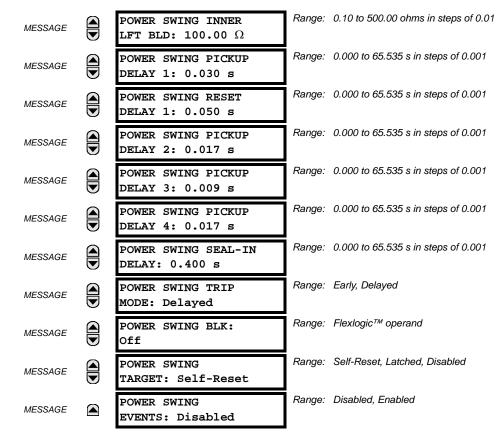

Figure 5–70: GROUND DISTANCE ZONES 2 AND HIGHER SCHEME LOGIC

GROUND DIRECTIONAL SUPERVISION:

A dual (zero-sequence and negative-sequence) memory-polarized directional supervision applied to the ground distance protection elements has been shown to give good directional integrity. However, a reverse double-line-to-ground fault can lead to a maloperation of the ground element in a sound phase if the zone reach setting is increased to cover high resistance faults.

Ground distance zones 2 and higher use an additional ground directional supervision to enhance directional integrity. The element's directional characteristic angle is used as a *maximum torque angle* together with a 90° limit angle.

The supervision is biased toward operation in order to avoid compromising the sensitivity of ground distance elements at low signal levels. Otherwise, the reverse fault condition that generates concern will have high polarizing levels so that a correct reverse fault decision can be reliably made.



5.5.6 POWER SWING DETECT

POWER SWINGDETECT	POWER SWING FUNCTION: Disabled	Range:	Disabled, Enabled
MESSAGE	POWER SWING SOURCE: SRC 1	Range:	SRC 1, SRC 2, SRC 3, SRC 4
MESSAGE	POWER SWING SHAPE: Mho Shape	Range:	Mho Shape, Quad Shape
MESSAGE	POWER SWING MODE: Two Step	Range:	Two Step, Three Step
MESSAGE	POWER SWING SUPV: 0.600 pu	Range:	0.050 to 30.000 pu in steps of 0.001
MESSAGE	POWER SWING FWD REACH: 50.00 Ω	Range:	0.10 to 500.00 ohms in steps of 0.01
MESSAGE	POWER SWING QUAD FWD REACH MID: 60.00 Ω	Range:	0.10 to 500.00 ohms in steps of 0.01
MESSAGE	POWER SWING QUAD FWD REACH OUT: 70.00 Ω	Range:	0.10 to 500.00 ohms in steps of 0.01
MESSAGE	POWER SWING FWD RCA: 75°	Range:	40 to 90° in steps of 1
MESSAGE	POWER SWING REV REACH: 50.00 Ω	Range:	0.10 to 500.00 ohms in steps of 0.01
MESSAGE	POWER SWING QUAD REV REACH MID: 60.00 Ω	Range:	0.10 to 500.00 ohms in steps of 0.01
MESSAGE	POWER SWING QUAD REV REACH OUT: 70.00 Ω	Range:	0.10 to 500.00 ohms in steps of 0.01
MESSAGE	POWER SWING REV RCA: 75°	Range:	40 to 90° in steps of 1
MESSAGE	POWER SWING OUTER LIMIT ANGLE: 120°	Range:	40 to 140° in steps of 1
MESSAGE	POWER SWING MIDDLE LIMIT ANGLE: 90°	Range:	40 to 140° in steps of 1
MESSAGE	POWER SWING INNER LIMIT ANGLE: 60°	Range:	40 to 140° in steps of 1
MESSAGE	POWER SWING OUTER RGT BLD: 100.00 Ω	Range:	0.10 to 500.00 ohms in steps of 0.01
MESSAGE	POWER SWING OUTER LFT BLD: 100.00 Ω	Range:	0.10 to 500.00 ohms in steps of 0.01
MESSAGE	POWER SWING MIDDLE RGT BLD: 100.00 Ω	Range:	0.10 to 500.00 ohms in steps of 0.01
MESSAGE	POWER SWING MIDDLE LFT BLD: 100.00 Ω	Range:	0.10 to 500.00 ohms in steps of 0.01
MESSAGE	POWER SWING INNER RGT BLD: 100.00 Ω	Range:	0.10 to 500.00 ohms in steps of 0.01

PATH: SETTINGS $\Leftrightarrow \mathbb{Q}$ grouped elements \Rightarrow setting group 1(6) $\Rightarrow \mathbb{Q}$ power swing detect

The power swing detect element provides both power swing blocking and out-of-step tripping functions. The element measures the positive-sequence apparent impedance and traces its locus with respect to either two or three user-selectable operating characteristic boundaries. Upon detecting appropriate timing relations, the blocking and tripping indications are given through FlexLogic[™] operands. The element incorporates an adaptive disturbance detector. This function does not trigger on power swings, but is capable of detecting faster disturbances – faults in particular – that may occur during power swings. Operation of this dedicated disturbance detector is signaled via the POWER SWING 50DD operand.

The power swing detect element asserts two outputs intended for blocking selected protection elements on power swings: POWER SWING BLOCK is a traditional signal that is safely asserted for the entire duration of the power swing, and POWER SWING UN/BLOCK is established in the same way, but resets when an extra disturbance is detected during the power swing. The POWER SWING UN/BLOCK operand may be used for blocking selected protection elements if the intent is to respond to faults during power swing conditions.

Different protection elements respond differently to power swings. If tripping is required for faults during power swing conditions, some elements may be blocked permanently (using the POWER SWING BLOCK operand), and others may be blocked and dynamically unblocked upon fault detection (using the POWER SWING UN/BLOCK operand).

The operating characteristic and logic figures should be viewed along with the following discussion to develop an understanding of the operation of the element.

The power swing detect element operates in three-step or two-step mode:

- Three-step operation: The power swing blocking sequence essentially times the passage of the locus of the positive-sequence impedance between the outer and the middle characteristic boundaries. If the locus enters the outer characteristic (indicated by the POWER SWING OUTER FlexLogic[™] operand) but stays outside the middle characteristic (indicated by the POWER SWING MIDDLE FlexLogic[™] operand) for an interval longer than POWER SWING PICKUP DELAY 1, the power swing blocking signal (POWER SWING BLOCK FlexLogic[™] operand) is established and sealed-in. The block-ing signal resets when the locus leaves the outer characteristic, but not sooner than the POWER SWING RESET DELAY 1 time.
- **Two-step operation:** If the two-step mode is selected, the sequence is identical, but it is the outer and inner characteristics that are used to time the power swing locus.

The out-of-step tripping feature operates as follows for three-step and two-step power swing detection modes:

 Three-step operation: The out-of-step trip sequence identifies unstable power swings by determining if the impedance locus spends a finite time between the outer and middle characteristics and then a finite time between the middle and inner characteristics. The first step is similar to the power swing blocking sequence. After timer POWER SWING PICKUP DELAY 1 times out, latch 1 is set as long as the impedance stays within the outer characteristic.

If afterwards, at any time (given the impedance stays within the outer characteristic), the locus enters the middle characteristic but stays outside the inner characteristic for a period of time defined as **POWER SWING PICKUP DELAY 2**, latch 2 is set as long as the impedance stays inside the outer characteristic. If afterwards, at any time (given the impedance stays within the outer characteristic), the locus enters the inner characteristic and stays there for a period of time defined as **POWER SWING PICKUP DELAY 3**, latch 2 is set as long as the impedance stays inside the outer characteristic; the element is now ready to trip.

If the "Early" trip mode is selected, the POWER SWING TRIP operand is set immediately and sealed-in for the interval set by the **POWER SWING SEAL-IN DELAY**. If the "Delayed" trip mode is selected, the element waits until the impedance locus leaves the inner characteristic, then times out the **POWER SWING PICKUP DELAY 2** and sets Latch 4; the element is now ready to trip. The trip operand is set later, when the impedance locus leaves the outer characteristic.

Two-step operation: The two-step mode of operation is similar to the three-step mode with two exceptions. First, the
initial stage monitors the time spent by the impedance locus between the outer and inner characteristics. Second, the
stage involving the POWER SWING PICKUP DELAY 2 timer is bypassed. It is up to the user to integrate the blocking
(POWER SWING BLOCK) and tripping (POWER SWING TRIP) FlexLogic[™] operands with other protection functions and
output contacts in order to make this element fully operational.

The element can be set to use either lens (mho) or rectangular (quadrilateral) characteristics as illustrated below. When set to "Mho", the element applies the right and left blinders as well. If the blinders are not required, their settings should be set high enough to effectively disable the blinders.

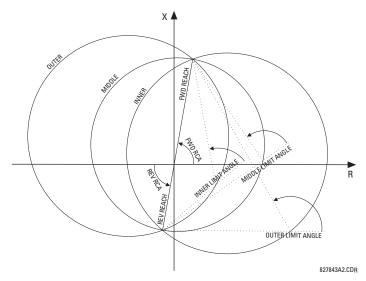


Figure 5–72: POWER SWING DETECT MHO OPERATING CHARACTERISTICS

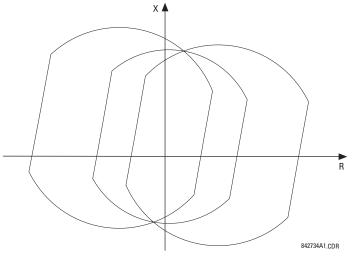
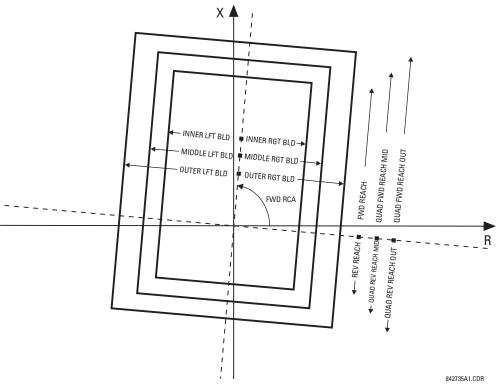



Figure 5–73: EFFECTS OF BLINDERS ON THE MHO CHARACTERISTICS

Figure 5–74: POWER SWING DETECT QUADRILATERAL OPERATING CHARACTERISTICS

The FlexLogic[™] output operands for the power swing detect element are described below:

- The POWER SWING OUTER, POWER SWING MIDDLE, POWER SWING INNER, POWER SWING TMR2 PKP, POWER SWING TMR3 PKP, and POWER SWING TMR4 PKP FlexLogic[™] operands are auxiliary operands that could be used to facilitate testing and special applications.
- The POWER SWING BLOCK FlexLogic[™] operand shall be used to block selected protection elements such as distance functions.

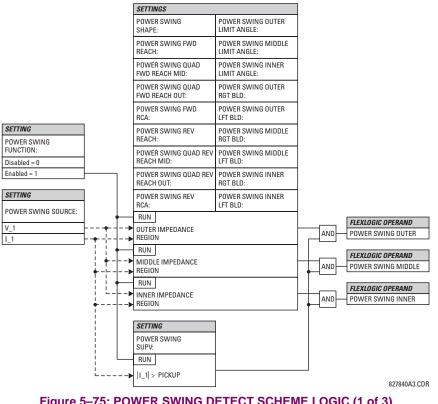
5

- The POWER SWING UN/BLOCK FlexLogic[™] operand shall be used to block those protection elements that are intended to be blocked under power swings, but subsequently unblocked should a fault occur after the power swing blocking condition has been established.
- The POWER SWING 50DD FlexLogic[™] operand indicates that an adaptive disturbance detector integrated with the element has picked up. This operand will trigger on faults occurring during power swing conditions. This includes both three-phase and single-pole-open conditions.
- The POWER SWING INCOMING FlexLogic[™] operand indicates an unstable power swing with an incoming locus (the locus enters the inner characteristic).
- The POWER SWING OUTGOING FlexLogic[™] operand indicates an unstable power swing with an outgoing locus (the locus leaving the outer characteristic). This operand can be used to count unstable swings and take certain action only after pre-defined number of unstable power swings.
- The POWER SWING TRIP FlexLogic[™] operand is a trip command.

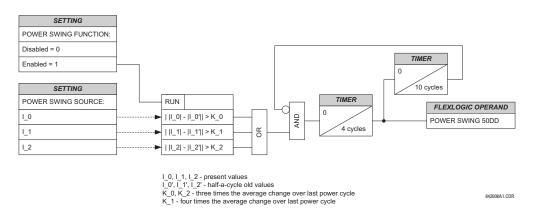
The settings for the power swing detect element are described below:

- **POWER SWING FUNCTION:** This setting enables and disables the entire power swing detection element. The setting applies to both power swing blocking and out-of-step tripping functions.
- POWER SWING SOURCE: The source setting identifies the signal source for both blocking and tripping functions.
- **POWER SWING SHAPE**: This setting selects the shapes (either "Mho" or "Quad") of the outer, middle and, inner characteristics of the power swing detect element. The operating principle is not affected. The "Mho" characteristics use the left and right blinders.
- **POWER SWING MODE:** This setting selects between the two-step and three-step operating modes and applies to both power swing blocking and out-of-step tripping functions. The three-step mode applies if there is enough space between the maximum load impedances and distance characteristics of the relay that all three (outer, middle, and inner) characteristics can be placed between the load and the distance characteristics. Whether the spans between the outer and middle as well as the middle and inner characteristics are sufficient should be determined by analysis of the fastest power swings expected in correlation with settings of the power swing timers.

The two-step mode uses only the outer and inner characteristics for both blocking and tripping functions. This leaves more space in heavily loaded systems to place two power swing characteristics between the distance characteristics and the maximum load, but allows for only one determination of the impedance trajectory.


- POWER SWING SUPV: A common overcurrent pickup level supervises all three power swing characteristics. The supervision responds to the positive sequence current.
- POWER SWING FWD REACH: This setting specifies the forward reach of all three mho characteristics and the inner quadrilateral characteristic. For a simple system consisting of a line and two equivalent sources, this reach should be higher than the sum of the line and remote source positive-sequence impedances. Detailed transient stability studies may be needed for complex systems in order to determine this setting. The angle of this reach impedance is specified by the POWER SWING FWD RCA setting.
- POWER SWING QUAD FWD REACH MID: This setting specifies the forward reach of the middle quadrilateral characteristic. The angle of this reach impedance is specified by the POWER SWING FWD RCA setting. The setting is not used if the shape setting is "Mho".
- POWER SWING QUAD FWD REACH OUT: This setting specifies the forward reach of the outer quadrilateral characteristic. The angle of this reach impedance is specified by the POWER SWING FWD RCA setting. The setting is not used if the shape setting is "Mho".
- **POWER SWING FWD RCA:** This setting specifies the angle of the forward reach impedance for the mho characteristics, angles of all the blinders, and both forward and reverse reach impedances of the quadrilateral characteristics.
- POWER SWING REV REACH: This setting specifies the reverse reach of all three mho characteristics and the inner quadrilateral characteristic. For a simple system of a line and two equivalent sources, this reach should be higher than the positive-sequence impedance of the local source. Detailed transient stability studies may be needed for complex systems to determine this setting. The angle of this reach impedance is specified by the POWER SWING REV RCA setting for "Mho", and the POWER SWING FWD RCA setting for "Quad".
- POWER SWING QUAD REV REACH MID: This setting specifies the reverse reach of the middle quadrilateral characteristic. The angle of this reach impedance is specified by the POWER SWING FWD RCA setting. The setting is not used if the shape setting is "Mho".

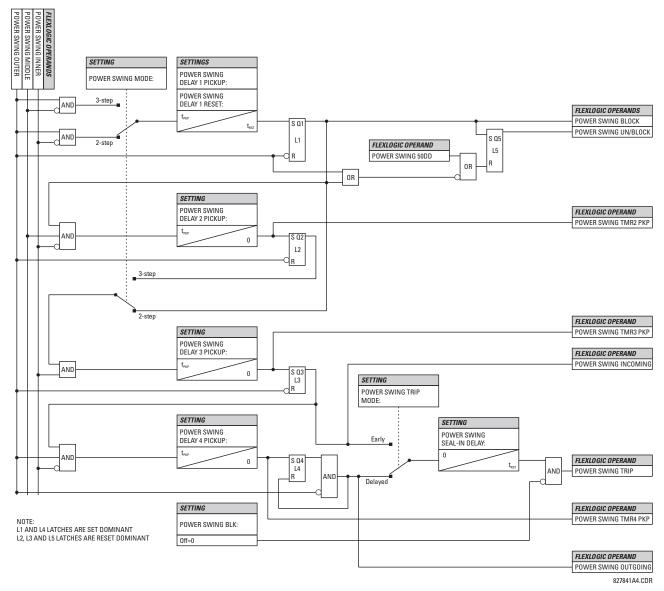
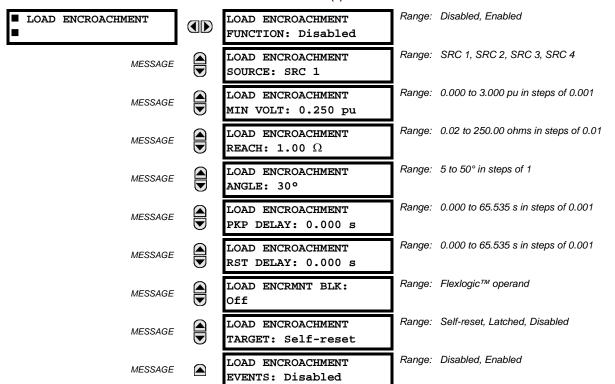
- POWER SWING QUAD REV REACH OUT: This setting specifies the reverse reach of the outer quadrilateral characteristic. The angle of this reach impedance is specified by the POWER SWING FWD RCA setting. The setting is not used if the shape setting is "Mho".
- POWER SWING REV RCA: This setting specifies the angle of the reverse reach impedance for the mho characteristics. This setting applies to mho shapes only.
- **POWER SWING OUTER LIMIT ANGLE:** This setting defines the outer power swing characteristic. The convention depicted in the *Power swing detect characteristic* diagram should be observed: values greater than 90° result in an apple-shaped characteristic; values less than 90° result in a lens shaped characteristic. This angle must be selected in consideration of the maximum expected load. If the maximum load angle is known, the outer limit angle should be coordinated with a 20° security margin. Detailed studies may be needed for complex systems to determine this setting. This setting applies to mho shapes only.
- POWER SWING MIDDLE LIMIT ANGLE: This setting defines the middle power swing detect characteristic. It is relevant only for the 3-step mode. A typical value would be close to the average of the outer and inner limit angles. This setting applies to mho shapes only.
- **POWER SWING INNER LIMIT ANGLE:** This setting defines the inner power swing detect characteristic. The inner characteristic is used by the out-of-step tripping function: beyond the inner characteristic out-of-step trip action is definite (the actual trip may be delayed as per the **TRIP MODE** setting). Therefore, this angle must be selected in consideration to the power swing angle beyond which the system becomes unstable and cannot recover.

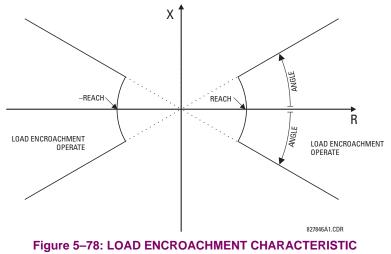

The inner characteristic is also used by the power swing blocking function in the two-step mode. In this case, set this angle large enough so that the characteristics of the distance elements are safely enclosed by the inner characteristic. This setting applies to mho shapes only.

- POWER SWING OUTER, MIDDLE, and INNER RGT BLD: These settings specify the resistive reach of the right blinder. The blinder applies to both "Mho" and "Quad" characteristics. Set these value high if no blinder is required for the "Mho" characteristic.
- POWER SWING OUTER, MIDDLE, and INNER LFT BLD: These settings specify the resistive reach of the left blinder. Enter a positive value; the relay automatically uses a negative value. The blinder applies to both "Mho" and "Quad" characteristics. Set this value high if no blinder is required for the "Mho" characteristic.
- **POWER SWING PICKUP DELAY 1:** All the coordinating timers are related to each other and should be set to detect the fastest expected power swing and produce out-of-step tripping in a secure manner. The timers should be set in consideration to the power swing detect characteristics, mode of power swing detect operation and mode of out-of-step tripping. This timer defines the interval that the impedance locus must spend between the outer and inner characteristics (two-step operating mode), or between the outer and middle characteristics (three-step operating mode) before the power swing blocking signal is established. This time delay must be set shorter than the time required for the impedance locus to travel between the two selected characteristics during the fastest expected power swing. This setting is relevant for both power swing blocking and out-of-step tripping.
- **POWER SWING RESET DELAY 1:** This setting defines the dropout delay for the power swing blocking signal. Detection of a condition requiring a block output sets latch 1 after **PICKUP DELAY 1** time. When the impedance locus leaves the outer characteristic, timer **POWER SWING RESET DELAY 1** is started. When the timer times-out the latch is reset. This setting should be selected to give extra security for the power swing blocking action.
- **POWER SWING PICKUP DELAY 2:** Controls the out-of-step tripping function in the three-step mode only. This timer defines the interval the impedance locus must spend between the middle and inner characteristics before the second step of the out-of-step tripping sequence is completed. This time delay must be set shorter than the time required for the impedance locus to travel between the two characteristics during the fastest expected power swing.
- **POWER SWING PICKUP DELAY 3:** Controls the out-of-step tripping function only. It defines the interval the impedance locus must spend within the inner characteristic before the last step of the out-of-step tripping sequence is completed and the element is armed to trip. The actual moment of tripping is controlled by the **TRIP MODE** setting. This time delay is provided for extra security before the out-of-step trip action is executed.
- **POWER SWING PICKUP DELAY 4:** Controls the out-of-step tripping function in "Delayed" trip mode only. This timer defines the interval the impedance locus must spend outside the inner characteristic but within the outer characteristic before the element is armed for the delayed trip. The delayed trip occurs when the impedance leaves the outer characteristic. This time delay is provided for extra security and should be set considering the fastest expected power swing.

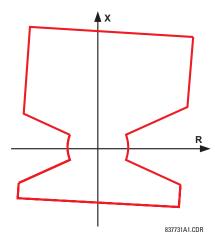
- POWER SWING SEAL-IN DELAY: The out-of-step trip FlexLogic[™] operand (POWER SWING TRIP) is sealed-in for the . specified period of time. The sealing-in is crucial in the delayed trip mode, as the original trip signal is a very short pulse occurring when the impedance locus leaves the outer characteristic after the out-of-step sequence is completed.
- POWER SWING TRIP MODE: Selection of the "Early" trip mode results in an instantaneous trip after the last step in the out-of-step tripping sequence is completed. The early trip mode will stress the circuit breakers as the currents at that moment are high (the electromotive forces of the two equivalent systems are approximately 180° apart). Selection of the "Delayed" trip mode results in a trip at the moment when the impedance locus leaves the outer characteristic. delayed trip mode will relax the operating conditions for the breakers as the currents at that moment are low. The selection should be made considering the capability of the breakers in the system.
- POWER SWING BLK: This setting specifies the FlexLogic[™] operand used for blocking the out-of-step function only. . The power swing blocking function is operational all the time as long as the element is enabled. The blocking signal resets the output POWER SWING TRIP operand but does not stop the out-of-step tripping sequence.

5 SETTINGS


Figure 5–77: POWER SWING DETECT SCHEME LOGIC (3 of 3)

5.5.7 LOAD ENCROACHMENT



PATH: SETTINGS ⇔ ⊕ GROUPED ELEMENTS ⇔ SETTING GROUP 1(6) ⇔ ⊕ LOAD ENCROACHMENT

The load encroachment element responds to the positive-sequence voltage and current and applies a characteristic shown in the figure below.

The element operates if the positive-sequence voltage is above a settable level and asserts its output signal that can be used to block selected protection elements such as distance or phase overcurrent. The following figure shows an effect of the load encroachment characteristics used to block the quadrilateral distance element.

Figure 5–79: LOAD ENCROACHMENT APPLIED TO DISTANCE ELEMENT

LOAD ENCROACHMENT MIN VOLT: This setting specifies the minimum positive-sequence voltage required for operation of the element. If the voltage is below this threshold a blocking signal will not be asserted by the element. When selecting this setting one must remember that the L90 measures the phase-to-ground sequence voltages regardless of the VT connection.

The nominal VT secondary voltage as specified with the SYSTEM SETUP ⇔ A CINPUTS ⇔ VOLTAGE BANK X5 ⇔ PHASE VT SECONDARY setting is the per-unit base for this setting.

- LOAD ENCROACHMENT REACH: This setting specifies the resistive reach of the element as shown in the Load . encroachment characteristic diagram. This setting should be entered in secondary ohms and be calculated as the positive-sequence resistance seen by the relay under maximum load conditions and unity power factor.

5

LOAD ENCROACHMENT ANGLE: This setting specifies the size of the blocking region as shown on the Load encroachment characteristic diagram and applies to the positive-sequence impedance.

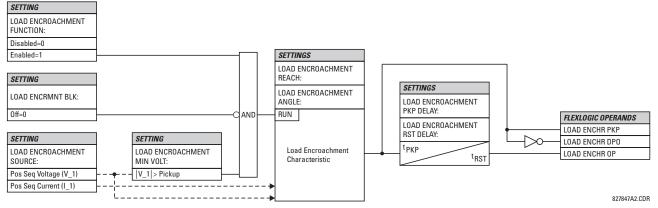


Figure 5-80: LOAD ENCROACHMENT SCHEME LOGIC

GE Multilin

5.5.8 PHASE CURRENT

a) MAIN MENU

PHASE CURRENT PHASE TOC1 See page 5-157. PHASE TOC2 MESSAGE See page 5-157. PHASE IOC1 MESSAGE See page 5-159. PHASE IOC2 MESSAGE See page 5-159. PHASE MESSAGE See page 5-160. DIRECTIONAL 1 PHASE MESSAGE See page 5-160. \square DIRECTIONAL 2

PATH: SETTINGS ⇔ ♣ GROUPED ELEMENTS ⇒ ♣ SETTING GROUP 1(6) ⇔ PHASE CURRENT

b) INVERSE TIME OVERCURRENT CHARACTERISTICS

The inverse time overcurrent curves used by the time overcurrent elements are the IEEE, IEC, GE Type IAC, and I²t standard curve shapes. This allows for simplified coordination with downstream devices.

If none of these curve shapes is adequate, FlexCurves[™] may be used to customize the inverse time curve characteristics. The definite time curve is also an option that may be appropriate if only simple protection is required.

Table 5–11: OVERCURRENT CURVE TYPES

IEEE	IEC	GE TYPE IAC	OTHER
IEEE Extremely Inverse	IEC Curve A (BS142)	IAC Extremely Inverse	l ² t
IEEE Very Inverse	IEC Curve B (BS142)	IAC Very Inverse	FlexCurves [™] A, B, C, and D
IEEE Moderately Inverse	IEC Curve C (BS142)	IAC Inverse	Recloser Curves
	IEC Short Inverse	IAC Short Inverse	Definite Time

A time dial multiplier setting allows selection of a multiple of the base curve shape (where the time dial multiplier = 1) with the curve shape (**CURVE**) setting. Unlike the electromechanical time dial equivalent, operate times are directly proportional to the time multiplier (**TD MULTIPLIER**) setting value. For example, all times for a multiplier of 10 are 10 times the multiplier 1 or base curve values. Setting the multiplier to zero results in an instantaneous response to all current levels above pickup.

Time overcurrent time calculations are made with an internal *energy capacity* memory variable. When this variable indicates that the energy capacity has reached 100%, a time overcurrent element will operate. If less than 100% energy capacity is accumulated in this variable and the current falls below the dropout threshold of 97 to 98% of the pickup value, the variable must be reduced. Two methods of this resetting operation are available: "Instantaneous" and "Timed". The "Instantaneous" selection is intended for applications with other relays, such as most static relays, which set the energy capacity directly to zero when the current falls below the reset threshold. The "Timed" selection can be used where the relay must coordinate with electromechanical relays.

IEEE CURVES:

The IEEE time overcurrent curve shapes conform to industry standards and the IEEE C37.112-1996 curve classifications for extremely, very, and moderately inverse. The IEEE curves are derived from the formulae:

$$T = TDM \times \left[\frac{A}{\left(\frac{I}{I_{pickup}}\right)^{p} - 1} + B \right], T_{RESET} = TDM \times \left[\frac{t_{r}}{1 - \left(\frac{I}{I_{pickup}}\right)^{2}} \right]$$
(EQ 5.10)

where: $T = \text{operate time (in seconds)}, TDM = \text{Multiplier setting}, I = \text{input current}, I_{pickup} = \text{Pickup Current setting}$ $A, B, p = \text{constants}, T_{RESET} = \text{reset time in seconds (assuming energy capacity is 100% and$ **RESET** $is "Timed"), <math>t_r = \text{characteristic constant}$

Table 5–12: IEEE INVERSE TIME CURVE CONSTANTS

IEEE CURVE SHAPE	Α	В	Р	T _R
IEEE Extremely Inverse	28.2	0.1217	2.0000	29.1
IEEE Very Inverse	19.61	0.491	2.0000	21.6
IEEE Moderately Inverse	0.0515	0.1140	0.02000	4.85

Table 5–13: IEEE CURVE TRIP TIMES (IN SECONDS)

MULTIPLIER					CURRENT	(I / I _{pickup})				
(TDM)	1.5	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
IEEE EXTRE	MELY INVE	RSE								
0.5	11.341	4.761	1.823	1.001	0.648	0.464	0.355	0.285	0.237	0.203
1.0	22.682	9.522	3.647	2.002	1.297	0.927	0.709	0.569	0.474	0.407
2.0	45.363	19.043	7.293	4.003	2.593	1.855	1.418	1.139	0.948	0.813
4.0	90.727	38.087	14.587	8.007	5.187	3.710	2.837	2.277	1.897	1.626
6.0	136.090	57.130	21.880	12.010	7.780	5.564	4.255	3.416	2.845	2.439
8.0	181.454	76.174	29.174	16.014	10.374	7.419	5.674	4.555	3.794	3.252
10.0	226.817	95.217	36.467	20.017	12.967	9.274	7.092	5.693	4.742	4.065
IEEE VERY I	NVERSE									
0.5	8.090	3.514	1.471	0.899	0.654	0.526	0.450	0.401	0.368	0.345
1.0	16.179	7.028	2.942	1.798	1.308	1.051	0.900	0.802	0.736	0.689
2.0	32.358	14.055	5.885	3.597	2.616	2.103	1.799	1.605	1.472	1.378
4.0	64.716	28.111	11.769	7.193	5.232	4.205	3.598	3.209	2.945	2.756
6.0	97.074	42.166	17.654	10.790	7.849	6.308	5.397	4.814	4.417	4.134
8.0	129.432	56.221	23.538	14.387	10.465	8.410	7.196	6.418	5.889	5.513
10.0	161.790	70.277	29.423	17.983	13.081	10.513	8.995	8.023	7.361	6.891
IEEE MODER	RATELY INV	ERSE								
0.5	3.220	1.902	1.216	0.973	0.844	0.763	0.706	0.663	0.630	0.603
1.0	6.439	3.803	2.432	1.946	1.688	1.526	1.412	1.327	1.260	1.207
2.0	12.878	7.606	4.864	3.892	3.377	3.051	2.823	2.653	2.521	2.414
4.0	25.756	15.213	9.729	7.783	6.753	6.102	5.647	5.307	5.041	4.827
6.0	38.634	22.819	14.593	11.675	10.130	9.153	8.470	7.960	7.562	7.241
8.0	51.512	30.426	19.458	15.567	13.507	12.204	11.294	10.614	10.083	9.654
10.0	64.390	38.032	24.322	19.458	16.883	15.255	14.117	13.267	12.604	12.068

IEC CURVES

For European applications, the relay offers three standard curves defined in IEC 255-4 and British standard BS142. These are defined as IEC Curve A, IEC Curve B, and IEC Curve C. The formulae for these curves are:

$$T = TDM \times \left[\frac{K}{\left(l/l_{pickup}\right)^{E} - 1}\right], \ T_{RESET} = TDM \times \left[\frac{t_{r}}{1 - \left(l/l_{pickup}\right)^{2}}\right]$$
(EQ 5.11)

where: T = operate time (in seconds), TDM = Multiplier setting, I = input current, $I_{pickup} = \text{Pickup Current setting}$, K, E = constants, $t_r = \text{characteristic constant}$, and $T_{RESET} = \text{reset time in seconds}$ (assuming energy capacity is 100% and **RESET** is "Timed")

Table 5–14: IEC (BS) INVERSE TIME	CURVE CONSTANTS
---------------------	----------------	------------------------

IEC (BS) CURVE SHAPE	к	E	T _R
IEC Curve A (BS142)	0.140	0.020	9.7
IEC Curve B (BS142)	13.500	1.000	43.2
IEC Curve C (BS142)	80.000	2.000	58.2
IEC Short Inverse	0.050	0.040	0.500

Table 5–15: IEC CURVE TRIP TIMES (IN SECONDS)

MULTIPLIER					CURRENT	(/ I _{pickup})				
(TDM)	1.5	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
IEC CURVE	Α									
0.05	0.860	0.501	0.315	0.249	0.214	0.192	0.176	0.165	0.156	0.149
0.10	1.719	1.003	0.630	0.498	0.428	0.384	0.353	0.330	0.312	0.297
0.20	3.439	2.006	1.260	0.996	0.856	0.767	0.706	0.659	0.623	0.594
0.40	6.878	4.012	2.521	1.992	1.712	1.535	1.411	1.319	1.247	1.188
0.60	10.317	6.017	3.781	2.988	2.568	2.302	2.117	1.978	1.870	1.782
0.80	13.755	8.023	5.042	3.984	3.424	3.070	2.822	2.637	2.493	2.376
1.00	17.194	10.029	6.302	4.980	4.280	3.837	3.528	3.297	3.116	2.971
IEC CURVE	В									
0.05	1.350	0.675	0.338	0.225	0.169	0.135	0.113	0.096	0.084	0.075
0.10	2.700	1.350	0.675	0.450	0.338	0.270	0.225	0.193	0.169	0.150
0.20	5.400	2.700	1.350	0.900	0.675	0.540	0.450	0.386	0.338	0.300
0.40	10.800	5.400	2.700	1.800	1.350	1.080	0.900	0.771	0.675	0.600
0.60	16.200	8.100	4.050	2.700	2.025	1.620	1.350	1.157	1.013	0.900
0.80	21.600	10.800	5.400	3.600	2.700	2.160	1.800	1.543	1.350	1.200
1.00	27.000	13.500	6.750	4.500	3.375	2.700	2.250	1.929	1.688	1.500
IEC CURVE	С									
0.05	3.200	1.333	0.500	0.267	0.167	0.114	0.083	0.063	0.050	0.040
0.10	6.400	2.667	1.000	0.533	0.333	0.229	0.167	0.127	0.100	0.081
0.20	12.800	5.333	2.000	1.067	0.667	0.457	0.333	0.254	0.200	0.162
0.40	25.600	10.667	4.000	2.133	1.333	0.914	0.667	0.508	0.400	0.323
0.60	38.400	16.000	6.000	3.200	2.000	1.371	1.000	0.762	0.600	0.485
0.80	51.200	21.333	8.000	4.267	2.667	1.829	1.333	1.016	0.800	0.646
1.00	64.000	26.667	10.000	5.333	3.333	2.286	1.667	1.270	1.000	0.808
IEC SHORT	TIME									
0.05	0.153	0.089	0.056	0.044	0.038	0.034	0.031	0.029	0.027	0.026
0.10	0.306	0.178	0.111	0.088	0.075	0.067	0.062	0.058	0.054	0.052
0.20	0.612	0.356	0.223	0.175	0.150	0.135	0.124	0.115	0.109	0.104
0.40	1.223	0.711	0.445	0.351	0.301	0.269	0.247	0.231	0.218	0.207
0.60	1.835	1.067	0.668	0.526	0.451	0.404	0.371	0.346	0.327	0.311
0.80	2.446	1.423	0.890	0.702	0.602	0.538	0.494	0.461	0.435	0.415
1.00	3.058	1.778	1.113	0.877	0.752	0.673	0.618	0.576	0.544	0.518

IAC CURVES:

The curves for the General Electric type IAC relay family are derived from the formulae:

$$T = \text{TDM} \times \left(A + \frac{B}{(l/l_{pkp}) - C} + \frac{D}{((l/l_{pkp}) - C)^2} + \frac{E}{((l/l_{pkp}) - C)^3} \right), \ T_{RESET} = TDM \times \left[\frac{t_r}{1 - (l/l_{pkp})^2} \right]$$
(EQ 5.12)

where: T = operate time (in seconds), TDM = Multiplier setting, I = Input current, $I_{pkp} =$ Pickup Current setting, A to E = constants, $t_r =$ characteristic constant, and $T_{RESET} =$ reset time in seconds (assuming energy capacity is 100% and **RESET** is "Timed")

IAC CURVE SHAPE	Α	В	С	D	E	T _R
IAC Extreme Inverse	0.0040	0.6379	0.6200	1.7872	0.2461	6.008
IAC Very Inverse	0.0900	0.7955	0.1000	-1.2885	7.9586	4.678
IAC Inverse	0.2078	0.8630	0.8000	-0.4180	0.1947	0.990
IAC Short Inverse	0.0428	0.0609	0.6200	-0.0010	0.0221	0.222

Table 5–16: GE TYPE IAC INVERSE TIME CURVE CONSTANTS

MULTIPLIER	CURRENT (// I _{pickup})											
(TDM)	1.5	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0		
IAC EXTREMELY INVERSE												
0.5	1.699	0.749	0.303	0.178	0.123	0.093	0.074	0.062	0.053	0.046		
1.0	3.398	1.498	0.606	0.356	0.246	0.186	0.149	0.124	0.106	0.093		
2.0	6.796	2.997	1.212	0.711	0.491	0.372	0.298	0.248	0.212	0.185		
4.0	13.591	5.993	2.423	1.422	0.983	0.744	0.595	0.495	0.424	0.370		
6.0	20.387	8.990	3.635	2.133	1.474	1.115	0.893	0.743	0.636	0.556		
8.0	27.183	11.987	4.846	2.844	1.966	1.487	1.191	0.991	0.848	0.741		
10.0	33.979	14.983	6.058	3.555	2.457	1.859	1.488	1.239	1.060	0.926		
IAC VERY INVERSE												
0.5	1.451	0.656	0.269	0.172	0.133	0.113	0.101	0.093	0.087	0.083		
1.0	2.901	1.312	0.537	0.343	0.266	0.227	0.202	0.186	0.174	0.165		
2.0	5.802	2.624	1.075	0.687	0.533	0.453	0.405	0.372	0.349	0.331		
4.0	11.605	5.248	2.150	1.374	1.065	0.906	0.810	0.745	0.698	0.662		
6.0	17.407	7.872	3.225	2.061	1.598	1.359	1.215	1.117	1.046	0.992		
8.0	23.209	10.497	4.299	2.747	2.131	1.813	1.620	1.490	1.395	1.323		
10.0	29.012	13.121	5.374	3.434	2.663	2.266	2.025	1.862	1.744	1.654		
IAC INVERS	IAC INVERSE											
0.5	0.578	0.375	0.266	0.221	0.196	0.180	0.168	0.160	0.154	0.148		
1.0	1.155	0.749	0.532	0.443	0.392	0.360	0.337	0.320	0.307	0.297		
2.0	2.310	1.499	1.064	0.885	0.784	0.719	0.674	0.640	0.614	0.594		
4.0	4.621	2.997	2.128	1.770	1.569	1.439	1.348	1.280	1.229	1.188		
6.0	6.931	4.496	3.192	2.656	2.353	2.158	2.022	1.921	1.843	1.781		
8.0	9.242	5.995	4.256	3.541	3.138	2.878	2.695	2.561	2.457	2.375		
10.0	11.552	7.494	5.320	4.426	3.922	3.597	3.369	3.201	3.072	2.969		
IAC SHORT	INVERSE											
0.5	0.072	0.047	0.035	0.031	0.028	0.027	0.026	0.026	0.025	0.025		
1.0	0.143	0.095	0.070	0.061	0.057	0.054	0.052	0.051	0.050	0.049		
2.0	0.286	0.190	0.140	0.123	0.114	0.108	0.105	0.102	0.100	0.099		
4.0	0.573	0.379	0.279	0.245	0.228	0.217	0.210	0.204	0.200	0.197		
6.0	0.859	0.569	0.419	0.368	0.341	0.325	0.314	0.307	0.301	0.296		
8.0	1.145	0.759	0.559	0.490	0.455	0.434	0.419	0.409	0.401	0.394		
10.0	1.431	0.948	0.699	0.613	0.569	0.542	0.524	0.511	0.501	0.493		

Table 5–17: IAC CURVE TRIP TIMES

5

I2t CURVES:

The curves for the I^2t are derived from the formulae:

$$T = \text{TDM} \times \left[\frac{100}{\left(\frac{I}{I_{pickup}}\right)^2}\right], \ T_{RESET} = \text{TDM} \times \left[\frac{100}{\left(\frac{I}{I_{pickup}}\right)^{-2}}\right]$$
(EQ 5.13)

where: T = Operate Time (sec.); TDM = Multiplier Setting; I = Input Current; $I_{pickup} = \text{Pickup Current Setting}$; $T_{RESET} = \text{Reset Time in sec.}$ (assuming energy capacity is 100% and RESET: Timed)

MULTIPLIER (TDM)		CURRENT (// I _{pickup})									
	1.5	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	
0.01	0.44	0.25	0.11	0.06	0.04	0.03	0.02	0.02	0.01	0.01	
0.10	4.44	2.50	1.11	0.63	0.40	0.28	0.20	0.16	0.12	0.10	
1.00	44.44	25.00	11.11	6.25	4.00	2.78	2.04	1.56	1.23	1.00	
10.00	444.44	250.00	111.11	62.50	40.00	27.78	20.41	15.63	12.35	10.00	
100.00	4444.4	2500.0	1111.1	625.00	400.00	277.78	204.08	156.25	123.46	100.00	
600.00	26666.7	15000.0	6666.7	3750.0	2400.0	1666.7	1224.5	937.50	740.74	600.00	

Table 5–18: I²T CURVE TRIP TIMES

FLEXCURVES™:

The custom FlexCurves[™] are described in detail in the FlexCurves[™] section of this chapter. The curve shapes for the FlexCurves[™] are derived from the formulae:

$$T = \text{TDM} \times \left[\text{FlexCurve Time at}\left(\frac{I}{I_{pickup}}\right)\right] \text{ when } \left(\frac{I}{I_{pickup}}\right) \ge 1.00$$
 (EQ 5.14)

$$T_{RESET} = \text{TDM} \times \left[\text{FlexCurve Time at}\left(\frac{l}{l_{pickup}}\right)\right] \text{ when } \left(\frac{l}{l_{pickup}}\right) \le 0.98$$
 (EQ 5.15)

where: T = Operate Time (sec.), TDM = Multiplier setting

I = Input Current, Ipickup = Pickup Current setting

 T_{RESET} = Reset Time in seconds (assuming energy capacity is 100% and RESET: Timed)

DEFINITE TIME CURVE:

The Definite Time curve shape operates as soon as the pickup level is exceeded for a specified period of time. The base definite time curve delay is in seconds. The curve multiplier of 0.00 to 600.00 makes this delay adjustable from instantaneous to 600.00 seconds in steps of 10 ms.

$$T = TDM$$
 in seconds, when $I > I_{pickup}$ (EQ 5.16)

$$T_{RESET} = TDM$$
 in seconds (EQ 5.17)

where: T = Operate Time (sec.), TDM = Multiplier setting

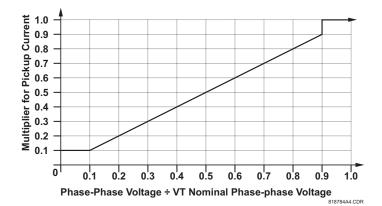
I = Input Current, *Ipickup* = Pickup Current setting

 T_{RESET} = Reset Time in seconds (assuming energy capacity is 100% and RESET: Timed)

RECLOSER CURVES:

The L90 uses the FlexCurve[™] feature to facilitate programming of 41 recloser curves. Please refer to the FlexCurve[™] section in this chapter for additional details.

c) PHASE TIME OVERCURRENT (ANSI 51P)


PATH: SETTINGS ⇔ ⊕ GROUPED ELEMENTS ⇒ SETTING GROUP 1(6) ⇒ PHASE CURRENT ⇒ PHASE TOC1(2)

PHASE TOC1	PHASE TOC1 FUNCTION: Disabled	Range:	Disabled, Enabled
MESSAGE	PHASE TOC1 SIGNAL SOURCE: SRC 1	Range:	SRC 1, SRC 2, SRC 3, SRC 4
MESSAGE	PHASE TOC1 INPUT: Phasor	Range:	Phasor, RMS
MESSAGE	PHASE TOC1 PICKUP: 1.000 pu	Range:	0.000 to 30.000 pu in steps of 0.001
MESSAGE	PHASE TOC1 CURVE: IEEE Mod Inv	Range:	See Overcurrent Curve Types table
MESSAGE	PHASE TOC1 TD MULTIPLIER: 1.00	Range:	0.00 to 600.00 in steps of 0.01
MESSAGE	PHASE TOC1 RESET: Instantaneous	Range:	Instantaneous, Timed
MESSAGE	PHASE TOC1 VOLTAGE RESTRAINT: Disabled	Range:	Disabled, Enabled
MESSAGE	PHASE TOC1 BLOCK A: Off	Range:	FlexLogic™ operand
MESSAGE	PHASE TOC1 BLOCK B: Off	Range:	FlexLogic™ operand
MESSAGE	PHASE TOC1 BLOCK C: Off	Range:	FlexLogic™ operand
MESSAGE	PHASE TOC1 TARGET: Self-reset	Range:	Self-reset, Latched, Disabled
MESSAGE	PHASE TOC1 EVENTS: Disabled	Range:	Disabled, Enabled

The phase time overcurrent element can provide a desired time-delay operating characteristic versus the applied current or be used as a simple definite time element. The phase current input quantities may be programmed as fundamental phasor magnitude or total waveform RMS magnitude as required by the application.

Two methods of resetting operation are available: "Timed" and "Instantaneous" (refer to the Inverse *Time overcurrent curves characteristic* sub-section earlier for details on curve setup, trip times, and reset operation). When the element is blocked, the time accumulator will reset according to the reset characteristic. For example, if the element reset characteristic is set to "Instantaneous" and the element is blocked, the time accumulator will be cleared immediately.

The **PHASE TOC1 PICKUP** setting can be dynamically reduced by a voltage restraint feature (when enabled). This is accomplished via the multipliers (Mvr) corresponding to the phase-phase voltages of the voltage restraint characteristic curve (see the figure below); the pickup level is calculated as 'Mvr' times the **PHASE TOC1 PICKUP** setting. If the voltage restraint feature is disabled, the pickup level always remains at the setting value.

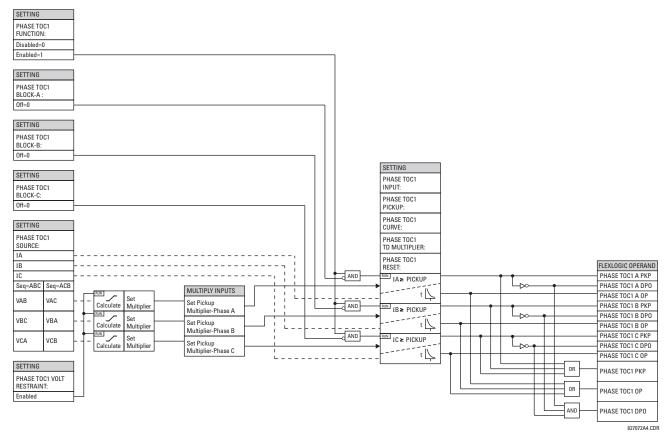
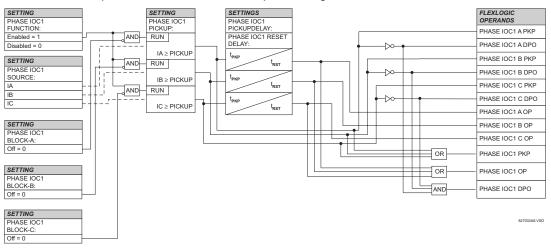


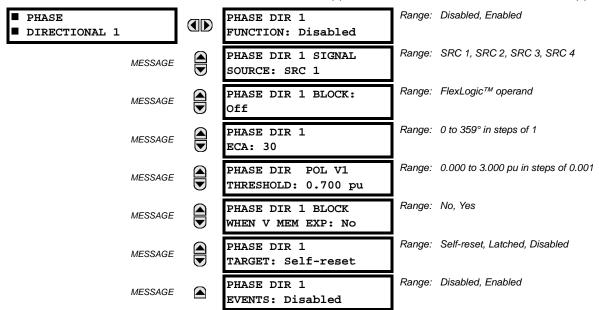
Figure 5-82: PHASE TIME OVERCURRENT 1 SCHEME LOGIC

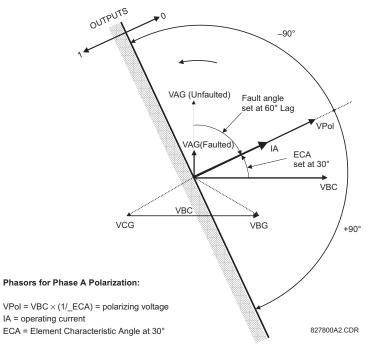

5 SETTINGS

d) PHASE INSTANTANEOUS OVERCURRENT (ANSI 50P)

PATH: SETTINGS ⇔ ♣ GROUPED ELEMENTS ⇒ SETTING GROUP 1(6) ⇒ PHASE CURRENT ⇒ PHASE IOC 1(2)

PHASE IOC1	PHASE IOC1 FUNCTION: Disabled	Range:	Disabled, Enabled
MESSAGE	PHASE IOC1 SIGNAL SOURCE: SRC 1	Range:	SRC 1, SRC 2, SRC 3, SRC 4
MESSAGE	PHASE IOC1 PICKUP: 1.000 pu	Range:	0.000 to 30.000 pu in steps of 0.001
MESSAGE	PHASE IOC1 PICKUP DELAY: 0.00 s	Range:	0.00 to 600.00 s in steps of 0.01
MESSAGE	PHASE IOC1 RESET DELAY: 0.00 s	Range:	0.00 to 600.00 s in steps of 0.01
MESSAGE	PHASE IOC1 BLOCK A: Off	Range:	FlexLogic™ operand
MESSAGE	PHASE IOC1 BLOCK B: Off	Range:	FlexLogic™ operand
MESSAGE	PHASE IOC1 BLOCK C: Off	Range:	FlexLogic™ operand
MESSAGE	PHASE IOC1 TARGET: Self-reset	Range:	Self-reset, Latched, Disabled
MESSAGE	PHASE IOC1 EVENTS: Disabled	Range:	Disabled, Enabled


The phase instantaneous overcurrent element may be used as an instantaneous element with no intentional delay or as a definite time element. The input current is the fundamental phasor magnitude.



e) PHASE DIRECTIONAL OVERCURRENT (ANSI 67P)

PATH: SETTINGS ⇔ ♣ GROUPED ELEMENTS ⇔ SETTING GROUP 1(6) ⇔ PHASE CURRENT ⇔ PHASE DIRECTIONAL 1(2)

The phase directional elements (one for each of phases A, B, and C) determine the phase current flow direction for steady state and fault conditions and can be used to control the operation of the phase overcurrent elements via the **BLOCK** inputs of these elements.

Figure 5–84: PHASE A DIRECTIONAL POLARIZATION

This element is intended to apply a block signal to an overcurrent element to prevent an operation when current is flowing in a particular direction. The direction of current flow is determined by measuring the phase angle between the current from the phase CTs and the line-line voltage from the VTs, based on the 90° or quadrature connection. If there is a requirement to supervise overcurrent elements for flows in opposite directions, such as can happen through a bus-tie breaker, two phase directional elements should be programmed with opposite element characteristic angle (ECA) settings.

To increase security for three phase faults very close to the VTs used to measure the polarizing voltage, a voltage memory feature is incorporated. This feature stores the polarizing voltage the moment before the voltage collapses, and uses it to determine direction. The voltage memory remains valid for one second after the voltage has collapsed.

The main component of the phase directional element is the phase angle comparator with two inputs: the operating signal (phase current) and the polarizing signal (the line voltage, shifted in the leading direction by the characteristic angle, ECA).

PHASE	OPERATING	POLARIZING SIGNAL V _{pol}			
	SIGNAL	ABC PHASE SEQUENCE	ACB PHASE SEQUENCE		
A	angle of IA	angle of VBC \times (1 \angle ECA)	angle of VCB \times (1 \angle ECA)		
В	angle of IB	angle of VCA \times (1 \angle ECA)	angle of VAC \times 1 \angle ECA)		
С	angle of IC	angle of VAB \times (1 \angle ECA)	angle of VBA × (1 \angle ECA)		

The following table shows the operating and polarizing signals used for phase directional control:

MODE OF OPERATION:

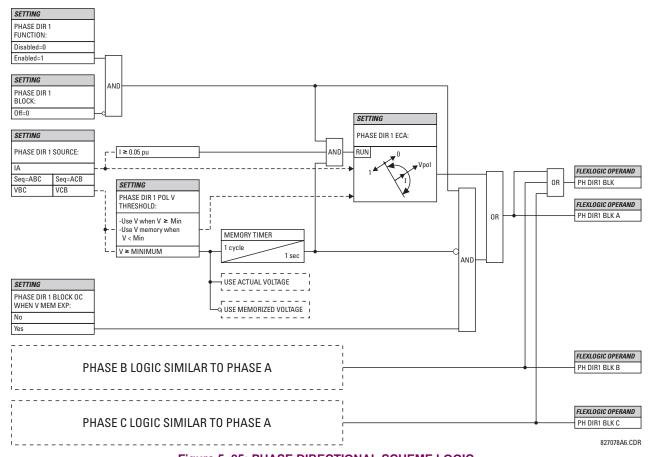
- When the function is "Disabled", or the operating current is below 5% × CT nominal, the element output is "0".
- When the function is "Enabled", the operating current is above 5% × CT nominal, and the polarizing voltage is above the **PRODUCT SETUP** ⇒ ⊕ **DISPLAY PROPERTIES** ⇒ ⊕ **VOLTAGE CUT-OFF LEVEL** value, the element output is dependent on the phase angle between the operating and polarizing signals:
 - The element output is logic "0" when the operating current is within polarizing voltage ±90°.
 - For all other angles, the element output is logic "1".
- Once the voltage memory has expired, the phase overcurrent elements under directional control can be set to block or trip on overcurrent as follows:
 - When **BLOCK WHEN V MEM EXP** is set to "Yes", the directional element will block the operation of any phase overcurrent element under directional control when voltage memory expires.
 - When BLOCK WHEN V MEM EXP is set to "No", the directional element allows tripping of phase overcurrent elements under directional control when voltage memory expires.

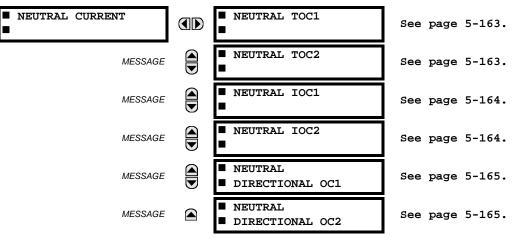
In all cases, directional blocking will be permitted to resume when the polarizing voltage becomes greater than the 'polarizing voltage threshold'.

SETTINGS:

- **PHASE DIR 1 SIGNAL SOURCE:** This setting is used to select the source for the operating and polarizing signals. The operating current for the phase directional element is the phase current for the selected current source. The polarizing voltage is the line voltage from the phase VTs, based on the 90° or 'quadrature' connection and shifted in the leading direction by the element characteristic angle (ECA).
- **PHASE DIR 1 ECA:** This setting is used to select the element characteristic angle, i.e. the angle by which the polarizing voltage is shifted in the leading direction to achieve dependable operation. In the design of the UR-series elements, a block is applied to an element by asserting logic 1 at the blocking input. This element should be programmed via the ECA setting so that the output is **logic 1 for current in the non-tripping direction**.
- PHASE DIR 1 POL V THRESHOLD: This setting is used to establish the minimum level of voltage for which the phase angle measurement is reliable. The setting is based on VT accuracy. The default value is "0.700 pu".
- PHASE DIR 1 BLOCK WHEN V MEM EXP: This setting is used to select the required operation upon expiration of
 voltage memory. When set to "Yes", the directional element blocks the operation of any phase overcurrent element
 under directional control, when voltage memory expires; when set to "No", the directional element allows tripping of
 phase overcurrent elements under directional control.

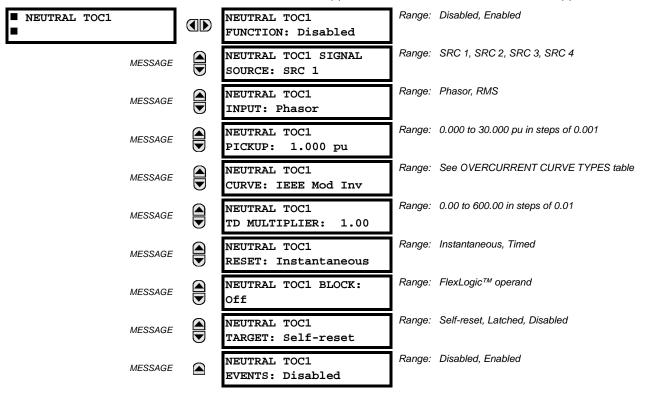
The phase directional element responds to the forward load current. In the case of a following reverse fault, the element needs some time – in the order of 8 ms – to establish a blocking signal. Some protection elements such as instantaneous overcurrent may respond to reverse faults before the blocking signal is established. Therefore, a coordination time of at least 10 ms must be added to all the instantaneous protection elements under the supervision of the phase directional element. If current reversal is of a concern, a longer delay – in the order of 20 ms – may be needed.




Figure 5–85: PHASE DIRECTIONAL SCHEME LOGIC

5.5.9 NEUTRAL CURRENT

a) MAIN MENU


5

PATH: SETTINGS \Rightarrow \bigcirc GROUPED ELEMENTS \Rightarrow \bigcirc SETTING GROUP 1(6) \Rightarrow NEUTRAL CURRENT

b) NEUTRAL TIME OVERCURRENT (ANSI 51N)

PATH: SETTINGS ⇔ ♣ GROUPED ELEMENTS ⇔ SETTING GROUP 1(6) ⇔ ♣ NEUTRAL CURRENT ⇔ NEUTRAL TOC1(2)

The neutral time overcurrent element can provide a desired time-delay operating characteristic versus the applied current or be used as a simple definite time element. The neutral current input value is a quantity calculated as 3lo from the phase currents and may be programmed as fundamental phasor magnitude or total waveform RMS magnitude as required by the application.

Two methods of resetting operation are available: "Timed" and "Instantaneous" (refer to the *Inverse time overcurrent curve characteristics* section for details on curve setup, trip times and reset operation). When the element is blocked, the time accumulator will reset according to the reset characteristic. For example, if the element reset characteristic is set to "Instantaneous" and the element is blocked, the time accumulator will be cleared immediately.

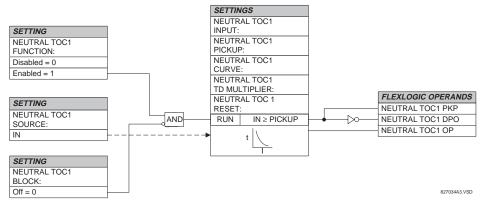
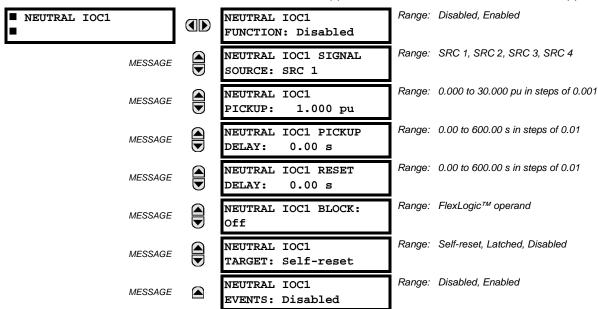
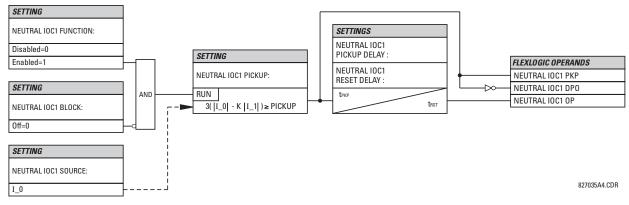



Figure 5–86: NEUTRAL TIME OVERCURRENT 1 SCHEME LOGIC

c) NEUTRAL INSTANTANEOUS OVERCURRENT (ANSI 50N)

PATH: SETTINGS ⇔ ♣ GROUPED ELEMENTS ⇒ SETTING GROUP 1(6) ⇔ ♣ NEUTRAL CURRENT ⇔ ♣ NEUTRAL IOC1(2)


The neutral instantaneous overcurrent element may be used as an instantaneous function with no intentional delay or as a definite time function. The element essentially responds to the magnitude of a neutral current fundamental frequency phasor calculated from the phase currents. A positive-sequence restraint is applied for better performance. A small portion (6.25%) of the positive-sequence current magnitude is subtracted from the zero-sequence current magnitude when forming the operating quantity of the element as follows:

$$I_{op} = 3 \times (|I_0| - K \cdot |I_1|)$$
 where $K = 1/16$ (EQ 5.18)

The positive-sequence restraint allows for more sensitive settings by counterbalancing spurious zero-sequence currents resulting from:

- System unbalances under heavy load conditions
- Transformation errors of current transformers (CTs) during double-line and three-phase faults.
- Switch-off transients during double-line and three-phase faults.

The positive-sequence restraint must be considered when testing for pickup accuracy and response time (multiple of pickup). The operating quantity depends on how test currents are injected into the relay (single-phase injection: $I_{op} = 0.9375 \cdot I_{iniected}$; three-phase pure zero-sequence injection: $I_{op} = 3 \times I_{iniected}$).

Figure 5–87: NEUTRAL IOC1 SCHEME LOGIC

5-164

d) NEUTRAL DIRECTIONAL OVERCURRENT (ANSI 67N)

PATH: SETTINGS ⇔ ♣ GROUPED ELEMENTS ⇔ SETTING GROUP 1(6) ⇔ NEUTRAL CURRENT ⇔ ♣ NEUTRAL DIRECTIONAL OC1(2)

NEUTRALDIRECTIONAL OC1	NEUTRAL DIR OC1 FUNCTION: Disabled	Range:	Disabled, Enabled
MESSAGE	NEUTRAL DIR OC1 SOURCE: SRC 1	Range:	SRC 1, SRC 2, SRC 3, SRC 4
MESSAGE	NEUTRAL DIR OC1 POLARIZING: Voltage	Range:	Voltage, Current, Dual
MESSAGE	NEUTRAL DIR OC1 POL VOLT: Calculated V0	Range:	Calculated V0, Measured VX
MESSAGE	NEUTRAL DIR OC1 OP CURR: Calculated 310	Range:	Calculated 310, Measured IG
MESSAGE	NEUTRAL DIR OC1 POS- SEQ RESTRAINT: 0.063	Range:	0.000 to 0.500 in steps of 0.001
MESSAGE	NEUTRAL DIR OC1 OFFSET: 0.00 Ω	Range:	0.00 to 250.00 $arOmega$ in steps of 0.01
MESSAGE	NEUTRAL DIR OC1 FWD ECA: 75° Lag	Range:	–90 to 90° in steps of 1
MESSAGE	NEUTRAL DIR OC1 FWD LIMIT ANGLE: 90°	Range:	40 to 90° in steps of 1
MESSAGE	NEUTRAL DIR OC1 FWD PICKUP: 0.050 pu	Range:	0.002 to 30.000 pu in steps of 0.001
MESSAGE	NEUTRAL DIR OC1 REV LIMIT ANGLE: 90°	Range:	40 to 90° in steps of 1
MESSAGE	NEUTRAL DIR OC1 REV PICKUP: 0.050 pu	Range:	0.002 to 30.000 pu in steps of 0.001
MESSAGE	NEUTRAL DIR OC1 BLK: Off	Range:	FlexLogic™ operand
MESSAGE	NEUTRAL DIR OC1 TARGET: Self-reset	Range:	Self-reset, Latched, Disabled
MESSAGE	NEUTRAL DIR OC1 EVENTS: Disabled	Range:	Disabled, Enabled

There are two neutral directional overcurrent protection elements available. The element provides both forward and reverse fault direction indications the NEUTRAL DIR OC1 FWD and NEUTRAL DIR OC1 REV operands, respectively. The output operand is asserted if the magnitude of the operating current is above a pickup level (overcurrent unit) and the fault direction is seen as *forward* or *reverse*, respectively (directional unit).

The **overcurrent unit** responds to the magnitude of a fundamental frequency phasor of the either the neutral current calculated from the phase currents or the ground current. There are separate pickup settings for the forward-looking and reverse-looking functions. If set to use the calculated 3I_0, the element applies a *positive-sequence restraint* for better performance: a small user-programmable portion of the positive-sequence current magnitude is subtracted from the zero-sequence current magnitude when forming the operating quantity.

$$I_{op} = 3 \times (|I_0| - K \times |I_1|)$$
 (EQ 5.19)

The positive-sequence restraint allows for more sensitive settings by counterbalancing spurious zero-sequence currents resulting from:

• System unbalances under heavy load conditions.

- Transformation errors of current transformers (CTs) during double-line and three-phase faults.
- Switch-off transients during double-line and three-phase faults.

The positive-sequence restraint must be considered when testing for pickup accuracy and response time (multiple of pickup). The operating quantity depends on the way the test currents are injected into the relay (single-phase injection: $I_{op} = (1 - K) \times I_{injected}$; three-phase pure zero-sequence injection: $I_{op} = 3 \times I_{injected}$).

The positive-sequence restraint is removed for low currents. If the positive-sequence current is below 0.8 pu, the restraint is removed by changing the constant K to zero. This facilitates better response to high-resistance faults when the unbalance is very small and there is no danger of excessive CT errors as the current is low.

The **directional unit** uses the zero-sequence current (I_0) or ground current (IG) for fault direction discrimination and may be programmed to use either zero-sequence voltage ("Calculated V0" or "Measured VX"), ground current (IG), or both for polarizing. The following tables define the neutral directional overcurrent element.

	DIRE			
POLARIZING MODE	DIRECTION	COMPARED	PHASORS	OVERCORRENTONIT
Voltage	Forward	$-V_0 + Z_offset \times I_0$	I_0 × 1∠ECA	
vollage	Reverse	$-V_0 + Z_offset \times I_0$	–I_0 × 1∠ECA	
Current	Forward	IG	I_0	
Current	Reverse	IG	-l_0	
		$-V_0 + Z_offset \times I_0$	$I_0 \times 1 \angle ECA$	$I_{op} = 3 \times (I_0 - K \times I_1)$ if $ I_1 > 0.8$ pu
	Forward	C	or	$I_{op} = 3 \times (I_0)$ if $ I_1 \le 0.8$ pu
Dual		IG	I_0	
Duai		$-V_0 + Z_offset \times I_0$	–I_0 × 1∠ECA	
	Reverse	C	or	
		IG	-I_0	

Table 5–19: QUANTITIES FOR "CALCULATED 3I0" CONFIGURATION

Table 5–20: QUANTITIES FOR "MEASURED IG" CONFIGURATION

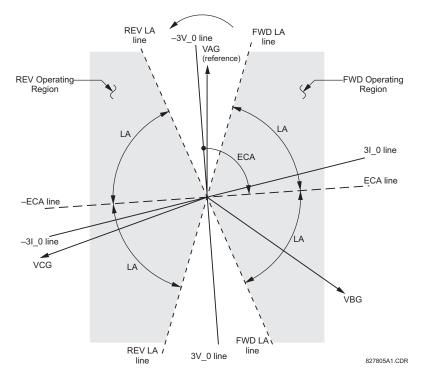
	OVERCURRENT UNIT			
POLARIZING MODE	DIRECTION	COMPARED	OVERCORRENT ONT	
Voltage	Forward	$-V_0 + Z_{offset} \times IG/3$ IG $\times 1 \angle ECA$		I _{op} = IG
vollage	Reverse	$-V_0 + Z_offset \times IG/3$	$-IG \times 1 \angle ECA$	

where: $V_0 = \frac{1}{3}(VAG + VBG + VCG) = \text{zero sequence voltage}$,

$$I_0 = \frac{1}{3}IN = \frac{1}{3}(IA + IB + IC) = \text{zero sequence current},$$

ECA = element characteristic angle and IG = ground current

When **NEUTRAL DIR OC1 POL VOLT** is set to "Measured VX", one-third of this voltage is used in place of V_0. The following figure explains the usage of the voltage polarized directional unit of the element.


The figure below shows the voltage-polarized phase angle comparator characteristics for a phase A to ground fault, with:

- ECA = 90° (element characteristic angle = centerline of operating characteristic)
- FWD LA = 80° (forward limit angle = the ± angular limit with the ECA for operation)
- REV LA = 80° (reverse limit angle = the ± angular limit with the ECA for operation)

The element incorporates a current reversal logic: if the reverse direction is indicated for at least 1.25 of a power system cycle, the prospective forward indication will be delayed by 1.5 of a power system cycle. The element is designed to emulate an electromechanical directional device. Larger operating and polarizing signals will result in faster directional discrimination bringing more security to the element operation.

The forward-looking function is designed to be more secure as compared to the reverse-looking function, and therefore, should be used for the tripping direction. The reverse-looking function is designed to be faster as compared to the forward-looking function and should be used for the blocking direction. This allows for better protection coordination.

The above bias should be taken into account when using the neutral directional overcurrent element to directionalize other protection elements.

Figure 5-88: NEUTRAL DIRECTIONAL VOLTAGE-POLARIZED CHARACTERISTICS

- **NEUTRAL DIR OC1 POLARIZING:** This setting selects the polarizing mode for the directional unit.
 - If "Voltage" polarizing is selected, the element uses the zero-sequence voltage angle for polarization. The user
 can use either the zero-sequence voltage V_0 calculated from the phase voltages, or the zero-sequence voltage
 supplied externally as the auxiliary voltage Vx, both from the NEUTRAL DIR OC1 SOURCE.

The calculated V_0 can be used as polarizing voltage only if the voltage transformers are connected in Wye. The auxiliary voltage can be used as the polarizing voltage provided **SYSTEM SETUP** \Rightarrow **AC INPUTS** \Rightarrow **UNILIARY VT CONNECTION** is set to "Vn" and the auxiliary voltage is connected to a zero-sequence voltage source (such as open delta connected secondary of VTs).

The zero-sequence (V_0) or auxiliary voltage (Vx), accordingly, must be higher than the **PRODUCT SETUP** \Rightarrow UIS-**PLAY PROPERTIES** \Rightarrow **VOLTAGE CUT-OFF LEVEL** value to be validated for use as a polarizing signal. If the polarizing signal is invalid, neither forward nor reverse indication is given.

If "Current" polarizing is selected, the element uses the ground current angle connected externally and configured under NEUTRAL OC1 SOURCE for polarization. The ground CT must be connected between the ground and neutral point of an adequate local source of ground current. The ground current must be higher than 0.05 pu to be validated as a polarizing signal. If the polarizing signal is not valid, neither forward nor reverse indication is given.

For a choice of current polarizing, it is recommended that the polarizing signal be analyzed to ensure that a known direction is maintained irrespective of the fault location. For example, if using an autotransformer neutral current as a polarizing source, it should be ensured that a reversal of the ground current does not occur for a high-side fault. The low-side system impedance should be assumed minimal when checking for this condition. A similar situation arises for a wye/delta/wye transformer, where current in one transformer winding neutral may reverse when faults on both sides of the transformer are considered.

- If "Dual" polarizing is selected, the element performs both directional comparisons as described above. A given
 direction is confirmed if either voltage or current comparators indicate so. If a conflicting (simultaneous forward
 and reverse) indication occurs, the forward direction overrides the reverse direction.
- **NEUTRAL DIR OC1 POL VOLT:** Selects the polarizing voltage used by the directional unit when "Voltage" or "Dual" polarizing mode is set. The polarizing voltage can be programmed to be either the zero-sequence voltage calculated from the phase voltages ("Calculated V0") or supplied externally as an auxiliary voltage ("Measured VX").
- NEUTRAL DIR OC1 OP CURR: This setting indicates whether the 3I_0 current calculated from the phase currents, or the ground current shall be used by this protection. This setting acts as a switch between the neutral and ground modes of operation (67N and 67G). If set to "Calculated 3I0" the element uses the phase currents and applies the positive-sequence restraint; if set to "Measured IG" the element uses ground current supplied to the ground CT of the CT bank configured as NEUTRAL DIR OC1 SOURCE. If this setting is "Measured IG", then the NEUTRAL DIR OC1 POLARIZING setting must be "Voltage", as it is not possible to use the ground current as an operating and polarizing signal simultaneously.
- NEUTRAL DIR OC1 POS-SEQ RESTRAINT: This setting controls the amount of the positive-sequence restraint. Set to 0.063 for backward compatibility with firmware revision 3.40 and older. Set to zero to remove the restraint. Set higher if large system unbalances or poor CT performance are expected.
- NEUTRAL DIR OC1 OFFSET: This setting specifies the offset impedance used by this protection. The primary application for the offset impedance is to guarantee correct identification of fault direction on series compensated lines. In regular applications, the offset impedance ensures proper operation even if the zero-sequence voltage at the relaying point is very small. If this is the intent, the offset impedance shall not be larger than the zero-sequence impedance of the protected circuit. Practically, it shall be several times smaller. The offset impedance shall be entered in secondary ohms.

See chapter 8 for additional details and chapter 9 for information on how to calculate this setting

- NEUTRAL DIR OC1 FWD ECA: This setting defines the characteristic angle (ECA) for the forward direction in the "Voltage" polarizing mode. The "Current" polarizing mode uses a fixed ECA of 0°. The ECA in the reverse direction is the angle set for the forward direction shifted by 180°.
 - NEUTRAL DIR OC1 FWD LIMIT ANGLE: This setting defines a symmetrical (in both directions from the ECA) limit
 angle for the forward direction.
 - NEUTRAL DIR OC1 FWD PICKUP: This setting defines the pickup level for the overcurrent unit of the element in the forward direction. When selecting this setting it must be kept in mind that the design uses a 'positive-sequence restraint' technique for the "Calculated 310" mode of operation.
 - **NEUTRAL DIR OC1 REV LIMIT ANGLE:** This setting defines a symmetrical (in both directions from the ECA) limit angle for the reverse direction.
 - **NEUTRAL DIR OC1 REV PICKUP:** This setting defines the pickup level for the overcurrent unit of the element in the reverse direction. When selecting this setting it must be kept in mind that the design uses a *positive-sequence restraint* technique for the "Calculated 310" mode of operation.

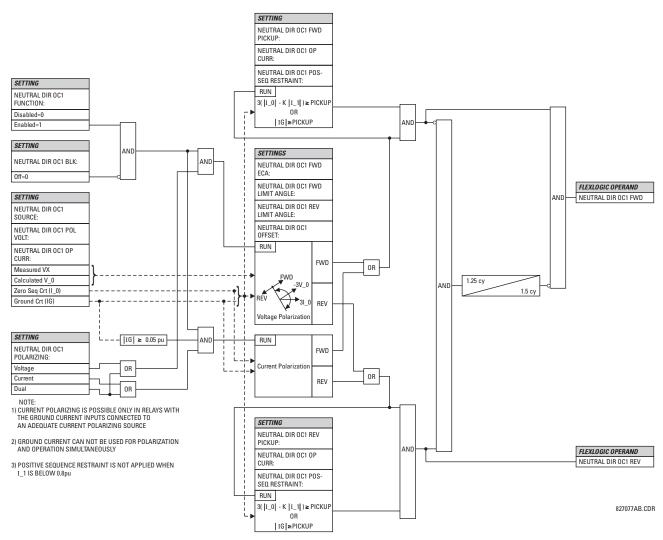


Figure 5–89: NEUTRAL DIRECTIONAL OVERCURRENT LOGIC

5.5.10 WATTMETRIC GROUND FAULT

a) WATTMETRIC ZERO-SEQUENCE DIRECTIONAL (ANSI 32N)

PATH: SETTINGS ⇔ ♣ GROUPED ELEMENTS ⇔ SETTING GROUP 1(6) ⇔ WATTMETRIC... ⇔ ♣ WATTMETRIC GROUND FAULT 1(2)

WATTMETRICGROUND FAULT 1	WATTMETRIC GND FLT 1 FUNCTION: Disabled	Range: Disabled, Enabled
MESSAGE	WATTMETRIC GND FLT 1 SOURCE: SRC 1	Range: SRC 1, SRC 2, SRC 3, SRC 4
MESSAGE	WATTMETRIC GND FLT 1 VOLT: Calculated VN	Range: Calculated VN, Measured VX
MESSAGE	WATTMETRIC GND FLT 1 OV PKP: 0.20 pu	Range: 0.02 to 3.00 pu in steps of 0.01
MESSAGE	WATTMETRIC GND FLT 1 CURR: Calculated IN	Range: Calculated IN, Measured IG
MESSAGE	WATTMETRIC GND FLT 1 OC PKP: 0.060 pu	Range: 0.002 to 30.000 pu in steps of 0.001
MESSAGE	WATTMETRIC GND FLT 1 OC PKP DEL: 0.20 s	Range: 0.00 to 600.00 s in steps of 0.01
MESSAGE	WATTMETRIC GND FLT 1 PWR PKP: 0.100 pu	Range: 0.001 to 1.200 pu in steps of 0.001
MESSAGE	WATTMETRIC GND FLT 1 REF PWR: 0.500 pu	Range: 0.001 to 1.200 pu in steps of 0.001
MESSAGE	WATTMETRIC GND FLT 1 ECA: 0° Lag	Range: 0 to 360° Lag in steps of 1
MESSAGE	WATTMETRIC GND FLT 1 PWR PKP DEL: 0.20 s	Range: 0.00 to 600.00 s in steps of 0.01
MESSAGE	WATTMETRIC GND FLT 1 CURVE: Definite Time	Range: Definite Time, Inverse, FlexCurves A through D
MESSAGE	WATTMETRIC GND FLT 1 MULTIPLIER: 1.00 s	Range: 0.01 to 2.00 s in steps of 0.01
MESSAGE	WATT GND FLT 1 BLK: Off	Range: FlexLogic™ operand
MESSAGE	WATTMETRIC GND FLT 1 TARGET: Self-reset	Range: Self-reset, Latched, Disabled
MESSAGE	WATTMETRIC GND FLT 1 EVENTS: Disabled	Range: Disabled, Enabled

The wattmetric zero-sequence directional element responds to power derived from zero-sequence voltage and current in a direction specified by the element characteristic angle. The angle can be set within all four quadrants and the power can be active or reactive. Therefore, the element may be used to sense either forward or reverse ground faults in either inductive, capacitive or resistive networks. The inverse time characteristic allows time coordination of elements across the network.

Typical applications include ground fault protection in solidly grounded transmission networks, grounded/ungrounded/resistor-grounded/resonant-grounded distribution networks, or for directionalizing other non-directional ground elements.

 WATTMETRIC GND FLT 1 VOLT: The element uses neutral voltage (that is, three times the zero-sequence voltage). This setting allows selecting between the internally calculated neutral voltage, or externally supplied voltage (broken delta VT connected to the auxiliary channel bank of the relay). When the latter selection is made, the auxiliary channel must be identified by the user as a neutral voltage under the VT bank settings. This element will operate only if the auxiliary voltage is configured as neutral. WATTMETRIC GND FLT 1 CURR: The element responds to the neutral current (that is, three times zero-sequence current), either calculated internally from the phase currents or supplied externally via the ground CT input from more accurate sources such as the core balanced CT. This setting allows selecting the source of the operating current.

neutral voltage, 1 pu is the nominal phase to ground voltage as per the VT bank settings.

- WATTMETRIC GND FLT 1 OC PKP: This setting specifies the current supervision level for the measurement of the zero-sequence power.
- WATTMETRIC GND FLT 1 OC PKP DEL: This setting specifies delay for the overcurrent portion of this element. The delay applies to the WATTMETRIC 1 PKP operand driven from the overcurrent condition.
- WATTMETRIC GND FLT 1 PWR PKP: This setting specifies the operating point of the element. A value of 1 pu is a
 product of the 1 pu voltage as specified for the overvoltage condition of this element, and 1 pu current as specified for
 the overcurrent condition of this element.
- WATTMETRIC GND FLT 1 REF PWR: This setting is used to calculate the inverse time characteristic delay (defined by S_{ref} in the following equations). A value of 1 pu represents the product of a 1 pu voltage (as specified in the overvoltage condition for this element) and a 1 pu current (as specified in the overcurrent condition for this element.
- WATTMETRIC GND FLT 1 ECA: This setting adjusts the maximum torque angle of the element. The operating power is calculated as:

$$S_{op} = \operatorname{Re}(V_{n}(I_{n} \times 1 \angle \text{ECA})^{*})$$
(EQ

where * indicates complex conjugate. By varying the element characteristic angle (ECA), the element can be made to respond to forward or reverse direction in inductive, resistive, or capacitive networks as shown in the *Wattmetric characteristic angle response* diagram.

- WATTMETRIC GND FLT 1 PWR PKP DEL: This setting defines a definite time delay before the inverse time characteristic is activated. If the curve selection is set as "Definite Time", the element would operate after this security time delay. If the curve selection is "Inverse" or one of the FlexCurves, the element uses both the definite and inverse time timers simultaneously. The definite time timer, specified by this setting, is used and when expires it releases the inverse time timer for operation (torque control).
- WATTMETRIC GND FLT 1 CURVE: This setting allows choosing one of three methods to delay operate signal once all conditions are met to discriminate fault direction.

The "Definite Time" selection allows for a fixed time delay defined by the WATTMETRIC GND FLT 1 PWR PKP DEL setting.

The "Inverse" selection allows for inverse time characteristics delay defined by the following formula:

$$t = m \times \frac{S_{ref}}{S_{op}}$$
(EQ 5.21)

where *m* is a multiplier defined by the multiplier setting, S_{ref} is the multiplier setting, and S_{op} is the operating power at the time. This timer starts after the definite time timer expires.

The four FlexCurves allow for custom user-programmable time characteristics. When working with FlexCurves, the element uses the operate to pickup ratio, and the multiplier setting is not applied:

L90 Line Current Differential System

$$t = \text{FlexCurve}\left(\frac{S_{op}}{S_{ref}}\right)$$
(EQ 5.22)

Again, the FlexCurve timer starts after the definite time timer expires.

EQ 5.20)

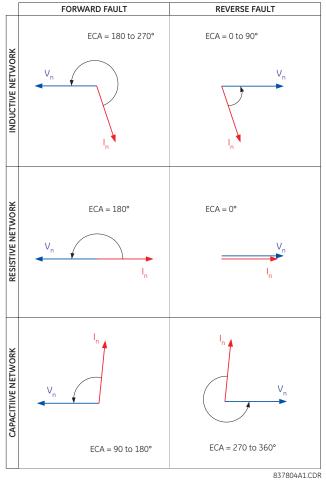


Figure 5–90: WATTMETRIC CHARACTERISTIC ANGLE RESPONSE

• WATTMETRIC GND FLT 1 MULTIPLIER: This setting is applicable if WATTMETRIC GND FLT 1 CURVE above is selected to Inverse and defines the multiplier factor for the inverse time delay.

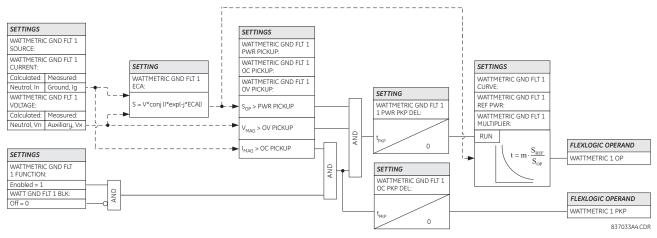
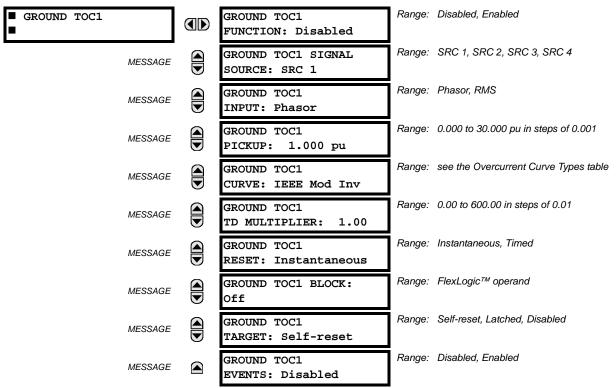



Figure 5–91: WATTMETRIC ZERO-SEQUENCE DIRECTIONAL LOGIC

5.5.11 GROUND CURRENT

a) GROUND TIME OVERCURRENT (ANSI 51G)

PATH: SETTINGS ⇔ ♣ GROUPED ELEMENTS ⇔ SETTING GROUP 1(6) ⇔ ♣ GROUND CURRENT ⇔ GROUND TOC1(2)

This element can provide a desired time-delay operating characteristic versus the applied current or be used as a simple definite time element. The ground current input value is the quantity measured by the ground input CT and is the fundamental phasor or RMS magnitude. Two methods of resetting operation are available: "Timed" and "Instantaneous" (refer to the *Inverse time overcurrent curve characteristics* section for details). When the element is blocked, the time accumulator will reset according to the reset characteristic. For example, if the element reset characteristic is set to "Instantaneous" and the element is blocked, the time accumulator will be cleared immediately.

These elements measure the current that is connected to the ground channel of a CT/VT module. The conversion range of a standard channel is from 0.02 to 46 times the CT rating.

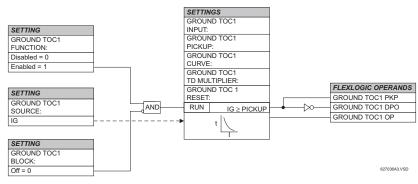
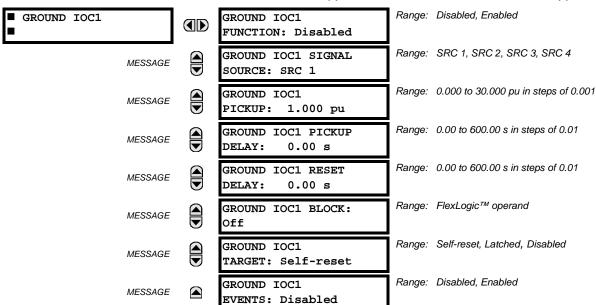



Figure 5–92: GROUND TOC1 SCHEME LOGIC

b) GROUND INSTANTANEOUS OVERCURRENT (ANSI 50G)

PATH: SETTINGS ⇔ ♣ GROUPED ELEMENTS ⇔ SETTING GROUP 1(6) ⇔ ♣ GROUND CURRENT ⇔ ♣ GROUND IOC1(2)

The ground instantaneous overcurrent element may be used as an instantaneous element with no intentional delay or as a definite time element. The ground current input is the quantity measured by the ground input CT and is the fundamental phasor magnitude.

5

These elements measure the current that is connected to the ground channel of a CT/VT module. The conversion range of a standard channel is from 0.02 to 46 times the CT rating.

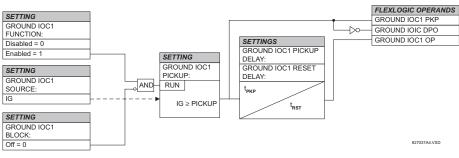
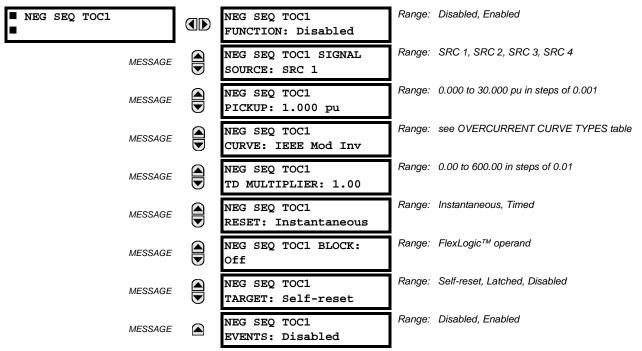



Figure 5–93: GROUND IOC1 SCHEME LOGIC

5.5.12 NEGATIVE SEQUENCE CURRENT

a) NEGATIVE SEQUENCE TIME OVERCURRENT (ANSI 51_2)

PATH: SETTINGS ♣ GROUPED ELEMENTS ⇔♣ SETTING GROUP 1(6) ⇔♣ NEGATIVE SEQUENCE CURRENT ⇔ NEG SEQ TOC1(2)

The negative-sequence time overcurrent element may be used to determine and clear unbalance in the system. The input for calculating negative-sequence current is the fundamental phasor value.

Two methods of resetting operation are available; "Timed" and "Instantaneous" (refer to the *Inverse Time Overcurrent Characteristics* sub-section for details on curve setup, trip times and reset operation). When the element is blocked, the time accumulator will reset according to the reset characteristic. For example, if the element reset characteristic is set to "Instantaneous" and the element is blocked, the time accumulator will be cleared immediately.

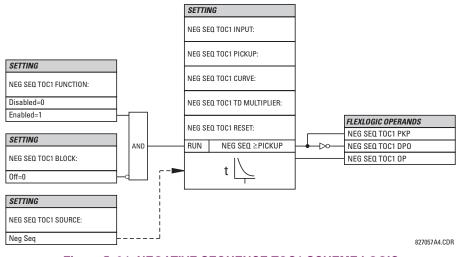
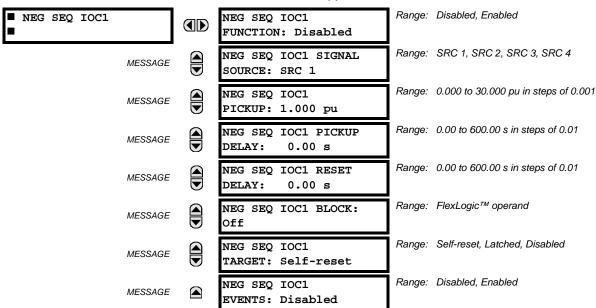



Figure 5–94: NEGATIVE SEQUENCE TOC1 SCHEME LOGIC

b) NEGATIVE SEQUENCE INSTANTANEOUS OVERCURRENT (ANSI 50_2)

PATH: SETTINGS ⇔ ♣ GROUPED ELEMENTS ⇒ SETTING GROUP 1(6) ⇔ ♣ NEGATIVE SEQUENCE CURRENT ⇔ ♣ NEG SEQ OC1(2)

The negative-sequence instantaneous overcurrent element may be used as an instantaneous function with no intentional delay or as a definite time function. The element responds to the negative-sequence current fundamental frequency phasor magnitude (calculated from the phase currents) and applies a positive-sequence restraint for better performance: a small portion (12.5%) of the positive-sequence current magnitude is subtracted from the negative-sequence current magnitude when forming the operating quantity:

$$V_{op} = |I_2| - K \cdot |I_1|$$
 where $K = 1/8$ (EQ 5.23)

The positive-sequence restraint allows for more sensitive settings by counterbalancing spurious negative-sequence currents resulting from:

- system unbalances under heavy load conditions
- transformation errors of current transformers (CTs) during three-phase faults
- fault inception and switch-off transients during three-phase faults

The positive-sequence restraint must be considered when testing for pickup accuracy and response time (multiple of pickup). The operating quantity depends on the way the test currents are injected into the relay (single-phase injection: $I_{op} = 0.2917 \cdot I_{injected}$; three-phase injection, opposite rotation: $I_{op} = I_{injected}$).

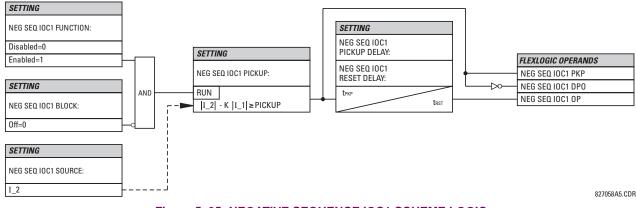


Figure 5–95: NEGATIVE SEQUENCE IOC1 SCHEME LOGIC

c) NEGATIVE SEQUENCE DIRECTIONAL OVERCURRENT (ANSI 67_2)

PATH: SETTINGS ⇔ ♣ GROUPED ELEMENTS ⇔ SETTING GROUP 1(6) ⇔ ♣ NEGATIVE SEQUENCE CURRENT ⇔ ♣ NEG SEQ DIR OC1(2)

■ NEG SEQ DIR OC1	NEG SEQ DIR OC1 FUNCTION: Disabled	Range: Disabled, Enabled
MESSAGE	NEG SEQ DIR OC1 SOURCE: SRC 1	Range: SRC 1, SRC 2, SRC 3, SRC 4
MESSAGE	NEG SEQ DIR OC1 OFFSET: 0.00 Ω	Range: 0.00 to 250.00 ohms in steps of 0.01
MESSAGE	NEG SEQ DIR OC1 TYPE: Neg Sequence	Range: Neg Sequence, Zero Sequence
MESSAGE	NEG SEQ DIR OC1 POS- SEQ RESTRAINT: 0.063	Range: 0.000 to 0.500 in steps of 0.001
MESSAGE	NEG SEQ DIR OC1 FWD ECA: 75° Lag	Range: 0 to 90° Lag in steps of 1
MESSAGE	NEG SEQ DIR OC1 FWD LIMIT ANGLE: 90°	Range: 40 to 90° in steps of 1
MESSAGE	NEG SEQ DIR OC1 FWD PICKUP: 0.050 pu	Range: 0.015 to 30.000 pu in steps of 0.001
MESSAGE	NEG SEQ DIR OC1 REV LIMIT ANGLE: 90°	Range: 40 to 90° in steps of 1
MESSAGE	NEG SEQ DIR OC1 REV PICKUP: 0.050 pu	Range: 0.015 to 30.000 pu in steps of 0.001
MESSAGE	NEG SEQ DIR OC1 BLK: Off	Range: FlexLogic™ operand
MESSAGE	NEG SEQ DIR OC1 TARGET: Self-reset	Range: Self-reset, Latched, Disabled
MESSAGE	NEG SEQ DIR OC1 EVENTS: Disabled	Range: Disabled, Enabled

There are two negative-sequence directional overcurrent protection elements available. The element provides both forward and reverse fault direction indications through its output operands NEG SEQ DIR OC1 FWD and NEG SEQ DIR OC1 REV, respectively. The output operand is asserted if the magnitude of the operating current is above a pickup level (overcurrent unit) and the fault direction is seen as forward or reverse, respectively (directional unit).

The overcurrent unit of the element essentially responds to the magnitude of a fundamental frequency phasor of either the negative-sequence or zero-sequence current as per user selection. The zero-sequence current should not be mistaken with the neutral current (factor 3 difference).

A positive-sequence restraint is applied for better performance: a small user-programmable portion of the positivesequence current magnitude is subtracted from the negative or zero-sequence current magnitude, respectively, when forming the element operating quantity.

$$I_{op} = |I_2| - K \times |I_1|$$
 or $I_{op} = |I_0| - K \times |I_1|$ (EQ 5.24)

The positive-sequence restraint allows for more sensitive settings by counterbalancing spurious negative and zerosequence currents resulting from:

- System unbalances under heavy load conditions. .
- Transformation errors of current transformers (CTs).
- Fault inception and switch-off transients.

5.5 GROUPED ELEMENTS

The positive-sequence restraint must be considered when testing for pick-up accuracy and response time (multiple of pickup). The operating quantity depends on the way the test currents are injected into the relay:

- Single-phase injection: $I_{op} = 1/3 \times (1 K) \times I_{injected}$.
- Three-phase pure zero- or negative-sequence injection, respectively: Iop = Iinjected.
- The directional unit uses the negative-sequence current and voltage for fault direction discrimination.

The following table defines the negative-sequence directional overcurrent element.

OVERC	URRENT UNIT	DIRECTIONAL UNIT				
MODE	OPERATING CURRENT	DIRECTION	COMPARED PHASORS			
Negative-sequence	$I_{op} = I_2 - K \times I_1 $	Forward	$-V_2 + Z_offset \times I_2$	I_2×1∠ECA		
		Reverse	$-V_2 + Z_offset \times I_2$	–(I_2 × 1∠ECA)		
Zero-sequence	$I_{op} = I_0 - K \times I_1 $	Forward	$-V_2 + Z_offset \times I_2$	I_2×1∠ECA		
		Reverse	$-V_2 + Z_offset \times I_2$	–(I_2 × 1∠ECA)		

The negative-sequence voltage must be higher than the **PRODUCT SETUP** \Rightarrow \bigcirc **DISPLAY PROPERTIES** \Rightarrow \bigcirc **VOLTAGE CUT-OFF LEVEL** value to be validated for use as a polarizing signal. If the polarizing signal is not validated neither forward nor reverse indication is given. The following figure explains the usage of the voltage polarized directional unit of the element.

The figure below shows the phase angle comparator characteristics for a phase A to ground fault, with settings of:

- ECA = 75° (element characteristic angle = centerline of operating characteristic)
- FWD LA = 80° (forward limit angle = \pm the angular limit with the ECA for operation)

REV LA = 80° (reverse limit angle = \pm the angular limit with the ECA for operation)

The element incorporates a current reversal logic: if the reverse direction is indicated for at least 1.25 of a power system cycle, the prospective forward indication will be delayed by 1.5 of a power system cycle. The element is designed to emulate an electromechanical directional device. Larger operating and polarizing signals will result in faster directional discrimination bringing more security to the element operation.

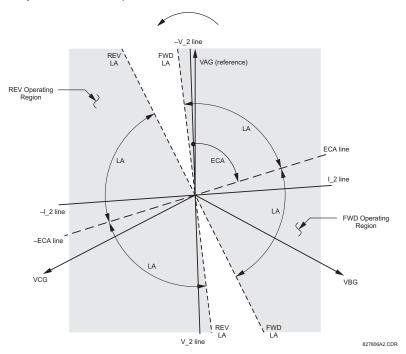


Figure 5–96: NEGATIVE-SEQUENCE DIRECTIONAL CHARACTERISTIC

The forward-looking function is designed to be more secure as compared to the reverse-looking function, and therefore should be used for the tripping direction. The reverse-looking function is designed to be faster as compared to the forward-looking function and should be used for the blocking direction. This allows for better protection coordination. The above bias should be taken into account when using the negative-sequence directional overcurrent element to directionalize other protection elements.

- NEG SEQ DIR OC1 OFFSET: This setting specifies the offset impedance used by this protection. The primary application for the offset impedance is to guarantee correct identification of fault direction on series compensated lines (see the *Application of settings* chapter for information on how to calculate this setting). In regular applications, the offset impedance ensures proper operation even if the negative-sequence voltage at the relaying point is very small. If this is the intent, the offset impedance shall not be larger than the negative-sequence impedance of the protected circuit. Practically, it shall be several times smaller. The offset impedance shall be entered in secondary ohms. See the *Theory of operation* chapter for additional details.
- NEG SEQ DIR OC1 TYPE: This setting selects the operating mode for the overcurrent unit of the element. The
 choices are "Neg Sequence" and "Zero Sequence". In some applications it is advantageous to use a directional negative-sequence overcurrent function instead of a directional zero-sequence overcurrent function as inter-circuit mutual
 effects are minimized.
- NEG SEQ DIR OC1 POS-SEQ RESTRAINT: This setting controls the amount of the positive-sequence restraint. Set to 0.063 (in "Zero Sequence" mode) or 0.125 (in "Neg Sequence" mode) for backward compatibility with revisions 3.40 and earlier. Set to zero to remove the restraint. Set higher if large system unbalances or poor CT performance are expected.
- **NEG SEQ DIR OC1 FWD ECA:** This setting select the element characteristic angle (ECA) for the forward direction. The element characteristic angle in the reverse direction is the angle set for the forward direction shifted by 180°.
- **NEG SEQ DIR OC1 FWD LIMIT ANGLE:** This setting defines a symmetrical (in both directions from the ECA) limit angle for the forward direction.
- NEG SEQ DIR OC1 FWD PICKUP: This setting defines the pickup level for the overcurrent unit in the forward direction. Upon NEG SEQ DIR OC1 TYPE selection, this pickup threshold applies to zero- or negative-sequence current. When selecting this setting it must be kept in mind that the design uses a *positive-sequence restraint* technique.
- NEG SEQ DIR OC1 REV LIMIT ANGLE: This setting defines a symmetrical (in both directions from the ECA) limit
 angle for the reverse direction.
- NEG SEQ DIR OC1 REV PICKUP: This setting defines the pickup level for the overcurrent unit in the reverse direction. Upon NEG SEQ DIR OC1 TYPE selection, this pickup threshold applies to zero- or negative-sequence current. When selecting this setting it must be kept in mind that the design uses a *positive-sequence restraint* technique.

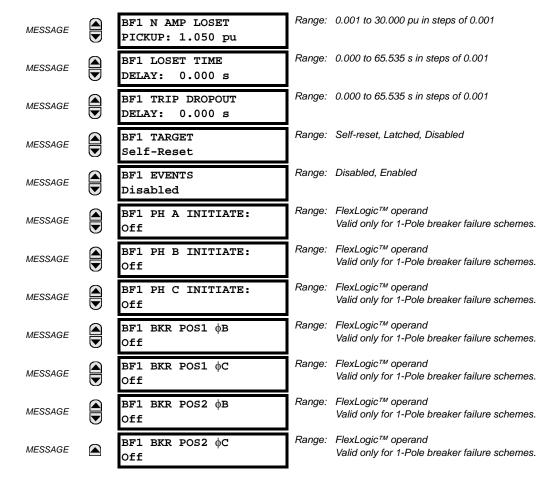


Figure 5–97: NEGATIVE SEQUENCE DIRECTIONAL OC1 SCHEME LOGIC

5.5.13 BREAKER FAILURE

BREAKER FAILURE 1	BF1 FUNCTION: Disabled	Range:	Disabled, Enabled
MESSAGE	BF1 MODE: 3-Pole	Range:	3-Pole, 1-Pole
MESSAGE	BF1 SOURCE: SRC 1	Range:	SRC 1, SRC 2, SRC 3, SRC 4
MESSAGE	BF1 USE AMP SUPV: Yes	Range:	Yes, No
MESSAGE	BF1 USE SEAL-IN: Yes	Range:	Yes, No
MESSAGE	BF1 3-POLE INITIATE: Off	Range:	FlexLogic™ operand
MESSAGE	BF1 BLOCK: Off	Range:	FlexLogic™ operand
MESSAGE	BF1 PH AMP SUPV PICKUP: 1.050 pu	Range:	0.001 to 30.000 pu in steps of 0.001
MESSAGE	BF1 N AMP SUPV PICKUP: 1.050 pu	Range:	0.001 to 30.000 pu in steps of 0.001
MESSAGE	BF1 USE TIMER 1: Yes	Range:	Yes, No
MESSAGE	BF1 TIMER 1 PICKUP DELAY: 0.000 s	Range:	0.000 to 65.535 s in steps of 0.001
MESSAGE	BF1 USE TIMER 2: Yes	Range:	Yes, No
MESSAGE	BF1 TIMER 2 PICKUP DELAY: 0.000 s	Range:	0.000 to 65.535 s in steps of 0.001
MESSAGE	BF1 USE TIMER 3: Yes	Range:	Yes, No
MESSAGE	BF1 TIMER 3 PICKUP DELAY: 0.000 s	Range:	0.000 to 65.535 s in steps of 0.001
MESSAGE	BF1 BKR POS1 ¢A/3P: Off	Range:	FlexLogic™ operand
MESSAGE	BF1 BKR POS2 ¢A/3P: Off	Range:	FlexLogic™ operand
MESSAGE	BF1 BREAKER TEST ON: Off	Range:	FlexLogic™ operand
MESSAGE	BF1 PH AMP HISET PICKUP: 1.050 pu	Range:	0.001 to 30.000 pu in steps of 0.001
MESSAGE	BF1 N AMP HISET PICKUP: 1.050 pu	Range:	0.001 to 30.000 pu in steps of 0.001
MESSAGE	BF1 PH AMP LOSET PICKUP: 1.050 pu	Range:	0.001 to 30.000 pu in steps of 0.001

PATH: SETTINGS \Rightarrow \bigcirc GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6) \Rightarrow \bigcirc BREAKER FAILURE \Rightarrow BREAKER FAILURE 1(4)

In general, a breaker failure scheme determines that a breaker signaled to trip has not cleared a fault within a definite time, so further tripping action must be performed. Tripping from the breaker failure scheme should trip all breakers, both local and remote, that can supply current to the faulted zone. Usually operation of a breaker failure element will cause clearing of a larger section of the power system than the initial trip. Because breaker failure can result in tripping a large number of breakers and this affects system safety and stability, a very high level of security is required.

Two schemes are provided: one for three-pole tripping only (identified by the name "3BF") and one for three pole plus single-pole operation (identified by the name "1BF"). The philosophy used in these schemes is identical. The operation of a breaker failure element includes three stages: initiation, determination of a breaker failure condition, and output.

INITIATION STAGE:

A FlexLogic[™] operand representing the protection trip signal initially sent to the breaker must be selected to initiate the scheme. The initiating signal should be sealed-in if primary fault detection can reset before the breaker failure timers have finished timing. The seal-in is supervised by current level, so it is reset when the fault is cleared. If desired, an incomplete sequence seal-in reset can be implemented by using the initiating operand to also initiate a FlexLogic[™] timer, set longer than any breaker failure timer, whose output operand is selected to block the breaker failure scheme.

For the L90 relay, the protection trip signal initially sent to the breaker is already programmed as a trip output. The protection trip signal does not include other breaker commands that are not indicative of a fault in the protected zone.

Schemes can be initiated either directly or with current level supervision. It is particularly important in any application to decide if a current-supervised initiate is to be used. The use of a current-supervised initiate results in the breaker failure element not being initiated for a breaker that has very little or no current flowing through it, which may be the case for transformer faults. For those situations where it is required to maintain breaker fail coverage for fault levels below the **BF1 PH AMP SUPV PICKUP** or the **BF1 N AMP SUPV PICKUP** setting, a current supervised initiate should *not* be used. This feature should be utilized for those situations where coordinating margins may be reduced when high speed reclosing is used. Thus, if this choice is made, fault levels must always be above the supervision pickup levels for dependable operation of

the breaker fail scheme. This can also occur in breaker-and-a-half or ring bus configurations where the first breaker closes into a fault; the protection trips and attempts to initiate breaker failure for the second breaker, which is in the process of closing, but does not yet have current flowing through it.

When the scheme is initiated, it immediately sends a trip signal to the breaker initially signaled to trip (this feature is usually described as re-trip). This reduces the possibility of widespread tripping that results from a declaration of a failed breaker.

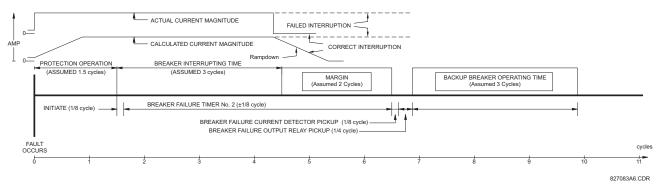
DETERMINATION OF A BREAKER FAILURE CONDITION:

The schemes determine a breaker failure condition via three *paths*. Each of these paths is equipped with a time delay, after which a failed breaker is declared and trip signals are sent to all breakers required to clear the zone. The delayed paths are associated with breaker failure timers 1, 2, and 3, which are intended to have delays increasing with increasing timer numbers. These delayed paths are individually enabled to allow for maximum flexibility.

Timer 1 logic (early path) is supervised by a fast-operating breaker auxiliary contact. If the breaker is still closed (as indicated by the auxiliary contact) and fault current is detected after the delay interval, an output is issued. Operation of the breaker auxiliary switch indicates that the breaker has mechanically operated. The continued presence of current indicates that the breaker has failed to interrupt the circuit.

Timer 2 logic (main path) is not supervised by a breaker auxiliary contact. If fault current is detected after the delay interval, an output is issued. This path is intended to detect a breaker that opens mechanically but fails to interrupt fault current; the logic therefore does not use a breaker auxiliary contact.

The timer 1 and 2 paths provide two levels of current supervision, high-set and low-set, that allow the supervision level to change from a current which flows before a breaker inserts an opening resistor into the faulted circuit to a lower level after resistor insertion. The high-set detector is enabled after timeout of timer 1 or 2, along with a timer that will enable the low-set detector after its delay interval. The delay interval between high-set and low-set is the expected breaker opening time. Both current detectors provide a fast operating time for currents at small multiples of the pickup value. The overcurrent detectors are required to operate after the breaker failure delay interval to eliminate the need for very fast resetting overcurrent detectors.


Timer 3 logic (slow path) is supervised by a breaker auxiliary contact and a control switch contact used to indicate that the breaker is in or out-of-service, disabling this path when the breaker is out-of-service for maintenance. There is no current level check in this logic as it is intended to detect low magnitude faults and it is therefore the slowest to operate.

OUTPUT:

The outputs from the schemes are:

- FlexLogic[™] operands that report on the operation of portions of the scheme
- FlexLogic[™] operand used to re-trip the protected breaker
- FlexLogic[™] operands that initiate tripping required to clear the faulted zone. The trip output can be sealed-in for an adjustable period.
- Target message indicating a failed breaker has been declared
- Illumination of the faceplate Trip LED (and the Phase A, B or C LED, if applicable)

MAIN PATH SEQUENCE:

Figure 5–98: BREAKER FAILURE MAIN PATH SEQUENCE

The current supervision elements reset in less than 0.7 of a power cycle for any multiple of pickup current as shown below.

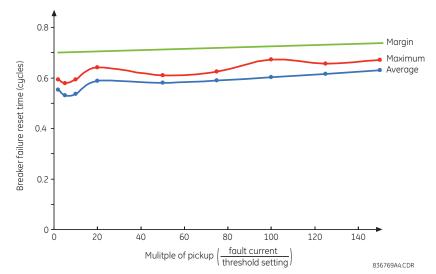


Figure 5–99: BREAKER FAILURE OVERCURRENT SUPERVISION RESET TIME

SETTINGS:

- BF1 MODE: This setting is used to select the breaker failure operating mode: single or three pole.
- BF1 USE AMP SUPV: If set to "Yes", the element will only be initiated if current flowing through the breaker is above the supervision pickup level.
- BF1 USE SEAL-IN: If set to "Yes", the element will only be sealed-in if current flowing through the breaker is above the supervision pickup level.
- BF1 3-POLE INITIATE: This setting selects the FlexLogic[™] operand that will initiate three-pole tripping of the breaker.
- BF1 PH AMP SUPV PICKUP: This setting is used to set the phase current initiation and seal-in supervision level. Generally this setting should detect the lowest expected fault current on the protected breaker. It can be set as low as necessary (lower than breaker resistor current or lower than load current) – high-set and low-set current supervision will guarantee correct operation.
- **BF1 N AMP SUPV PICKUP:** This setting is used to set the neutral current initiate and seal-in supervision level. Generally this setting should detect the lowest expected fault current on the protected breaker. Neutral current supervision is used only in the three phase scheme to provide increased sensitivity. This setting is valid only for three-pole tripping schemes.
- BF1 USE TIMER 1: If set to "Yes", the early path is operational.
- **BF1 TIMER 1 PICKUP DELAY:** Timer 1 is set to the shortest time required for breaker auxiliary contact Status-1 to open, from the time the initial trip signal is applied to the breaker trip circuit, plus a safety margin.
- **BF1 USE TIMER 2:** If set to "Yes", the main path is operational.
- **BF1 TIMER 2 PICKUP DELAY:** Timer 2 is set to the expected opening time of the breaker, plus a safety margin. This safety margin was historically intended to allow for measuring and timing errors in the breaker failure scheme equipment. In microprocessor relays this time is not significant. In L90 relays, which use a Fourier transform, the calculated current magnitude will ramp-down to zero one power frequency cycle after the current is interrupted, and this lag should be included in the overall margin duration, as it occurs after current interruption. The *Breaker failure main path sequence* diagram below shows a margin of two cycles; this interval is considered the minimum appropriate for most applications.

Note that in bulk oil circuit breakers, the interrupting time for currents less than 25% of the interrupting rating can be significantly longer than the normal interrupting time.

- BF1 USE TIMER 3: If set to "Yes", the Slow Path is operational.
- **BF1 TIMER 3 PICKUP DELAY:** Timer 3 is set to the same interval as timer 2, plus an increased safety margin. Because this path is intended to operate only for low level faults, the delay can be in the order of 300 to 500 ms.

5.5 GROUPED ELEMENTS

- BF1 BKR POS2 \$\operall A/3P\$: This setting selects the FlexLogic[™] operand that represents the breaker normal-type auxiliary switch contact (52/a). When using the single-pole breaker failure scheme, this operand represents the protected breaker auxiliary switch contact on pole A. This may be a multiplied contact.
- **BF1 BREAKER TEST ON:** This setting is used to select the FlexLogic[™] operand that represents the breaker in-service/out-of-service switch set to the out-of-service position.
- **BF1 PH AMP HISET PICKUP:** This setting sets the phase current output supervision level. Generally this setting should detect the lowest expected fault current on the protected breaker, before a breaker opening resistor is inserted.
- BF1 N AMP HISET PICKUP: This setting sets the neutral current output supervision level. Generally this setting should detect the lowest expected fault current on the protected breaker, before a breaker opening resistor is inserted. Neutral current supervision is used only in the three pole scheme to provide increased sensitivity. *This setting is valid only for three-pole breaker failure schemes.*
- **BF1 PH AMP LOSET PICKUP:** This setting sets the phase current output supervision level. Generally this setting should detect the lowest expected fault current on the protected breaker, after a breaker opening resistor is inserted (approximately 90% of the resistor current).
- **BF1 N AMP LOSET PICKUP:** This setting sets the neutral current output supervision level. Generally this setting should detect the lowest expected fault current on the protected breaker, after a breaker opening resistor is inserted (approximately 90% of the resistor current). *This setting is valid only for three-pole breaker failure schemes*.
- BF1 LOSET TIME DELAY: Sets the pickup delay for current detection after opening resistor insertion.
- BF1 TRIP DROPOUT DELAY: This setting is used to set the period of time for which the trip output is sealed-in. This
 timer must be coordinated with the automatic reclosing scheme of the failed breaker, to which the breaker failure element sends a cancel reclosure signal. Reclosure of a remote breaker can also be prevented by holding a transfer trip
 signal on longer than the reclaim time.
- BF1 PH A INITIATE / BF1 PH B INITIATE / BF 1 PH C INITIATE: These settings select the FlexLogic[™] operand to initiate phase A, B, or C single-pole tripping of the breaker and the phase A, B, or C portion of the scheme, accordingly. *This setting is only valid for single-pole breaker failure schemes*.
- BF1 BKR POS1 \(\phi B / BF1 BKR POS 1 \(\phi C: These settings select the FlexLogic[™] operand to represents the protected breaker early-type auxiliary switch contact on poles B or C, accordingly. This contact is normally a non-multiplied Form-A contact. The contact may even be adjusted to have the shortest possible operating time. This setting is valid only for single-pole breaker failure schemes.
- BF1 BKR POS2 ¢C: This setting selects the FlexLogic[™] operand that represents the protected breaker normal-type auxiliary switch contact on pole C (52/a). This may be a multiplied contact. For single-pole operation, the scheme has the same overall general concept except that it provides re-tripping of each single pole of the protected breaker. The approach shown in the following single pole tripping diagram uses the initiating information to determine which pole is supposed to trip. The logic is segregated on a per-pole basis. The overcurrent detectors have ganged settings. *This setting is valid only for single-pole breaker failure schemes*.

Upon operation of the breaker failure element for a single pole trip command, a three-pole trip command should be given via output operand BKR FAIL 1 TRIP OP.

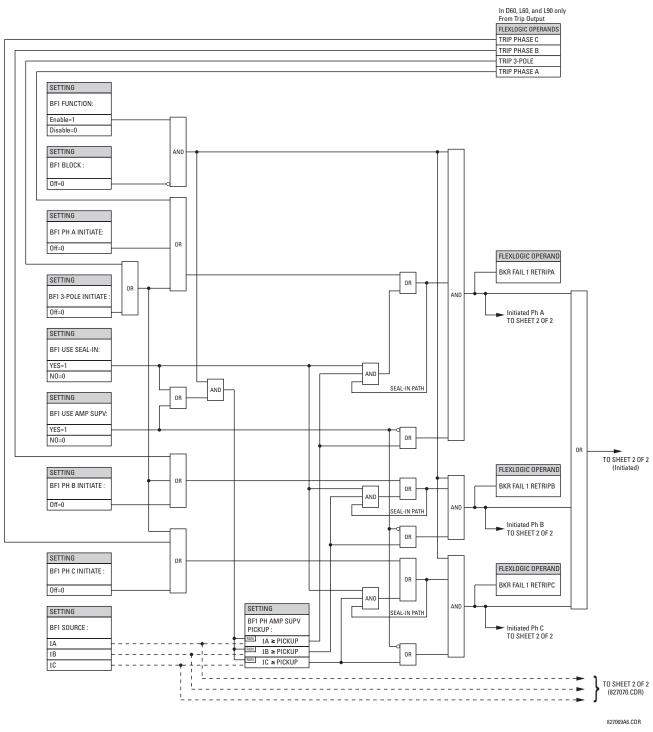


Figure 5–100: BREAKER FAILURE 1-POLE [INITIATE] (Sheet 1 of 2)

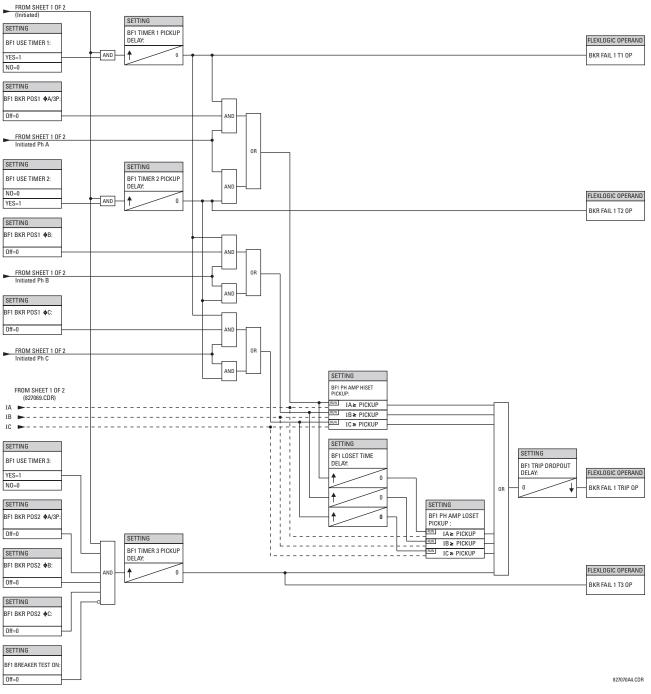
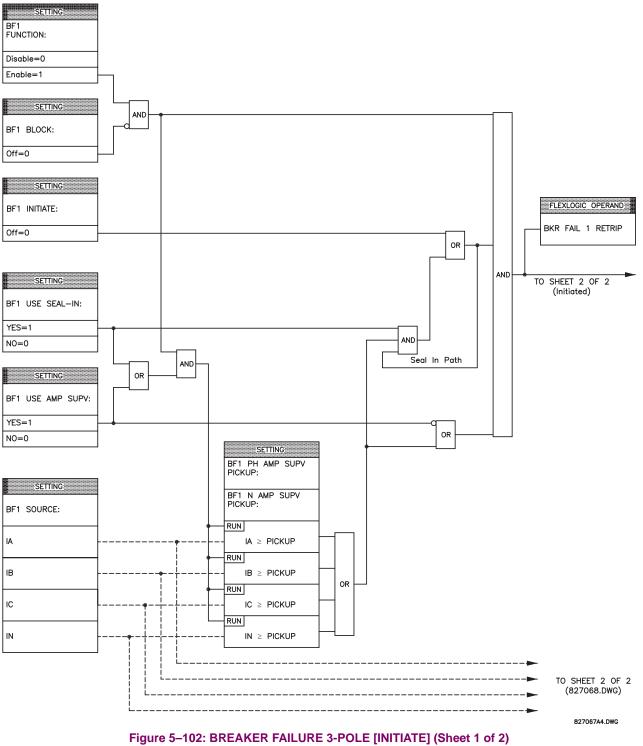
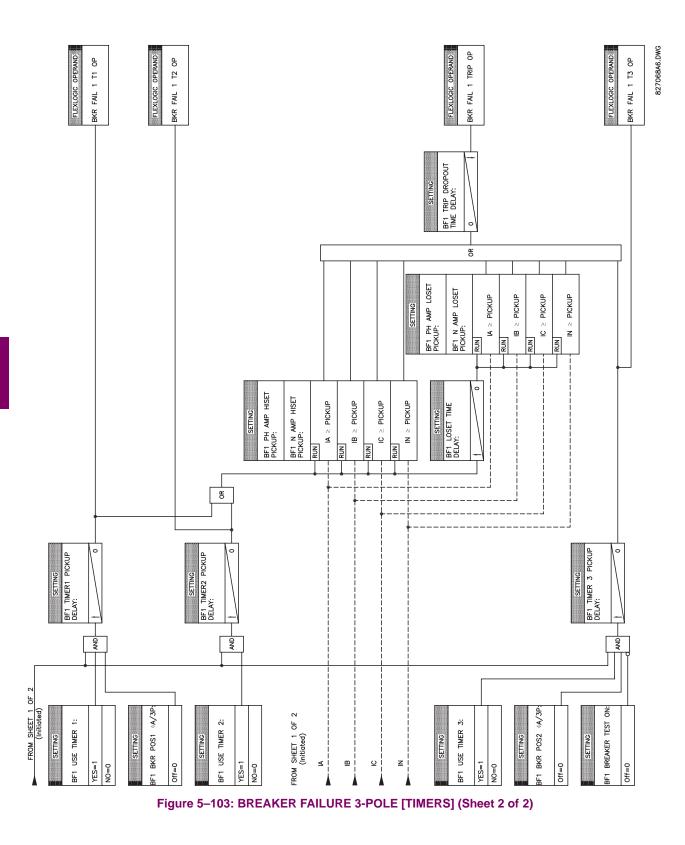




Figure 5–101: BREAKER FAILURE 1-POLE [TIMERS] (Sheet 2 of 2)

5.5 GROUPED ELEMENTS

a) MAIN MENU

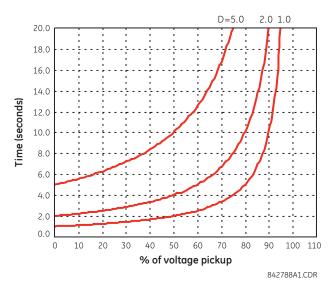
5.5.14 VOLTAGE ELEMENTS

VOLTAGE ELEMENTS PHASE See page 5-190. UNDERVOLTAGE1 PHASE MESSAGE See page 5-190. UNDERVOLTAGE2 PHASE MESSAGE See page 5-191. OVERVOLTAGE1 NEUTRAL OV1 MESSAGE See page 5-192. -NEUTRAL OV2 MESSAGE See page 5-192. NEUTRAL OV3 MESSAGE See page 5-192. AUXILIARY UV1 MESSAGE See page 5-193. AUXILIARY UV2 MESSAGE See page 5-193. AUXILIARY OV1 MESSAGE See page 5-194. AUXILIARY OV2 MESSAGE See page 5-194.

PATH: SETTINGS ⇔ ♣ GROUPED ELEMENTS ⇔ SETTING GROUP 1(6) ⇔ ♣ VOLTAGE ELEMENTS

These protection elements can be used for a variety of applications such as:

- Undervoltage Protection: For voltage sensitive loads, such as induction motors, a drop in voltage increases the drawn current which may cause dangerous overheating in the motor. The undervoltage protection feature can be used to either cause a trip or generate an alarm when the voltage drops below a specified voltage setting for a specified time delay.
- **Permissive Functions:** The undervoltage feature may be used to block the functioning of external devices by operating an output relay when the voltage falls below the specified voltage setting. The undervoltage feature may also be used to block the functioning of other elements through the block feature of those elements.
- **Source Transfer Schemes:** In the event of an undervoltage, a transfer signal may be generated to transfer a load from its normal source to a standby or emergency power source.


The undervoltage elements can be programmed to have a definite time delay characteristic. The definite time curve operates when the voltage drops below the pickup level for a specified period of time. The time delay is adjustable from 0 to 600.00 seconds in steps of 0.01. The undervoltage elements can also be programmed to have an inverse time delay characteristic.

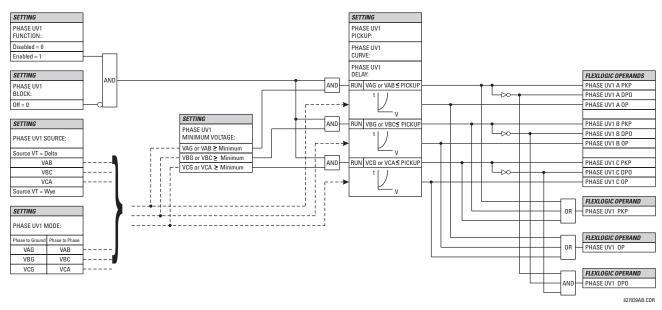
The undervoltage delay setting defines the family of curves shown below.

$$T = \frac{D}{\left(1 - \frac{V}{V_{pickup}}\right)}$$
(EQ 5.25)

where: T =operating time

D = undervoltage delay setting (D = 0.00 operates instantaneously) V = secondary voltage applied to the relay V_{pickup} = pickup level е

b) PHASE UNDERVOLTAGE (ANSI 27P)

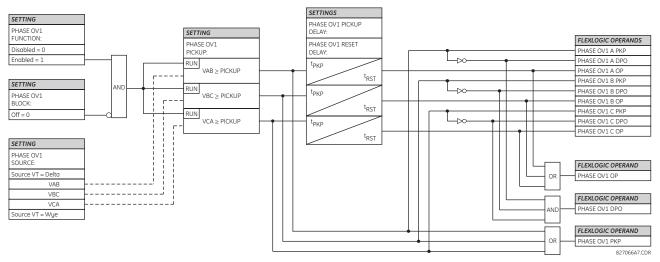

PATH: SETTINGS ⇔ ♣ GROUPED ELEMENTS ⇔ SETTING GROUP 1(6) ⇔ ♣ VOLTAGE ELEMENTS ⇔ PHASE UNDERVOLTAGE1(2)

At 0% of pickup, the operating time equals the UNDERVOLTAGE DELAY setting.

This element may be used to give a desired time-delay operating characteristic versus the applied fundamental voltage (phase-to-ground or phase-to-phase for wye VT connection, or phase-to-phase for delta VT connection) or as a definite time element. The element resets instantaneously if the applied voltage exceeds the dropout voltage. The delay setting selects the minimum operating time of the phase undervoltage. The minimum voltage setting selects the operating voltage below which the element is blocked (a setting of "0" will allow a dead source to be considered a fault condition).

5-190

Figure 5–105: PHASE UNDERVOLTAGE1 SCHEME LOGIC


c) PHASE OVERVOLTAGE (ANSI 59P)

PATH: SETTINGS ⇔ ♣ GROUPED ELEMENTS ⇔ SETTING GROUP 1(6) ⇔ ♣ VOLTAGE ELEMENTS ⇔ ♣ PHASE OVERVOLTAGE1

PHASEOVERVOLTAGE1		PHASE OV1 FUNCTION: Disabled	Range: Disabled, Enabled
MESSA	GE	PHASE OV1 SIGNAL SOURCE: SRC 1	Range: SRC 1, SRC 2, SRC 3, SRC 4
MESSA	GE	PHASE OV1 PICKUP: 1.000 pu	Range: 0.000 to 3.000 pu in steps of 0.001
MESSA	GE	PHASE OV1 PICKUP DELAY: 1.00 s	Range: 0.00 to 600.00 s in steps of 0.01
MESSA	GE	PHASE OV1 RESET DELAY: 1.00 s	Range: 0.00 to 600.00 s in steps of 0.01
MESSA	GE	PHASE OV1 BLOCK: Off	Range: FlexLogic™ Operand
MESSA	GE	PHASE OV1 TARGET: Self-reset	Range: Self-reset, Latched, Disabled
MESSA	GE 🛕	PHASE OV1 EVENTS: Disabled	Range: Disabled, Enabled

The phase overvoltage element may be used as an instantaneous element with no intentional time delay or as a definite time element. The input voltage is the phase-to-phase voltage, either measured directly from delta-connected VTs or as calculated from phase-to-ground (wye) connected VTs. The specific voltages to be used for each phase are shown below.

5.5 GROUPED ELEMENTS

Figure 5–106: PHASE OVERVOLTAGE SCHEME LOGIC

d) NEUTRAL OVERVOLTAGE (ANSI 59N)

PATH: SETTINGS ⇔ ♣ GROUPED ELEMENTS ⇔ SETTING GROUP 1(6) ⇔ ♣ VOLTAGE ELEMENTS ⇔ ♣ NEUTRAL OV1(3)

NEUTRAL OV1	NEUTRAL OV1 FUNCTION: Disabled	Range:	Disabled, Enabled
MESSAGE	NEUTRAL OV1 SIGNAL SOURCE: SRC 1	Range:	SRC 1, SRC 2, SRC 3, SRC 4
MESSAGE	NEUTRAL OV1 PICKUP: 0.300 pu	Range:	0.000 to 3.000 pu in steps of 0.001
MESSAGE	NEUTRAL OV1 CURVE: Definite time	Range:	Definite time, FlexCurve A, FlexCurve B, FlexCurve C
MESSAGE	NEUTRAL OV1 PICKUP: DELAY: 1.00 s	Range:	0.00 to 600.00 s in steps of 0.01
MESSAGE	NEUTRAL OV1 RESET: DELAY: 1.00 s	Range:	0.00 to 600.00 s in steps of 0.01
MESSAGE	NEUTRAL OV1 BLOCK: Off	Range:	FlexLogic™ operand
MESSAGE	NEUTRAL OV1 TARGET: Self-reset	Range:	Self-reset, Latched, Disabled
MESSAGE	NEUTRAL OV1 EVENTS: Disabled	Range:	Disabled, Enabled

There are three neutral overvoltage elements available. The neutral overvoltage element can be used to detect asymmetrical system voltage condition due to a ground fault or to the loss of one or two phases of the source. The element responds to the system neutral voltage ($3V_0$), calculated from the phase voltages. The nominal secondary voltage of the phase voltage channels entered under **SETTINGS** \Rightarrow **SYSTEM SETUP** \Rightarrow **AC INPUTS** \Rightarrow **VOLTAGE BANK** \Rightarrow **PHASE VT SECONDARY** is the p.u. base used when setting the pickup level.

The neutral overvoltage element can provide a time-delayed operating characteristic versus the applied voltage (initialized from FlexCurves A, B, or C) or be used as a definite time element. The **NEUTRAL OV1 PICKUP DELAY** setting applies only if the **NEUTRAL OV1 CURVE** setting is "Definite time". The source assigned to this element must be configured for a phase VT.

VT errors and normal voltage unbalance must be considered when setting this element. This function requires the VTs to be wye-connected.

5-192

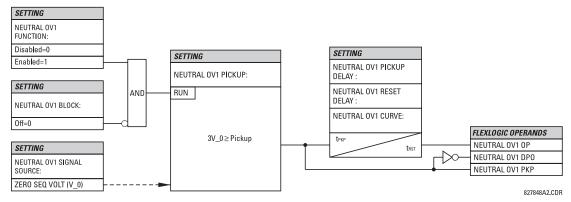
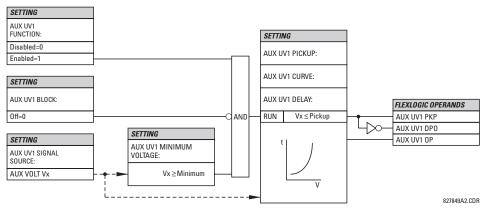


Figure 5–107: NEUTRAL OVERVOLTAGE1 SCHEME LOGIC

e) AUXILIARY UNDERVOLTAGE (ANSI 27X)


PATH: SETTINGS ⇔ ♣ GROUPED ELEMENTS ⇔ SETTING GROUP 1(6) ⇔ ♣ VOLTAGE ELEMENTS ⇔ ♣ AUXILIARY UV1(2)

<pre>AUXILIARY UV1</pre>	AUX UV1 FUNCTION: Disabled	Range:	Disabled, Enabled
MESSAGE	AUX UV1 SIGNAL SOURCE: SRC 1	Range:	SRC 1, SRC 2, SRC 3, SRC 4
MESSAGE	AUX UV1 PICKUP: 0.700 pu	Range:	0.000 to 3.000 pu in steps of 0.001
MESSAGE	AUX UV1 CURVE: Definite Time	Range:	Definite Time, Inverse Time
MESSAGE	AUX UV1 DELAY: 1.00 s	Range:	0.00 to 600.00 s in steps of 0.01
MESSAGE	AUX UV1 MINIMUM: VOLTAGE: 0.100 pu	Range:	0.000 to 3.000 pu in steps of 0.001
MESSAGE	AUX UV1 BLOCK: Off	Range:	FlexLogic™ operand
MESSAGE	AUX UV1 TARGET: Self-reset	Range:	Self-reset, Latched, Disabled
MESSAGE	AUX UV1 EVENTS: Disabled	Range:	Disabled, Enabled

The L90 contains one auxiliary undervoltage element for each VT bank. This element is intended for monitoring undervoltage conditions of the auxiliary voltage. The **AUX UV1 PICKUP** selects the voltage level at which the time undervoltage element starts timing. The nominal secondary voltage of the auxiliary voltage channel entered under **SETTINGS** \Rightarrow **UNITIALS SETUP** \Rightarrow **AC INPUTS** \Rightarrow **VOLTAGE BANK X5** \Rightarrow **AUXILIARY VT X5 SECONDARY** is the per-unit base used when setting the pickup level.

The AUX UV1 DELAY setting selects the minimum operating time of the auxiliary undervoltage element. Both AUX UV1 PICKUP and AUX UV1 DELAY settings establish the operating curve of the undervoltage element. The auxiliary undervoltage element can be programmed to use either definite time delay or inverse time delay characteristics. The operating characteristics and equations for both definite and inverse time delay are as for the phase undervoltage element.

The element resets instantaneously. The minimum voltage setting selects the operating voltage below which the element is blocked.

f) AUXILIARY OVERVOLTAGE (ANSI 59X)X

PATH: SETTINGS ⇔ ♣ GROUPED ELEMENTS ⇔ SETTING GROUP 1(6) ⇔ ♣ VOLTAGE ELEMENTS ⇔ ♣ AUXILIARY OV1(2)

<pre>AUXILIARY OV1</pre>	AUX OV1 FUNCTION: Disabled	Range: Disabled, Enabled
MESSAGE	AUX OV1 SIGNAL SOURCE: SRC 1	Range: SRC 1, SRC 2, SRC 3, SRC 4
MESSAGE	AUX OV1 PICKUP: 0.300 pu	Range: 0.000 to 3.000 pu in steps of 0.001
MESSAGE	AUX OV1 PICKUP DELAY: 1.00 s	Range: 0.00 to 600.00 s in steps of 0.01
MESSAGE	AUX OV1 RESET DELAY: 1.00 s	Range: 0.00 to 600.00 s in steps of 0.01
MESSAGE	AUX OV1 BLOCK: Off	Range: FlexLogic™ operand
MESSAGE	AUX OV1 TARGET: Self-reset	Range: Self-reset, Latched, Disabled
MESSAGE	AUX OV1 EVENTS: Disabled	Range: Disabled, Enabled

The L90 contains one auxiliary overvoltage element for each VT bank. This element is intended for monitoring overvoltage conditions of the auxiliary voltage. The nominal secondary voltage of the auxiliary voltage channel entered under **SYSTEM SETUP** \Rightarrow **AC INPUTS** \Rightarrow **VOLTAGE BANK X5** \Rightarrow **AUXILIARY VT X5 SECONDARY** is the per-unit (pu) base used when setting the pickup level.

A typical application for this element is monitoring the zero-sequence voltage (3V_0) supplied from an open-corner-delta VT connection.

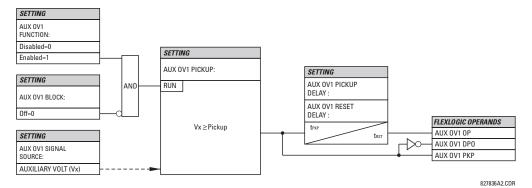
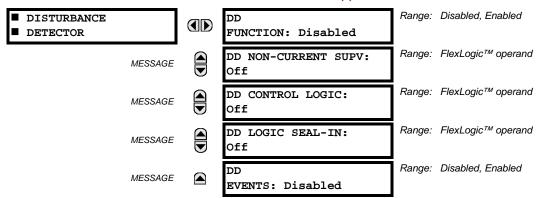


Figure 5–109: AUXILIARY OVERVOLTAGE SCHEME LOGIC

5.5.15 SUPERVISING ELEMENTS

a) MAIN MENU

 PATH: SETTINGS ♣ GROUPED ELEMENTS ⇒ ♣ SETTING GROUP 1(6) ⇒ ♣ SUPERVISING ELEMENTS


 ■ SUPERVISING

 ■ BISTURBANCE

 ■ DISTURBANCE

 ### b) DISTURBANCE DETECTOR

PATH: SETTINGS ⇔ ♣ GROUPED ELEMENTS ⇔ ♣ SETTING GROUP 1(6) ⇔ ♣ SUPERVISING ELEMENTS ⇔ DISTURBANCE DETECTOR

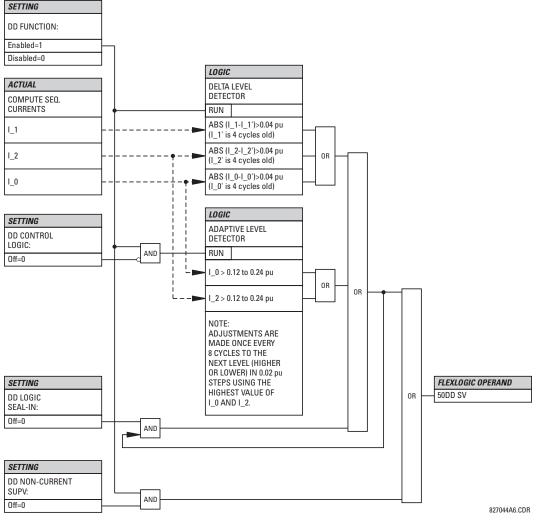
The disturbance detector (50DD) element is an 87L-dedicated sensitive current disturbance detector that is used to detect any disturbance on the protected system. This detector is intended for such functions as trip output supervision and starting oscillography The disturbance detector also signals the 87L function that a disturbance (possible fault) occurred and to resize the operating window to remove the pre-fault current. It is essential to have the disturbance detector enabled for applications where the 87L operating time is critical.

If the disturbance detector is used to supervise the operation of the 87L function, it is recommended that the 87L trip element be used. The 50DD SV disturbance detector FlexLogic[™] operand must then be assigned to an **87L TRIP SUPV** setting.

The disturbance detector function measures the magnitude of the negative-sequence current (I_2), the magnitude of the zero-sequence current (ΔI_2), the change in zero-sequence current (ΔI_2), the change in zero-sequence current (ΔI_2), and the change in positive-sequence current (ΔI_1). The disturbance detector element uses net local current, computed as a sum of all sources configured in the current differential element, to detect system disturbances.

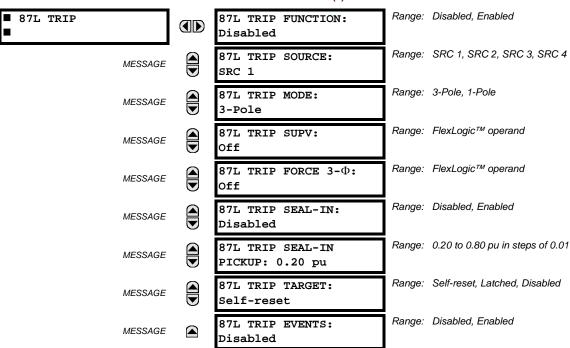
The adaptive level detector operates as follows:

- When the absolute level increases above 0.12 pu for I_0 or I_2, the adaptive level detector output is active and the next highest threshold level is increased 8 cycles later from 0.12 to 0.24 pu in steps of 0.02 pu. If the level exceeds 0.24 pu, the current adaptive level detector setting remains at 0.24 pu and the output remains active (as well as the disturbance detector output) when the measured value remains above the current setting.
- When the absolute level is decreasing from in range from 0.24 to 0.12 pu, the lower level is set every 8 cycles without the adaptive level detector active. Note that the 50DD output remains inactive during this change as long as the delta change is less than 0.04 pu.


The delta level detectors (ΔI) detectors are designed to pickup for the 0.04 pu change in I_1, I_2, and I_0 currents. The ΔI value is measured by comparing the present value to the value calculated 4 cycles earlier.

- DD FUNCTION: This setting is used to enable/disable the operation of the disturbance detector.
- DD NON-CURRENT SUPV: This setting is used to select a FlexLogic[™] operand which will activate the output of the disturbance detector upon events (such as frequency or voltage change) not accompanied by a current change.
- DD CONTROL LOGIC: This setting is used to prevent operation of I_0 and I_2 logic of disturbance detector during conditions such as single breaker pole being open which leads to unbalanced load current in single-pole tripping schemes. Breaker auxiliary contact can be used for such scheme.

• DD LOGIC SEAL-IN: This setting is used to maintain disturbance detector output for such conditions as balanced three-phase fault, low level time overcurrent fault, etc. whenever the disturbance detector might reset. Output of the disturbance detector will be maintained until the chosen FlexLogic[™] operand resets.



The user may disable the **DD EVENTS** setting as the disturbance detector element will respond to any current disturbance on the system which may result in filling the events buffer and possible loss of valuable data.

c) 87L TRIP

PATH: SETTINGS ⇒ ↓ GRO	UPED ELEMENTS ⇔ ♣ SETTING	GROUP 1(6) ⇔ ↓ SUP	ERVISING ELEMENTS ⇔ ↔ 87L TRIP
------------------------	---------------------------	--------------------	--------------------------------

The 87L trip element must be used to secure the generation of tripping outputs. It is especially recommended for use in all single-pole tripping applications. It provides the user with the capability of maintaining the trip signal while the fault current is still flowing, to choose single-pole or three-pole tripping, to employ the received direct transfer trip (DTT) signals, and to assign supervising trip elements like the disturbance detector. The logic is used to ensure that the relay will:

- Trip the faulted phase for a single line to ground fault, as detected by the line differential element.
- Trip all three phases for any internal multiphase fault.
- Trip all three phases for a second single line to ground fault during or following a single pole trip cycle.

For maximum security, it is recommended the disturbance detector (plus other elements if required) be assigned to see a change in system status before a trip output is permitted. This ensures the relay will not issue a trip signal as a result of incorrect settings, incorrect manipulations with a relay, or inter-relay communications problems (for example, extremely noisy channels). The open pole detector provides forcing of three-pole tripping for sequential faults and close-onto-fault if desired. The open pole detector feature must be employed and adequately programmed for proper operation of this feature. The 87L TRIP 1P OP and 87L TRIP 3P OP operands are provided to initiate single-pole or three-pole autoreclosing.

If a direct transfer trip (DTT) is not required for the 87L trip scheme to operate, it should be disabled at the remote relay via the GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6) \Rightarrow LINE DIFFERENTIAL ELEMENTS \Rightarrow CURRENT DIFFERENTIAL SETTING BROUP 1(6) \Rightarrow LINE DIFFERENTIAL ELEMENTS \Rightarrow CURRENT DIFFERENTIAL SETTING BROUP 1(6) \Rightarrow LINE DIFFERENTIAL ELEMENTS \Rightarrow CURRENT DIFFERENTIAL SETTING BROUP 1(6) \Rightarrow LINE DIFFERENTIAL ELEMENTS \Rightarrow CURRENT DIFFERENTIAL SETTING BROUP 1(6) \Rightarrow LINE DIFFERENTIAL ELEMENTS \Rightarrow CURRENT DIFFERENTIAL SETTING BROUP 1(6) \Rightarrow LINE DIFFERENTIAL ELEMENTS \Rightarrow CURRENT DIFFERENTIAL SETTING BROUP 1(6) \Rightarrow LINE DIFFERENTIAL ELEMENTS \Rightarrow CURRENT DIFFERENTIAL SETTING BROUP 1(6) \Rightarrow DIFFERENT 1(6) \Rightarrow DIFFERENT 1(6) \Rightarrow DIFFERENT 1(6) \Rightarrow DIFFERENT 1(6) \Rightarrow DIFFER

- 87L TRIP FUNCTION: This setting is used to enable or disable the element.
- 87L TRIP SOURCE: This setting is used to assign a source for seal-in function.
- 87L TRIP MODE: This setting is used to select either three-pole or single-pole mode of operation.
- 87L TRIP SUPV: This setting is used to assign a trip supervising element. The 50DD SV FlexLogic[™] operand is recommended (the element has to be enabled); otherwise, elements like instantaneous overcurrent, distance, etc. can be used.
- 87L TRIP FORCE 3-0: This setting is used to select an element forcing three-pole tripping if any type fault occurs when this element is active. Autoreclosure disabled can be utilized, or the autoreclosure counter if, for example, the second trip is required to be a three-pole signal. Likewise, any operand representing a change in the power system configuration, can be applied.

5 SETTINGS

- 87L TRIP SEAL-IN: This setting is used to enable/disable seal-in of the trip signal by measurement of the current flowing.
- 87L TRIP SEAL-IN PICKUP: This setting is used to select a pickup setting of the current seal-in function.

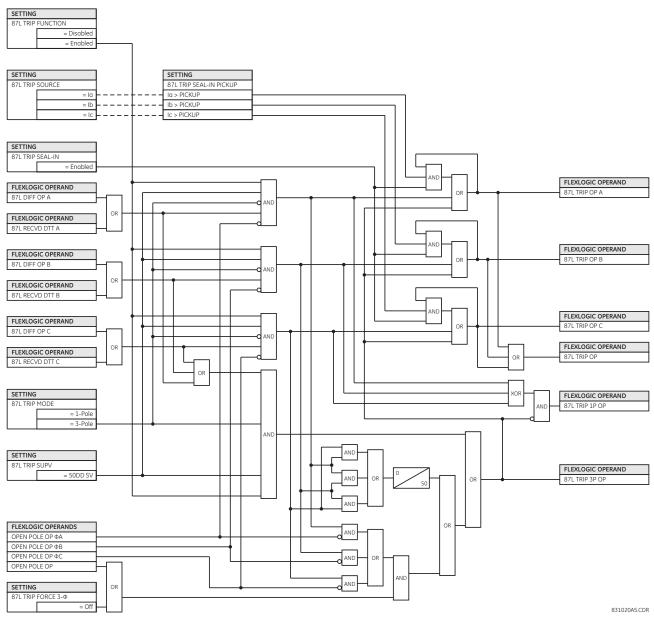
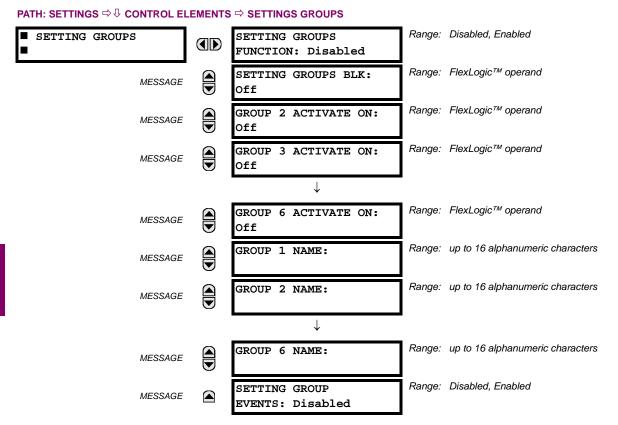
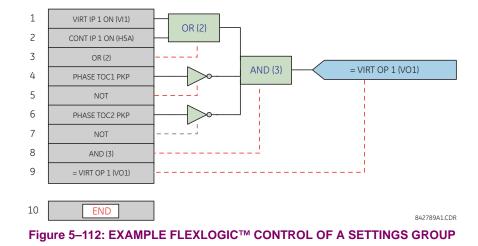



Figure 5–111: 87L TRIP SCHEME LOGIC

5.6.1 OVERVIEW

Control elements are generally used for control rather than protection. See the *Introduction to Elements* section at the beginning of this chapter for further information.

5.6.2 SETTING GROUPS


The setting groups menu controls the activation/deactivation of up to six possible groups of settings in the **GROUPED ELE-MENTS** settings menu. The faceplate Settings In Use LEDs indicate which active group (with a non-flashing energized LED) is in service.

The **SETTING GROUPS BLK** setting prevents the active setting group from changing when the FlexLogic[™] parameter is set to "On". This can be useful in applications where it is undesirable to change the settings under certain conditions, such as the breaker being open.

The **GROUP 2 ACTIVATE ON** to **GROUP 6 ACTIVATE ON** settings select a FlexLogicTM operand which, when set, will make the particular setting group active for use by any grouped element. A priority scheme ensures that only one group is active at a given time – the highest-numbered group which is activated by its **ACTIVATE ON** parameter takes priority over the lower-numbered groups. There is no activate on setting for group 1 (the default active group), because group 1 automatically becomes active if no other group is active.

The **SETTING GROUP 1 NAME** to **SETTING GROUP 6 NAME** settings allows to user to assign a name to each of the six settings groups. Once programmed, this name will appear on the second line of the **GROUPED ELEMENTS** ⇒ **SETTING GROUP 1(6)** menu display.

The relay can be set up via a FlexLogic[™] equation to receive requests to activate or de-activate a particular non-default settings group. The following FlexLogic[™] equation (see the figure below) illustrates requests via remote communications (for example, VIRTUAL INPUT 1 ON) or from a local contact input (for example, CONTACT IP 1 ON) to initiate the use of a particular settings group, and requests from several overcurrent pickup measuring elements to inhibit the use of the particular settings group. The assigned VIRTUAL OUTPUT 1 operand is used to control the "On" state of a particular settings group.

5.6.3 SELECTOR SWITCH

PATH: SETTINGS ⇔ ⊕ CONTROL ELEMENTS ⇔ ⊕ SELECTOR SWITCH ⇒ SELECTOR SWITCH 1(2)

SELECTOR SWITCH 1	SELECTOR 1 FUNCTION: Disabled	Range:	Disabled, Enabled
MESSAGE	SELECTOR 1 FULL RANGE: 7	Range:	1 to 7 in steps of 1
MESSAGE	SELECTOR 1 TIME-OUT: 5.0 s	Range:	3.0 to 60.0 s in steps of 0.1
MESSAGE	SELECTOR 1 STEP-UP: Off	Range:	FlexLogic™ operand
MESSAGE	SELECTOR 1 STEP-UP MODE: Time-out	Range:	Time-out, Acknowledge
MESSAGE	SELECTOR 1 ACK: Off	Range:	FlexLogic™ operand
MESSAGE	SELECTOR 1 3BIT A0: Off	Range:	FlexLogic™ operand
MESSAGE	SELECTOR 1 3BIT A1: Off	Range:	FlexLogic™ operand
MESSAGE	SELECTOR 1 3BIT A2: Off	Range:	FlexLogic™ operand
MESSAGE	SELECTOR 1 3BIT MODE: Time-out	Range:	Time-out, Acknowledge
MESSAGE	SELECTOR 1 3BIT ACK: Off	Range:	FlexLogic™ operand
MESSAGE	SELECTOR 1 POWER-UP MODE: Restore	Range:	Restore, Synchronize, Sync/Restore
MESSAGE	SELECTOR 1 TARGETS: Self-reset	Range:	Self-reset, Latched, Disabled
MESSAGE	SELECTOR 1 EVENTS: Disabled	Range:	Disabled, Enabled

The selector switch element is intended to replace a mechanical selector switch. Typical applications include setting group control or control of multiple logic sub-circuits in user-programmable logic.

The element provides for two control inputs. The step-up control allows stepping through selector position one step at a time with each pulse of the control input, such as a user-programmable pushbutton. The three-bit control input allows setting the selector to the position defined by a three-bit word.

The element allows pre-selecting a new position without applying it. The pre-selected position gets applied either after timeout or upon acknowledgement via separate inputs (user setting). The selector position is stored in non-volatile memory. Upon power-up, either the previous position is restored or the relay synchronizes to the current three-bit word (user setting). Basic alarm functionality alerts the user under abnormal conditions; for example, the three-bit control input being out of range.

- SELECTOR 1 FULL RANGE: This setting defines the upper position of the selector. When stepping up through available positions of the selector, the upper position wraps up to the lower position (position 1). When using a direct threebit control word for programming the selector to a desired position, the change would take place only if the control word is within the range of 1 to the SELECTOR FULL RANGE. If the control word is outside the range, an alarm is established by setting the SELECTOR ALARM FlexLogic[™] operand for 3 seconds.
- SELECTOR 1 TIME-OUT: This setting defines the time-out period for the selector. This value is used by the relay in the following two ways. When the SELECTOR STEP-UP MODE is "Time-out", the setting specifies the required period of inactivity of the control input after which the pre-selected position is automatically applied. When the SELECTOR STEP-UP MODE is "Acknowledge", the setting specifies the period of time for the acknowledging input to appear. The timer is re-started by any activity of the control input. The acknowledging input must come before the SELECTOR 1 TIME-OUT timer expires; otherwise, the change will not take place and an alarm will be set.
- SELECTOR 1 STEP-UP: This setting specifies a control input for the selector switch. The switch is shifted to a new position at each rising edge of this signal. The position changes incrementally, wrapping up from the last (SELECTOR 1 FULL RANGE) to the first (position 1). Consecutive pulses of this control operand must not occur faster than every 50 ms. After each rising edge of the assigned operand, the time-out timer is restarted and the SELECTOR SWITCH 1: POS Z CHNG INITIATED target message is displayed, where Z the pre-selected position. The message is displayed for the time specified by the FLASH MESSAGE TIME setting. The pre-selected position is applied after the selector times out ("Time-out" mode), or when the acknowledging signal appears before the element times out ("Acknowledge" mode). When the new position is applied, the relay displays the SELECTOR SWITCH 1: POSITION Z IN USE message. Typically, a user-programmable pushbutton is configured as the stepping up control input.
- SELECTOR 1 STEP-UP MODE: This setting defines the selector mode of operation. When set to "Time-out", the selector will change its position after a pre-defined period of inactivity at the control input. The change is automatic and does not require any explicit confirmation of the intent to change the selector's position. When set to "Acknowledge", the selector will change its position only after the intent is confirmed through a separate acknowledging signal. If the acknowledging signal does not appear within a pre-defined period of time, the selector does not accept the change and an alarm is established by setting the SELECTOR STP ALARM output FlexLogic[™] operand for 3 seconds.
- SELECTOR 1 ACK: This setting specifies an acknowledging input for the stepping up control input. The pre-selected
 position is applied on the rising edge of the assigned operand. This setting is active only under "Acknowledge" mode of
 operation. The acknowledging signal must appear within the time defined by the SELECTOR 1 TIME-OUT setting after the
 last activity of the control input. A user-programmable pushbutton is typically configured as the acknowledging input.
- SELECTOR 1 3BIT A0, A1, and A2: These settings specify a three-bit control input of the selector. The three-bit control word pre-selects the position using the following encoding convention:

A2	A1	A0	POSITION
0	0	0	rest
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

5

L90 Line Current Differential System

The "rest" position (0, 0, 0) does not generate an action and is intended for situations when the device generating the three-bit control word is having a problem. When **SELECTOR 1 3BIT MODE** is "Time-out", the pre-selected position is applied in **SELECTOR 1 TIME-OUT** seconds after the last activity of the three-bit input. When **SELECTOR 1 3BIT MODE** is "Acknowledge", the pre-selected position is applied on the rising edge of the **SELECTOR 1 3BIT ACK** acknowledging input.

The stepping up control input (SELECTOR 1 STEP-UP) and the three-bit control inputs (SELECTOR 1 3BIT A0 through A2) lock-out mutually: once the stepping up sequence is initiated, the three-bit control input is inactive; once the three-bit control sequence is initiated, the stepping up input is inactive.

- SELECTOR 1 3BIT MODE: This setting defines the selector mode of operation. When set to "Time-out", the selector changes its position after a pre-defined period of inactivity at the control input. The change is automatic and does not require explicit confirmation to change the selector position. When set to "Acknowledge", the selector changes its position only after confirmation via a separate acknowledging signal. If the acknowledging signal does not appear within a pre-defined period of time, the selector rejects the change and an alarm established by invoking the SELECTOR BIT ALARM FlexLogic[™] operand for 3 seconds.
- SELECTOR 1 3BIT ACK: This setting specifies an acknowledging input for the three-bit control input. The preselected position is applied on the rising edge of the assigned FlexLogic[™] operand. This setting is active only under the "Acknowledge" mode of operation. The acknowledging signal must appear within the time defined by the SELEC-TOR TIME-OUT setting after the last activity of the three-bit control inputs. Note that the stepping up control input and three-bit control input have independent acknowledging signals (SELECTOR 1 ACK and SELECTOR 1 3BIT ACK, accordingly).
- **SELECTOR 1 POWER-UP MODE**: This setting specifies the element behavior on power up of the relay.

When set to "Restore", the last position of the selector (stored in the non-volatile memory) is restored after powering up the relay. If the position restored from memory is out of range, position 0 (no output operand selected) is applied and an alarm is set (SELECTOR 1 PWR ALARM).

When set to "Synchronize" selector switch acts as follows. For two power cycles, the selector applies position 0 to the switch and activates SELECTOR 1 PWR ALARM. After two power cycles expire, the selector synchronizes to the position dictated by the three-bit control input. This operation does not wait for time-out or the acknowledging input. When the synchronization attempt is unsuccessful (that is, the three-bit input is not available (0,0,0) or out of range) then the selector switch output is set to position 0 (no output operand selected) and an alarm is established (SELECTOR 1 PWR ALARM).

The operation of "Synch/Restore" mode is similar to the "Synchronize" mode. The only difference is that after an unsuccessful synchronization attempt, the switch will attempt to restore the position stored in the relay memory. The "Synch/Restore" mode is useful for applications where the selector switch is employed to change the setting group in redundant (two relay) protection schemes.

EVENT NAME	DESCRIPTION
SELECTOR 1 POS Z	Selector 1 changed its position to Z.
SELECTOR 1 STP ALARM	The selector position pre-selected via the stepping up control input has not been confirmed before the time out.
SELECTOR 1 BIT ALARM	The selector position pre-selected via the three-bit control input has not been confirmed before the time out.

• **SELECTOR 1 EVENTS**: If enabled, the following events are logged:

The following figures illustrate the operation of the selector switch. In these diagrams, "T" represents a time-out setting.

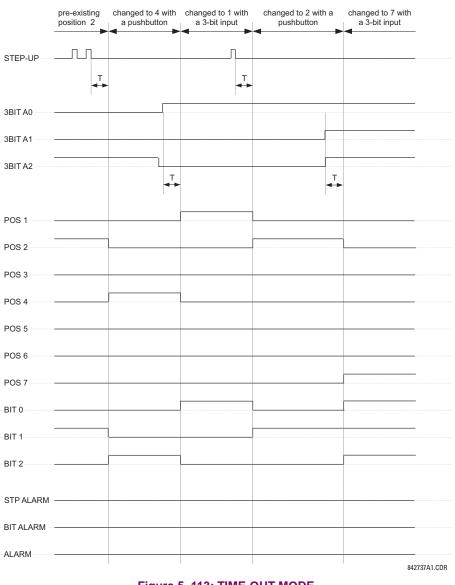
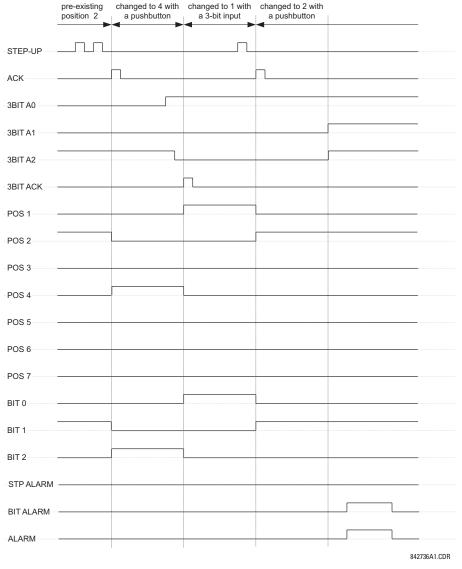



Figure 5–113: TIME-OUT MODE

Figure 5–114: ACKNOWLEDGE MODE

APPLICATION EXAMPLE

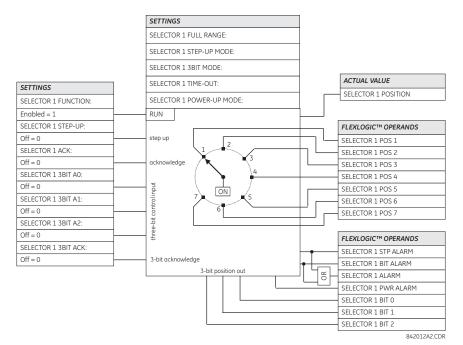
Consider an application where the selector switch is used to control setting groups 1 through 4 in the relay. The setting groups are to be controlled from both user-programmable pushbutton 1 and from an external device via contact inputs 1 through 3. The active setting group shall be available as an encoded three-bit word to the external device and SCADA via output contacts 1 through 3. The pre-selected setting group shall be applied automatically after 5 seconds of inactivity of the control inputs. When the relay powers up, it should synchronize the setting group to the three-bit control input.

Make the following changes to setting group control in the SETTINGS \Rightarrow \clubsuit CONTROL ELEMENTS \Rightarrow SETTING GROUPS menu:

SETTING GROUPS FUNCTION: "Enabled" SETTING GROUPS BLK: "Off" GROUP 2 ACTIVATE ON: "SELECTOR 1 POS 2" GROUP 3 ACTIVATE ON: "SELECTOR 1 POS 3" GROUP 4 ACTIVATE ON: "SELECTOR 1 POS 4" GROUP 5 ACTIVATE ON: "Off" GROUP 6 ACTIVATE ON: "Off"

Make the following changes to selector switch element in the **SETTINGS** \Rightarrow \bigcirc **CONTROL ELEMENTS** \Rightarrow \bigcirc **SELECTOR SWITCH** \Rightarrow **SELECTOR SWITCH** 1 menu to assign control to user programmable pushbutton 1 and contact inputs 1 through 3:

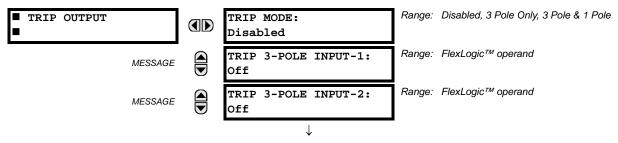
SELECTOR 1 FUNCTION: "Enabled" SELECTOR 1 FULL-RANGE: "4" SELECTOR 1 STEP-UP MODE: "Time-out" SELECTOR 1 TIME-OUT: "5.0 s" SELECTOR 1 STEP-UP: "PUSHBUTTON 1 ON" SELECTOR 1 ACK: "Off" SELECTOR 1 3BIT A0: "CONT IP 1 ON" SELECTOR 1 3BIT A1: "CONT IP 2 ON" SELECTOR 1 3BIT A2: "CONT IP 3 ON" SELECTOR 1 3BIT MODE: "Time-out" SELECTOR 1 3BIT ACK: "Off" SELECTOR 1 POWER-UP MODE: "Synchronize"


Now, assign the contact output operation (assume the H6E module) to the selector switch element by making the following changes in the SETTINGS ⇔ ↓ INPUTS/OUTPUTS ⇔ ↓ CONTACT OUTPUTS menu:

OUTPUT H1 OPERATE: "SELECTOR 1 BIT 0" OUTPUT H2 OPERATE: "SELECTOR 1 BIT 1" OUTPUT H3 OPERATE: "SELECTOR 1 BIT 2"

Finally, assign configure user-programmable pushbutton 1 by making the following changes in the SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow \bigcirc USER-PROGRAMMABLE PUSHBUTTONS \Rightarrow USER PUSHBUTTON 1 menu:

PUSHBUTTON 1 FUNCTION: "Self-reset" PUSHBUTTON 1 DROP-OUT TIME: "0.10 s"


The logic for the selector switch is shown below:

5.6.4 TRIP OUTPUT

PATH: SETTINGS ⇔ ♣ CONTROL ELEMENTS ⇔ ♣ TRIP OUTPUT

MESSAGE	TRIP 3-POLE INPUT-6: Off	Range:	FlexLogic [™] operand
MESSAGE	TRIP 1-POLE INPUT-1: Off	Range:	FlexLogic™ operand
MESSAGE	TRIP 1-POLE INPUT-2: Off	Range:	FlexLogic™ operand
	\downarrow		
MESSAGE	TRIP 1-POLE INPUT-6: Off	Range:	FlexLogic™ operand
MESSAGE	TRIP RECLOSE INPUT-1: Off	Range:	FlexLogic™ operand
MESSAGE	TRIP RECLOSE INPUT-2: Off	Range:	FlexLogic™ operand
	\downarrow		
MESSAGE	TRIP RECLOSE INPUT-6: Off	Range:	FlexLogic™ operand
MESSAGE	TRIP FORCE 3-POLE: Off	Range:	FlexLogic™ operand
MESSAGE	TRIP PILOT PRIORITY: 0.000 s	Range:	0 to 65.535 s in steps of 0.001
MESSAGE	REVERSE FAULT: Off	Range:	FlexLogic™ operand
MESSAGE	TRIP DELAY ON EVOLV FAULTS: 0.000 s	Range:	0 to 65.535 s in steps of 0.001
MESSAGE	BKR ФА OPEN: Off	Range:	FlexLogic™ operand
MESSAGE	BKR Φ B OPEN: Off	Range:	FlexLogic™ operand
MESSAGE	BKR OC OPEN: Off	Range:	FlexLogic™ operand
MESSAGE	TRIP EVENTS: Disabled	Range:	Enabled, Disabled

The trip output element is primarily used to collect trip requests from protection elements and other inputs to generate output operands to initiate trip operations. Three pole trips will only initiate reclosure if programmed to do so, whereas single pole trips will always automatically initiate reclosure. The TRIP 3-POLE and TRIP 1-POLE output operands can also be used as inputs to a FlexLogic[™] OR gate to operate the faceplate Trip indicator LED.

THREE POLE OPERATION:

In applications where single-pole tripping is not required this element provides a convenient method of collecting inputs to initiate tripping of circuit breakers, the reclose element and breaker failure elements.

SINGLE POLE OPERATION:

NOTE This element *must* be used in single pole operation applications.

In these applications this element is used to:

Determine if a single pole operation should be performed.

- Collect inputs to initiate three pole tripping, the recloser and breaker failure elements.
- Collect inputs to initiate single pole tripping, the recloser and breaker failure elements.
- Assign a higher priority to pilot aided scheme outputs than to exclusively local inputs.

The trip output element works in association with other L90 elements (refer to chapter 8 for a complete description of single pole operations) that must be programmed and in-service for successful operation. The necessary elements are: recloser, breaker control, open pole detector, and phase selector. The recloser must also be in the "Reset" state before a single pole trip can be issued. Outputs from this element are also directly connected as initiate signals to the breaker failure elements.

The trip output element is used to aggregate inputs from appropriate protection elements (including 87L line differential, distance, and instantaneous overcurrent functions) to provide single-pole tripping. The line current differential function is hardwired through the 87L TRIP function, which has to be enabled and configured properly.

The 87L TRIP function collects inputs from both the 87L line differential and 87L DTT functions. It can be supervised by the disturbance detector and determines if the fault type is single-line-to-ground or multi-phase. The 87L TRIP function sends a direct command to the trip output element to execute appropriate tripping action without any consultation with phase selector.

Other protective functions, such as distance and overcurrent, need to be assigned to appropriate trip output single-pole or three-pole inputs and will require phase selector fault identification for tripping action. A timer defined by the **TRIP PILOT PRI-ORITY** setting can be used to delay the output decision from other local protection elements to give 87L operational priority. This prevents three-pole operation where a single pole operation is permitted.

- TRIP MODE: This setting is used to select the required mode of operation. If selected to "3 Pole Only" outputs for all
 three phases are always set simultaneously. If selected to "3 Pole & 1 Pole" outputs for all three phases are set simultaneously unless the phase selector or a pilot aided scheme determines the fault is single-phase-to-ground. If the fault
 is identified as being AG, BG or CG only the operands for the faulted phase will be asserted.
- TRIP 3-POLE INPUT-1 to TRIP 3-POLE INPUT-6: These settings are used to select an operand representing a fault condition that is not desired to initiate a single pole operation (for example, phase undervoltage). Use a FlexLogic ORgate if more than six inputs are required.
- TRIP 1-POLE INPUT-1 to TRIP 1-POLE INPUT-6: These settings are used to select an operand representing a fault condition that is desired to initiate a single pole trip-and-reclose if the fault is single phase to ground (for example, distance zone 1). Use a FlexLogic[™] OR-gate if more than six inputs are required. The inputs do not have to be phase-specific as the phase selector determines the fault type.

The AR FORCE 3-P TRIP operand is asserted by the autorecloser 1.5 cycles after single-pole reclosing is initiated. This operand calls for a three-pole trip if any protection element configured under **TRIP 1-POLE INPUT** remains picked-up. The open pole detector provides blocking inputs to distance elements, and therefore the latter will reset immediately after the TRIP 1-POLE operand is asserted. For other protection elements used in single-pole tripping, the user must ensure they will reset immediately after tripping, otherwise the fact that they are still picked up will be detected as an evolving fault and the relay will trip three-poles. For example, if high-set phase instantaneous overcurrent is used (**TRIP 1-POLE INPUT X:** "PHASE IOC1 OP"), then OPEN POLE OP ΦA shall be used for blocking phase A of the instantaneous overcurrent element. In this way, after tripping phase A, the phase a instantaneous overcurrent element is forced to reset. Phases B and C are still operational and can detect an evolving fault as soon as 8 ms after tripping phase A. Neutral and negative-sequence instantaneous overcurrent elements shall be blocked from the OPEN POLE BLK N operand unless the pickup setting is high enough to prevent pickup during single-pole reclosing.

- TRIP RECLOSE INPUT-1 to TRIP RECLOSE INPUT-6: These settings select an operand representing a fault condition that is desired to initiate three pole reclosing (for example, phase distance zone 1). Use a FlexLogic[™] OR-gate if more than six inputs are required.
- **TRIP FORCE 3-POLE**: Selects an operand that will force an input selected for single pole operation to produce a three pole operation. The AR DISABLED FlexLogic[™] operand is the recommended value for this setting. Power system configurations or conditions which require such operations may be considered as well.
- **TRIP PILOT PRIORITY**: This setting is used to set an interval equal to the inter-relay channel communications time, plus an appropriate margin, during which outputs are not asserted. This delay permits fault identification information from a remote terminal to be used instead of local data only.
- REVERSE FAULT: This setting should be used to guarantee accuracy of single-pole tripping under evolving external to
 internal faults. When a close-in external fault occurs, the relay is biased toward very fast operation on a following internal fault. This is primarily due to depressed voltages and elevated currents in response to the first, external fault. The

phase selector may exhibit some time lag compared to the main protection elements. This may potentially result in a spurious three-pole operation on a single-line-to-ground internal fault. Delaying tripping on internal faults that follow detection of reverse faults solves the problem.

As long as the operand indicated under this setting is asserted the trip action will be delayed by **TRIP DELAY ON EVOLV FAULTS** time. Typically this operand should combine reverse zone indications (such as zone 4 pickup) with a half-cycle pickup delay, and two-cycle dropout delay. This setting should be used only in single-pole tripping applications, when evolving faults are of importance, and slightly delayed operation on evolving faults could be traded for enhanced accuracy of single-pole tripping.

 TRIP DELAY ON EVOLV FAULTS: This setting should be used in conjunction with the REVERSE FAULT setting (see above). Typically this value should be set around half a power system cycle. This setting should be used only in singlepole tripping applications, when evolving faults are of importance, and slightly delayed operation on evolving faults could be traded for enhanced accuracy of single-pole tripping.

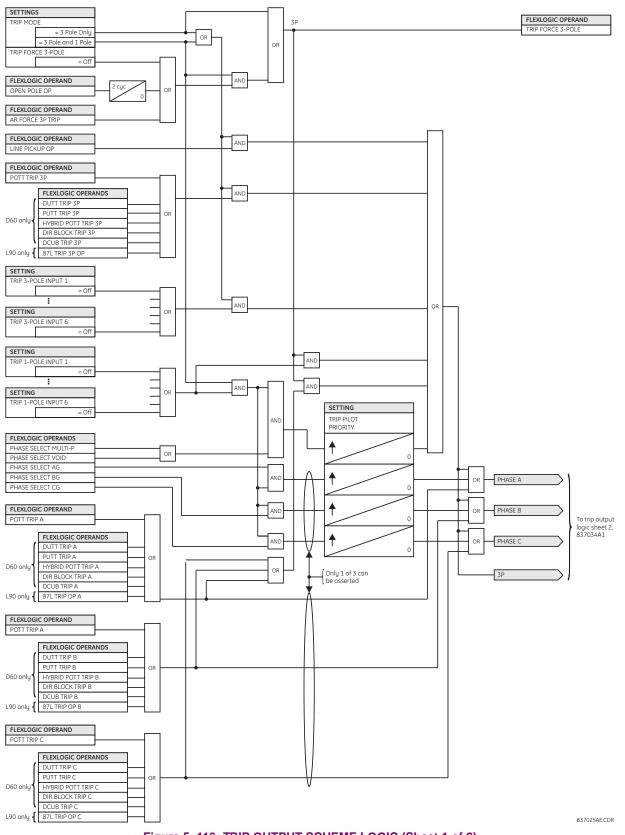
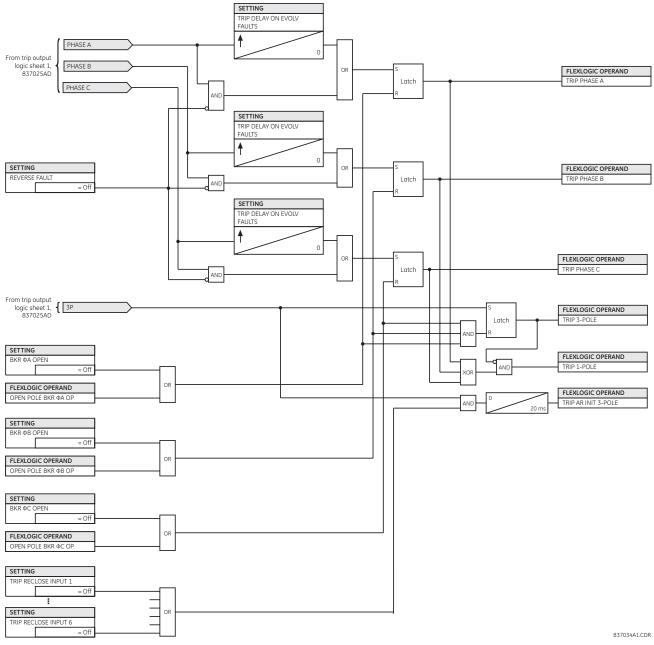



Figure 5–116: TRIP OUTPUT SCHEME LOGIC (Sheet 1 of 2)

5.6.5 SYNCHROCHECK

SYNCHROCHECK 1	SYNCHK1 FUNCTION: Disabled	Range:	Disabled, Enabled
MESSAGE	SYNCHK1 BLOCK: Off	Range:	FlexLogic™ operand
MESSAGE	SYNCHK1 V1 SOURCE: SRC 1	Range:	SRC 1, SRC 2, SRC 3, SRC 4
MESSAGE	SYNCHK1 V2 SOURCE: SRC 2	Range:	SRC 1, SRC 2, SRC 3, SRC 4
MESSAGE	SYNCHK1 MAX VOLT DIFF: 10000 V	Range:	0 to 400000 V in steps of 1
MESSAGE	SYNCHK1 MAX ANGLE DIFF: 30°	Range:	0 to 100° in steps of 1
MESSAGE	SYNCHK1 MAX FREQ DIFF: 1.00 Hz	Range:	0.00 to 2.00 Hz in steps of 0.01
MESSAGE	SYNCHK1 MAX FREQ HYSTERESIS: 0.06 Hz	Range:	0.00 to 0.10 Hz in steps of 0.01
MESSAGE	SYNCHK1 DEAD SOURCE SELECT: LV1 and DV2	Range:	None, LV1 and DV2, DV1 and LV2, DV1 or DV2, DV1 Xor DV2, DV1 and DV2
MESSAGE	SYNCHK1 DEAD V1 MAX VOLT: 0.30 pu	Range:	0.00 to 1.25 pu in steps of 0.01
MESSAGE	SYNCHK1 DEAD V2 MAX VOLT: 0.30 pu	Range:	0.00 to 1.25 pu in steps of 0.01
MESSAGE	SYNCHK1 LIVE V1 MIN VOLT: 0.70 pu	Range:	0.00 to 1.25 pu in steps of 0.01
MESSAGE	SYNCHK1 LIVE V2 MIN VOLT: 0.70 pu	Range:	0.00 to 1.25 pu in steps of 0.01
MESSAGE	SYNCHK1 TARGET: Self-reset	Range:	Self-reset, Latched, Disabled
MESSAGE	SYNCHK1 EVENTS: Disabled	Range:	Disabled, Enabled

PATH: SETTINGS \Rightarrow \bigcirc CONTROL ELEMENTS \Rightarrow \bigcirc SYNCHROCHECK \Rightarrow SYNCHROCHECK 1(2)

The are two identical synchrocheck elements available, numbered 1 and 2.

The synchronism check function is intended for supervising the paralleling of two parts of a system which are to be joined by the closure of a circuit breaker. The synchrocheck elements are typically used at locations where the two parts of the system are interconnected through at least one other point in the system.

Synchrocheck verifies that the voltages (V1 and V2) on the two sides of the supervised circuit breaker are within set limits of magnitude, angle and frequency differences. The time that the two voltages remain within the admissible angle difference is determined by the setting of the phase angle difference $\Delta\Phi$ and the frequency difference ΔF (slip frequency). It can be defined as the time it would take the voltage phasor V1 or V2 to traverse an angle equal to $2 \times \Delta\Phi$ at a frequency equal to the frequency difference ΔF . This time can be calculated by:

$$T = \frac{1}{\frac{360^{\circ}}{2 \times \Delta \Phi} \times \Delta F}$$
 (EQ 5.26)

where: $\Delta \Phi$ = phase angle difference in degrees; ΔF = frequency difference in Hz.

If one or both sources are de-energized, the synchrocheck programming can allow for closing of the circuit breaker using undervoltage control to by-pass the synchrocheck measurements (dead source function).

- SYNCHK1 V1 SOURCE: This setting selects the source for voltage V1 (see NOTES below).
- SYNCHK1 V2 SOURCE: This setting selects the source for voltage V2, which must not be the same as used for the V1 (see NOTES below).
- SYNCHK1 MAX VOLT DIFF: This setting selects the maximum primary voltage difference in volts between the two sources. A primary voltage magnitude difference between the two input voltages below this value is within the permissible limit for synchronism.
- SYNCHK1 MAX ANGLE DIFF: This setting selects the maximum angular difference in degrees between the two sources. An angular difference between the two input voltage phasors below this value is within the permissible limit for synchronism.
- SYNCHK1 MAX FREQ DIFF: This setting selects the maximum frequency difference in 'Hz' between the two sources. A frequency difference between the two input voltage systems below this value is within the permissible limit for synchronism.
- SYNCHK1 MAX FREQ HYSTERESIS: This setting specifies the required hysteresis for the maximum frequency difference of condition. The condition becomes satisfied when the frequency difference becomes lower than SYNCHK1 MAX FREQ DIFF. Once the Synchrocheck element has operated, the frequency difference must increase above the SYNCHK1 MAX FREQ DIFF + SYNCHK1 MAX FREQ HYSTERESIS sum to drop out (assuming the other two conditions, voltage and angle, remain satisfied).
- SYNCHK1 DEAD SOURCE SELECT: This setting selects the combination of dead and live sources that will by-pass synchronism check function and permit the breaker to be closed when one or both of the two voltages (V1 or/and V2) are below the maximum voltage threshold. A dead or live source is declared by monitoring the voltage level. Six options are available:

None:	Dead Source function is disabled
LV1 and DV2:	Live V1 and Dead V2
DV1 and LV2:	Dead V1 and Live V2
DV1 or DV2:	Dead V1 or Dead V2
DV1 Xor DV2:	Dead V1 exclusive-or Dead V2 (one source is Dead and the other is Live)
DV1 and DV2:	Dead V1 and Dead V2

- SYNCHK1 DEAD V1 MAX VOLT: This setting establishes a maximum voltage magnitude for V1 in 1 'pu'. Below this
 magnitude, the V1 voltage input used for synchrocheck will be considered "Dead" or de-energized.
- SYNCHK1 DEAD V2 MAX VOLT: This setting establishes a maximum voltage magnitude for V2 in 'pu'. Below this magnitude, the V2 voltage input used for synchrocheck will be considered "Dead" or de-energized.
- SYNCHK1 LIVE V1 MIN VOLT: This setting establishes a minimum voltage magnitude for V1 in 'pu'. Above this magnitude, the V1 voltage input used for synchrocheck will be considered "Live" or energized.
- SYNCHK1 LIVE V2 MIN VOLT: This setting establishes a minimum voltage magnitude for V2 in 'pu'. Above this magnitude, the V2 voltage input used for synchrocheck will be considered "Live" or energized.

NOTES ON THE SYNCHROCHECK FUNCTION:

1. The selected sources for synchrocheck inputs V1 and V2 (which must not be the same source) may include both a three-phase and an auxiliary voltage. The relay will automatically select the specific voltages to be used by the synchrocheck element in accordance with the following table.

NO.	V1 OR V2 (SOURCE Y)	V2 OR V1 (SOURCE Z)		ELECTED NATION	AUTO-SELECTED VOLTAGE
			SOURCE Y	SOURCE Z	
1	Phase VTs and Auxiliary VT	Phase VTs and Auxiliary VT	Phase	Phase	VAB
2	Phase VTs and Auxiliary VT	Phase VT	Phase	Phase	VAB
3	Phase VT	Phase VT	Phase	Phase	VAB

NO.	V1 OR V2 (SOURCE Y)	V2 OR V1 (SOURCE Z)		ELECTED NATION	AUTO-SELECTED VOLTAGE
			SOURCE Y	SOURCE Z	
4	Phase VT and Auxiliary VT	Auxiliary VT	Phase	Auxiliary	V auxiliary (as set for Source z)
5	Auxiliary VT	Auxiliary VT	Auxiliary	Auxiliary	V auxiliary (as set for selected sources)

The voltages V1 and V2 will be matched automatically so that the corresponding voltages from the two sources will be used to measure conditions. A phase to phase voltage will be used if available in both sources; if one or both of the Sources have only an auxiliary voltage, this voltage will be used. For example, if an auxiliary voltage is programmed to VAG, the synchrocheck element will automatically select VAG from the other source. If the comparison is required on a specific voltage, the user can externally connect that specific voltage to auxiliary voltage terminals and then use this "Auxiliary Voltage" to check the synchronism conditions.

If using a single CT/VT module with both phase voltages and an auxiliary voltage, ensure that <u>only</u> the auxiliary voltage is programmed in one of the sources to be used for synchrocheck.

Exception: Synchronism cannot be checked between Delta connected phase VTs and a Wye connected auxiliary voltage.

2. The relay measures frequency and Volts/Hz from an input on a given source with priorities as established by the configuration of input channels to the source. The relay will use the phase channel of a three-phase set of voltages if programmed as part of that source. The relay will use the auxiliary voltage channel only if that channel is programmed as part of the Source and a three-phase set is not.

5.6 CONTROL ELEMENTS

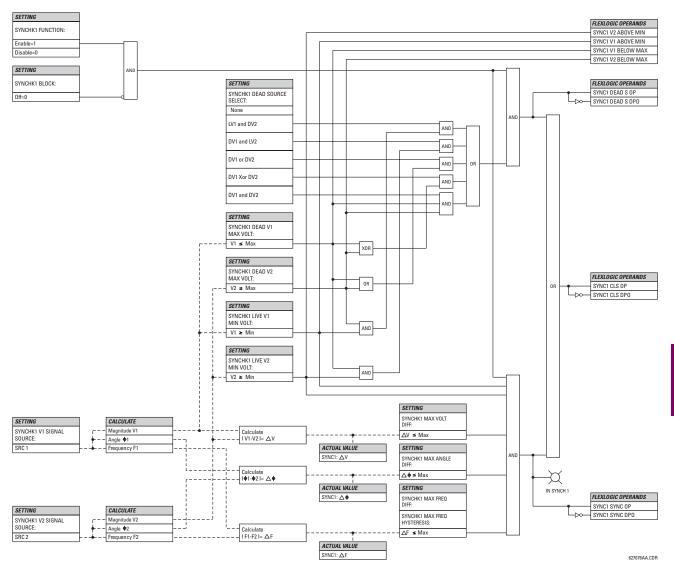
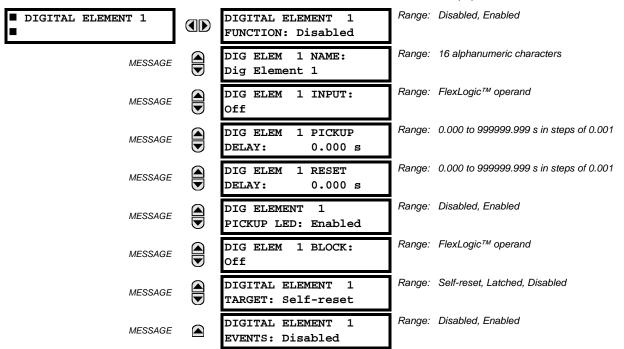
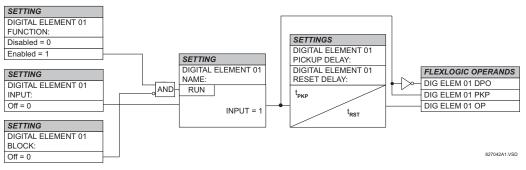



Figure 5–118: SYNCHROCHECK SCHEME LOGIC


5.6.6 DIGITAL ELEMENTS

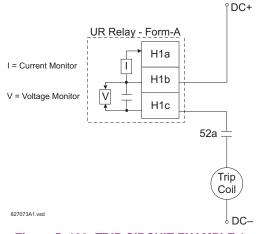
PATH: SETTINGS ⇔ ^① CONTROL ELEMENTS ⇒ ^① DIGITAL ELEMENTS ⇒ DIGITAL ELEMENT 1(48)

There are 48 identical digital elements available, numbered 1 to 48. A digital element can monitor any FlexLogic[™] operand and present a target message and/or enable events recording depending on the output operand state. The digital element settings include a name which will be referenced in any target message, a blocking input from any selected FlexLogic[™] operand, and a timer for pickup and reset delays for the output operand.

- **DIGITAL ELEMENT 1 INPUT:** Selects a FlexLogic[™] operand to be monitored by the digital element.
- DIGITAL ELEMENT 1 PICKUP DELAY: Sets the time delay to pickup. If a pickup delay is not required, set to "0".
- DIGITAL ELEMENT 1 RESET DELAY: Sets the time delay to reset. If a reset delay is not required, set to "0".
- **DIGITAL ELEMENT 1 PICKUP LED**: This setting enables or disabled the digital element pickup LED. When set to "Disabled", the operation of the pickup LED is blocked.

Figure 5–119: DIGITAL ELEMENT SCHEME LOGIC

CIRCUIT MONITORING APPLICATIONS:


Some versions of the digital input modules include an active voltage monitor circuit connected across form-A contacts. The voltage monitor circuit limits the trickle current through the output circuit (see technical specifications for form-A).

As long as the current through the voltage monitor is above a threshold (see technical specifications for form-A), the Flex-Logic[™] operand "Cont Op # VOn" will be set (# represents the output contact number). If the output circuit has a high resistance or the DC current is interrupted, the trickle current will drop below the threshold and the FlexLogic[™] operand "Cont Op # VOff" will be set. Consequently, the state of these operands can be used as indicators of the integrity of the circuits in which Form-A contacts are inserted.

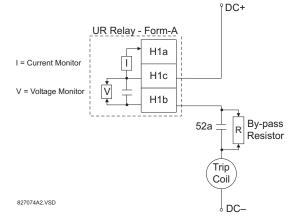
EXAMPLE 1: BREAKER TRIP CIRCUIT INTEGRITY MONITORING

In many applications it is desired to monitor the breaker trip circuit integrity so problems can be detected before a trip operation is required. The circuit is considered to be healthy when the voltage monitor connected across the trip output contact detects a low level of current, well below the operating current of the breaker trip coil. If the circuit presents a high resistance, the trickle current will fall below the monitor threshold and an alarm would be declared.

In most breaker control circuits, the trip coil is connected in series with a breaker auxiliary contact which is open when the breaker is open (see diagram below). To prevent unwanted alarms in this situation, the trip circuit monitoring logic must include the breaker position.

Assume the output contact H1 is a trip contact. Using the contact output settings, this output will be given an ID name, e.g. "Cont Op 1". Assume a 52a breaker auxiliary contact is connected to contact input H7a to monitor breaker status. Using the contact input settings, this input will be given an ID name, e.g. "Cont Ip 1" and will be set "On" when the breaker is closed. The settings to use digital element 1 to monitor the breaker trip circuit are indicated below (EnerVista UR Setup example shown):

🗄 Default 📑 Reset		
DIGITAL ELEMENT 1		
Enabled		
Bkr Trip Cct Out		
Cont Op 1 VOff (H1)		
0.200 s		
0.100 s		
Enabled		
Cont lp 1 Off(H5a)		
Self-reset		
Enabled		



The PICKUP DELAY setting should be greater than the operating time of the breaker to avoid nuisance alarms.

EXAMPLE 2: BREAKER TRIP CIRCUIT INTEGRITY MONITORING

If it is required to monitor the trip circuit continuously, independent of the breaker position (open or closed), a method to maintain the monitoring current flow through the trip circuit when the breaker is open must be provided (as shown in the figure below). This can be achieved by connecting a suitable resistor (see figure below) across the auxiliary contact in the trip circuit. In this case, it is not required to supervise the monitoring circuit with the breaker position – the **BLOCK** setting is selected to "Off". In this case, the settings are as follows (EnerVista UR Setup example shown).

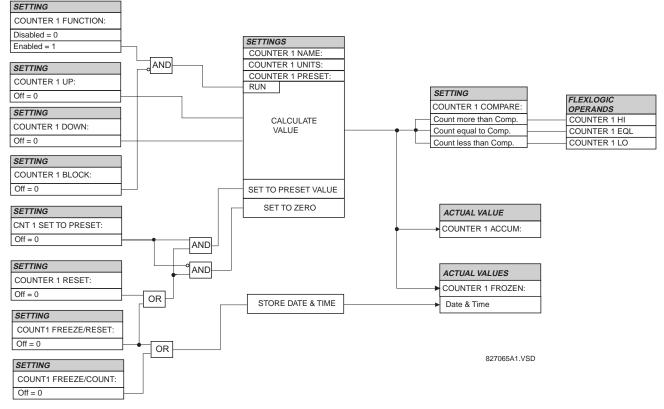
Digital Elements // D60_500.urs : C:\Document Save Restore Default Reset					
PARAMETER	DIGITAL ELEMENT 1				
Function	Enabled				
Digital Element 1 Name	Bkr Trip Cct Out				
Input	Cont Op 1 VOff (H1)				
Pickup Delay	0.200 s				
Reset Delay	0.100 s				
Pickup Led	Enabled				
Block	OFF				
Target	Self-reset				
Events	Enabled				
D60_500.urs Control Elements					

Table 5–21: VALUES OF RESISTOR 'R'

POWER SUPPLY (V DC)	RESISTANCE (OHMS)	POWER (WATTS)
24	1000	2
30	5000	2
48	10000	2
110	25000	5
125	25000	5
250	50000	5

5-218

5.6.7 DIGITAL COUNTERS


COUNTER 1 FUNCTION: Disabled Range: Disabled, Enabled MESSAGE COUNTER 1 NAME: Counter 1 Range: 12 alphanumeric characters MESSAGE COUNTER 1 UNITS: Range: 6 alphanumeric characters MESSAGE COUNTER 1 UNITS: Range: -2,147,483,648 to +2,147,483,647 MESSAGE COUNTER 1 PRESET: Range: -2,147,483,648 to +2,147,483,647 MESSAGE COUNTER 1 COMPARE: Range: -2,147,483,648 to +2,147,483,647 MESSAGE COUNTER 1 COMPARE: Range: -2,147,483,648 to +2,147,483,647 MESSAGE COUNTER 1 DOWNER Range: FlexLogic TM operand MESSAGE COUNTER 1 DOWN: Range: FlexLogic TM operand MESSAGE COUNTER 1 BLOCK: Off MESSAGE COUNTER 1 BLOCK: Range: FlexLogic TM operand MESSAGE COUNTER 1 RESET: Range: FlexLogic TM operand MESSAGE COUNTER 1 RESET: Range: FlexLogic TM operand MESSAGE COUNTER 1 RESET: Range: FlexLogic TM operand MESSAGE COUNTER 1 RESET: Range: FlexLogic TM operand MESSAGE COUNTER 1 RESET: Range: FlexLogic TM operand MESSAGE COUNT1 FREEZE/RESET: Range: FlexLogic TM operan				
MESSAGE Image: Counter 1 MESSAGE Image: Counter 1 MESSAGE Image: Counter 1 MESSAGE Image: Counter 1 MESSAGE Image: Counter 1 MESSAGE Image: Counter 1 MESSAGE Image: Counter 1 MESSAGE Image: Counter 1 MESSAGE Image: Counter 1 MESSAGE Image: Counter 1 Image: Counter 1 Image: Counter 1 MESSAGE Image: Counter 1 Image: Counter 1 Image: Counter 1 MESSAGE Image: Counter 1 Image: Counter 1 Image: Counter 1 MESSAGE Image: Counter 1 Image: Counter 1 Image: Counter 1 Image: Counter 1 Image: Counter 1 Image: Counter 1 Image: Counter 1 Image: Counter 1 Image: Counter 1 Image: Counter 1 Image: Counter 1 Image: Counter 1 Image: Counter 1 Image: Counter 1 Image: Counter 1 Image: Counter 1 Image: Counter 1 Image: Counter 1 Image: Counter 1 Image: Counter 1 Image: Counter 1			Range:	Disabled, Enabled
MESSAGE Image: -2,147,483,648 to +2,147,483,647 MESSAGE Image: -2,147,483,648 to +2,147,483,647 MESSAGE Image: Counter 1 compare: Range: -2,147,483,648 to +2,147,483,647 MESSAGE Image: Counter 1 compare: Range: -2,147,483,648 to +2,147,483,647 MESSAGE Image: Counter 1 up: Range: FlexLogic TM operand MESSAGE Image: Counter 1 up: Range: FlexLogic TM operand MESSAGE Image: Counter 1 block: Range: FlexLogic TM operand MESSAGE Image: Counter 1 block: Range: FlexLogic TM operand MESSAGE Image: Counter 1 block: Range: FlexLogic TM operand MESSAGE Image: Counter 1 block: Range: FlexLogic TM operand MESSAGE Image: Counter 1 reset: Range: FlexLogic TM operand MESSAGE Image: Counter 1 reset: Range: FlexLogic TM operand MESSAGE Image: Counter 1 reset: Range: FlexLogic TM operand MESSAGE Image: Counter 1 reset: Range: FlexLogic TM operand MESSAGE Image: Counter 1 reset: Range: FlexLogic TM operand MESSAGE Image: Counter 1 reset: Range: FlexLogic TM operand MESSAGE Image: FlexLogic TM operan	MESSAGI		Range:	12 alphanumeric characters
MESSAGE \bigcirc <	MESSAGI	COUNTER 1 UNITS:	Range:	6 alphanumeric characters
MESSAGE \bigcirc \bigcirc \bigcirc \bigcirc MESSAGE \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc MESSAGE \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc MESSAGE \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc MESSAGE \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc MESSAGE \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc MESSAGE \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc MESSAGE \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc MESSAGE \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc MESSAGE \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc MESSAGE \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc MESSAGE \bigcirc	MESSAGI		Range:	-2,147,483,648 to +2,147,483,647
MESSAGE Image: Contract for the contract for	MESSAGI		Range:	-2,147,483,648 to +2,147,483,647
MESSAGE Image: FlexLogic Theorem MESSAGE Image: FlexLogic Theore	MESSAGI		Range:	FlexLogic [™] operand
MESSAGE Image: FlexLogic TM operand MESSAGE Image: FlexLogic TM operand MESSAGE Image: FlexLogic TM operand MESSAGE Image: FlexLogic TM operand MESSAGE Image: FlexLogic TM operand MESSAGE Image: FlexLogic TM operand MESSAGE Image: FlexLogic TM operand MESSAGE Image: FlexLogic TM operand MESSAGE Image: FlexLogic TM operand MESSAGE Image: FlexLogic TM operand	MESSAGI		Range:	FlexLogic™ operand
MESSAGE Image: FlexLogic TM operand MESSAGE Image: FlexLogic TM operand MESSAGE Image: FlexLogic TM operand MESSAGE Image: FlexLogic TM operand MESSAGE Image: FlexLogic TM operand MESSAGE Image: FlexLogic TM operand MESSAGE Image: FlexLogic TM operand MESSAGE Image: FlexLogic TM operand	MESSAGI		Range:	FlexLogic™ operand
MESSAGE Image: FlexLogic™ operand MESSAGE Image: FlexLogic™ operand MESSAGE Image: FlexLogic™ operand	MESSAGI		Range:	FlexLogic™ operand
MESSAGE COUNT1 FREEZE/COUNT: Range: FlexLogic [™] operand	MESSAGI		Range:	FlexLogic™ operand
MESSAGE	MESSAGI		Range:	FlexLogic™ operand
	MESSAGI		Range:	FlexLogic™ operand

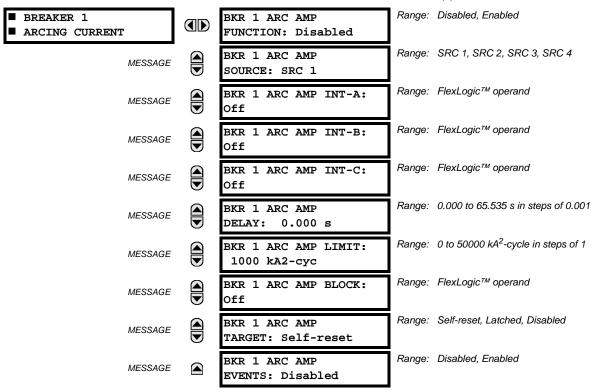
PATH: SETTINGS ⇔ ⊕ CONTROL ELEMENTS ⇒ ⊕ DIGITAL COUNTERS ⇒ COUNTER 1(8)

There are 8 identical digital counters, numbered from 1 to 8. A digital counter counts the number of state transitions from Logic 0 to Logic 1. The counter is used to count operations such as the pickups of an element, the changes of state of an external contact (e.g. breaker auxiliary switch), or pulses from a watt-hour meter.

- **COUNTER 1 UNITS:** Assigns a label to identify the unit of measure pertaining to the digital transitions to be counted. The units label will appear in the corresponding actual values status.
- **COUNTER 1 PRESET:** Sets the count to a required preset value before counting operations begin, as in the case where a substitute relay is to be installed in place of an in-service relay, or while the counter is running.
- COUNTER 1 COMPARE: Sets the value to which the accumulated count value is compared. Three FlexLogic[™] output
 operands are provided to indicate if the present value is 'more than (HI)', 'equal to (EQL)', or 'less than (LO)' the set
 value.
- **COUNTER 1 UP:** Selects the FlexLogic[™] operand for incrementing the counter. If an enabled UP input is received when the accumulated value is at the limit of +2,147,483,647 counts, the counter will rollover to -2,147,483,648.
- COUNTER 1 DOWN: Selects the FlexLogic[™] operand for decrementing the counter. If an enabled DOWN input is
 received when the accumulated value is at the limit of -2,147,483,648 counts, the counter will rollover to
 +2,147,483,647.
- **COUNTER 1 BLOCK:** Selects the FlexLogic[™] operand for blocking the counting operation. All counter operands are blocked.

- CNT1 SET TO PRESET: Selects the FlexLogic[™] operand used to set the count to the preset value. The counter will
 be set to the preset value in the following situations:
 - 1. When the counter is enabled and the **CNT1 SET TO PRESET** operand has the value 1 (when the counter is enabled and **CNT1 SET TO PRESET** operand is 0, the counter will be set to 0).
 - 2. When the counter is running and the CNT1 SET TO PRESET operand changes the state from 0 to 1 (CNT1 SET TO PRESET changing from 1 to 0 while the counter is running has no effect on the count).
 - 3. When a reset or reset/freeze command is sent to the counter and the CNT1 SET TO PRESET operand has the value 1 (when a reset or reset/freeze command is sent to the counter and the CNT1 SET TO PRESET operand has the value 0, the counter will be set to 0).
- **COUNTER 1 RESET:** Selects the FlexLogic[™] operand for setting the count to either "0" or the preset value depending on the state of the **CNT1 SET TO PRESET** operand.
- **COUNTER 1 FREEZE/RESET:** Selects the FlexLogic[™] operand for capturing (freezing) the accumulated count value into a separate register with the date and time of the operation, and resetting the count to "0".
- **COUNTER 1 FREEZE/COUNT:** Selects the FlexLogic[™] operand for capturing (freezing) the accumulated count value into a separate register with the date and time of the operation, and continuing counting. The present accumulated value and captured frozen value with the associated date/time stamp are available as actual values. If control power is interrupted, the accumulated and frozen values are saved into non-volatile memory during the power down operation.

5.6.8 MONITORING ELEMENTS


a) MAIN MENU

PATH: SETTINGS $\Leftrightarrow \mathbb{Q}$ Control elements $\Rightarrow \mathbb{Q}$ monitoring elements

MONITORINGELEMENTS	BREAKER 1ARCING CURRENT	See page 5-222.
MESSAGE	BREAKER 2ARCING CURRENT	See page 5-222.
MESSAGE	BREAKER 3ARCING CURRENT	See page 5-222.
MESSAGE	BREAKER 4ARCING CURRENT	See page 5-222.
MESSAGE	BREAKERFLASHOVER 1	See page 5-224.
MESSAGE	BREAKERFLASHOVER 2	See page 5-224.
MESSAGE	BREAKERFLASHOVER 3	See page 5-224.
MESSAGE	BREAKERFLASHOVER 4	See page 5-224.
MESSAGE	CONTINUOUS MONITOR	See page 5-227.
MESSAGE	CT FAILUREDETECTOR	See page 5-229.
MESSAGE	VT FUSE FAILURE 1	See page 5-231.
MESSAGE	■ VT FUSE FAILURE 2	See page 5-231.
MESSAGE	VT FUSE FAILURE 3	See page 5-231.
MESSAGE	■ VT FUSE FAILURE 4	See page 5-231.
MESSAGE	OPEN POLE	See page 5-232.

b) BREAKER ARCING CURRENT

PATH: SETTINGS ⇔ ♣ CONTROL ELEMENTS ⇒ ♣ MONITORING ELEMENTS ⇒ BREAKER 1(4) ARCING CURRENT

There is one breaker arcing current element available per CT bank, with a minimum of two elements. This element calculates an estimate of the per-phase wear on the breaker contacts by measuring and integrating the current squared passing through the breaker contacts as an arc. These per-phase values are added to accumulated totals for each phase and compared to a programmed threshold value. When the threshold is exceeded in any phase, the relay can set an output operand to "1". The accumulated value for each phase can be displayed as an actual value.

The operation of the scheme is shown in the following logic diagram. The same output operand that is selected to operate the output relay used to trip the breaker, indicating a tripping sequence has begun, is used to initiate this feature. A time delay is introduced between initiation and the starting of integration to prevent integration of current flow through the breaker before the contacts have parted. This interval includes the operating time of the output relay, any other auxiliary relays and the breaker mechanism. For maximum measurement accuracy, the interval between change-of-state of the operand (from 0 to 1) and contact separation should be measured for the specific installation. Integration of the measured current continues for 100 ms, which is expected to include the total arcing period.

The feature is programmed to perform fault duration calculations. Fault duration is defined as a time between operation of the disturbance detector occurring before initiation of this feature, and reset of an internal low-set overcurrent function. Correction is implemented to account for a non-zero reset time of the overcurrent function.

Breaker arcing currents and fault duration values are available under the ACTUAL VALUES \Rightarrow \Downarrow RECORDS \Rightarrow \Downarrow MAINTENANCE \Rightarrow BREAKER 1(4) menus.

- **BKR 1 ARC AMP INT-A(C)**: Select the same output operands that are configured to operate the output relays used to trip the breaker. In three-pole tripping applications, the same operand should be configured to initiate arcing current calculations for poles A, B and C of the breaker. In single-pole tripping applications, per-pole tripping operands should be configured to initiate the calculations for the poles that are actually tripped.
- **BKR 1 ARC AMP DELAY:** This setting is used to program the delay interval between the time the tripping sequence is initiated and the time the breaker contacts are expected to part, starting the integration of the measured current.
- BKR 1 ARC AMP LIMIT: Selects the threshold value above which the output operand is set.

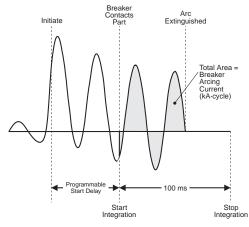


Figure 5–123: ARCING CURRENT MEASUREMENT

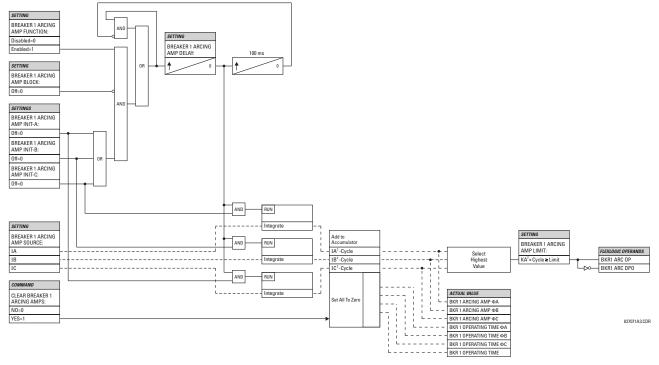


Figure 5–124: BREAKER ARCING CURRENT SCHEME LOGIC

c) BREAKER FLASHOVER

PATH: SETTINGS \Rightarrow \clubsuit CONTROL ELEMENTS \Rightarrow \clubsuit MONITORING ELEMENTS \Rightarrow BREAKER FLASHOVER 1(4)

BREAKERFLASHOVER 1	BKR 1 FLSHOVR FUNCTION: Disabled	Range:	Disabled, Enabled
MESSAGI	BKR 1 FLSHOVR SIDE 1 SRC: SRC 1	Range:	SRC 1, SRC 2, SRC 3, SRC 4
MESSAGI	BKR 1 FLSHOVR SIDE 2 SRC: None	Range:	None, SRC 1, SRC 2, SRC 3, SRC 4
MESSAGI	BKR 1 STATUS CLSD A: Off	Range:	FlexLogic™ operand
MESSAGI	BKR 1 STATUS CLSD B: Off	Range:	FlexLogic™ operand
MESSAGI	BKR 1 STATUS CLSD C: Off	Range:	FlexLogic™ operand
MESSAGI	BKR 1 FLSHOVR V PKP: 0.850 pu	Range:	0.000 to 1.500 pu in steps of 0.001
MESSAGI	BKR 1 FLSHOVR DIFF V PKP: 1000 V	Range:	0 to 100000 V in steps of 1
MESSAGI	BKR 1 FLSHOVR AMP PKP: 0.600 pu	Range:	0.000 to 1.500 pu in steps of 0.001
MESSAGI	BKR 1 FLSHOVR PKP DELAY: 0.100 s	Range:	0.000 to 65.535 s in steps of 0.001
MESSAGI	BKR 1 FLSHOVR SPV A: Off	Range:	FlexLogic™ operand
MESSAGI	BKR 1 FLSHOVR SPV B: Off	Range:	FlexLogic™ operand
MESSAGI	BKR 1 FLSHOVR SPV C: Off	Range:	FlexLogic™ operand
MESSAGI	BKR 1 FLSHOVR BLOCK: Off	Range:	FlexLogic™ operand
MESSAGI	BKR 1 FLSHOVR TARGET: Self-reset	Range:	Self-reset, Latched, Disabled
MESSAGI	BKR 1 FLSHOVR EVENTS: Disabled	Range:	Disabled, Enabled

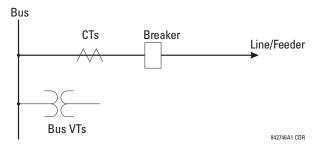
The detection of the breaker flashover is based on the following condition:

- 1. Breaker open,
- 2. Voltage drop measured from either side of the breaker during the flashover period,
- 3. Voltage difference drop, and
- 4. Measured flashover current through the breaker.

Furthermore, the scheme is applicable for cases where either one or two sets of three-phase voltages are available across the breaker.

THREE VT BREAKER FLASHOVER APPLICATION

When only one set of VTs is available across the breaker, the **BRK FLSHOVR SIDE 2 SRC** setting should be "None". To detect an open breaker condition in this application, the scheme checks if the per-phase voltages were recovered (picked up), the status of the breaker is open (contact input indicating the breaker status is off), and no flashover current is flowing. A contact showing the breaker status must be provided to the relay. The voltage difference will not be considered as a condition for open breaker in this part of the logic.



Voltages must be present prior to flashover conditions. If the three VTs are placed after the breaker on the line (or feeder), and the downstream breaker is open, the measured voltage would be zero and the flash-over element will not be initiated.

The flashover detection will reset if the current drops back to zero, the breaker closes, or the selected FlexLogic[™] operand for supervision changes to high. Using supervision through the **BRK FLSHOVR SPV** setting is recommended by selecting a trip operand that will not allow the flashover element to pickup prior to the trip.

The flashover detection can be used for external alarm, re-tripping the breaker, or energizing the lockout relay.

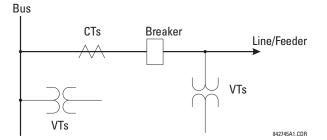
Consider the following configuration:

The source 1 (SRC1) phase currents are feeder CTs and phase voltages are bus VTs, and Contact Input 1 is set as Breaker 52a contact. The conditions prior to flashover detection are:

- 1. 52a status = 0
- 2. VAg, VBg, or VCg is greater than the pickup setting
- 3. IA, IB, IC = 0; no current flows through the breaker
- 4. ΔVA is greater than pickup (not applicable in this scheme)

The conditions at flashover detection are:

- 1. 52a status = 0
- 2. VAg, VBg, or VCg is lower than the pickup setting
- 3. IA, IB, or IC is greater than the pickup current flowing through the breaker
- 4. ΔVA is greater than pickup (not applicable in this scheme)


SIX VT BREAKER FLASHOVER APPLICATION

The per-phase voltage difference approaches zero when the breaker is closed. The is well below any typical minimum pickup voltage. Select the level of the BRK 1(2) FLSHOVR DIFF V PKP setting to be less than the voltage difference measured across the breaker when the close or open breaker resistors are left in service. Prior to flashover, the voltage difference is larger than BRK 1(2) FLSHOVR DIFF V PKP. This applies to either the difference between two live voltages per phase or when the voltage from one side of the breaker has dropped to zero (line de-energized), at least one per-phase voltage is larger than the BRK 1(2) FLSHOVR V PKP setting, and no current flows through the breaker poles. During breaker flashover, the per-phase voltages from both sides of the breaker drops below the pickup value defined by the BRK 1(2) FLSHOVR V PKP setting, the voltage difference drops below the pickup setting, and flashover current is detected. These flashover conditions initiate FlexLogicTM pickup operands and start the BRK 1(2) FLSHOVR PKP DELAY timer.

This application do not require detection of breaker status via a 52a contact, as it uses a voltage difference larger than the BRK 1(2) FLSHOVR DIFF V PKP setting. However, monitoring the breaker contact will ensure scheme stability.

5.6 CONTROL ELEMENTS

Consider the following configuration:

The source 1 (SRC1) phase currents are CTs and phase voltages are bus VTs. The source 2 (SRC2) phase voltages are line VTs. Contact input 1 is set as the breaker 52a contact (optional).

The conditions prior to flashover detection are:

- 1. ΔVA is greater than pickup
- 2. VAg, VBg, or VCg is greater than the pickup setting
- 3. IA, IB, IC = 0; no current flows through the breaker
- 4. 52a status = 0 (optional)

The conditions at flashover detection are:

- 1. ΔVA is less than pickup
- 2. VAg, VBg, or VCg is lower than the pickup setting
- 3. IA, IB, or IC is greater than the pickup current flowing through the breaker
- 4. 52a status = 0 (optional)

The element is operational only when phase-to-ground voltages are connected to relay terminals. The flashover element will not operate if delta voltages are applied.

The breaker flashover settings are described below.

- BRK 1 FLSHOVR SIDE 1 SRC: This setting specifies a signal source used to provide three-phase voltages and threephase currents from one side of the current breaker. The source selected as a setting and must be configured with breaker phase voltages and currents, even if only three (3) VTs are available across the breaker.
- BRK 1 FLSHOVR SIDE 2 SRC: This setting specifies a signal source used to provide another set of three phase voltages whenever six (6) VTs are available across the breaker.
- BRK 1 STATUS CLSD A to BRK 1 STATUS CLSD C: These settings specify FlexLogic[™] operands to indicate the open status of the breaker. A separate FlexLogic[™] operand can be selected to detect individual breaker pole status and provide flashover detection. The recommended setting is 52a breaker contact or another operand defining the breaker poles open status.
- BRK 1 FLSHOVR V PKP: This setting specifies a pickup level for the phase voltages from both sides of the breaker. If six VTs are available, opening the breaker leads to two possible combinations live voltages from only one side of the breaker, or live voltages from both sides of the breaker. Either case will set the scheme ready for flashover detection upon detection of voltage above the selected value. Set BRK FLSHOVR V PKP to 85 to 90% of the nominal voltage.
- BRK 1 FLSHOVR DIFF V PKP: This setting specifies a pickup level for the phase voltage difference when two VTs per
 phase are available across the breaker. The pickup voltage difference should be below the monitored voltage difference when close or open breaker resistors are left in service. The setting is selected as primary volts difference
 between the sources.
- BRK 1 FLSHOVR AMP PKP: This setting specifies the normal load current which can flow through the breaker. Depending on the flashover protection application, the flashover current can vary from levels of the charging current when the line is de-energized (all line breakers open), to well above the maximum line (feeder) load (line/feeder connected to load).
- BRK 1 FLSHOVR SPV A to BRK 1 FLSHOVR SPV C: These settings specifiy FlexLogic[™] operands (per breaker pole) that supervise the operation of the element per phase. Supervision can be provided by operation of other protec-

NOTE

tion elements, breaker failure, and close and trip commands. A six-cycle time delay applies after the selected Flex-Logic[™] operand resets.

• BRK FLSHOVR PKP DELAY: This setting specifies the time delay to operate after a pickup condition is detected.

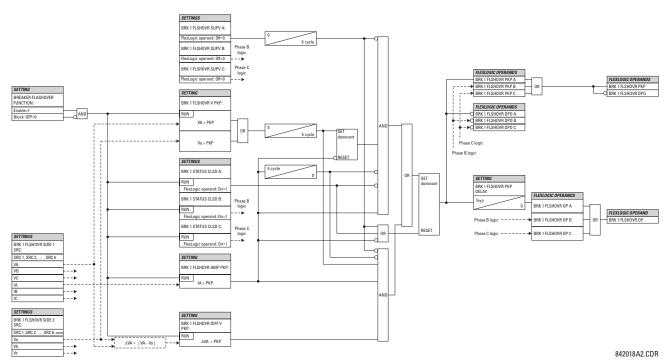


Figure 5–125: BREAKER FLASHOVER SCHEME LOGIC

d) CONTINUOUS MONITOR

$\textbf{PATH: SETTINGS} \Leftrightarrow \texttt{U} \textbf{ CONTROL ELEMENTS} \Rightarrow \texttt{U} \textbf{ MONITORING ELEMENTS} \Rightarrow \texttt{U} \textbf{ CONTINUOUS MONITOR}$

CONTINUOUS MONITOR	CONT MONITOR FUNCTION: Disabled	Range:	Disabled, Enabled
MESSAGE	CONT MONITOR I-OP: Off	Range:	FlexLogic™ operand Any Current Element(s) OP
MESSAGE	CONT MONITOR I-SUPV: Off	Range:	FlexLogic™ operand To supervise current logic, use 50DD OP
MESSAGE	CONT MONITOR V-OP: Off	Range:	FlexLogic™ operand Any Voltage Element(s) OP
MESSAGE	CONT MONITOR V-SUPV: Off	Range:	FlexLogic [™] operand. To supervise voltage logic, use VT FUSE FAIL OP
MESSAGE	CONT MONITOR TARGET: Self-reset	Range:	Self-reset, Latched, Disabled
MESSAGE	CONT MONITOR EVENTS: Disabled	Range:	Disabled, Enabled

5.6 CONTROL ELEMENTS

The continuous monitor logic is intended to detect the operation of any tripping element that has operated under normal load conditions; that is, when the disturbance detector has not operated. Because all tripping is supervised by the disturbance detector function, no trip will be issued under these conditions. This could occur when an element is incorrectly set so that it may misoperate under load. The continuous monitor can detect this state and issue an alarm and/or block the tripping of the relay.

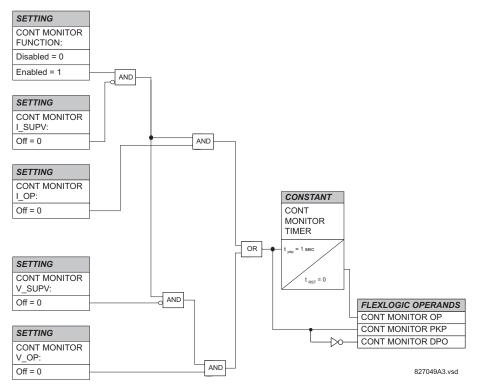


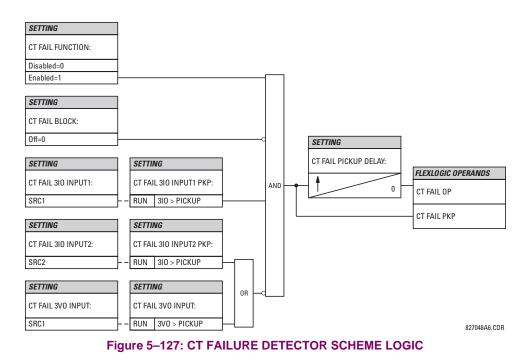
Figure 5–126: CONTINUOUS MONITOR SCHEME LOGIC

e) CT FAILURE DETECTOR

CT FAILUREDETECTOR	CT FAIL FUNCTION: Disabled	Range: Disabled, Enabled
MESSAGE	CT FAIL BLOCK: Off	Range: FlexLogic™ operand
MESSAGE	CT FAIL 3IO INPUT 1: SRC 1	Range: SRC 1, SRC 2, SRC 3, SRC 4
MESSAGE	CT FAIL 3IO INPUT 1 PKP: 0.20 pu	Range: 0.00 to 2.00 pu in steps of 0.01
MESSAGE	CT FAIL 3IO INPUT 2: SRC 2	Range: SRC 1, SRC 2, SRC 3, SRC 4
MESSAGE	CT FAIL 3IO INPUT 2 PKP: 0.20 pu	Range: 0.00 to 2.00 pu in steps of 0.01
MESSAGE	CT FAIL 3V0 INPUT: SRC 1	Range: SRC 1, SRC 2, SRC 3, SRC 4
MESSAGE	CT FAIL 3V0 INPUT PKP: 0.20 pu	Range: 0.00 to 2.00 pu in steps of 0.01
MESSAGE	CT FAIL PICKUP DELAY: 1.000 s	Range: 0.000 to 65.535 s in steps of 0.001
MESSAGE	CT FAIL TARGET: Self-reset	Range: Self-reset, Latched, Disabled
MESSAGE	CT FAIL EVENTS: Disabled	Range: Disabled, Enabled

PATH: SETTINGS ⇔ ⊕ CONTROL ELEMENTS ⇔ ⊕ MONITORING ELEMENTS ⇔ ⊕ CT FAILURE DETECTOR

The CT failure function is designed to detect problems with system current transformers used to supply current to the relay. This logic detects the presence of a zero-sequence current at the supervised source of current without a simultaneous zero-sequence current at another source, zero-sequence voltage, or some protection element condition.


The CT failure logic (see below) is based on the presence of the zero-sequence current in the supervised CT source and the absence of one of three or all of the three following conditions.

- 1. Zero-sequence current at different source current (may be different set of CTs or different CT core of the same CT).
- 2. Zero-sequence voltage at the assigned source.
- 3. Appropriate protection element or remote signal.

The CT failure settings are described below.

- CT FAIL FUNCTION: This setting enables or disables operation of the CT failure element.
- CT FAIL BLOCK: This setting selects a FlexLogic[™] operand to block operation of the element during some condition (for example, an open pole in process of the single pole tripping-reclosing) when CT fail should be blocked. Local signals or remote signals representing operation of some remote current protection elements via communication channels can also be chosen.
- **CT FAIL 3I0 INPUT 1:** This setting selects the current source for input 1. The most critical protection element should also be assigned to the same source.
- CT FAIL 3I0 INPUT 1 PICKUP: This setting selects the 3I_0 pickup value for input 1 (the main supervised CT source).
- CT FAIL 3I0 INPUT 2: This setting selects the current source for input 2. Input 2 should use a different set of CTs or a different CT core of the same CT. If 3I_0 does not exist at source 2, then a CT failure is declared.
- CT FAIL 3I0 INPUT 2 PICKUP: This setting selects the 3I_0 pickup value for input 2 (different CT input) of the relay.
- CT FAIL 3V0 INPUT: This setting selects the voltage source.

- CT FAIL 3V0 INPUT PICKUP: This setting specifies the pickup value for the 3V_0 source.
- CT FAIL PICKUP DELAY: This setting specifies the pickup delay of the CT failure element.

f) VT FUSE FAILURE

PATH: SETTINGS ⇔ ⊕ CONTROL ELEMENTS ⇔ ⊕ MONITORING ELEMENTS ⇔ ⊕ VT FUSE FAILURE 1(4)

■ VT FUSE FAILURE 1 ■ VT FUSE FAILURE 1 FUNCTION: Disab	
---	--

Every signal source includes a fuse failure scheme.

The VT fuse failure detector can be used to raise an alarm and/or block elements that may operate incorrectly for a full or partial loss of AC potential caused by one or more blown fuses. Some elements that might be blocked (via the BLOCK input) are distance, voltage restrained overcurrent, and directional current.

There are two classes of fuse failure that may occur:

- Class A: loss of one or two phases.
- Class B: loss of all three phases.

Different means of detection are required for each class. An indication of Class A failures is a significant level of negative sequence voltage, whereas an indication of class B failures is when positive sequence current is present and there is an insignificant amount of positive sequence voltage. These noted indications of fuse failure could also be present when faults are present on the system, so a means of detecting faults and inhibiting fuse failure declarations during these events is provided. Once the fuse failure condition is declared, it will be sealed-in until the cause that generated it disappears.

An additional condition is introduced to inhibit a fuse failure declaration when the monitored circuit is de-energized; positive sequence voltage and current are both below threshold levels.

The function setting enables and disables the fuse failure feature for each source.

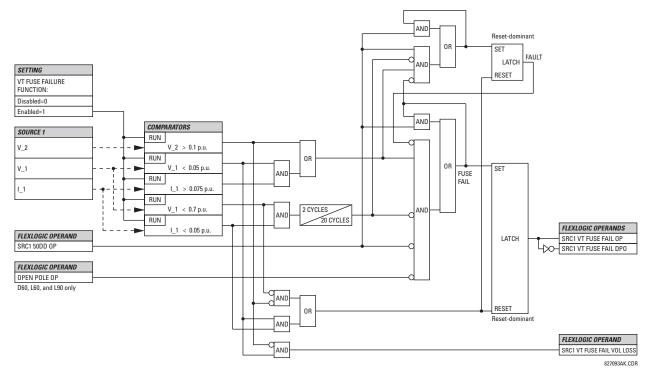
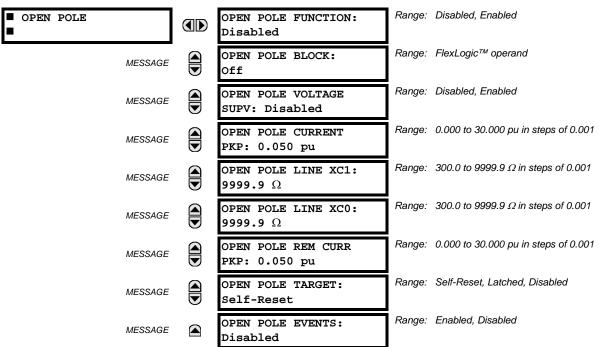



Figure 5–128: VT FUSE FAIL SCHEME LOGIC

g) OPEN POLE DETECTOR

PATH: SETTINGS \Rightarrow \clubsuit CONTROL ELEMENTS \Rightarrow \clubsuit MONITORING ELEMENTS \Rightarrow \clubsuit OPEN POLE

The open pole detector is intended to identify an open pole of the line circuit breaker. The scheme monitors the breakers auxiliary contacts, current in the circuit and optionally voltage on the line. The scheme generates output operands used to block the phase selector and some specific protection elements, thus preventing maloperation during the dead time of a single pole autoreclose cycle or any other open pole conditions.

In two breaker and breaker and a half applications, an open pole condition is declared when:

- both breakers have an open pole on the same phase or
- the current on the line drops below a threshold or
- the current and voltage on the line drop below a threshold.

The Open Pole feature uses signals defined by the **GROUPED ELEMENTS** \Rightarrow **SETTING GROUP 1(6)** \Rightarrow **DISTANCE**

The OPEN POLE CURRENT PICKUP setting establishes the current threshold below which an open pole is declared.

The **OPEN POLE LINE XC1** setting specifies positive-sequence reactance of the entire line. If shunt reactors are applied, this value should be a net capacitive reactance of the line and the reactors installed between the line breakers. The value is entered in secondary ohms. This setting is relevant if open pole condition at the remote end of the line is to be sensed and utilized by the relay.

The **OPEN POLE LINE XCO** setting specifies zero-sequence reactance of the entire line. If shunt reactors are applied, this value should be a net capacitive reactance of the line and the reactors installed between the line breakers. The value shall be entered in secondary ohms. This setting is relevant if open pole condition at the remote end of the line is to be sensed and utilized by the relay (OPEN POLE REM OP FlexLogic[™] operand).

The **OPEN POLE REM CURR PKP** setting specifies pickup level for the remote-end current estimated by the relay as the local current compensated by the calculated charging current. The latter is calculated based on the local voltages and the capacitive reactances of the line. This setting is relevant if open pole condition at the remote end of the line is to be sensed and utilized by the relay (OPEN POLE REM OP FlexLogic[™] operand).

For convenience, the position of the breaker poles defined in the Breaker Control feature and available as FlexLogic[™] operand BREAKER 1/2 ΦA CLSD through BREAKER 1/2 ΦC CLSD and BREAKER 1/2 OOS are used by the Open Pole feature. For correct operation of the Open Pole Detector, the Breaker Control, Trip Output, and Single Pole Autoreclose features

5 SETTINGS

must be enabled and configured properly. When used in configuration with only one breaker, the **BREAKER 2 FUNCTION** should be "Enabled" and the **BREAKER 2 OUT OF SV** setting should be "On" (see the Breaker Control section earlier in this Chapter for additional details).

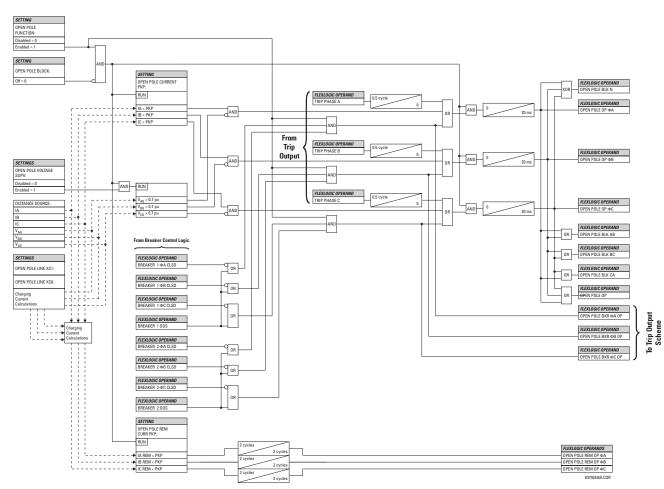


Figure 5–129: OPEN POLE DETECTOR LOGIC

Range: Disabled, Enabled POTT SCHEME POTT SCHEME FUNCTION: Disabled Range: Disabled, Enabled POTT PERMISSIVE MESSAGE ECHO: Disabled Range: 0.000 to 65.535 s in steps of 0.001 POTT RX PICKUP MESSAGE DELAY: 0.000 s Range: 0.000 to 65.535 s in steps of 0.001 TRANS BLOCK PICKUP MESSAGE DELAY: 0.020 s Range: 0.000 to 65.535 s in steps of 0.001 TRANS BLOCK RESET MESSAGE DELAY: 0.090 s Range: 0.000 to 65.535 s in steps of 0.001 ECHO DURATION: MESSAGE 0.100 s Range: 0.000 to 65.535 s in steps of 0.001 ECHO LOCKOUT: MESSAGE 0.250 s Range: 0.000 to 65.535 s in steps of 0.001 LINE END OPEN PICKUP MESSAGE DELAY: 0.050 s Range: 0.000 to 65.535 s in steps of 0.001 POTT SEAL-IN MESSAGE DELAY: 0.400 s Range: FlexLogic[™] operand GND DIR O/C FWD: MESSAGE Off Range: FlexLogic[™] operand POTT RX: MESSAGE Off

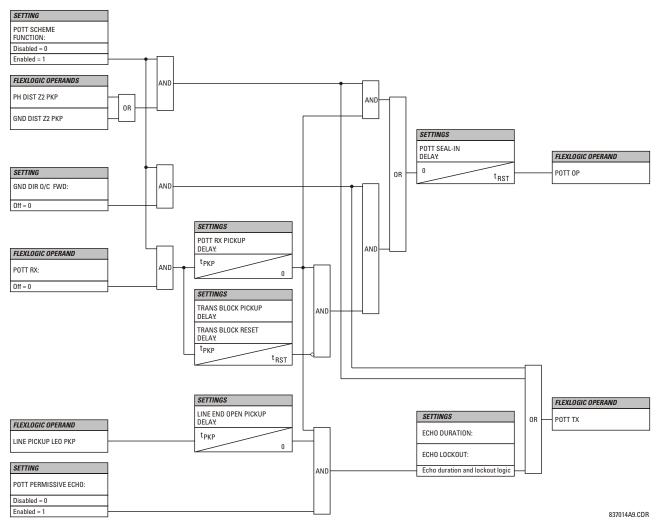
a) PERMISSIVE OVER-REACHING TRANSFER TRIP (POTT)

PATH: SETTINGS \Rightarrow $CONTROL ELEMENTS <math>\Rightarrow$ $PILOT SCHEMES \Rightarrow$ POTT SCHEME

This scheme is intended for two-terminal line applications only. It uses an over-reaching zone 2 distance element to essentially compare the direction to a fault at both the ends of the line. Ground directional overcurrent functions available in the relay can be used in conjunction with the zone 2 distance element to key the scheme and initiate its operation. This provides increased coverage for high resistance faults.

For proper scheme operation, the zone 2 phase and ground distance elements must be enabled, configured, and set per the rules of distance relaying. The line pickup element should be enabled, configured and set properly to detect line-endopen/weak-infeed conditions. If used by this scheme, the selected ground directional overcurrent function(s) must be enabled, configured, and set accordingly.

- POTT PERMISSIVE ECHO: If set to "Enabled" this setting will result in sending a permissive echo signal to the remote end. The permissive signal is echoed back upon receiving a reliable POTT RX signal from the remote end while the line-end-open condition is identified by the line pickup logic. The permissive echo is programmed as a one-shot logic. The echo is sent only once and then the echo logic locks out for a settable period of time (ECHO LOCKOUT setting). The duration of the echo pulse does not depend on the duration or shape of the received POTT RX signal but is settable as ECHO DURATION.
- POTT RX PICKUP DELAY: This setting enables the relay to cope with spurious receive signals. The delay should be . set longer than the longest spurious TX signal that can occur simultaneously with the zone 2 pickup. The selected delay will increase the response time of the scheme.
- TRANS BLOCK PICKUP DELAY: This setting defines a transient blocking mechanism embedded in the POTT scheme for coping with the exposure of a ground directional overcurrent function (if used) to current reversal conditions. The transient blocking mechanism applies to the ground overcurrent path only as the reach settings for the zone 2 distance functions is not expected to be long for two-terminal applications, and the security of the distance functions is not endangered by the current reversal conditions. Upon receiving the POTT RX signal, the transient blocking mechanism allows the RX signal to be passed and aligned with the GND DIR O/C FWD indication only for a period of time


defined as **TRANS BLOCK PICKUP DELAY**. After that the ground directional overcurrent path will be virtually disabled for a period of time specified as **TRANS BLOCK RESET DELAY**.

The **TRANS BLOCK PICKUP DELAY** should be long enough to give the selected ground directional overcurrent function time to operate, but not longer than the fastest possible operation time of the protection system that can create current reversal conditions within the reach of the selected ground directional overcurrent function. This setting should take into account the **POTT RX PICKUP DELAY**. The POTT RX signal is shaped for aligning with the ground directional indication as follows: the original RX signal is delayed by the **POTT RX PICKUP DELAY**, then terminated at **TRANS BLOCK PICKUP DELAY** after the pickup of the original POTT TX signal, and eventually, locked-out for **TRANS BLOCK RESET DELAY**.

- TRANS BLOCK RESET DELAY: This setting defines a transient blocking mechanism embedded in the POTT scheme for coping with the exposure of a ground directional overcurrent function (if used) to current reversal conditions (see also the TRANS BLOCK PICKUP DELAY). This delay should be selected long enough to cope with transient conditions including not only current reversals but also spurious negative and zero-sequence currents occurring during breaker operations. The breaker failure time of the surrounding protection systems within the reach of the ground directional function used by the POTT scheme may be considered to make sure that the ground directional function is not jeopardized during delayed breaker operations.
- ECHO DURATION: This setting defines the guaranteed and exact duration of the echo pulse. The duration does not depend on the duration and shape of the received POTT RX signal. This setting enables the relay to avoid a permanent lock-up of the transmit/receive loop.
- ECHO LOCKOUT: This setting defines the lockout period for the echo logic after sending the echo pulse.
- LINE END OPEN PICKUP DELAY: This setting defines the pickup setting for validation of the line end open conditions as detected by the Line Pickup logic through the LINE PICKUP LEO PKP FlexLogic[™] operand. The validated line end open condition is a requirement for the POTT scheme to return a received echo signal (if the echo feature is enabled). The value of this setting should take into account the principle of operation and settings of the line pickup element.
- **POTT SEAL-IN DELAY:** The output FlexLogic[™] operand (POTT OP) is produced according to the POTT scheme logic. A seal-in time delay is applied to this operand for coping with noisy communication channels. This setting specifies a minimum guaranteed duration of the POTT OP pulse.
- GND DIR O/C FWD: This setting selectes the FlexLogic[™] operand (if any) of a protection element used in addition to zone 2 for identifying faults on the protected line, and thus, for keying the communication channel and initiating operation of the scheme. Good directional integrity is the key requirement for an over-reaching forward-looking protection element used as GND DIR O/C FWD. Even though any FlexLogic[™] operand could be used as GND DIR O/C FWD allowing the user to combine responses of various protection elements, or to apply extra conditions through FlexLogic[™] equations, this extra signal is primarily meant to be the output operand from either the negative-sequence directional over-current or neutral directional overcurrent elements. Both of these elements have separate forward and reverse output operands. The forward indication should be used (NEG SEQ DIR OC1 FWD or NEUTRAL DIR OC1 FWD).
- **POTT RX:** This setting enables the user to select the FlexLogic[™] operand that represents the receive signal (RX) for the scheme. Typically an input contact interfacing with a signaling system is used. Other choices include remote inputs and FlexLogic[™] equations. The POTT transmit signal (TX) should be appropriately interfaced with the signaling system by assigning the output FlexLogic[™] operand (POTT TX) to an output contact. The remote output mechanism is another choice.

The output operand from the scheme (POTT OP) must be configured to interface with other relay functions, output contacts in particular, in order to make the scheme fully operational. Typically, the output operand should be programmed to initiate a trip, breaker fail, and autoreclose, and drive a user-programmable LED as per user application.

5.6 CONTROL ELEMENTS

5

GE Multilin

5.6.10 AUTORECLOSE

PATH: SETTINGS \Rightarrow \square CONTROL ELEMENTS \Rightarrow \square AUTORECLOSE \Rightarrow AUTORECLOSE

AUTORECLOSE	AR FUNCTION: Disabled	Range:	Disabled, Enabled
MESSAGE	AR MODE: 1 & 3 Pole	Range:	1 & 3 Pole, 1 Pole, 3 Pole-A, 3 Pole-B
MESSAGE	AR MAX NUMBER OF SHOTS: 2	Range:	1, 2, 3, 4
MESSAGE	AR BLOCK BKR1: Off	Range:	FlexLogic™ operand
MESSAGE	AR CLOSE TIME BKR 1: 0.10 s	Range:	0.00 to 655.35 s in steps of 0.01
MESSAGE	AR BKR MAN CLOSE: Off	Range:	FlexLogic™ operand
MESSAGE	AR BLK TIME UPON MAN CLS: 10.00 s	Range:	0.00 to 655.35 s in steps of 0.01
MESSAGE	AR 1P INIT: Off	Range:	FlexLogic™ operand
MESSAGE	AR 3P INIT: Off	Range:	FlexLogic™ operand
MESSAGE	AR 3P TD INIT: Off	Range:	FlexLogic™ operand
MESSAGE	AR MULTI-P FAULT: Off	Range:	FlexLogic™ operand
MESSAGE	BKR ONE POLE OPEN: Off	Range:	FlexLogic™ operand
MESSAGE	BKR 3 POLE OPEN: Off	Range:	FlexLogic™ operand
MESSAGE	AR 3-P DEAD TIME 1: 0.50 s	Range:	0.00 to 655.35 s in steps of 0.01
MESSAGE	AR 3-P DEAD TIME 2: 1.20 s	Range:	0.00 to 655.35 s in steps of 0.01
MESSAGE	AR 3-P DEAD TIME 3: 2.00 s	Range:	0.00 to 655.35 s in steps of 0.01
MESSAGE	AR 3-P DEAD TIME 4: 4.00 s	Range:	0.00 to 655.35 s in steps of 0.01
MESSAGE	AR EXTEND DEAD T 1: Off	Range:	FlexLogic™ operand
MESSAGE	AR DEAD TIME 1 EXTENSION: 0.50 s		0.00 to 655.35 s in steps of 0.01
MESSAGE	AR RESET: Off	Range:	FlexLogic™ operand
MESSAGE	AR RESET TIME: 60.00 s	Range:	0 to 655.35 s in steps of 0.01

MESSAGE	AR BKR CLOSED: Off	Range:	FlexLogic™ operand
MESSAGE	AR BLOCK: Off	Range:	FlexLogic [™] operand
MESSAGE	AR PAUSE: Off	Range:	FlexLogic™ operand
MESSAGE	AR INCOMPLETE SEQ TIME: 5.00 s	Range:	0 to 655.35 s in steps of 0.01
MESSAGE	AR BLOCK BKR2: Off	Range:	FlexLogic [™] operand
MESSAGE	AR CLOSE TIME BKR2: 0.10 s	Range:	0.00 to 655.35 s in steps of 0.01
MESSAGE	AR TRANSFER 1 TO 2: No	Range:	Yes, No
MESSAGE	AR TRANSFER 2 TO 1: No	Range:	Yes, No
MESSAGE	AR BKR1 FAIL OPTION: Continue	Range:	Continue, Lockout
MESSAGE	AR BKR2 FAIL OPTION: Continue	Range:	Continue, Lockout
MESSAGE	AR 1-P DEAD TIME: 1.00 s	Range:	0 to 655.35 s in steps of 0.01
MESSAGE	AR BKR SEQUENCE: 1-2	Range:	1, 2, 1&2, 1–2, 2–1
MESSAGE	AR TRANSFER TIME: 4.00 s	Range:	0 to 655.35 s in steps of 0.01
MESSAGE	AR BUS FLT INIT: Off	Range:	FlexLogic [™] operand
MESSAGE	AR EVENT: Disabled	Range:	Enabled, Disabled

The autoreclose scheme is intended for use on transmission lines with circuit breakers operated in both the single pole and three pole modes, in one or two breaker arrangements. The autoreclose scheme provides four programs with different operating cycles, depending on the fault type. Each of the four programs can be set to trigger up to four reclosing attempts. The second, third, and fourth attempts always perform three-pole reclosing and have independent dead time delays.

When used in two breaker applications, the reclosing sequence is selectable. The reclose signal can be sent to one selected breaker only, to both breakers simultaneously or to both breakers in sequence (one breaker first and then, after a delay to check that the reclose was successful, to the second breaker). When reclosing in sequence, the first breaker should reclose with either the single-pole or three-pole dead time according to the fault type and reclose mode; the second breaker should follow the successful reclosure of the first breaker. When reclosing simultaneously, for the first shot both breakers should reclose with either the single-pole or three-pole dead time, according to the fault type and the reclose mode.

The signal used to initiate the autoreclose scheme is the trip output from protection. This signal can be single pole tripping for single phase faults and three phase tripping for multi-phase faults. The autoreclose scheme has five operating states.

STATE	CHARACTERISTICS
Enabled	Scheme is permitted to operate
Disabled	Scheme is not permitted to operate
Reset	Scheme is permitted to operate and shot count is reset to 0
Reclose in progress	Scheme has been initiated but the reclose cycle is not finished (successful or not)
Lockout	Scheme is not permitted to operate until reset received

AR PROGRAMS:

The autorecloser provides four programs that can cause from one to four reclose attempts (shots). After the first shot, all subsequent recloses will always be three-pole. If the maximum number of shots selected is "1" (only one reclose attempt) and the fault is persistent, after the first reclose the scheme will go to lockout upon another Initiate signal.

For the 3-pole reclose programs (modes 3 and 4), an AR FORCE 3-P FlexLogic[™] operand is set. This operand can be used in connection with the tripping logic to cause a three-pole trip for single-phase faults.

MODE	AR MODE	FIRST	SHOT	SECOND SHOT		THIRD SHOT		FOURTH SHOT	
		SINGLE- PHASE FAULT	MULTI- PHASE FAULT	SINGLE- PHASE FAULT	MULTI- PHASE FAULT	SINGLE- PHASE FAULT	MULTI- PHASE FAULT	SINGLE- PHASE FAULT	MULTI- PHASE FAULT
1	1 & 3 POLE	1 POLE	3 POLE	3 POLE or LO	3 POLE or LO	3 POLE or LO	3 POLE or LO	3 POLE or LO	3 POLE or LO
2	1 POLE	1 POLE	LO	3 POLE or LO	3 POLE or LO	3 POLE or LO	3 POLE or LO	3 POLE or LO	3 POLE or LO
3	3 POLE-A	3 POLE	LO	3 POLE or LO	LO	3 POLE or LO	LO	3 POLE or LO	LO
4	3 POLE-B	3 POLE	3 POLE	3 POLE or LO	3 POLE or LO	3 POLE or LO	3 POLE or LO	3 POLE or LO	3 POLE or LO

Table 5–22: AUTORECLOSE PROGRAMS

The four autoreclose modes are described below:

- 1. "1 & 3 Pole": In this mode, the autorecloser starts the AR 1-P DEAD TIME timer for the first shot if the autoreclose is single-phase initiated, the AR 3-P DEAD TIME 1 timer if the autoreclose is three-pole initiated, and the AR 3-P DEAD TIME 2 timer if the autoreclose is three-phase time delay initiated. If two or more shots are enabled, the second, third, and fourth shots are always three-pole and start the AR 3-P DEAD TIME 2(4) timers.
- 2. "1 Pole": In this mode, the autorecloser starts the AR 1-P DEAD TIME for the first shot if the fault is single phase. If the fault is three-phase or a three-pole trip on the breaker occurred during the single-pole initiation, the scheme goes to lockout without reclosing. If two or more shots are enabled, the second, third, and fourth shots are always three-pole and start the AR 3-P DEAD TIME 2(4) timers.
- 3. "3 Pole-A": In this mode, the autorecloser is initiated only for single phase faults, although the trip is three pole. The autorecloser uses the AR 3-P DEAD TIME 1 for the first shot if the fault is single phase. If the fault is multi phase the scheme will go to Lockout without reclosing. If two or more shots are enabled, the second, third, and fourth shots are always three-phase and start the AR 3-P DEAD TIME 2(4) timers.
- 4. "3 Pole-B": In this mode, the autorecloser is initiated for any type of fault and starts the **AR 3-P DEAD TIME 1** for the first shot. If the initiating signal is **AR 3P TD INIT** the scheme starts **AR 3-P DEAD TIME 2** for the first shot. If two or more shots are enabled, the second, third, and fourth shots are always three-phase and start the **AR 3-P DEAD TIME 2(4)** timers.

BASIC RECLOSING OPERATION:

Reclosing operation is determined primarily by the **AR MODE** and **AR BKR SEQUENCE** settings. The reclosing sequences are started by the initiate inputs. A reclose initiate signal will send the scheme into the reclose-in-progress (RIP) state, asserting the AR RIP FlexLogic[™] operand. The scheme is latched into the RIP state and resets only when an AR CLS BKR 1 (autoreclose breaker 1) or AR CLS BKR 2 (autoreclose breaker 2) operand is generated or the scheme goes to the Lockout state.

The dead time for the initial reclose operation will be determined by either the **AR 1-P DEAD TIME**, **AR 3-P DEAD TIME 1**, or **AR 3-P DEAD TIME 2** setting, depending on the fault type and the mode selected. After the dead time interval the scheme will assert the AR CLOSE BKR 1 or AR CLOSE BKR 2 operands, as determined by the sequence selected. These operands are latched until the breaker closes or the scheme goes to Reset or Lockout.

There are three initiate programs: single pole initiate, three pole initiate and three pole, time delay initiate. Any of these reclose initiate signals will start the reclose cycle and set the reclose-in-progress (AR RIP) operand. The reclose-in-progress operand is sealed-in until the Lockout or Reset signal appears.

The three-pole initiate and three-pole time delay initiate signals are latched until the CLOSE BKR1 OR BKR2 or Lockout or Reset signal appears.

AR PAUSE:

The pause input offers the possibility of freezing the autoreclose cycle until the pause signal disappears. This may be done when a trip occurs and simultaneously or previously, some conditions are detected such as out-of step or loss of guard frequency, or a remote transfer trip signal is received. The pause signal blocks all three dead timers. When the 'pause' signal disappears the autoreclose cycle is resumed by initiating **AR 3-P DEAD TIME 2**.

This feature can be also used when a transformer is tapped from the protected line and a reclose is not desirable until the transformer is removed from the line. In this case, the reclose scheme is 'paused' until the transformer is disconnected. The **AR PAUSE** input will force a three-pole trip through the **3-P DEADTIME 2** path.

EVOLVING FAULTS:

1.25 cycles after the single pole dead time has been initiated, the AR FORCE 3P TRIP operand is set and it will be reset only when the scheme is reset or goes to Lockout. This will ensure that when a fault on one phase evolves to include another phase during the single pole dead time of the auto-recloser the scheme will force a 3 pole trip and reclose.

RECLOSING SCHEME OPERATION FOR ONE BREAKER:

• **Permanent Fault**: Consider Mode 1, which calls for 1-Pole or 3-Pole Time Delay 1 for the first reclosure and 3-Pole Time Delay 2 for the second reclosure, and assume a permanent fault on the line. Also assume the scheme is in the Reset state. For the first single-phase fault the AR 1-P DEAD TIME timer will be started, while for the first multi-phase fault the AR 3-P DEAD TIME 1 timer will be started. If the AR 3P TD INIT signal is high, the AR 3-P DEAD TIME 2 will be started for the first shot.

If AR MAX NO OF SHOTS is set to "1", upon the first reclose the shot counter is set to 1. Upon reclosing, the fault is again detected by protection and reclose is initiated. The breaker is tripped three-pole through the AR SHOT COUNT >0 operand that will set the AR FORCE 3P operand. Because the shot counter has reached the maximum number of shots permitted the scheme is sent to the Lockout state.

If **AR MAX NO OF SHOTS** is set to "2", upon the first reclose the shot counter is set to 1. Upon reclosing, the fault is again detected by protection and reclose is initiated. The breaker is tripped three-pole through the AR SHOT COUNT >0 operand that will set the AR FORCE 3P operand. After the second reclose the shot counter is set to 2. Upon reclosing, the fault is again detected by protection, the breaker is tripped three-pole, and reclose is initiated again. Because the shot counter has reached the maximum number of shots permitted the scheme is sent to the lockout state.

• **Transient Fault**: When a reclose output signal is sent to close the breaker the reset timer is started. If the reclosure sequence is successful (there is no initiating signal and the breaker is closed) the reset timer will time out returning the scheme to the reset state with the shot counter set to "0" making it ready for a new reclose cycle.

RECLOSING SCHEME OPERATION FOR TWO BREAKERS:

- Permanent Fault: The general method of operation is the same as that outlined for the one breaker applications except for the following description, which assumes AR BKR SEQUENCE is "1-2" (reclose Breaker 1 before Breaker 2) The signal output from the dead time timers passes through the breaker selection logic to initiate reclosing of Breaker 1. The Close Breaker 1 signal will initiate the Transfer Timer. After the reclose of the first breaker the fault is again detected by the protection, the breaker is tripped three pole and the autoreclose scheme is initiated. The Initiate signal will stop the transfer timer. After the 3-P dead time times out the Close Breaker 1 signal will close first breaker again and will start the transfer timer. Since the fault is permanent the protection will trip again initiating the autoreclose scheme that will be sent to Lockout by the SHOT COUNT = MAX signal.
- **Transient Fault**: When the first reclose output signal is sent to close Breaker 1, the reset timer is started. The close Breaker 1 signal initiates the transfer timer that times out and sends the close signal to the second breaker. If the reclosure sequence is successful (both breakers closed and there is no initiating signal) the reset timer will time out, returning the scheme to the reset state with the shot counter set to 0. The scheme will be ready for a new reclose cycle.

AR BKR1(2) RECLS FAIL:

If the selected sequence is "1–2" or "2–1" and after the first or second reclose attempt the breaker fails to close, there are two options. If the **AR BKR 1(2) FAIL OPTION** is set to "Lockout", the scheme will go to lockout state. If the **AR BKR 1(2) FAIL OPTION** is set to "Continue", the reclose process will continue with Breaker 2. At the same time the shot counter will be decreased (since the closing process was not completed).

SCHEME RESET AFTER RECLOSURE:

When a reclose output signal is sent to close either breaker 1 or 2 the reset timer is started. If the reclosure sequence is successful (there is no initiating signal and the breakers are closed) the reset timer will time out, returning the scheme to the reset state, with the shot counter set to 0, making it ready for a new reclose cycle.

In two breaker schemes, if one breaker is in the out-of-service state and the other is closed at the end of the reset time, the scheme will also reset. If at the end of the reset time at least one breaker, which is not in the out-of-service state, is open the scheme will be sent to Lockout.

The reset timer is stopped if the reclosure sequence is not successful: an initiating signal present or the scheme is in Lockout state. The reset timer is also stopped if the breaker is manually closed or the scheme is otherwise reset from lockout.

LOCKOUT:

When a reclose sequence is started by an initiate signal the scheme moves into the reclose-in-progress state and starts the incomplete sequence timer. The setting of this timer determines the maximum time interval allowed for a single reclose shot. If a close breaker 1 or 2 signal is not present before this time expires, the scheme goes to "Lockout".

There are four other conditions that can take the scheme to the Lockout state, as shown below:

- Receipt of 'Block' input while in the reclose-in-progress state
- The reclosing program logic: when a 3P Initiate is present and the autoreclose mode is either 1 Pole or 3Pole-A (3 pole autoreclose for single pole faults only)
- Initiation of the scheme when the count is at the maximum allowed
- If at the end of the reset time at least one breaker, which is not in the out-of-service state, is open the scheme will be sent to Lockout. The scheme will be also sent to Lockout if one breaker fails to reclose and the setting AR BKR FAIL OPTION is set to "Lockout".

Once the Lockout state is set it will be latched until one or more of the following occurs:

- The scheme is intentionally reset from Lockout, employing the Reset setting of the Autorecloser;
- The Breaker(s) is(are) manually closed from panel switch, SCADA or other remote control through the AR BRK MAN CLOSE setting;
- 10 seconds after breaker control detects that breaker(s) were closed.

BREAKER OPEN BEFORE FAULT:

A logic circuit is provided that inhibits the close breaker 1 and close breaker 2 outputs if a reclose initiate (RIP) indicator is not present within 30 ms of the Breaker Any Phase Open input. This feature is intended to prevent reclosing if one of the breakers was open in advance of a reclose initiate input to the recloser. This logic circuit resets when the breaker is closed.

TRANSFER RECLOSE WHEN BREAKER IS BLOCKED:

- 1. When the reclosing sequence 1-2 is selected and Breaker 1 is blocked (AR BKR1 BLK operand is set) the reclose signal can be transferred direct to the Breaker 2 if **AR TRANSFER 1 TO 2** is set to "Yes". If set to "No", the scheme will be sent to Lockout by the incomplete sequence timer.
- 2. When the reclosing sequence 2-1 is selected and Breaker 2 is blocked (AR BKR2 BLK operand is set) the reclose signal can be transferred direct to the Breaker 1 if AR TRANSFER 2 TO 1 is set to "Yes". If set to "No" the scheme will be sent to Lockout by the incomplete sequence timer.

FORCE 3-POLE TRIPPING:

The reclosing scheme contains logic that is used to signal trip logic that three-pole tripping is required for certain conditions. This signal is activated by any of the following:

- Autoreclose scheme is paused after it was initiated.
- Autoreclose scheme is in the lockout state.

- Autoreclose mode is programmed for three-pole operation
- The shot counter is not at 0; that is, the scheme is not in the reset state. This ensures a second trip will be three-pole when reclosing onto a permanent single phase fault.
- 1.25 cycles after the single-pole reclose is initiated by the AR 1P INIT signal.

ZONE 1 EXTENT:

The zone 1 extension philosophy here is to apply an overreaching zone permanently as long as the relay is ready to reclose, and reduce the reach when reclosing. Another zone 1 extension approach is to operate normally from an underreaching zone, and use an overreaching distance zone when reclosing the line with the other line end open. This philosophy could be programmed via the line pickup scheme.

The "Extended Zone 1" is 0 when autoreclose is in lockout or disabled and 1 when autoreclose is in reset.

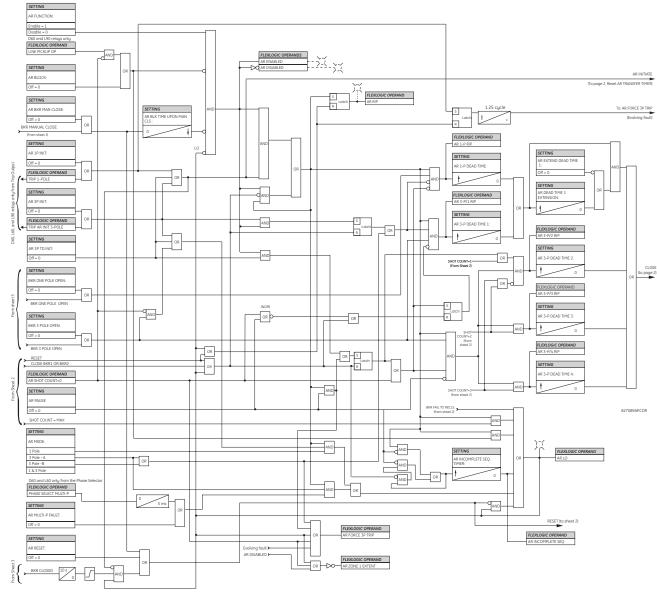
- 1. When "Extended Zone 1" is 0, the distance functions shall be set to normal underreach Zone 1 setting.
- 2. When "Extended Zone 1" is 1, the distance functions may be set to Extended Zone 1 Reach, which is an overreaching setting.
- 3. During a reclose cycle, "Extended Zone 1" goes to 0 as soon as the first CLOSE BREAKER signal is issued (AR SHOT COUNT > 0) and remains 0 until the recloser goes back to reset.

USE OF SETTINGS:

The single-phase autoreclose settings are described below.

- AR MODE: This setting selects the Autoreclose operating mode, which functions in conjunction with signals received at the initiation inputs as described previously.
- AR MAX NUMBER OF SHOTS: This setting specifies the number of reclosures that can be attempted before reclosure goes to lockout when the fault is permanent.
- AR BLOCK BKR1: This input selects an operand that will block the reclose command for breaker 1. This condition can be for example: breaker low air pressure, reclose in progress on another line (for the central breaker in a breaker and a half arrangement), or a sum of conditions combined in FlexLogic[™].
- AR CLOSE TIME BKR1: This setting represents the closing time for the breaker 1 from the moment the "Close" command is sent to the moment the contacts are closed.
- AR BKR MAN CLOSE: This setting selects a FlexLogic[™] operand that represents manual close command to a breaker associated with the autoreclose scheme.
- AR BLK TIME UPON MAN CLS: The autoreclose scheme can be disabled for a programmable time delay after an associated circuit breaker is manually commanded to close, preventing reclosing onto an existing fault such as grounds on the line. This delay must be longer than the slowest expected trip from any protection not blocked after manual closing. If the autoreclose scheme is not initiated after a manual close and this time expires the autoreclose scheme is set to the reset state.
- AR 1P INIT: This setting selects a FlexLogic[™] operand that is intended to initiate single-pole autoreclosure.
- **AR 3P INIT**: This setting selects a FlexLogic[™] operand that is intended to initiate three-pole autoreclosure, first timer (**AR 3P DEAD TIME 1**) that can be used for a high-speed autoreclosure.
- AR 3P TD INIT: This setting selects a FlexLogic[™] operand intended to initiate three-pole autoreclosure. second timer (AR 3P DEAD TIME 2) can be used for a time-delay autoreclosure.
- **AR MULTI-P FAULT:** This setting selects a FlexLogic[™] operand that indicates a multi-phase fault. The operand value should be zero for single-phase to ground faults.
- BKR ONE POLE OPEN: This setting selects a FlexLogic[™] operand which indicates that the breaker has opened correctly following a single phase to ground fault and the autoreclose scheme can start timing the single pole dead time (for 1-2 reclose sequence for example, breaker 1 should trip single pole and breaker 2 should trip 3 pole).

The scheme has a pre-wired input that indicates breaker status.


• BKR 3 POLE OPEN: This setting selects a FlexLogic[™] operand which indicates that the breaker has opened three pole and the autoreclose scheme can start timing the three pole dead time. The scheme has a pre-wired input that indicates breaker status.

5-242

5 SETTINGS

- AR 3-P DEAD TIME 1: This is the dead time following the first three pole trip. This intentional delay can be used for a high-speed three-pole autoreclose. However, it should be set longer than the estimated de-ionizing time following the three-pole trip.
- AR 3-P DEAD TIME 2: This is the dead time following the second three-pole trip or initiated by the AR 3P TD INIT input. This intentional delay is typically used for a time delayed three-pole autoreclose (as opposed to high speed three-pole autoreclose).
- AR 3-P DEAD TIME 3(4): These settings represent the dead time following the third (fourth) three-pole trip.
- AR EXTEND DEAD T 1: This setting selects an operand that will adapt the duration of the dead time for the first shot to the possibility of non-simultaneous tripping at the two line ends. Typically this is the operand set when the communication channel is out of service
- AR DEAD TIME 1 EXTENSION: This timer is used to set the length of the dead time 1 extension for possible nonsimultaneous tripping of the two ends of the line.
- **AR RESET**: This setting selects the operand that forces the autoreclose scheme from any state to reset. Typically this is a manual reset from lockout, local or remote.
- **AR RESET TIME**: A reset timer output resets the recloser following a successful reclosure sequence. The setting is based on the breaker time which is the minimum time required between successive reclose sequences.
- AR BKR CLOSED: This setting selects an operand that indicates that the breakers are closed at the end of the reset time and the scheme can reset.
- AR BLOCK: This setting selects the operand that blocks the autoreclose scheme (it can be a sum of conditions such as: time delayed tripping, breaker failure, bus differential protection, etc.). If the block signal is present before autoreclose scheme initiation the AR DISABLED FlexLogic[™] operand will be set. If the block signal occurs when the scheme is in the RIP state the scheme will be sent to lockout.
- **AR PAUSE**: The pause input offers the ability to freeze the autoreclose cycle until the pause signal disappears. This may be done when a trip occurs and simultaneously or previously, some conditions are detected such as out-of step or loss of guard frequency, or a remote transfer trip signal is received. When the *pause signal* disappears the autoreclose cycle is resumed. This feature can also be used when a transformer is tapped from the protected line and a reclose is not desirable until the it is disconnected from the line. In this situation, the reclose scheme is *paused* until the transformer is disconnected.
- AR INCOMPLETE SEQ TIME: This timer is used to set the maximum time interval allowed for a single reclose shot. It is started whenever a reclosure is initiated and is active until the CLOSE BKR1 or CLOSE BKR2 signal is sent. If all conditions allowing a breaker closure are not satisfied when this time expires, the scheme goes to "Lockout". The minimum permissible setting is established by the AR 3-P DEAD TIME 2 timer setting. Settings beyond this will determine the *wait time* for the breaker to open so that the reclose cycle can continue and/or for the AR PAUSE signal to reset and allow the reclose cycle to continue and/or for the AR BKR1 BLK signal to disappear and allow the AR CLOSE BKR1 signal to be sent.
- AR BLOCK BKR2: This input selects an operand that will block the reclose command for breaker 2. This condition can be for example: breaker low air pressure, reclose in progress on another line (for the central breaker in a breaker and a half arrangement), or a sum of conditions combined in FlexLogic[™].
- AR CLOSE TIME BKR2: This setting represents the closing time for the breaker 2 from the moment the 'Close' command is sent to the moment the contacts are closed.
- AR TRANSFER 1 TO 2: This setting establishes how the scheme performs when the breaker closing sequence is 1-2 and breaker 1 is blocked. When set to "Yes" the closing command will be transferred direct to breaker 2 without waiting the transfer time. When set to "No" the closing command will be blocked by the AR BKR1 BLK signal and the scheme will be sent to lockout by the incomplete sequence timer.
- AR TRANSFER 2 TO 1: This setting establishes how the scheme performs when the breaker closing sequence is 2-1 and breaker 2 is blocked. When set to "Yes" the closing command will be transferred direct to breaker 1 without waiting the transfer time. When set to "No", the closing command will be blocked by the AR BKR2 BLK signal and the scheme will be sent to lockout by the incomplete sequence timer.
- AR BKR1 FAIL OPTION: This setting establishes how the scheme performs when the breaker closing sequence is 1-2 and Breaker 1 has failed to close. When set to "Continue" the closing command will be transferred to breaker 2 which will continue the reclosing cycle until successful (the scheme will reset) or unsuccessful (the scheme will go to Lockout). When set to "Lockout" the scheme will go to lockout without attempting to reclose breaker 2.

- AR BKR2 FAIL OPTION: This setting establishes how the scheme performs when the breaker closing sequence is 2-1 and Breaker 2 has failed to close. When set to "Continue" the closing command will be transferred to breaker 1 which will continue the reclosing cycle until successful (the scheme will reset) or unsuccessful (the scheme will go to Lockout). When set to "Lockout" the scheme will go to lockout without attempting to reclose breaker 1.
- AR 1-P DEAD TIME: Set this intentional delay longer than the estimated de-ionizing time after the first single-pole trip.
- AR BREAKER SEQUENCE: This setting selects the breakers reclose sequence: Select "1" for reclose breaker 1 only, "2" for reclose breaker 2 only, "1&2" for reclose both breakers simultaneously, "1-2" for reclose breakers sequentially; Breaker 1 first, and "2-1" for reclose breakers sequentially; Breaker 2 first.
- AR TRANSFER TIME: The transfer time is used only for breaker closing sequence 1-2 or 2-1, when the two breakers are reclosed sequentially. The transfer timer is initiated by a close signal to the first breaker. The transfer timer transfers the reclose signal from the breaker selected to close first to the second breaker. The time delay setting is based on the maximum time interval between the autoreclose signal and the protection trip contact closure assuming a permanent fault (unsuccessful reclose). Therefore, the minimum setting is equal to the maximum breaker closing time plus the maximum line protection operating time plus a suitable margin. This setting will prevent the autoreclose scheme from transferring the close signal to the second breaker unless a successful reclose of the first breaker occurs.
- AR BUS FLT INIT: This setting is used in breaker-and-a-half applications to allow the autoreclose control function to perform reclosing with only *one* breaker previously opened by bus protection. For line faults, both breakers must open for the autoreclose reclosing cycles to take effect.

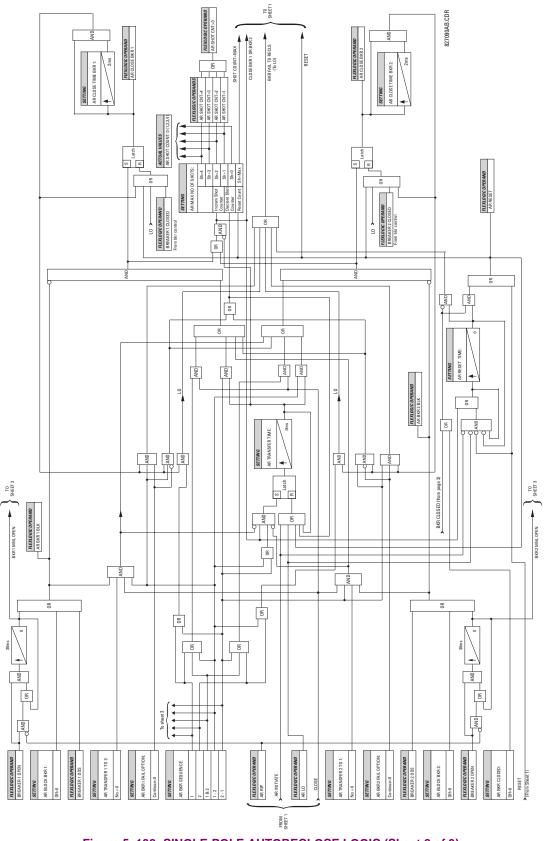
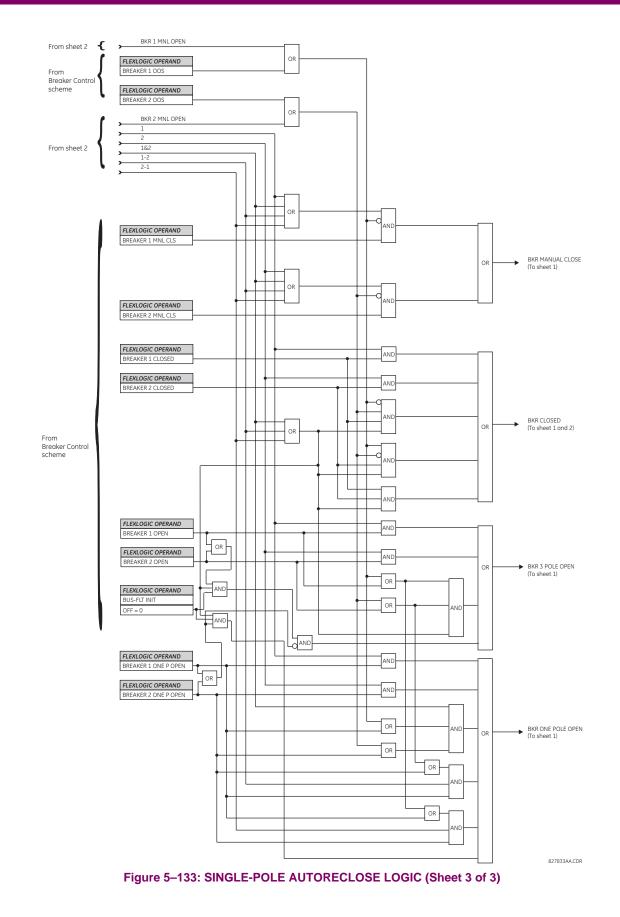



Figure 5–132: SINGLE-POLE AUTORECLOSE LOGIC (Sheet 2 of 3)

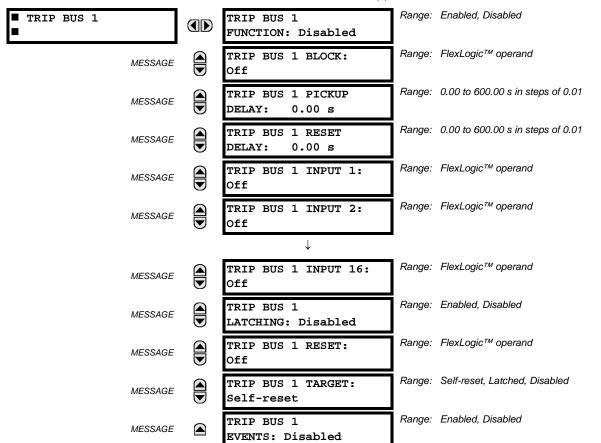



Figure 5–134: EXAMPLE RECLOSING SEQUENCE

5.6.11 TRIP BUS

PATH: SETTINGS $\Rightarrow \oplus$ CONTROL ELEMENTS $\Rightarrow \oplus$ TRIP BUS $\Rightarrow \oplus$ TRIP BUS 1(6)

The trip bus element allows aggregating outputs of protection and control elements without using FlexLogic[™] and assigning them a simple and effective manner. Each trip bus can be assigned for either trip or alarm actions. Simple trip conditioning such as latch, delay, and seal-in delay are available.

The easiest way to assign element outputs to a trip bus is through the EnerVista UR Setup software A protection summary is displayed by navigating to a specific protection or control protection element and checking the desired bus box. Once the desired element is selected for a specific bus, a list of element operate-type operands are displayed and can be assigned to a trip bus. If more than one operate-type operand is required, it may be assigned directly from the trip bus menu.

Protection Summary // Quick Connect: Quick Connect Device: Settings								
Save Bestore Default Reset VIEW ALL mode								
GROUPED ELEMENTS	TB1 TB2 TB3 TB4 TB5	GROUP 1	GROUP 2	GROUP 3	GROUP 4	GROUP 5	GROUP 6	
Current Differential		Disabled	Disabled	Disabled	Disabled	Disabled	Disabled	
Stub Bus		Disabled	Disabled	Disabled	Disabled	Disabled	Disabled	
Line Pickup		Disabled	Disabled	Disabled	Disabled	Disabled	Disabled	
Phase Distance Z 1		Disabled	Disabled	Disabled	Disabled	Disabled	Disabled	
Phase Distance Z 2		Disabled	Disabled	Disabled	Disabled	Disabled	Disabled	
Phase Distance Z 3		Disabled	Disabled	Disabled	Disabled	Disabled	Disabled	
Ground Distance Z 1		Disabled	Disabled	Disabled	Disabled	Disabled	Disabled	
Ground Distance Z 2		Disabled	Disabled	Disabled	Disabled	Disabled	Disabled	
Ground Distance Z 3		Disabled	Disabled	Disabled	Disabled	Disabled	Disabled	
Power Swing		Disabled	Disabled	Disabled	Disabled	Disabled	Disabled]
Load Encroachment		Disabled	Disabled	Disabled	Disabled	Disabled	Disabled	
Phase TOC 1		Disabled	Disabled	Disabled	Disabled	Disabled	Disabled	
Phase TOC 2		Disabled	Disabled	Disabled	Disabled	Disabled	Disabled	
Phase TOC 3		Disabled	Disabled	Disabled	Disabled	Disabled	Disabled	
Phase TOC 4		Disabled	Disabled	Disabled	Disabled	Disabled	Disabled	-
Quick Connect Device								

Figure 5–135: TRIP BUS FIELDS IN THE PROTECTION SUMMARY

The following settings are available.

- TRIP BUS 1 BLOCK: The trip bus output is blocked when the operand assigned to this setting is asserted.
- TRIP BUS 1 PICKUP DELAY: This setting specifies a time delay to produce an output depending on how output is used.
- **TRIP BUS 1 RESET DELAY**: This setting specifies a time delay to reset an output command. The time delay should be set long enough to allow the breaker or contactor to perform a required action.
- **TRIP BUS 1 INPUT 1** to **TRIP BUS 1 INPUT 16**: These settings select a FlexLogic[™] operand to be assigned as an input to the trip bus.
- **TRIP BUS 1 LATCHING**: This setting enables or disables latching of the trip bus output. This is typically used when lockout is required or user acknowledgement of the relay response is required.
- **TRIP BUS 1 RESET**: The trip bus output is reset when the operand assigned to this setting is asserted. Note that the RESET OP operand is pre-wired to the reset gate of the latch, As such, a reset command the front panel interface or via communications will reset the trip bus output.

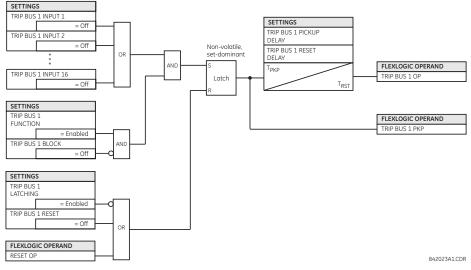
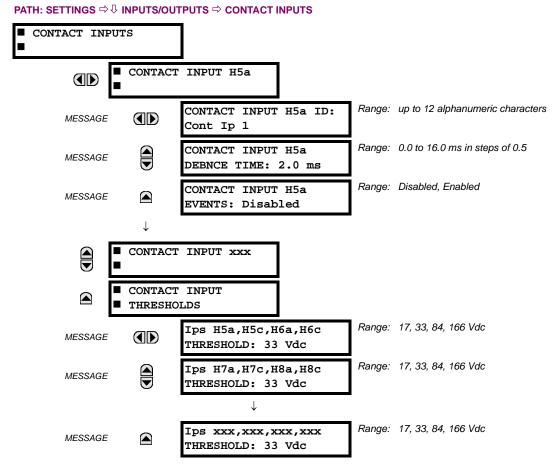



Figure 5–136: TRIP BUS LOGIC

5.7.1 CONTACT INPUTS

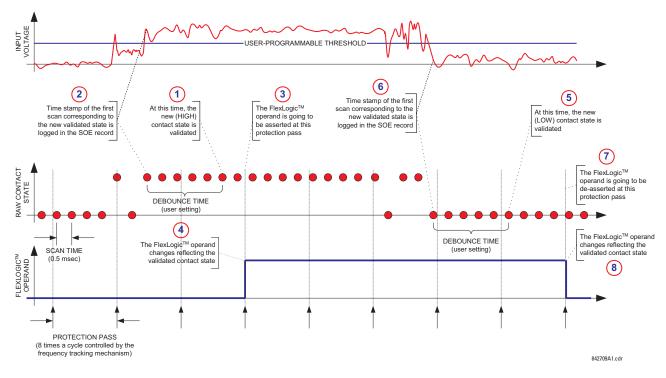
The contact inputs menu contains configuration settings for each contact input as well as voltage thresholds for each group of four contact inputs. Upon startup, the relay processor determines (from an assessment of the installed modules) which contact inputs are available and then display settings for only those inputs.

An alphanumeric ID may be assigned to a contact input for diagnostic, setting, and event recording purposes. The CON-TACT IP X On" (Logic 1) FlexLogic[™] operand corresponds to contact input "X" being closed, while CONTACT IP X Off corresponds to contact input "X" being open. The **CONTACT INPUT DEBNCE TIME** defines the time required for the contact to overcome 'contact bouncing' conditions. As this time differs for different contact types and manufacturers, set it as a maximum contact debounce time (per manufacturer specifications) plus some margin to ensure proper operation. If **CONTACT INPUT EVENTS** is set to "Enabled", every change in the contact input state will trigger an event.

A raw status is scanned for all Contact Inputs synchronously at the constant rate of 0.5 ms as shown in the figure below. The DC input voltage is compared to a user-settable threshold. A new contact input state must be maintained for a user-settable debounce time in order for the L90 to validate the new contact state. In the figure below, the debounce time is set at 2.5 ms; thus the 6th sample in a row validates the change of state (mark no. 1 in the diagram). Once validated (debounced), the contact input asserts a corresponding FlexLogic[™] operand and logs an event as per user setting.

A time stamp of the first sample in the sequence that validates the new state is used when logging the change of the contact input into the Event Recorder (mark no. 2 in the diagram).

Protection and control elements, as well as FlexLogic[™] equations and timers, are executed eight times in a power system cycle. The protection pass duration is controlled by the frequency tracking mechanism. The FlexLogic[™] operand reflecting the debounced state of the contact is updated at the protection pass following the validation (marks no. 3 and 4 on the figure below). The update is performed at the beginning of the protection pass so all protection and control functions, as well as FlexLogic[™] equations, are fed with the updated states of the contact inputs.


5.7 INPUTS/OUTPUTS

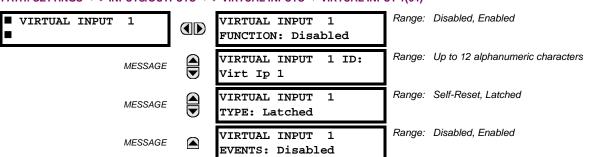
The FlexLogic[™] operand response time to the contact input change is equal to the debounce time setting plus up to one protection pass (variable and depending on system frequency if frequency tracking enabled). If the change of state occurs just after a protection pass, the recognition is delayed until the subsequent protection pass; that is, by the entire duration of the protection pass. If the change occurs just prior to a protection pass, the state is recognized immediately. Statistically a delay of half the protection pass is expected. Owing to the 0.5 ms scan rate, the time resolution for the input contact is below 1msec.

For example, 8 protection passes per cycle on a 60 Hz system correspond to a protection pass every 2.1 ms. With a contact debounce time setting of 3.0 ms, the FlexLogicTM operand-assert time limits are: 3.0 + 0.0 = 3.0 ms and 3.0 + 2.1 = 5.1 ms. These time limits depend on how soon the protection pass runs after the debouncing time.

Regardless of the contact debounce time setting, the contact input event is time-stamped with a 1 µs accuracy using the time of the first scan corresponding to the new state (mark no. 2 below). Therefore, the time stamp reflects a change in the DC voltage across the contact input terminals that was not accidental as it was subsequently validated using the debounce timer. Keep in mind that the associated FlexLogic[™] operand is asserted/de-asserted later, after validating the change.

The debounce algorithm is symmetrical: the same procedure and debounce time are used to filter the LOW-HIGH (marks no.1, 2, 3, and 4 in the figure below) and HIGH-LOW (marks no. 5, 6, 7, and 8 below) transitions.

Figure 5–137: INPUT CONTACT DEBOUNCING MECHANISM AND TIME-STAMPING SAMPLE TIMING


Contact inputs are isolated in groups of four to allow connection of wet contacts from different voltage sources for each group. The **CONTACT INPUT THRESHOLDS** determine the minimum voltage required to detect a closed contact input. This value should be selected according to the following criteria: 17 for 24 V sources, 33 for 48 V sources, 84 for 110 to 125 V sources and 166 for 250 V sources.

For example, to use contact input H5a as a status input from the breaker 52b contact to seal-in the trip relay and record it in the Event Records menu, make the following settings changes:

CONTACT INPUT H5A ID: "Breaker Closed (52b)" CONTACT INPUT H5A EVENTS: "Enabled"

Note that the 52b contact is closed when the breaker is open and open when the breaker is closed.

5.7.2 VIRTUAL INPUTS

PATH: SETTINGS ⇔ ^① INPUTS/OUTPUTS ⇔ ^① VIRTUAL INPUT 1(64)

There are 64 virtual inputs that can be individually programmed to respond to input signals from the keypad (via the **COM-MANDS** menu) and communications protocols. All virtual input operands are defaulted to "Off" (logic 0) unless the appropriate input signal is received.

If the **VIRTUAL INPUT x FUNCTION** is to "Disabled", the input will be forced to off (logic 0) regardless of any attempt to alter the input. If set to "Enabled", the input operates as shown on the logic diagram and generates output FlexLogic[™] operands in response to received input signals and the applied settings.

There are two types of operation: self-reset and latched. If **VIRTUAL INPUT x TYPE** is "Self-Reset", when the input signal transits from off to on, the output operand will be set to on for only one evaluation of the $FlexLogic^{TM}$ equations and then return to off. If set to "Latched", the virtual input sets the state of the output operand to the same state as the most recent received input.

The self-reset operating mode generates the output operand for a single evaluation of the FlexLogic[™] equations. If the operand is to be used anywhere other than internally in a FlexLogic[™] equation, it will likely have to be lengthened in time. A FlexLogic[™] timer with a delayed reset can perform this function.

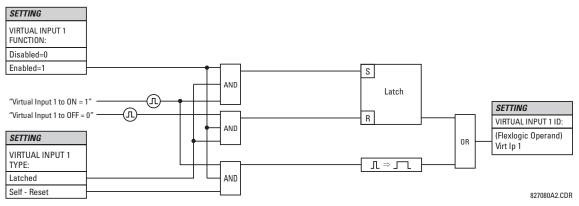
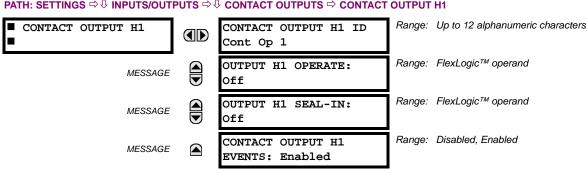



Figure 5–138: VIRTUAL INPUTS SCHEME LOGIC

5.7.3 CONTACT OUTPUTS

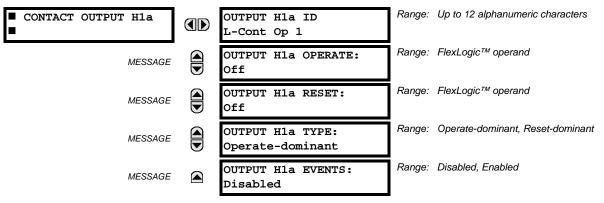
a) **DIGITAL OUTPUTS**

PATH: SETTINGS ⇔ 𝔅 INPUTS/OUTPUTS ⇔ 𝔅 CONTACT OUTPUTS ⇔ CONTACT OUTPUT H1

Upon startup of the relay, the main processor will determine from an assessment of the modules installed in the chassis which contact outputs are available and present the settings for only these outputs.

An ID may be assigned to each contact output. The signal that can **OPERATE** a contact output may be any FlexLogic[™] operand (virtual output, element state, contact input, or virtual input). An additional FlexLogic[™] operand may be used to SEAL-IN the relay. Any change of state of a contact output can be logged as an Event if programmed to do so.

For example, the trip circuit current is monitored by providing a current threshold detector in series with some Form-A contacts (see the trip circuit example in the Digital elements section). The monitor will set a flag (see the specifications for Form-A). The name of the FlexLogic[™] operand set by the monitor, consists of the output relay designation, followed by the name of the flag; for example, CONT OP 1 ION or CONT OP 1 IOFF.


In most breaker control circuits, the trip coil is connected in series with a breaker auxiliary contact used to interrupt current flow after the breaker has tripped, to prevent damage to the less robust initiating contact. This can be done by monitoring an auxiliary contact on the breaker which opens when the breaker has tripped, but this scheme is subject to incorrect operation caused by differences in timing between breaker auxiliary contact change-of-state and interruption of current in the trip circuit. The most dependable protection of the initiating contact is provided by directly measuring current in the tripping circuit, and using this parameter to control resetting of the initiating relay. This scheme is often called trip seal-in.

This can be realized in the L90 using the CONT OP 1 ION FlexLogic[™] operand to seal-in the contact output as follows:

CONTACT OUTPUT H1 ID: "Cont Op 1" **OUTPUT H1 OPERATE:** any suitable FlexLogic[™] operand OUTPUT H1 SEAL-IN: "Cont Op 1 IOn" **CONTACT OUTPUT H1 EVENTS:** "Enabled"

b) LATCHING OUTPUTS

PATH: SETTINGS ⇔ INPUTS/OUTPUTS ⇔ CONTACT OUTPUTS ⇒ CONTACT OUTPUT H1a

The L90 latching output contacts are mechanically bi-stable and controlled by two separate (open and close) coils. As such they retain their position even if the relay is not powered up. The relay recognizes all latching output contact cards and populates the setting menu accordingly. On power up, the relay reads positions of the latching contacts from the hardware before executing any other functions of the relay (such as protection and control features or FlexLogic[™]).

The latching output modules, either as a part of the relay or as individual modules, are shipped from the factory with all latching contacts opened. It is highly recommended to double-check the programming and positions of the latching contacts when replacing a module.

Since the relay asserts the output contact and reads back its position, it is possible to incorporate self-monitoring capabilities for the latching outputs. If any latching outputs exhibits a discrepancy, the LATCHING OUTPUT ERROR self-test error is declared. The error is signaled by the LATCHING OUT ERROR FlexLogic[™] operand, event, and target message.

- **OUTPUT H1a OPERATE**: This setting specifies a FlexLogic[™] operand to operate the 'close coil' of the contact. The relay will seal-in this input to safely close the contact. Once the contact is closed and the RESET input is logic 0 (off), any activity of the OPERATE input, such as subsequent chattering, will not have any effect. With both the OPERATE and RESET inputs active (logic 1), the response of the latching contact is specified by the OUTPUT H1A TYPE setting.
- OUTPUT H1a RESET: This setting specifies a FlexLogic[™] operand to operate the 'trip coil' of the contact. The relay • will seal-in this input to safely open the contact. Once the contact is opened and the OPERATE input is logic 0 (off), any activity of the RESET input, such as subsequent chattering, will not have any effect. With both the OPERATE and RESET inputs active (logic 1), the response of the latching contact is specified by the OUTPUT H1A TYPE setting.
- OUTPUT H1a TYPE: This setting specifies the contact response under conflicting control inputs; that is, when both the • OPERATE and RESET signals are applied. With both control inputs applied simultaneously, the contact will close if set to "Operate-dominant" and will open if set to "Reset-dominant".

Application Example 1:

A latching output contact H1a is to be controlled from two user-programmable pushbuttons (buttons number 1 and 2). The following settings should be applied.

Program the Latching Outputs by making the following changes in the SETTINGS ⇒ ↓ INPUTS/OUTPUTS ⇒ ↓ CONTACT OUT-PUTS ⇒ CONTACT OUTPUT H1a menu (assuming an H4L module):

OUTPUT H1a OPERATE: "PUSHBUTTON 1 ON" OUTPUT H1a RESET: "PUSHBUTTON 2 ON"

Program the pushbuttons by making the following changes in the PRODUCT SETUP ⇒ USER-PROGRAMMABLE PUSHBUT-TONS \Rightarrow \bigcirc USER PUSHBUTTON 1 and USER PUSHBUTTON 2 menus:

PUSHBUTTON 1 FUNCTION: "Self-reset"	PUSHBUTTON 2 FUNCTION: "Self-reset"
PUSHBTN 1 DROP-OUT TIME: "0.00 s"	PUSHBTN 2 DROP-OUT TIME: "0.00 s"

Application Example 2:

A relay, having two latching contacts H1a and H1c, is to be programmed. The H1a contact is to be a Type-a contact, while the H1c contact is to be a Type-b contact (Type-a means closed after exercising the operate input; Type-b means closed after exercising the reset input). The relay is to be controlled from virtual outputs: VO1 to operate and VO2 to reset.

Program the Latching Outputs by making the following changes in the SETTINGS ⇒ ↓ INPUTS/OUTPUTS ⇒ ↓ CONTACT OUT-PUTS
CONTACT OUTPUT H1a and CONTACT OUTPUT H1c menus (assuming an H4L module):

OUTPUT H1a OPERATE: "VO1"	
OUTPUT H1a RESET: "VO2"	

OUTPUT H1c OPERATE: "VO2" OUTPUT H1c RESET: "VO1"

Since the two physical contacts in this example are mechanically separated and have individual control inputs, they will not operate at exactly the same time. A discrepancy in the range of a fraction of a maximum operating time may occur. Therefore, a pair of contacts programmed to be a multi-contact relay will not guarantee any specific sequence of operation (such as make before break). If required, the sequence of operation must be programmed explicitly by delaying some of the control inputs as shown in the next application example.

Application Example 3:

A make before break functionality must be added to the preceding example. An overlap of 20 ms is required to implement this functionality as described below:

Write the following FlexLogic[™] equation (EnerVista UR Setup example shown):

Save Restore Default FlexLogic Equation Editor // D60_490.urs : C:\Program							
FLEXLOGIC ENTRY	TYPE	SYNTAX 4					
View Graphic	View	View -					
FlexLogic Entry 1	Virtual Outputs On	Virt Op 1 On (VO1)					
FlexLogic Entry 2	TIMER	Timer 1					
FlexLogic Entry 3	Assign Virtual Output	= Virt Op 3 (VO3)					
FlexLogic Entry 4	Virtual Outputs On	Virt Op 2 On (VO2)					
FlexLogic Entry 5	TIMER	Timer 2					
FlexLogic Entry 6	Assign Virtual Output	= Virt Op 4 (VO4)					
FlexLogic Entry 7	End of List						

Both timers (Timer 1 and Timer 2) should be set to 20 ms pickup and 0 ms dropout.

Program the Latching Outputs by making the following changes in the SETTINGS \Rightarrow \Downarrow INPUTS/OUTPUTS \Rightarrow \Diamond CONTACT OUTPUT H1a and CONTACT OUTPUT H1c menus (assuming an H4L module):

OUTPUT H1a OPERATE: "VO1" OUTPUT H1a RESET: "VO4" OUTPUT H1c OPERATE: "VO2" OUTPUT H1c RESET: "VO3"

Application Example 4:

A latching contact H1a is to be controlled from a single virtual output VO1. The contact should stay closed as long as VO1 is high, and should stay opened when VO1 is low. Program the relay as follows.

Write the following FlexLogic[™] equation (EnerVista UR Setup example shown):

💳 FlexLogic Equation Editor // D60_490.urs : C:\Program Files\GE Multilin\EnerVist 💶 🔲 🗙							
🖹 Save 📑 Restore	Default Reset						
FLEXLOGIC ENTRY	TYPE	SYNTAX 🔺					
View Graphic	View	View 🖵					
FlexLogic Entry 1	Virtual Outputs On	Virt Op 1 On (VO1)					
FlexLogic Entry 2	NOT	1 Input					
FlexLogic Entry 3	Assign Virtual Output	= Virt Op 2 (VO2)					
FlexLogic Entry 4 End of List							
D60_490.urs FlexLogic		1.					

Program the Latching Outputs by making the following changes in the SETTINGS \Rightarrow \Downarrow INPUTS/OUTPUTS \Rightarrow \Diamond CONTACT OUTPUTS \Rightarrow \Diamond CONTACT OUTPUT H1a menu (assuming an H4L module):

OUTPUT H1a OPERATE: "VO1" OUTPUT H1a RESET: "VO2"

5.7.4 VIRTUAL OUTPUTS

PATH: SETTINGS ⇔ ♣ INPUTS/OUTPUTS ⇔ ♣ VIRTUAL OUTPUTS ⇔ VIRTUAL OUTPUT 1(96)

<pre>VIRTUAL OUTPUT 1</pre>	VIRTUAL OUTPUT 1 ID Virt Op 1	Range: Up to 12 alphanumeric characters
MESSAGE	VIRTUAL OUTPUT 1 EVENTS: Disabled	Range: Disabled, Enabled

There are 96 virtual outputs that may be assigned via FlexLogic[™]. If not assigned, the output will be forced to 'OFF' (Logic 0). An ID may be assigned to each virtual output. Virtual outputs are resolved in each pass through the evaluation of the FlexLogic[™] equations. Any change of state of a virtual output can be logged as an event if programmed to do so.

For example, if Virtual Output 1 is the trip signal from FlexLogic[™] and the trip relay is used to signal events, the settings would be programmed as follows:

VIRTUAL OUTPUT 1 ID: "Trip" VIRTUAL OUTPUT 1 EVENTS: "Disabled"

5.7.5 REMOTE DEVICES

a) REMOTE INPUTS/OUTPUTS OVERVIEW

Remote inputs and outputs provide a means of exchanging digital state information between Ethernet-networked devices. The IEC 61850 GSSE (Generic Substation State Event) and GOOSE (Generic Object Oriented Substation Event) standards are used.

The IEC 61850 specification requires that communications between devices be implemented on Ethernet. For UR-series relays, Ethernet communications is provided on all CPU modules except type 9E.

The sharing of digital point state information between GSSE/GOOSE equipped relays is essentially an extension to Flex-Logic[™], allowing distributed FlexLogic[™] by making operands available to/from devices on a common communications network. In addition to digital point states, GSSE/GOOSE messages identify the originator of the message and provide other information required by the communication specification. All devices listen to network messages and capture data only from messages that have originated in selected devices.

IEC 61850 GSSE messages are compatible with UCA GOOSE messages and contain a fixed set of digital points. IEC 61850 GOOSE messages can, in general, contain any configurable data items. When used by the remote input/output feature, IEC 61850 GOOSE messages contain the same data as GSSE messages.

Both GSSE and GOOSE messages are designed to be short, reliable, and high priority. GOOSE messages have additional advantages over GSSE messages due to their support of VLAN (virtual LAN) and Ethernet priority tagging functionality. The GSSE message structure contains space for 128 bit pairs representing digital point state information. The IEC 61850 specification provides 32 "DNA" bit pairs that represent the state of two pre-defined events and 30 user-defined events. All remaining bit pairs are "UserSt" bit pairs, which are status bits representing user-definable events. The L90 implementation provides 32 of the 96 available UserSt bit pairs.

The IEC 61850 specification includes features that are used to cope with the loss of communication between transmitting and receiving devices. Each transmitting device will send a GSSE/GOOSE message upon a successful power-up, when the state of any included point changes, or after a specified interval (the *default update* time) if a change-of-state has not occurred. The transmitting device also sends a 'hold time' which is set greater than three times the programmed default time required by the receiving device.

Receiving devices are constantly monitoring the communications network for messages they require, as recognized by the identification of the originating device carried in the message. Messages received from remote devices include the message *time allowed to live*. The receiving relay sets a timer assigned to the originating device to this time interval, and if it has not received another message from this device at time-out, the remote device is declared to be non-communicating, so it will use the programmed default state for all points from that specific remote device. If a message is received from a remote device before the *time allowed to live* expires, all points for that device are updated to the states contained in the message and the hold timer is restarted. The status of a remote device, where "Offline" indicates non-communicating, can be displayed.

The remote input/output facility provides for 32 remote inputs and 64 remote outputs.

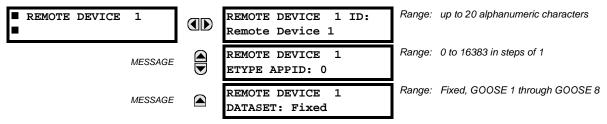
The L90 provides an additional method of sharing digital point state information among different relays: direct messages. Direct messages are only used between UR-series relays inter-connected via dedicated type 7X communications modules, usually between substations. The digital state data conveyed by direct messages are direct inputs and direct outputs.

b) DIRECT MESSAGES

Direct messages are only used between UR-series relays containing the type 7X UR communications module. These messages are transmitted every one-half of the power frequency cycle (10 ms for 50 Hz and 8.33 ms for 60 Hz) This facility is of particular value for pilot schemes and transfer tripping. Direct messaging is available on both single channel and dual channel communications modules. The inputs and outputs on communications channel 1 are numbered 1-1 through 1-8, and the inputs and outputs on communications channel 2 are numbered 2-1 through 2-8.

Settings associated with direct messages are automatically presented in accordance with the number of channels provided in the communications module in a specific relay.

c) LOCAL DEVICES: DEVICE ID FOR TRANSMITTING GSSE MESSAGES

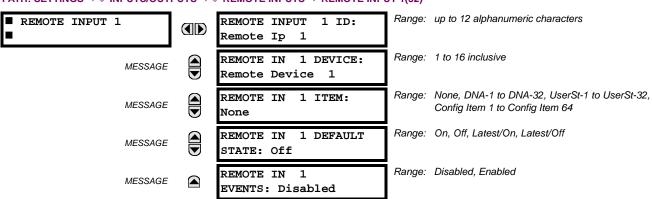

In a L90 relay, the device ID that represents the IEC 61850 GOOSE application ID (GoID) name string sent as part of each GOOSE message is programmed in the SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow COMMUNICATIONS \Rightarrow IEC 61850 PROTOCOL \Rightarrow GSSE/GOOSE CONFIGURATION \Rightarrow TRANSMISSION \Rightarrow FIXED GOOSE \Rightarrow GOOSE ID setting.

Likewise, the device ID that represents the IEC 61850 GSSE application ID name string sent as part of each GSSE message is programmed in the SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow COMMUNICATIONS \Rightarrow IEC 61850 PROTOCOL \Rightarrow GSSE/GOOSE CONFIGURATION \Rightarrow TRANSMISSION \Rightarrow GSSE \Rightarrow GSSE ID setting.

In L90 releases previous to 5.0x, these name strings were represented by the RELAY NAME setting.

d) REMOTE DEVICES: DEVICE ID FOR RECEIVING GSSE MESSAGES

PATH: SETTINGS ⇔ ^① INPUTS/OUTPUTS ⇔ ^① REMOTE DEVICES ⇔ REMOTE DEVICE 1(16)


Remote devices are available for setting purposes. A receiving relay must be programmed to capture messages from only those originating remote devices of interest. This setting is used to select specific remote devices by entering (bottom row) the exact identification (ID) assigned to those devices.

The **REMOTE DEVICE 1 ETYPE APPID** setting is only used with GOOSE messages; they are not applicable to GSSE messages. This setting identifies the Ethernet application identification in the GOOSE message. It should match the corresponding settings on the sending device.

The **REMOTE DEVICE 1 DATASET** setting provides for the choice of the L90 fixed (DNA/UserSt) dataset (that is, containing DNA and UserSt bit pairs), or one of the configurable datasets.

Note that the dataset for the received data items must be made up of existing items in an existing logical node. For this reason, logical node GGIO3 is instantiated to hold the incoming data items. GGIO3 is not necessary to make use of the received data. The remote input data item mapping takes care of the mapping of the inputs to remote input FlexLogic[™] operands. However, GGIO3 data can be read by IEC 61850 clients.

5.7.6 REMOTE INPUTS

PATH: SETTINGS $\Rightarrow \oplus$ INPUTS/OUTPUTS $\Rightarrow \oplus$ REMOTE INPUTS \Rightarrow REMOTE INPUT 1(32)

Remote Inputs that create FlexLogic[™] operands at the receiving relay are extracted from GSSE/GOOSE messages originating in remote devices. Each remote input can be selected from a list consisting of 64 selections: DNA-1 through DNA-32 and UserSt-1 through UserSt-32. The function of DNA inputs is defined in the IEC 61850 specification and is presented in

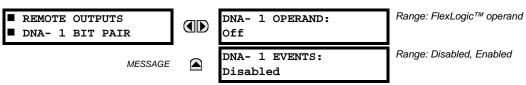
the IEC 61850 DNA Assignments table in the *Remote outputs* section. The function of UserSt inputs is defined by the user selection of the FlexLogic[™] operand whose state is represented in the GSSE/GOOSE message. A user must program a DNA point from the appropriate FlexLogic[™] operand.

Remote input 1 must be programmed to replicate the logic state of a specific signal from a specific remote device for local use. This programming is performed via the three settings shown above.

The **REMOTE INPUT 1 ID** setting allows the user to assign descriptive text to the remote input. The **REMOTE IN 1 DEVICE** setting selects the number (1 to 16) of the remote device which originates the required signal, as previously assigned to the remote device via the setting **REMOTE DEVICE 1(16) ID** (see the *Remote devices* section). The **REMOTE IN 1 ITEM** setting selects the specific bits of the GSSE/GOOSE message required.

The **REMOTE IN 1 DEFAULT STATE** setting selects the logic state for this point if the local relay has just completed startup or the remote device sending the point is declared to be non-communicating. The following choices are available:

- Setting REMOTE IN 1 DEFAULT STATE to "On" value defaults the input to logic 1.
- Setting REMOTE IN 1 DEFAULT STATE to "Off" value defaults the input to logic 0.
- Setting REMOTE IN 1 DEFAULT STATE to "Latest/On" freezes the input in case of lost communications. If the latest state is
 not known, such as after relay power-up but before the first communication exchange, the input will default to logic 1.
 When communication resumes, the input becomes fully operational.
- Setting **REMOTE IN 1 DEFAULT STATE** to "Latest/Off" freezes the input in case of lost communications. If the latest state is not known, such as after relay power-up but before the first communication exchange, the input will default to logic 0. When communication resumes, the input becomes fully operational.



For additional information on GSSE/GOOOSE messaging, refer to the *Remote devices* section in this chapter.

5.7.7 REMOTE OUTPUTS 5

a) DNA BIT PAIRS

PATH: SETTINGS ⇔ ↓ INPUTS/OUTPUTS ⇔ ↓ REMOTE OUTPUTS DNA BIT PAIRS ⇒ REMOTE OUPUTS DNA- 1(32) BIT PAIR

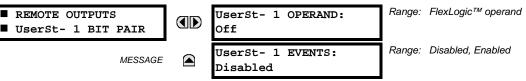

Remote outputs (1 to 32) are FlexLogic[™] operands inserted into GSSE/GOOSE messages that are transmitted to remote devices on a LAN. Each digital point in the message must be programmed to carry the state of a specific FlexLogic[™] operand. The above operand setting represents a specific DNA function (as shown in the following table) to be transmitted.

Table 5–23: IEC 61850 DNA ASSIGNMENTS

DNA	IEC 61850 DEFINITION	FLEXLOGIC [™] OPERAND
1	Test	IEC 61850 TEST MODE
2	ConfRev	IEC 61850 CONF REV

b) USERST BIT PAIRS

PATH: SETTINGS ⇔ ♣ INPUTS/OUTPUTS ⇔ ♣ REMOTE OUTPUTS UserSt BIT PAIRS ⇔ REMOTE OUTPUTS UserSt- 1(32) BIT PAIR

Remote outputs 1 to 32 originate as GSSE/GOOSE messages to be transmitted to remote devices. Each digital point in the message must be programmed to carry the state of a specific FlexLogic[™] operand. The setting above is used to select the operand which represents a specific UserSt function (as selected by the user) to be transmitted.

The following setting represents the time between sending GSSE/GOOSE messages when there has been no change of state of any selected digital point. This setting is located in the PRODUCT SETUP D COMMUNICATIONS D I IEC 61850 PROTO-COL ⇔ ¹ GSSE/GOOSE CONFIGURATION settings menu.

> DEFAULT GSSE/GOOSE UPDATE TIME: 60 s

Range: 1 to 60 s in steps of 1

 \Box NOTE

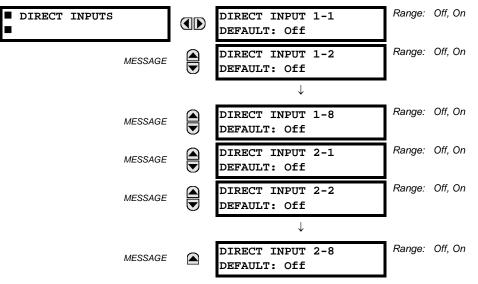
For more information on GSSE/GOOSE messaging, refer to Remote Inputs/Outputs Overview in the Remote Devices section.

5.7.8 DIRECT INPUTS/OUTPUTS

a) **DESCRIPTION**

The relay provides eight direct inputs conveyed on communications channel 1 (numbered 1-1 through 1-8) and eight direct inputs conveyed on communications channel 2 (on three-terminal systems only, numbered 2-1 through 2-8). The user must program the remote relay connected to channels 1 and 2 of the local relay by assigning the desired FlexLogic[™] operand to be sent via the selected communications channel.

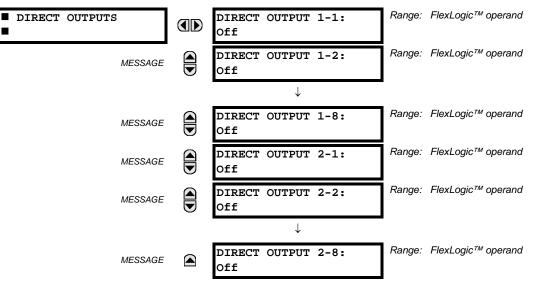
This relay allows the user to create distributed protection and control schemes via dedicated communications channels. Some examples are directional comparison pilot schemes and transfer tripping. It should be noted that failures of communications channels will affect direct input/output functionality. The 87L function must be enabled to utilize the direct inputs.

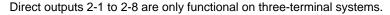

Direct input/output FlexLogic[™] operands to be used at the local relay are assigned as follows:

- Direct input/output 1-1 through direct input/output 1-8 for communications channel 1.
- Direct input/output 2-1 through direct input/output 2-8 for communications channel 2 (three-terminal systems only).

On the two-terminal, two channel system (redundant channel), direct outputs 1-1 to 1-8 are send over both chan-Ξ. nels simultaneously and are received separately as direct inputs 1-1 to 1-8 at channel 1 and direct inputs 2-1 to 2-8 NOTE at channel 2. Therefore, to take advantage of redundancy, the respective operands from channel 1 and 2 can be ORed with FlexLogic[™] or mapped separately.

b) DIRECT INPUTS


PATH: SETTINGS $\Rightarrow \emptyset$ INPUTS/OUTPUTS $\Rightarrow \emptyset$ DIRECT \Rightarrow DIRECT INPUTS


The DIRECT INPUT 1-1(8) DEFAULT setting selects the logic state of this particular bit used for this point if the local relay has just completed startup or the local communications channel is declared to have failed. Setting DIRECT INPUT 1-1(8) DEFAULT to "On" means that the corresponding local FlexLogic[™] operand (DIRECT I/P 1-1(8)) will have logic state "1" on relay startup or during communications channel failure. When the channel is restored, the operand logic state reflects the actual state of the corresponding remote direct output.

c) **DIRECT OUTPUTS**

PATH: SETTINGS \P INPUTS/OUTPUTS $\Leftrightarrow \P$ DIRECT $\Leftrightarrow \P$ DIRECT OUTPUTS

The relay provides eight direct outputs that are conveyed on communications channel 1 (numbered 1-1 through 1-8) and eight direct outputs that are conveyed on communications channel 2 (numbered 2-1 through 2-8). Each digital point in the message must be programmed to carry the state of a specific FlexLogicTM operand. The setting above is used to select the operand which represents a specific function (as selected by the user) to be transmitted.

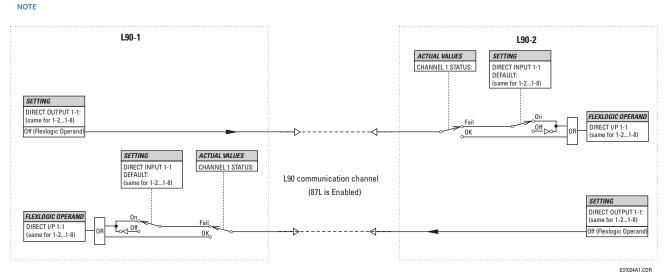
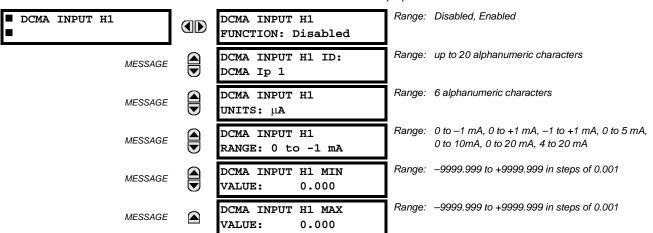



Figure 5–139: DIRECT INPUTS/OUTPUTS LOGIC

5.7.9 RESETTING

PATH: SETTINGS \Rightarrow \bigcirc INPUTS/OUTPUTS \Rightarrow \bigcirc RESETTING

RESETTING



Range: FlexLogic™ operand

Some events can be programmed to latch the faceplate LED event indicators and the target message on the display. Once set, the latching mechanism will hold all of the latched indicators or messages in the set state after the initiating condition has cleared until a RESET command is received to return these latches (not including FlexLogic[™] latches) to the reset state. The RESET command can be sent from the faceplate Reset button, a remote device via a communications channel, or any programmed operand.

When the RESET command is received by the relay, two FlexLogic[™] operands are created. These operands, which are stored as events, reset the latches if the initiating condition has cleared. The three sources of RESET commands each create the RESET OP FlexLogic[™] operand. Each individual source of a RESET command also creates its individual operand RESET OP (PUSHBUTTON), RESET OP (COMMS) or RESET OP (OPERAND) to identify the source of the command. The setting shown above selects the operand that will create the RESET OP (OPERAND) operand.

5.8.1 DCMA INPUTS

PATH: SETTINGS ⇔ ^① TRANSDUCER I/O ⇔ ^① DCMA INPUTS ⇒ DCMA INPUT H1(U8)

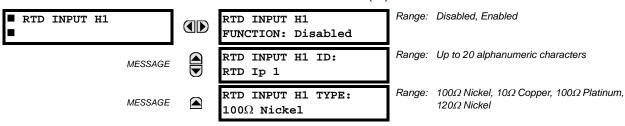
Hardware and software is provided to receive signals from external transducers and convert these signals into a digital format for use as required. The relay will accept inputs in the range of -1 to +20 mA DC, suitable for use with most common transducer output ranges; all inputs are assumed to be linear over the complete range. Specific hardware details are contained in chapter 3.

Before the dcmA input signal can be used, the value of the signal measured by the relay must be converted to the range and quantity of the external transducer primary input parameter, such as DC voltage or temperature. The relay simplifies this process by internally scaling the output from the external transducer and displaying the actual primary parameter.

dcmA input channels are arranged in a manner similar to CT and VT channels. The user configures individual channels with the settings shown here.

The channels are arranged in sub-modules of two channels, numbered from 1 through 8 from top to bottom. On power-up, the relay will automatically generate configuration settings for every channel, based on the order code, in the same general manner that is used for CTs and VTs. Each channel is assigned a slot letter followed by the row number, 1 through 8 inclusive, which is used as the channel number. The relay generates an actual value for each available input channel.

Settings are automatically generated for every channel available in the specific relay as shown above for the first channel of a type 5F transducer module installed in slot H.


The function of the channel may be either "Enabled" or "Disabled". If "Disabled", no actual values are created for the channel. An alphanumeric "ID" is assigned to each channel; this ID will be included in the channel actual value, along with the programmed units associated with the parameter measured by the transducer, such as volts, °C, megawatts, etc. This ID is also used to reference the channel as the input parameter to features designed to measure this type of parameter. The **DCMA INPUT H1 RANGE** setting specifies the mA DC range of the transducer connected to the input channel.

The DCMA INPUT H1 MIN VALUE and DCMA INPUT H1 MAX VALUE settings are used to program the span of the transducer in primary units. For example, a temperature transducer might have a span from 0 to 250°C; in this case the DCMA INPUT H1 MIN VALUE value is "0" and the DCMA INPUT H1 MAX VALUE value is "250". Another example would be a watts transducer with a span from -20 to +180 MW; in this case the DCMA INPUT H1 MIN VALUE value would be "-20" and the DCMA INPUT H1 MAX VALUE value "180". Intermediate values between the min and max values are scaled linearly.

5.8 TRANSDUCER INPUTS/OUTPUTS

5.8.2 RTD INPUTS

PATH: SETTINGS $\Rightarrow \bigcirc$ TRANSDUCER I/O $\Rightarrow \bigcirc$ RTD INPUTS \Rightarrow RTD INPUT H1(U8)

Hardware and software is provided to receive signals from external resistance temperature detectors and convert these signals into a digital format for use as required. These channels are intended to be connected to any of the RTD types in common use. Specific hardware details are contained in chapter 3.

RTD input channels are arranged in a manner similar to CT and VT channels. The user configures individual channels with the settings shown here.

The channels are arranged in sub-modules of two channels, numbered from 1 through 8 from top to bottom. On power-up, the relay will automatically generate configuration settings for every channel, based on the order code, in the same general manner that is used for CTs and VTs. Each channel is assigned a slot letter followed by the row number, 1 through 8 inclusive, which is used as the channel number. The relay generates an actual value for each available input channel.

Settings are automatically generated for every channel available in the specific relay as shown above for the first channel of a type 5C transducer module installed in the first available slot.

The function of the channel may be either "Enabled" or "Disabled". If "Disabled", there will not be an actual value created for the channel. An alphanumeric ID is assigned to the channel; this ID will be included in the channel actual values. It is also used to reference the channel as the input parameter to features designed to measure this type of parameter. Selecting the type of RTD connected to the channel configures the channel.

Actions based on RTD overtemperature, such as trips or alarms, are done in conjunction with the FlexElements[™] feature. In FlexElements[™], the operate level is scaled to a base of 100°C. For example, a trip level of 150°C is achieved by setting the operate level at 1.5 pu. FlexElement[™] operands are available to FlexLogic[™] for further interlocking or to operate an output contact directly.

Refer to the following table for reference temperature values for each RTD type.

TEMPERATURE		RESISTANCE	RESISTANCE (IN OHMS)					
°C	°F	100 W PT (DIN 43760)	120 W NI	100 W NI	10 W CU			
-50	-58	80.31	86.17	71.81	7.10			
-40	-40	84.27	92.76	77.30	7.49			
-30	-22	88.22	99.41	82.84	7.88			
-20	-4	92.16	106.15	88.45	8.26			
-10	14	96.09	113.00	94.17	8.65			
0	32	100.00	120.00	100.00	9.04			
10	50	103.90	127.17	105.97	9.42			
20	68	107.79	134.52	112.10	9.81			
30	86	111.67	142.06	118.38	10.19			
40	104	115.54	149.79	124.82	10.58			
50	122	119.39	157.74	131.45	10.97			
60	140	123.24	165.90	138.25	11.35			
70	158	127.07	174.25	145.20	11.74			
80	176	130.89	182.84	152.37	12.12			
90	194	134.70	191.64	159.70	12.51			
100	212	138.50	200.64	167.20	12.90			
110	230	142.29	209.85	174.87	13.28			
120	248	146.06	219.29	182.75	13.67			
130	266	149.82	228.96	190.80	14.06			
140	284	153.58	238.85	199.04	14.44			
150	302	157.32	248.95	207.45	14.83			
160	320	161.04	259.30	216.08	15.22			
170	338	164.76	269.91	224.92	15.61			
180	356	168.47	280.77	233.97	16.00			
190	374	172.46	291.96	243.30	16.39			
200	392	175.84	303.46	252.88	16.78			
210	410	179.51	315.31	262.76	17.17			
220	428	183.17	327.54	272.94	17.56			
230	446	186.82	340.14	283.45	17.95			
240	464	190.45	353.14	294.28	18.34			
250	482	194.08	366.53	305.44	18.73			

Table 5–24: RTD TEMPERATURE VS. RESISTANCE

5.8.3 DCMA OUTPUTS

PATH: SETTINGS ⇔ ⊕ TRANSDUCER I/O ⇔ ⊕ DCMA OUTPUTS ⇒ DCMA OUTPUT H1(U8)

DCMA OUTPUT H1	DCMA OUTPUT H1 SOURCE: Off	Range: Off, any analog actual value parameter
MESSAGE	DCMA OUTPUT H1 RANGE: -1 to 1 mA	Range: -1 to 1 mA, 0 to 1 mA, 4 to 20 mA
MESSAGE	DCMA OUTPUT H1 MIN VAL: 0.000 pu	Range: -90.000 to 90.000 pu in steps of 0.001
MESSAGE	DCMA OUTPUT H1 MAX VAL: 1.000 pu	Range: -90.000 to 90.000 pu in steps of 0.001

5.8 TRANSDUCER INPUTS/OUTPUTS

Hardware and software is provided to generate dcmA signals that allow interfacing with external equipment. Specific hardware details are contained in chapter 3. The dcmA output channels are arranged in a manner similar to transducer input or CT and VT channels. The user configures individual channels with the settings shown below.

The channels are arranged in sub-modules of two channels, numbered 1 through 8 from top to bottom. On power-up, the relay automatically generates configuration settings for every channel, based on the order code, in the same manner used for CTs and VTs. Each channel is assigned a slot letter followed by the row number, 1 through 8 inclusive, which is used as the channel number.

Both the output range and a signal driving a given output are user-programmable via the following settings menu (an example for channel M5 is shown).

The relay checks the driving signal (*x* in equations below) for the minimum and maximum limits, and subsequently rescales so the limits defined as **MIN VAL** and **MAX VAL** match the output range of the hardware defined as **RANGE**. The following equation is applied:

$$I_{out} = \begin{cases} I_{min} & \text{if } x < \text{MIN VAL} \\ I_{max} & \text{if } x > \text{MAX VAL} \\ k(x - \text{MIN VAL}) + I_{min} & \text{otherwise} \end{cases}$$
(EQ 5.27)

where: *x* is a driving signal specified by the **SOURCE** setting I_{min} and I_{max} are defined by the **RANGE** setting *k* is a scaling constant calculated as:

$$k = \frac{I_{max} - I_{min}}{MAX VAL - MIN VAL}$$
(EQ 5.28)

The feature is intentionally inhibited if the MAX VAL and MIN VAL settings are entered incorrectly, e.g. when MAX VAL – MIN VAL < 0.1 pu. The resulting characteristic is illustrated in the following figure.

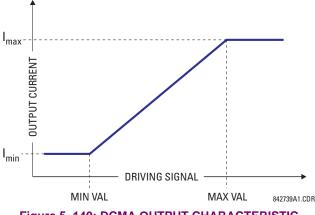


Figure 5–140: DCMA OUTPUT CHARACTERISTIC

The dcmA output settings are described below.

- DCMA OUTPUT H1 SOURCE: This setting specifies an internal analog value to drive the analog output. Actual values (FlexAnalog parameters) such as power, current amplitude, voltage amplitude, power factor, etc. can be configured as sources driving dcmA outputs. Refer to Appendix A for a complete list of FlexAnalog parameters.
- **DCMA OUTPUT H1 RANGE**: This setting allows selection of the output range. Each dcmA channel may be set independently to work with different ranges. The three most commonly used output ranges are available.
- DCMA OUTPUT H1 MIN VAL: This setting allows setting the minimum limit for the signal that drives the output. This setting is used to control the mapping between an internal analog value and the output current (see the following examples). The setting is entered in per-unit values. The base units are defined in the same manner as the FlexElement[™] base units.
- DCMA OUTPUT H1 MAX VAL: This setting allows setting the maximum limit for the signal that drives the output. This
 setting is used to control the mapping between an internal analog value and the output current (see the following

examples). The setting is entered in per-unit values. The base units are defined in the same manner as the FlexElement[™] base units.

NOTE

The DCMA OUTPUT H1 MIN VAL and DCMA OUTPUT H1 MAX VAL settings are ignored for power factor base units (i.e. if the DCMA OUTPUT H1 SOURCE is set to FlexAnalog value based on power factor measurement).

Three application examples are described below.

EXAMPLE 1:

A three phase active power on a 13.8 kV system measured via UR-series relay source 1 is to be monitored by the dcmA H1 output of the range of –1 to 1 mA. The following settings are applied on the relay: CT ratio = 1200:5, VT secondary 115, VT connection is delta, and VT ratio = 120. The nominal current is 800 A primary and the nominal power factor is 0.90. The power is to be monitored in both importing and exporting directions and allow for 20% overload compared to the nominal.

The nominal three-phase power is:

$$P = \sqrt{3} \times 13.8 \text{ kV} \times 0.8 \text{ kA} \times 0.9 = 17.21 \text{ MW}$$
 (EQ 5.29)

The three-phase power with 20% overload margin is:

$$P_{max} = 1.2 \times 17.21 \text{ MW} = 20.65 \text{ MW}$$
 (EQ 5.30)

The base unit for power (refer to the FlexElements section in this chapter for additional details) is:

 $P_{BASE} = 115 \text{ V} \times 120 \times 1.2 \text{ kA} = 16.56 \text{ MW}$ (EQ 5.31)

The minimum and maximum power values to be monitored (in pu) are:

minimum power =
$$\frac{-20.65 \text{ MW}}{16.56 \text{ MW}}$$
 = -1.247 pu, maximum power = $\frac{20.65 \text{ MW}}{16.56 \text{ MW}}$ = 1.247 pu (EQ 5.32)

The following settings should be entered:

DCMA OUTPUT H1 SOURCE: "SRC 1 P" DCMA OUTPUT H1 RANGE: "-1 to 1 mA" DCMA OUTPUT H1 MIN VAL: "-1.247 pu" DCMA OUTPUT H1 MAX VAL: "1.247 pu"

With the above settings, the output will represent the power with the scale of 1 mA per 20.65 MW. The worst-case error for this application can be calculated by superimposing the following two sources of error:

- $\pm 0.5\%$ of the full scale for the analog output module, or $\pm 0.005 \times (1 (-1)) \times 20.65$ MW $= \pm 0.207$ MW
- ±1% of reading error for the active power at power factor of 0.9

For example at the reading of 20 MW, the worst-case error is 0.01×20 MW + 0.207 MW = 0.407 MW.

EXAMPLE 2:

The phase A current (true RMS value) is to be monitored via the H2 current output working with the range from 4 to 20 mA. The CT ratio is 5000:5 and the maximum load current is 4200 A. The current should be monitored from 0 A upwards, allowing for 50% overload.

The phase current with the 50% overload margin is:

$$I_{max} = 1.5 \times 4.2 \text{ kA} = 6.3 \text{ kA}$$
 (EQ 5.33)

The base unit for current (refer to the FlexElements section in this chapter for additional details) is:

$$I_{BASE} = 5 \text{ kA} \tag{EQ 5.34}$$

The minimum and maximum power values to be monitored (in pu) are:

minimum current
$$= \frac{0 \text{ kA}}{5 \text{ kA}} = 0 \text{ pu}$$
, maximum current $= \frac{6.3 \text{ kA}}{5 \text{ kA}} = 1.26 \text{ pu}$ (EQ 5.35)

The following settings should be entered:

DCMA OUTPUT H2 SOURCE: "SRC 1 Ia RMS" DCMA OUTPUT H2 RANGE: "4 to 20 mA" DCMA OUTPUT H2 MIN VAL: "0.000 pu" DCMA OUTPUT H2 MAX VAL: "1.260 pu"

The worst-case error for this application could be calculated by superimposing the following two sources of error:

- ±0.5% of the full scale for the analog output module, or $\pm 0.005 \times (20 4) \times 6.3$ kA = ± 0.504 kA
- ±0.25% of reading or ±0.1% of rated (whichever is greater) for currents between 0.1 and 2.0 of nominal

For example, at the reading of 4.2 kA, the worst-case error is $max(0.0025 \times 4.2 \text{ kA}, 0.001 \times 5 \text{ kA}) + 0.504 \text{ kA} = 0.515 \text{ kA}$.

EXAMPLE 3:

A positive-sequence voltage on a 400 kV system measured via Source 2 is to be monitored by the dcmA H3 output with a range of 0 to 1 mA. The VT secondary setting is 66.4 V, the VT ratio setting is 6024, and the VT connection setting is "Delta". The voltage should be monitored in the range from 70% to 110% of nominal.

The minimum and maximum positive-sequence voltages to be monitored are:

$$V_{min} = 0.7 \times \frac{400 \text{ kV}}{\sqrt{3}} = 161.66 \text{ kV}, \quad V_{max} = 1.1 \times \frac{400 \text{ kV}}{\sqrt{3}} = 254.03 \text{ kV}$$
 (EQ 5.36)

The base unit for voltage (refer to the FlexElements section in this chapter for additional details) is:

$$V_{BASE} = 0.0664 \text{ kV} \times 6024 = 400 \text{ kV}$$
 (EQ 5.37)

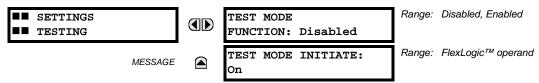
The minimum and maximum voltage values to be monitored (in pu) are:

minimum voltage =
$$\frac{161.66 \text{ kV}}{400 \text{ kV}}$$
 = 0.404 pu, maximum voltage = $\frac{254.03 \text{ kV}}{400 \text{ kV}}$ = 0.635 pu (EQ 5.38)

The following settings should be entered:

DCMA OUTPUT H3 SOURCE: "SRC 2 V_1 mag" DCMA OUTPUT H3 RANGE: "0 to 1 mA" DCMA OUTPUT H3 MIN VAL: "0.404 pu" DCMA OUTPUT H3 MAX VAL: "0.635 pu"

The limit settings differ from the expected 0.7 pu and 1.1 pu because the relay calculates the positive-sequence quantities scaled to the phase-to-ground voltages, even if the VTs are connected in "Delta" (refer to the *Metering Conventions* section in Chapter 6), while at the same time the VT nominal voltage is 1 pu for the settings. Consequently the settings required in this example differ from naturally expected by the factor of $\sqrt{3}$.


The worst-case error for this application could be calculated by superimposing the following two sources of error:

- ±0.5% of the full scale for the analog output module, or $\pm 0.005 \times (1-0) \times 254.03$ kV = ± 1.27 kV
- ±0.5% of reading

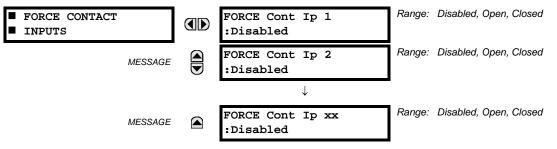
For example, under nominal conditions, the positive-sequence reads 230.94 kV and the worst-case error is 0.005 x 230.94 kV + 1.27 kV = 2.42 kV.

5.9.1 TEST MODE

PATH: SETTINGS ⇒ ¹/₄ TESTING ⇒ TEST MODE

The relay provides test settings to verify that functionality using simulated conditions for contact inputs and outputs. The test mode is indicated on the relay faceplate by a flashing Test Mode LED indicator.

To initiate the Test mode, the **TEST MODE FUNCTION** setting must be "Enabled" and the **TEST MODE INITIATE** setting must be set to logic 1. In particular:

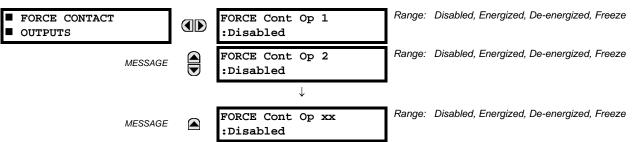

- To initiate Test Mode through relay settings, set **TEST MODE INITIATE** to "On". The test mode starts when the **TEST MODE FUNCTION** setting is changed from "Disabled" to "Enabled".
- To initiate test mode through a user-programmable condition, such as FlexLogic[™] operand (pushbutton, digital input, communication-based input, or a combination of these), set **TEST MODE FUNCTION** to "Enabled" and set **TEST MODE INI-TIATE** to the desired operand. The test mode starts when the selected operand assumes a logic 1 state.

When in test mode, the L90 remains fully operational, allowing for various testing procedures. In particular, the protection and control elements, FlexLogic[™], and communication-based inputs and outputs function normally.

The only difference between the normal operation and the test mode is the behavior of the input and output contacts. The former can be forced to report as open or closed or remain fully operational; the latter can be forced to open, close, freeze, or remain fully operational. The response of the digital input and output contacts to the test mode is programmed individually for each input and output using the force contact inputs and force contact outputs test functions described in the following sections.

5.9.2 FORCE CONTACT INPUTS

PATH: SETTINGS \Rightarrow $\ \ \, \square$ TESTING \Rightarrow $\ \ \, \square$ FORCE CONTACT INPUTS


The relay digital inputs (contact inputs) could be pre-programmed to respond to the test mode in the following ways:

- If set to "Disabled", the input remains fully operational. It is controlled by the voltage across its input terminals and can be turned on and off by external circuitry. This value should be selected if a given input must be operational during the test. This includes, for example, an input initiating the test, or being a part of a user pre-programmed test sequence.
- If set to "Open", the input is forced to report as opened (Logic 0) for the entire duration of the test mode regardless of the voltage across the input terminals.
- If set to "Closed", the input is forced to report as closed (Logic 1) for the entire duration of the test mode regardless of the voltage across the input terminals.

The force contact inputs feature provides a method of performing checks on the function of all contact inputs. Once enabled, the relay is placed into test mode, allowing this feature to override the normal function of contact inputs. The Test Mode LED will be on, indicating that the relay is in test mode. The state of each contact input may be programmed as "Disabled", "Open", or "Closed". All contact input operations return to normal when all settings for this feature are disabled.

5.9.3 FORCE CONTACT OUTPUTS

PATH: SETTINGS $\Rightarrow \oplus$ TESTING $\Rightarrow \oplus$ FORCE CONTACT OUTPUTS

The relay contact outputs can be pre-programmed to respond to the test mode.

If set to "Disabled", the contact output remains fully operational. If operates when its control operand is logic 1 and will resets when its control operand is logic 0. If set to "Energized", the output will close and remain closed for the entire duration of the test mode, regardless of the status of the operand configured to control the output contact. If set to "De-energized", the output will open and remain opened for the entire duration of the test mode regardless of the status of the operand configured to control the output contact. If set to "De-energized", the output will open and remain opened for the entire duration of the test mode regardless of the status of the operand configured to control the output contact. If set to "Freeze", the output retains its position from before entering the test mode, regardless of the status of the operand configured to control the output contact.

These settings are applied two ways. First, external circuits may be tested by energizing or de-energizing contacts. Second, by controlling the output contact state, relay logic may be tested and undesirable effects on external circuits avoided.

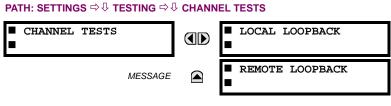
Example 1: Initiating test mode through user-programmable pushbutton 1

For example, the test mode can be initiated from user-programmable pushbutton 1. The pushbutton will be programmed as "Latched" (pushbutton pressed to initiate the test, and pressed again to terminate the test). During the test, digital input 1 should remain operational, digital inputs 2 and 3 should open, and digital input 4 should close. Also, contact output 1 should freeze, contact output 2 should open, contact output 3 should close, and contact output 4 should remain fully operational. The required settings are shown below.

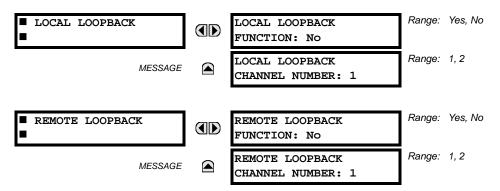
To enable user-programmable pushbutton 1 to initiate the test mode, make the following changes in the **SETTINGS** \Rightarrow \Downarrow **TESTING** \Rightarrow **TEST MODE** menu: **TEST MODE FUNCTION:** "Enabled" and **TEST MODE INITIATE:** "PUSHBUTTON 1 ON"

Make the following changes to configure the contact inputs and outputs. In the SETTINGS \Rightarrow \oplus TESTING \Rightarrow \oplus FORCE CONTACT INPUTS and FORCE CONTACT OUTPUTS menus, set:

FORCE Cont Ip 1: "Disabled", FORCE Cont Ip 2: "Open", FORCE Cont Ip 3: "Open", and FORCE Cont Ip 4: "Closed" FORCE Cont Op 1: "Freeze", FORCE Cont Op 2: "De-energized", FORCE Cont Op 3: "Energized", and FORCE Cont Op 4: "Disabled"


Example 2: Initiating a test from user-programmable pushbutton 1 or through remote input 1

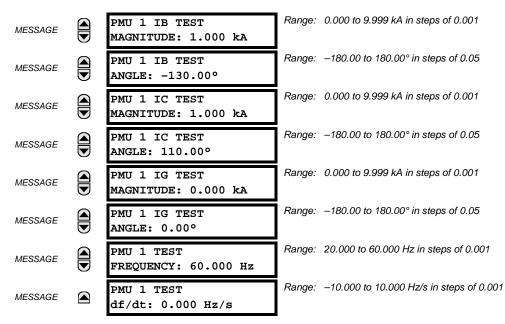
In this example, the test can be initiated locally from user-programmable pushbutton 1 or remotely through remote input 1. Both the pushbutton and the remote input will be programmed as "Latched". Write the following FlexLogic[™] equation:


FlexLogic Equation Editor // D60_490.urs : C:\Program Files\GE Multilin\EnerVist FlexLogic Equation Editor // D60_490.urs : C:\Program Files\GE Multilin\EnerVist FlexLogic Equation Editor // D60_490.urs : C:\Program Files\GE Multilin\EnerVist FlexLogic Equation Editor // D60_490.urs : C:\Program Files\GE Multilin\EnerVist FlexLogic Equation Editor // D60_490.urs : C:\Program Files\GE Multilin\EnerVist FlexLogic Equation Editor // D60_490.urs : C:\Program Files\GE Multilin\EnerVist FlexLogic Equation Editor // D60_490.urs : C:\Program Files\GE Multilin\EnerVist FlexLogic Equation Editor // D60_490.urs : C:\Program Files\GE Multilin\EnerVist FlexLogic Equation Editor // D60_490.urs : C:\Program Files\GE Multilin\EnerVist FlexLogic Equation Editor // D60_490.urs : C:\Program Files\GE Multilin\EnerVist FlexLogic Equation Editor // D60_490.urs : C:\Program Files\GE Multilin\EnerVist FlexLogic Equation Editor // D60_490.urs : C:\Program Files\GE Multilin\EnerVist FlexLogic Equation Editor // D60_490.urs : C:\Program Files\GE Multilin\EnerVist FlexLogic Equation Editor // D60_490.urs : C:\Program Files\GE Multilin\EnerVist FlexLogic Equation Editor // D60_490.urs : C:\Program Files\GE Multilin\EnerVist FlexLogic Equation Editor // D60_490.urs : C:\Program Files\GE Multilin\EnerVist FlexLogic Equation Editor // D60_490.urs : C:\Program Files\GE Multilin\EnerVist FlexLogic Equation Editor // D60_490.urs : C:\Program Files\GE Multilin\EnerVist FlexLogic Equation Editor // D60_490.urs : C:\Program Files\GE Multilin\EnerVist FlexLogic Equation Editor // D60_490.urs : C:\Program Files\GE Multilin\EnerVist FlexLogic Equation Editor // D60_490.urs : C:\Program Files\GE Multilin\EnerVist FlexLogic Editor Edit						
FLEXLOGIC ENTRY	ТҮРЕ	SYNTAX				
View Graphic	View	View				
FlexLogic Entry 1	Remote Inputs On	Remote I/P 1 ON				
FlexLogic Entry 2	Protection Element	PUSHBUTTON 1 ON				
FlexLogic Entry 3	OR	2 Input				
FlexLogic Entry 4	Assign Virtual Output	= Virt Op 1 (VO1)				
FlexLogic Entry 5		•				
D60 490.urs FlexLogic						

Set the user-programmable pushbutton as latching by changing SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow USER-PROGRAMMABLE PUSHBUTTONS \Rightarrow USER PUSHBUTTON 1 \Rightarrow PUSHBUTTON 1 FUNCTION to "Latched". To enable either pushbutton 1 or remote input 1 to initiate the Test mode, make the following changes in the SETTINGS \Rightarrow \oplus TESTING \Rightarrow TEST MODE menu:

TEST MODE FUNCTION: "Enabled" and TEST MODE INITIATE: "VO1"

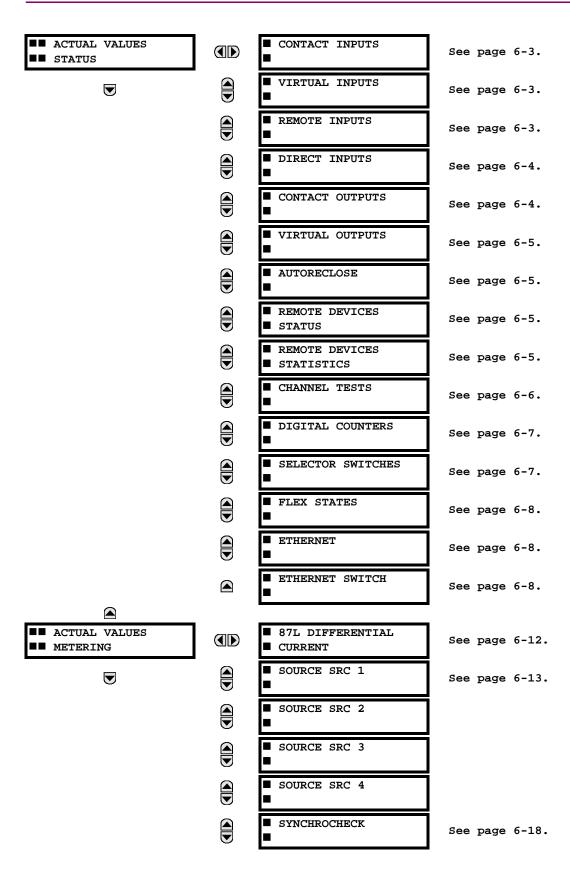
This function performs checking of the communications established by both relays.

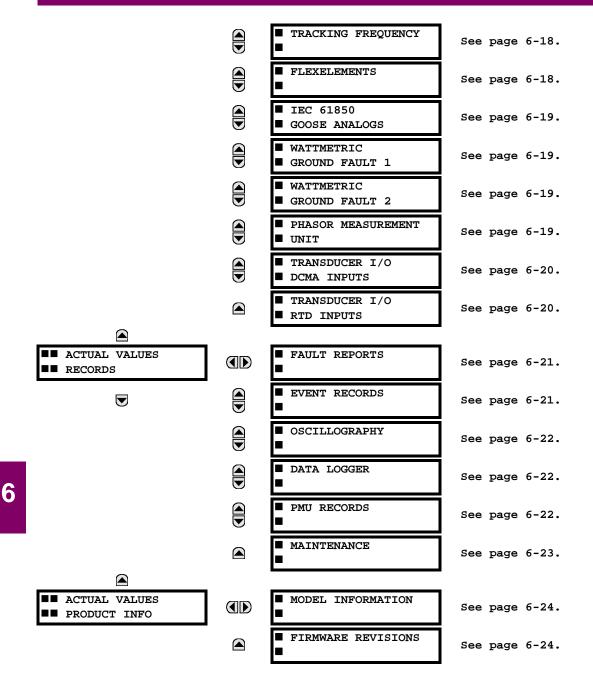


Refer to the *Commissioning* chapter for a detailed description of using the channel tests.

5.9.5 PHASOR MEASUREMENT UNIT TEST VALUES

PATH: SETTINGS \Rightarrow \bigcirc TESTING \Rightarrow \bigcirc PMU TEST VALUES \Rightarrow PMU 1 TEST VALUES


<pre>PMU 1 TEST VALUES</pre>		PMU 1 TEST FUNCTION: Disabled	Range:	Enabled, Disabled
	MESSAGE	PMU 1 VA TEST MAGNITUDE: 500.00 kV	Range:	0.00 to 700.00 kV in steps of 0.01
	MESSAGE	PMU 1 VA TEST ANGLE: 0.00°	Range:	-180.00 to 180.00° in steps of 0.05
	MESSAGE	PMU 1 VB TEST MAGNITUDE: 500.00 kV	Range:	0.00 to 700.00 kV in steps of 0.01
	MESSAGE	PMU 1 VB TEST ANGLE: -120.00°	Range:	-180.00 to 180.00° in steps of 0.05
	MESSAGE	PMU 1 VC TEST MAGNITUDE: 500.00 kV	Range:	0.00 to 700.00 kV in steps of 0.01
	MESSAGE	PMU 1 VC TEST ANGLE: 120.00°	Range:	-180.00 to 180.00° in steps of 0.05
	MESSAGE	PMU 1 VX TEST MAGNITUDE: 500.00 kV	Range:	0.00 to 700.00 kV in steps of 0.01
	MESSAGE	PMU 1 VX TEST ANGLE: 0.00°	Range:	–180.00 to 180.00° in steps of 0.05
	MESSAGE	PMU 1 IA TEST MAGNITUDE: 1.000 kA	Range:	0.000 to 9.999 kA in steps of 0.001
	MESSAGE	PMU 1 IA TEST ANGLE: -10.00°	Range:	–180.00 to 180.00° in steps of 0.05

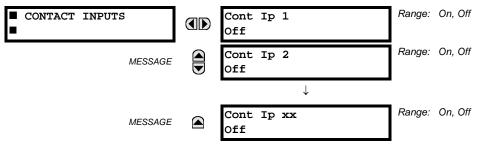


The relay must be in test mode to use the PMU test mode. That is, the **TESTING** \Rightarrow **TEST MODE FUNCTION** setting must be "Enabled" and the **TESTING** \Rightarrow **\clubsuit TEST MODE INITIATE** initiating signal must be "On".

During the PMU test mode, the physical channels (VA, VB, VC, VX, IA, IB, IC, and IG), frequency, and rate of change of frequency are substituted with user values, while the symmetrical components are calculated from the physical channels. The test values are not explicitly marked in the outgoing data frames. When required, it is recommended to use the user-programmable digital channels to signal the C37.118 client that test values are being sent in place of the real measurements.

6.1.1 ACTUAL VALUES MAIN MENU

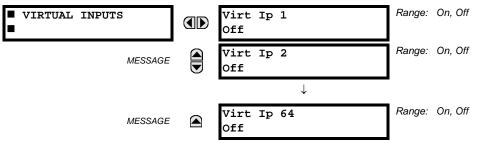
GE Multilin


L90 Line Current Differential System

For status reporting, 'On' represents Logic 1 and 'Off' represents Logic 0.

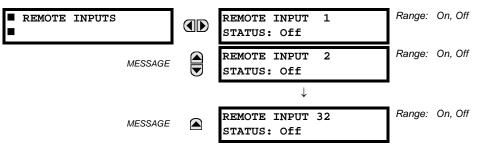
NOTE

6.2.1 CONTACT INPUTS


PATH: ACTUAL VALUES \Rightarrow STATUS \Rightarrow CONTACT INPUTS

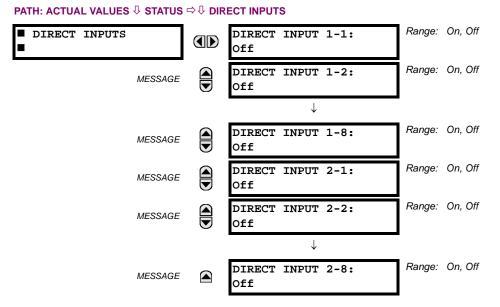
The present status of the contact inputs is shown here. The first line of a message display indicates the ID of the contact input. For example, 'Cont Ip 1' refers to the contact input in terms of the default name-array index. The second line of the display indicates the logic state of the contact input.

6.2.2 VIRTUAL INPUTS


PATH: ACTUAL VALUES \Rightarrow STATUS \Rightarrow \Downarrow VIRTUAL INPUTS

The present status of the 64 virtual inputs is shown here. The first line of a message display indicates the ID of the virtual input. For example, 'Virt Ip 1' refers to the virtual input in terms of the default name. The second line of the display indicates the logic state of the virtual input.

6.2.3 REMOTE INPUTS


PATH: ACTUAL VALUES ⇒ STATUS ⇒ ^①, REMOTE INPUTS

The present state of the 32 remote inputs is shown here.

The state displayed will be that of the remote point unless the remote device has been established to be "Offline" in which case the value shown is the programmed default state for the remote input.

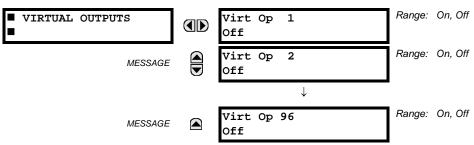
6.2.4 DIRECT INPUTS

The present state of the direct inputs from communications channels 1 and 2 are shown here. The state displayed will be that of the remote point unless channel 1 or 2 has been declared to have "failed", in which case the value shown is the programmed default state defined in the SETTINGS \Rightarrow INPUTS/OUTPUTS \Rightarrow DIRECT \Rightarrow DIRECT INPUTS menu.

6.2.5 CONTACT OUTPUTS

PATH: ACTUAL VALUES ⇒ STATUS ⇒ ¹/₂ CONTACT OUTPUTS Range: On, Off, VOff, IOff, VOn, IOn CONTACT OUTPUTS Cont Op 1 Off Range: On, Off, VOff, IOff, VOn, IOn Cont Op 2 MESSAGE Off \downarrow Range: On, Off, VOff, IOff, VOn, IOn Cont Op xx MESSAGE Off

The present state of the contact outputs is shown here. The first line of a message display indicates the ID of the contact output. For example, 'Cont Op 1' refers to the contact output in terms of the default name-array index. The second line of the display indicates the logic state of the contact output.



For form-A contact outputs, the state of the voltage and current detectors is displayed as Off, VOff, IOff, On, VOn, and IOn. For form-C contact outputs, the state is displayed as Off or On.

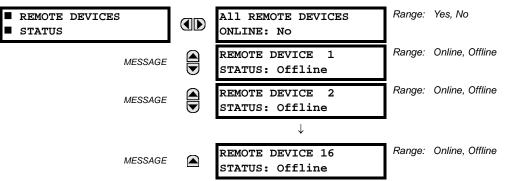
6 ACTUAL VALUES

6.2.6 VIRTUAL OUTPUTS

PATH: ACTUAL VALUES ⇒ STATUS ⇒ ^① VIRTUAL OUTPUTS

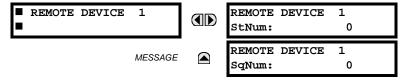
The present state of up to 96 virtual outputs is shown here. The first line of a message display indicates the ID of the virtual output. For example, 'Virt Op 1' refers to the virtual output in terms of the default name-array index. The second line of the display indicates the logic state of the virtual output, as calculated by the FlexLogic[™] equation for that output.

6.2.7 AUTORECLOSE


6.2.8 REMOTE DEVICES

The automatic reclosure shot count is shown here.

a) STATUS


PATH: ACTUAL VALUES ⇒ STATUS ⇒ [‡] REMOTE DEVICES STATUS

The present state of up to 16 programmed remote devices is shown here. The ALL REMOTE DEVICES ONLINE message indicates whether or not all programmed remote devices are online. If the corresponding state is "No", then at least one required remote device is not online.

b) STATISTICS

PATH: ACTUAL VALUES ⇒ STATUS ⇒ ^① REMOTE DEVICES STATISTICS ⇒ REMOTE DEVICE 1(16)

Statistical data (two types) for up to 16 programmed remote devices is shown here.

6.2 STATUS

6 ACTUAL VALUES

The **StNum** number is obtained from the indicated remote device and is incremented whenever a change of state of at least one DNA or UserSt bit occurs. The **SqNum** number is obtained from the indicated remote device and is incremented whenever a GSSE message is sent. This number will rollover to zero when a count of 4 294 967 295 is incremented.

6.2.9 CHANNEL TESTS

PATH: ACTUAL VALUES ⇔ STATUS ⇔ ↓ CHANNEL TESTS

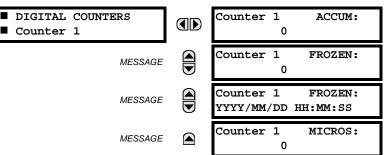
■ CHANNEL TESTS	CHANNEL 1 STATUS: n/a	Range: n/a, FAIL, OK
MESSAGE	CHANNEL 1 LOST PACKETS: 0	Range: 0 to 65535 in steps of 1. Reset count to 0 through the COMMANDS ⇔ [®] CLEAR RECORDS menu.
MESSAGE	CHANNEL 1 LOCAL LOOPBCK STATUS: n/a	Range: n/a, FAIL, OK
MESSAGE	CHANNEL 1 REMOTE LOOPBCK STATUS: n/a	Range: n/a, FAIL, OK
MESSAGE	CHANNEL 1 LOOP DELAY: 0.0 ms	
MESSAGE	CHANNEL 1 ASYMMETRY: +0.0 ms	Range: -10 to 10 ms in steps of 0.1
MESSAGE	CHANNEL 2 STATUS: n/a	Range: n/a, FAIL, OK
MESSAGE	CHANNEL 2 LOST PACKETS: 0	Range: 0 to 65535 in steps of 1. Reset count to 0 through the COMMANDS ⇔ [®] CLEAR RECORDS menu.
MESSAGE	CHANNEL 2 LOCAL LOOPBCK STATUS: n/a	Range: n/a, FAIL, OK
MESSAGE	CHANNEL 2 REMOTE LOOPBCK STATUS: n/a	Range: n/a, FAIL, OK
MESSAGE	CHANNEL 2 LOOP DELAY: 0.0 ms	
MESSAGE	CHANNEL 2 ASYMMETRY: +0.0 ms	Range: -10 to 10 ms in steps of 0.1
MESSAGE	VALIDITY OF CHANNEL CONFIGURATION: n/a	Range: n/a, FAIL, OK
MESSAGE	PFLL STATUS: n/a	Range: n/a, FAIL, OK

The status information for two channels is shown here. A brief description of each actual value is below:

- CHANNEL 1(2) STATUS: This represents the receiver status of each channel. If the value is "OK", the 87L current differential element is enabled and data is being received from the remote terminal; If the value is "FAIL", the 87L element is enabled and data is not being received from the remote terminal. If "n/a", the 87L element is disabled.
- CHANNEL 1(2) LOST PACKETS: Current, timing, and control data is transmitted to the remote terminals in data packets at a rate of two packets per cycle. The number of lost packets represents data packets lost in transmission; this count can be reset through the COMMANDS ⇒ U CLEAR RECORDS menu.
- CHANNEL 1(2) LOCAL LOOPBACK STATUS: The result of the local loopback test is displayed here.
- CHANNEL 1(2) REMOTE LOOPBACK STATUS: The result of the remote loopback test is displayed here.
- CHANNEL 1(2) LOOP DELAY: Displays the round trip channel delay (including loopback processing time of the remote relay) computed during a remote loopback test under normal relay operation, in milliseconds (ms).

6 ACTUAL VALUES

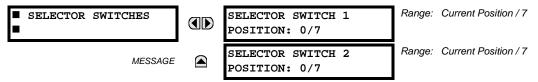
- CHANNEL 1(2) ASYMMETRY: The result of channel asymmetry calculations derived from GPS signal is being dis-• played here for both channels if CHANNEL ASYMMETRY is "Enabled". A positive "+" sign indicates the transit delay in the transmitting direction is less than the delay in the receiving direction; a negative "--" sign indicates the transit delay in the transmitting direction is more than the delay in the receiving direction. A displayed value of "0.0" indicates that either asymmetry is not present or can not be estimated due to failure with local/remote GPS clock source.
- VALIDITY OF CHANNEL CONFIGURATION: The current state of the communications channel identification check. and hence validity, is displayed here. If a remote relay ID number does not match the programmed number at the local relay, the "FAIL" value is displayed. The "n/a" value appears if the local relay ID is set to a default value of "0" or if the 87L element is disabled. Refer to SETTINGS ⇔ SYSTEM SETUP ⇔ L90 POWER SYSTEM section for more information
- PFLL STATUS: This value represents the status of the phase and frequency locked loop (PFLL) filter which uses timing information from local and remote terminals to synchronize the clocks of all terminals. If PFLL STATUS is "OK", the clocks of all terminals are synchronized and 87L protection is enabled. If it is "FAIL", the clocks of all terminals are not synchronized and 87L protection is disabled. If "n/a", then PFLL is disabled.


NOTE

Counter 1

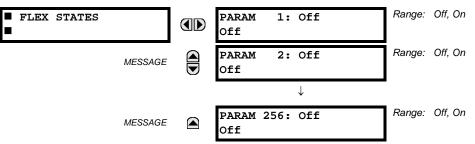
At startup, the clocks of all terminals are not synchronized and the PFLL status displayed is "FAIL". It takes up to 8 seconds after startup for the value displayed to change from "FAIL" to "OK".

6.2.10 DIGITAL COUNTERS


PATH: ACTUAL VALUES ⇔ STATUS ⇔ [‡] DIGITAL COUNTERS ⇔ DIGITAL COUNTERS Counter 1(8)

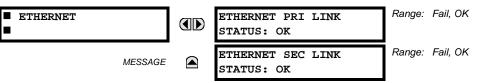
The present status of the eight digital counters is shown here. The status of each counter, with the user-defined counter name, includes the accumulated and frozen counts (the count units label will also appear). Also included, is the date and time stamp for the frozen count. The **COUNTER 1 MICROS** value refers to the microsecond portion of the time stamp.

6.2.11 SELECTOR SWITCHES


PATH: ACTUAL VALUES ⇒ STATUS ⇒ [↓] SELECTOR SWITCHES

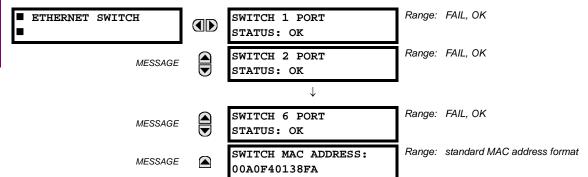
The display shows both the current position and the full range. The current position only (an integer from 0 through 7) is the actual value.

6.2 STATUS


PATH: ACTUAL VALUES \Rightarrow STATUS \Rightarrow \bigcirc FLEX STATES

There are 256 FlexState bits available. The second line value indicates the state of the given FlexState bit.

6.2.13 ETHERNET


PATH: ACTUAL VALUES \Rightarrow STATUS \Rightarrow \bigcirc ETHERNET

These values indicate the status of the primary and secondary Ethernet links.

6.2.14 ETHERNET SWITCH

PATH: ACTUAL VALUES ⇒ STATUS ⇒ [‡] ETHERNET SWITCH

These actual values appear only if the L90 is ordered with an Ethernet switch module (type 2S or 2T). The status information for the Ethernet switch is shown in this menu.

- SWITCH 1 PORT STATUS to SWITCH 6 PORT STATUS: These values represents the receiver status of each port on the Ethernet switch. If the value is "OK", then data is being received from the remote terminal; If the value is "FAIL", then data is not being received from the remote terminal or the port is not connected.
- SWITCH MAC ADDRESS: This value displays the MAC address assigned to the Ethernet switch module.

a) UR CONVENTION FOR MEASURING POWER AND ENERGY

The following figure illustrates the conventions established for use in UR-series relays.

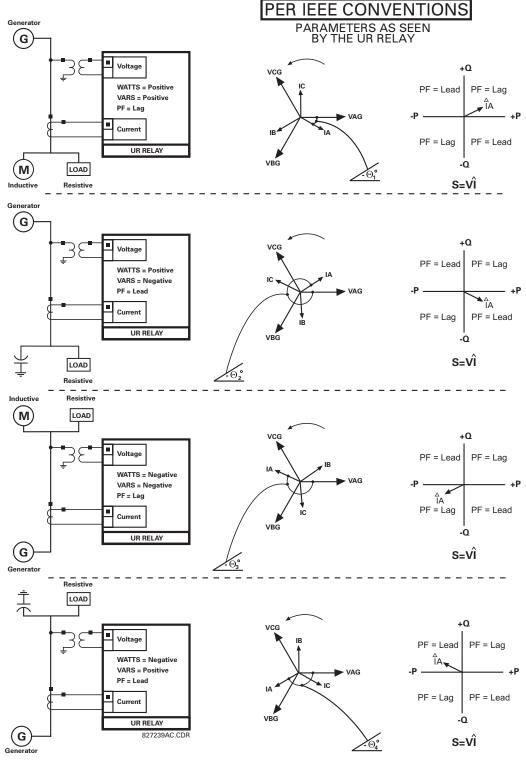


Figure 6–1: FLOW DIRECTION OF SIGNED VALUES FOR WATTS AND VARS

b) UR CONVENTION FOR MEASURING PHASE ANGLES

All phasors calculated by UR-series relays and used for protection, control and metering functions are rotating phasors that maintain the correct phase angle relationships with each other at all times.

For display and oscillography purposes, all phasor angles in a given relay are referred to an AC input channel pre-selected by the **SETTINGS** \Rightarrow **SYSTEM SETUP** \Rightarrow **POWER SYSTEM** \Rightarrow **FREQUENCY AND PHASE REFERENCE** setting. This setting defines a particular AC signal source to be used as the reference.

The relay will first determine if any "Phase VT" bank is indicated in the source. If it is, voltage channel VA of that bank is used as the angle reference. Otherwise, the relay determines if any "Aux VT" bank is indicated; if it is, the auxiliary voltage channel of that bank is used as the angle reference. If neither of the two conditions is satisfied, then two more steps of this hierarchical procedure to determine the reference signal include "Phase CT" bank and "Ground CT" bank.

If the AC signal pre-selected by the relay upon configuration is not measurable, the phase angles are not referenced. The phase angles are assigned as positive in the leading direction, and are presented as negative in the lagging direction, to more closely align with power system metering conventions. This is illustrated below.

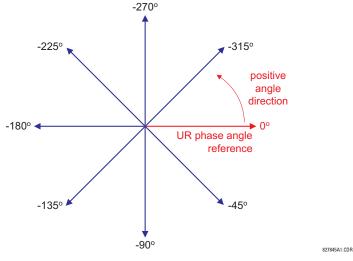


Figure 6–2: UR PHASE ANGLE MEASUREMENT CONVENTION

c) UR CONVENTION FOR MEASURING SYMMETRICAL COMPONENTS

The UR-series of relays calculate voltage symmetrical components for the power system phase A line-to-neutral voltage, and symmetrical components of the currents for the power system phase A current. Owing to the above definition, phase angle relations between the symmetrical currents and voltages stay the same irrespective of the connection of instrument transformers. This is important for setting directional protection elements that use symmetrical voltages.

For display and oscillography purposes the phase angles of symmetrical components are referenced to a common reference as described in the previous sub-section.

WYE-CONNECTED INSTRUMENT TRANSFORMERS:

ABC phase rotation:

$$V_{-0} = \frac{1}{3}(V_{AG} + V_{BG} + V_{CG})$$
$$V_{-1} = \frac{1}{3}(V_{AG} + aV_{BG} + a^2V_{CG})$$
$$V_{-2} = \frac{1}{3}(V_{AG} + a^2V_{BG} + aV_{CG})$$

The above equations apply to currents as well.

• ACB phase rotation:

$$V_{0} = \frac{1}{3}(V_{AG} + V_{BG} + V_{CG})$$
$$V_{1} = \frac{1}{3}(V_{AG} + a^{2}V_{BG} + aV_{CG})$$
$$V_{2} = \frac{1}{3}(V_{AG} + aV_{BG} + a^{2}V_{CG})$$

DELTA-CONNECTED INSTRUMENT TRANSFORMERS:

• ABC phase rotation:

$$V_{0} = N/A$$

$$V_{1} = \frac{1 \angle -30^{\circ}}{3\sqrt{3}} (V_{AB} + aV_{BC} + a^{2}V_{CA})$$

$$V_{2} = \frac{1 \angle 30^{\circ}}{3\sqrt{3}} (V_{AB} + a^{2}V_{BC} + aV_{CA})$$

Table 6–1: SYMMETRICAL COMPONENTS CALCULATION EXAMPLE

ACB phase rotation:

$$V_{-0} = N/A$$

$$V_{-1} = \frac{1 \angle 30^{\circ}}{3\sqrt{3}} (V_{AB} + a^2 V_{BC} + a V_{CA})$$

$$V_{-2} = \frac{1 \angle -30^{\circ}}{3\sqrt{3}} (V_{AB} + a V_{BC} + a^2 V_{CA})$$

The zero-sequence voltage is not measurable under the Delta connection of instrument transformers and is defaulted to zero. The table below shows an example of symmetrical components calculations for the ABC phase rotation.

•

SYSTEM	SYSTEM VOLTAGES, SEC. V *				VT	RELAY I	NPUTS, SI	EC. V	SYMM. C	OMP, SEC). V	
V _{AG}	V _{BG}	V _{CG}	V _{AB}	V _{BC}	V _{CA}	CONN.	F5AC	F6AC	F7AC	V ₀	V ₁	V ₂
13.9 ∠0°	76.2 ∠–125°	79.7 ∠–250°	84.9 ∠–313°	138.3 ∠–97°	85.4 ∠–241°	WYE	13.9 ∠0°	76.2 ∠–125°	79.7 ∠–250°	19.5 ∠–192°	56.5 ∠–7°	23.3 ∠–187°
	WN (only V determined)		84.9 ∠0°	138.3 ∠–144°	85.4 ∠–288°	DELTA	84.9 ∠0°	138.3 ∠–144°	85.4 ∠–288°	N/A	56.5 ∠–54°	23.3 ∠–234°

* The power system voltages are phase-referenced – for simplicity – to VAG and VAB, respectively. This, however, is a relative matter. It is important to remember that the L90 displays are always referenced as specified under SETTINGS ⇔ ⊕ SYSTEM SETUP ⇔ ⊕ POWER SYSTEM ⇒ ⊕ FREQUENCY AND PHASE REFERENCE.

The example above is illustrated in the following figure.

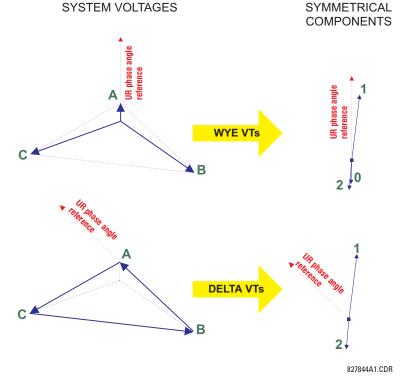
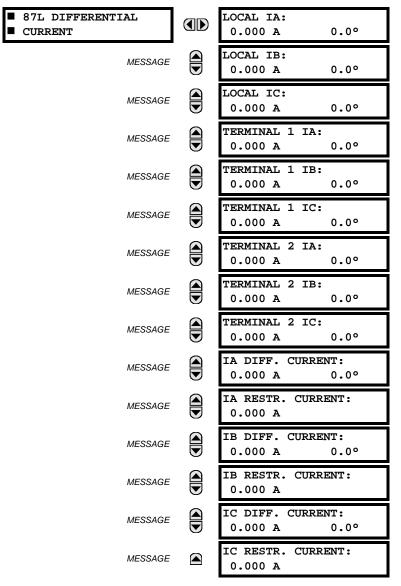
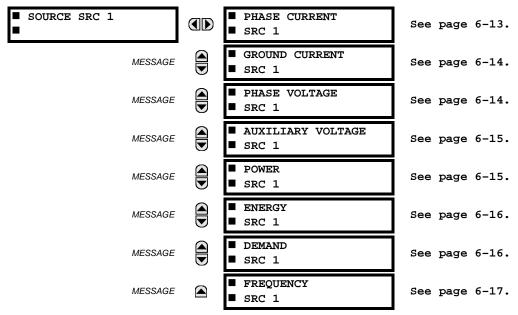



Figure 6–3: MEASUREMENT CONVENTION FOR SYMMETRICAL COMPONENTS

6.3.2 DIFFERENTIAL CURRENT

PATH: ACTUAL VALUES ⇔ ♣ METERING ⇒ 87L DIFFERENTIAL CURRENT

The metered current values are displayed for all line terminals in fundamental phasor form. All angles are shown with respect to the reference common for all L90 relays; that is, frequency, source currents, and voltages. The metered primary differential and restraint currents are displayed for the local relay.

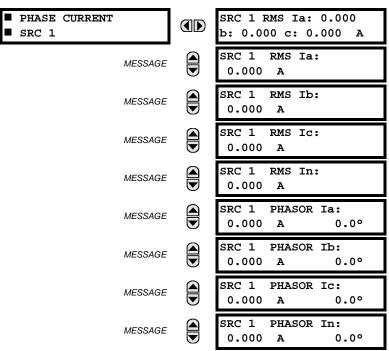


Terminal 1 refers to the communication channel 1 interface to a remote L90 at terminal 1. Terminal 2 refers to the communication channel 2 interface to a remote L90 at terminal 2.

6.3.3 SOURCES

a) MAIN MENU

PATH: ACTUAL VALUES $\Leftrightarrow \mathbb{Q}$ METERING $\Rightarrow \mathbb{Q}$ SOURCE SRC1

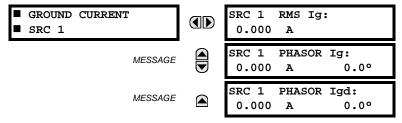


This menu displays the metered values available for each source.

Metered values presented for each source depend on the phase and auxiliary VTs and phase and ground CTs assignments for this particular source. For example, if no phase VT is assigned to this source, then any voltage, energy, and power values will be unavailable.

b) PHASE CURRENT METERING

PATH: ACTUAL VALUES ⇔ ↓ METERING ⇒ SOURCE SRC 1 ⇒ PHASE CURRENT

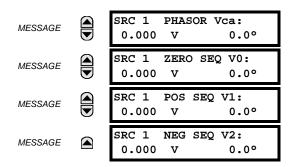


MESSAGE	SRC 1 ZERO SEQ IO: 0.000 A 0.0°
MESSAGE	SRC 1 POS SEQ I1: 0.000 A 0.0°
MESSAGE	SRC 1 NEG SEQ I2: 0.000 A 0.0°

The metered phase current values are displayed in this menu. The "SRC 1" text will be replaced by whatever name was programmed by the user for the associated source (see SETTINGS \Rightarrow SYSTEM SETUP \Rightarrow SIGNAL SOURCES).

c) GROUND CURRENT METERING

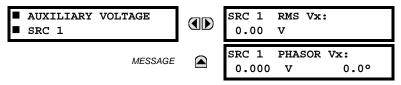
PATH: ACTUAL VALUES ⇔ ♣ METERING ⇔ SOURCE SRC 1 ⇔ ♣ GROUND CURRENT



The metered ground current values are displayed in this menu. The "SRC 1" text will be replaced by whatever name was programmed by the user for the associated source (see SETTINGS \Rightarrow \Im SYSTEM SETUP \Rightarrow \Im SIGNAL SOURCES).

d) PHASE VOLTAGE METERING

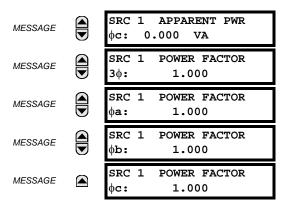
PATH: ACTUAL VALUES $\Rightarrow \Downarrow$ METERING \Rightarrow SOURCE SRC 1 \Rightarrow PHASE VOLTAGE


PHASE VOLTAGESRC 1	SRC 1 RMS Vag: 0.00 V
MESSAGE	SRC 1 RMS Vbg: 0.00 V
MESSAGE	SRC 1 RMS Vcg: 0.00 V
MESSAGE	SRC 1 PHASOR Vag: 0.000 V 0.0°
MESSAGE	SRC 1 PHASOR Vbg: 0.000 V 0.0°
MESSAGE	SRC 1 PHASOR Vcg: 0.000 V 0.0°
MESSAGE	SRC 1 RMS Vab: 0.00 V
MESSAGE	SRC 1 RMS Vbc: 0.00 V
MESSAGE	SRC 1 RMS Vca: 0.00 V
MESSAGE	SRC 1 PHASOR Vab: 0.000 V 0.0°
MESSAGE	SRC 1 PHASOR Vbc: 0.000 V 0.0°

The metered phase voltage values are displayed in this menu. The "SRC 1" text will be replaced by whatever name was programmed by the user for the associated source (see **SETTINGS** \Rightarrow **§ SYSTEM SETUP** \Rightarrow **§ SIGNAL SOURCES**).

e) AUXILIARY VOLTAGE METERING

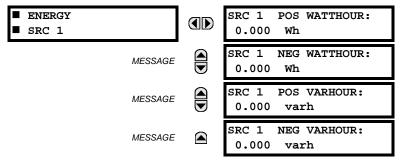
PATH: ACTUAL VALUES $\Rightarrow 0$ METERING \Rightarrow SOURCE SRC 1 $\Rightarrow 0$ AUXILIARY VOLTAGE



The metered auxiliary voltage values are displayed in this menu. The "SRC 1" text will be replaced by whatever name was programmed by the user for the associated source (see **SETTINGS** \Rightarrow **U SYSTEM SETUP** \Rightarrow **U SIGNAL SOURCES**).

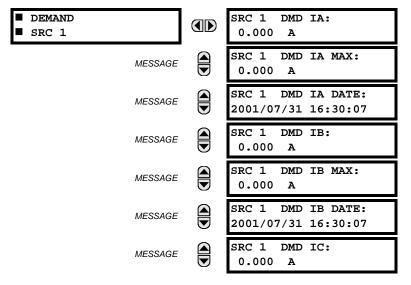
f) POWER METERING

PATH: ACTUAL VALUES \Rightarrow $\ \ \, \square$ METERING \Rightarrow SOURCE SRC 1 \Rightarrow $\ \ \, \square$ POWER


POWERSRC 1	SRC 1 REAL POWER 30: 0.000 W
MESSAGE	SRC 1 REAL POWER ϕ a: 0.000 W
MESSAGE	SRC 1 REAL POWER ϕ b: 0.000 W
MESSAGE	SRC 1 REAL POWER ϕ c: 0.000 W
MESSAGE	SRC 1 REACTIVE PWR 30: 0.000 var
MESSAGE	SRC 1 REACTIVE PWR ϕ a: 0.000 var
MESSAGE	SRC 1 REACTIVE PWR ϕ b: 0.000 var
MESSAGE	SRC 1 REACTIVE PWR ϕ c: 0.000 var
MESSAGE	SRC 1 APPARENT PWR 30: 0.000 VA
MESSAGE	SRC 1 APPARENT PWR ϕ a: 0.000 VA
MESSAGE	SRC 1 APPARENT PWR ϕ b: 0.000 VA

The metered values for real, reactive, and apparent power, as well as power factor, are displayed in this menu. The "SRC 1" text will be replaced by whatever name was programmed by the user for the associated source (see SETTINGS \Rightarrow SYSTEM SETUP \Rightarrow SIGNAL SOURCES).

g) ENERGY METERING


PATH: ACTUAL VALUES $\Rightarrow \clubsuit$ METERING \Rightarrow SOURCE SRC 1 $\Rightarrow \clubsuit$ ENERGY

The metered values for real and reactive energy are displayed in this menu. The "SRC 1" text will be replaced by whatever name was programmed by the user for the associated source (see **SETTINGS** \Rightarrow **§ SYSTEM SETUP** \Rightarrow **§ SIGNAL SOURCES**). Because energy values are accumulated, these values should be recorded and then reset immediately prior to changing CT or VT characteristics.

h) DEMAND METERING

PATH: ACTUAL VALUES $\Rightarrow \bigcirc$ METERING \Rightarrow SOURCE SRC 1 $\Rightarrow \bigcirc$ DEMAND

MESSAGE	SRC 1 DMD IC MAX: 0.000 A
MESSAGE	SRC 1 DMD IC DATE: 2001/07/31 16:30:07
MESSAGE	SRC 1 DMD W: 0.000 W
MESSAGE	SRC 1 DMD W MAX: 0.000 W
MESSAGE	SRC 1 DMD W DATE: 2001/07/31 16:30:07
MESSAGE	SRC 1 DMD VAR: 0.000 var
MESSAGE	SRC 1 DMD VAR MAX: 0.000 var
MESSAGE	SRC 1 DMD VAR DATE: 2001/07/31 16:30:07
MESSAGE	SRC 1 DMD VA: 0.000 VA
MESSAGE	SRC 1 DMD VA MAX: 0.000 VA
MESSAGE	SRC 1 DMD VA DATE: 2001/07/31 16:30:07

The metered values for current and power demand are displayed in this menu. The "SRC 1" text will be replaced by whatever name was programmed by the user for the associated source (see **SETTINGS** \Rightarrow **SYSTEM SETUP** \Rightarrow **SIGNAL SOURCES**).

The relay measures (absolute values only) the source demand on each phase and average three phase demand for real, reactive, and apparent power. These parameters can be monitored to reduce supplier demand penalties or for statistical metering purposes. Demand calculations are based on the measurement type selected in the **SETTINGS** \Rightarrow **PRODUCT SETUP** \Rightarrow **DEMAND** menu. For each quantity, the relay displays the demand over the most recent demand time interval, the maximum demand since the last maximum demand reset, and the time and date stamp of this maximum demand value. Maximum demand quantities can be reset to zero with the **CLEAR RECORDS** \Rightarrow **ULEAR DEMAND RECORDS** command.

i) FREQUENCY METERING

PATH: ACTUAL VALUES ⇔ ♣ METERING ⇒ SOURCE SRC 1 ⇒ ♣ FREQUENCY

The metered frequency values are displayed in this menu. The "SRC 1" text will be replaced by whatever name was programmed by the user for the associated source (see SETTINGS \Rightarrow SYSTEM SETUP \Rightarrow SIGNAL SOURCES).

SOURCE FREQUENCY is measured via software-implemented zero-crossing detection of an AC signal. The signal is either a Clarke transformation of three-phase voltages or currents, auxiliary voltage, or ground current as per source configuration (see the **SYSTEM SETUP** \Rightarrow **POWER SYSTEM** settings). The signal used for frequency estimation is low-pass filtered. The final frequency measurement is passed through a validation filter that eliminates false readings due to signal distortions and transients.

If the 87L function is enabled, then dedicated 87L frequency tracking is engaged. In this case, the relay uses the **METERING** \Rightarrow **TRACKING FREQUENCY** \Rightarrow **TRACKING FREQUENCY** \Rightarrow **TRACKING FREQUENCY** value for all computations, overriding the **SOURCE FREQUENCY** value.

PATH: ACTUAL VALUES $\Rightarrow \emptyset$ METERING $\Rightarrow \emptyset$ SYNCHROCHECK \Rightarrow SYNCHROCHECK 1(2)

SYNCHROCHECK 1	SYNCHROCHECK 1 DELTA VOLT: 0.000 V
MESSAGE	SYNCHROCHECK 1 DELTA PHASE: 0.0°
MESSAGE	SYNCHROCHECK 1 DELTA FREQ: 0.00 Hz

The actual values menu for synchrocheck 2 is identical to that of synchrocheck 1. If a synchrocheck function setting is "Disabled", the corresponding actual values menu item will not be displayed.

6.3.5 TRACKING FREQUENCY

PATH: ACTUAL VALUES $\Rightarrow \emptyset$ METERING $\Rightarrow \emptyset$ TRACKING FREQUENCY

TRACKING FREQUENCY

TRACKING FREQUENCY: 60.00 Hz

The tracking frequency is displayed here. The frequency is tracked based on configuration of the reference source. The TRACKING FREQUENCY is based upon positive sequence current phasors from all line terminals and is synchronously adjusted at all terminals. If currents are below 0.125 pu, then the NOMINAL FREQUENCY is used.

6.3.6 FLEXELEMENTS™

PATH: ACTUAL VALUES $\Rightarrow \oplus$ METERING $\Rightarrow \oplus$ FLEXELEMENTS \Rightarrow FLEXELEMENT 1(8)

6

FLEXELEMENT 1

FLEXELEMENT 1 OpSig: 0.000 pu

The operating signals for the FlexElements[™] are displayed in pu values using the following definitions of the base units.

Table 6–2: FLEXELEMENT[™] BASE UNITS (Sheet 1 of 2)

87L SIGNALS (Local IA Mag, IB, and IC) (Diff Curr IA Mag, IB, and IC) (Terminal 1 IA Mag, IB, and IC) (Terminal 2 IA Mag, IB and IC)	I _{BASE} = maximum primary RMS value of the +IN and –IN inputs (CT primary for source currents, and 87L source primary current for line differential currents)
87L SIGNALS (Op Square Curr IA, IB, and IC) (Rest Square Curr IA, IB, and IC)	BASE = Squared CT secondary of the 87L source
BREAKER ARCING AMPS (Brk X Arc Amp A, B, and C)	$BASE = 2000 \; kA^2 \times cycle$
dcmA	BASE = maximum value of the DCMA INPUT MAX setting for the two transducers configured under the +IN and –IN inputs.
FREQUENCY	f _{BASE} = 1 Hz
PHASE ANGLE	ϕ_{BASE} = 360 degrees (see the UR angle referencing convention)
POWER FACTOR	PF _{BASE} = 1.00
RTDs	BASE = 100°C
SOURCE CURRENT	I _{BASE} = maximum nominal primary RMS value of the +IN and -IN inputs
SOURCE ENERGY (SRC X Positive and Negative Watthours); (SRC X Positive and Negative Varhours)	E _{BASE} = 10000 MWh or MVAh, respectively
SOURCE POWER	P_{BASE} = maximum value of $V_{BASE} \times I_{BASE}$ for the +IN and –IN inputs

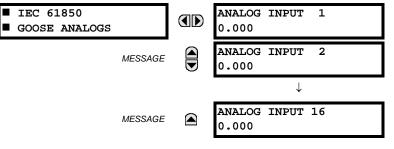
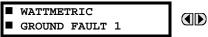

6 ACTUAL VALUES

Table 6–2: FLEXELEMENT[™] BASE UNITS (Sheet 2 of 2)

SOURCE VOLTAGE	V _{BASE} = maximum nominal primary RMS value of the +IN and -IN inputs
SYNCHROCHECK (Max Delta Volts)	V_{BASE} = maximum primary RMS value of all the sources related to the +IN and –IN inputs

6.3.7 IEC 61580 GOOSE ANALOG VALUES

PATH: ACTUAL VALUES $\Leftrightarrow {\mathbb Q}$ METERING $\Rightarrow {\mathbb Q}$ IEC 61850 GOOSE ANALOGS



The L90 Line Current Differential System is provided with optional IEC 61850 communications capability. This feature is specified as a software option at the time of ordering. Refer to the *Ordering* section of chapter 2 for additional details. The IEC 61850 protocol features are not available if CPU type E is ordered.

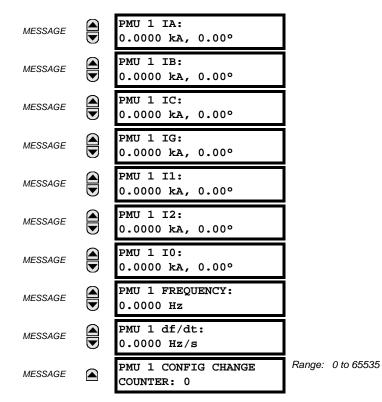
The IEC 61850 GGIO3 analog input data points are displayed in this menu. The GGIO3 analog data values are received via IEC 61850 GOOSE messages sent from other devices.

6.3.8 WATTMETRIC GROUND FAULT

PATH: ACTUAL VALUES ⇔ ^①, METERING ⇔ ^①, WATTMETRIC GROUND FAULT 1(2)

SOFTWARE

OPTION


WATT GND FLT 1: 0.000 W

This menu displays the wattmetric zero-sequence directional element operating power values.

6.3.9 PHASOR MEASUREMENT UNIT

PATH: ACTUAL VALUES ⇔ ♣ METERING ⇔ ♣ PHASOR MEASUREMENT UNIT ⇒ PMU 1(4)

■ PMU 1 ■	PMU 1 VA: 0.0000 kV, 0.00°	Range:	Va or Vab per VT bank connection
MESSAGE	PMU 1 VB: 0.0000 kV, 0.00°	Range:	Va or Vab per VT bank connection
MESSAGE	PMU 1 VC: 0.0000 kV, 0.00°	Range:	Va or Vab per VT bank connection
MESSAGE	PMU 1 VX: 0.0000 kV, 0.00°		
MESSAGE	PMU 1 V1: 0.0000 kV, 0.00°		
MESSAGE	PMU 1 V2: 0.0000 kV, 0.00°		
MESSAGE	PMU 1 V0: 0.0000 kV, 0.00°	Range:	Substituted with zero if delta-connected VTs.

The above actual values are displayed without the corresponding time stamp as they become available per the recording rate setting. Also, the recording post-filtering setting is applied to these values.

6.3.10 TRANSDUCER INPUTS AND OUTPUTS

PATH: ACTUAL VALUES	>ֆ METERING ⇔≀	FRANSDUCER I/C	D DCMA INPUTS 🛱	DCMA INPUT xx

DCMA INPUT XX	OCMA INPUT XX 0.000 mA
---------------	---------------------------

Actual values for each dcmA input channel that is enabled are displayed with the top line as the programmed channel ID and the bottom line as the value followed by the programmed units.

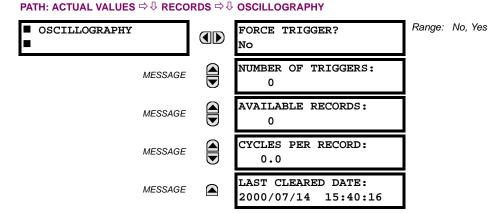
PATH: ACTUAL VALUES $\Rightarrow 0$ METERING $\Rightarrow 0$ TRANSDUCER I/O RTD INPUTS \Rightarrow RTD INPUT xx

Actual values for each RTD input channel that is enabled are displayed with the top line as the programmed channel ID and the bottom line as the value.

6.4.1 FAULT REPORTS

PATH: ACTUAL VALUES ⇔ ¹/₄ RECORDS ⇒ FAULT REPORTS ⇒ FAULT REPORT 1(15)

The latest 15 fault reports can be stored. The most recent fault location calculation (when applicable) is displayed in this menu, along with the date and time stamp of the event which triggered the calculation. See the **SETTINGS** \Rightarrow **PRODUCT SETUP** \Rightarrow **4 FAULT REPORTS** menu for assigning the source and trigger for fault calculations. Refer to the **COMMANDS** \Rightarrow **4 CLEAR RECORDS** menu for manual clearing of the fault reports and to the **SETTINGS** \Rightarrow **PRODUCT SETUP** \Rightarrow **4 CLEAR RELAY RECORDS** menu for automated clearing of the fault reports.

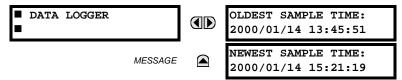

The faulted segment of the line is indicated when the synchronized voltage and currents method is used. When the faulted segment can be determined, the **FAULT 1 FAULTED SEGMENT** value displays "N/A". For three-terminal lines, the fault location (distance to the fault) is reported as seen from the terminal adjacent to the fault.

6.4.2 EVENT RECORDS

PATH: ACTUAL VALUES ⇔ ♣ RECORDS ⇔ ♣ EVENT RECORDS EVENT RECORDS EVENT: XXXX RESET OP(PUSHBUTTON) \downarrow EVENT: 3 EVENT 3 MESSAGE DATE: 2000/07/14 POWER ON EVENT: 2 EVENT 3 MESSAGE POWER OFF TIME: 14:53:00.03405 EVENT: 1 Date and Time Stamps MESSAGE EVENTS CLEARED

The event records menu shows the contextual data associated with up to the last 1024 events, listed in chronological order from most recent to oldest. If all 1024 event records have been filled, the oldest record will be removed as a new record is added. Each event record shows the event identifier/sequence number, cause, and date/time stamp associated with the event trigger. Refer to the **COMMANDS** $\$ **CLEAR RECORDS** menu for clearing event records.

6.4.3 OSCILLOGRAPHY

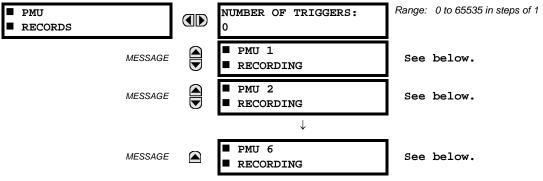


This menu allows the user to view the number of triggers involved and number of oscillography traces available. The **CYCLES PER RECORD** value is calculated to account for the fixed amount of data storage for oscillography. See the *Oscillography* section of chapter 5 for additional details.

A trigger can be forced here at any time by setting "Yes" to the **FORCE TRIGGER**? command. Refer to the **COMMANDS** \Rightarrow \bigcirc **CLEAR RECORDS** menu for information on clearing the oscillography records.

6.4.4 DATA LOGGER

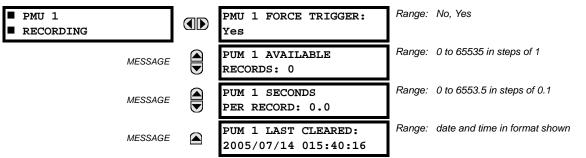
PATH: ACTUAL VALUES $\Rightarrow \square$ RECORDS $\Rightarrow \square$ DATA LOGGER



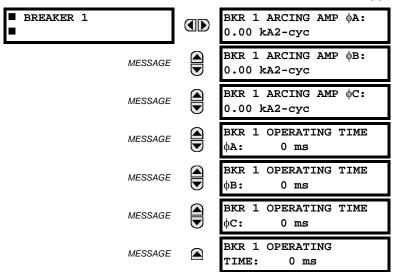
The **OLDEST SAMPLE TIME** represents the time at which the oldest available samples were taken. It will be static until the log gets full, at which time it will start counting at the defined sampling rate. The **NEWEST SAMPLE TIME** represents the time the most recent samples were taken. It counts up at the defined sampling rate. If the data logger channels are defined, then both values are static.

Refer to the COMMANDS \Rightarrow \bigcirc CLEAR RECORDS menu for clearing data logger records.

6.4.5 PHASOR MEASUREMENT UNIT RECORDS


PATH: ACTUAL VALUES ⇔ RECORDS ⇔ UPMU RECORDS

The number of triggers applicable to all the phasor measurement unit recorders is indicated by the **NUMBER OF TRIGGERS** value. The status for each of the six phasor measurement unit recorders is indicated as follows:


6 ACTUAL VALUES

PATH: ACTUAL VALUES ⇔ RECORDS ⇔ [↓] PMU RECORDS ⇔ PMU 1(6) RECORDING

6.4.6 BREAKER MAINTENANCE

PATH: ACTUAL VALUES ⇔ ♣ RECORDS ⇔ ♣ MAINTENANCE ⇒ BREAKER 1(4)

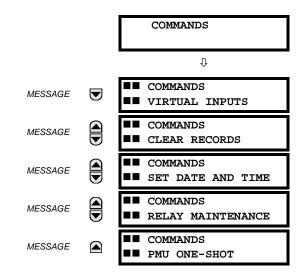
There is an identical menu for each of the breakers. The **BKR 1 ARCING AMP** values are in units of kA^2 -cycles. Refer to the **COMMANDS** \Rightarrow \oplus **CLEAR RECORDS** menu for clearing breaker arcing current records. The **BREAKER OPERATING TIME** is defined as the slowest operating time of breaker poles that were initiated to open.

6.5.1 MODEL INFORMATION

<pre>MODEL INFORMATION</pre>	ORDER CODE LINE 1: L90-E00-HCH-F8F-H6A	Range:	standard GE multilin order code format; example order code shown
MESSAGE	ORDER CODE LINE 2:	Range:	standard GE multilin order code format
MESSAGE	ORDER CODE LINE 3:	Range:	standard GE multilin order code format
MESSAGE	ORDER CODE LINE 4:	Range:	standard GE multilin order code format
MESSAGE	SERIAL NUMBER:	Range:	standard GE multilin serial number format
MESSAGE	ETHERNET MAC ADDRESS	Range:	standard Ethernet MAC address format
MESSAGE	MANUFACTURING DATE: 0	Range:	YYYY/MM/DD HH:MM:SS
MESSAGE	PMU FEATURE ACTIVE: No	Range:	Yes, No
MESSAGE	CT/ VT ADVANCED DIAG ACTIVE: No	Range:	Yes, No
MESSAGE	OPERATING TIME: 0:00:00	Range:	opearting time in HH:MM:SS
MESSAGE	LAST SETTING CHANGE: 1970/01/01 23:11:19	Range:	YYYY/MM/DD HH:MM:SS

PATH: ACTUAL VALUES ⇔ ^①, PRODUCT INFO ⇒ MODEL INFORMATION

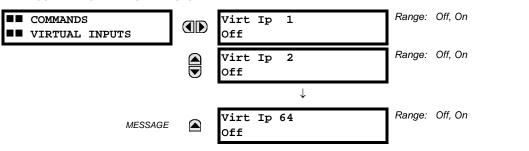
The order code, serial number, Ethernet MAC address, date and time of manufacture, and operating time are shown here.


6.5.2 FIRMWARE REVISIONS

PATH: ACTUAL VALUES $\Rightarrow \oplus$ PRODUCT INFO $\Rightarrow \oplus$ FIRMWARE REVISIONS

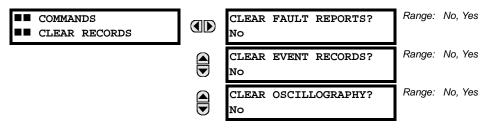
The shown data is illustrative only. A modification file number of 0 indicates that, currently, no modifications have been installed.

7.1.1 COMMANDS MENU



The commands menu contains relay directives intended for operations personnel. All commands can be protected from unauthorized access via the command password; see the *Security* section of chapter 5 for details. The following flash message appears after successfully command entry:

7.1.2 VIRTUAL INPUTS


PATH: COMMANDS ⇒ VIRTUAL INPUTS

The states of up to 64 virtual inputs are changed here. The first line of the display indicates the ID of the virtual input. The second line indicates the current or selected status of the virtual input. This status will be a state off (logic 0) or on (logic 1).

7.1.3 CLEAR RECORDS

PATH: COMMANDS ⇒ ^①, CLEAR RECORDS

	CLEAR DATA LOGGER? No	Range:	No, Yes
	CLEAR BREAKER 1 ARCING AMPS? No	Range:	No, Yes
	CLEAR BREAKER 2 ARCING AMPS? No	Range:	No, Yes
	CLEAR DEMAND RECORDS?: No	Range:	No, Yes
	CLEAR CHANNEL TEST RECORDS? No	Range:	No, Yes
	CLEAR ENERGY? No	Range:	No, Yes
		Ŭ	No, Yes No, Yes
0	No CLEAR UNAUTHORIZED	Range:	,
	No CLEAR UNAUTHORIZED ACCESS? No CLEAR PMU 1 RECORDS?	Range: Range:	No, Yes

This menu contains commands for clearing historical data such as the event records. Data is cleared by changing a command setting to "Yes" and pressing the ENTER key. After clearing data, the command setting automatically reverts to "No".

7.1.4 SET DATE AND TIME

PATH: COMMANDS $\Rightarrow \bigcirc$ SET DATE AND TIME

COMMANDS	SET DATE AND TIME:	(YYYY/MM/DD HH:MM:SS)
■■ SET DATE AND TIME	2000/01/14 13:47:03	

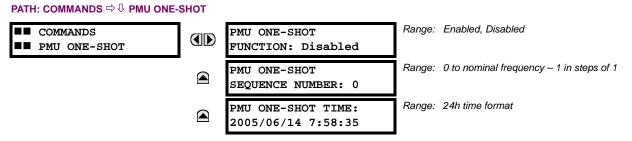
The date and time can be entered here via the faceplate keypad only if the IRIG-B or SNTP signal is not in use. The time setting is based on the 24-hour clock. The complete date, as a minimum, must be entered to allow execution of this command. The new time will take effect at the moment the ENTER key is clicked.

7.1.5 RELAY MAINTENANCE

PATH: COMMANDS ⇔ ♣ RELAY MAINTENANCE

COMMANDS RELAY MAINTENANCE	PERFORM LAMPTEST? No	Range: No, Yes
	UPDATE ORDER CODE? No	Range: No, Yes

This menu contains commands for relay maintenance purposes. Commands are activated by changing a command setting to "Yes" and pressing the ENTER key. The command setting will then automatically revert to "No".


The **PERFORM LAMPTEST** command turns on all faceplate LEDs and display pixels for a short duration. The **UPDATE ORDER CODE** command causes the relay to scan the backplane for the hardware modules and update the order code to match. If an update occurs, the following message is shown.

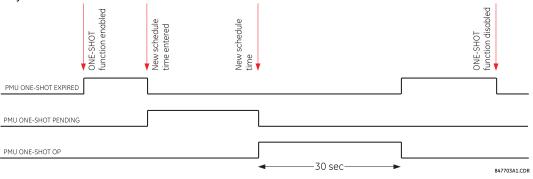
UPDATING	
PLEASE WAIT	

7 COMMANDS AND TARGETS

There is no impact if there have been no changes to the hardware modules. When an update does not occur, the **ORDER CODE NOT UPDATED** message will be shown.

7.1.6 PHASOR MEASUREMENT UNIT ONE-SHOT

This feature allows pre-scheduling a PMU measurement at a specific point in time. This functionality can be used to test for accuracy of the PMU, and for manual collection of synchronized measurements through the system, as explained below.


When enabled, the function continuously compares the present time with the pre-set **PMU ONE-SHOT TIME**. When the two times match, the function compares the present sequence number of the measured synchrophasors with the pre-set **PMU ONE-SHOT SEQUENCE NUMBER**. When the two numbers match, the function freezes the synchrophasor actual values and the corresponding protocol data items for 30 seconds. This allows manual read-out of the synchrophasor values for the pre-set time and pre-set sequence number (via the faceplate display, supported communication protocols such as Modbus or DNP, and the EnerVista UR Setup software).

When freezing the actual values the function also asserts a PMU ONE-SHOT OP FlexLogic[™] operand. This operand may be configured to drive an output contact and trigger an external measuring device such as a digital scope with the intent to verify the accuracy of the PMU under test.

With reference to the figure below, the PMU one-shot function (when enabled) controls three FlexLogic[™] operands:

- The PMU ONE-SHOT EXPIRED operand indicates that the one-shot operation has been executed, and the present time is at least 30 seconds past the scheduled one-shot time.
- The PMU ONE-SHOT PENDING operand indicates that the one-shot operation is pending; that is, the present time is before the scheduled one-shot time.
- The PMU ONE-SHOT OP operand indicates the one-shot operation and remains asserted for 30 seconds afterwards.

When the function is disabled, all three operands are de-asserted. The one-shot function applies to all logical PMUs of a given L90 relay.

Figure 7–1: PMU ONE-SHOT FLEXLOGIC™ OPERANDS

TESTING ACCURACY OF THE PMU:

The one-shot feature can be used to test accuracy of the synchrophasor measurement. GPS-synchronized tests sets perform a similar function to PMUs: instead of measuring the phasor from physical signals with respect to the externally provided time reference, they produce the physical signals with respect to the externally provided time reference, given the desired phasor values. Therefore the GPS-synchronized test sets cannot be automatically assumed more accurate then the PMUs under test. This calls for a method to verify both the measuring device (PMU) and the source of signal (test set).

With reference to the figure below, the one-shot feature could be configured to trigger a high-accuracy scope to capture both the time reference signal (rising edge of the 1 pps signal of the IRIG-B time reference), and the measured waveform. The high-accuracy high-sampling rate record of the two signals captured by the scope can be processed using digital tools to verify the magnitude and phase angle with respect to the time reference signal. As both the time reference and the measured signals are raw inputs to the PMU under test, their independently captured record, processed using third-party software, is a good reference point for accuracy calculations. Such a record proves useful when discussing the test results, and should be retained as a part of the testing documentation.

Note that the PMU under such test does not have to be connected to a real GPS receiver as the accuracy is measured with respect to the timing reference provided to the PMU and not to the absolute UTC time. Therefore a simple IRIG-B generator could be used instead. Also, the test set does not have to support GPS synchronization. Any stable signal source can be used. If both the PMU under test and the test set use the timing reference, they should be driven from the same IRIG-B signal: either the same GPS receiver or IRIG-B generator. Otherwise, the setpoints of the test set and the PMU measurements should not be compared as they are referenced to different time scales.

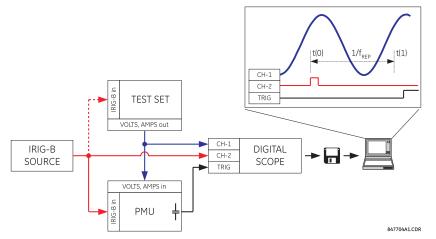



Figure 7–2: USING THE PMU ONE-SHOT FEATURE TO TEST SYNCHROPHASOR MEASUREMENT ACCURACY

COLLECTING SYNCHRONIZED MEASUREMENTS AD HOC:

The one-shot feature can be used for ad hoc collection of synchronized measurements in the network. Two or more PMU can be pre-scheduled to freeze their measurements at the same time. When frozen the measurements could be collected using EnerVista UR Setup or a protocol client.

7.2.1 TARGETS MENU

The status of any active targets will be displayed in the targets menu. If no targets are active, the display will read **NO ACTIVE TARGETS**:

7.2.2 TARGET MESSAGES

When there are no active targets, the first target to become active will cause the display to immediately default to that message. If there are active targets and the user is navigating through other messages, and when the default message timer times out (i.e. the keypad has not been used for a determined period of time), the display will again default back to the target message.

The range of variables for the target messages is described below. Phase information will be included if applicable. If a target message status changes, the status with the highest priority will be displayed.

Table 7–1: TARGET MESSAGE PRIORITY STATUS

PRIORITY	ACTIVE STATUS	DESCRIPTION
1	OP	element operated and still picked up
2	PKP	element picked up and timed out
3	LATCHED	element had operated but has dropped out

If a self test error is detected, a message appears indicating the cause of the error. For example **UNIT NOT PROGRAMMED** indicates that the minimal relay settings have not been programmed.

7.2.3 RELAY SELF-TESTS

a) **DESCRIPTION**

The relay performs a number of self-test diagnostic checks to ensure device integrity. The two types of self-tests (major and minor) are listed in the tables below. When either type of self-test error occurs, the Trouble LED Indicator will turn on and a target message displayed. All errors record an event in the event recorder. Latched errors can be cleared by pressing the RESET key, providing the condition is no longer present.

Major self-test errors also result in the following:

- The critical fail relay on the power supply module is de-energized.
- All other output relays are de-energized and are prevented from further operation.
- The faceplate In Service LED indicator is turned off.
- A RELAY OUT OF SERVICE event is recorded.

b) MAJOR SELF-TEST ERROR MESSAGES

The major self-test errors are listed and described below.

MODULE FAILURE : Contact Factory (xxx)

- Latched target message: Yes.
- Description of problem: Module hardware failure detected.
- How often the test is performed: Module dependent.
- What to do: Contact the factory and supply the failure code noted in the display. The "xxx" text identifies the failed module (for example, F8L).

INCOMPATIBLE H/W: Contact Factory (xxx)

- Latched target message: Yes.
- Description of problem: One or more installed hardware modules is not compatible with the L90 order code.
- How often the test is performed: Module dependent.
- What to do: Contact the factory and supply the failure code noted in the display. The "xxx" text identifies the failed module (for example, F8L).

EQUIPMENT MISMATCH: with 2nd line detail

- Latched target message: No.
- Description of problem: The configuration of modules does not match the order code stored in the L90.
- How often the test is performed: On power up. Afterwards, the backplane is checked for missing cards every five seconds.
- What to do: Check all modules against the order code, ensure they are inserted properly, and cycle control power. If the problem persists, contact the factory.

FLEXLOGIC ERROR: with 2nd line detail

- Latched target message: No.
- Description of problem: A FlexLogic[™] equation is incorrect.
- How often the test is performed: The test is event driven, performed whenever FlexLogic[™] equations are modified.
- What to do: Finish all equation editing and use self tests to debug any errors.

UNIT NOT PROGRAMMED: Check Settings

- Latched target message: No.
- Description of problem: The PRODUCT SETUP ⇒ ↓ INSTALLATION ⇒ RELAY SETTINGS setting indicates the L90 is not programmed.
- How often the test is performed: On power up and whenever the **PRODUCT SETUP** ⇔ ^① **INSTALLATION** ⇔ **RELAY SETTINGS** setting is altered.
- What to do: Program all settings and then set **PRODUCT SETUP** ⇒ ¹ **INSTALLATION** ⇒ **RELAY SETTINGS** to "Programmed".

7 COMMANDS AND TARGETS

c) MINOR SELF-TEST ERROR MESSAGES

Most of the minor self-test errors can be disabled. Refer to the settings in the User-programmable self-tests section in chapter 5 for additional details.

MAINTENANCE ALERT: Replace Battery

- Latched target message: Yes.
- Description of problem: The battery is not functioning.
- *How often the test is performed*: The battery is monitored every five seconds. The error message is displayed after 60 seconds if the problem persists.
- What to do: Replace the battery located in the power supply module (1H or 1L).

MAINTENANCE ALERT: Direct I/O Ring Break

- Latched target message: No.
- Description of problem: Direct input and output settings are configured for a ring, but the connection is not in a ring.
- How often the test is performed: Every second.
- What to do: Check direct input and output configuration and wiring.

MAINTENANCE ALERT: ENET MODULE OFFLINE

- Latched target message: No.
- Description of problem: The L90 has failed to detect the Ethernet switch.
- How often the test is performed: Monitored every five seconds. An error is issued after five consecutive failures.
- What to do: Check the L90 device and switch IP configuration settings. Check for incorrect UR port (port 7) settings on the Ethernet switch. Check the power to the switch.

MAINTENANCE ALERT: ENET PORT # OFFLINE

- Latched target message: No.
- Description of problem: The Ethernet connection has failed for the specified port.
- How often the test is performed: Every five seconds.
- What to do: Check the Ethernet port connection on the switch.

MAINTENANCE ALERT: **Bad IRIG-B Signal**

- Latched target message: No.
- Description of problem: A bad IRIG-B input signal has been detected.
- How often the test is performed: Monitored whenever an IRIG-B signal is received.
- What to do: Ensure the following:
 - The IRIG-B cable is properly connected.
 - Proper cable functionality (that is, check for physical damage or perform a continuity test).
 - The IRIG-B receiver is functioning.
 - Check the input signal level (it may be less than specification).

L90 Line Current Differential System

If none of these apply, then contact the factory.

MAINTENANCE ALERT: Port ## Failure

- Latched target message: No.
- Description of problem: An Ethernet connection has failed.
- How often the test is performed: Monitored every five seconds.
- What to do: Check Ethernet connections. Port 1 is the primary port and port 2 is the secondary port.

MAINTENANCE ALERT: SNTP Failure

- Latched target message: No.
- Description of problem: The SNTP server is not responding.
- How often the test is performed: Every 10 to 60 seconds.
- What to do: Check SNTP configuration and network connections.

MAINTENANCE ALERT: 4L Discrepancy

- Latched target message: No.
- Description of problem: A discrepancy has been detected between the actual and desired state of a latching contact output of an installed type "4L" module.
- How often the test is performed: Upon initiation of a contact output state change.
- What to do: Verify the state of the output contact and contact the factory if the problem persists.

MAINTENANCE ALERT: GGIO Ind xxx oscill

- Latched target message: No.
- Description of problem: A data item in a configurable GOOSE data set is oscillating.
- How often the test is performed: Upon scanning of each configurable GOOSE data set.
- What to do: The "xxx" text denotes the data item that has been detected as oscillating. Evaluate all logic pertaining to this item.

DIRECT I/O FAILURE: COMM Path Incomplete

- Latched target message: No.
- Description of problem: A direct device is configured but not connected.
- How often the test is performed: Every second.
- What to do: Check direct input and output configuration and wiring.

REMOTE DEVICE FAIL: COMM Path Incomplete

- Latched target message: No.
- Description of problem: One or more GOOSE devices are not responding.

7 COMMANDS AND TARGETS

- *How often the test is performed*: Event driven. The test is performed when a device programmed to receive GOOSE messages stops receiving. This can be from 1 to 60 seconds, depending on GOOSE packets.
- What to do: Check GOOSE setup.

UNEXPECTED RESTART: Press "RESET" key

- Latched target message: Yes.
- Description of problem: Abnormal restart from modules being removed or inserted while the L90 is powered-up, when there is an abnormal DC supply, or as a result of internal relay failure.
- How often the test is performed: Event driven.
- What to do: Contact the factory.

7

All differential techniques rely on the fact that under normal conditions, the sum of the currents entering each phase of a transmission line from all connected terminals is equal to the charging current for that phase. Beyond the fundamental differential principle, the three most important technical considerations are; data consolidation, restraint characteristic, and sampling synchronization. The L90 uses new and unique concepts in these areas.

Data consolidation refers to the extraction of appropriate parameters to be transmitted from raw samples of transmission line phase currents. By employing data consolidation, a balance is achieved between transient response and bandwidth requirements. Consolidation is possible along two dimensions: time and phases. Time consolidation consists of combining a time sequence of samples to reduce the required bandwidth. Phase consolidation consists of combining information from three phases and neutral. Although phase consolidation is possible, it is generally not employed in digital schemes, because it is desired to detect which phase is faulted. The L90 relay transmits data for all three phases.

Time consolidation reduces communications bandwidth requirements. Time consolidation also improves security by eliminating the possibility of falsely interpreting a single corrupted data sample as a fault.

The L90 relay system uses a new consolidation technique called "phaselets". Phaselets are partial sums of the terms involved in a complete phasor computation. The use of phaselets in the L90 design improves the transient response performance without increasing the bandwidth requirements.

Phaselets themselves are not the same as phasors, but they can be combined into phasors over any time window that is aligned with an integral number of phaselets (see the Phaselet Computation section in this chapter for details). The number of phaselets that must be transmitted per cycle per phase is the number of samples per cycle divided by the number of samples per phaselet. The L90 design uses 64 samples per cycle and 32 samples per phaselet, leading to a phaselet communication bandwidth requirement of 2 phaselets per cycle. Two phaselets per cycle fits comfortably within a communication bandwidth of 64 Kbaud, and can be used to detect faults within a half cycle plus channel delay.

The second major technical consideration is the restraint characteristic, which is the decision boundary between situations that are declared to be a fault and those that are not. The L90 uses an innovative adaptive decision process based on an on-line computation of the sources of measurement error. In this adaptive approach, the restraint region is an ellipse with variable major axis, minor axis, and orientation. Parameters of the ellipse vary with time to make best use of the accuracy of current measurements.

The third major element of L90 design is sampling synchronization. In order for a differential scheme to work, the data being compared must be taken at the same time. This creates a challenge when data is taken at remote locations.

The GE approach to clock synchronization relies upon distributed synchronization. Distributed synchronization is accomplished by synchronizing the clocks to each other rather than to a master clock. Clocks are phase synchronized to each other and frequency synchronized to the power system frequency. Each relay compares the phase of its clock to the phase of the other clocks and compares the frequency of its clock to the power system frequency and makes appropriate adjustments. As long as there are enough channels operating to provide protection, the clocks will be synchronized.

8.1.2 L90 ARCHITECTURE

The L90 system uses a peer to peer architecture in which the relays at every terminal are identical. Each relay computes differential current and clocks are synchronized to each other in a distributed fashion. The peer to peer architecture is based on two main concepts that reduce the dependence of the system on the communication channels: replication of protection and distributed synchronization.

Replication of protection means that each relay is designed to be able to provide protection for the entire system, and does so whenever it has enough information. Thus a relay provides protection whenever it is able to communicate directly with all other relays. For a multi-terminal system, the degree of replication is determined by the extent of communication interconnection. If there is a channel between every pair of relays, every relay provides protection. If channels are not provided between every pair of relays, only those relays that are connected to all other relays provide protection.

Each L90 relay measures three phase currents 64 times per cycle. Synchronization in sampling is maintained throughout the system via the distributed synchronization technique.

The next step is the removal of any decaying offset from each phase current measurement. This is done using a digital simulation of the so-called "mimic circuit" (based on the differential equation of the inductive circuit that generates the offset). Next, phaselets are computed by each L90 for each phase from the outputs of the mimic calculation, and transmitted to the

other relay terminals. Also, the sum of the squares of the raw data samples is computed for each phase, and transmitted with the phaselets.

At the receiving relay, the received phaselets are combined into phasors. Also, ground current is reconstructed from phase information. An elliptical restraint region is computed by combining sources of measurement error. In addition to the restraint region, a separate disturbance detector is used to enhance security.

The possibility of a fault is indicated by the detection of a disturbance as well as the sum of the current phasors falling outside of the elliptical restraint region. The statistical distance from the phasor to the restraint region is an indication of the severity of the fault. To provide speed of response that is commensurate with fault severity, the distance is filtered. For mild faults, filtering improves measurement precision at the expense of a slight delay, on the order of one cycle. Severe faults are detected within a single phaselet. Whenever the sum of phasors falls within the elliptical restraint region, the system assumes there is no fault, and uses whatever information is available for fine adjustment of the clocks.

8.1.3 REMOVAL OF DECAYING OFFSET

The inductive behavior of power system transmission lines gives rise to decaying exponential offsets during transient conditions, which could lead to errors and interfere with the determination of how well measured current fits a sinewave.

The current signals are pre-filtered using an improved digital MIMIC filter. The filter removes effectively the DC component(s) guaranteeing transient overshoot below 2% regardless of the initial magnitude and time constant of the dc component(s). The filter has significantly better filtering properties for higher frequencies as compared with a classical MIMIC filter. This was possible without introducing any significant phase delay thanks to the high sampling rate used by the relay. The output of the MIMIC calculation is the input for the phaselet computation. The MIMIC computation is applied to the data samples for each phase at each terminal. The equation shown is for one phase at one terminal.

8.1.4 PHASELET COMPUTATION

Phaselets are partial sums in the computation for fitting a sine function to measured samples. Each slave computes phaselets for each phase current and transmits phaselet information to the master for conversion into phasors. Phaselets enable the efficient computation of phasors over sample windows that are not restricted to an integer multiple of a half cycle at the power system frequency. Determining the fundamental power system frequency component of current data samples by minimizing the sum of the squares of the errors gives rise to the first frequency component of the Discrete Fourier Transform (DFT). In the case of a data window that is a multiple of a half cycle, the computation is simply sine and cosine weighted sums of the data samples. In the case of a window that is not a multiple of a half-cycle, there is an additional correction that results from the sine and cosine functions not being orthogonal over such a window. However, the computation can be expressed as a two by two matrix multiplication of the sine and cosine weighted sums.

Phaselets and sum of squares are computed for each phase at each terminal as follows. For the real part, we have:

$$I_{1_\text{Re}_A(k)} = \frac{4}{N} \sum_{p=0}^{N/2-1} \dot{i}_{1_f_A(k-p)} \cdot \cos\left(\frac{2\pi(p+1/2)}{N}\right)$$
(EQ 8.1)

For the imaginary part, we have:

$$V_{1_lm_A(k)} = -\frac{4}{N} \sum_{p=0}^{N/2-1} i_{1_f_A(k-p)} \cdot \sin\left(\frac{2\pi(p+1/2)}{N}\right)$$
(EQ 8.2)

where: *k* is the present phaselet index,

N is the number of samples per cycle, and *p* is the present sample index

The computation of phaselets and sum of squares is basically a consolidation process. The phaselet sums are converted into stationary phasors by multiplying by a precomputed matrix. Phaselets and partial sums of squares are computed and time stamped at each relay and communicated to the remote relay terminals, where they are added and the matrix multiplication is performed. Since the sampling clocks are synchronized, the time stamp is simply a sequence number.

8.1 OVERVIEW

8.1.5 DISTURBANCE DETECTION

A disturbance detection algorithm is used to enhance security and to improve transient response. Conditions to detect a disturbance include the magnitude of zero-sequence current, the magnitude of negative-sequence current, and changes in positive, negative, or zero-sequence current. Normally, differential protection is performed using a full-cycle Fourier transform. Continuous use of a full-cycle Fourier means that some pre-fault data is also used for computation – this may lead to a slowdown in the operation of the differential function. To improve operating time, the window is resized to the half-cycle Fourier once a disturbance is detected, thus removing pre-fault data.

8.1.6 FAULT DETECTION

Normally, the sum of the current phasors from all terminals is zero for each phase at every terminal. A fault is detected for a phase when the sum of the current phasors from each terminal for that phase falls outside of a dynamic elliptical restraint boundary for that phase. The severity of the fault is computed as follows for each phase.

The differential current is calculated as a sum of local and remote currents. The real part is expressed as:

$$I_{\text{DIFF}_{\text{RE}}A} = I_{\text{LOC}_{\text{PHASOR}_{\text{RE}}A} + I_{\text{REM1}_{\text{PHASOR}_{\text{RE}}A} + I_{\text{REM2}_{\text{PHASOR}_{\text{RE}}A}}$$
(EQ 8.3)

The imaginary part is expressed as:

$$I_{\text{DIFF}_{\text{IM}_{\text{A}}}} = I_{\text{LOC}_{\text{PHASOR}_{\text{IM}_{\text{A}}}}} + I_{\text{REM1}_{\text{PHASOR}_{\text{IM}_{\text{A}}}}} + I_{\text{REM2}_{\text{PHASOR}_{\text{IM}_{\text{A}}}}}$$
(EQ 8.4)

The differential current is squared for the severity equation:

$$(I_{\text{DIFF}_A})^2 = (I_{\text{DIFF}_{\text{RE}_A}})^2 + (I_{\text{DIFF}_{\text{IM}_A}})^2$$
(EQ 8.5)

The restraint current is composed from two distinctive terms: traditional and adaptive. Each relay calculates local portion of the traditional and restraint current to be used locally and sent to remote peers for use with differential calculations. If more than one CT are connected to the relay (breaker-and-the half applications), then a maximum of all (up to 4) currents is chosen to be processed for traditional restraint:

The current chosen is expressed as:

$$(I_{\text{LOC}_{\text{TRAD}_{A}}})^{2} = \max((I_{1_{\text{MAG}_{A}}})^{2}, (I_{2_{\text{MAG}_{A}}})^{2}, (I_{3_{\text{MAG}_{A}}})^{2}, (I_{4_{\text{MAG}_{A}}})^{2}, (I_{q_{\text{MAG}_{A}}})^{2})$$
(EQ 8.6)

This current is then processed with the slope (S_1 and S_2) and breakpoint (BP) settings to form a traditional part of the restraint term for the local current as follows. For two-terminal systems, we have:

If
$$(I_{\text{LOC}_{\text{TRAD}_A}})^2 < \text{BP}^2$$

then $(I_{\text{LOC}_{\text{REST}_{\text{TRAD}_A}})^2 = 2(S_1 \cdot I_{\text{LOC}_{\text{TRAD}_A}})^2$ (EQ 8.7)
else $(I_{\text{LOC}_{\text{REST}_{\text{TRAD}_A}})^2 = 2((S_2 \cdot I_{\text{LOC}_{\text{TRAD}_A}})^2 - (S_2 \cdot \text{BP})^2) + 2(S_1 \cdot \text{BP})^2$

For three-terminal systems we have

If
$$(I_{\text{LOC}_{\text{TRAD}_A}})^2 < \text{BP}^2$$

then $(I_{\text{LOC}_{\text{REST}_{\text{TRAD}_A}})^2 = \frac{4}{3}(S_1 \cdot I_{\text{LOC}_{\text{TRAD}_A}})^2$ (EQ 8.8)
else $(I_{\text{LOC}_{\text{REST}_{\text{TRAD}_A}})^2 = \frac{4}{3}((S_2 \cdot I_{\text{LOC}_{\text{TRAD}_A}})^2 - (S_2 \cdot \text{BP})^2) + \frac{4}{3}(S_1 \cdot \text{BP})^2$

The final restraint current sent to peers and used locally in differential calculations is as follows:

$$I_{\text{LOC}_{\text{RESTRAINT}_{\text{A}}}} = \sqrt{\left(I_{\text{LOC}_{\text{REST}_{\text{TRAD}_{\text{A}}}}\right)^2 + \text{MULT}_{\text{A}} \cdot \left(I_{\text{LOC}_{\text{ADA}_{\text{A}}}}\right)^2}$$
(EQ 8.9)

where: MULT_A is a multiplier that increases restraint if CT saturation is detected (see *CT Saturation Detection* for details); $I_{LOC ADA A}$ is an adaptive restraint term (see *Online Estimate Of Measurement Error* for details)

The squared restraining current is calculated as a sum of squared local and all remote restraints:

$$(I_{\text{REST}_A})^2 = (I_{\text{LOC}_{\text{PHASOR}_{\text{RESTRAINT}_A}})^2 + (I_{\text{REM1}_{\text{PHASOR}_{\text{RESTRAINT}_A}})^2 + (I_{\text{REM2}_{\text{PHASOR}_{\text{RESTRAINT}_A}})^2$$
(EQ 8.10)

The fault severity for each phase is determined by following equation:

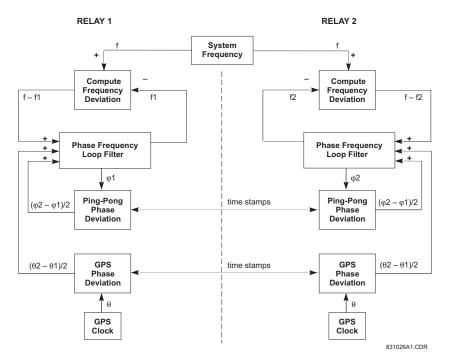
$$S_A = (I_{\text{DIFF}_A})^2 - (2P^2 + (I_{\text{REST}_A})^2)$$
 (EQ 8.11)

where *P* is the pickup setting.

This equation is based on the adaptive strategy and yields an elliptical restraint characteristic. The elliptical area is the restraint region. When the adaptive portion of the restraint current is small, the restraint region shrinks. When the adaptive portion of the restraint current increases, the restraint region grows to reflect the uncertainty of the measurement. The computed severity increases with the probability that the sum of the measured currents indicates a fault. With the exception of "Restraint", all quantities are defined in previous sections. "Adaptive Restraint" is a restraint multiplier, analogous to the slope setting of traditional differential approaches, for adjusting the sensitivity of the relay.

Raising the restraint multiplier corresponds to demanding a greater confidence interval, and has the effect of decreasing sensitivity while lowering it is equivalent to relaxing the confidence interval and increases sensitivity. Thus, the restraint multiplier is an application adjustment that is used to achieve the desired balance between sensitivity and security. The computed severity is zero when the operate phasor is on the elliptical boundary, is negative inside the boundary, and positive outside the boundary. Outside of the restraint boundary, the computed severity grows as the square of the fault current. The restraint area grows as the square of the error in the measurements.

8.1.7 CLOCK SYNCHRONIZATION


Synchronization of data sampling clocks is needed in a digital differential protection scheme, because measurements must be made at the same time. Synchronization errors show up as phase angle and transient errors in phasor measurements at the terminals. By phase angle errors, we mean that identical currents produce phasors with different phase angles. By transient errors, we mean that when currents change at the same time, the effect is seen at different times at different measurement points. For best results, samples should be taken simultaneously at all terminals.

In the case of peer to peer architecture, synchronization is accomplished by synchronizing the clocks to each other rather than to a master clock. Each relay compares the phase of its clock to the phase of the other clocks and compares the frequency of its clock to the power system frequency and makes appropriate adjustments. The frequency and phase tracking algorithm keeps the measurements at all relays within a plus or minus 25 microsecond error during normal conditions for a 2 or 3 terminal system. For 4 or more terminals the error may be somewhat higher, depending on the quality of the communications channels. The algorithm is unconditionally stable. In the case of 2 and 3 terminal systems, asymmetric communications channel delay is automatically compensated for. In all cases, an estimate of phase error is computed and used to automatically adapt the restraint region to compensate. Frequency tracking is provided that will accommodate any frequency shift normally encountered in power systems.

8.1.8 FREQUENCY TRACKING AND PHASE LOCKING

Each relay has a digital clock that determines when to take data samples and which is phase synchronized to all other clocks in the system and frequency synchronized to the power system frequency. Phase synchronization drives the relative timing error between clocks to zero, and is needed to control the uncertainty in the phase angle of phasor measurements, which will be held to under 26 microseconds (0.6 degrees). Frequency synchronization to the power system eliminates a source of error in phasor measurements that arises when data samples do not exactly span one cycle.

The block diagram for clock control for a two terminal system is shown in Figure 8–4. Each relay makes a local estimate of the difference between the power system frequency and the clock frequency based on the rotation of phasors. Each relay also makes a local estimate of the time difference between its clock and the other clocks either by exchanging timing information over communications channels or from information that is in the current phasors, depending on whichever one is more accurate at any given time. A loop filter then uses the frequency and phase angle deviation information to make fine adjustments to the clock frequency. Frequency tracking starts if the current at one or more terminals is above 0.125 pu of nominal; otherwise, the nominal frequency is used.

Figure 8–1: BLOCK DIAGRAM FOR CLOCK SYNCHRONIZATION IN A 2-TERMINAL SYSTEM

The L90 provides sensitive digital current differential protection by computing differential current from current phasors. To improve sensitivity, the clocks are controlling current sampling are closely synchronized via the ping-pong algorithm. However, this algorithm assumes the communication channel delay is identical in each direction. If the delays are not the same, the error between current phasors is equal to half of the transmit-receive time difference. If the error is high enough, the relay perceives the "apparent" differential current and misoperates.

For applications where the communication channel is not symmetric (for example, SONET ring), the L90 allows the use of GPS (Global Positioning System) to compensate for the channel delay asymmetry. This feature requires a GPS receiver to provide a GPS clock signal to the L90 IRIG-B input. With this option there are two clocks as each terminal: a local sampling clock and a local GPS clock. The sampling clock controls data sampling while the GPS clock provides an accurate, absolute time reference used to measure channel asymmetry. The local sampling clocks are synchronized to each other in phase and to the power system in frequency. The local GPS clocks are synchronized to GPS time using the externally provided GPS time signal.

GPS time stamp is included in the transmitted packet along with the sampling clock time stamp. Both sampling clock deviation and channel asymmetry are computed from the four time-stamps. One half of the channel asymmetry is then subtracted from the computed sampling clock deviation. The compensated deviation drives the phase and frequency lock loop (PFLL) as shown on the diagram above. If GPS time reference is lost, the channel asymmetry compensation is not enabled, and the relay clock may start to drift and accumulate differential error. In this case, the 87L function has to be blocked. Refer to Chapter 9: Application of Settings for samples of how to program the relay.

8.1.9 FREQUENCY DETECTION

Estimation of frequency deviation is done locally at each relay based on rotation of positive sequence current, or on rotation of positive sequence voltage, if it is available. The counter clockwise rotation rate is proportional to the difference between the desired clock frequency and the actual clock frequency. With the peer to peer architecture, there is redundant frequency tracking, so it is not necessary that all terminals perform frequency detection.

Normally each relay will detect frequency deviation, but if there is no current flowing nor voltage measurement available at a particular relay, it will not be able to detect frequency deviation. In that case, the frequency deviation input to the loop filter is set to zero and frequency tracking is still achieved because of phase locking to the other clocks. If frequency detection is lost at all terminals because there is no current flowing then the clocks continue to operate at the frequency present at the time of the loss of frequency detection. Tracking will resume as soon as there is current.

The rotational rate of phasors is equal to the difference between the power system frequency and the ratio of the sampling frequency divided by the number of samples per cycle. The correction is computed once per power system cycle at each relay. For conciseness, we use a phasor notation:

$$\overline{I(n)} = \operatorname{Re}(\operatorname{Phasor}_{n}) + j \cdot \operatorname{Im}(\operatorname{Phasor}_{n})$$

$$\overline{I_{a, k}(n)} = \overline{I(n)} \quad \text{for phase } a \text{ from the } k \text{th terminal at time step } n$$

$$\overline{I_{b, k}(n)} = \overline{I(n)} \quad \text{for phase } b \text{ from the } k \text{th terminal at time step } n$$

$$\overline{I_{c, k}(n)} = \overline{I(n)} \quad \text{for phase } c \text{ from the } k \text{th terminal at time step } n$$

$$\overline{I_{c, k}(n)} = \overline{I(n)} \quad \text{for phase } c \text{ from the } k \text{th terminal at time step } n$$

Each terminal computes positive sequence current:

$$\overline{I_{pos,k}(n)} = \frac{1}{3} (\overline{I_{a,k}(n)} + \overline{I_{b,k}(n)} \cdot e^{j2\pi/3} + \overline{I_{c,k}(n)} \cdot e^{j2\pi/3})$$
(EQ 8.13)

Each relay computes a quantity derived from the positive sequence current that is indicative of the amount of rotation from one cycle to the next, by computing the product of the positive sequence current times the complex conjugate of the positive sequence current from the previous cycle:

$$\overline{\text{Deviation}_k(n)} = \overline{I_{\text{pos}, k}(n)} \times \overline{I_{\text{pos}, k}(n-N)}^*$$
(EQ 8.14)

The angle of the deviation phasor for each relay is proportional to the frequency deviation at that terminal. Since the clock synchronization method maintains frequency synchronism, the frequency deviation is approximately the same for each relay. The clock deviation frequency is computed from the deviation phasor:

FrequencyDeviation =
$$\frac{\Delta f}{f} = \frac{\tan^{-1}(\operatorname{Im}(\operatorname{Deviation})/\operatorname{Re}(\operatorname{Deviation}))}{2\pi}$$
 (EQ 8.15)

Note that a four quadrant arctangent can be computed by taking the imaginary and the real part of the deviation separately for the two arguments of the four quadrant arctangent. Also note that the input to the loop filter is in radian frequency which is two pi times the frequency in cycles per second; that is, $\Delta \omega = 2\pi \cdot \Delta f$.

So the radian frequency deviation can be calculated simply as:

$$\Delta \omega = \Delta f \cdot \tan^{-1}(\text{Im}(\overline{\text{Deviation}})/\text{Re}(\overline{\text{Deviation}}))$$
(EQ 8.16)

8.1.10 PHASE DETECTION

There are two separate sources of clock phase information; exchange of time stamps over the communications channels and the current measurements themselves (although voltage measurements can be used to provide frequency information, they cannot be used for phase detection). Current measurements can generally provide the most accurate information, but are not always available and may contain large errors during faults or switching transients. Time stamped messages are the most reliable source of phase information but suffer from a phase offset due to a difference in the channel delays in each direction between a pair of relays. In some cases, one or both directions may be switched to a different physical path, leading to gross phase error.

The primary source of phase information are CPU time-tagged messages. If GPS compensation is enabled, GPS time stamps are used to compensate for asymmetry. In all cases, frequency deviation information is also used when available. The phase difference between a pair of clocks is computed by an exchange of time stamps. Each relay exchanges time stamps with all other relays that can be reached.

It is not necessary to exchange stamps with every relay, and the method works even with some of the channels failed. For each relay that a given relay can exchange time stamps with, the clock deviation is computed each time a complete set of time stamps arrives. The net deviation is the total deviation divided by the total number of relays involved in the exchange.

For example, in the case of two terminals, each relay computes a single time deviation from time stamps, and divides the result by two. In the case of three terminals, each relay computes two time deviations and divides the result by three. If a channel is lost, the single deviation that remains is divided by two.

Four time stamps are needed to compute round trip delay time and phase deviation. Three stamps are included in the message in each direction. The fourth time stamp is the time when the message is received. Each time a message is received the oldest two stamps of the four time stamps are saved to become the first two time stamps of the next outgoing message.

8 THEORY OF OPERATION

The third time stamp of an outgoing message is the time when the message is transmitted. A fixed time shift is allowed between the stamp values and the actual events, provided the shift for outgoing message time stamps is the same for all relays, and the shift incoming message time stamps is also identical.

To reduce bandwidth requirements, time stamps are spread over 3 messages. In the case of systems with 4 messages per cycle, time stamps are sent out on three of the four messages, so a complete set is sent once per cycle. In the case of systems with 1 message per cycle, three time stamps are sent out each cycle in a single message. The transmit and receive time stamps are based on the first message in the sequence.

One of the strengths of this approach is that it is not necessary to explicitly identify or match time stamp messages. Usually, two of the time stamps in an outgoing message are simply taken from the last incoming message. The third time stamp is the transmittal time. However, there are two circumstances when these time stamps are not available. One situation is when the first message is transmitted by a given relay. The second is when the exchange is broken long enough to invalidate the last received set of time stamps (if the exchange is broken for longer than 66 ms, the time stamps from a given clock could roll over twice, invalidating time difference computations). In either of these situations, the next outgoing set of time stamps is a special start-up set containing transmittal time only. When such a message is received, nothing is computed from it, except the message time stamp and the received time stamp are saved for the next outgoing message (it is neither necessary nor desirable to "reset" the local clock when such a message is received).

Error analysis shows that time stamp requirements are not very stringent because of the smoothing behavior of the phase locked loop. The time stamp can be basically a sample count with enough bits to cover the worst round trip, including channel delay and processing delay. An 8 bit time stamp with 1 bit corresponding to 1/64 of a cycle will accommodate a round trip delay of up to 4 cycles, which should be more than adequate.

The computation of round trip delay and phase offset from four time stamps is as follows:

$$a = I_{i-2} - I_{i-3}$$

$$b = T_i - T_{i-1}$$

$$\delta_i = a + b$$

$$\theta_i = \frac{a - b}{2}$$

(EQ 8.17)

The *T*s are the time stamps, with T_i the newest. Delta is the round trip delay. Theta is the clock offset, and is the correct sign for the feedback loop. Note that the time stamps are unsigned numbers that wrap around, while *a* and *b* can be positive or negative; δ_i must be positive and θ_i can be positive or negative. Some care must be taken in the arithmetic to take into account possible roll over of any of the time stamps. If T_{i-2} is greater than T_{i-1} , there was a roll over in the clock responsible for those two time stamps.

To correct for the roll over, subtract 256 from the round trip and subtract 128 from the phase angle. If T_{i-3} is greater than T_i , add 256 to the round trip and add 128 to the phase angle. Also, if the above equations are computed using integer values of time stamps, a conversion to phase angle in radians is required by multiplying by π / 32.

Time stamp values are snapshots of the local 256 bit sample counter taken at the time of the transmission or receipt of the first message in a time stamp sequence. This could be done either in software or hardware, provided the jitter is limited to less than plus or minus 130 μ s. A fixed bias in the time stamp is acceptable, provided it is the same for all terminals.

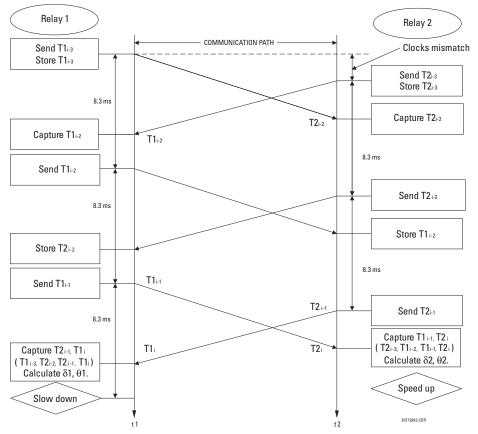
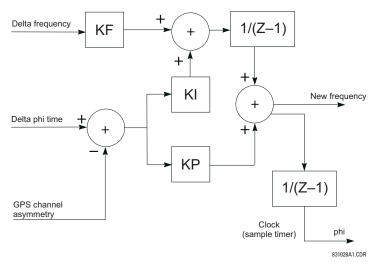


Figure 8–2: ROUND TRIP DELAY AND CLOCK OFFSET COMPUTATION FROM TIME STAMPS

8.1.11 PHASE LOCKING FILTER

Filters are used in the phase locked loop to assure stability, to reduce phase and frequency noise. This is well known technology. The primary feedback mechanism shown in the Loop Block Diagram is phase angle information through the well known proportional plus integral (PI) filter (the Z in the diagram refers to a unit delay, and 1/(Z-1) represents a simple digital first order integrator). This loop is used to provide stability and zero steady state error.


A PI filter has two time parameters that determine dynamic behavior: the gain for the proportional term and the gain for the integral. Depending on the gains, the transient behavior of the loop can be underdamped, critically damped, or over damped. For this application, critically damped is a good choice.

This sets a constraint relating the two parameters. A second constraint is derived from the desired time constants of the loop. By considering the effects of both phase and frequency noise in this application it can be shown that optimum behavior results with a certain proportion between phase and frequency constraints.

A secondary input is formed through the frequency deviation input of the filter. Whenever frequency deviation information is available, it is used for this input; otherwise, the input is zero. Because frequency is the derivative of phase information, the appropriate filter for frequency deviation is an integrator, which is combined with the integrator of the PI filter for the phase. It is very important to combine these two integrators into a single function because it can be shown if two separate integrators are used, they can drift in opposite directions into saturation, because the loop would only drive their sum to zero.

In normal operation, frequency tracking at each terminal matches the tracking at all other terminals, because all terminals will measure approximately the same frequency deviation. However, if there is not enough current at a terminal to compute frequency deviation, frequency tracking at that terminal is accomplished indirectly via phase locking to other terminals. A small phase deviation must be present for the tracking to occur.

Also shown in the loop is the clock itself, because it behaves like an integrator. The clock is implemented in hardware and software with a crystal oscillator and a counter.

Figure 8–3: BLOCK DIAGRAM OF LOOP FILTER

There are 4 gains in the filter that must be selected once and for all as part of the design of the system. The gains are determined by the time step of the integrators, and the desired time constants of the system as follows:

$$KI = \frac{T_{repeat}}{T_{phase}^{2}}, \quad KP = \frac{2}{T_{phase}}, \quad KF = \frac{T_{repeat}}{T_{frequency}}$$
(EQ 8.18)

where: T_{repeat} = the time between execution of the filter algorithm

 T_{phase} = time constant for the primary phase locked loop

 $T_{frequency}$ = time constant for the frequency locked loop

8

8.1.12 MATCHING PHASELETS

An algorithm is needed to match phaselets, detect lost messages, and detect communications channel failure. Channel failure is defined by a sequence of lost messages, where the length of the sequence is a design parameter. In any case, the sequence should be no longer than the maximum sequence number (4 cycles) in order to be able to match up messages when the channel is assumed to be operating normally.

A channel failure can be detected by a watchdog software timer that times the interval between consecutive incoming messages. If the interval exceeds a maximum limit, channel failure is declared and the channel recovery process is initiated.

While the channel is assumed to be operating normally, it is still possible for an occasional message to be lost, in which case fault protection is suspended for the time period that depends on that message, and is resumed on the next occasional message. A lost message is detected simply by looking at the sequence numbers of incoming messages. A lost message will show up as a gap in the sequence.

Sequence numbers are also used to match messages for the protection computation. Whenever a complete set of current measurements from all terminals with matching sequence numbers are available, the differential protection function is computed using that set of measurements.

8.1.13 START-UP

Initialization in our peer-to-peer architecture is done independently at each terminal. Relays can be turned on in any order with the power system either energized or de-energized. Synchronization and protection functions are accomplished automatically whenever enough information is available.

After a relay completes other initialization tasks such as resetting of buffer pointers and determining relay settings, initial values are computed for any state variables in the loop filters or the protection functions. The relay starts its clock at the nominal power system frequency. Phaselet information is computed and transmitted.

- Outgoing messages over a given channel are treated in the same way as during the channel recovery process. The special start-up message is sent each time containing only a single time step value.
- When incoming messages begin arriving over a channel, that channel is placed in service and the loop filters are started up for that channel.
- Whenever the total clock uncertainty is less than a fixed threshold, the phase locking filter is declared locked and differential protection is enabled.

8.1.14 HARDWARE AND COMMUNICATION REQUIREMENTS

The average total channel delay in each direction is not critical, provided the total round trip delay is less than 4 power system cycles. The jitter is important, and should be less than $\pm 130 \ \mu$ s in each direction. The effect of a difference in the average delay between one direction and the other depends on the number of terminals. In the case of a 2 or 3 terminal system, the difference is not critical, and can even vary with time. In the case of a 4 or more terminal system, variation in the difference limits the sensitivity of the system.

- The allowable margin of 130 µs jitter includes jitter in servicing the interrupt generated by an incoming message. For both incoming and outgoing messages, the important parameter is the jitter between when the time stamp is read and when the message begins to go out or to come in.
- The quality of the crystal driving the clock and software sampling is not critical, because of the compensation provided by the phase and frequency tracking algorithm, unless it is desired to perform under or over frequency protection. From the point of view of current differential protection only, the important parameter is the rate of drift of crystal frequency, which should be less than 100 parts per million per minute.
- A 6 Mhz clock with a 16-bit hardware counter is adequate, provided the method is used for achieving the 32-bit resolution that is described in this document.
- An 8-bit time stamp is adequate provided time stamp messages are exchanged once per cycle.
- A 4-bit message sequence number is adequate.

Depending on the 87L settings, channel asymmetry (the difference in the transmitting and receiving paths channel delay) cannot be higher than 1 to 1.5 ms if channel asymmetry compensation is not used. However, if the relay detects asymmetry higher than 1.5 ms, the 87L DIFF CH ASYM DET FlexLogic[™] operand is set high and the event and target are raised (if they are enabled in the **CURRENT DIFFERENTIAL** menu) to provide an indication about potential danger.

8.1.15 ONLINE ESTIMATE OF MEASUREMENT ERRORS

GE's adaptive elliptical restraint characteristic is a good approximation to the cumulative effects of various sources of error in determining phasors. Sources of error include power system noise, transients, inaccuracy in line charging current computation, current sensor gain, phase and saturation error, clock error, and asynchronous sampling. Errors that can be controlled are driven to zero by the system. For errors that cannot be controlled, all relays compute and sum the error for each source of error for each phase. The relay computes the error caused by power system noise, CT saturation, harmonics, and transients. These errors arise because power system currents are not always exactly sinusoidal. The intensity of these errors varies with time; for example, growing during fault conditions, switching operations, or load variations. The system treats these errors as a Gaussian distribution in the real and in the imaginary part of each phasor, with a standard deviation that is estimated from the sum of the squares of the differences between the data samples and the sine function that is used to fit them. This error has a spectrum of frequencies. Current transformer saturation is included with noise and transient error. The error for noise, harmonics, transients, and current transformer saturation is computed as follows. First, the sum of the squares of the errors in the data samples is computed from the sum of squares information for the present phaselet:

SumSquares_{1_A(k)} =
$$\frac{4}{N} \sum_{p=0}^{N/2-1} (i_{1_{-}f_{-}A(k-p)})^2$$
 (EQ 8.19)

Then fundamental magnitude is computed as follows for the same phaselet:

$$I_{1_MAG_A} = \sqrt{(I_{1_RE_A})^2 + (I_{1_IM_A})^2}$$
 (EQ 8.20)

Finally, the local adaptive restraint term is computed as follows, for each local current:

$$(I_{1_ADA_A})^2 = \frac{4}{N}(SumSquares_{1_A(k)} - (I_{1_MAG_A})^2)$$
 (EQ 8.21)

Another source of the measurement errors is clock synchronization error, resulting in a clock uncertainty term. The L90 algorithm accounts for two terms of synchronization error corresponding to:

- Raw clock deviation computed from time stamps. There are several effects that cause it to not track exactly. First, the ping-pong algorithm inherently produces slightly different estimates of clock deviation at each terminal. Second, because the transmission of time stamps is spread out over several packets, the clock deviation estimate is not up to date with other information it is combined with. Channel asymmetry also contributes to this term. The clock deviation computation is indicated in equation 8.15 as θ_i. If 2 channels are used, clock deviation is computed for both channels and then average of absolute values is computed. If GPS compensation is used, then GPS clock compensation is subtracted from the clock deviation.
- Startup error. This term is used to estimate the initial startup transient of PFLLs. During startup conditions, a decaying
 exponential is computed to simulate envelope of the error during startup

The clock uncertainty is expressed as:

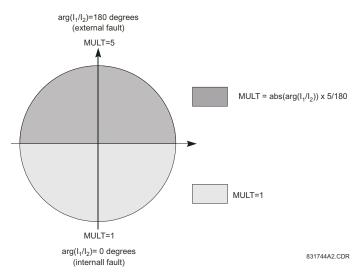
Eventually, the local clock error is computed as:

$$CLOCK_{A} = \frac{(clock_unc)^{2}}{9} \cdot ((l_{LOC_RE_A})^{2} + (l_{LOC_IM_A})^{2})$$
 (EQ 8.23)

The local squared adaptive restraint is computed from all local current sources (1 to 4) and is obtained as follows:

$$(I_{\text{LOC}_{\text{A}\text{D}\text{A}_{\text{A}}})^{2} = 18 \cdot ((I_{1_{\text{A}\text{D}\text{A}_{\text{A}}})^{2} + (I_{2_{\text{A}\text{D}\text{A}_{\text{A}}})^{2} + (I_{3_{\text{A}\text{D}\text{A}_{\text{A}}})^{2} + (I_{4_{\text{A}\text{D}\text{A}_{\text{A}}})^{2} + (I_{q_{\text{A}\text{D}\text{A}_{\text{A}}})^{2} + \text{CLOCK}_{\text{A}})$$
(EQ 8.24)

8

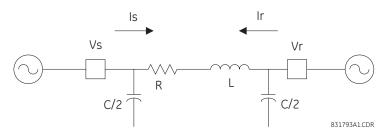

8.1.16 CT SATURATION DETECTION

Current differential protection is inherently dependent on adequate CT performance at all terminals of the protected line, especially during external faults. CT saturation, particularly when it happens at only one terminal of the line, introduces a spurious differential current that may cause the differential protection to misoperate.

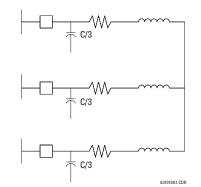
The L90 applies a dedicated mechanism to cope with CT saturation and ensure security of protection for external faults. The relay dynamically increases the weight of the square of errors (the so-called 'sigma') portion in the total restraint quantity, but for external faults only. The following logic is applied:

- First, the terminal currents are compared against a threshold of 3 pu to detect overcurrent conditions that may be caused by a fault and may lead to CT saturation.
- For all the terminal currents that are above the 3 pu level, the relative angle difference is calculated. If all three terminals see significant current, then all three pairs (1, 2), (2, 3), and (1, 3) are considered and the maximum angle difference is used in further calculations.
- Depending on the angle difference between the terminal currents, the value of sigma used for the adaptive restraint current is increased by the multiple factor of 1, 5, or 2.5 to 5 as shown below. As seen from the figure, a factor of 1 is used for internal faults, and a factor of 2.5 to 5 is used for external faults. This allows the relay to be simultaneously sensitive for internal faults and robust for external faults with a possible CT saturation.

If more than one CT is connected to the relay (breaker-and-the half applications), the CT saturation mechanism is executed between the maximum local current against the sum of all others, then between the maximum local and remote currents to select the secure multiplier MULT. A Maximum of two (local and remote) is selected and then applied to adaptive restraint.


8.1.17 CHARGING CURRENT COMPENSATION

The basic premise for the operation of differential protection schemes in general, and of the L90 line differential element in particular, is that the sum of the currents entering the protected zone is zero. In the case of a power system transmission line, this is not entirely true because of the capacitive charging current of the line. For short transmission lines the charging current is a small factor and can therefore be treated as an unknown error. In this application the L90 can be deployed without voltage sensors and the line charging current is included as a constant term in the total variance, increasing the differential restraint current. For long transmission lines the charging current is a significant factor, and should be computed to provide increased sensitivity to fault current.


Compensation for charging current requires the voltage at the terminals be supplied to the relays. The algorithm calculates $C \times dv/dt$ for each phase, which is then subtracted from the measured currents at both ends of the line. This is a simple approach that provides adequate compensation of the capacitive current at the fundamental power system frequency. Travelling waves on the transmission line are not compensated for, and contribute to restraint by increasing the measurement of errors in the data set.

8

The underlying single phase model for compensation for a two and three terminal system are shown below.

Figure 8–6: 3-TERMINAL TRANSMISSION LINE SINGLE PHASE MODEL FOR COMPENSATION

Apportioning the total capacitance among the terminals is not critical for compensating the fundamental power system frequency charging current as long as the total capacitance is correct. Compensation at other frequencies will be approximate.

If the VTs are connected in wye, the compensation is accurate for both balanced conditions (i.e. all positive, negative and zero sequence components of the charging current are compensated). If the VTs are connected in delta, the compensation is accurate for positive and negative sequence components of the charging current. Since the zero sequence voltage is not available, the L90 cannot compensate for the zero sequence current.

The compensation scheme continues to work with the breakers open, provided the voltages are measured on the line side of the breakers.

For very long lines, the distributed nature of the line leads to the classical transmission line equations which can be solved for voltage and current profiles along the line. What is needed for the compensation model is the effective positive and zero sequence capacitance seen at the line terminals.

Finally, in some applications the effect of shunt reactors needs to be taken into account. With very long lines shunt reactors may be installed to provide some of the charging current required by the line. This reduces the amount of charging current flowing into the line. In this application, the setting for the line capacitance should be the residual capacitance remaining after subtracting the shunt inductive reactance from the total capacitive reactance at the power system frequency.

8.1.18 DIFFERENTIAL ELEMENT CHARACTERISTICS

The differential element is completely dependent on receiving data from the relay at the remote end of the line, therefore, upon startup, the differential element is disabled until the time synchronization system has aligned both relays to a common time base. After synchronization is achieved, the differential is enabled. Should the communications channel delay time increase, such as caused by path switching in a SONET system or failure of the communications power supply, the relay will act as outlined in the next section.

The L90 incorporates an adaptive differential algorithm based on the traditional percent differential principle. In the traditional percent differential scheme, the operating parameter is based on the phasor sum of currents in the zone and the restraint parameter is based on the scalar (or average scalar) sum of the currents in the protected zone - when the operating parameter divided by the restraint parameter is above the slope setting, the relay will operate. During an external fault, the operating parameter is relatively small compared to the restraint parameter, whereas for an internal fault, the operating parameter is relatively large compared to the restraint parameter. Because the traditional scheme is not adaptive, the element settings must allow for the maximum amount of error anticipated during an out-of-zone fault, when CT errors may be high and/or CT saturation may be experienced.

The major difference between the L90 differential scheme and a percent differential scheme is the use of an estimate of errors in the input currents to increase the restraint parameter during faults, permitting the use of more sensitive settings than those used in the traditional scheme. The inclusion of the adaptive feature in the scheme produces element characteristic equations that appear to be different from the traditional scheme, but the differences are minimal during system steady-state conditions. The element equations are shown in the *Operating condition calculations* section.

8.1.19 RELAY SYNCHRONIZATION

On startup of the relays, the channel status will be checked first. If channel status is OK, all relays will send a special "startup" message and the synchronization process will be initiated. It will take about 5 to 7 seconds to declare PFLL status as OK and to start performing current differential calculations. If one of the relays was powered off during the operation, the synchronization process will restart from the beginning. Relays tolerate channel delay (resulting sometimes in step change in communication paths) or interruptions up to four power cycles round trip time (about 66 ms at 60 Hz) without any deterioration in performance. If communications are interrupted for more than four cycles, the following applies:

In two-terminal mode:

- 1. With second redundant channel, relays will not lose functionality at all if second channel is live.
- 2. With one channel only, relays have a five second time window. If the channel is restored within this time, it takes about two to three power cycles of valid PFLL calculations (and if estimated error is still within margin) to declare that PFLL is OK. If the channel is restored later than 5 seconds, PFLL at both relays will be declared as failed and the re-synchronization process will be initiated (about 5 to 7 seconds) after channel status becomes OK.

In three-terminal mode:

- 1. If one of the channels fails, the configuration reverts from master-master to master-slave where the master relay has both channels live. The master relay PFLL keeps the two slave relays in synchronization, and therefore there is no time limit for functionality. The PFLL of the slave relays will be suspended (that is, the 87L function will not be performed at these relays but they can still trip via DTT from the master relay) until the channel is restored. If the estimated error is within margin upon channel restoration and after two to three power cycles of valid PFLL calculations, the PFLL will be declared as OK and the configuration will revert back to master-master.
- 2. If 2 channels fail, PFLL at all relays will be declared as failed and when the channels are back into service, the re-synchronization process will be initiated (about 5 to 7 seconds) after channel status becomes OK.

Depending on the system configuration (number of terminals and channels), the 87L function operability depends on the status of channel(s), status of synchronization, and status of channel(s) ID validation. All these states are available as Flex-Logic[™] operands, for viewing in actual values, logged in the event recorder (if events are enabled in 87L menu), and also trigger targets (if targets are enabled in the 87L function). These FlexLogic[™] operands can to be used to trigger alarms, illuminate LEDs, and be captured in oscillography.

However, the 87L BLOCKED FlexLogic[™] operand reflects whether the local current differential function is blocked due to communications or settings problems. The state of this operand is based on the combination of conditions outlined above. As such, it is recommended that it be used to enable backup protection if 87L is not available.

The 87L BLOCKED operand is set when the 87L function is enabled and any of the following three conditions apply:

- 1. At least one channel failed on a two or three-terminal single-channel system, or both channels failed on a two-terminal two-channel system.
- 2. PFFL has failed or is suspended,
- 3. A channel ID failure has been detected on at least one channel on either system.

All L90 communications alarms can be divided by major and minor alarms.

The major alarms are CHANNEL FAIL, PFLL FAIL, and CHANNEL ID FAIL. The relay is blocked automatically if any of these conditions occur. Therefore, there is no need to assign these operands to a current differential block setting.

The minor alarms are CRC FAIL and LOST PACKET, which are indicators of a poor or noisy communications channel. If the relay recognizes that a packet is lost or corrupted, the 87L feature is not processed at that protection pass. Instead, it waits for the next valid packet.

Characteristics of differential elements can be shown in the complex plane. The operating characteristics of the L90 are fundamentally dependant on the relative ratios of the local and remote current phasor magnitudes and the angles of I_{loc} / I_{rem} as shown in the *Restraint Characteristics* figure.

The main factors affecting the trip-restraint decisions are:

- 1. Difference in angles (+ real represents pure internal fault when currents are essentially in phase, real represents external fault when currents are 180° apart).
- 2. The magnitude of remote current.
- 3. The magnitude of the local current.
- 4. Dynamically estimated errors in calculations.
- 5. Settings.

The following figure also shows the relay's capability to handle week-infeed conditions by increasing the restraint ellipse when the remote current is relatively small (1.5 pu). Therefore, uncertainty is greater when compared with higher remote currents (3 pu). The characteristic shown is also dependent on settings. The second graph shows how the relay's triprestraint calculation is made with respect to the variation in angle difference between local and remote currents. The characteristic for 3 terminal mode is similar where both remote currents are combined together.

8.2 OPERATING CONDITION CHARACTERISTICS

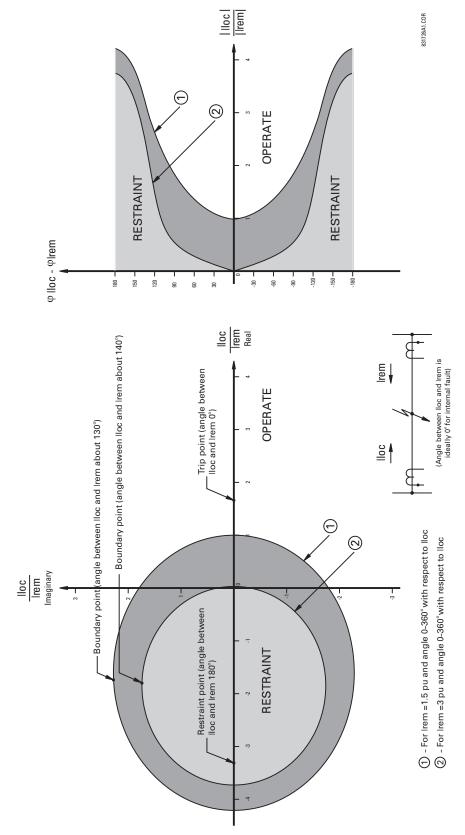


Figure 8–7: RESTRAINT CHARACTERISTICS

Assume the following settings:

- Slope 1: S₁ = 10%
- Slope 2: S₂ = 10%
- Breakpoint: BP = 5 pu secondary
- Pickup: *P* = 0.5 pu

Assume the following local and remote currents:

- Local current: $I_{local} = 4.0 \text{ pu } \angle 0^\circ$
- Remote current: I_{remote}= 0.8 pu ∠180°

The assumed condition is a radial line with a high resistance fault, with the source at the local end only, and through a resistive load current. The operating current is:

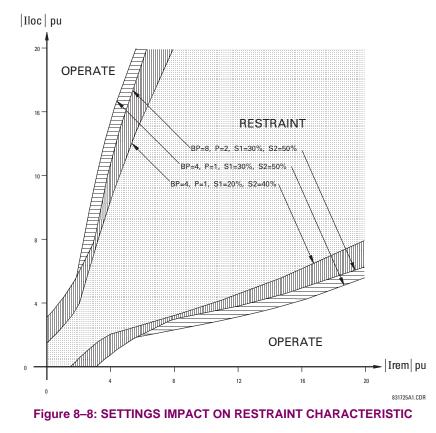
$$I_{op}^{2} = |I_L + I_R|^{2} = |4.0 \angle 0^{\circ} + 0.8 \angle 180^{\circ}|^{2} = 10.24$$
 (EQ 8.25)

Since the current at both ends is less than the breakpoint value of 5.0, the equation for two-terminal mode is used to calculate restraint as follows.

$$I_{Rest}^{2} = (2 \cdot S_{1}^{2} \cdot |I_{L}|^{2}) + (2 \cdot S_{1}^{2} \cdot |I_{R}|^{2}) + 2P^{2} + \sigma$$

= $(2 \cdot (0.1)^{2} \cdot |4|^{2}) + (2 \cdot (0.1)^{2} \cdot |0.8|^{2}) + 2 \cdot (0.5)^{2} + 0$
= 0.8328 (EQ 8.26)

where $\sigma = 0$, assuming a pure sine wave.

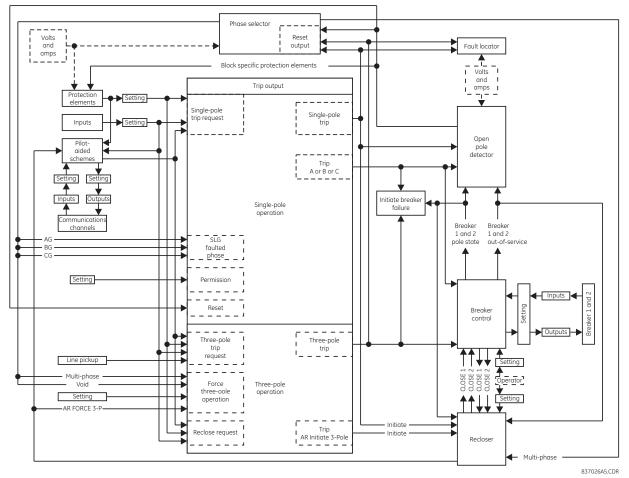

8.2.3 TRIP DECISION TEST

The trip condition is shown below.

$$\frac{f_{Op}^2}{f_{Rest}^2} > 1 \implies \frac{10.24}{0.8328} = 12.3 > 1 \implies \text{Trip}$$
(EQ 8.27)

The use of the **CURRENT DIFF PICKUP**, **CURRENT DIFF RESTRAINT 1**, **CURRENT DIFF RESTRAINT 2**, and **CURRENT DIFF BREAK PT** settings are discussed in the *Current differential* section of chapter 5.

The following figure shows how the L90 settings affect the restraint characteristics. The local and remote currents are 180° apart, which represents an external fault. The breakpoint between the two slopes indicates the point where the restraint area is becoming wider to override uncertainties from CT saturation, fault noise, harmonics, etc. Increasing the slope percentage increases the width of the restraint area.



8

a) INTRODUCTION

Single pole operations make use of many features of the relay. At the minimum, the trip output, recloser, breaker control, open pole detector, and phase selector must be fully programmed and in service; and either protection elements or digital inputs representing fault detection must be available for successful operation. When single pole trip-and-reclose is required overall control within the relay is performed by the trip output element. This element includes interfaces with pilot aided schemes, the line pickup, breaker control, and breaker failure elements.

Single pole operations are based on use of the phase selector to identify the type of the fault, to eliminate incorrect fault identification that can be made by distance elements in some circumstances and to provide trip initiation from elements that are not capable of any fault type identification, such as high-set negative-sequence directional overcurrent element. The scheme is also designed to make use of the advantages provided by communications channels with multiple-bit capacities for fault identification.

Figure 8–9: SINGLE-POLE OPERATION

The trip output element receives requests for single and three pole trips and three pole reclose initiation, which it then processes to generate outputs that are used to:

- Determine whether a single or three pole operation should be performed.
- Initiate tripping of breaker poles A, B and C, either individually or as a group.
- Initiate breaker failure protection for phases A, B and C, either individually or as a group.
- Notify the open pole detector when a single pole operation is imminent.
- Initiate either single or three pole reclosing.

Notify the phase selector when a trip operation is imminent.

When notified that a single pole operation has been initiated open pole detector will:

- Initiate blocking of protection elements that could potentially maloperate when a breaker pole is open.
- Instruct the phase selector to de-assert all outputs, as an open pole invalidates calculations.

It is assumed for this discussion that the relay features that are shown on *Single pole operation* diagram above have all been programmed for the application and are in service. The description begins with line breakers open at both the local and remote ends, and the operation of the scheme is described in chronological order.

Because the line is de-energized the line pickup element is armed. The recloser is presently enabled. An operator requests that breaker control close the breaker, and it operates output relays to close breaker poles A, B and C. This operator manual close request is also forwarded from breaker control to recloser, which becomes disabled, de-asserting its "Enabled" output. This output is transferred to trip output, where it converts any input request for a single pole operation into a three-pole operation. At the recloser, the **AR1 BLK TIME @ MAN CLOSE** timer is started.

The breaker closes and status monitoring contacts on the breaker poles change state; the new breaker pole states are reported to breaker control, which in turn transfers these states to the recloser, trip output, breaker failure and open pole detector. Because a fault is not detected the AR1 BLK TIME @ MAN CLOSE times out and the recloser is enabled, which asserts the "Enabled" output, informing the trip output element that single pole trip operations are now permitted. When normal voltage appears on the line the line pickup element is disarmed. As the local line breaker has not tripped the operator closes the breaker at the remote end of the line, placing the line in service.

Several scenarios are considered below.

b) SLG FAULT

At this moment the request to trip is placed for the trip output. As the fault is recognized as an AG fault, the TRIP PHASE A operand is asserted by the trip output. This signal is passed to the breaker control scheme and results in tripping pole A of the breaker.

Simultaneously with the TRIP PHASE A operand, the TRIP 1-POLE operand is asserted. This operand activates the open pole detector. The latter detector responds to the TRIP PHASE A signal by declaring phase A open by asserting OPEN POLE OP Φ A (even before it is actually opened). The TRIP PHASE A signal resets only after the breaker actually operates as indicated by its auxiliary contact. At this moment the open pole detector responds to the breaker position and continues to indicate phase A opened. This indication results in establishing blocking signals for distance elements (OPEN POLE BLK AB, OPEN POLE BLK CA operands are asserted). If neutral and negative-sequence overcurrent elements are mapped into the trip output to trigger single-pole tripping, they must be blocked with the OPEN POLE BLK N operand, specifically provided for this purpose. The OPEN POLE BLK N operand must be assigned through the block setting of the overcurrent element. The two latter operands block phase distance AB and CA elements, respectively (all zones); the OPEN POLE Φ A OP blocks the ground distance AG elements (all zones). As a result, the Z1 OP and Z2 PKP operands that were picked-up reset immediately. The following distance elements remain operational guarding the line against evolving faults: BG, CG and BC.

The TRIP 1-POLE operand initiates automatically a single-pole autoreclose. The autoreclose is started and asserts the AR RIP operand. This operand keeps blocking the phase selector so that it does not respond to any subsequent events. At the same time the operand removes zero-sequence directional supervision from ground distance zones 2 and 3 so that they could respond to a single-line-to-ground fault during open pole conditions.

The AR FORCE 3-P TRIP operand is asserted 1.25 cycles following autoreclose initiation. This operand acts as an enabler for any existing trip request. In this case none of the protection elements is picked up at this time, therefore no more trips are initiated.

When the recloser dead time interval is complete it signals the breaker control element to close the breaker. The breaker control element operates output relays to close the breaker.

When pole A of the breaker closes this new status is reported to the breaker control element, which transfers this data to the breaker failure, autorecloser, open pole detector and trip output elements. The response at breaker failure is dependent on the programming of that element. The response at the autorecloser is not relevant to this discussion. At the open pole detector, the blocking signals to protection elements are de-asserted.

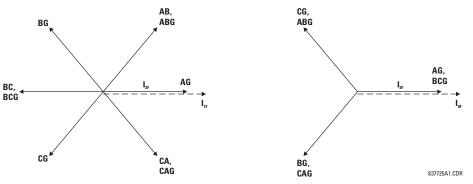
If the fault was transient the reset time would expire at the autorecloser and the AR FORCE 3-P TRIP and RIP outputs would be de-asserted, returning all features to the state described at the beginning of this description.

If the fault was permanent appropriate protection elements would detect it and place a trip request for the trip output element. As the AR FORCE 3-P TRIP is still asserted, the request is executed as a three-pole trip.

The response of the system from this point is as described above for the second trip, except the autorecloser will go to lockout upon the next initiation (depending on the number of shots programmed).

c) SLG FAULT EVOLVING INTO LLG

When an AG fault occurs the events unfold initially as in the previous example. If the fault evolves quickly, the phase selector will change its initial assessment from AG to ABG fault and when the trip request is placed either by the zone 1 or the POTT scheme, a three-pole trip will be initiated. If this is the case, all three TRIP PHASE A, B and C operands will be asserted. The command is passed to the breaker control element and results in a three-pole trip. At the same time the recloser is initiated as per settings of the trip output. As the TRIP 3-POLE operand is asserted (not the TRIP 1-POLE operand) the open pole is not activated. Because the AR RIP in progress is asserted, the phase selector is blocked as well.

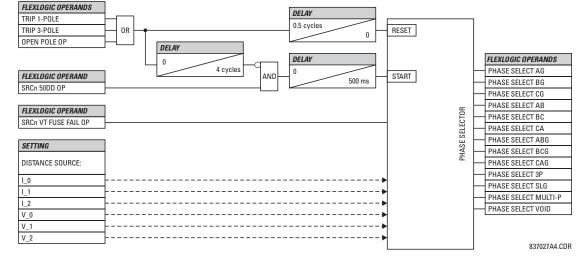

If the fault evolves slowly, the sequence is different: The relay trips phase A as in the previous example. The phase selector resets, the open pole detector is activated and forces the zone 1 and zone 2 AG, AB, CA and negative-sequence overcurrent elements to reset. If the zone 1 BG element picks up, or the zone 2 BG element picks up resulting in operation of the POTT scheme, no trip command will be issued until the AR FORCE 3-P TRIP is asserted. This happens 1.25 cycles after the first trip. If at this time or any time later a request for trip is placed (due to an evolving fault), a three-pole trip is initiated. The TRIP 1-POLE operand is de-asserted by the TRIP 3-POLE operand, resetting the open pole detector. Shortly all three-poles are opened.

When the dead time expires, the recloser signals the breaker control to close the breaker. At this time all the protection elements are operational, as the open pole detector is not blocking any elements. If the line-side VTs are used, the line pickup element is armed as well. If there is a fault on the line, these elements will pickup the fault and issue next request for trip. This request results in three-pole trip as the AR FORCE 3-P TRIP is still asserted.

The response of the system from this point is as described above for the second trip, except the recloser will go to lockout upon the next initiation (depending on the number of shots programmed).

8.3.2 PHASE SELECTION

The L90 uses phase relations between current symmetrical components for phase selection. First, the algorithm validates if there is enough zero, positive, and negative-sequence currents for reliable analysis. The comparison is adaptive; that is, the magnitudes of the three symmetrical components used mutually as restraints confirm if a given component is large enough to be used for phase selection. Once the current magnitudes are validated, the algorithm analyzes phase relations between the negative and positive-sequence currents and negative and zero-sequence currents (when applicable) as illustrated below.



Due to dual comparisons, the algorithm is very secure. For increased accuracy and to facilitate operation in weak systems, the pre-fault components are removed from the analyzed currents. The algorithm is very fast and ensures proper phase selection before any of the correctly set protection elements operates.

Under unusual circumstances such as weak-infeed conditions with the zero-sequence current dominating during any ground fault, or during cross-country faults, the current-based phase selector may not recognize any of the known fault pattern. If this is the case, voltages are used for phase selection. The voltage algorithm is the same as the current-based algorithm; for example, phase angles between the zero, negative, and positive-sequence voltages are used. The pre-fault values are subtracted prior to any calculations.

The pre-fault quantities are captured and the calculations start when the disturbance detector (50DD) operates.

When the trip command is issued by the trip output logic (TRIP 1-POLE or TRIP 3-POLE) and during open pole conditions (OPEN POLE OP), the phase selector resets all its output operands and ignores any subsequent operations of the disturbance detector.

The L90 uses two methods to determine fault type and fault location

- A multi-ended fault location algorithm using synchronized currents and voltage measurements from all line terminals.
- A single-ended method based on the measurement from local terminal relay only during channel failures.

8.4.2 MULTI-ENDED FAULT LOCATOR

a) **DESCRIPTION**

The multi-ended fault location method is based on synchronized voltage and current measurements at all ends of the transmission line. This method makes it possible to compute the fault location without any assumptions or approximations. A single composite voltage and single composite current signal represent voltage and current measurements at any line terminal. These composite voltage and current signals are non-zero regardless of the fault type. The composite voltage at the fault can be computed from each end of the line by subtracting the line drop to the fault from the voltage at that end.

The multi-ended algorithm executes separately on each terminal. All terminals compute the same fault location, since they use the same equations applied to the same set of data. The algorithm is executed for both two-terminal and three-terminal applications. The three-terminal algorithm executes at each terminal that has information from all three terminals. If there is a communications failure on one channel, it will affect only one of the three terminals, since there are fault phasors from all three terminals to compute the fault location. The three-terminal algorithm has two parts: one part that determines which line segment is faulted, and another part that locates the fault on the faulted segment. Each terminal may report a slightly different fault resistance. The algorithm achieves greater accuracy by removing the line charging current.

The fault location algorithm does not need to explicitly determine the composite voltage at the fault. Instead, it eliminates the fault voltage from the equations for fault location by using other information instead.

For the purpose of fault location, the ABC quantities are represented by a single composite signal using the following base equation.

$$S_{(X)} = \frac{1}{3} (2S_{(A)} - bS_{(B)} - b^*S_{(C)})$$
(EQ 8.28)

In the above equation, b is a complex number defined as:

$$b = 1 + j \tan(\alpha)$$
 (EQ 8.29)

and b* is the conjugate of b, or mathematically:

$$b^* = 1 - j \tan(\alpha)$$
 (EQ 8.30)

where $\alpha = 45^{\circ}$.

The expanded Clarke transform shown above is selected to yield non-zero operating signals under balanced and unbalanced conditions. This allows reducing the amount of exchanged information between devices and avoiding phase selection. The above defining equation applies to the wye connection of signals under ABC phase rotation. For delta connections and ACB rotation, there is a small modification in this equation.

The following composite signals in (in per-unit values) are obtained from base equation shown above, taking into account system phase rotation, CT nominal values, and VT nominal values and connections as set under the phase VT bank of the first 87L source.

$$I_{LOC(A, B, C)} \rightarrow I_{LOC(X)}, I_{REM1(A, B, C)} \rightarrow I_{REM1(X)}, I_{REM2(A, B, C)} \rightarrow I_{REM2(X)}$$

$$V_{LOC(A, B, C)} \rightarrow V_{LOC(X)}$$
(EQ 8.31)

Composite currents are calculated locally at each terminal locally. Composite voltage is continuously transmitted to remote terminals, where upon receipt it is labeled as $V_{REM1(X)}$ for channel 1 and $V_{REM2(X)}$ for channel 2. The transmitted composite voltage signal is supervised by a VT fuse fail condition of the first source of 87L function. During VT fuse fail conditions, transmitted voltage is substituted with zero, signaling to remote peers that multi-ended fault location should be inhibited.

The impedance for fault location calculation (in per-unit values) is calculated as follows.

$$Z_{pu} = Z_{sec} \times \frac{\text{CT}_{sec}}{\text{VT}_{sec}} \text{ for wye-connected VTs}$$

$$Z_{pu} = \sqrt{3} \times Z_{sec} \times \frac{\text{CT}_{sec}}{\text{VT}_{sec}} \text{ for delta-connected VTs}$$
(EQ 8.32)

Consequently, the positive-sequence line secondary impedance entered under in the fault locator menu yields following signals used for calculation. For two-terminal applications, we have:

$$Z_{1LINE} \rightarrow Z$$

$$L = \text{ corresponding line length}$$
(EQ 8.33)

For three-terminal applications, we have:

$$Z_{1LINE} \rightarrow Z_{LOC-T}$$

$$Z_{REM1-TAP} \rightarrow Z_{REM1-T}$$

$$Z_{REM2-TAP} \rightarrow Z_{REM2-T}$$

$$L_{LOC-T}, L_{REM1-T}, L_{REM2-T} = \text{ corresponding lengths of the three line segments}$$
(EQ 8.34)

For two-terminal applications, fault calculations can be executed directly using the signals above. For three-terminal applications, it is first necessary to define the faulted line segment. This is done by estimating the tap voltage as seen from all three line terminals.

$$V_{T(LOC)} = V_{LOC(X)} - Z_{LOC-T} \times I_{LOC(X)}$$

$$V_{T(REM1)} = V_{REM1(X)} - Z_{REM1-T} \times I_{REM1(X)}$$

$$V_{T(REM2)} = V_{REM2(X)} - Z_{REM2-T} \times I_{REM2(X)}$$
(EQ 8.35)

The fault current is calculated as follows.

$$I_{FLT(X)} = I_{LOC(X)} + I_{REM1(X)} + I_{REM2(X)}$$
 (EQ 8.36)

The faulted segment can be found by recognizing that the sum of the voltage drops around a loop through the unfaulted segments is zero. The residual voltage phasors are computed for each loop. The loop with the lowest residual voltage contains the two unfaulted segments. Therefore, the differences between each pair of estimates is calculated as follows.

$$\Delta V_{LOC-REM1} = |V_{T(LOC)} - V_{T(REM1)}|$$

$$\Delta V_{LOC-REM2} = |V_{T(LOC)} - V_{T(REM2)}|$$

$$\Delta V_{REM1-REM2} = |V_{T(REM1)} - V_{T(REM2)}|$$
(EQ 8.37)

The faulted segment is selected as follows.

If
$$\Delta V_{LOC-REM1} = \min(\Delta V_{LOC-REM1}, \Delta V_{LOC-REM2}, \Delta V_{REM1-REM2})$$

and $\Delta V_{LOC-REM1} < \max(0.025 \times (|V_{T(LOC)}| + |V_{T(REM1)}|), 0.01 \text{ pu})$ (EQ 8.38)
then the fault is between the tap and remote terminal 2

Where:

8

$$L = L_{REM2-T}$$

$$Z = Z_{REM2-T}$$

$$V_{TAP(X)} = \frac{1}{2}(V_{T(LOC)} + V_{T(REM1)})$$

$$I_{TAP(X)} = I_{LOC(X)} + I_{REM1(X)}$$

$$V_{1(X)} = V_{REM2(X)}$$
(EQ 8.39)

A similar set of equations is applied to determine whether the fault is between the tap and the local terminal or between the tap and remote terminal 1.

Next, having all the data prepared, the following universal equation is used to calculate the fault location.

$$D_{pu} = \operatorname{Re}\left(\frac{\frac{V_{1(X)} - V_{TAP(X)}}{Z} + I_{TAP(X)}}{I_{FLT(X)}}\right)$$

$$D_{units} = D_{pu} \times L$$
(EQ 8.40)

For two-terminal applications, the following equalities hold for the above equation.

$$V_{1(X)} = V_{LOC(X)}$$

$$V_{TAP(X)} = V_{REM1(X)}$$

$$I_{TAP(X)} = I_{REM1(X)}$$

$$I_{FLT(X)} = I_{LOC(X)} + I_{REM1(X)}$$
(EQ 8.41)

For two-terminal applications, the distance is reported from the local relay. In three-terminal applications, the distance is reported from the terminal of a given line segment.

b) EXAMPLE

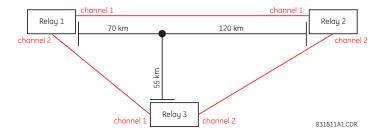
Consider a three-terminal, 500 kV application with no charging current compensation or zero-sequence removal. The phase rotation is ABC and the following CT and VT data is known.

VALUE	RELAY 1	RELAY 2	RELAY 3
CT primary	1200 A	1000 A	1600 A
CT secondary	5 A	1 A	5 A
VT connection	wye	delta	wye
VT secondary	57.73 V	83.33 V	57.73 V
VT ratio	5000:1	6000:1	5000:1

Table 8–1: CT AND VT APPLICATION DATA FOR MULTI-ENDED EXAMPLE

The tap settings are shown below.

Table 8–2: TAP SETTINGS MULTI-ENDED EXAMPLE


VALUE	RELAY 1	RELAY 2	RELAY 3
CT tap 1 for remote terminal 1	1000 / 1200 = 0.8333	1200 / 1000 = 1.200	1200 / 1600 = 0.750
CT tap 1 for remote terminal 2	1600 / 1200 = 1.3333	1600 / 1000 = 1.600	1000 / 1600 = 0.625

The primary positive-sequence impedances and length for the line are shown below.

Table 8–3: LINE LENGTH AND POSITIVE-SEQUENCE IMPEDANCE FOR MULTI-ENDED EXAMPLE

VALUE	RELAY 1 TO TAP	RELAY 2 TO TAP	RELAY 3 TO TAP
Impedance	21.29 Ω ∠80.5°	36.50 Ω ∠80.5°	16.73 Ω ∠80.5°
Length	70 km	120 km	55 km

The three relays are connected as shown below.

Figure 8–12: RELAY CONNECTIONS FOR MULTI-ENDED FAULT LOCATOR EXAMPLE

The following settings are entered into the relays. These values are calculated in secondary ohms as shown in the following tables.

Table 8-4: LINE IMPEDANCE SETTINGS (ALL ANGLES ARE 80.5°)

VALUE	RELAY 1	RELAY 2	RELAY 3
Local to tap	1.0219 sec. ohms (relay 1 to tap in relay 1 secondary ohms)	6.0833 sec. ohms (relay 2 to tap in relay 2 secondary ohms)	1.0707 sec. ohms (relay 3 to tap in relay 3 secondary ohms)
Remote 1 to tap	1.7520 sec. ohms (relay 2 to tap in relay 1 secondary ohms)	3.5483 sec. ohms (relay 1 to tap in relay 2 secondary ohms)	1.3626 sec. ohms (relay 1 to tap in relay 3 secondary ohms)
Remote 2 to tap	0.8030 sec. ohms (relay 3 to tap in relay 1 secondary ohms)	2.7883 sec. ohms (relay 3 to tap in relay 2 secondary ohms)	2.3360 sec. ohms (relay 2 to tap in relay 3 secondary ohms)

Assume the following signals are measured by the relays when the fault locator was triggered.

Table 8–5: RELAY MEASUREMENTS (PHYSICAL INPUTS)

VALUE	RELAY 1	RELAY 2	RELAY 3
F1	10.64 A ∠–87.5°	8.592 A ∠–88.5°	9.652 A ∠–43°
F2	1.652 A ∠88.9°	1.273 A ∠78.6°	5.201 A ∠–99°
F3	1.66 A ∠–31.2°	1.614 A ∠–43°	6.269 A ∠139.3°
F5	52.71 V ∠0.8°	76.943 V ∠24.579°	49.6 V ∠10.1°
F6	58.21 V ∠–121.4°	86.321 V ∠–98.052°	57.1 V ∠–115.6°
F7	58.93 V ∠121.9°	78.795 V ∠137.27°	59.12 V ∠130.8°

These measurement are shown below in per-unit values of the CT and VT nominal of the 87L source.

Table 8-6: RELAY MEASUREMENTS (PER-UNIT VALUES)

VALUE	RELAY 1	RELAY 2	RELAY 3
IA	2.128 pu ∠–87.5°	8.592 pu ∠–88.5°	1.9304 pu ∠–43°
IB	0.3304 pu ∠88.9°	1.273 pu ∠78.6°	1.0402 pu ∠–99°
IC	0.332 pu ∠–31.2°	1.614 pu ∠–43°	1.2538 pu ∠139.3°
VA (VAB)	0.91304 pu ∠0.8°	0.92335 pu ∠24.579°	0.85917 pu ∠10.1°
VB (VBC)	1.0083 pu ∠–121.4°	1.0359 pu ∠–98.052°	0.98909 pu ∠–115.6°
VC (VCA)	1.0208 pu ∠121.9°	0.94557 pu ∠137.27°	1.0241 pu ∠130.8°

When subjected to the expanded Clarke transform in the previous sub-section, the local currents yield the following values (in relay per-unit values):

- Relay 1: 1.3839 pu ∠-84.504°
- Relay 2: 5.4844 pu ∠-85.236°
- Relay 3: 1.2775 pu ∠–56.917°

When subjected to the expanded Clarke transform in the previous sub-section, the local voltages yield the following values (in per-unit values of the nominal primary phase-to-ground voltage):

- Relay 1: 0.38781 pu ∠0.26811°
- Relay 2: 0.30072 pu ∠-12.468°
- Relay 3: 0.37827 pu ∠8.9388°

Since they have a common per-unit base, the composite voltages are used at all locations. The currents are ratio matched using the tap settings.

For example, the composite current at relay 1 is 1.3839 pu of its local CT; that is, $1.3839 \times 1200 \text{ A} = 1.6607 \text{ kA}$. When calculated at relay 2 from the data sent from relay 1 to relay 2, this value is 1.6607 kA / 1000 A = 1.6607 pu of the relay 2 CT. This is due to the procedure of applying tap settings to the received phase currents before calculating the composite signal.

As a result, the three relays work with the following signals.

VALUE	RELAY 1	RELAY 2	RELAY 3
V _{LOC(X)}	0.38781 pu ∠0.26811°	0.30072 pu ∠–12.468°	0.37827 pu ∠8.9388°
$V_{REM1(X)}$	0.30072 pu ∠-12.468°	0.38781 pu ∠0.26811°	0.38781 pu ∠0.26811°
V _{REM2(X)}	0.37827 pu ∠8.9388°	0.37827 pu ∠8.9388°	0.30072 pu ∠–12.468°
I _{LOC(X)}	1.3839 pu ∠–84.504°	5.4844 pu ∠–85.236°	1.2775 pu ∠–56.917°
$I_{REM1(X)}$	4.5704 pu ∠–85.236°	1.6607 pu ∠–84.504°	1.0379 pu ∠–84.504°
I _{REM2(X)}	1.7033 pu ∠–56.917°	2.0439 pu ∠–56.917°	3.4278 pu ∠–85.236°

Table 8–7: COMPOSITE SIGNALS AT ALL THREE RELAYS

The line impedances entered in secondary ohms are recalculated as follows (refer to the previous sub-section for equations).

Table 8–8: PER-UNIT LINE IMPEDANCE

VALUE	RELAY 1	RELAY 2	RELAY 3
Local to tap	0.088509 pu ∠80.5°	0.12644 pu ∠80.5°	0.092735 pu ∠80.5°
Remote 1 to tap	0.15174 pu ∠80.5°	0.073754 pu ∠80.5°	0.11801 pu ∠80.5°
Remote 2 to tap	0.069551 pu ∠80.5°	0.057957 pu ∠80.5°	0.20232 pu ∠80.5°

Using the data in the previous two tables, the tap voltages are calculated as follows (refer to the previous sub-section for equations).

Table 8–9: CALCULATED TAP VOLTAGES USING TERMINAL DATA

VALUE	RELAY 1	RELAY 2	RELAY 3
V _{T(LOC)}	0.26581 pu ∠2.2352°	0.39755 pu ∠–178.9°	0.26535 pu ∠2.4583°
V _{T(REM1)}	0.39758 pu ∠–178.9°	0.26582 pu ∠2.2351°	0.26581 pu ∠2.2352°
V _{T(REM2)}	0.26535 pu ∠2.4583°	0.26535 pu ∠2.4587°	0.39758 pu ∠–178.9°

From the above table, it is already visible that:

- Looking from relay 1 there is no fault between the tap and the local terminal and between the tap and remote 2 terminal. Therefore, the fault must be between the remote 1 terminal = relay 2 and the tap.
- Looking from relay 2 there is no fault between the tap and the remote 1 terminal, and between the tap and remote 2 terminal. Therefore, the fault must be between the local terminal = relay 2 and the tap.
- Looking from relay 3 there is no fault between the tap and the remote 1 terminal, and between the tap and the local terminal. Therefore, the fault must be between the remote 2 terminal = relay 2 and the tap.

Note that the correct value of the tap voltage is equal for all three relays. This is expected since the per-unit base for the composite voltages is equal for all three relays.

The three relays calculate the differences as follows (refer to the previous sub-section for equations).

Table 8–10: TAP VOLTAGE DIFFERENCES USING TERMINAL DATA

VALUE	RELAY 1	RELAY 2	RELAY 3
LOC-REM1	0.66337 pu	0.66334 pu	0.0011344 pu
LOC-REM2	0.0011344 pu	0.66286 pu	0.66289 pu
REM1-REM2	0.66289 pu	0.001137 pu	0.66337 pu

Applying the results of the table above to the equations in the previous sub-section, the algorithm arrives at the following:

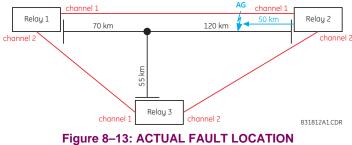
- Relay 1 determines remote 1 to tap.
- Relay 2 determines local to tap.
- Relay 3 determines remote 2 to tap.

As a result, the relays use the following data for further calculations.

Table 8–11: INPUT DATA FOR MAIN FAULT LOCATION

VALUE	RELAY 1	RELAY 2	RELAY 3
Fault segment	2	1	3
L	120 km	120 km	120 km
Z	0.1517 pu ∠80.5°	0.1264 pu ∠80.5°	0.2023 pu ∠80.5°
V _{TAP}	0.26558 pu ∠2.3467°	0.26559 pu ∠2.3468°	0.26558 pu ∠2.3467°
V ₁	0.30072 pu ∠–12.468°	0.30072 pu ∠–12.468°	0.30072 pu ∠–12.468°
I _{TAP}	2.9991 pu ∠–69.256°	3.599 pu ∠–69.256°	2.2494 pu ∠–69.256°
I _{FLT}	7.4992 pu ∠–78.915°	8.999 pu ∠–78.915°	5.6244 pu ∠–78.915°

The data above are effectively identical. The difference in current magnitudes results from different per-unit bases at the three relays (1200 A, 1000 A, and 1600 A). The difference in impedances results from different CT and VT ratios at the three relays.


The tap voltage is the actual voltage at the tap (0.26558 × 500 kV / $\sqrt{3}$ = 76.67 kV). The V₁ voltage is the voltage at relay 2 (0.30072 pu = 86.81 kV).

The tap current is the total feed from the tap towards the fault and is $2.9991 \times 1200 \text{ A} = 3.599 \text{ pu} \times 1000 \text{ A} = 2.2494 \text{ pu} \times 1600 \text{ A} = 3.599 \text{ kA}$. The fault current is $7.4992 \text{ pu} \times 1200 \text{ A} = 8.999 \text{ pu} \times 1000 \text{ A} = 5.6244 \text{ pu} \times 1600 \text{ A} = 8.999 \text{ kA}$.

The data above results in the following fault locations.

- Relay 1 fault location = 0.4173 pu or 0.4173 x 120 km = 50.0704 km from its remote terminal 1 (relay 2)
- Relay 2 fault location = 0.4172 pu or 0.4172 × 120 km = 50.07 km from local terminal (relay 2)
- Relay 3 fault location = 0.4173 pu or 0.4173 × 120 km = 50.0704 km from its remote terminal 2 (relay 2)

The actual fault location in this example was 50.00km from relay 2 as shown below.

8.4.3 SINGLE-ENDED FAULT LOCATOR

When the multi-ended fault locator cannot be executed due to communication channel problems or invalid signals from remote terminals, then the single-ended method is used to report fault location.

Fault type determination is required for calculation of fault location – the algorithm uses the angle between the negative and positive sequence components of the relay currents. To improve accuracy and speed of operation, the fault components of the currents are used; that is, the pre-fault phasors are subtracted from the measured current phasors. In addition to the angle relationships, certain extra checks are performed on magnitudes of the negative and zero-sequence currents.

The single-ended fault location method assumes that the fault components of the currents supplied from the local (A) and remote (B) systems are in phase. The figure below shows an equivalent system for fault location.

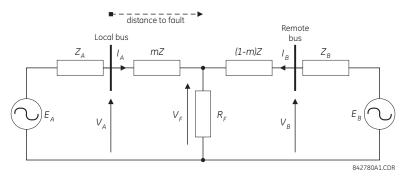


Figure 8–14: EQUIVALENT SYSTEM FOR FAULT LOCATION

The following equations hold true for this equivalent system.

$$V_{A} = m \cdot Z \cdot I_{A} + R_{F} \cdot (I_{A} + I_{B})$$
(EQ 8.42)

where: m = sought pu distance to fault, Z = positive sequence impedance of the line.

The currents from the local and remote systems can be parted between their fault (F) and pre-fault load (pre) components:

$$I_A = I_{AF} + I_{Apre} \tag{EQ 8.43}$$

and neglecting shunt parameters of the line:

$$I_B = I_{BF} - I_{Apre} \tag{EQ 8.44}$$

Inserting the I_A and I_B equations into the V_A equation and solving for the fault resistance yields:

$$R_{F} = \frac{V_{A} - m \cdot Z \cdot I_{A}}{I_{AF} \cdot \left(1 + \frac{I_{BF}}{I_{AF}}\right)}$$
(EQ 8.45)

Assuming the fault components of the currents, I_{AF} and I_{BF} are in phase, and observing that the fault resistance, as impedance, does not have any imaginary part gives:

$$\operatorname{Im}\left(\frac{V_{A}-m\cdot Z\cdot I_{A}}{I_{AF}}\right) = 0$$
 (EQ 8.46)

where: Im() represents the imaginary part of a complex number. Solving the above equation for the unknown *m* creates the following fault location algorithm:

$$m = \frac{\operatorname{Im}(V_A \cdot I_{AF}^*)}{\operatorname{Im}(Z \cdot I_A \cdot I_{AF}^*)}$$
(EQ 8.47)

where * denotes the complex conjugate and $I_{AF} = I_A - I_{Apre}$.

Depending on the fault type, appropriate voltage and current signals are selected from the phase quantities before applying the two equations above (the superscripts denote phases, the subscripts denote stations).

For AG faults:

$$V_A = V_A^A, \quad I_A = I_A^A + K_0 \cdot I_{0A}$$
 (EQ 8.48)

For BG faults:

$$V_A = V_A^B, \quad I_A = I_A^B + K_0 \cdot I_{0A}$$
 (EQ 8.49)

For CG faults:

$$V_{A} = V_{A}^{C}, \quad I_{A} = I_{A}^{BC} + K_{0} \cdot I_{0A}$$
 (EQ 8.50)

For AB and ABG faults:

$$V_A = V_A^A - V_A^B, \quad I_A = I_A^A - I_A^B$$
 (EQ 8.51)

For BC and BCG faults:

$$V_A = V_A^B - V_A^C, \quad I_A = I_A^B - I_A^C$$
 (EQ 8.52)

For CA and CAG faults:

$$V_A = V_A^C - V_A^A, \quad I_A = I_A^C - I_A^A$$
 (EQ 8.53)

where K_0 is the zero sequence compensation factor (for the first six equations above)

For ABC faults, all three AB, BC, and CA loops are analyzed and the final result is selected based upon consistency of the results

The element calculates the distance to the fault (with m in miles or kilometers) and the phases involved in the fault.

The relay allows locating faults from delta-connected VTs. If the FAULT REPORT 1 VT SUBSTITUTION setting is set to "None", and the VTs are connected in wye, the fault location is performed based on the actual phase to ground voltages. If the VTs are connected in delta, fault location is suspended.

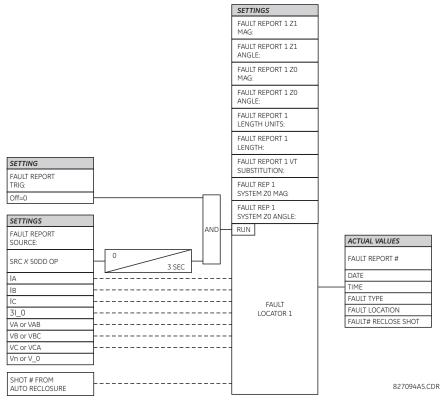
If the FAULT REPORT 1 VT SUBSTITUTION setting value is "V0" and the VTs are connected in a wye configuration, the fault location is performed based on the actual phase to ground voltages. If the VTs are connected in a delta configuration, fault location is performed based on the delta voltages and externally supplied neutral voltage:

$$V_{A} = \frac{1}{3}(V_{N} + V_{AB} - V_{CA})$$

$$V_{B} = \frac{1}{3}(V_{N} + V_{BC} - V_{AB})$$

$$V_{B} = \frac{1}{3}(V_{N} + V_{CA} - V_{BC})$$
(EQ 8.54)

If the FAULT REPORT 1 VT SUBSTITUTION setting value is "I0" and the VTs are connected in a wye configuration, the fault location is performed based on the actual phase to ground voltages. If the VTs are connected in a delta configuration, fault location is performed based on the delta voltages and zero-sequence voltage approximated based on the zero-sequence current:


$$V_{A} = \frac{1}{3}(V_{AB} - V_{CA}) - Z_{SYS0}I_{0}$$

$$V_{B} = \frac{1}{3}(V_{BC} - V_{AB}) - Z_{SYS0}I_{0}$$

$$V_{B} = \frac{1}{3}(V_{CA} - V_{BC}) - Z_{SYS0}I_{0}$$
(EQ 8.55)

where Z_{SYS0} is the equivalent zero-sequence impedance behind the relay as entered under the fault report setting menu.

8

Figure 8–15: FAULT LOCATOR SCHEME

Since the fault locator algorithm is based on the single-end measurement method, in three-terminal configuration the estimation of fault location may not be correct at all three terminals especially if fault occurs behind the line's tap respective to the given relay.

NOTE

9.1.1 INTRODUCTION

In general, proper CT selection is required to provide both adequate fault sensitivity and prevention of operation on highcurrent external faults that could result from CT saturation. The use of high-quality CTs (such as class X) improves relay stability during transients and CT saturation and can increase relay sensitivity. A current differential scheme is highly dependent on adequate signals from the source CTs. Ideally, CTs selected for line current differential protection should be based on the criteria described below. If the available CTs do not meet the described criteria, the L90 will still provide good security for CT saturation for external faults. The L90 adaptive restraint characteristics, based on estimates of measurement errors and CT saturation detection, allow the relay to be secure on external faults while maintaining excellent performance for severe internal faults. Where CT characteristics do not meet criteria or where CTs at both ends may have different characteristics, the differential settings should be adjusted as per section 9.2.1.

The capability of the CTs, and the connected burden, should be checked as follows:

- 1. The CTs should be class TPX or TPY (class TPZ should only be used after discussion with both the manufacturer of the CT and GE Multilin) or IEC class 5P20 or better.
- The CT primary current rating should be somewhat higher than the maximum continuous current, but not extremely high relative to maximum load because the differential element minimum sensitivity setting is approximately 0.2 × CT rating (the L90 relay allows for different CT ratings at each of the terminals).
- 3. The VA rating of the CTs should be above the Secondary Burden × CT Rated Secondary Current. The maximum secondary burden for acceptable performance is:

$$R_b + R_r < \frac{\text{CT Rated VA}}{(\text{CT Secondary } I_{rated})^2}$$
 (EQ 9.1)

where: R_b = total (two-way) wiring resistance plus any other load R_r = relay burden at rated secondary current

4. The CT kneepoint voltage (per the V_k curves from the manufacturer) should be higher than the maximum secondary voltage during a fault. This can be estimated by:

$$V_k > I_{fp} \times \left(\frac{X}{R} + 1\right) \times (R_{CT} + R_L + R_r) \quad \text{for phase-phase faults}$$

$$V_k > I_{fg} \times \left(\frac{X}{R} + 1\right) \times (R_{CT} + 2R_L + R_r) \quad \text{for phase-ground faults}$$
(EQ 9.2)

where: I_{fp} = maximum secondary phase-phase fault current I_{fg} = maximum secondary phase-ground fault current X / R = primary system reactance / resistance ratio R_{CT} = CT secondary winding resistance R_L = AC secondary wiring resistance (one-way)

9.1.2 CALCULATION EXAMPLE 1

This example illustrates how to check the performance of a class C400 ANSI/IEEE CT, ratios 2000/1800/1600/1500 : 5 A connected at 1500:5. The burden and kneepoints are verified in this example.

Given the following values:

- maximum $I_{fp} = 14\ 000\ A$
- maximum I_{fg} = 12 000 A
- impedance angle of source and line = 78°
- CT secondary leads are 75 m of AWG 10.

The following procedure verifies the burden. ANSI/IEEE class C400 requires that the CT can deliver 1 to 20 times the rated secondary current to a standard B-4 burden (4 ohms or lower) without exceeding a maximum ratio error of 10%.

- 1. The maximum allowed burden at the 1500/5 tap is $(1500/2000) \times 4 = 3 \Omega$.
- 2. The R_{CT} , R_p and R_L values are calculated as:

$$R_{CT} = 0.75 \ \Omega$$

$$R_r = \frac{0.2 \text{ VA}}{(5 \text{ A})^2} = 0.008 \ \Omega$$

$$R_L = 2 \times 75 \text{ m} \times \frac{3.75 \ \Omega}{1000 \text{ m}} = 2 \times 0.26 \ \Omega = 0.528 \ \Omega$$
(EQ 9.3)

3. This gives a total burden of:

Total Burden =
$$R_{CT} + R_r + R_I = 0.75 \ \Omega + 0.008 \ \Omega + 0.52 \ \Omega = 1.28 \ \Omega$$
. (EQ 9.4)

4. This is less than the allowed 3 Ω , which is OK.

The following procedure verifies the kneepoint voltage.

1. The maximum voltage available from the CT = $(1500/2000) \times 400 = 300$ V.

. . . .

- 2. The system X/R ratio = $\tan 78^\circ = 4.71$.
- 3. The CT voltage for maximum phase fault is:

$$V = \frac{14000 \text{ A}}{\text{ratio of } 300:1} \times (4.71 + 1) \times (0.75 + 0.26 + 0.008 \ \Omega) = 271.26 \text{ V} (< 300 \text{ V}, \text{ which is OK})$$
(EQ 9.5)

4. The CT voltage for maximum ground fault is:

$$V = \frac{12000 \text{ A}}{\text{ratio of } 300:1} \times (4.71 + 1) \times (0.75 + 0.52 + 0.008 \ \Omega) = 291.89 \text{ V} (< 300 \text{ V}, \text{ which is OK})$$
(EQ 9.6)

5. The CT will provide acceptable performance in this application.

9.1.3 CALCULATION EXAMPLE 2

To check the performance of an IEC CT of class 5P20, 15 VA, ratio 1500:5 A, assume the following values:

- maximum $I_{fp} = 14\,000 \text{ A}$
- maximum I_{fg} = 12 000 A
- impedance angle of source and line = 78°
- CT secondary leads are 75 m of AWG 10.

The IEC rating requires the CT deliver up to 20 times the rated secondary current without exceeding a maximum ratio error of 5%, to a burden of:

Burden =
$$\frac{15 \text{ VA}}{(5 \text{ A})^2}$$
 = 0.6 Ω at the 5 A rated current (EQ 9.7)

The total Burden = $R_r + R_l = 0.008 + 0.52 = 0.528 \Omega$, which is less than the allowed 0.6 Ω , which is OK.

The following procedure verifies the kneepoint voltage.

- 1. The maximum voltage available from the $CT = (1500/2000) \times 400 = 300 V$.
- 2. The system X/R ratio = $\tan 78^\circ = 4.71$.
- 3. The CT voltage for maximum phase fault is:

$$V = \frac{14000 \text{ A}}{\text{ratio of } 300:1} \times (4.71 + 1) \times (0.75 + 0.26 + 0.008 \ \Omega) = 271.26 \text{ V} (< 300 \text{ V}, \text{ which is OK})$$
(EQ 9.8)

4. The CT voltage for maximum ground fault is:

$$V = \frac{12000 \text{ A}}{\text{ratio of } 300:1} \times (4.71 + 1) \times (0.75 + 0.52 + 0.008 \ \Omega) = 291.89 \text{ V} (< 300 \text{ V}, \text{ which is OK})$$
(EQ 9.9)

5. The CT will provide acceptable performance in this application.

NOTE

Software is available from the GE Multilin website that is helpful in selecting settings for the specific application. Checking the performance of selected element settings with respect to known power system fault parameters makes it relatively simple to choose the optimum settings for the application.

This software program is also very useful for establishing test parameters. It is strongly recommended this program be downloaded.

The differential characteristic is defined by four settings: **CURRENT DIFF PICKUP**, **CURRENT DIFF RESTRAINT 1**, **CURRENT DIFF RESTRAINT 2**, and **CURRENT DIFF BREAK PT** (breakpoint). As is typical for current-based differential elements, the settings are a trade-off between operation on internal faults against restraint during external faults.

9.2.2 CURRENT DIFFERENTIAL PICKUP

This setting established the sensitivity of the element to high impedance faults, and it is therefore desirable to choose a low level, but this can cause a maloperation for an external fault causing CT saturation. The selection of this setting is influenced by the decision to use charging current compensation. If charging current compensation is Enabled, pickup should be set to a minimum of 150% of the steady-state line charging current, to a lower limit of 10% of CT rating. If charging current to a lower limit of 10% of CT rating current to a lower limit of 10% of CT rating.

If the CT at one terminal can saturate while the CTs at other terminals do not, this setting should be increased by approximately 20 to 50% (depending on how heavily saturated the one CT is while the other CTs are not saturated) of CT rating to prevent operation on a close-in external fault.

9.2.3 CURRENT DIFF RESTRAINT 1

This setting controls the element characteristic when current is below the breakpoint, where CT errors and saturation effects are not expected to be significant. The setting is used to provide sensitivity to high impedance internal faults, or when system configuration limits the fault current to low values. A setting of 10 to 20% is appropriate in most cases, but this should be raised to 30% if the CTs can perform quite differently during faults.

9.2.4 CURRENT DIFF RESTRAINT 2

This setting controls the element characteristic when current is above the breakpoint, where CT errors and saturation effects are expected to be significant. The setting is used to provide security against high current external faults. A setting of 30 to 40% is appropriate in most cases, but this should be raised to 70% if the CTs can perform quite differently during faults.

Assigning the **CURRENT DIFF RESTRAINT 1(2)** settings to the same value reverts dual slope bias characteristics into single slope bias characteristics.

9.2.5 CURRENT DIFF BREAK POINT

This setting controls the threshold where the relay changes from using the restraint 1 to the restraint 2 characteristics. Two approaches can be considered.

- 1. Program the setting to 150 to 200% of the maximum emergency load current on the line, on the assumption that a maintained current above this level is a fault.
- 2. Program the setting below the current level where CT saturation and spurious transient differential currents can be expected.

The first approach gives comparatively more security and less sensitivity; the second approach provides less security for more sensitivity.

9.2 CURRENT DIFFERENTIAL (87L) SETTINGS

9.2.6 CT TAP

If the CT ratios at the line terminals are different, the CURRENT DIFF CT TAP 1(2) setting must be used to correct the ratios to a common base. In this case, a user should modify the CURRENT DIFF BREAK PT and CURRENT DIFF PICKUP settings because the local current phasor is used as a reference to determine which differential equation is used, based on the value of local and remote currents. If the setting is not modified, the responses of individual relays, especially during an external fault, can be asymmetrical, as one relay can be below the breakpoint and the other above the breakpoint. There are two methods to overcome this potential problem:

- 1. Set **CURRENT DIFF RESTRAINT 1** and **CURRENT DIFF RESTRAINT 2** to the same value (e.g. 40% or 50%). This converts the relay characteristics from dual slope into single slope and the breakpoint becomes immaterial. Next, adjust differential pickup at all terminals according to CT ratios, referencing the desired pickup to the line primary current (see below).
- 2. Set the breakpoints in each relay individually in accordance with the local CT ratio and the **CT TAP** setting. Next, adjust the differential pickup setting according to the terminal CT ratios. The slope value must be identical at all terminals.

Consider a two-terminal configuration with the following CT ratios for relays 1 and 2.

$$CT_{ratio}(relay 1) = 1000/5$$

 $CT_{ratio}(relay 2) = 2000/5$
(EQ 9.10)

Consequently, we have the following CT tap value for relays 1 and 2.

$$CT_{tap}(relay 1) = 2.0$$

 $CT_{tap}(relay 2) = 0.5$
(EQ 9.11)

To achieve maximum differential sensitivity, the minimum pickup is set as 0.2 pu at the terminal with the higher CT primary current; in this case 2000:5 for relay 2. The other terminal pickup is adjusted accordingly. The pickup values are set as follows:

$$\begin{aligned} \text{Pickup(relay 1)} &= 0.4 \\ \text{Pickup(relay 2)} &= 0.2 \end{aligned} \tag{EQ 9.12}$$

Choosing relay 1 as a reference with a breakpoint of 5.0, the break point at relay 2 is chosen as follows:

Breakpoint(relay 2) = Breakpoint(relay 1)
$$\times \frac{CT_{ratio}(relay 1)}{CT_{ratio}(relay 2)}$$

= $5.0 \times \frac{1000/5}{2000/5} = 2.5$ (EQ 9.13)

Use the following equality the verify the calculated breakpoint:

Breakpoint(relay 1) ×
$$CT_{ratio}$$
(relay 1) = Breakpoint(relay 2) × CT_{ratio} (relay 2) (EQ 9.14)

Therefore, we have a breakpoint of 5.0 for relay 1 and 2.5 for relay 2.

Now, consider a three-terminal configuration with the following CT ratios for relays 1, 2, and 3.

Consequently, we have the following CT tap value for relays 1, 2, and 3.

$$\begin{array}{ll} \text{CT}_{tap1}(\text{relay 1}) = 2.00 & \text{CT}_{tap2}(\text{relay 1}) = 0.50 \\ \text{CT}_{tap1}(\text{relay 2}) = 0.50 & \text{CT}_{tap2}(\text{relay 2}) = 0.25 \\ \text{CT}_{tap1}(\text{relay 3}) = 2.00 & \text{CT}_{tap2}(\text{relay 3}) = 4.00 \end{array} \tag{EQ 9.16}$$

In this case, the relay channels communicate as follows:

- For relay 1, channel 1 communicates to relay 2 and channel 2 communicates to relay 3
- For relay 2, channel 1 communicates to relay 1 and channel 2 communicates to relay 3

9

9 APPLICATION OF SETTINGS

• For relay 3, channel 1 communicates to relay 1 and channel 2 communicates to relay 2

Consequently, to achieve the maximum sensitivity of 0.2 pu at the terminal with a CT ratio of 2000/5 (400 amps line primary differential current), the following pickup values are chosen:

Choosing relay as a reference with a breakpoint value of 5.0 pu, breakpoints for relays 2 and 3 are calculated as follows:

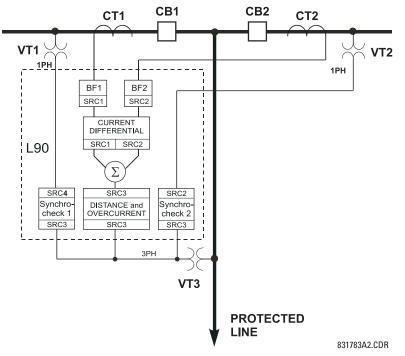
Breakpoint(relay 2) = Breakpoint(relay 1)
$$\times \frac{CT_{ratio}(relay 1)}{CT_{ratio}(relay 2)}$$

= $5.0 \times \frac{1000/5}{2000/5} = 2.5$ (EQ 9.18)

Breakpoint(relay 3) = Breakpoint(relay 1)
$$\times \frac{CT_{ratio}(relay 1)}{CT_{ratio}(relay 3)}$$
 (EQ 9.19)

$$= 5.0 \times \frac{1000/5}{500/5} = 10.0$$

To verify the calculated values, we have:


$$\begin{aligned} & \text{Breakpoint(relay 1)} \times \text{CT}_{\text{ratio}}(\text{relay 1}) = 5.0 \times 1000/5 = 1000 \\ & \text{Breakpoint}(\text{relay 2}) \times \text{CT}_{\text{ratio}}(\text{relay 2}) = 2.5 \times 2000/5 = 1000 \end{aligned} \tag{EQ 9.20} \\ & \text{Breakpoint}(\text{relay 3}) \times \text{CT}_{\text{ratio}}(\text{relay 3}) = 10.0 \times 5000/5 = 1000 \end{aligned}$$

This satisfies the equality condition indicated earlier.

During on-load tests, the differential current at all terminals should be the same and generally equal to the charging current if the tap and CT ratio settings are chosen correctly.

Assume a breaker-and-the-half configuration shown in the figure below. This section provides guidance on configuring the L90 relay for this application. The L90 is equipped with two CT/VT modules: F8F and L8F.

- 1. CTs and VTs are connected to L90 CT/VT modules as follows:
 - CT1 circuitry is connected to the F1 to F3 terminals of the F8F module (three-phase CT inputs, CT bank "F").
 - CT2 circuitry is connected to the F1 to F3 terminals of the L8F module (three-phase CT inputs, CT bank "L").
 - VT1 circuitry is connected to the F8 terminals of the F8F module (single-phase VT for synchrocheck 1, VT bank "F").
 - VT2 circuitry is connected to the F8 terminals of the L8F module (single-phase VT for synchrocheck 2, VT bank "L").
 - VT3 circuitry is connected to the F5 to F7 terminals of the F8F modules (three-phase VT for distance, metering, synchrocheck, charging current compensation, etc.; VT bank "F").

2. The CTs and VTs are configured according to the following ratios and connections (EnerVista UR Setup example shown):

Current // L90_500.urs : C:\Documents and Settings\All Users D × Save Bestore Perfault Preset VIEW All mode		
PARAMETER	CT F1	CT L1
Phase CT Primary	400 A	400 A
Phase CT Secondary	1A 1A	
Ground CT Primary	1 A	1 A
Ground CT Secondary	1 A	1 A
L90_500.urs System Setup: AC Inputs		

💳 Voltage // L90_500.urs : C:\Documents and Settings\All Users 💶 💌		
Save Bestore Default Reset VIEW ALL mode		Reset VIEW ALL mode
PARAMETER	VT F5	VT L5
Phase VT Connection	Wye	Wye
Phase VT Secondary	66.4 V	66.4 V
Phase VT Ratio 2000.00 :1 1.00 :1		1.00 :1
Auxiliary VT Connection	Auxiliary VT Connection Vag Vag	
Auxiliary VT Secondary	66.4 V	66.4 ∨
Auxiliary VT Ratio	2000.00 :1	2000.00 :1
L90_500.urs System Setup: AC Inputs		

9 APPLICATION OF SETTINGS

- 3. The sources are configured as follows:
 - Source 1: First current source for current differential,
 - voltage source for charging current compensation,
 - current source for breaker failure 1
 - Source 2: Second current source for current differential,
 - current source for breaker failure 2, and
 - voltage source for synchrocheck 2.
 - Source 3: Current source for distance, backup overcurrent,
 - voltage source for distance,
 - voltage source for synchrocheck 1 and 2.
 - Source 4: Voltage source for synchrocheck 1.

The EnerVista UR Setup configuration is shown below:

💳 Signal Sources // L90_500.urs : C:\Documents and Settings\All Users\Documents\GE Power Management\URPC\D,💶 🔲 🗙				
Save Bestore Default Beset VIEW All mode				
PARAMETER	SOURCE 1	SOURCE 2	SOURCE 3	SOURCE 4
Source 1 Name	SRC 1	SRC 2	Sum1&2	SRC 4
Phase CT	F1	L1	F1+L1	None
Ground CT	Ground CT None None None None			
Phase VT	F5	None	F5	None
Aux VT	None	L5	None	F5
L90_500.urs System Setup				

4. Sources are assigned accordingly in the specific element menus. For current differential, set CURRENT DIFF SIGNAL SOURCE 1 to "SRC 1" and CURRENT DIFF SIGNAL SOURCE 2 to "SRC 2".

For distance and backup overcurrent, make the following settings changes (EnerVista UR Setup example shown):

Bave Restor	re 🔛 Default 🔛 Reset	
PARAMETER	PHASE TOC1	
Function	Enabled	
Signal Source	Sum1&2 (SRC 3)	
Input	Phasor	
Pickup	1.000 pu	
Curve	IEEE Mod Inv	
TD Multiplier	1.00	
Reset	Instantaneous	
Voltage Restraint	Disabled	
Block A	OFF	
Block B	OFF	
Block C	OFF	
Target	Self-reset	
Events	Disabled	
•		

Distance // L90_500.urs : C:\Documents and Se 💶 🔲 🗙		
Save Restore	🗎 Default 📑 Reset	
SETTING PARAMETER		
Source	Sum1&2 (SRC 3)	
Memory Duration	10 cycles	
Force Self-Polar	OFF	
Force Mem-Polar OFF		
L90_500.urs Grouped Elements: Group 1: Distance		

For breaker failure 1 and 2, make the following settings changes (EnerVista UR Setup example shown):

Breaker Failure // L90_500.urs ; C;\Documents and Settings\All Users\Documents\GE		
Save Restore	🗄 Default 📑 Reset	IEW ALL mode
PARAMETER	BF1	BF2
Function	Enabled	Enabled
Mode	3-Pole	3-Pole
Source	SRC 1 (SRC 1)	SRC 2 (SRC 2)
Current Supervision	Yes	Yes
Use Seal-In	Yes	Yes
Three Pole Initiate	OFF	OFF
Block	OFF	OFF
Phase Current Supv Pickup	1.050 pu	1.050 pu
Neutral Current Supv Pickup	1.050 pu	1.050 pu
Use Timer 1	Yes	Yes
Timer 1 Pickup Delay	0.000 s	0.000 s
Use Timer 2	Yes	Yes
Timer 2 Pickup Delay	0.000 s	0.000 s
Use Timer 3	Yes	Yes
Timer 3 Pickup Delay	0.000 s	0.000 s
Breaker Pos1 Phase A/3P	OFF	OFF
Breaker Pos2 Phase A/3P	OFF	OFF
Breaker Test On	OFF	OFF
Phase Current HiSet Pickup	1.050 pu	1.050 pu
Neutral Current HiSet Pickup	1.050 pu	1.050 pu
Phase Current LoSet Pickup	1.050 pu	1.050 pu
Neutral Current LoSet Pickup	1.050 pu	1.050 pu
LoSet Time Delay	0.000 s	0.000 s
Trip Dropout Delay	0.000 s	0.000 s
Target	Self-reset	Self-reset
Events	Disabled	Disabled
Phase A Initiate	OFF	OFF
Phase B Initiate	OFF	OFF
Phase C Initiate	OFF	OFF
Breaker Pos1 Phase B	OFF	OFF
Breaker Pos1 Phase C	OFF	OFF
Breaker Pos2 Phase B	OFF	OFF
Breaker Pos2 Phase C	OFF OFF	

For synchrocheck 1 and 2, make the following settings changes (EnerVista UR Setup example shown):

🚥 Synchrocheck // L90_500.urs : C:\Documents and Settings\All Users\Documents\GE 💶 🗖 🗙			
Save Restore Default Reset VIEW ALL mode		VIEW ALL mode	
PARAMETER	SYNCHROCHECK1	SYNCHROCHECK2	
Function	Enabled	Enabled	
Block	OFF	OFF	
V1 Source	SRC 4 (SRC 4)	SRC 2 (SRC 2)	
V2 Source	Sum1&2 (SRC 3)	Sum1&2 (SRC 3)	
Max Volt Diff	10000 V	10000 V	
Max Angle Diff	30 deg	30 deg	
Max Freq Diff	1.00 Hz	1.00 Hz	
Freq Hysteresis	eresis 0.06 Hz 0.06 Hz		
Dead Source Select	e Select LV1 and DV2 LV1 and DV2		
Dead ∨1 Max Volt	0.30 pu	0.30 pu	
Dead V2 Max Volt	0.30 pu	0.30 pu	
Live ∨1 Min Volt	0.70 pu 0.70 pu		
Live V2 Min Volt	0.70 pu 0.70 pu		
Target	Self-reset	Self-reset	
Events	Disabled Disabled		
L90_500.urs Control Elements			

9.2.8 DISTRIBUTED BUS PROTECTION

In some cases, buses of the same substation are located quite far from each other or even separated by the line. In these cases, it is challenging to apply conventional bus protection because of the CT cable length. In other cases, there are no CTs available on the line side of the line to be protected. Taking full advantage of L90 capability to support up to 4 directly-connected CTs, the relay can be applied to protect both line and buses as shown below. Proper CT/VT modules must be ordered for such applications. The varying CT ratios at the breakers can be compensated locally by using the sources mechanism and with the CT TAP settings between remote relays. If more than 4 but less than 8 CTs are to be connected to the L90 at one bus, the 3-terminal system can be applied, provided the user does not exceed a total of 12 CTs.

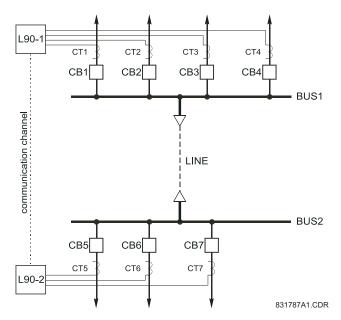


Figure 9-2: DISTRIBUTED BUS PROTECTION

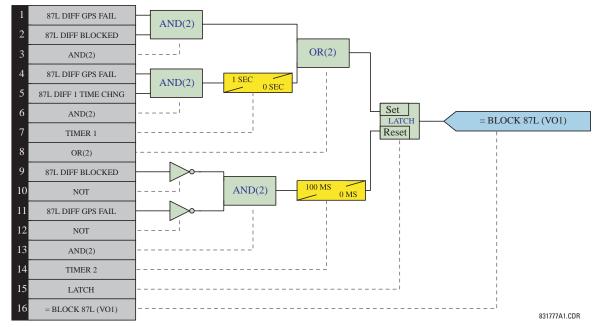
9

9.3.1 DESCRIPTION

As indicated in the Settings chapter, the L90 provides three basic methods of applying channel asymmetry compensation using GPS. Channel asymmetry can also be monitored with actual values and an indication signalled (FlexLogic[™] operands 87L DIFF 1(2) MAX ASYM asserted) if channel asymmetry exceeds preset values. Depending on the implemented relaying philosophy, the relay can be programmed to perform the following on the loss of the GPS signal:

- 1. Enable GPS compensation on the loss of the GPS signal at any terminal and continue to operate the 87L element (using the memorized value of the last asymmetry) until a change in the channel round-trip delay is detected.
- 2. Enable GPS compensation on the loss of the GPS signal at any terminal and block the 87L element after a specified time.
- 3. Continuously operate the 87L element but only enable GPS compensation when *valid* GPS signals are available. This provides less sensitive protection on the loss of the GPS signal at any terminal and runs with higher pickup and restraint settings.

9.3.2 COMPENSATION METHOD 1

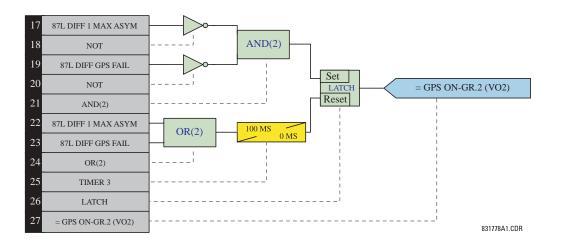

Enable GPS compensation on the loss of the GPS signal at any terminal and continue to operate the 87L element until a change in the channel round-trip delay is detected.

If GPS is enabled at all terminals and the GPS signal is present, the L90 compensates for the channel asymmetry. On the loss of the GPS signal, the L90 stores the last measured value of the channel asymmetry per channel and compensates for the asymmetry until the GPS clock is available. However, if the channel was switched to another physical path during GPS loss conditions, the 87L element must be blocked, since the channel asymmetry cannot be measured and system is no longer accurately synchronized. The value of the step change in the channel is preset in L90 POWER SYSTEM settings menu and signaled by the 87L DIFF 1(2) TIME CHNG FlexLogic[™] operand. To implement this method, follow the steps below:

1. Enable Channel Asymmetry compensation by setting it to ON. Assign the GPS receiver failsafe alarm contact with the setting Block GPS Time Ref.

🔤 L90 Power System // L90_340.urs : C:\Program Files 💶 💌		
Save Restore	😫 Default 🔄 Reset	
SETTING	PARAMETER 🔺	
Number of Terminals	2	
Number of Channels	1	
Charging Current Compensation	Enabled	
Pos Seq Capac Reactance(XC1)	0.100 Kohms 🗨	
L90_340.urs System Setup	1.	

Create FlexLogic[™] similar to that shown below to block the 87L element on GPS loss if step change in the channel delay occurs during GPS loss conditions or on a startup before the GPS signal is valid. For three-terminal systems, the 87L DIFF 1 TIME CHNG operand must be ORed with the 87L DIFF 2 TIME CHNG FlexLogic[™] operand. The Block 87L (VO1) output is reset if the GPS signal is restored and the 87L element is ready to operate.


3. Assign virtual output BLOCK 87L (VO1) to the 87L Current Differential Block setting. It can be used to enable backup protection, raise an alarm, and perform other functions as per the given protection philosophy.

9.3.3 COMPENSATION METHOD 3

Continuously operate the 87L element but enable GPS compensation only when valid GPS signals are available. This provides less sensitive protection on GPS signal loss at any terminal and runs with higher pickup and restraint settings.

This approach can be used carefully if maximum channel asymmetry is known and doesn't exceed certain values (2.0 to 2.5 ms). The 87L DIFF MAX ASYM operand can be used to monitor and signal maximum channel asymmetry. Essentially, the L90 switches to another setting group with higher pickup and restraint settings, sacrificing sensitivity to keep the 87L function operational.

1. Create FlexLogic[™] similar to that shown below to switch the 87L element to Settings Group 2 (with most sensitive settings) if the L90 has a valid GPS time reference. If a GPS or 87L communications failure occurs, the L90 will switch back to Settings Group 1 with less sensitive settings.

9

9.3 CHANNEL ASYMMETRY COMPENSATION USING GPS

2. Set the 87L element with different differential settings for Settings Groups 1 and 2 as shown below

🎫 Current Differential // L90_340.urs : C:\Program 💶 💌		
Save Restore	Default Reset	
SETTING	PARAMETER	
Function	Enabled 🗾	
Signal Source	SRC 1 (SRC 1)	
Block	OFF	
Pickup	0.50 pu	
CT Tap 1	1.00	
Restraint 1	40 %	
Restraint 2	70 %	
Breakpoint	1.0 pu	
DTT	Enabled	
Key DTT OFF		
Target Latched		
Events	Disabled	
J L90_340.urs Grouped Elements: Group 1: Line Differential Elements		

💳 Current Differential // L90_340.urs : C:\Program 💶 💌		
Save Restore	Default Reset	
SETTING	PARAMETER	
Function	Enabled	
Signal Source	SRC 1 (SRC 1)	
Block	OFF	
Pickup	0.20 pu	
CT Tap 1	1.00	
Restraint 1	20 %	
Restraint 2	40 %	
Breakpoint	1.0 pu	
DTT	Enabled	
Key DTT	OFF OFF	
Target	Latched	
Events	Disabled	
L90_340.urs Grouped Elements: Group 2: Line Differential Elements 🛛 🏸		

3. Enable GPS compensation when the GPS signal is valid and switch to Settings Group 2 (with more sensitive settings) as shown below.

💳 Setting Groups // L90_340.urs : C:\Program File 💶 🗙		
Save Restore	🗎 Default 🔤 Reset	
SETTING	PARAMETER	
Function	Enabled	
Block	OFF	
Group 2 Activate On	GPS ON-Gr.2 On (VO2)	
Group 3 Activate On	OFF	
Group 4 Activate On	OFF	
Group 5 Activate On	OFF	
Group 6 Activate On	OFF	
Events	Disabled	
L90_340.urs Control Elemen	ts //	

📼 L90 Power System // L90_340.urs : C:\Program Files 💶 🔲 🗙		
Save Restore	🗎 Default 🔄 Reset	
SETTING	PARAMETER 🔺	
Chan Asymmetry Comp	GPS ON-Gr.2 On (VO2)	
Block GPS Time Ref	GPS failsafe On(H5a)	
Max Chan Asymmetry	1.5 ms	
Round Trip Time Change	1.5 ms 👻	
L90_340.urs System Setup		

Many high voltage lines have transformers tapped to the line serving as an economic approach to the supply of customer load. A typical configuration is shown in the figure below.

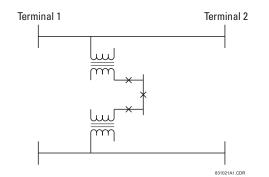


Figure 9–3: TYPICAL HV LINE CONFIGURATION

Two distinctly different approaches are available, Distance Backup and Distance Supervision, depending on which concerns are dominant. In either case, the distance function can provide a definite time backup feature to give a timed clearance for a failure of the L90 communications. Additionally, a POTT (Permissive Over-reaching Transfer Trip) scheme can be selected and activated after detection of an L90 communications failure, if an alternate lower bandwidth communications channel is available.

If **Distance Backup** is employed, dependability concerns usually relate to a failure of the communications. The distance elements can then effectively provide a means of fault identification and clearance. However, for a line with tapped transformers, a number of other issues need to be considered to ensure stability for the L90.

Any differential scheme has a potential problem when a LV fault occurs at the tapped transformer location, and the current at the tap is not measured. Because the transformer size can become quite large, the required increase in the differential setting to avoid operation for the LV bus fault can result in a loss of sensitivity.

If the tapped transformer is a source of zero sequence infeed, then the L90 zero-sequence current removal has to enabled as described in the next section.

The zero sequence infeed creates an apparent impedance setting issue for the backup ground distance and the zero sequence compensation term is also not accurate, so that the positive sequence reach setting must be increased to compensate. The phase distance reach setting may also have to be increased to cope with a transfer across the two transformers, but this is dependent on the termination and configuration of the parallel line.

Three terminal line applications generally will result in larger reach settings for the distance backup and require a calculation of the apparent impedance for a remote fault. This should be carried out for each of the three terminals, as the calculated apparent impedance will be different at each terminal.

Distance Supervision essentially offers a solution for the LV fault condition, but the differential setting must still be increased to avoid operation for an external L-g or L-L-g fault external ground fault. In addition, the distance element reach setting must still see all faults within the protected line and be less than the impedance for a LV bus fault

The effective SIR (source impedance ratio) for the LV fault generally is not high, so that CVT transients do not contribute to measuring errors.

If the distance supervision can be set to avoid operation for a transformer LV fault, then generally the filtering associated with the distance measuring algorithm will ensure no operation under magnetizing inrush conditions. The distance element can be safely set up to $2.5 \times V_{nom} / I_{peak}$, where V_{nom} is the system nominal voltage and I_{peak} is the peak value of the magnetizing inrush current.

For those applications where the tapped station is close to one terminal, then it may be difficult to set the distance supervision to reach the end of the line, and at the same time avoid operation for a LV fault. For this system configuration, a 3-terminal L90 should be utilized; the third terminal is then fed from CT on the high side of the tapped transformer.

a) PHASE CURRENT SUPERVISION AND THE FUSE FAILURE ELEMENT

The phase-to-phase (delta) current is used to supervise the phase distance elements, primarily to ensure that in a de-energized state the distance elements will not be picked up due to noise or induced voltages, on the line.

However, this supervision feature may also be employed to prevent operation under fuse failure conditions. This obviously requires that the setting must be above maximum load current and less than the minimum fault conditions for which operation is expected. This potential problem may be avoided by the use of a separate fuse fail function, which means that the phase current supervision can be set much lower, typically two times the capacitance charging current of the line.

The usage of the fuse fail function is also important during double-contingency events such as an external fault during fuse fail conditions. The current supervision alone would not prevent maloperation in such circumstances.

It must be kept in mind that the fuse failure element provided on the L90 needs some time to detect fuse fail conditions. This may create a race between the instantaneous zone 1 and the fuse failure element. Therefore, for maximum security, it is recommended to both set the current supervision above the maximum load current and use the fuse failure function. The current supervision prevents maloperation immediately after the fuse fail condition giving some time for the fuse failure element to take over and block the distance elements permanently. This is of a secondary importance for time-delayed zones 2 and up as the fuse failure element has some extra time for guaranteed operation. The current supervision may be set below the maximum load current for the time delayed zones.

Blocking distance elements during fuse fail conditions may not be acceptable in some applications and/or under some protection philosophies. Applied solutions may vary from not using the fuse failure element for blocking at all; through using it and modifying – through FlexLogic[™] and multiple setting groups mechanisms – other protection functions or other relays to provide some protection after detecting fuse fail conditions and blocking the distance elements; to using it and accepting the fact that the distance protection will not respond to subsequent internal faults until the problem is addressed.

To be fully operational, the Fuse Failure element must be enabled, and its output FlexLogic[™] operand must be indicated as the blocking signal for the selected protection elements.

For convenience, the current supervision threshold incorporates the $\sqrt{3}$ factor.

b) PHASE DISTANCE ZONE 1

As typically used for direct tripping, the zone 1 reach must be chosen so that it does not extend beyond the far end(s) of the protected line. Zone 1 provides nominally instantaneous protection for any phase fault within a pre-determined distance from the relay location. To ensure that no overreach occurs, typically requires a setting of 80 to 90% of the line length, which covers CT and VT errors, relay inaccuracy and transient overreach as well as uncertainty in the line impedance for each phase, although transposition may minimize this latter concern.

The total relay inaccuracy including both steady state and transient overreach even when supplied from CVTs under the source impedance ratios of up to 30, is below 5%.

c) PHASE DISTANCE ZONE 2

Zone 2 is an overreaching element, which essentially covers the final 10 to 20% whole of the line length with a time delay. The additional function for the zone 2 is as a timed backup for faults on the remote bus. Typically the reach is set to 125% of the positive-sequence impedance of the line, to ensure operation, with an adequate margin, for a fault at 100% of the line length. The necessary time delay must ensure that coordination is achieved with the clearance of a close-in fault on the next line section, including the breaker operating time.

The zone 2 time delay is typically set from 0.2 to 0.6 seconds, although this may have to be reviewed more carefully if a short line terminates on the remote bus, since the two zone 2 elements may overlap and therefore not coordinate in a satisfactory manner.

d) PHASE DISTANCE ZONE 3

If a remote backup philosophy is followed, then the reach of this element must be set to account for any infeed at the remote bus, plus the impedance of the longest line which terminates on this remote bus. The time delay must coordinate with other time-delayed protections on any remote line. Circuit loading limitations created by a long zone reach may be overcome by using lens or quadrilateral characteristics and/or a load encroachment supervising characteristic. Consider-

9 APPLICATION OF SETTINGS

ation should also be given to a situation where the load impedance may enter into the relay characteristic for a time longer than the chosen time delay, which could occur transiently during a system power swing. For this reason the power swing blocking function should be used.

a) NEUTRAL CURRENT SUPERVISION

The current supervision for the ground distance elements responds to an internally calculated neutral current ($3 \times I_0$). The setting for this element should be based on twice the zero-sequence line capacitance current or the maximum zero-sequence unbalance under maximum load conditions. This element should not be used to prevent an output when the load impedance is inside the distance characteristic on a steady state basis.

b) GROUND DISTANCE ZONE 1

The zone 1 reach must be set so that nominally instantaneous operation does not extend beyond the end of the protected line. However this may be somewhat more complicated than for the phase elements, because of zero sequence mutual induction with an adjacent parallel line, possibly carried on the same tower, which can be out of service and grounded at multiple points. A fault beyond 100% of the protected line may cause overreach unless the reach is reduced significantly, sometimes as low as 65% of the line length. If the line being protected does not have a significant interaction with an adjacent circuit, then the typical 80% setting may be used. If there is significant mutual coupling between the parallel lines, then the mutual compensation feature of the ground distance elements can be used instead of a drastic reduction in the reach.

However, even in this case, there is more uncertainty as compared with the phase distance elements because the zero-sequence impedance of the line and thus the zero-sequence-compensating factors may vary significantly due to weather and other conditions.

c) GROUND DISTANCE ZONE 2

To ensure that the zone 2 can see 100% of the line, inter-circuit mutual effects must be considered, as they can contribute to a significant under-reach. Typically this may occur on double circuit lines, when both lines may carry the same current. An analytical study should be carried out to determine the appropriate reach setting.

The main purpose of this element is to operate for faults beyond the reach of the local zone 1 element, and therefore a time delay must be used similar to the phase fault case.

d) GROUND DISTANCE ZONE 3

This remote back up function must have a reach which is set to account for any infeed at the remote bus, plus the impedance of the longest line which terminates on this remote bus. Similar to the phase fault case, a zone 3 element must be time coordinated with timed clearances on the next section. This scheme is intended for two-terminal line applications only.

This scheme uses an over-reaching Zone 2 distance element to essentially compare the direction to a fault at both the ends of the line.

Ground directional overcurrent functions available in the relay can be used in conjunction with the Zone 2 distance element to key the scheme and initiate its operation. This provides increased coverage for high-resistance faults.

Good directional integrity is the key requirement for an over-reaching forward-looking protection element used to supplement Zone 2. Even though any FlexLogic[™] operand could be used for this purpose allowing the user to combine responses of various protection elements, or to apply extra conditions through FlexLogic[™] equations, this extra signal is primarily meant to be the output operand from the Neutral Directional IOC. Both of these elements have separate forward (FWD) and reverse (REV) output operands. The forward indication should be used (NEUTRAL DIR OC1 FWD).

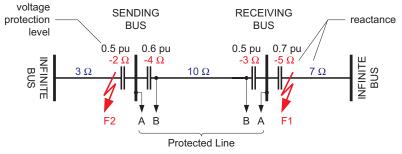
An important consideration is when one of the line terminals is open. It is then necessary to identify this condition and arrange for a continuous sending of the permissive signal or use a slower but more secure echo feature to send a signal to the other terminal, which is producing the fault infeed. With any echo scheme however, a means must be provided to avoid a permanent lock up of the transmit/receive loop. The echo co-ordination (ECHO DURATION) and lock-out (ECHO LOCK-OUT) timers perform this function by ensuring that the permissive signal is echoed once for a guaranteed duration of time before going to a lockout for a settable period of time.

It should be recognized that in ring bus or breaker and a half situations, it may be the line disconnect or a combination of the disconnect and/or the breaker(s) status that is the indication that the terminal is open.

The **POTT RX PICKUP DELAY** timer is included in the permissive receive path to ride through spurious receive outputs that may be produced during external faults, when power line carrier is utilized as the communications medium.

No current reversal logic is included for the overreaching phase and ground distance elements, because long reaches are not usually required for two terminal lines. A situation can occur however, where the ground distance element will have an extended reach. This situation is encountered when it is desired to account for the zero sequence inter-circuit mutual coupling. This is not a problem for the ground distance elements in the L90 which do have a current reversal logic built into their design as part of the technique used to improve ground fault directionality.

Unlike the distance protection elements the ground directional overcurrent functions do not have their reach well defined, therefore the current reversal logic is incorporated for the extra signal supplementing Zone 2 in the scheme. The transient blocking approach for this POTT scheme is to recognize that a permissive signal has been received and then allow a settable time **TRANS BLOCK PICKUP DELAY** for the local forward looking directional element to pick up.


The scheme generates an output operand (POTT TX) that is used to transmit the signal to the remote end. Choices of communications channel include Remote Inputs/Outputs and telecommunications interfaces. When used with telecommunications facilities the output operand should be assigned to operate an output contact connected to key the transmitter at the interface. Power Line Carrier (PLC) channels are not recommended for this scheme since the PLC signal can be interrupted by a fault.

For proper operation of the scheme the Zone 2 phase and ground distance elements must be enabled, configured and set per rules of distance relaying. The Line Pickup element should be enabled, configured and set properly to detect line-end-open/weak-infeed conditions.

If used by this scheme, the selected ground directional overcurrent function(s) must be enabled, configured and set accordingly The output operand from the scheme (POTT OP) must be configured to interface with other relay functions, output contacts in particular, in order to make the scheme fully operational. Typically, the output operand should be programmed to initiate a trip, breaker fail, and auto-reclose, and drive a user-programmable LED as per user application.

9.6.1 DISTANCE SETTINGS ON SERIES COMPENSATED LINES

Traditionally, the reach setting of an underreaching distance function shall be set based on the net inductive impedance between the potential source of the relay and the far-end busbar, or location for which the zone must not overreach. Faults behind series capacitors on the protected and adjacent lines need to be considered for this purpose. For further illustration a sample system shown in the figure below is considered.

Figure 9–4: SAMPLE SERIES COMPENSATED SYSTEM

Assuming 20% security margin, the underreaching zone shall be set as follows.

At the Sending Bus, one must consider an external fault at F1 as the 5 Ω capacitor would contribute to the overreaching effect. Any fault behind F1 is less severe as extra inductive line impedance increases the apparent impedance:

Reach Setting: $0.8 \times (10 - 3 - 5) = 1.6 \Omega$ if the line-side (B) VTs are used Reach Setting: $0.8 \times (10 - 4 - 3 - 5) = -1.6 \Omega$ if the bus-side (A) VTs are used

The negative value means that an underreaching zone cannot be used as the circuit between the potential source of the relay and an external fault for which the relay must not pick-up, is overcompensated, i.e. capacitive.

At the Receiving Bus, one must consider a fault at F2:

Reach Setting: $0.8 \times (10 - 4 - 2) = 3.2 \Omega$ if the line-side (B) VTs are used Reach Setting: $0.8 \times (10 - 4 - 3 - 2) = 0.8 \Omega$ if the bus-side (A) VTs are used

Practically, however, to cope with the effect of sub-synchronous oscillations, one may need to reduce the reach even more. As the characteristics of sub-synchronous oscillations are in complex relations with fault and system parameters, no solid setting recommendations are given with respect to extra security margin for sub-synchronous oscillations. It is strongly recommended to use a power system simulator to verify the reach settings or to use an adaptive L90 feature for dynamic reach control.

If the adaptive reach control feature is used, the PHS DIST Z1 VOLT LEVEL setting shall be set accordingly.

This setting is a sum of the overvoltage protection levels for all the series capacitors located between the relay potential source and the far-end busbar, or location for which the zone must not overreach. The setting is entered in pu of the phase VT nominal voltage (RMS, not peak value).

If a minimum fault current level (phase current) is causing a voltage drop across a given capacitor that prompts its air gap to flash over or its MOV to carry practically all the current, then the series capacitor shall be excluded from the calculations (the capacitor is immediately by-passed by its overvoltage protection system and does not cause any overreach problems).

If a minimum fault current does not guarantee an immediate capacitor by-pass, then the capacitor must be included in the calculation: its overvoltage protection level, either air gap flash-over voltage or MOV knee-point voltage, shall be used (RMS, not peak value).

Assuming none of the series capacitors in the sample system is guaranteed to get by-passed, the following calculations apply:

For the Sending Bus:	0.5 + 0.7 = 1.2 pu if the line-side (B) VTs are used 0.6 + 0.5 + 0.7 = 1.8 pu if the bus-side (A) VTs are used
For the Receiving Bus:	0.6 + 0.5 = 1.1 pu if the line-side (B) VTs are used 0.6 + 0.5 + 0.5 = 1.6 pu if the bus-side (A) VTs are used

9.6.2 GROUND DIRECTIONAL OVERCURRENT

Ground directional overcurrent function (negative-sequence or neutral) uses an offset impedance to guarantee correct fault direction discrimination. The following setting rules apply.

- 1. If the net impedance between the potential source and the local equivalent system is inductive, then there is no need for an offset. Otherwise, the offset impedance shall be at least the net capacitive reactance.
- 2. The offset cannot be higher than the net inductive reactance between the potential source and the remote equivalent system. For simplicity and extra security, the far-end busbar may be used rather than the remote equivalent system.

As the ground directional functions are meant to provide maximum fault resistance coverage, it is justified to assume that the fault current is very low and none of the series capacitors is guaranteed to get by-passed. Consider settings of the negative-sequence directional overcurrent protection element for the Sample Series Compensated System.

For the Sending Bus relay, bus-side VTs:

- Net inductive reactance from the relay into the local system = $-2 + 3 = 1 \Omega > 0$; there is no need for offset.
- Net inductive reactance from relay through far-end busbar = $-4 + 10 3 = 3 \Omega$; the offset cannot be higher than 3Ω .
- It is recommended to use 1.5Ω offset impedance.

For the Sending Bus relay, line-side VTs:

- Net inductive reactance from relay into local system = $-2 + 3 4 = -3 \Omega < 0$; an offset impedance $\ge 3 \Omega$ must be used.
- Net inductive reactance from relay through far-end busbar = $10 3 = 7 \Omega$; the offset cannot be higher than 7Ω .
- It is recommended to use 5 Ω offset impedance.

For the Receiving Bus relay, bus-side VTs:

- Net inductive reactance from relay into local system = $-5 + 7 = 2 \Omega > 0$; there is no need for offset.
- Net inductive reactance from relay through far-end busbar = $-3 + 10 4 = 3 \Omega$; the offset cannot be higher than 3Ω .
- It is recommended to use 1.5 Ω offset impedance.

For the Receiving Bus relay, line-side VTs:

- Net inductive reactance from relay into local system = $-3 5 + 7 = -1 \Omega < 0$; an offset impedance $\ge 1 \Omega$ must be used.
- Net inductive reactance from relay through far-end busbar = $10 4 = 6 \Omega$; the offset cannot be higher than 6Ω .
- It is recommended to use 3.5 Ω offset impedance.

The L90 protection system could be applied to lines with tapped transformer(s) even if the latter has its windings connected in a grounded wye on the line side and the transformer(s) currents are not measured by the L90 protection system. The following approach is recommended.

If the setting **SYSTEM SETUP** \Rightarrow **Use POWER SYSTEM** \Rightarrow **Use POWER**

At all terminals the following is being performed:

 $I_L_0 = (I_L_A + I_L_B + I_L_C) / 3)$: local zero-sequence current

 $I_R_0 = (I_R_A + I_R_B + I_R_C) / 3 \quad : \text{ remote zero-sequence current}$

Now, the I_PHASE – I_0 values (for Local and Remote) are being used instead of pure phase currents for differential and restraint current calculations. See the *Theory of Operation* chapter for additional details.

For example, the operating current in phase A is determined as:

 I^2 op_A = $|(I_L_A - I_L_0) + (I_R_A - I_R_0)|^2$: squared operating current, phase A

where: $I_L =$ "local" current phase A

I_R_A = "remote" current phase A

I_L_0 = local zero-sequence current

 I_R_0 = remote zero-sequence current

 I^2 op_A = operating (differential) squared current phase A

The restraint current is calculated in a similar way.

When the **ZERO-SEQ CURRENT REMOVAL** feature is enabled, the modified (I_0 removed) differential current in all three phases is shown in the **ACTUAL VALUES** ⇒ **③ METERING** ⇒ **87L DIFFERENTIAL CURRENT** menu. Local and remote currents values are not changed.

9.7.2 TRANSFORMER LOAD CURRENTS

As the tapped line may be energized from one terminal only, or there may be a low current flowing through the line, the slope setting of the differential characteristic would not guarantee stability of the relay on transformer load currents. Consequently, a pickup setting must be risen accordingly in order to prevent maloperation. The L90 forms its restraint current in a unique way as explained in Chapter 8. Unlike traditional approaches, the effects of slope and pickup settings are combined: the higher the slope, the lower the pickup setting required for the same restraining effect.

Assuming the line energized from one terminal and the current is below the lower break-point of the characteristic one should consider the following stability conditions in order to select the pickup (P) and slope (S_1) settings (I_{LOAD} is a maximum total load current of the tapped transformer(s)).

.

• Two-terminal applications:

 $I_{op}^2 = I_{LOAD}^2$

$$l_{op}^{2} = l_{LOAD}^{2}$$

$$l_{REST}^{2} = 2S_{1}^{2}l_{LOAD}^{2} + 2P^{2}$$
Stability condition: $2S_{1}^{2}l_{LOAD}^{2} + 2P^{2} > l_{LOAD}^{2}$

$$I_{REST}^{2} = \frac{4}{3}S_{1}^{2}I_{LOAD}^{2} + 2P^{2}$$

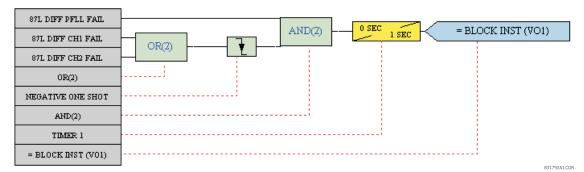
Stability condition: $\frac{4}{3}S_{1}^{2}I_{LOAD}^{2} + 2P^{2} > I_{LOAD}^{2}$

The above calculations should take into account the requirement for the pickup setting resulting from line charging currents. Certainly, a security factor must be applied to the above stability conditions. Alternatively, distance supervision can be considered to prevent maloperation due to transformer load currents.

9.7.3 LV-SIDE FAULTS

Distance supervision should be used to prevent maloperation of the L90 protection system during faults on the LV side of the transformer(s). As explained earlier, the distance elements should be set to overreach all line terminals, and at the same time safely underreach the LV busbars of all the tapped transformers. This may present some challenges, particularly for long lines and large transformer tapped close to the substations. If the L90 system retrofits distance relays, there is a good chance that one can set the distance elements to satisfy the imposed. If more than one transformer is tapped, particularly on parallel lines, and the LV sides are interconnected, detailed short circuit studies may be needed to determine the distance settings.

9.7.4 EXTERNAL GROUND FAULTS


External ground faults behind the line terminals will be seen by the overreaching distance elements. At the same time, the tapped transformer(s), if connected in a grounded wye, will feed the zero-sequence current. This current is going to be seen at one L90 terminal only, will cause a spurious differential signal, and consequently, may cause maloperation.

The L90 ensures stability in such a case by removing the zero-sequence current from the phase cur-rents prior to calculating the operating and restraining signals (SETTINGS \Rightarrow \Im SYSTEM SETUP \Rightarrow \Im L90 POWER SYSTEM \Rightarrow \Im ZERO-SEQ CURRENT REMOVAL = "Enabled"). Removing the zero-sequence component from the phase currents may cause the L90 to overtrip healthy phases on internal ground fault. This is not a limitation, as the single-pole tripping is not recommended for lines with tapped transformers.

9.8.1 INSTANTANEOUS ELEMENT ERROR DURING L90 SYNCHRONIZATION

As explained in the *Theory of Operation* chapter, two or three L90 relays are synchronized to each other and to system frequency to provide digital differential protection and accurate measurements for other protection and control functions. When an L90 system is starting up, the relays adjust their frequency aggressively to bring all relays into synchronization with the system quickly. The tracking frequency can differ from nominal (or system frequency) by a few Hertz, especially during the first second of synchronization. The 87L function is blocked during synchronization; therefore, the difference between system frequency and relay sampling frequency does not affect 87L function. However, instantaneous elements have additional error caused by the sensitivity of Fourier phasor estimation to the difference between signal frequency and tracking frequency.

To secure instantaneous element operation, it is recommended either to use FlexLogic[™] as shown below to block the instantaneous elements during synchronization, or to use a different setting group with more conservative pickup for this brief interval.

Figure 9–5: FLEXLOGIC™ TO BLOCK INSTANTANEOUS ELEMENT DURING 87L STARTUP

The elements must be treated selectively. If, for example, the phase undervoltage setting includes margin sufficient to accommodate the maximum additional error on startup, blocking or delay are not needed for phase undervoltage. Similarly, if the phase instantaneous overcurrent setting has sufficient margin, blocking is not needed. Note that significant zero-sequence and negative-sequence current or voltage error will not appear during L90 startup, therefore all elements using these quantities are safe.

The table below indicates the maximum error and recommended block durations for different elements.

ELEMENT	MAXIMUM ERROR ON STARTUP, (OPERATE SIGNAL VS. SETTING)	RECOMMENDED BLOCK DURATION
Phase undervoltage	18%	0.7 seconds
Phase instantaneous overcurrent	9%	0.5 seconds
Ground distance zone 1	7%	Not needed
Phase distance zone 1	4%	Not needed

9

10.1.1 CHANNEL TESTING

The communications system transmits and receives data between two or three terminals for the 87L function. The system is designed to work with multiple channel options including direct and multiplexed optical fiber, G.703, and RS422. The speed is 64 Kbaud in a transparent synchronous mode with automatic synchronous character detection and CRC insertion.

The Local Loopback Channel Test verifies the L90 communication modules are working properly. The Remote Loopback Channel Test verifies the communication link between the relays meets requirements (BER less than 10^{-4}). All tests are verified by using the internal channel monitoring and the monitoring in the Channel Tests. All of the tests presented in this section must be either OK or PASSED.

- 1. Verify that a type "W" module is placed in slot 'W' in both relays (e.g. W7J).
- 2. Interconnect the two relays using the proper media (e.g. single mode fiber cable) observing correct connection of receiving (Rx) and transmitting (Tx) communications paths and turn power on to both relays.
- 3. Verify that the Order Code in both relays is correct.
- 4. Cycle power off/on in both relays.
- 5. Verify and record that both relays indicate In Service on the front display.
- 6. Make the following setting change in both relays: GROUPED ELEMENTS ⇔ ♣ GROUP 1 ⇔ ♣ CURRENT DIFFERENTIAL ELE-MENTS ⇔ CURRENT DIFFERENTIAL ⇔ CURRENT DIFF FUNCTION: "Enabled".
- 7. Verify and record that both relays have established communications with the following status checks:

ACTUAL VALUES ⇔ ♣ STATUS ⇔ ♣ CHANNEL TESTS ⇔ ♣ CHANNEL 1 STATUS: "OK" ACTUAL VALUES ⇔ ♣ STATUS ⇔ ♣ CHANNEL TESTS ⇔ ♣ CHANNEL 2 STATUS: "OK" (If used)

- 8. Make the following setting change in both relays: **TESTING** ⇒ **TEST MODE**: "Enabled".
- 9. Make the following setting change in both relays:

TESTING ⇔⊕ CHANNEL TESTS ⇔⊕ LOCAL LOOPBACK TEST ⇔⊕ LOCAL LOOPBACK CHANNEL NUMBER: "1"

10. Initiate the Local Loopback Channel Tests by making the following setting change:

TESTING \Rightarrow \clubsuit Channel tests \Rightarrow \clubsuit local loopback test \Rightarrow \clubsuit local loopback function: "Yes"

Expected result. In a few seconds "Yes" should change to "Local Loopback Test PASSED" and then to "No", signifying the test was successfully completed and the communication modules operated properly.

- 11. If Channel 2 is used, make the following setting change and repeat Step 10 for Channel 2 as performed for channel 1: TESTING ⇒ ⊕ CHANNEL TESTS ⇒ ⊕ LOCAL LOOPBACK TEST ⇒ ⊕ LOCAL LOOPBACK CHANNEL NUMBER: "2"
- 12. Verify and record that the Local Loopback Test was performed properly with the following status check: ACTUAL VALUES ⇔ ♣ STATUS ⇔ ♣ CHANNEL TESTS ⇔ ♣ CHANNEL 1(2) LOCAL LOOPBACK STATUS: "OK"
- 13. Make the following setting change in one of the relays:

TESTING ⇔ ⊕ CHANNEL TESTS ⇔ ⊕ REMOTE LOOPBACK TEST ⇔ ⊕ REMOTE LOOPBACK CHANNEL NUMBER: "1"

14. Initiate the Remote Loopback Channel Tests by making the following setting change:

TESTING $\Rightarrow \emptyset$ CHANNEL TESTS $\Rightarrow \emptyset$ REMOTE LOOPBACK \Rightarrow REMOTE LOOPBACK FUNCTION: "Yes"

- *Expected result.* The "Running Remote Loopback Test" message appears; within 60 to 100 sec. the "Remote Loopback Test PASSED" message appears for a few seconds and then changes to "No", signifying the test successfully completed and communications with the relay were successfully established. The "Remote Loopback Test FAILED" message indicates that either the communication link quality does not meet requirements (BER less than 10⁻⁴) or the channel is not established check the communications link connections.
- 15. If Channel 2 is used, make the following setting change and repeat Step 14 for Channel 2 as performed for Channel 1: TESTING ⇔ ⊕ CHANNEL TESTS ⇔ ⊕ REMOTE LOOPBACK TEST ⇔ ⊕ REMOTE LOOPBACK CHANNEL NUMBER: "2"
- 16. Verify and record the Remote Loopback Test was performed properly with the following status check:

 $\textbf{ACTUAL VALUES} \Rightarrow \texttt{P} \textbf{ STATUS} \Rightarrow \texttt{P} \textbf{ CHANNEL TESTS} \Rightarrow \texttt{P} \textbf{ CHANNEL 1(2) REMOTE LOOPBACK STATUS: "OK"}$

17. Verify and record that Remote Loopback Test fails during communications failures as follows: start test as per Steps 13 to 14 and in 2 to 5 seconds disconnect the fiber Rx cable on the corresponding channel.

Expected result. The "Running Remote Loopback Test" message appears. When the channel is momentarily cut off, the "Remote Loopback Test FAILED" message is displayed. The status check should read as follows: ACTUAL VALUES ♣ STATUS ♣ CHANNEL TESTS ⇔ CHANNEL 1(2) LOCAL LOOPBACK STATUS: "Fail"

- 18. Re-connect the fiber Rx cable. Repeat Steps 13 to 14 and verify that Remote Loopback Test performs properly again.
- 19. Verify and record that Remote Loopback Test fails if communications are not connected properly by disconnecting the fiber Rx cable and repeating Steps 13 to 14.

Expected result. The ACTUAL VALUES ⇔ STATUS ⇔ CHANNEL TESTS ⇒ CHANNEL 1(2) REMOTE LOOPBACK TEST: "Fail" message should be constantly on the display.

- 20. Repeat Steps 13 to 14 and verify that Remote Loopback Test is correct.

During channel tests, verify in the ACTUAL VALUES ⇔ ⊕ STATUS ⇔ ⊕ CHANNEL TESTS ⇔ CHANNEL 1(2) LOST PACK-ETS display that the values are very low – even 0. If values are comparatively high, settings of communications equipment (if applicable) should be checked.

10.1.2 CLOCK SYNCHRONIZATION TESTS

The 87L clock synchronization is based upon a peer-to-peer architecture in which all relays are Masters. The relays are synchronized in a distributed fashion. The clocks are phase synchronized to each other and frequency synchronized to the power system frequency. The performance requirement for the clock synchronization is a maximum error of $\pm 130 \ \mu$ s.

All tests are verified by using PFLL status displays. All PFLL status displays must be either OK or Fail.

- 1. Ensure that Steps 1 through 7 inclusive of the previous section are completed.
- 2. Verify and record that both relays have established communications with the following checks after 60 to 120 seconds:

ACTUAL VALUES \Rightarrow STATUS \Rightarrow ⊕ CHANNEL TESTS \Rightarrow ⊕ CHANNEL 1(2) STATUS: "OK" ACTUAL VALUES \Rightarrow STATUS \Rightarrow ⊕ CHANNEL TESTS \Rightarrow ⊕ REMOTE LOOPBACK STATUS: "n/a" ACTUAL VALUES \Rightarrow STATUS \Rightarrow ⊕ CHANNEL TESTS \Rightarrow ⊕ PFLL STATUS: "OK"

3. Disconnect the fiber Channel 1(2) Tx cable for less than 66 ms (not possible with direct fiber module).

 Expected result:
 ACTUAL VALUES ⇒ STATUS ⇒ ⊕ CHANNEL TESTS ⇒ ⊕ CHANNEL 1(2) STATUS: "OK"

 ACTUAL VALUES ⇒ STATUS ⇒ ⊕ CHANNEL TESTS ⇒ ⊕ REMOTE LOOPBACK STATUS: "n/a"

 ACTUAL VALUES ⇒ STATUS ⇒ ⊕ CHANNEL TESTS ⇒ ⊕ PFLL STATUS: "OK"

If fault conditions are applied to the relay during these tests, it trips with a specified 87L operation time.

4. Disconnect the fiber Channel 1(2) Tx cable for more than 66 ms but less than 5 seconds.

 Expected result:
 ACTUAL VALUES ⇔ STATUS ⇔ ⊕ CHANNEL TESTS ⇔ ⊕ CHANNEL 1(2) STATUS: "OK"

 ACTUAL VALUES ⇔ STATUS ⇔ ⊕ CHANNEL TESTS ⇔ ⊕ REMOTE LOOPBACK STATUS: "n/a"

 ACTUAL VALUES ⇔ STATUS ⇔ ⊕ CHANNEL TESTS ⇒ ⊕ PFLL STATUS: "OK"

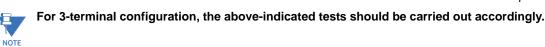
If fault conditions are applied to the relay (after the channel is brought back) during these tests, it trips with a specified 87L operation time plus 50 to 80 ms required for establishing PFLL after such interruption.

5. Disconnect the fiber Channel 1(2) Tx cable for more than 5 seconds.

 Expected result:
 ACTUAL VALUES ⇔ STATUS ⇔ ♣ CHANNEL TESTS ⇔ ♣ CHANNEL 1(2) STATUS: "OK"

 ACTUAL VALUES ⇔ STATUS ⇔ ♣ CHANNEL TESTS ⇔ ♣ REMOTE LOOPBACK STATUS: "n/a"

 ACTUAL VALUES ⇔ STATUS ⇔ ♣ CHANNEL TESTS ⇒ ♣ PFLL STATUS: "Fail"


 Reconnect the fiber Channel 1(2) Tx cable and in 6 to 8 seconds confirm that the relays have re-established communications again with the following status checks:

```
ACTUAL VALUES \Rightarrow STATUS \Rightarrow \bigcirc CHANNEL TESTS \Rightarrow CHANNEL 1(2) STATUS: "OK"
ACTUAL VALUES \Rightarrow STATUS \Rightarrow \bigcirc CHANNEL TESTS \Rightarrow \bigcirc REMOTE LOOPBACK STATUS: "n/a"
ACTUAL VALUES \Rightarrow STATUS \Rightarrow \bigcirc CHANNEL TESTS \Rightarrow \bigcirc PFLL STATUS: "OK"
```

10

 Apply a current of 0.5 pu at a frequency 1 to 3% higher or lower than nominal only to local relay phase A to verify that frequency tracking will not affect PFLL when only one relay has a current input and both relays track frequency. Wait 200 seconds and verify the following:

ACTUAL VALUES ⇔ STATUS ⇔ ⊕ CHANNEL TESTS ⇔ PFLL STATUS: "OK" ACTUAL VALUES ⇔ ⊕ METERING ⇔ ⊕ TRACKING FREQUENCY ⇔ TRACKING FREQUENCY: actual frequency at both relays

10.1.3 CURRENT DIFFERENTIAL

The 87L element has adaptive restraint and dual slope characteristics. The pickup slope settings and the breakpoint settings determine the element characteristics. The relay displays both local and remote current magnitudes and angles and the differential current which helps with start-up activities. When a differential condition is detected, the output operands from the element will be asserted along with energization of faceplate event indicators.

- 1. Ensure that relay will not issue any undesired signals to other equipment.
- 2. Ensure that relays are connected to the proper communication media, communications tests have been performed and the CHANNEL and PFLL STATUS displays indicate OK.
- 3. Minimum pickup test with local current only:
 - Ensure that all 87L setting are properly entered into the relay and connect a test set to the relay to inject current into Phase A.
 - Slowly increase the current until the relay operates and note the pickup value. The theoretical value of operating current below the breakpoint is given by the following formula, where P is the pickup setting and S₁ is the Slope 1 setting (in decimal format):

$$I_{op} = \sqrt{2 \times \frac{P^2}{1 - 2S_1^2}}$$
 (EQ 10.1)

- Repeat the above test for different slope and pickup settings, if desired.
- Repeat the above tests for Phases B and C.
- 4. Minimum pickup test with local current and simulated remote current (pure internal fault simulation):
 - Disconnect the local relay from the communications channel.
 - Loop back the transmit signal to the receive input on the back of the relay.
 - Wait until the CHANNEL and PFLL status displays indicate OK.
 - Slowly increase the current until the relay operates and note the pickup value. The theoretical value of operating current below breakpoint is given by the following formula:

$$I_{op} = \sqrt{\frac{2P^2}{(1 + \text{TAP})^2 - 2S_1^2(1 + \text{TAP}^2)}}$$
(EQ 10.2)

where TAP represents the CT Tap setting for the corresponding channel.

- Repeat the above test for different slope and pickup settings, if desired.
- During the tests, observe the current phasor at ACTUAL VALUES ⇔ ^① METERING ⇔ 87L DIFF CURRENT ⇔ LOCAL IA. This phasor should also be seen at ACTUAL VALUES ⇔ ^① METERING ⇔ 87L DIFF CURRENT ⇔ ^① TERMINAL 1(2) IA along with a phasor of twice the magnitude at ACTUAL VALUES ⇔ ^① METERING ⇔ 87L DIFF CURRENT ⇔ ^① IA DIFF.
- Repeat the above tests for Phases B and C.
- Restore the communication circuits to normal.

Download the UR Test software from the GE Multilin website (<u>http://www.GEindustrial.com/multilin</u>) or contact GE Multilin for information about the UR current differential test program which allows the user to simulate different operating conditions for verifying correct responses of the relays during commissioning activities.

10.1.4 LOCAL-REMOTE RELAY TESTS

a) DIRECT TRANSFER TRIP (DTT) TESTS

The direct transfer trip is a function by which one relay sends a signal to a remote relay to cause a trip of remote equipment. The local relay trip outputs will close upon receiving a direct transfer trip from the remote relay. The test procedure is as follows:

- 1. Ensure that relay will not issue any undesired signals to other equipment and all previous tests have been completed successfully.
- 2. Cycle power off/on in both relays.
- 3. Verify and record that both relays indicate In Service on the faceplate display.
- 4. Make the following setting change in the SETTINGS ⇔ ⊕ GROUPED ELEMENTS ⇔ ⊕ LINE DIFFERENTIAL ELEMENTS ⇔ CUR-RENT DIFFERENTIAL menu of both relays:

CURRENT DIFF FUNCTION: "Enabled"

5. Verify and record that both relays have established communications by performing the following status check thorough the ACTUAL VALUES ⇔ STATUS ⇔ ↓ CHANNEL TESTS menu:

CHANNEL 1(2) STATUS: "OK"

6. At the remote relay, make the following changes in the SETTINGS ⇒ ⊕ GROUPED ELEMENTS ⇒ ⊕ LINE DIFFERENTIAL ELE-MENTS ⇒ ⊕ CURRENT DIFFERENTIAL menu:

CURRENT DIFF DTT: "Enabled"

7. At the Local relay, make the following changes in the SETTINGS ⇔ ↓ INPUTS/OUTPUTS ⇔ ↓ CONTACT OUTPUT N1 menu:

CONTACT OUTPUT N1 OPERATE: "87L DIFF RECVD DTT A" CONTACT OUTPUT N2 OPERATE: "87L DIFF RECVD DTT B" CONTACT OUTPUT N3 OPERATE: "87L DIFF RECVD DTT C"

- 8. At the Local relay, verify that ACTUAL VALUES \Rightarrow STATUS \Rightarrow \bigcirc CONTACT OUTPUTS \Rightarrow \bigcirc Cont Op N1 is in the "Off" state.
- 9. Apply current to phase A of the remote relay and increase until 87L operates.
- 10. At the Local relay, observe ACTUAL VALUES ⇒ STATUS ⇒ ⊕ CONTACT OUTPUTS ⇒ ⊕ Cont Op N1 is now in the "On" state.
- 11. Repeat steps 8 through 10 for phases A and B and observe Contact Outputs N2 and N3, respectively.
- 12. Repeat steps 8 through 11 with the Remote and Local relays inter-changed.
- 13. Make the following setting change in the SETTINGS ⇔ ⊕ GROUPED ELEMENTS ⇔ ⊕ LINE DIFFERENTIAL ELEMENTS ⇔ CUR-RENT DIFFERENTIAL menu of both relays:

CURRENT DIFF FUNCTION: "Disabled"

- 14. At the Remote relay, set SETTINGS ⇔ ↓ INPUTS/OUTPUTS ⇒ ↓ CONTACT OUTPUT N1 ⇔ ↓ CONTACT OUTPUT N1 OPERATE to the CURRENT DIFF KEY DTT operand.
- 15. At the Local relay, observe under the ACTUAL VALUES ⇔ STATUS ⇔ CONTACT OUTPUTS menu that CONTACT OUTPUT N1, N2 and N3 are "Off".
- 16. At the Remote relay, set SETTINGS ⇔ TESTING ⇒ TORCE CONTACT INPUTS ⇒ FORCE Cont IP N1 to "Closed".
- 17. At the Local relay, observe under ACTUAL VALUES ⇒ STATUS ⇒ ⊕ CONTACT OUTPUTS that CONTACT OUTPUT N1, N2 and N3 are now "On".
- 18. At both the Local and Remote relays, return all settings to normal.

b) FINAL TESTS

As proper operation of the relay is fundamentally dependent on the correct installation and wiring of the CTs, it must be confirmed that correct data is brought into the relays by an on-load test in which simultaneous measurements of current and voltage phasors are made at all line terminals. These phasors and differential currents can be monitored at the ACTUAL VAL-UES \Rightarrow \oplus METERING \Rightarrow 87L DIFFERENTIAL CURRENT menu where all current magnitudes and angles can be observed and conclusions of proper relay interconnections can be made.

A.1.1 FLEXANALOG DATA ITEMS

Table A-1: FLEXANALOG DATA ITEMS (Sheet 1 of 11)

ADDRESS	FLEXANALOG NAME	UNITS	DESCRIPTION
5688	Channel 1 Asymmetry		Channel 1 Asymmetry
5690	Channel 2 Asymmetry		Channel 2 Asymmetry
6144	SRC 1 la RMS	Amps	Source 1 phase A current RMS
6146	SRC 1 lb RMS	Amps	Source 1 phase B current RMS
6148	SRC 1 Ic RMS	Amps	Source 1 phase C current RMS
6150	SRC 1 In RMS	Amps	Source 1 neutral current RMS
6152	SRC 1 la Mag	Amps	Source 1 phase A current magnitude
6154	SRC 1 la Angle	Degrees	Source 1 phase A current angle
6155	SRC 1 lb Mag	Amps	Source 1 phase B current magnitude
6157	SRC 1 lb Angle	Degrees	Source 1 phase B current angle
6158	SRC 1 Ic Mag	Amps	Source 1 phase C current magnitude
6160	SRC 1 Ic Angle	Degrees	Source 1 phase C current angle
6161	SRC 1 In Mag	Amps	Source 1 neutral current magnitude
6163	SRC 1 In Angle	Degrees	Source 1 neutral current angle
6164	SRC 1 lg RMS	Amps	Source 1 ground current RMS
6166	SRC 1 Ig Mag	Degrees	Source 1 ground current magnitude
6168	SRC 1 Ig Angle	Amps	Source 1 ground current angle
6169	SRC 1 I_0 Mag	Degrees	Source 1 zero-sequence current magnitude
6171	SRC 1 I_0 Angle	Amps	Source 1 zero-sequence current angle
6172	SRC 1 I_1 Mag	Degrees	Source 1 positive-sequence current magnitude
6174	SRC 1 I_1 Angle	Amps	Source 1 positive-sequence current angle
6175	SRC 1 I_2 Mag	Degrees	Source 1 negative-sequence current magnitude
6177	SRC 1 I_2 Angle	Amps	Source 1 negative-sequence current angle
6178	SRC 1 Igd Mag	Degrees	Source 1 differential ground current magnitude
6180	SRC 1 Igd Angle	Amps	Source 1 differential ground current angle
6208	SRC 2 la RMS	Amps	Source 2 phase A current RMS
6210	SRC 2 lb RMS	Amps	Source 2 phase B current RMS
6212	SRC 2 Ic RMS	Amps	Source 2 phase C current RMS
6214	SRC 2 In RMS	Amps	Source 2 neutral current RMS
6216	SRC 2 la Mag	Amps	Source 2 phase A current magnitude
6218	SRC 2 la Angle	Degrees	Source 2 phase A current angle
6219	SRC 2 lb Mag	Amps	Source 2 phase B current magnitude
6221	SRC 2 lb Angle	Degrees	Source 2 phase B current angle
6222	SRC 2 lc Mag	Amps	Source 2 phase C current magnitude
6224	SRC 2 Ic Angle	Degrees	Source 2 phase C current angle
6225	SRC 2 In Mag	Amps	Source 2 neutral current magnitude
6227	SRC 2 In Angle	Degrees	Source 2 neutral current angle
6228	SRC 2 lg RMS	Amps	Source 2 ground current RMS
6230	SRC 2 lg Mag	Degrees	Source 2 ground current magnitude
6232	SRC 2 lg Angle	Amps	Source 2 ground current angle
6233	SRC 2 I_0 Mag	Degrees	Source 2 zero-sequence current magnitude
6235	SRC 2 I_0 Angle	Amps	Source 2 zero-sequence current angle
6236	SRC 2 I_1 Mag	Degrees	Source 2 positive-sequence current magnitude
6238	SRC 2 I_1 Angle	Amps	Source 2 positive-sequence current angle
6239	SRC 2 I_2 Mag	Degrees	Source 2 negative-sequence current magnitude

Table A-1: FLEXANALOG DATA ITEMS (Sheet 2 of 11)

ADDRESS	FLEXANALOG NAME	UNITS	DESCRIPTION
6241	SRC 2 I_2 Angle	Amps	Source 2 negative-sequence current angle
6242	SRC 2 Igd Mag	Degrees	Source 2 differential ground current magnitude
6244	SRC 2 Igd Angle	Amps	Source 2 differential ground current angle
6272	SRC 3 la RMS	Amps	Source 3 phase A current RMS
6274	SRC 3 lb RMS	Amps	Source 3 phase B current RMS
6276	SRC 3 lc RMS	Amps	Source 3 phase C current RMS
6278	SRC 3 In RMS	Amps	Source 3 neutral current RMS
6280	SRC 3 la Mag	Amps	Source 3 phase A current magnitude
6282	SRC 3 la Angle	Degrees	Source 3 phase A current angle
6283	SRC 3 lb Mag	Amps	Source 3 phase B current magnitude
6285	SRC 3 lb Angle	Degrees	Source 3 phase B current angle
6286	SRC 3 lc Mag	Amps	Source 3 phase C current magnitude
6288	SRC 3 Ic Angle	Degrees	Source 3 phase C current angle
6289	SRC 3 In Mag	Amps	Source 3 neutral current magnitude
6291	SRC 3 In Angle	Degrees	Source 3 neutral current angle
6292	SRC 3 lg RMS	Amps	Source 3 ground current RMS
6294	SRC 3 lg Mag	Degrees	Source 3 ground current magnitude
6296	SRC 3 Ig Angle	Amps	Source 3 ground current angle
6297	SRC 3 I_0 Mag	Degrees	Source 3 zero-sequence current magnitude
6299	SRC 3 I_0 Angle	Amps	Source 3 zero-sequence current angle
6300	SRC 3 I_1 Mag	Degrees	Source 3 positive-sequence current magnitude
6302	SRC 3 I_1 Angle	Amps	Source 3 positive-sequence current angle
6303	SRC 3 I_2 Mag	Degrees	Source 3 negative-sequence current magnitude
6305	SRC 3 I_2 Angle	Amps	Source 3 negative-sequence current angle
6306	SRC 3 Igd Mag	Degrees	Source 3 differential ground current magnitude
6308	SRC 3 Igd Angle	Amps	Source 3 differential ground current angle
6336	SRC 4 la RMS	Amps	Source 4 phase A current RMS
6338	SRC 4 lb RMS	Amps	Source 4 phase B current RMS
6340	SRC 4 Ic RMS	Amps	Source 4 phase C current RMS
6342	SRC 4 In RMS	Amps	Source 4 neutral current RMS
6344	SRC 4 la Mag	Amps	Source 4 phase A current magnitude
6346	SRC 4 la Angle	Degrees	Source 4 phase A current angle
6347	SRC 4 lb Mag	Amps	Source 4 phase B current magnitude
6349	SRC 4 lb Angle	Degrees	Source 4 phase B current angle
6350	SRC 4 Ic Mag	Amps	Source 4 phase C current magnitude
6352	SRC 4 Ic Angle	Degrees	Source 4 phase C current angle
6353	SRC 4 In Mag	Amps	Source 4 neutral current magnitude
6355	SRC 4 In Angle	Degrees	Source 4 neutral current angle
6356	SRC 4 lg RMS	Amps	Source 4 ground current RMS
6358	SRC 4 lg Mag	Degrees	Source 4 ground current magnitude
6360	SRC 4 Ig Angle	Amps	Source 4 ground current angle
6361	SRC 4 I_0 Mag	Degrees	Source 4 zero-sequence current magnitude
6363	SRC 4 I_0 Angle	Amps	Source 4 zero-sequence current angle
6364	SRC 4 I_1 Mag	Degrees	Source 4 positive-sequence current magnitude
6366	SRC 4 I_1 Angle	Amps	Source 4 positive-sequence current angle
6367	SRC 4 I_2 Mag	Degrees	Source 4 negative-sequence current magnitude
6369	SRC 4 I_2 Angle	Amps	Source 4 negative-sequence current angle

Table A-1: FLEXANALOG DATA ITEMS (Sheet 3 of 11)

ADDRESS	FLEXANALOG NAME	UNITS	DESCRIPTION
6370	SRC 4 Igd Mag	Degrees	Source 4 differential ground current magnitude
6372	SRC 4 Igd Angle	Amps	Source 4 differential ground current angle
6656	SRC 1 Vag RMS	Volts	Source 1 phase AG voltage RMS
6658	SRC 1 Vbg RMS	Volts	Source 1 phase BG voltage RMS
6660	SRC 1 Vcg RMS	Volts	Source 1 phase CG voltage RMS
6662	SRC 1 Vag Mag	Volts	Source 1 phase AG voltage magnitude
6664	SRC 1 Vag Angle	Degrees	Source 1 phase AG voltage angle
6665	SRC 1 Vbg Mag	Volts	Source 1 phase BG voltage magnitude
6667	SRC 1 Vbg Angle	Degrees	Source 1 phase BG voltage angle
6668	SRC 1 Vcg Mag	Volts	Source 1 phase CG voltage magnitude
6670	SRC 1 Vcg Angle	Degrees	Source 1 phase CG voltage angle
6671	SRC 1 Vab RMS	Volts	Source 1 phase AB voltage RMS
6673	SRC 1 Vbc RMS	Volts	Source 1 phase BC voltage RMS
6675	SRC 1 Vca RMS	Volts	Source 1 phase CA voltage RMS
6677	SRC 1 Vab Mag	Volts	Source 1 phase AB voltage magnitude
6679	SRC 1 Vab Angle	Degrees	Source 1 phase AB voltage angle
6680	SRC 1 Vbc Mag	Volts	Source 1 phase BC voltage magnitude
6682	SRC 1 Vbc Angle	Degrees	Source 1 phase BC voltage angle
6683	SRC 1 Vca Mag	Volts	Source 1 phase CA voltage magnitude
6685	SRC 1 Vca Angle	Degrees	Source 1 phase CA voltage angle
6686	SRC 1 Vx RMS	Volts	Source 1 auxiliary voltage RMS
6688	SRC 1 Vx Mag	Volts	Source 1 auxiliary voltage magnitude
6690	SRC 1 Vx Angle	Degrees	Source 1 auxiliary voltage angle
6691	SRC 1 V_0 Mag	Volts	Source 1 zero-sequence voltage magnitude
6693	SRC 1 V_0 Angle	Degrees	Source 1 zero-sequence voltage angle
6694	SRC 1 V_1 Mag	Volts	Source 1 positive-sequence voltage magnitude
6696	SRC 1 V_1 Angle	Degrees	Source 1 positive-sequence voltage angle
6697	SRC 1 V_2 Mag	Volts	Source 1 negative-sequence voltage magnitude
6699	SRC 1 V_2 Angle	Degrees	Source 1 negative-sequence voltage angle
6720	SRC 2 Vag RMS	Volts	Source 2 phase AG voltage RMS
6722	SRC 2 Vbg RMS	Volts	Source 2 phase BG voltage RMS
6724	SRC 2 Vcg RMS	Volts	Source 2 phase CG voltage RMS
6726	SRC 2 Vag Mag	Volts	Source 2 phase AG voltage magnitude
6728	SRC 2 Vag Angle	Degrees	Source 2 phase AG voltage angle
6729	SRC 2 Vbg Mag	Volts	Source 2 phase BG voltage magnitude
6731	SRC 2 Vbg Angle	Degrees	Source 2 phase BG voltage angle
6732	SRC 2 Vcg Mag	Volts	Source 2 phase CG voltage magnitude
6734	SRC 2 Vcg Angle	Degrees	Source 2 phase CG voltage angle
6735	SRC 2 Vab RMS	Volts	Source 2 phase AB voltage RMS
6737	SRC 2 Vbc RMS	Volts	Source 2 phase BC voltage RMS
6739	SRC 2 Vca RMS	Volts	Source 2 phase CA voltage RMS
6741	SRC 2 Vab Mag	Volts	Source 2 phase AB voltage magnitude
6743	SRC 2 Vab Angle	Degrees	Source 2 phase AB voltage angle
6744	SRC 2 Vbc Mag	Volts	Source 2 phase BC voltage magnitude
6746	SRC 2 Vbc Angle	Degrees	Source 2 phase BC voltage angle
6747	SRC 2 Vca Mag	Volts	Source 2 phase CA voltage magnitude
6749	SRC 2 Vca Angle	Degrees	Source 2 phase CA voltage angle

Table A-1: FLEXANALOG DATA ITEMS (Sheet 4 of 11)

ADDRESS	FLEXANALOG NAME	UNITS	DESCRIPTION
6750	SRC 2 Vx RMS	Volts	Source 2 auxiliary voltage RMS
6752	SRC 2 Vx Mag	Volts	Source 2 auxiliary voltage magnitude
6754	SRC 2 Vx Angle	Degrees	Source 2 auxiliary voltage angle
6755	SRC 2 V_0 Mag	Volts	Source 2 zero-sequence voltage magnitude
6757	SRC 2 V_0 Angle	Degrees	Source 2 zero-sequence voltage angle
6758	SRC 2 V_1 Mag	Volts	Source 2 positive-sequence voltage magnitude
6760	SRC 2 V_1 Angle	Degrees	Source 2 positive-sequence voltage angle
6761	SRC 2 V_2 Mag	Volts	Source 2 negative-sequence voltage magnitude
6763	SRC 2 V_2 Angle	Degrees	Source 2 negative-sequence voltage angle
6784	SRC 3 Vag RMS	Volts	Source 3 phase AG voltage RMS
6786	SRC 3 Vbg RMS	Volts	Source 3 phase BG voltage RMS
6788	SRC 3 Vcg RMS	Volts	Source 3 phase CG voltage RMS
6790	SRC 3 Vag Mag	Volts	Source 3 phase AG voltage magnitude
6792	SRC 3 Vag Angle	Degrees	Source 3 phase AG voltage angle
6793	SRC 3 Vbg Mag	Volts	Source 3 phase BG voltage magnitude
6795	SRC 3 Vbg Angle	Degrees	Source 3 phase BG voltage angle
6796	SRC 3 Vcg Mag	Volts	Source 3 phase CG voltage magnitude
6798	SRC 3 Vcg Angle	Degrees	Source 3 phase CG voltage angle
6799	SRC 3 Vab RMS	Volts	Source 3 phase AB voltage RMS
6801	SRC 3 Vbc RMS	Volts	Source 3 phase BC voltage RMS
6803	SRC 3 Vca RMS	Volts	Source 3 phase CA voltage RMS
6805	SRC 3 Vab Mag	Volts	Source 3 phase AB voltage magnitude
6807	SRC 3 Vab Angle	Degrees	Source 3 phase AB voltage angle
6808	SRC 3 Vbc Mag	Volts	Source 3 phase BC voltage magnitude
6810	SRC 3 Vbc Angle	Degrees	Source 3 phase BC voltage angle
6811	SRC 3 Vca Mag	Volts	Source 3 phase CA voltage magnitude
6813	SRC 3 Vca Angle	Degrees	Source 3 phase CA voltage angle
6814	SRC 3 Vx RMS	Volts	Source 3 auxiliary voltage RMS
6816	SRC 3 Vx Mag	Volts	Source 3 auxiliary voltage magnitude
6818	SRC 3 Vx Angle	Degrees	Source 3 auxiliary voltage angle
6819	SRC 3 V_0 Mag	Volts	Source 3 zero-sequence voltage magnitude
6821	SRC 3 V_0 Angle	Degrees	Source 3 zero-sequence voltage angle
6822	SRC 3 V_1 Mag	Volts	Source 3 positive-sequence voltage magnitude
6824	SRC 3 V_1 Angle	Degrees	Source 3 positive-sequence voltage angle
6825	SRC 3 V_2 Mag	Volts	Source 3 negative-sequence voltage magnitude
6827	SRC 3 V_2 Angle	Degrees	Source 3 negative-sequence voltage angle
6848	SRC 4 Vag RMS	Volts	Source 4 phase AG voltage RMS
6850	SRC 4 Vbg RMS	Volts	Source 4 phase BG voltage RMS
6852	SRC 4 Vcg RMS	Volts	Source 4 phase CG voltage RMS
6854	SRC 4 Vag Mag	Volts	Source 4 phase AG voltage magnitude
6856	SRC 4 Vag Angle	Degrees	Source 4 phase AG voltage angle
6857	SRC 4 Vbg Mag	Volts	Source 4 phase BG voltage magnitude
6859	SRC 4 Vbg Angle	Degrees	Source 4 phase BG voltage angle
6860	SRC 4 Vcg Mag	Volts	Source 4 phase CG voltage magnitude
6862	SRC 4 Vcg Angle	Degrees	Source 4 phase CG voltage angle
6863	SRC 4 Vab RMS	Volts	Source 4 phase AB voltage RMS
6865	SRC 4 Vbc RMS	Volts	Source 4 phase BC voltage RMS

Table A-1: FLEXANALOG DATA ITEMS (Sheet 5 of 11)

ADDRESS	FLEXANALOG NAME	UNITS	DESCRIPTION
6867	SRC 4 Vca RMS	Volts	Source 4 phase CA voltage RMS
6869	SRC 4 Vab Mag	Volts	Source 4 phase AB voltage magnitude
6871	SRC 4 Vab Angle	Degrees	Source 4 phase AB voltage angle
6872	SRC 4 Vbc Mag	Volts	Source 4 phase BC voltage magnitude
6874	SRC 4 Vbc Angle	Degrees	Source 4 phase BC voltage angle
6875	SRC 4 Vca Mag	Volts	Source 4 phase CA voltage magnitude
6877	SRC 4 Vca Angle	Degrees	Source 4 phase CA voltage angle
6878	SRC 4 Vx RMS	Volts	Source 4 auxiliary voltage RMS
6880	SRC 4 Vx Mag	Volts	Source 4 auxiliary voltage magnitude
6882	SRC 4 Vx Angle	Degrees	Source 4 auxiliary voltage angle
6883	SRC 4 V_0 Mag	Volts	Source 4 zero-sequence voltage magnitude
6885	SRC 4 V_0 Angle	Degrees	Source 4 zero-sequence voltage angle
6886	SRC 4 V_1 Mag	Volts	Source 4 positive-sequence voltage magnitude
6888	SRC 4 V_1 Angle	Degrees	Source 4 positive-sequence voltage angle
6889	SRC 4 V_2 Mag	Volts	Source 4 negative-sequence voltage magnitude
6891	SRC 4 V_2 Angle	Degrees	Source 4 negative-sequence voltage angle
7168	SRC 1 P	Watts	Source 1 three-phase real power
7170	SRC 1 Pa	Watts	Source 1 phase A real power
7172	SRC 1 Pb	Watts	Source 1 phase B real power
7174	SRC 1 Pc	Watts	Source 1 phase C real power
7176	SRC 1 Q	Vars	Source 1 three-phase reactive power
7178	SRC 1 Qa	Vars	Source 1 phase A reactive power
7180	SRC 1 Qb	Vars	Source 1 phase B reactive power
7182	SRC 1 Qc	Vars	Source 1 phase C reactive power
7184	SRC 1 S	VA	Source 1 three-phase apparent power
7186	SRC 1 Sa	VA	Source 1 phase A apparent power
7188	SRC 1 Sb	VA	Source 1 phase B apparent power
7190	SRC 1 Sc	VA	Source 1 phase C apparent power
7192	SRC 1 PF		Source 1 three-phase power factor
7193	SRC 1 Phase A PF		Source 1 phase A power factor
7194	SRC 1 Phase B PF		Source 1 phase B power factor
7195	SRC 1 Phase C PF		Source 1 phase C power factor
7200	SRC 2 P	Watts	Source 2 three-phase real power
7202	SRC 2 Pa	Watts	Source 2 phase A real power
7204	SRC 2 Pb	Watts	Source 2 phase B real power
7206	SRC 2 Pc	Watts	Source 2 phase C real power
7208	SRC 2 Q	Vars	Source 2 three-phase reactive power
7210	SRC 2 Qa	Vars	Source 2 phase A reactive power
7212	SRC 2 Qb	Vars	Source 2 phase B reactive power
7214	SRC 2 Qc	Vars	Source 2 phase C reactive power
7216	SRC 2 S	VA	Source 2 three-phase apparent power
7218	SRC 2 Sa	VA	Source 2 phase A apparent power
7220	SRC 2 Sb	VA	Source 2 phase B apparent power
7222	SRC 2 Sc	VA	Source 2 phase C apparent power
7224	SRC 2 PF		Source 2 three-phase power factor
7225	SRC 2 Phase A PF		Source 2 phase A power factor
7226	SRC 2 Phase B PF		Source 2 phase B power factor

Table A-1: FLEXANALOG DATA ITEMS (Sheet 6 of 11)

ADDRESS	FLEXANALOG NAME	UNITS	DESCRIPTION
7227	SRC 2 Phase C PF		Source 2 phase C power factor
7232	SRC 3 P	Watts	Source 3 three-phase real power
7234	SRC 3 Pa	Watts	Source 3 phase A real power
7236	SRC 3 Pb	Watts	Source 3 phase B real power
7238	SRC 3 Pc	Watts	Source 3 phase C real power
7240	SRC 3 Q	Vars	Source 3 three-phase reactive power
7242	SRC 3 Qa	Vars	Source 3 phase A reactive power
7244	SRC 3 Qb	Vars	Source 3 phase B reactive power
7246	SRC 3 Qc	Vars	Source 3 phase C reactive power
7248	SRC 3 S	VA	Source 3 three-phase apparent power
7250	SRC 3 Sa	VA	Source 3 phase A apparent power
7252	SRC 3 Sb	VA	Source 3 phase B apparent power
7254	SRC 3 Sc	VA	Source 3 phase C apparent power
7256	SRC 3 PF		Source 3 three-phase power factor
7257	SRC 3 Phase A PF		Source 3 phase A power factor
7258	SRC 3 Phase B PF		Source 3 phase B power factor
7259	SRC 3 Phase C PF		Source 3 phase C power factor
7264	SRC 4 P	Watts	Source 4 three-phase real power
7266	SRC 4 Pa	Watts	Source 4 phase A real power
7268	SRC 4 Pb	Watts	Source 4 phase B real power
7270	SRC 4 Pc	Watts	Source 4 phase C real power
7272	SRC 4 Q	Vars	Source 4 three-phase reactive power
7274	SRC 4 Qa	Vars	Source 4 phase A reactive power
7276	SRC 4 Qb	Vars	Source 4 phase B reactive power
7278	SRC 4 Qc	Vars	Source 4 phase C reactive power
7280	SRC 4 S	VA	Source 4 three-phase apparent power
7282	SRC 4 Sa	VA	Source 4 phase A apparent power
7284	SRC 4 Sb	VA	Source 4 phase B apparent power
7286	SRC 4 Sc	VA	Source 4 phase C apparent power
7288	SRC 4 PF		Source 4 three-phase power factor
7289	SRC 4 Phase A PF		Source 4 phase A power factor
7290	SRC 4 Phase B PF		Source 4 phase B power factor
7291	SRC 4 Phase C PF		Source 4 phase C power factor
7552	SRC 1 Frequency	Hz	Source 1 frequency
7553	SRC 2 Frequency	Hz	Source 2 frequency
7554	SRC 3 Frequency	Hz	Source 3 frequency
7555	SRC 4 Frequency	Hz	Source 4 frequency
7680	SRC 1 Demand Ia	Amps	Source 1 phase A current demand
7682	SRC 1 Demand Ib	Amps	Source 1 phase B current demand
7684	SRC 1 Demand Ic	Amps	Source 1 phase C current demand
7686	SRC 1 Demand Watt	Watts	Source 1 real power demand
7688	SRC 1 Demand var	Vars	Source 1 reactive power demand
7690	SRC 1 Demand Va	VA	Source 1 apparent power demand
7696	SRC 2 Demand Ia	Amps	Source 2 phase A current demand
7698	SRC 2 Demand Ib	Amps	Source 2 phase B current demand
7700	SRC 2 Demand Ic	Amps	Source 2 phase C current demand
7702	SRC 2 Demand Watt	Watts	Source 2 real power demand

Table A-1: FLEXANALOG DATA ITEMS (Sheet 7 of 11)

	FLEXANALOG NAME	UNITS	DESCRIPTION
7704	SRC 2 Demand var	Vars	Source 2 reactive power demand
7706	SRC 2 Demand Va	VA	Source 2 apparent power demand
7712	SRC 3 Demand la	Amps	Source 3 phase A current demand
7714	SRC 3 Demand Ib	Amps	Source 3 phase B current demand
7716	SRC 3 Demand Ic	Amps	Source 3 phase C current demand
7718	SRC 3 Demand Watt	Watts	Source 3 real power demand
7720	SRC 3 Demand var	Vars	Source 3 reactive power demand
7722	SRC 3 Demand Va	VA	Source 3 apparent power demand
7728	SRC 4 Demand la	Amps	Source 4 phase A current demand
7730	SRC 4 Demand Ib	Amps	Source 4 phase B current demand
7732	SRC 4 Demand Ic	Amps	Source 4 phase C current demand
7734	SRC 4 Demand Watt	Watts	Source 4 real power demand
7736	SRC 4 Demand var	Vars	Source 4 reactive power demand
7738	SRC 4 Demand Va	VA	Source 4 apparent power demand
9024	Prefault la Mag [0]	Amps	Fault 1 pre-fault phase A current magnitude
9026	Prefault la Ang [0]	Degrees	Fault 1 pre-fault phase A current angle
9027	Prefault Ib Mag [0]	Amps	Fault 1 pre-fault phase B current magnitude
9029	Prefault lb Ang [0]	Degrees	Fault 1 pre-fault phase B current angle
9030	Prefault Ic Mag [0]	Amps	Fault 1 pre-fault phase C current magnitude
9032	Prefault Ic Ang [0]	Degrees	Fault 1 pre-fault phase C current angle
9033	Prefault Va Mag [0]	Volts	Fault 1 pre-fault phase A voltage magnitude
9035	Prefault Va Ang [0]	Degrees	Fault 1 pre-fault phase A voltage angle
9036	Prefault Vb Mag [0]	Volts	Fault 1 pre-fault phase B voltage magnitude
9038	Prefault Vb Ang [0]	Degrees	Fault 1 pre-fault phase B voltage angle
9039	Prefault Vc Mag [0]	Volts	Fault 1 pre-fault phase C voltage magnitude
9041	Prefault Vc Ang [0]	Degrees	Fault 1 pre-fault phase C voltage angle
9042	Postfault Ia Mag [0]	Amps	Fault 1 post-fault phase A current magnitude
9044	Postfault la Ang [0]	Degrees	Fault 1 post-fault phase A current angle
9045	Postfault Ib Mag [0]	Amps	Fault 1 post-fault phase B current magnitude
9047	Postfault Ib Ang [0]	Degrees	Fault 1 post-fault phase B current angle
9048	Postfault Ic Mag [0]	Amps	Fault 1 post-fault phase C current magnitude
9050	Postfault Ic Ang [0]	Degrees	Fault 1 post-fault phase C current angle
9051	Postfault Va Mag [0]	Volts	Fault 1 post-fault phase A voltage magnitude
9053	Postfault Va Ang [0]	Degrees	Fault 1 post-fault phase A voltage angle
9054	Postfault Vb Mag [0]	Volts	Fault 1 post-fault phase B voltage magnitude
9056	Postfault Vb Ang [0]	Degrees	Fault 1 post-fault phase B voltage angle
9057	Postfault Vc Mag [0]	Volts	Fault 1 post-fault phase C voltage magnitude
9059	Postfault Vc Ang [0]	Degrees	Fault 1 post-fault phase C voltage angle
9060	Fault Type [0]		Fault 1 type
9061	Fault Location [0]		Fault 1 location
9216	Synchchk 1 Delta V	Volts	Synchrocheck 1 delta voltage
9218	Synchchk 1 Delta F	Hz	Synchrocheck 1 delta frequency
9219	Synchchk 1 Delta Phs	Degrees	Synchrocheck 1 delta phase
9220	Synchchk 2 Delta V	Volts	Synchrocheck 2 delta voltage
9222	Synchchk 2 Delta F	Hz	Synchrocheck 2 delta frequency
		-	
9223	Synchchk 2 Delta Phs	Degrees	Synchrocheck 2 delta phase

Table A-1: FLEXANALOG DATA ITEMS (Sheet 8 of 11)

ADDRESS	FLEXANALOG NAME	UNITS	DESCRIPTION
9346	Local IB Mag	Amps	Local terminal phase B current magnitude
9348	Local IC Mag	Amps	Local terminal phase C current magnitude
9350	Terminal 1 IA Mag	Amps	Remote terminal 1 phase A current magnitude
9352	Terminal 1 IB Mag	Amps	Remote terminal 1 phase B current magnitude
9354	Terminal 1 IC Mag	Amps	Remote terminal 1 phase C current magnitude
9356	Terminal 2 IA Mag	Amps	Remote terminal 2 phase A current magnitude
9358	Terminal 2 IB Mag	Amps	Remote terminal 2 phase B current magnitude
9360	Terminal 2 IC Mag	Amps	Remote terminal 2 phase C current magnitude
9362	Diff Curr IA Mag	Amps	Differential current phase A magnitude
9364	Diff Curr IB Mag	Amps	Differential current phase B magnitude
9366	Diff Curr IC Mag	Amps	Differential current phase C magnitude
9368	Local IA Angle	Degrees	Local terminal current phase A angle
9369	Local IB Angle	Degrees	Local terminal current phase B angle
9370	Local IC Angle	Degrees	Local terminal current phase C angle
9371	Terminal 1 IA Angle	Degrees	Remote terminal 1 current phase A angle
9372	Terminal 1 IB Angle	Degrees	Remote terminal 1 current phase B angle
9373	Terminal 1 IC Angle	Degrees	Remote terminal 1 current phase C angle
9374	Terminal 2 IA Angle	Degrees	Remote terminal 2 current phase A angle
9375	Terminal 2 IB Angle	Degrees	Remote terminal 2 current phase B angle
9376	Terminal 2 IC Angle	Degrees	Remote terminal 2 current phase C angle
9377	Diff Curr IA Angle	Degrees	Differential current phase A angle
9378	Diff Curr IB Angle	Degrees	Differential current phase B angle
9379	Diff Curr IC Angle	Degrees	Differential current phase C angle
9380	Op Square Curr IA	Amps	Phase A operating square current
9382	Op Square Curr IB	Amps	Phase B operating square current
9384	Op Square Curr IC	Amps	Phase C operating square current
9386	Rest Square Curr IA	Amps	Phase A restraint square current
9388	Rest Square Curr IB	Amps	Phase B restraint square current
9390	Rest Square Curr IC	Amps	Phase C restraint square current
9536	PMU 1 Va Mag	Volts	Phasor measurement unit 1 phase A voltage magnitude
9538	PMU 1 Va Angle	Degrees	Phasor measurement unit 1 phase A voltage angle
9539	PMU 1 Vb Mag	Volts	Phasor measurement unit 1 phase B voltage magnitude
9541	PMU 1 Vb Angle	Degrees	Phasor measurement unit 1 phase B voltage angle
9542	PMU 1 Vc Mag	Volts	Phasor measurement unit 1 phase C voltage magnitude
9544	PMU 1 Vc Angle	Degrees	Phasor measurement unit 1 phase C voltage angle
9545	PMU 1 Vx Mag	Volts	Phasor measurement unit 1 auxiliary voltage magnitude
9547	PMU 1 Vx Angle	Degrees	Phasor measurement unit 1 auxiliary voltage angle
9548	PMU 1 V1 Mag	Volts	Phasor measurement unit 1 positive-sequence voltage magnitude
9550	PMU 1 V1 Angle	Degrees	Phasor measurement unit 1 positive-sequence voltage angle
9551	PMU 1 V2 Mag	Volts	Phasor measurement unit 1 negative-sequence voltage magnitude
9553	PMU 1 V2 Angle	Degrees	Phasor measurement unit 1 negative-sequence voltage angle
9554	PMU 1 V0 Mag	Volts	Phasor measurement unit 1 zero-sequence voltage magnitude
9556	PMU 1 V0 Angle	Degrees	Phasor measurement unit 1 zero-sequence voltage angle
9557	PMU 1 la Mag	Amps	Phasor measurement unit 1 phase A current magnitude
9559	PMU 1 la Angle	Degrees	Phasor measurement unit 1 phase A current angle
9560	PMU 1 lb Mag	Amps	Phasor measurement unit 1 phase B current magnitude
9562	PMU 1 lb Angle	Degrees	Phasor measurement unit 1 phase B current angle

A.1 PARAMETER LIST

Table A-1: FLEXANALOG DATA ITEMS (Sheet 9 of 11)

ADDRESS	FLEXANALOG NAME	UNITS	DESCRIPTION
9563	PMU 1 Ic Mag	Amps	Phasor measurement unit 1 phase C current magnitude
9565	PMU 1 Ic Angle	Degrees	Phasor measurement unit 1 phase C current angle
9566	PMU 1 Ig Mag	Amps	Phasor measurement unit 1 ground current magnitude
9568	PMU 1 Ig Angle	Degrees	Phasor measurement unit 1 ground current angle
9569	PMU 1 I1 Mag	Amps	Phasor measurement unit 1 positive-sequence current magnitude
9571	PMU 1 I1 Angle	Degrees	Phasor measurement unit 1 positive-sequence current angle
9572	PMU 1 I2 Mag	Amps	Phasor measurement unit 1 negative-sequence current magnitude
9574	PMU 1 I2 Angle	Degrees	Phasor measurement unit 1 negative-sequence current angle
9575	PMU 1 I0 Mag	Amps	Phasor measurement unit 1 zero-sequence current magnitude
9577	PMU 1 I0 Angle	Degrees	Phasor measurement unit 1 zero-sequence current angle
9578	PMU 1 Freq	Hz	Phasor measurement unit 1 frequency
9580	PMU 1 df dt	Hz/s	Phasor measurement unit 1 rate of change of frequency
9581	PMU 1 Conf Ch		Phasor measurement unit 1 configuration change counter
13504	DCMA Inputs 1 Value	mA	dcmA input 1 actual value
13506	DCMA Inputs 2 Value	mA	dcmA input 2 actual value
13508	DCMA Inputs 3 Value	mA	dcmA input 3 actual value
13510	DCMA Inputs 4 Value	mA	dcmA input 4 actual value
13512	DCMA Inputs 5 Value	mA	dcmA input 5 actual value
13514	DCMA Inputs 6 Value	mA	dcmA input 6 actual value
13516	DCMA Inputs 7 Value	mA	dcmA input 7 actual value
13518	DCMA Inputs 8 Value	mA	dcmA input 8 actual value
13520	DCMA Inputs 9 Value	mA	dcmA input 9 actual value
13522	DCMA Inputs 10 Value	mA	dcmA input 10 actual value
13524	DCMA Inputs 11 Value	mA	dcmA input 11 actual value
13526	DCMA Inputs 12 Value	mA	dcmA input 12 actual value
13528	DCMA Inputs 13 Value	mA	dcmA input 13 actual value
13530	DCMA Inputs 14 Value	mA	dcmA input 14 actual value
13532	DCMA Inputs 15 Value	mA	dcmA input 15 actual value
13534	DCMA Inputs 16 Value	mA	dcmA input 16 actual value
13536	DCMA Inputs 17 Value	mA	dcmA input 17 actual value
13538	DCMA Inputs 18 Value	mA	dcmA input 18 actual value
13540	DCMA Inputs 19 Value	mA	dcmA input 19 actual value
13542	DCMA Inputs 20 Value	mA	dcmA input 20 actual value
13544	DCMA Inputs 21 Value	mA	dcmA input 21 actual value
13546	DCMA Inputs 22 Value	mA	dcmA input 22 actual value
13548	DCMA Inputs 23 Value	mA	dcmA input 23 actual value
13550	DCMA Inputs 24 Value	mA	dcmA input 24 actual value
13552	RTD Inputs 1 Value		RTD input 1 actual value
13553	RTD Inputs 2 Value		RTD input 2 actual value
13554	RTD Inputs 3 Value		RTD input 3 actual value
13555	RTD Inputs 4 Value		RTD input 4 actual value
13556	RTD Inputs 5 Value		RTD input 5 actual value
13557	RTD Inputs 6 Value		RTD input 6 actual value
13558	RTD Inputs 7 Value		RTD input 7 actual value
13559	RTD Inputs 8 Value		RTD input 8 actual value
13560	RTD Inputs 9 Value		RTD input 9 actual value
13561	RTD Inputs 10 Value		RTD input 10 actual value

Table A-1: FLEXANALOG DATA ITEMS (Sheet 10 of 11)

Table A–1: FLEXANALOG DATA ITEMS (Sheet 10 of 11)				
ADDRESS	FLEXANALOG NAME	UNITS	DESCRIPTION	
13562	RTD Inputs 11 Value		RTD input 11 actual value	
13563	RTD Inputs 12 Value		RTD input 12 actual value	
13564	RTD Inputs 13 Value		RTD input 13 actual value	
13565	RTD Inputs 14 Value		RTD input 14 actual value	
13566	RTD Inputs 15 Value		RTD input 15 actual value	
13567	RTD Inputs 16 Value		RTD input 16 actual value	
13568	RTD Inputs 17 Value		RTD input 17 actual value	
13569	RTD Inputs 18 Value		RTD input 18 actual value	
13570	RTD Inputs 19 Value		RTD input 19 actual value	
13571	RTD Inputs 20 Value		RTD input 20 actual value	
13572	RTD Inputs 21 Value		RTD input 21 actual value	
13573	RTD Inputs 22 Value		RTD input 22 actual value	
13574	RTD Inputs 23 Value		RTD input 23 actual value	
13575	RTD Inputs 24 Value		RTD input 24 actual value	
13576	RTD Inputs 25 Value		RTD input 25 actual value	
13577	RTD Inputs 26 Value		RTD input 26 actual value	
13578	RTD Inputs 27 Value		RTD input 27 actual value	
13579	RTD Inputs 28 Value		RTD input 28 actual value	
13580	RTD Inputs 29 Value		RTD input 29 actual value	
13581	RTD Inputs 30 Value		RTD input 30 actual value	
13582	RTD Inputs 31 Value		RTD input 31 actual value	
13583	RTD Inputs 32 Value		RTD input 32 actual value	
13584	RTD Inputs 33 Value		RTD input 33 actual value	
13585	RTD Inputs 34 Value		RTD input 34 actual value	
13586	RTD Inputs 35 Value		RTD input 35 actual value	
13587	RTD Inputs 36 Value		RTD input 36 actual value	
13588	RTD Inputs 37 Value		RTD input 37 actual value	
13589	RTD Inputs 38 Value		RTD input 38 actual value	
13590	RTD Inputs 39 Value		RTD input 39 actual value	
13591	RTD Inputs 40 Value		RTD input 40 actual value	
13592	RTD Inputs 41 Value		RTD input 41 actual value	
13593	RTD Inputs 42 Value		RTD input 42 actual value	
13594	RTD Inputs 43 Value		RTD input 43 actual value	
13595	RTD Inputs 44 Value		RTD input 44 actual value	
13596	RTD Inputs 45 Value		RTD input 45 actual value	
13597	RTD Inputs 46 Value		RTD input 46 actual value	
13598	RTD Inputs 47 Value		RTD input 47 actual value	
13599	RTD Inputs 48 Value		RTD input 48 actual value	
24459	Active Setting Group		Current setting group	
32768	Tracking Frequency	Hz	Tracking frequency	
39425	FlexElement 1 Value		FlexElement [™] 1 actual value	
39427	FlexElement 2 Value		FlexElement [™] 2 actual value	
39429	FlexElement 3 Value		FlexElement [™] 3 actual value	
39431	FlexElement 4 Value		FlexElement [™] 4 actual value	
39433	FlexElement 5 Value		FlexElement [™] 5 actual value	
39435	FlexElement 6 Value		FlexElement [™] 6 actual value	
39437	FlexElement 7 Value		FlexElement [™] 7 actual value	

Α

Table A-1: FLEXANALOG DATA ITEMS (Sheet 11 of 11)

ADDRESS	FLEXANALOG NAME	UNITS	DESCRIPTION
39439	FlexElement 8 Value		FlexElement [™] 8 actual value
45584	GOOSE Analog In 1		IEC 61850 GOOSE analog input 1
45586	GOOSE Analog In 2		IEC 61850 GOOSE analog input 2
45588	GOOSE Analog In 3		IEC 61850 GOOSE analog input 3
45590	GOOSE Analog In 4		IEC 61850 GOOSE analog input 4
45592	GOOSE Analog In 5		IEC 61850 GOOSE analog input 5
45594	GOOSE Analog In 6		IEC 61850 GOOSE analog input 6
45596	GOOSE Analog In 7		IEC 61850 GOOSE analog input 7
45598	GOOSE Analog In 8		IEC 61850 GOOSE analog input 8
45600	GOOSE Analog In 9		IEC 61850 GOOSE analog input 9
45602	GOOSE Analog In 10		IEC 61850 GOOSE analog input 10
45604	GOOSE Analog In 11		IEC 61850 GOOSE analog input 11
45606	GOOSE Analog In 12		IEC 61850 GOOSE analog input 12
45608	GOOSE Analog In 13		IEC 61850 GOOSE analog input 13
45610	GOOSE Analog In 14		IEC 61850 GOOSE analog input 14
45612	GOOSE Analog In 15		IEC 61850 GOOSE analog input 15
45614	GOOSE Analog In 16		IEC 61850 GOOSE analog input 16
61449	PMU Num Triggers		Phasor measurement unit recording number of triggers

A-12

B.1 MODBUS RTU PROTOCOL

B.1.1 INTRODUCTION

The UR-series relays support a number of communications protocols to allow connection to equipment such as personal computers, RTUs, SCADA masters, and programmable logic controllers. The Modicon Modbus RTU protocol is the most basic protocol supported by the UR. Modbus is available via RS232 or RS485 serial links or via ethernet (using the Modbus/TCP specification). The following description is intended primarily for users who wish to develop their own master communication drivers and applies to the serial Modbus RTU protocol. Note that:

- The UR always acts as a slave device, meaning that it never initiates communications; it only listens and responds to requests issued by a master computer.
- For Modbus[®], a subset of the Remote Terminal Unit (RTU) protocol format is supported that allows extensive monitoring, programming, and control functions using read and write register commands.

B.1.2 PHYSICAL LAYER

The Modbus[®] RTU protocol is hardware-independent so that the physical layer can be any of a variety of standard hardware configurations including RS232 and RS485. The relay includes a faceplate (front panel) RS232 port and two rear terminal communications ports that may be configured as RS485, fiber optic, 10Base-T, or 10Base-F. Data flow is half-duplex in all configurations. See chapter 3 for details on communications wiring.

Each data byte is transmitted in an asynchronous format consisting of 1 start bit, 8 data bits, 1 stop bit, and possibly 1 parity bit. This produces a 10 or 11 bit data frame. This can be important for transmission through modems at high bit rates (11 bit data frames are not supported by many modems at baud rates greater than 300).

The baud rate and parity are independently programmable for each communications port. Baud rates of 300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 33600, 38400, 57600, or 115200 bps are available. Even, odd, and no parity are available. Refer to the *Communications* section of chapter 5 for further details.

The master device in any system must know the address of the slave device with which it is to communicate. The relay will not act on a request from a master if the address in the request does not match the relay's slave address (unless the address is the broadcast address – see below).

A single setting selects the slave address used for all ports, with the exception that for the faceplate port, the relay will accept any address when the Modbus[®] RTU protocol is used.

B.1.3 DATA LINK LAYER

Communications takes place in packets which are groups of asynchronously framed byte data. The master transmits a packet to the slave and the slave responds with a packet. The end of a packet is marked by *dead-time* on the communications line. The following describes general format for both transmit and receive packets. For exact details on packet formatting, refer to subsequent sections describing each function code.

DESCRIPTION	SIZE
SLAVE ADDRESS	1 byte
FUNCTION CODE	1 byte
DATA	N bytes
CRC	2 bytes
DEAD TIME	3.5 bytes transmission time

Table B-1: MODBUS PACKET FORMAT

 SLAVE ADDRESS: This is the address of the slave device that is intended to receive the packet sent by the master and to perform the desired action. Each slave device on a communications bus must have a unique address to prevent bus contention. All of the relay's ports have the same address which is programmable from 1 to 254; see chapter 5 for details. Only the addressed slave will respond to a packet that starts with its address. Note that the faceplate port is an exception to this rule; it will act on a message containing any slave address.

A master transmit packet with slave address 0 indicates a broadcast command. All slaves on the communication link take action based on the packet, but none respond to the master. Broadcast mode is only recognized when associated with function code 05h. For any other function code, a packet with broadcast mode slave address 0 will be ignored.

B.1 MODBUS RTU PROTOCOL

- **FUNCTION CODE:** This is one of the supported functions codes of the unit which tells the slave what action to perform. See the *Supported Function Codes* section for complete details. An exception response from the slave is indicated by setting the high order bit of the function code in the response packet. See the *Exception Responses* section for further details.
- **DATA:** This will be a variable number of bytes depending on the function code. This may include actual values, settings, or addresses sent by the master to the slave or by the slave to the master.
- Β
- **CRC:** This is a two byte error checking code. The RTU version of Modbus[®] includes a 16-bit cyclic redundancy check (CRC-16) with every packet which is an industry standard method used for error detection. If a Modbus slave device receives a packet in which an error is indicated by the CRC, the slave device will not act upon or respond to the packet thus preventing any erroneous operations. See the *CRC-16 Algorithm* section for details on calculating the CRC.
- **DEAD TIME:** A packet is terminated when no data is received for a period of 3.5 byte transmission times (about 15 ms at 2400 bps, 2 ms at 19200 bps, and 300 µs at 115200 bps). Consequently, the transmitting device must not allow gaps between bytes longer than this interval. Once the dead time has expired without a new byte transmission, all slaves start listening for a new packet from the master except for the addressed slave.

B.1.4 CRC-16 ALGORITHM

The CRC-16 algorithm essentially treats the entire data stream (data bits only; start, stop and parity ignored) as one continuous binary number. This number is first shifted left 16 bits and then divided by a characteristic polynomial (110000000000101B). The 16-bit remainder of the division is appended to the end of the packet, MSByte first. The resulting packet including CRC, when divided by the same polynomial at the receiver will give a zero remainder if no transmission errors have occurred. This algorithm requires the characteristic polynomial to be reverse bit ordered. The most significant bit of the characteristic polynomial is dropped, since it does not affect the value of the remainder.

A C programming language implementation of the CRC algorithm will be provided upon request.

SYMBOLS:	>	data transfer	data transfer		
	А	16 bit working register	16 bit working register		
	Alow	low order byte of A			
	Ahigh	high order byte of A			
	CRC	16 bit CRC-16 result			
	i,j	loop counters			
	(+)	logical EXCLUSIVE-C	R operator		
	Ν	total number of data b	ytes		
	Di	i-th data byte (i = 0 to	N-1)		
	G	16 bit characteristic pe	olynomial = 101000000000001 (binary) with MSbit dropped and bit order reversed		
	shr (x)	right shift operator (th LSbit of x is shifted into a carry flag, a '0' is shifted into the MSbit of x, all other bits are shifted right one location)			
ALGORITHM:	1.	FFFF (hex)> A			
	2.	0> i			
	3.	0> j			
	4.	Di (+) Alow> Alow			
	5.	j+1>j			
	6.	shr (A)			
	7.	Is there a carry?	No: go to 8; Yes: G (+) A> A and continue.		
	8.	ls j = 8?	No: go to 5; Yes: continue		
	9.	i+1>i			
	10.	ls i = N?	No: go to 3; Yes: continue		
	11.	A> CRC			

Table B–2: CRC-16 ALGORITHM

B.2.1 SUPPORTED FUNCTION CODES

Modbus[®] officially defines function codes from 1 to 127 though only a small subset is generally needed. The relay supports some of these functions, as summarized in the following table. Subsequent sections describe each function code in detail.

FUNCTION CODE		MODBUS DEFINITION	GE MULTILIN DEFINITION
HEX	DEC		
03	3	Read holding registers	Read actual values or settings
04	4	Read holding registers	Read actual values or settings
05	5	Force single coil	Execute operation
06	6	Preset single register	Store single setting
10	16	Preset multiple registers	Store multiple settings

B.2.2 READ ACTUAL VALUES OR SETTINGS (FUNCTION CODE 03/04H)

This function code allows the master to read one or more consecutive data registers (actual values or settings) from a relay. Data registers are always 16-bit (two-byte) values transmitted with high order byte first. The maximum number of registers that can be read in a single packet is 125. See the *Modbus memory map* table for exact details on the data registers.

Since some PLC implementations of Modbus only support one of function codes 03h and 04h. The L90 interpretation allows either function code to be used for reading one or more consecutive data registers. The data starting address will determine the type of data being read. Function codes 03h and 04h are therefore identical.

The following table shows the format of the master and slave packets. The example shows a master device requesting three register values starting at address 4050h from slave device 11h (17 decimal); the slave device responds with the values 40, 300, and 0 from registers 4050h, 4051h, and 4052h, respectively.

MASTER TRANSMISSION		SLA
PACKET FORMAT	EXAMPLE (HEX)	PAC
SLAVE ADDRESS	11	SLA
FUNCTION CODE	04	FUI
DATA STARTING ADDRESS - high	40	BYT
DATA STARTING ADDRESS - low	50	DAT
NUMBER OF REGISTERS - high	00	DAT
NUMBER OF REGISTERS - low	03	DAT
CRC - low	A7	DAT
CRC - high	4A	DAT

Table B-3: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

SLAVE RESPONSE	
PACKET FORMAT	EXAMPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	04
BYTE COUNT	06
DATA #1 - high	00
DATA #1 - low	28
DATA #2 - high	01
DATA #2 - low	2C
DATA #3 - high	00
DATA #3 - low	00
CRC - low	0D
CRC - high	60

B.2.3 EXECUTE OPERATION (FUNCTION CODE 05H)

This function code allows the master to perform various operations in the relay. Available operations are shown in the *Summary of operation codes* table below.

The following table shows the format of the master and slave packets. The example shows a master device requesting the slave device 11h (17 decimal) to perform a reset. The high and low code value bytes always have the values "FF" and "00" respectively and are a remnant of the original Modbus definition of this function code.

Table B-4: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

MASTER TRANSMISSION		SLAVE RESPONSE		
PACKET FORMAT	EXAMPLE (HEX)	PACKET FORMAT	EXAMPLE (HEX)	
SLAVE ADDRESS	11	SLAVE ADDRESS	11	
FUNCTION CODE	05	FUNCTION CODE	05	
OPERATION CODE - high	00	OPERATION CODE - high	00	
OPERATION CODE - low	01	OPERATION CODE - low	01	
CODE VALUE - high	FF	CODE VALUE - high	FF	
CODE VALUE - low	00	CODE VALUE - low	00	
CRC - low	DF	CRC - low	DF	
CRC - high	6A	CRC - high	6A	

Table B-5: SUMMARY OF OPERATION CODES FOR FUNCTION 05H

OPERATION CODE (HEX)	DEFINITION	DESCRIPTION
0000	NO OPERATION	Does not do anything.
0001	RESET	Performs the same function as the faceplate RESET key.
0005	CLEAR EVENT RECORDS	Performs the same function as the faceplate CLEAR EVENT RECORDS menu command.
0006	CLEAR OSCILLOGRAPHY	Clears all oscillography records.
1000 to 103F	VIRTUAL IN 1 to 64 ON/OFF	Sets the states of Virtual Inputs 1 to 64 either "ON" or "OFF".

B.2.4 STORE SINGLE SETTING (FUNCTION CODE 06H)

This function code allows the master to modify the contents of a single setting register in an relay. Setting registers are always 16 bit (two byte) values transmitted high order byte first. The following table shows the format of the master and slave packets. The example shows a master device storing the value 200 at memory map address 4051h to slave device 11h (17 dec).

Table B-6: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

MASTER TRANSMISSION		SLAVE RESPONSE		
PACKET FORMAT	EXAMPLE (HEX)	PACKET FORMAT	EXAMPLE (HEX)	
SLAVE ADDRESS	11	SLAVE ADDRESS	11	
FUNCTION CODE	06	FUNCTION CODE	06	
DATA STARTING ADDRESS - high	40	DATA STARTING ADDRESS - high	40	
DATA STARTING ADDRESS - low	51	DATA STARTING ADDRESS - low	51	
DATA - high	00	DATA - high	00	
DATA - low	C8	DATA - low	C8	
CRC - low	CE	CRC - low	CE	
CRC - high	DD	CRC - high	DD	

B.2.5 STORE MULTIPLE SETTINGS (FUNCTION CODE 10H)

This function code allows the master to modify the contents of a one or more consecutive setting registers in a relay. Setting registers are 16-bit (two byte) values transmitted high order byte first. The maximum number of setting registers that can be stored in a single packet is 60. The following table shows the format of the master and slave packets. The example shows a master device storing the value 200 at memory map address 4051h, and the value 1 at memory map address 4052h to slave device 11h (17 decimal).

Table B-7: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

MASTER TRANSMISSION		S
PACKET FORMAT	EXAMPLE (HEX)	F
SLAVE ADDRESS	11	S
FUNCTION CODE	10	F
DATA STARTING ADDRESS - hi	40	C
DATA STARTING ADDRESS - Io	51	C
NUMBER OF SETTINGS - hi	00	Ν
NUMBER OF SETTINGS - Io	02	Ν
BYTE COUNT	04	C
DATA #1 - high order byte	00	C
DATA #1 - low order byte	C8	
DATA #2 - high order byte	00	
DATA #2 - low order byte	01	
CRC - low order byte	12	
CRC - high order byte	62	

SLAVE RESPONSE	
PACKET FORMAT	EXMAPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	10
DATA STARTING ADDRESS - hi	40
DATA STARTING ADDRESS - Io	51
NUMBER OF SETTINGS - hi	00
NUMBER OF SETTINGS - IO	02
CRC - lo	07
CRC - hi	64

B.2.6 EXCEPTION RESPONSES

Programming or operation errors usually happen because of illegal data in a packet. These errors result in an exception response from the slave. The slave detecting one of these errors sends a response packet to the master with the high order bit of the function code set to 1.

The following table shows the format of the master and slave packets. The example shows a master device sending the unsupported function code 39h to slave device 11.

MASTER TRANSMISSION		SLAVE RESPONSE	
PACKET FORMAT	EXAMPLE (HEX)	PACKET FORMAT	EXAMPLE (HEX)
SLAVE ADDRESS	11	SLAVE ADDRESS	11
FUNCTION CODE	39	FUNCTION CODE	B9
CRC - low order byte	CD	ERROR CODE	01
CRC - high order byte	F2	CRC - low order byte	93
		CRC - high order byte	95

Table B-8: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

B.3.1 OBTAINING RELAY FILES VIA MODBUS

a) **DESCRIPTION**

The UR relay has a generic file transfer facility, meaning that you use the same method to obtain all of the different types of files from the unit. The Modbus registers that implement file transfer are found in the "Modbus File Transfer (Read/Write)" and "Modbus File Transfer (Read Only)" modules, starting at address 3100 in the Modbus Memory Map. To read a file from the UR relay, use the following steps:

- B 1. Write the filename to the "Name of file to read" register using a write multiple registers command. If the name is shorter than 80 characters, you may write only enough registers to include all the text of the filename. Filenames are not case sensitive.
 - 2. Repeatedly read all the registers in "Modbus File Transfer (Read Only)" using a read multiple registers command. It is not necessary to read the entire data block, since the UR relay will remember which was the last register you read. The "position" register is initially zero and thereafter indicates how many bytes (2 times the number of registers) you have read so far. The "size of..." register indicates the number of bytes of data remaining to read, to a maximum of 244.
 - 3. Keep reading until the "size of..." register is smaller than the number of bytes you are transferring. This condition indicates end of file. Discard any bytes you have read beyond the indicated block size.
 - 4. If you need to re-try a block, read only the "size of.." and "block of data", without reading the position. The file pointer is only incremented when you read the position register, so the same data block will be returned as was read in the previous operation. On the next read, check to see if the position is where you expect it to be, and discard the previous block if it is not (this condition would indicate that the UR relay did not process your original read request).

The UR relay retains connection-specific file transfer information, so files may be read simultaneously on multiple Modbus connections.

b) OTHER PROTOCOLS

All the files available via Modbus may also be retrieved using the standard file transfer mechanisms in other protocols (for example, TFTP or MMS).

c) COMTRADE, OSCILLOGRAPHY, AND DATA LOGGER FILES

Oscillography and data logger files are formatted using the COMTRADE file format per IEEE PC37.111 Draft 7c (02 September 1997). The files may be obtained in either text or binary COMTRADE format.

d) READING OSCILLOGRAPHY FILES

Familiarity with the oscillography feature is required to understand the following description. Refer to the Oscillography section in Chapter 5 for additional details.

The Oscillography Number of Triggers register is incremented by one every time a new oscillography file is triggered (captured) and cleared to zero when oscillography data is cleared. When a new trigger occurs, the associated oscillography file is assigned a file identifier number equal to the incremented value of this register; the newest file number is equal to the Oscillography_Number_of_Triggers register. This register can be used to determine if any new data has been captured by periodically reading it to see if the value has changed; if the number has increased then new data is available.

The Oscillography Number of Records register specifies the maximum number of files (and the number of cycles of data per file) that can be stored in memory of the relay. The Oscillography Available Records register specifies the actual number of files that are stored and still available to be read out of the relay.

Writing "Yes" (i.e. the value 1) to the Oscillography Clear Data register clears oscillography data files, clears both the Oscillography Number of Triggers and Oscillography Available Records registers to zero, and sets the Oscillography Last Cleared Date to the present date and time.

To read binary COMTRADE oscillography files, read the following filenames:

OSCnnnn.CFG and OSCnnn.DAT

Replace "nnn" with the desired oscillography trigger number. For ASCII format, use the following file names

OSCAnnnn.CFG and OSCAnnn.DAT

e) READING DATA LOGGER FILES

Familiarity with the data logger feature is required to understand this description. Refer to the Data Logger section of Chapter 5 for details. To read the entire data logger in binary COMTRADE format, read the following files.

datalog.cfg and datalog.dat

To read the entire data logger in ASCII COMTRADE format, read the following files.

dataloga.cfg and dataloga.dat

To limit the range of records to be returned in the COMTRADE files, append the following to the filename before writing it:

- To read from a specific time to the end of the log: <space> startTime
- To read a specific range of records: <space> startTime <space> endTime
- Replace <startTime> and <endTime> with Julian dates (seconds since Jan. 1 1970) as numeric text.

f) READING EVENT RECORDER FILES

To read the entire event recorder contents in ASCII format (the only available format), use the following filename:

EVT.TXT

To read from a specific record to the end of the log, use the following filename:

EVTnnn.TXT (replace nnn with the desired starting record number)

To read from a specific record to another specific record, use the following filename:

EVT.TXT XXXXX YYYYY (replace XXXXX with the starting record number and YYYYY with the ending record number)

g) READING FAULT REPORT FILES

Fault report data has been available via the L90 file retrieval mechanism since UR firmware version 2.00. The file name is faultReport#####.htm. The ##### refers to the fault report record number. The fault report number is a counter that indicates how many fault reports have ever occurred. The counter rolls over at a value of 65535. Only the last ten fault reports are available for retrieval; a request for a non-existent fault report file will yield a null file. The current value fault report counter is available in "Number of Fault Reports" Modbus register at location 0x3020.

For example, if 14 fault reports have occurred then the files faultReport5.htm, faultReport6.htm, up to faultReport14.htm are available to be read. The expected use of this feature has an external master periodically polling the "Number of Fault Reports' register. If the value changes, then the master reads all the new files.

The contents of the file is in standard HTML notation and can be viewed via any commercial browser.

B.3.2 MODBUS PASSWORD OPERATION

The L90 supports password entry from a local or remote connection.

Local access is defined as any access to settings or commands via the faceplate interface. This includes both keypad entry and the faceplate RS232 connection. Remote access is defined as any access to settings or commands via any rear communications port. This includes both Ethernet and RS485 connections. Any changes to the local or remote passwords enables this functionality.

When entering a settings or command password via EnerVista or any serial interface, the user must enter the corresponding connection password. If the connection is to the back of the L90, the remote password must be used. If the connection is to the RS232 port of the faceplate, the local password must be used.

The command password is set up at memory location 4000. Storing a value of "0" removes command password protection. When reading the password setting, the encrypted value (zero if no password is set) is returned. Command security is required to change the command password. Similarly, the setting password is set up at memory location 4002. These are the same settings and encrypted values found in the **SETTINGS** \Rightarrow **PRODUCT SETUP** \Rightarrow **PASSWORD SECURITY** menu via the keypad. Enabling password security for the faceplate display will also enable it for Modbus, and *vice-versa*.

To gain command level security access, the command password must be entered at memory location 4008. To gain setting level security access, the setting password must be entered at memory location 400A. The entered setting password must match the current setting password setting, or must be zero, to change settings or download firmware.

Command and setting passwords each have a 30 minute timer. Each timer starts when you enter the particular password, and is re-started whenever you *use* it. For example, writing a setting re-starts the setting password timer and writing a command register or forcing a coil re-starts the command password timer. The value read at memory location 4010 can be used to confirm whether a command password is enabled or disabled (a value of 0 represents disabled). The value read at memory location 4011 can be used to confirm whether a setting password is enabled or disabled or disabled or disabled.

Command or setting password security access is restricted to the particular port or particular TCP/IP connection on which the entry was made. Passwords must be entered when accessing the relay through other ports or connections, and the passwords must be re-entered after disconnecting and re-connecting on TCP/IP.

Table B–9: MODBUS MEMORY MAP (Sheet 1 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
Product I	nformation (Read Only)					
0000	UR Product Type	0 to 65535		1	F001	0
0002	Product Version	0 to 655.35		0.01	F001	1
Product I	nformation (Read Only Written by Factory)					
0010	Serial Number				F203	"O"
0020	Manufacturing Date	0 to 4294967295		1	F050	0
0022	Modification Number	0 to 65535		1	F001	0
0040	Order Code				F204	"Order Code x"
0090	Ethernet MAC Address				F072	0
0093	Reserved (13 items)				F001	0
00A0	CPU Module Serial Number				F203	(none)
00B0	CPU Supplier Serial Number				F203	(none)
00C0	Ethernet Sub Module Serial Number (8 items)				F203	(none)
Self Test	Targets (Read Only)					· · ·
0200	Self Test States (2 items)	0 to 4294967295	0	1	F143	0
Front Par	nel (Read Only)		I		l	
0204	LED Column <i>n</i> State, $n = 1$ to 10 (10 items)	0 to 65535		1	F501	0
0220	Display Message				F204	(none)
0248	Last Key Pressed	0 to 47		1	F530	0 (None)
Keypress	s Emulation (Read/Write)		1	l	I	· · · · ·
0280	Simulated keypress write zero before each keystroke	0 to 42		1	F190	0 (No key use
						between real keys)
Virtual In	put Commands (Read/Write Command) (64 modules)					
0400	Virtual Input 1 State	0 to 1		1	F108	0 (Off)
0401	Virtual Input 2 State	0 to 1		1	F108	0 (Off)
0402	Virtual Input 3 State	0 to 1		1	F108	0 (Off)
0403	Virtual Input 4 State	0 to 1		1	F108	0 (Off)
0404	Virtual Input 5 State	0 to 1		1	F108	0 (Off)
0405	Virtual Input 6 State	0 to 1		1	F108	0 (Off)
0406	Virtual Input 7 State	0 to 1		1	F108	0 (Off)
0407	Virtual Input 8 State	0 to 1		1	F108	0 (Off)
0408	Virtual Input 9 State	0 to 1		1	F108	0 (Off)
0409	Virtual Input 10 State	0 to 1		1	F108	0 (Off)
040A	Virtual Input 11 State	0 to 1		1	F108	0 (Off)
040B	Virtual Input 12 State	0 to 1		1	F108	0 (Off)
040C	Virtual Input 13 State	0 to 1		1	F108	0 (Off)
040D	Virtual Input 14 State	0 to 1		1	F108	0 (Off)
040E	Virtual Input 15 State	0 to 1		1	F108	0 (Off)
040F	Virtual Input 16 State	0 to 1		1	F108	0 (Off)
0410	Virtual Input 17 State	0 to 1		1	F108	0 (Off)
0411	Virtual Input 18 State	0 to 1		1	F108	0 (Off)
0412	Virtual Input 19 State	0 to 1		1	F108	0 (Off)
0413	Virtual Input 20 State	0 to 1		1	F108	0 (Off)
0414	Virtual Input 21 State	0 to 1		1	F108	0 (Off)
0415	Virtual Input 22 State	0 to 1		1	F108	0 (Off)
0416	Virtual Input 23 State	0 to 1		1	F108	0 (Off)
0417	Virtual Input 24 State	0 to 1		1	F108	0 (Off)
0418	Virtual Input 25 State	0 to 1		1	F108	0 (Off)
0.10	Virtual Input 26 State	0 to 1		1	F108	0 (Off)
0419						
0419 041A	Virtual Input 20 State	0 to 1		1	F108	0 (Off)

Table B-9: MODBUS MEMORY MAP (Sheet 2 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
041C	Virtual Input 29 State	0 to 1		1	F108	0 (Off)
041D	Virtual Input 30 State	0 to 1		1	F108	0 (Off)
041E	Virtual Input 31 State	0 to 1		1	F108	0 (Off)
041F	Virtual Input 32 State	0 to 1		1	F108	0 (Off)
0420	Virtual Input 33 State	0 to 1		1	F108	0 (Off)
0421	Virtual Input 34 State	0 to 1		1	F108	0 (Off)
0422	Virtual Input 35 State	0 to 1		1	F108	0 (Off)
0423	Virtual Input 36 State	0 to 1		1	F108	0 (Off)
0424	Virtual Input 37 State	0 to 1		1	F108	0 (Off)
0425	Virtual Input 38 State	0 to 1		1	F108	0 (Off)
0426	Virtual Input 39 State	0 to 1		1	F108	0 (Off)
0427	Virtual Input 40 State	0 to 1		1	F108	0 (Off)
0428	Virtual Input 41 State	0 to 1		1	F108	0 (Off)
0429	Virtual Input 42 State	0 to 1		1	F108	0 (Off)
042A	Virtual Input 43 State	0 to 1		1	F108	0 (Off)
042B	Virtual Input 44 State	0 to 1		1	F108	0 (Off)
042C	Virtual Input 45 State	0 to 1		1	F108	0 (Off)
042D	Virtual Input 46 State	0 to 1		1	F108	0 (Off)
042E	Virtual Input 47 State	0 to 1		1	F108	0 (Off)
042F	Virtual Input 48 State	0 to 1		1	F108	0 (Off)
0430	Virtual Input 49 State	0 to 1		1	F108	0 (Off)
0431	Virtual Input 50 State	0 to 1		1	F108	0 (Off)
0432	Virtual Input 51 State	0 to 1		1	F108	0 (Off)
0433	Virtual Input 52 State	0 to 1		1	F108	0 (Off)
0434	Virtual Input 53 State	0 to 1		1	F108	0 (Off)
0434	Virtual Input 54 State	0 to 1		1	F108	0 (Off)
0435	Virtual Input 55 State	0 to 1		1	F108	0 (Off)
0430		0 to 1		1	F108	0 (Off)
	Virtual Input 56 State			1	F108	
0438 0439	Virtual Input 57 State	0 to 1		1		0 (Off) 0 (Off)
	Virtual Input 58 State	0 to 1			F108	
043A	Virtual Input 59 State	0 to 1		1	F108	0 (Off)
043B	Virtual Input 60 State	0 to 1		1	F108	0 (Off)
043C	Virtual Input 61 State	0 to 1		1	F108	0 (Off)
043D	Virtual Input 62 State	0 to 1		1	F108	0 (Off)
043E	Virtual Input 63 State	0 to 1		1	F108	0 (Off)
043F	Virtual Input 64 State	0 to 1		1	F108	0 (Off)
	bunter States (Read Only Non-Volatile) (8 modules)	04474000474	1		5004	
0800	Digital Counter 1 Value Digital Counter 1 Frozen	-2147483647 to 2147483647 -2147483647 to		1	F004 F004	0
	-	2147483647				-
0804	Digital Counter 1 Frozen Time Stamp	0 to 4294967295		1	F050	0
0806	Digital Counter 1 Frozen Time Stamp us	0 to 4294967295		1	F003	0
0808	Repeated for Digital Counter 2					
0810	Repeated for Digital Counter 3					
0818	Repeated for Digital Counter 4					
0820	Repeated for Digital Counter 5					
0828	Repeated for Digital Counter 6					
0830	Repeated for Digital Counter 7					
0838	Repeated for Digital Counter 8					
FlexState	es (Read Only)					
0900	FlexState Bits (16 items)	0 to 65535		1	F001	0
Element	States (Read Only)					
1000	Element Operate States (64 items)	0 to 65535		1	F502	0

Table B-9: MODBUS MEMORY MAP (Sheet 3 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
Jser Dis	plays Actuals (Read Only)					
1080	Formatted user-definable displays (16 items)				F200	(none)
lodbus	User Map Actuals (Read Only)					
1200	User Map Values (256 items)	0 to 65535		1	F001	0
Element	Targets (Read Only)					
14C0	Target Sequence	0 to 65535		1	F001	0
14C1	Number of Targets	0 to 65535		1	F001	0
Element	Targets (Read/Write)					
14C2	Target to Read	0 to 65535		1	F001	0
lement	Targets (Read Only)					
14C3	Target Message				F200	""
igital In	nput/Output States (Read Only)					
1500	Contact Input States (6 items)	0 to 65535		1	F500	0
1508	Virtual Input States (8 items)	0 to 65535		1	F500	0
1510	Contact Output States (4 items)	0 to 65535		1	F500	0
1518	Contact Output Current States (4 items)	0 to 65535		1	F500	0
1520	Contact Output Voltage States (4 items)	0 to 65535		1	F500	0
1528	Virtual Output States (6 items)	0 to 65535		1	F500	0
1530	Contact Output Detectors (4 items)	0 to 65535		1	F500	0
lemote	Input/Output States (Read Only)					
1540	Remote Device States	0 to 65535		1	F500	0
1542	Remote Input States (4 items)	0 to 65535		1	F500	0
1550	Remote Devices Online	0 to 1		1	F126	0 (No)
irect In	put/Output States (Read Only)	•	•			
15A0	Direct Input 1-1 State (8 items)	0 to 1		1	F108	0 (Off)
15A8	Direct Input 1-2 State (8 items)	0 to 1		1	F108	0 (Off)
15B0	Direct Input 1 State	0 to 65535		1	F500	0
15B1	Direct Input 2 State	0 to 65535		1	F500	0
thernet	Fibre Channel Status (Read/Write)		•			
1610	Ethernet primary fibre channel status	0 to 2		1	F134	0 (Fail)
1611	Ethernet secondary fibre channel status	0 to 2		1	F134	0 (Fail)
Data Log	gger Actuals (Read Only)					
1618	Data logger channel count	0 to 16	channel	1	F001	0
1619	Time of oldest available samples	0 to 4294967295	seconds	1	F050	0
161B	Time of newest available samples	0 to 4294967295	seconds	1	F050	0
161D	Data logger duration	0 to 999.9	days	0.1	F001	0
.90 Cha	nnel Status (Read Only)					
	Channel 1 Status	0 to 2		1	F134	1 (OK)
1621	Channel 1 Number of Lost Packets	0 to 65535		1	F001	0
1622	Channel 1 Local Loopback Status	0 to 2		1	F134	2 (n/a)
1623	Channel 1 Remote Loopback Status	0 to 2		1	F134	2 (n/a)
1626	Channel 1 Loop Delay	0 to 200	ms	0.1	F001	0
1627	Channel 2 Status	0 to 2		1	F134	2 (n/a)
1628	Channel 2 Number of Lost Packets	0 to 65535		1	F001	0
1629	Channel 2 Local Loopback Status	0 to 2		1	F134	2 (n/a)
1623	Channel 2 Remote Loopback Status	0 to 2		1	F134	2 (n/a)
162B	Network Status	0 to 2		1	F134	1 (OK)
162E	Channel 2 Loop Delay	0 to 200	ms	0.1	F001	0
162E	Channel PFLL Status	0 to 2		1	F134	1 (OK)
	nnel Status Commands (Read/Write Command)	0102			1134	
1630	L90 Channel Status Clear	0 to 1		1	F126	0 (No)
		0101			1 120	0 (110)
	nnel Status Actuals (Read/Write Command)		1000	0.001	E004	0
1638	Channel 1 Asymmetry	-65.535 to 65.535	ms	0.001	F004	0
1638	Channel 2 Asymmetry	-99.999 to 99.999	ms	0.001	F004	0

Table B-9: MODBUS MEMORY MAP (Sheet 4 of 55)

ADDR	-9: MODBOS MEMOR T MAP (Sheet 4 of 55 REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
Source C	urrent (Read Only) (6 modules)					
1800	Source 1 Phase A Current RMS	0 to 999999.999	A	0.001	F060	0
1802	Source 1 Phase B Current RMS	0 to 999999.999	A	0.001	F060	0
1804	Source 1 Phase C Current RMS	0 to 999999.999	A	0.001	F060	0
1806	Source 1 Neutral Current RMS	0 to 999999.999	A	0.001	F060	0
1808	Source 1 Phase A Current Magnitude	0 to 999999.999	A	0.001	F060	0
180A	Source 1 Phase A Current Angle	-359.9 to 0	degrees	0.1	F002	0
180B	Source 1 Phase B Current Magnitude	0 to 999999.999	A	0.001	F060	0
180D	Source 1 Phase B Current Angle	-359.9 to 0	degrees	0.1	F002	0
180E	Source 1 Phase C Current Magnitude	0 to 999999.999	A	0.001	F060	0
1810	Source 1 Phase C Current Angle	-359.9 to 0	degrees	0.1	F002	0
1811	Source 1 Neutral Current Magnitude	0 to 999999.999	A	0.001	F060	0
1813	Source 1 Neutral Current Angle	-359.9 to 0	degrees	0.1	F002	0
1814	Source 1 Ground Current RMS	0 to 999999.999	А	0.001	F060	0
1816	Source 1 Ground Current Magnitude	0 to 999999.999	A	0.001	F060	0
1818	Source 1 Ground Current Angle	-359.9 to 0	degrees	0.1	F002	0
1819	Source 1 Zero Sequence Current Magnitude	0 to 999999.999	А	0.001	F060	0
181B	Source 1 Zero Sequence Current Angle	-359.9 to 0	degrees	0.1	F002	0
181C	Source 1 Positive Sequence Current Magnitude	0 to 999999.999	А	0.001	F060	0
181E	Source 1 Positive Sequence Current Angle	-359.9 to 0	degrees	0.1	F002	0
181F	Source 1 Negative Sequence Current Magnitude	0 to 999999.999	A	0.001	F060	0
1821	Source 1 Negative Sequence Current Angle	-359.9 to 0	degrees	0.1	F002	0
1822	Source 1 Differential Ground Current Magnitude	0 to 999999.999	А	0.001	F060	0
1824	Source 1 Differential Ground Current Angle	-359.9 to 0	degrees	0.1	F002	0
1825	Reserved (27 items)				F001	0
1840	Repeated for Source 2					
1880	Repeated for Source 3					
18C0	Repeated for Source 4					
1900	Repeated for Source 5					
1940	Repeated for Source 6					
	oltage (Read Only) (6 modules)	-	-	-		
1A00	Source 1 Phase AG Voltage RMS		V		F060	0
1A02	Source 1 Phase BG Voltage RMS		V		F060	0
1A04	Source 1 Phase CG Voltage RMS		V		F060	0
1A06	Source 1 Phase AG Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A08	Source 1 Phase AG Voltage Angle	-359.9 to 0	degrees	0.1	F002	0
1A09	Source 1 Phase BG Voltage Magnitude	0 to 999999.999	V .	0.001	F060	0
1A0B	Source 1 Phase BG Voltage Angle	-359.9 to 0	degrees	0.1	F002	0
1A0C	Source 1 Phase CG Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A0E	Source 1 Phase CG Voltage Angle	-359.9 to 0	degrees	0.1	F002	0
1A0F	Source 1 Phase AB or AC Voltage RMS	0 to 999999.999	V V	0.001	F060	0
1A11	Source 1 Phase BC or BA Voltage RMS	0 to 999999.999	V V	0.001	F060	0
1A13	Source 1 Phase CA or CB Voltage RMS Source 1 Phase AB or AC Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A15 1A17	Source 1 Phase AB or AC Voltage Magnitude Source 1 Phase AB or AC Voltage Angle	0 to 999999.999 -359.9 to 0		0.001	F060	0
1A17 1A18	Source 1 Phase AB or AC voltage Angle Source 1 Phase BC or BA Voltage Magnitude	-359.9 to 0 0 to 999999.999	degrees V	0.1	F002 F060	0
1A18	Source 1 Phase BC of BA Voltage Magnitude	-359.9 to 0			F060 F002	
1A1A 1A1B	Source 1 Phase BC or BA Voltage Angle Source 1 Phase CA or CB Voltage Magnitude	-359.9 to 0 0 to 999999.999	degrees V	0.1	F002 F060	0
1A1D		-359.9 to 0	-	0.001	F060 F002	0
1A1D	Source 1 Phase CA or CB Voltage Angle Source 1 Auxiliary Voltage RMS	-339.9 10 0	degrees V	0.1	F002 F060	0
1A1E	Source 1 Auxiliary Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A20				0.001	F060 F002	0
1A22 1A23	Source 1 Auxiliary Voltage Angle Source 1 Zero Sequence Voltage Magnitude	-359.9 to 0 0 to 999999.999	degrees V		F002 F060	
1A23 1A25				0.001	F060 F002	0
TA25	Source 1 Zero Sequence Voltage Angle	-359.9 to 0	degrees	0.1	F002	U

Table B-9: MODBUS MEMORY MAP (Sheet 5 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
1A26	Source 1 Positive Sequence Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A28	Source 1 Positive Sequence Voltage Angle	-359.9 to 0	degrees	0.1	F002	0
1A29	Source 1 Negative Sequence Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A2B	Source 1 Negative Sequence Voltage Angle	-359.9 to 0	degrees	0.1	F002	0
1A2C	Reserved (20 items)				F001	0
1A40	Repeated for Source 2					
1A80	Repeated for Source 3					
1AC0	Repeated for Source 4					
1B00	Repeated for Source 5					
1B40	Repeated for Source 6					
Source F	Power (Read Only) (6 modules)					
1C00	Source 1 Three Phase Real Power	-100000000000 to 1000000000000	W	0.001	F060	0
1C02	Source 1 Phase A Real Power	-100000000000 to 100000000000	W	0.001	F060	0
1C04	Source 1 Phase B Real Power	-100000000000 to 1000000000000	W	0.001	F060	0
1C06	Source 1 Phase C Real Power	-10000000000 to 100000000000	W	0.001	F060	0
1C08	Source 1 Three Phase Reactive Power	-100000000000 to 1000000000000	var	0.001	F060	0
1C0A	Source 1 Phase A Reactive Power	-100000000000 to 100000000000	var	0.001	F060	0
1C0C	Source 1 Phase B Reactive Power	-100000000000 to 100000000000	var	0.001	F060	0
1C0E	Source 1 Phase C Reactive Power	-100000000000 to 100000000000	var	0.001	F060	0
1C10	Source 1 Three Phase Apparent Power	-100000000000 to 100000000000	VA	0.001	F060	0
1C12	Source 1 Phase A Apparent Power	-100000000000 to 100000000000	VA	0.001	F060	0
1C14	Source 1 Phase B Apparent Power	-100000000000 to 100000000000	VA	0.001	F060	0
1C16	Source 1 Phase C Apparent Power	-100000000000 to 100000000000	VA	0.001	F060	0
1C18	Source 1 Three Phase Power Factor	-0.999 to 1		0.001	F013	0
1C19	Source 1 Phase A Power Factor	-0.999 to 1		0.001	F013	0
1C1A	Source 1 Phase B Power Factor	-0.999 to 1		0.001	F013	0
1C1B	Source 1 Phase C Power Factor	-0.999 to 1		0.001	F013	0
1C1C	Reserved (4 items)				F001	0
1C20	Repeated for Source 2					
1C40	Repeated for Source 3					
1C60	Repeated for Source 4					
1C80	Repeated for Source 5					
1CA0	Repeated for Source 6					
Source E	Energy (Read Only Non-Volatile) (6 modules)					
1D00	Source 1 Positive Watthour	0 to 100000000000	Wh	0.001	F060	0
1D02	Source 1 Negative Watthour	0 to 100000000000	Wh	0.001	F060	0
1D04	Source 1 Positive Varhour	0 to 100000000000	varh	0.001	F060	0
1D06	Source 1 Negative Varhour	0 to 100000000000	varh	0.001	F060	0
1D08	Reserved (8 items)				F001	0
1D10	Repeated for Source 2					
1D20	Repeated for Source 3					
1D30	Repeated for Source 4					
1D40	Repeated for Source 5					
1D50	Repeated for Source 6					
nergy C	Commands (Read/Write Command)	•			·	
1D60	Energy Clear Command	0 to 1		1	F126	0 (No)

Table B-9: MODBUS MEMORY MAP (Sheet 6 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
Source Fr	equency (Read Only) (6 modules)					
1D80	Frequency for Source 1		Hz		F003	0
1D82	Frequency for Source 2		Hz		F003	0
1D84	Frequency for Source 3		Hz		F003	0
1D86	Frequency for Source 4		Hz		F003	0
1D88	Frequency for Source 5		Hz		F003	0
1D8A	Frequency for Source 6		Hz		F003	0
Source De	emand (Read Only) (6 modules)					
1E00	Source 1 Demand Ia	0 to 999999.999	А	0.001	F060	0
1E02	Source 1 Demand Ib	0 to 999999.999	A	0.001	F060	0
1E04	Source 1 Demand Ic	0 to 999999.999	А	0.001	F060	0
1E06	Source 1 Demand Watt	0 to 999999.999	W	0.001	F060	0
1E08	Source 1 Demand Var	0 to 999999.999	var	0.001	F060	0
1E0A	Source 1 Demand Va	0 to 999999.999	VA	0.001	F060	0
1E0C	Reserved (4 items)				F001	0
1E10	Repeated for Source 2					
1E20	Repeated for Source 3					
1E30	Repeated for Source 4					
1E40	Repeated for Source 5					
1E50	Repeated for Source 6					
Source De	emand Peaks (Read Only Non-Volatile) (6 modules)					
1E80	Source 1 Demand Ia Maximum	0 to 999999.999	А	0.001	F060	0
1E82	Source 1 Demand Ia Maximum Date	0 to 4294967295		1	F050	0
1E84	Source 1 Demand Ib Maximum	0 to 999999.999	А	0.001	F060	0
1E86	Source 1 Demand Ib Maximum Date	0 to 4294967295		1	F050	0
1E88	Source 1 Demand Ic Maximum	0 to 999999.999	А	0.001	F060	0
1E8A	Source 1 Demand Ic Maximum Date	0 to 4294967295		1	F050	0
1E8C	Source 1 Demand Watt Maximum	0 to 999999.999	W	0.001	F060	0
1E8E	Source 1 Demand Watt Maximum Date	0 to 4294967295		1	F050	0
1E90	Source 1 Demand Var	0 to 999999.999	var	0.001	F060	0
1E92	Source 1 Demand Var Maximum Date	0 to 4294967295		1	F050	0
1E94	Source 1 Demand Va Maximum	0 to 999999.999	VA	0.001	F060	0
1E96	Source 1 Demand Va Maximum Date	0 to 4294967295		1	F050	0
1E98	Reserved (8 items)				F001	0
1EA0	Repeated for Source 2					
1EC0	Repeated for Source 3					
1EE0	Repeated for Source 4					
1F00	Repeated for Source 5					
1F20	Repeated for Source 6					
Breaker fl	ashover (read/write setting) (2 modules)					
21A6	Breaker flashover 1 function	0 to 1		1	F102	0 (Disabled)
21A7	Breaker flashover 1 side 1 source	0 to 5		1	F167	0 (SRC 1)
21A8	Breaker flashover 1 side 2 source	0 to 6		1	F211	0 (None)
21A9	Breaker flashover 1 status closed A	0 to 65535		1	F300	0
21AA	Breaker flashover 1 status closed B	0 to 65535		1	F300	0
21AB	Breaker flashover 1 status closed C	0 to 65535		1	F300	0
21AC	Breaker flashover 1 voltage pickup level	0 to 1.5	pu	0.001	F001	850
21AD	Breaker flashover 1 voltage difference pickup level	0 to 100000	V	1	F060	1000
21AF	Breaker flashover 1 current pickup level	0 to 1.5	pu	0.001	F001	600
21B0	Breaker flashover 1 pickup delay	0 to 65.535	S	0.001	F001	100
21B1	Breaker flashover 1 supervision phase A	0 to 65535		1	F300	0
21B2	Breaker flashover 1 supervision phase B	0 to 65535		1	F300	0
21B3	Breaker flashover 1 supervision phase C	0 to 65535		1	F300	0
21B4	Breaker flashover 1 block	0 to 65535		1	F300	0

Table B-9: MODBUS MEMORY MAP (Sheet 7 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
21B5	Breaker flashover 1 events	0 to 1		1	F102	0 (Disabled)
21B6	Breaker flashover 1 target	0 to 2		1	F109	0 (Self-Reset)
21B7	Reserved (4 items)				F001	0
21BB	Repeated for breaker flashover 2	0 to 99999999	kA ² -cyc	1	F060	0
Breaker	Arcing Current Actuals (Read Only Non-Volatile) (2 mod	ules)				
21E0	Breaker 1 Arcing Current Phase A	0 to 99999999	kA ² -cyc	1	F060	0
21E2	Breaker 1 Arcing Current Phase B	0 to 99999999	kA ² -cyc	1	F060	0
21E4	Breaker 1 Arcing Current Phase C	0 to 99999999	kA ² -cyc	1	F060	0
21E6	Breaker 1 Operating Time Phase A	0 to 65535	ms	1	F001	0
21E7	Breaker 1 Operating Time Phase B	0 to 65535	ms	1	F001	0
21E8	Breaker 1 Operating Time Phase C	0 to 65535	ms	1	F001	0
21E9	Breaker 1 Operating Time	0 to 65535	ms	1	F001	0
21EA	Repeated for Breaker Arcing Current 2					
Breaker	Arcing Current Commands (Read/Write Command) (2 mo	odules)				
2224	Breaker 1 Arcing Current Clear Command	0 to 1		1	F126	0 (No)
2225	Breaker 2 Arcing Current Clear Command	0 to 1		1	F126	0 (No)
asswor	ds Unauthorized Access (Read/Write Command)			1		
2230	Reset Unauthorized Access	0 to 1		1	F126	0 (No)
ault Lo	cation (Read Only) (5 modules)					. ,
2340	Fault 1 Prefault Phase A Current Magnitude	0 to 999999.999	А	0.001	F060	0
2342	Fault 1 Prefault Phase A Current Angle	-359.9 to 0	degrees	0.1	F002	0
2343	Fault 1 Prefault Phase B Current Magnitude	0 to 999999.999	A	0.001	F060	0
2345	Fault 1 Prefault Phase B Current Angle	-359.9 to 0	degrees	0.1	F002	0
2346	Fault 1 Prefault Phase C Current Magnitude	0 to 999999.999	A	0.001	F060	0
2348	Fault 1 Prefault Phase C Current Angle	-359.9 to 0	degrees	0.1	F002	0
2349	Fault 1 Prefault Phase A Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
234B	Fault 1 Prefault Phase A Voltage Angle	-359.9 to 0	degrees	0.001	F002	0
234C	Fault 1 Prefault Phase B Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
2340 234E	Fault 1 Prefault Phase B Voltage Angle	-359.9 to 0	degrees	0.001	F002	0
234L	Fault 1 Prefault Phase C Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
2341	Fault 1 Prefault Phase C Voltage Angle	-359.9 to 0	-	0.001	F002	0
			degrees		F002 F060	
2352 2354	Fault 1 Phase A Current Magnitude Fault 1 Phase A Current Angle	0 to 999999.999 -359.9 to 0	A	0.001	F060 F002	0
			degrees			
2355	Fault 1 Phase B Current Magnitude	0 to 999999.999	A	0.001	F060	0
2357	Fault 1 Phase B Current Angle	-359.9 to 0	degrees	0.1	F002	0
2358	Fault 1 Phase C Current Magnitude	0 to 999999.999	A	0.001	F060	0
235A	Fault 1 Phase C Current Angle	-359.9 to 0	degrees	0.1	F002	0
235B	Fault 1 Phase A Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
235D	Fault 1 Phase A Voltage Angle	-359.9 to 0	degrees	0.1	F002	0
235E	Fault 1 Phase B Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
2360	Fault 1 Phase B Voltage Angle	-359.9 to 0	degrees	0.1	F002	0
2361	Fault 1 Phase C Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
2363	Fault 1 Phase C Voltage Angle	-359.9 to 0	degrees	0.1	F002	0
2364	Fault 1 Type	0 to 11		1	F148	0 (NA)
2365	Fault 1 Location based on Line length units (km or miles)	-3276.7 to 3276.7		0.1	F002	0
2366	Repeated for Fault 2					
238C	Repeated for Fault 3					
23B2	Repeated for Fault 4					
23D8	Repeated for Fault 5					
Synchro	check Actuals (Read Only) (2 modules)					
2400	Synchrocheck 1 Delta Voltage	-100000000000 to 1000000000000	V	1	F060	0
2402	Synchrocheck 1 Delta Frequency	0 to 655.35	Hz	0.01	F001	0
2402						

Table B-9: MODBUS MEMORY MAP (Sheet 8 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
2404	Repeated for Synchrocheck 2					
Autoreclo	ose Status (Read Only) (6 modules)					
2410	Autoreclose 1 Count	0 to 65535		1	F001	0
2411	Autoreclose 2 Count	0 to 65535		1	F001	0
2412	Autoreclose 3 Count	0 to 65535		1	F001	0
2413	Autoreclose 4 Count	0 to 65535		1	F001	0
2414	Autoreclose 5 Count	0 to 65535		1	F001	0
2415	Autoreclose 6 Count	0 to 65535		1	F001	0
Current D	Differential (Read Only)			-		-
2480	Local IA Magnitude	0 to 999999.999	A	0.001	F060	0
2482	Local IB Magnitude	0 to 999999.999	A	0.001	F060	0
2484	Local IC Magnitude	0 to 999999.999	A	0.001	F060	0
2486	Terminal 1 IA Magnitude	0 to 999999.999	A	0.001	F060	0
2488	Terminal 1 IB Magnitude	0 to 999999.999	A	0.001	F060	0
248A	Terminal 1 IC Magnitude	0 to 999999.999	A	0.001	F060	0
248C	Terminal 2 IA Magnitude	0 to 999999.999	A	0.001	F060	0
248E	Terminal 2 IB Magnitude	0 to 999999.999	A	0.001	F060	0
2490	Terminal 2 IC Magnitude	0 to 999999.999	A	0.001	F060	0
2492	Differential Current IA Magnitude	0 to 999999.999	A	0.001	F060	0
2494	Differential Current IB Magnitude	0 to 999999.999	A	0.001	F060	0
2496	Differential Current IC Magnitude	0 to 999999.999	A	0.001	F060	0
2498	Local IA Angle	-359.9 to 0	degrees	0.1	F002	0
2499	Local IB Angle	-359.9 to 0	degrees	0.1	F002	0
249A	Local IC Angle	-359.9 to 0	degrees	0.1	F002	0
249B	Terminal 1 IA Angle	-359.9 to 0	degrees	0.1	F002	0
249C	Terminal 1 IB Angle	-359.9 to 0	degrees	0.1	F002	0
249D	Terminal 1 IC Angle	-359.9 to 0	degrees	0.1	F002	0
249E	Terminal 2 IA Angle	-359.9 to 0	degrees	0.1	F002	0
249F	Terminal 2 IB Angle	-359.9 to 0	degrees	0.1	F002	0
24A0	Terminal 2 IC Angle	-359.9 to 0	degrees	0.1	F002	0
24A1	Differential Current IA Angle	-359.9 to 0	degrees	0.1	F002	0
24A2	Differential Current IB Angle	-359.9 to 0	degrees	0.1	F002	0
24A3	Differential Current IC Angle	-359.9 to 0	degrees	0.1	F002	0
24A4	Op Square Current IA	0 to 999999.999		0.001	F060	0
24A6	Op Square Current IB	0 to 999999.999		0.001	F060	0
24A8	Op Square Current IC	0 to 999999.999		0.001	F060	0
24AA	Restraint Square Current IA	0 to 999999.999		0.001	F060	0
24AC	Restraint Square Current IB	0 to 999999.999		0.001	F060	0
24AE	Restraint Square Current IC	0 to 999999.999		0.001	F060	0
24B0	Restraint Current IA	0 to 999999.999		0.001	F060	0
24B2	Restraint Current IB	0 to 999999.999		0.001	F060	0
24B4	Restraint Current IC	0 to 999999.999		0.001	F060	0
	leasurement Unit actual values (Read Only) (4 modules			0.571	F o	-
2540	PMU 1 Phase A Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
2542	PMU Unit 1 Phase A Voltage Angle	-359.9 to 0	°	0.1	F002	0
2543	PMU 1 Phase B Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
2545	PMU 1 Phase B Voltage Angle	-359.9 to 0	°	0.1	F002	0
2546	PMU 1 Phase C Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
2548	PMU 1 Phase C Voltage Angle	-359.9 to 0	°	0.1	F002	0
2549	PMU 1 Auxiliary Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
254B	PMU 1 Auxiliary Voltage Angle	-359.9 to 0	°	0.1	F002	0
254C	PMU 1 Positive Sequence Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
254E	PMU 1 Positive Sequence Voltage Angle	-359.9 to 0	•	0.1	F002	0
254F	PMU 1 Negative Sequence Voltage Magnitude	0 to 999999.999	V	0.001	F060	0

Table B-9: MODBUS MEMORY MAP (Sheet 9 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
2551	PMU 1 Negative Sequence Voltage Angle	-359.9 to 0	0	0.1	F002	0
2552	PMU 1 Zero Sequence Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
2554	PMU 1 Zero Sequence Voltage Angle	-359.9 to 0	0	0.1	F002	0
2555	PMU 1 Phase A Current Magnitude	0 to 999999.999	А	0.001	F060	0
2557	PMU 1 Phase A Current Angle	-359.9 to 0	٥	0.1	F002	0
2558	PMU 1 Phase B Current Magnitude	0 to 999999.999	А	0.001	F060	0
255A	PMU 1 Phase B Current Angle	-359.9 to 0	٥	0.1	F002	0
255B	PMU 1 Phase C Current Magnitude	0 to 999999.999	А	0.001	F060	0
255D	PMU 1 Phase C Current Angle	-359.9 to 0	٥	0.1	F002	0
255E	PMU 1 Ground Current Magnitude	0 to 999999.999	А	0.001	F060	0
2560	PMU 1 Ground Current Angle	-359.9 to 0	0	0.1	F002	0
2561	PMU 1 Positive Sequence Current Magnitude	0 to 999999.999	А	0.001	F060	0
2563	PMU 1 Positive Sequence Current Angle	-359.9 to 0	0	0.1	F002	0
2564	PMU 1 Negative Sequence Current Magnitude	0 to 999999.999	A	0.001	F060	0
2566	PMU 1 Negative Sequence Current Angle	-359.9 to 0	٥	0.1	F002	0
2567	PMU 1 Zero Sequence Current Magnitude	0 to 999999.999	А	0.001	F060	0
2569	PMU 1 Zero Sequence Current Angle	-359.9 to 0	٥	0.1	F002	0
256A	PMU 1 Frequency	2 to 90	Hz	0.001	F003	0
256C	PMU 1 df/dt	-327.67 to 327.67	Hz/s	0.01	F002	0
256D	PMU 1 Configuration Change Counter	0 to 655.35		0.01	F001	0
256E	Reserved (4 items)	0 to 1		1	F001	0
Expande	d FlexStates (Read Only)					
2B00	FlexStates, one per register (256 items)	0 to 1		1	F108	0 (Off)
Expande	d Digital Input/Output states (Read Only)					. ,
2D00	Contact Input States, one per register (96 items)	0 to 1		1	F108	0 (Off)
2D80	Contact Output States, one per register (64 items)	0 to 1		1	F108	0 (Off)
2E00	Virtual Output States, one per register (96 items)	0 to 1		1	F108	0 (Off)
Expande	d Remote Input/Output Status (Read Only)					. ,
2F00	Remote Device States, one per register (16 items)	0 to 1		1	F155	0 (Offline)
2F80	Remote Input States, one per register (64 items)	0 to 1		1	F108	0 (Off)
Oscillogr	raphy Values (Read Only)			l		. ,
3000	Oscillography Number of Triggers	0 to 65535		1	F001	0
3001	Oscillography Available Records	0 to 65535		1	F001	0
3002	Oscillography Last Cleared Date	0 to 40000000		1	F050	0
3004	Oscillography Number Of Cycles Per Record	0 to 65535		1	F001	0
	raphy Commands (Read/Write Command)			-		-
3005	Oscillography Force Trigger	0 to 1		1	F126	0 (No)
3011	Oscillography Clear Data	0 to 1		1	F126	0 (No)
	port Indexing (Read Only Non-Volatile)	0101			1 120	0 (110)
3020	Number of Fault Reports	0 to 65535		1	F001	0
	port Actuals (Read Only Non-Volatile) (15 modules)	0.000000			1001	v
3030	Fault Report 1 Time	0 to 4294967295		1	F050	0
3032	Fault Report 2 Time	0 to 4294967295		1	F050	0
3032	Fault Report 3 Time	0 to 4294967295		1	F050	0
3034	Fault Report 4 Time	0 to 4294967295		1	F050 F050	0
3038	Fault Report 5 Time	0 to 4294967295		1	F050	0
		0 to 4294967295				
303A	Fault Report 6 Time			1	F050	0
303C	Fault Report 7 Time	0 to 4294967295		1	F050	0
303E	Fault Report 8 Time	0 to 4294967295		1	F050	0
3040	Fault Report 9 Time	0 to 4294967295		1	F050	0
2042	Fault Report 10 Time	0 to 4294967295		1	F050	0
3042						
3042 3044	Fault Report 11 Time	0 to 4294967295		1	F050	0
	Fault Report 11 Time Fault Report 12 Time	0 to 4294967295 0 to 4294967295		1 1	F050 F050	0

Table B-9: MODBUS MEMORY MAP (Sheet 10 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
304A	Fault Report 14 Time	0 to 4294967295		1	F050	0
304C	Fault Report 15 Time	0 to 4294967295		1	F050	0
Modbus f	file transfer (read/write)					
3100	Name of file to read				F204	(none)
Modbus f	file transfer values (read only)					
3200	Character position of current block within file	0 to 4294967295		1	F003	0
3202	Size of currently-available data block	0 to 65535		1	F001	0
3203	Block of data from requested file (122 items)	0 to 65535		1	F001	0
Event rec	corder actual values (read only)					
3400	Events Since Last Clear	0 to 4294967295		1	F003	0
3402	Number of Available Events	0 to 4294967295		1	F003	0
3404	Event Recorder Last Cleared Date	0 to 4294967295		1	F050	0
Event rec	corder commands (read/write)					
3406	Event Recorder Clear Command	0 to 1		1	F126	0 (No)
DCMA In	put Values (Read Only) (24 modules)					
34C0	DCMA Inputs 1 Value	-9999999 to 9999999		1	F004	0
34C2	DCMA Inputs 2 Value	-9999999 to 9999999		1	F004	0
34C4	DCMA Inputs 3 Value	-9999999 to 9999999		1	F004	0
34C6	DCMA Inputs 4 Value	-9999999 to 9999999		1	F004	0
34C8	DCMA Inputs 5 Value	-9999999 to 9999999		1	F004	0
34CA	DCMA Inputs 6 Value	-9999999 to 9999999		1	F004	0
34CC	DCMA Inputs 7 Value	-9999999 to 9999999		1	F004	0
34CE	DCMA Inputs 8 Value	-9999999 to 9999999		1	F004	0
34D0	DCMA Inputs 9 Value	-9999999 to 9999999		1	F004	0
34D2	DCMA Inputs 10 Value	-9999999 to 9999999		1	F004	0
34D4	DCMA Inputs 11 Value	-9999999 to 9999999		1	F004	0
34D6	DCMA Inputs 12 Value	-9999999 to 9999999		1	F004	0
34D8	DCMA Inputs 13 Value	-9999999 to 9999999		1	F004	0
34DA	DCMA Inputs 14 Value	-9999999 to 9999999		1	F004	0
34DC	DCMA Inputs 15 Value	-9999999 to 9999999		1	F004	0
34DE	DCMA Inputs 16 Value	-9999999 to 9999999		1	F004	0
34E0	DCMA Inputs 17 Value	-9999999 to 9999999		1	F004	0
34E2	DCMA Inputs 18 Value	-9999999 to 9999999		1	F004	0
34E4	DCMA Inputs 19 Value	-9999999 to 9999999		1	F004	0
34E6	DCMA Inputs 20 Value	-9999999 to 9999999		1	F004	0
34E8	DCMA Inputs 21 Value	-9999999 to 9999999		1	F004	0
34EA	DCMA Inputs 22 Value	-9999999 to 9999999		1	F004	0
34EC	DCMA Inputs 23 Value	-9999999 to 9999999		1	F004	0
34EE	DCMA Inputs 24 Value	-9999999 to 9999999		1	F004	0
RTD Inpu	it Values (Read Only) (48 modules)					
34F0	RTD Input 1 Value	-32768 to 32767	°C	1	F002	0
34F1	RTD Input 2 Value	-32768 to 32767	°C	1	F002	0
34F2	RTD Input 3 Value	-32768 to 32767	°C	1	F002	0
34F3	RTD Input 4 Value	-32768 to 32767	°C	1	F002	0
34F4	RTD Input 5 Value	-32768 to 32767	°C	1	F002	0
34F5	RTD Input 6 Value	-32768 to 32767	°C	1	F002	0
34F6	RTD Input 7 Value	-32768 to 32767	°C	1	F002	0
34F7	RTD Input 8 Value	-32768 to 32767	°C	1	F002	0
34F8	RTD Input 9 Value	-32768 to 32767	°C	1	F002	0
34F9	RTD Input 10 Value	-32768 to 32767	°C	1	F002	0
34FA	RTD Input 11 Value	-32768 to 32767	°C	1	F002	0
34FB	RTD Input 12 Value	-32768 to 32767	°C	1	F002	0
34FC	RTD Input 13 Value	-32768 to 32767	°C	1	F002	0
34FD	RTD Input 14 Value	-32768 to 32767	°C	1	F002	0

Table B-9: MODBUS MEMORY MAP (Sheet 11 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
34FE	RTD Input 15 Value	-32768 to 32767	°C	1	F002	0
34FF	RTD Input 16 Value	-32768 to 32767	°C	1	F002	0
3500	RTD Input 17 Value	-32768 to 32767	°C	1	F002	0
3501	RTD Input 18 Value	-32768 to 32767	°C	1	F002	0
3502	RTD Input 19 Value	-32768 to 32767	°C	1	F002	0
3503	RTD Input 20 Value	-32768 to 32767	°C	1	F002	0
3504	RTD Input 21 Value	-32768 to 32767	°C	1	F002	0
3505	RTD Input 22 Value	-32768 to 32767	°C	1	F002	0
3506	RTD Input 23 Value	-32768 to 32767	°C	1	F002	0
3507	RTD Input 24 Value	-32768 to 32767	°C	1	F002	0
3508	RTD Input 25 Value	-32768 to 32767	°C	1	F002	0
3509	RTD Input 26 Value	-32768 to 32767	°C	1	F002	0
350A	RTD Input 27 Value	-32768 to 32767	°C	1	F002	0
350B	RTD Input 28 Value	-32768 to 32767	°C	1	F002	0
350C	RTD Input 29 Value	-32768 to 32767	°C	1	F002	0
350D	RTD Input 30 Value	-32768 to 32767	°C	1	F002	0
350E	RTD Input 31 Value	-32768 to 32767	°C	1	F002	0
350F	RTD Input 32 Value	-32768 to 32767	°C	1	F002	0
3510	RTD Input 33 Value	-32768 to 32767	°C	1	F002	0
3511	RTD Input 34 Value	-32768 to 32767	°C	1	F002	0
3512	RTD Input 35 Value	-32768 to 32767	°C	1	F002	0
3513	RTD Input 36 Value	-32768 to 32767	°C	1	F002	0
3514	RTD Input 37 Value	-32768 to 32767	°C	1	F002	0
3515	RTD Input 38 Value	-32768 to 32767	°C	1	F002	0
3516	RTD Input 39 Value	-32768 to 32767	°C	1	F002	0
3517	RTD Input 40 Value	-32768 to 32767	°C	1	F002	0
3518	RTD Input 41 Value	-32768 to 32767	°C	1	F002	0
3519	RTD Input 42 Value	-32768 to 32767	°C	1	F002	0
351A	RTD Input 43 Value	-32768 to 32767	°C	1	F002	0
351B	RTD Input 44 Value	-32768 to 32767	°C	1	F002	0
351C	RTD Input 45 Value	-32768 to 32767	°C	1	F002	0
351D	RTD Input 46 Value	-32768 to 32767	°C	1	F002	0
351E	RTD Input 47 Value	-32768 to 32767	°C	1	F002	0
351F	RTD Input 48 Value	-32768 to 32767	°C	1	F002	0
	ds (Read/Write Command)		-	-		-
4000	Command Password Setting	0 to 4294967295		1	F003	0
	ds (Read/Write Setting)					-
4002	Setting Password Setting	0 to 4294967295		1	F003	0
	ds (Read/Write)					-
4008	Command Password Entry	0 to 4294967295		1	F003	0
400A	Setting Password Entry	0 to 4294967295		1	F003	0
	ds (read only actual values)	010 120 1001 200			1000	<u> </u>
4010	Command password status	0 to 1		1	F102	0 (Disabled)
4011	Setting password status	0 to 1		1	F102	0 (Disabled)
	ds (read/write settings)	0.01				o (Bioabioa)
4012	Control password access timeout	5 to 480	min.	1	F001	5
4012	Setting password access timeout	5 to 480	min.	1	F001	30
4013	Invalid password attempts	2 to 5		1	F001	30
4014	Password lockout duration	5 to 60	min.	1	F001	5
4015	Password access events	0 to 1		1	F102	0 (Disabled)
	play Invoke (Read/Write Setting)			· ·	1 102	(Disabled)
4040	Invoke and Scroll Through User Display Menu Operand	0 to 65535		1	F300	0
	t (Read/Write Setting)	0 10 00000	L		1 300	0
4048	LED Test Function	0 to 1		1	F102	0 (Disabled)
		0.01		I	1 102	U (Disabled)

Table B-9: MODBUS MEMORY MAP (Sheet 12 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
4049	LED Test Control	0 to 65535		1	F300	0
Preference	ces (Read/Write Setting)					
404F	Language	0 to 3		1	F531	0 (English)
4050	Flash Message Time	0.5 to 10	S	0.1	F001	10
4051	Default Message Timeout	10 to 900	S	1	F001	300
4052	Default Message Intensity	0 to 3		1	F101	0 (25%)
4053	Screen Saver Feature	0 to 1		1	F102	0 (Disabled)
4054	Screen Saver Wait Time	1 to 65535	min	1	F001	30
4055	Current Cutoff Level	0.002 to 0.02	pu	0.001	F001	20
4056	Voltage Cutoff Level	0.1 to 1	V	0.1	F001	10
Commun	ications (Read/Write Setting)					
407E	COM1 minimum response time	0 to 1000	ms	10	F001	0
407F	COM2 minimum response time	0 to 1000	ms	10	F001	0
4080	Modbus Slave Address	1 to 254		1	F001	254
4083	RS485 Com1 Baud Rate	0 to 11		1	F112	8 (115200)
4084	RS485 Com1 Parity	0 to 2		1	F113	0 (None)
4085	RS485 Com2 Baud Rate	0 to 11		1	F112	8 (115200)
4086	RS485 Com2 Parity	0 to 2		1	F113	0 (None)
4087	IP Address	0 to 4294967295		1	F003	56554706
4089	IP Subnet Mask	0 to 4294967295		1	F003	4294966272
408B	Gateway IP Address	0 to 4294967295		1	F003	56554497
408D	Network Address NSAP				F074	0
409A	DNP Channel 1 Port	0 to 4		1	F177	0 (None)
409B	DNP Channel 2 Port	0 to 4		1	F177	0 (None)
409C	DNP Address	0 to 65519		1	F001	1
409D	Reserved	0 to 1		1	F001	0
409E	DNP Client Addresses (2 items)	0 to 4294967295		1	F003	0
40A3	TCP Port Number for the Modbus protocol	1 to 65535		1	F001	502
40A4	TCP/UDP Port Number for the DNP Protocol	1 to 65535		1	F001	20000
40A5	TCP Port Number for the HTTP (Web Server) Protocol	1 to 65535		1	F001	80
40A6	Main UDP Port Number for the TFTP Protocol	1 to 65535		1	F001	69
40A7	Data Transfer UDP Port Numbers for the TFTP Protocol (zero means "automatic") (2 items)	0 to 65535		1	F001	0
40A9	DNP Unsolicited Responses Function	0 to 1		1	F102	0 (Disabled)
40AA	DNP Unsolicited Responses Timeout	0 to 60	S	1	F001	5
40AB	DNP unsolicited responses maximum retries	1 to 255		1	F001	10
40AC	DNP unsolicited responses destination address	0 to 65519		1	F001	1
40AD	Ethernet operation mode	0 to 1		1	F192	0 (Half-Duplex)
40AE	DNP current scale factor	0 to 8		1	F194	2 (1)
40AF	DNP voltage scale factor	0 to 8		1	F194	2 (1)
40B0	DNP power scale factor	0 to 8		1	F194	2 (1)
40B1	DNP energy scale factor	0 to 8		1	F194	2 (1)
40B2	DNP power scale factor	0 to 8		1	F194	2 (1)
40B3	DNP other scale factor	0 to 8		1	F194	2 (1)
40B4	DNP current default deadband	0 to 65535		1	F001	30000
40B6	DNP voltage default deadband	0 to 65535		1	F001	30000
40B8	DNP power default deadband	0 to 65535		1	F001	30000
40BA	DNP energy default deadband	0 to 65535		1	F001	30000
40BE	DNP other default deadband	0 to 65535		1	F001	30000
40C0	DNP IIN time synchronization bit period	1 to 10080	min	1	F001	1440
40C1	DNP message fragment size	30 to 2048		1	F001	240
40C2	DNP client address 3	0 to 4294967295		1	F003	0
40C4	DNP client address 4	0 to 4294967295		1	F003	0
40C6	DNP client address 5	0 to 4294967295		1	F003	0

Table B-9: MODBUS MEMORY MAP (Sheet 13 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
40C8	DNP number of paired binary output control points	0 to 16		1	F001	0
40C9	DNP TCP connection timeout	0 to 16		1	F001	0
40CA	Reserved (22 items)	0 to 1		1	F001	0
40E0	TCP port number for the IEC 60870-5-104 protocol	1 to 65535		1	F001	2404
40E1	IEC 60870-5-104 protocol function	0 to 1		1	F102	0 (Disabled)
40E2	IEC 60870-5-104 protocol common address of ASDU	0 to 65535		1	F001	0
40E3	IEC 60870-5-104 protocol cyclic data transmit period	1 to 65535	s	1	F001	60
40E4	IEC 60870-5-104 current default threshold	0 to 65535		1	F001	30000
40E6	IEC 60870-5-104 voltage default threshold	0 to 65535		1	F001	30000
40E8	IEC 60870-5-104 power default threshold	0 to 65535		1	F001	30000
40EA	IEC 60870-5-104 energy default threshold	0 to 65535		1	F001	30000
40EC	IEC 60870-5-104 power default threshold	0 to 65535		1	F001	30000
40EE	IEC 60870-5-104 other default threshold	0 to 65535		1	F001	30000
40F0	IEC 60870-5-104 client address (5 items)	0 to 4294967295		1	F003	0
40FD	Reserved (60 items)	0 to 1		1	F001	0
4140	DNP object 1 default variation	1 to 2		1	F001	2
4141	DNP object 2 default variation	1 to 3		1	F001	2
4142	DNP object 20 default variation	0 to 3		1	F523	0 (1)
4143	DNP object 21 default variation	0 to 3		1	F524	0 (1)
4144	DNP object 22 default variation	0 to 3		1	F523	0 (1)
4145	DNP object 23 default variation	0 to 3		1	F523	0 (1)
4146	DNP object 30 default variation	1 to 5		1	F001	1
4147	DNP object 32 default variation	0 to 5		1	F525	0 (1)
	switch (Read/Write Setting)	0100		L .	1020	0(1)
4148	Ethernet switch IP address	0 to 4294967295		1	F003	3232235778
414A	Ethernet switch Modbus IP port number	1 to 65535		1	F001	502
414B	Ethernet switch Port 1 Events	0 to 1		1	F102	0 (Disabled)
414C	Ethernet switch Port 2 Events	0 to 1		1	F102	0 (Disabled)
414D	Ethernet switch Port 3 Events	0 to 1		1	F102	0 (Disabled)
414E	Ethernet switch Port 4 Events	0 to 1		1	F102	0 (Disabled)
414F	Ethernet switch Port 5 Events	0 to 1		1	F102	0 (Disabled)
4150	Ethernet switch Port 6 Events	0 to 1		1	F102	0 (Disabled)
	switch (Read Only Actual Values)	0.00.				0 (2:002:00)
4151	Ethernet switch MAC address			1	F072	0
4154	Ethernet switch Port 1 Status	0 to 2		1	F134	0 (Fail)
4155	Ethernet switch Port 2 Status	0 to 2		1	F134	0 (Fail)
4156	Ethernet switch Port 3 Status	0 to 2		1	F134	0 (Fail)
4157	Ethernet switch Port 3 Status	0 to 2		1	F134	0 (Fail)
4158	Ethernet switch Port 5 Status	0 to 2		1	F134	0 (Fail)
4158	Ethernet switch Port 5 Status	0 to 2		1	F134	0 (Fail)
	letwork Time Protocol (Read/Write Setting)	0102		L '	1 134	0 (1 all)
4168	Simple Network Time Protocol (SNTP) function	0 to 1		1	F102	0 (Disabled)
4169	Simple Network Time Protocol (SNTP) function	0 to 4294967295		1	F003	0 (Disabled)
416B	Simple Network Time Protocol (SNTP) Server in address	1 to 65535			F001	123
		1 10 00000		1	FUUT	123
	ger Commands (Read/Write Command)	0.4- 4	1	4	E400	0 (1)-)
4170	Data Logger Clear	0 to 1		1	F126	0 (No)
	Iger (Read/Write Setting)		1	1	FCOO	0
4181	Data Logger Channel Settings (16 items)				F600	0
4191	Data Logger Mode	0 to 1		1	F260	0 (continuous)
4192	Data Logger Trigger	0 to 65535		1	F300	0
4193	Data Logger Rate	15 to 3600000	ms	1	F003	60000
"leals (D	ead/Write Command)					
41A0	Real Time Clock Set Time	0 to 235959	1	1	F050	0

Table B-9: MODBUS MEMORY MAP (Sheet 14 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
Clock (Re	ead/Write Setting)					
41A2	SR Date Format	0 to 4294967295		1	F051	0
41A4	SR Time Format	0 to 4294967295		1	F052	0
41A6	IRIG-B Signal Type	0 to 2		1	F114	0 (None)
41A7	Clock Events Enable / Disable	0 to 1		1	F102	0 (Disabled)
41A8	Time Zone Offset from UTC	-24 to 24	hours	0.5	F002	0
41A9	Daylight Savings Time (DST) Function	0 to 1		1	F102	0 (Disabled)
41AA	Daylight Savings Time (DST) Start Month	0 to 11		1	F237	0 (January)
41AB	Daylight Savings Time (DST) Start Day	0 to 6		1	F238	0 (Sunday)
41AC	Daylight Savings Time (DST) Start Day Instance	0 to 4		1	F239	0 (First)
41AD	Daylight Savings Time (DST) Start Hour	0 to 23		1	F001	2
41AE	Daylight Savings Time (DST) Stop Month	0 to 11		1	F237	0 (January)
41AF	Daylight Savings Time (DST) Stop Day	0 to 6		1	F238	0 (Sunday)
41B0	Daylight Savings Time (DST) Stop Day Instance	0 to 4		1	F239	0 (First)
41B1	Daylight Savings Time (DST) Stop Hour	0 to 23		1	F001	2
Fault Rep	oort Commands (Read/Write Command)					
41B2	Fault Reports Clear Data Command	0 to 1		1	F126	0 (No)
Oscillogr	aphy (Read/Write Setting)					
41C0	Oscillography Number of Records	1 to 64		1	F001	15
41C1	Oscillography Trigger Mode	0 to 1		1	F118	0 (Auto. Overwrite)
41C2	Oscillography Trigger Position	0 to 100	%	1	F001	50
41C3	Oscillography Trigger Source	0 to 65535		1	F300	0
41C4	Oscillography AC Input Waveforms	0 to 4		1	F183	2 (16 samples/cycle)
41D0	Oscillography Analog Channel n (16 items)	0 to 65535		1	F600	0
4200	Oscillography Digital Channel n (63 items)	0 to 65535		1	F300	0
Trip and	Alarm LEDs (Read/Write Setting)					
4260	Trip LED Input FlexLogic Operand	0 to 65535		1	F300	0
4261	Alarm LED Input FlexLogic Operand	0 to 65535		1	F300	0
User Prog	grammable LEDs (Read/Write Setting) (48 modules)					
4280	FlexLogic [™] Operand to Activate LED	0 to 65535		1	F300	0
4281	User LED type (latched or self-resetting)	0 to 1		1	F127	1 (Self-Reset)
4282	Repeated for User-Programmable LED 2					
4284	Repeated for User-Programmable LED 3					
4286	Repeated for User-Programmable LED 4					
4288	Repeated for User-Programmable LED 5					
428A	Repeated for User-Programmable LED 6					
428C	Repeated for User-Programmable LED 7					
428E	Repeated for User-Programmable LED 8					
4290	Repeated for User-Programmable LED 9					
4292	Repeated for User-Programmable LED 10					
4294	Repeated for User-Programmable LED 11					
4296	Repeated for User-Programmable LED 12					
4298	Repeated for User-Programmable LED 13					
429A	Repeated for User-Programmable LED 14					
429C	Repeated for User-Programmable LED 15					
429E	Repeated for User-Programmable LED 16					
42A0	Repeated for User-Programmable LED 17					
42A2	Repeated for User-Programmable LED 18					
42A4	Repeated for User-Programmable LED 19					
42A6	Repeated for User-Programmable LED 20					
42A8	Repeated for User-Programmable LED 21					
42AA	Repeated for User-Programmable LED 22					
42AC	Repeated for User-Programmable LED 23					
42AE	Repeated for User-Programmable LED 24					

Table B-9: MODBUS MEMORY MAP (Sheet 15 of 55)

	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
42B0	Repeated for User-Programmable LED 25					
42B2	Repeated for User-Programmable LED 26					
42B4	Repeated for User-Programmable LED 27					
42B6	Repeated for User-Programmable LED 28					
42B8	Repeated for User-Programmable LED 29					
42BA	Repeated for User-Programmable LED 30					
42BC	Repeated for User-Programmable LED 31					
42BE	Repeated for User-Programmable LED 32					
42C0	Repeated for User-Programmable LED 33					
42C2	Repeated for User-Programmable LED 34					
42C4	Repeated for User-Programmable LED 35					
42C6	Repeated for User-Programmable LED 36					
42C8	Repeated for User-Programmable LED 37					
42CA	Repeated for User-Programmable LED 38					
42CC	Repeated for User-Programmable LED 39					
42CE	Repeated for User-Programmable LED 40					
42D0	Repeated for User-Programmable LED 41					
42D2	Repeated for User-Programmable LED 42					
42D4	Repeated for User-Programmable LED 43					
42D6	Repeated for User-Programmable LED 44					
42D8	Repeated for User-Programmable LED 45					
42DA	Repeated for User-Programmable LED 46					
42DC	Repeated for User-Programmable LED 47					
42DE	Repeated for User-Programmable LED 48					
	on (Read/Write Setting)					
43E0	Relay Programmed State	0 to 1		1	F133	0 (Not Programmed)
43E1	Relay Name				F202	"Relay-1"
User Pro	grammable Self Tests (Read/Write Setting)				1	-
4441	User Programmable Detect Ring Break Function	0 to 1		1	F102	1 (Enabled)
4441 4442		0 to 1 0 to 1		1	F102 F102	1 (Enabled) 1 (Enabled)
	User Programmable Detect Ring Break Function					, ,
4442	User Programmable Detect Ring Break Function User Programmable Direct Device Off Function	0 to 1		1	F102	1 (Enabled)
4442 4443	User Programmable Detect Ring Break Function User Programmable Direct Device Off Function User Programmable Remote Device Off Function	0 to 1 0 to 1		1 1	F102 F102	1 (Enabled) 1 (Enabled)
4442 4443 4444	User Programmable Detect Ring Break Function User Programmable Direct Device Off Function User Programmable Remote Device Off Function User Programmable Primary Ethernet Fail Function	0 to 1 0 to 1 0 to 1		1 1 1	F102 F102 F102	1 (Enabled) 1 (Enabled) 0 (Disabled)
4442 4443 4444 4445	User Programmable Detect Ring Break Function User Programmable Direct Device Off Function User Programmable Remote Device Off Function User Programmable Primary Ethernet Fail Function User Programmable Secondary Ethernet Fail Function	0 to 1 0 to 1 0 to 1 0 to 1 0 to 1	 	1 1 1 1	F102 F102 F102 F102	1 (Enabled) 1 (Enabled) 0 (Disabled) 0 (Disabled)
4442 4443 4444 4445 4446	User Programmable Detect Ring Break Function User Programmable Direct Device Off Function User Programmable Remote Device Off Function User Programmable Primary Ethernet Fail Function User Programmable Secondary Ethernet Fail Function User Programmable Battery Fail Function	0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1		1 1 1 1 1 1	F102 F102 F102 F102 F102 F102	1 (Enabled) 1 (Enabled) 0 (Disabled) 0 (Disabled) 1 (Enabled)
4442 4443 4444 4445 4446 4447	User Programmable Detect Ring Break Function User Programmable Direct Device Off Function User Programmable Remote Device Off Function User Programmable Primary Ethernet Fail Function User Programmable Secondary Ethernet Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function	0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1	 	1 1 1 1 1 1 1	F102 F102 F102 F102 F102 F102 F102	1 (Enabled) 1 (Enabled) 0 (Disabled) 0 (Disabled) 1 (Enabled) 1 (Enabled)
4442 4443 4444 4445 4446 4447 4448 4449	User Programmable Detect Ring Break Function User Programmable Direct Device Off Function User Programmable Remote Device Off Function User Programmable Primary Ethernet Fail Function User Programmable Secondary Ethernet Fail Function User Programmable Battery Fail Function User Programmable SNTP Fail Function User Programmable IRIG-B Fail Function	0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1	 	1 1 1 1 1 1 1 1	F102 F102 F102 F102 F102 F102 F102 F102	1 (Enabled) 1 (Enabled) 0 (Disabled) 0 (Disabled) 1 (Enabled) 1 (Enabled) 1 (Enabled)
4442 4443 4444 4445 4446 4447 4448 4449	User Programmable Detect Ring Break Function User Programmable Direct Device Off Function User Programmable Remote Device Off Function User Programmable Primary Ethernet Fail Function User Programmable Secondary Ethernet Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable IRIG-B Fail Function User Programmable Ethernet Switch Fail Function	0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1	 	1 1 1 1 1 1 1 1	F102 F102 F102 F102 F102 F102 F102 F102	1 (Enabled) 1 (Enabled) 0 (Disabled) 0 (Disabled) 1 (Enabled) 1 (Enabled) 1 (Enabled)
4442 4443 4444 4445 4446 4447 4448 4449 CT Settir	User Programmable Detect Ring Break Function User Programmable Direct Device Off Function User Programmable Remote Device Off Function User Programmable Primary Ethernet Fail Function User Programmable Secondary Ethernet Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable IRIG-B Fail Function User Programmable Ethernet Switch Fail Function user Read/Write Setting) (6 modules)	0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1		1 1 1 1 1 1 1 1 1 1	F102 F102 F102 F102 F102 F102 F102 F102	1 (Enabled) 1 (Enabled) 0 (Disabled) 0 (Disabled) 1 (Enabled) 1 (Enabled) 1 (Enabled) 0 (Disabled)
4442 4443 4444 4445 4446 4447 4448 4449 CT Settir 4480	User Programmable Detect Ring Break Function User Programmable Direct Device Off Function User Programmable Remote Device Off Function User Programmable Primary Ethernet Fail Function User Programmable Secondary Ethernet Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable IRIG-B Fail Function User Programmable Ethernet Switch Fail Function User Programmable Ethernet Switch Fail Function Phase CT 1 Primary	0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 1 to 65000		1 1 1 1 1 1 1 1 1 1	F102 F102 F102 F102 F102 F102 F102 F102	1 (Enabled) 1 (Enabled) 0 (Disabled) 0 (Disabled) 1 (Enabled) 1 (Enabled) 1 (Enabled) 0 (Disabled) 1
4442 4443 4444 4445 4446 4447 4448 4449 CT Settir 4480 4481	User Programmable Detect Ring Break Function User Programmable Direct Device Off Function User Programmable Remote Device Off Function User Programmable Primary Ethernet Fail Function User Programmable Secondary Ethernet Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable IRIG-B Fail Function User Programmable Ethernet Switch Fail Function Deter Programmable Ethernet Switch Fail Function Phase CT 1 Primary Phase CT 1 Secondary	0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 1 to 65000 0 to 1		1 1 1 1 1 1 1 1 1 1 1 1	F102 F102 F102 F102 F102 F102 F102 F102	1 (Enabled) 1 (Enabled) 0 (Disabled) 0 (Disabled) 1 (Enabled) 1 (Enabled) 1 (Enabled) 0 (Disabled) 1 0 (Disabled)
4442 4443 4444 4445 4446 4447 4448 4449 CT Settin 4480 4481 4482	User Programmable Detect Ring Break Function User Programmable Direct Device Off Function User Programmable Remote Device Off Function User Programmable Remote Device Off Function User Programmable Primary Ethernet Fail Function User Programmable Secondary Ethernet Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable IRIG-B Fail Function User Programmable Ethernet Switch Fail Function Deter Programmable Ethernet Switch Fail Function Phase CT 1 Primary Phase CT 1 Secondary Ground CT 1 Primary	0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 1 to 65000 0 to 1 1 to 65000	 A A A	1 1 1 1 1 1 1 1 1 1 1 1 1 1	F102 F102 F102 F102 F102 F102 F102 F102	1 (Enabled) 1 (Enabled) 0 (Disabled) 0 (Disabled) 1 (Enabled) 1 (Enabled) 1 (Enabled) 0 (Disabled) 1 0 (Disabled) 1
4442 4443 4444 4445 4446 4447 4448 4449 CT Settin 4480 4481 4482 4483	User Programmable Detect Ring Break Function User Programmable Direct Device Off Function User Programmable Remote Device Off Function User Programmable Remote Device Off Function User Programmable Primary Ethernet Fail Function User Programmable Secondary Ethernet Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable IRIG-B Fail Function User Programmable Ethernet Switch Fail Function User Programmable Ethernet Switch Fail Function Phase CT 1 Primary Phase CT 1 Secondary Ground CT 1 Secondary	0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 1 to 65000 0 to 1 1 to 65000	 A A A	1 1 1 1 1 1 1 1 1 1 1 1 1 1	F102 F102 F102 F102 F102 F102 F102 F102	1 (Enabled) 1 (Enabled) 0 (Disabled) 0 (Disabled) 1 (Enabled) 1 (Enabled) 1 (Enabled) 0 (Disabled) 1 0 (Disabled) 1
4442 4443 4444 4445 4446 4447 4448 4449 CT Settir 4480 4481 4482 4483 4484	User Programmable Detect Ring Break Function User Programmable Direct Device Off Function User Programmable Remote Device Off Function User Programmable Primary Ethernet Fail Function User Programmable Secondary Ethernet Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable IRIG-B Fail Function User Programmable Ethernet Switch Fail Function User Programmable Ethernet Switch Fail Function Phase CT 1 Primary Phase CT 1 Secondary Ground CT 1 Primary Ground CT 1 Secondary Repeated for CT Bank 2	0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 1 to 65000 0 to 1 1 to 65000	 A A A	1 1 1 1 1 1 1 1 1 1 1 1 1 1	F102 F102 F102 F102 F102 F102 F102 F102	1 (Enabled) 1 (Enabled) 0 (Disabled) 0 (Disabled) 1 (Enabled) 1 (Enabled) 1 (Enabled) 0 (Disabled) 1 0 (Disabled) 1 1 1 0 (1 A) 1
4442 4443 4444 4445 4446 4447 4448 4449 CT Settir 4480 4481 4482 4483 4484 4488 4484	User Programmable Detect Ring Break Function User Programmable Direct Device Off Function User Programmable Remote Device Off Function User Programmable Primary Ethernet Fail Function User Programmable Secondary Ethernet Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable IRIG-B Fail Function User Programmable Ethernet Switch Fail Function Phase CT 1 Primary Phase CT 1 Primary Phase CT 1 Secondary Ground CT 1 Primary Ground CT 1 Secondary Repeated for CT Bank 2 Repeated for CT Bank 3 Repeated for CT Bank 4	0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 1 to 65000 0 to 1 1 to 65000	 A A A	1 1 1 1 1 1 1 1 1 1 1 1 1 1	F102 F102 F102 F102 F102 F102 F102 F102	1 (Enabled) 1 (Enabled) 0 (Disabled) 0 (Disabled) 1 (Enabled) 1 (Enabled) 1 (Enabled) 0 (Disabled) 1 0 (Disabled) 1 1 1 0 (1 A) 1
4442 4443 4444 4445 4446 4447 4448 4449 CT Settir 4480 4481 4482 4483 4484 4488	User Programmable Detect Ring Break Function User Programmable Direct Device Off Function User Programmable Remote Device Off Function User Programmable Primary Ethernet Fail Function User Programmable Secondary Ethernet Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable IRIG-B Fail Function User Programmable Ethernet Switch Fail Function User Programmable Ethernet Switch Fail Function Phase CT 1 Primary Phase CT 1 Secondary Ground CT 1 Secondary Repeated for CT Bank 2 Repeated for CT Bank 3	0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 1 to 65000 0 to 1 1 to 65000	 A A A	1 1 1 1 1 1 1 1 1 1 1 1 1 1	F102 F102 F102 F102 F102 F102 F102 F102	1 (Enabled) 1 (Enabled) 0 (Disabled) 0 (Disabled) 1 (Enabled) 1 (Enabled) 1 (Enabled) 0 (Disabled) 1 0 (Disabled) 1
4442 4443 4444 4445 4446 4447 4448 4449 CT Settir 4480 4481 4482 4483 4484 4488 4484 4488 4480 4490 4494	User Programmable Detect Ring Break Function User Programmable Direct Device Off Function User Programmable Remote Device Off Function User Programmable Remote Device Off Function User Programmable Primary Ethernet Fail Function User Programmable Secondary Ethernet Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable IRIG-B Fail Function User Programmable Ethernet Switch Fail Function User Programmable Ethernet Switch Fail Function User CT 1 Primary Phase CT 1 Primary Phase CT 1 Secondary Ground CT 1 Secondary Repeated for CT Bank 2 Repeated for CT Bank 4 Repeated for CT Bank 5 Repeated for CT Bank 6	0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 1 to 65000 0 to 1 1 to 65000	 A A A	1 1 1 1 1 1 1 1 1 1 1 1 1 1	F102 F102 F102 F102 F102 F102 F102 F102	1 (Enabled) 1 (Enabled) 0 (Disabled) 0 (Disabled) 1 (Enabled) 1 (Enabled) 1 (Enabled) 0 (Disabled) 1 0 (Disabled) 1
4442 4443 4444 4445 4446 4447 4448 4449 CT Settir 4480 4481 4482 4483 4484 4488 4484 4488 4480 4490 4494	User Programmable Detect Ring Break Function User Programmable Direct Device Off Function User Programmable Remote Device Off Function User Programmable Remote Device Off Function User Programmable Primary Ethernet Fail Function User Programmable Secondary Ethernet Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable IRIG-B Fail Function User Programmable Ethernet Switch Fail Function User Programmable Ethernet Switch Fail Function Phase CT 1 Primary Phase CT 1 Secondary Ground CT 1 Primary Ground CT 1 Secondary Repeated for CT Bank 2 Repeated for CT Bank 3 Repeated for CT Bank 4 Repeated for CT Bank 5 Repeated for CT Bank 6 Top (Read/Write Setting) (3 modules)	0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 1 to 65000 0 to 1 1 to 65000 0 to 1 1 to 65000 0 to 1	 A A A		F102 F102 F102 F102 F102 F102 F102 F102	1 (Enabled) 1 (Enabled) 0 (Disabled) 0 (Disabled) 1 (Enabled) 1 (Enabled) 1 (Enabled) 0 (Disabled) 1 0 (1 A) 1 0 (1 A)
4442 4443 4444 4445 4446 4447 4448 4449 CT Settir 4480 4481 4482 4483 4484 4488 4488 4488 448C 4490 4494 VT Settir	User Programmable Detect Ring Break Function User Programmable Direct Device Off Function User Programmable Remote Device Off Function User Programmable Remote Device Off Function User Programmable Remote Device Off Function User Programmable Remote Device Off Function User Programmable Secondary Ethernet Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable IRIG-B Fail Function User Programmable Ethernet Switch Fail Function User Programmable Ethernet Switch Fail Function Phase CT 1 Primary Phase CT 1 Primary Ground CT 1 Secondary Repeated for CT Bank 2 Repeated for CT Bank 4 Repeated for CT Bank 5 Repeated for CT Bank 6 try (Read/Write Setting) (3 modules) Phase VT 1 Connection	0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 1 to 65000 0 to 1 1 to 65000 0 to 1 1 to 65000 0 to 1 0	A A A A A A A A A A A A A A		F102 F102 F102 F102 F102 F102 F102 F102	1 (Enabled) 1 (Enabled) 0 (Disabled) 0 (Disabled) 1 (Enabled) 1 (Enabled) 1 (Enabled) 0 (Disabled) 1 0 (1 A) 1 0 (1 A) 0 (1 A) 0 (1 A)
4442 4443 4444 4445 4446 4447 4448 4449 CT Settin 4480 4481 4482 4483 4484 4488 4488 4488 4480 4494 VT Settin 4500 4501	User Programmable Detect Ring Break Function User Programmable Direct Device Off Function User Programmable Remote Device Off Function User Programmable Remote Device Off Function User Programmable Remote Device Off Function User Programmable Remote Device Off Function User Programmable Secondary Ethernet Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable IRIG-B Fail Function User Programmable Ethernet Switch Fail Function User Programmable Ethernet Switch Fail Function User Programmable Ethernet Switch Fail Function Phase CT 1 Primary Phase CT 1 Secondary Ground CT 1 Primary Ground CT 1 Secondary Repeated for CT Bank 2 Repeated for CT Bank 4 Repeated for CT Bank 5 Repeated for CT Bank 6 rgs (Read/Write Setting) (3 modules) Phase VT 1 Connection Phase VT 1 Secondary	0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 1 to 65000 0 to 1 1 to 65000 0 to 1 1 to 65000 0 to 1 0 to 1 50 to 240	A A A A A A A A A A A A A A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F102 F102 F102 F102 F102 F102 F102 F102	1 (Enabled) 1 (Enabled) 0 (Disabled) 0 (Disabled) 1 (Enabled) 1 (Enabled) 1 (Enabled) 0 (Disabled) 1 0 (1 A) 1 0 (1 A)
4442 4443 4444 4445 4446 4447 4448 4449 CT Settin 4480 4481 4482 4483 4484 4488 4482 4488 4486 4490 4494 VT Settin 4500 4501 4502	User Programmable Detect Ring Break Function User Programmable Direct Device Off Function User Programmable Remote Device Off Function User Programmable Remote Device Off Function User Programmable Remote Device Off Function User Programmable Remote Device Off Function User Programmable Remote Device Off Function User Programmable Secondary Ethernet Fail Function User Programmable Battery Fail Function User Programmable IRIG-B Fail Function User Programmable Ethernet Switch Fail Function User Programmable Ethernet Switch Fail Function User Programmable Ethernet Switch Fail Function User Programmable Ethernet Switch Fail Function User Programmable Ethernet Switch Fail Function User Programmable Ethernet Switch Fail Function User Of 1 Primary Phase CT 1 Primary Ground CT 1 Secondary Repeated for CT Bank 2 Repeated for CT Bank 4 Repeated for CT Bank 5 Repeated for CT Bank 6 Togs (Read/Write Setting) (3 modules) Phase VT 1 Connection Phase VT 1 Secondary Phase VT 1 Ratio	0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 1 to 65000 0 to 1 1 to 65000 0 to 1 0 to 1 0 to 1 0 to 1 1 to 65000 0 to 1 1 to 65000 1 to 1 1 to 65000 1 to 1 1 to 65000 1 to 1 1 to 65000 1 to 1 1 to 65000 1 to 1 1 to 65000 1 to 1 1 to 65000 1 to 1 1 to 65000 1 to 1 1 to 65000 1 to 1 1 to 65000 1 to 1 1 to 65000 1 to 1 1 to 65000 1 to 1 1 to 65000 1 to 1 1 to 65000 1 to 1 1 to 65000 1 to 2400 1 to 24000	A A A A A A A A A A A A A A	1 1 1 1 1 1 1 1 1 1 1 1 1 1	F102 F102 F102 F102 F102 F102 F102 F102	1 (Enabled) 1 (Enabled) 0 (Disabled) 0 (Disabled) 1 (Enabled) 1 (Enabled) 1 (Enabled) 0 (Disabled) 0 (Disabled) 1 0 (1 A) 1 0 (1 A) 0 (1 A) 0 (1 A) 1 0 (1 A) 1 0 (1 A)
4442 4443 4444 4445 4446 4447 4448 4449 CT Settin 4480 4481 4482 4483 4484 4488 4488 4488 4480 4494 VT Settin 4500 4501	User Programmable Detect Ring Break Function User Programmable Direct Device Off Function User Programmable Remote Device Off Function User Programmable Remote Device Off Function User Programmable Remote Device Off Function User Programmable Remote Device Off Function User Programmable Secondary Ethernet Fail Function User Programmable Battery Fail Function User Programmable Battery Fail Function User Programmable IRIG-B Fail Function User Programmable Ethernet Switch Fail Function User Programmable Ethernet Switch Fail Function User Programmable Ethernet Switch Fail Function Phase CT 1 Primary Phase CT 1 Secondary Ground CT 1 Primary Ground CT 1 Secondary Repeated for CT Bank 2 Repeated for CT Bank 4 Repeated for CT Bank 5 Repeated for CT Bank 6 rgs (Read/Write Setting) (3 modules) Phase VT 1 Connection Phase VT 1 Secondary	0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 1 to 65000 0 to 1 1 to 65000 0 to 1 1 to 65000 0 to 1 0 to 1 50 to 240	A A A A V V :1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F102 F102 F102 F102 F102 F102 F102 F102	1 (Enabled) 1 (Enabled) 0 (Disabled) 0 (Disabled) 1 (Enabled) 1 (Enabled) 1 (Enabled) 0 (Disabled) 1 0 (1 A) 1 0 (1 A) 0 (1 A) 0 (1 A) 0 (1 A)

Table B–9: MODBUS MEMORY MAP (Sheet 16 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
4508	Repeated for VT Bank 2					
4510	Repeated for VT Bank 3					
Source S	Settings (Read/Write Setting) (6 modules)					
4580	Source 1 Name				F206	"SRC 1"
4583	Source 1 Phase CT	0 to 63		1	F400	0
4584	Source 1 Ground CT	0 to 63		1	F400	0
4585	Source 1 Phase VT	0 to 63		1	F400	0
4586	Source 1 Auxiliary VT	0 to 63		1	F400	0
4587	Repeated for Source 2					
458E	Repeated for Source 3					
4595	Repeated for Source 4					
459C	Repeated for Source 5					
45A3	Repeated for Source 6					
Power Sy	ystem (Read/Write Setting)					
4600	Nominal Frequency	25 to 60	Hz	1	F001	60
4601	Phase Rotation	0 to 1		1	F106	0 (ABC)
4602	Frequency And Phase Reference	0 to 5		1	F167	0 (SRC 1)
4603	Frequency Tracking Function	0 to 1		1	F102	1 (Enabled)
L90 Pow	er System (Read/Write Setting)					
4610	L90 Number of Terminals	2 to 3		1	F001	2
4611	L90 Number of Channels	1 to 2		1	F001	1
4612	Charging Current Compensation	0 to 1		1	F102	0 (Disabled)
4613	Positive Sequence Reactance	0.1 to 65.535	kohms	0.001	F001	100
4614	Zero Sequence Reactance	0.1 to 65.535	kohms	0.001	F001	100
4615	Zero Sequence Current Removal	0 to 1		1	F102	0 (Disabled)
4616	Local Relay ID	0 to 255		1	F001	0
4617	Terminal 1 ID	0 to 255		1	F001	0
4618	Terminal 2 ID	0 to 255		1	F001	0
4619	Channel Asymmetry Compensation	0 to 65535		1	F300	0
461A	Block GPS Time Reference	0 to 65535		1	F300	0
461B	Maximum Channel Asymmetry	0 to 10	ms	0.1	F001	15
461C	Round Trip Time	0 to 10	ms	0.1	F001	15
Breaker	control (read/write settings)					
4700	Breaker 1 function	0 to 1		1	F102	0 (Disabled)
4701	Breaker 1 name				F206	"Bkr 1"
4704	Breaker 1 mode	0 to 1		1	F157	0 (3-Pole)
4705	Breaker 1 open	0 to 65535		1	F300	0
4706	Breaker 1 close	0 to 65535		1	F300	0
4707	Breaker 1 phase A / three-pole closed	0 to 65535		1	F300	0
4708	Breaker 1 phase B closed	0 to 65535		1	F300	0
4709	Breaker 1 phase C closed	0 to 65535		1	F300	0
470A	Breaker 1 external alarm	0 to 65535		1	F300	0
470B	Breaker 1 alarm delay	0 to 1000000	S	0.001	F003	0
470D	Breaker 1 pushbutton control	0 to 1		1	F102	0 (Disabled)
470E	Breaker 1 manual close recall time	0 to 1000000	S	0.001	F003	0
4710	Breaker 1 out of service	0 to 65535		1	F300	0
4711	Breaker 1 block open	0 to 65535		1	F300	0
4712	Breaker 1 block close	0 to 65535		1	F300	0
4713	Breaker 1 phase A / three-pole opened	0 to 65535		1	F300	0
4714	Breaker 1 phase B opened	0 to 65535		1	F300	0
4715	Breaker 1 phase C opened	0 to 65535		1	F300	0
4716	Breaker 1 operate time	0 to 2	S	0.001	F001	70
		1	1			1
4717	Breaker 1 events	0 to 1		1	F102	0 (Disabled)

Table B-9: MODBUS MEMORY MAP (Sheet 17 of 55)

4719	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
	Repeated for breaker 2					
4732	Repeated for breaker 3					
474B	Repeated for breaker 4					
Synchroo	check (Read/Write Setting) (2 modules)					
47A0	Synchrocheck 1 Function	0 to 1		1	F102	0 (Disabled)
47A1	Synchrocheck 1 V1 Source	0 to 5		1	F167	0 (SRC 1)
47A2	Synchrocheck 1 V2 Source	0 to 5		1	F167	1 (SRC 2)
47A3	Synchrocheck 1 Maximum Voltage Difference	0 to 400000	V	1	F060	10000
47A5	Synchrocheck 1 Maximum Angle Difference	0 to 100	degrees	1	F001	30
47A6	Synchrocheck 1 Maximum Frequency Difference	0 to 2	Hz	0.01	F001	100
47A7	Synchrocheck 1 Dead Source Select	0 to 5		1	F176	1 (LV1 and DV2)
47A8	Synchrocheck 1 Dead V1 Maximum Voltage	0 to 1.25	pu	0.01	F001	30
47A9	Synchrocheck 1 Dead V2 Maximum Voltage	0 to 1.25	pu	0.01	F001	30
47AA	Synchrocheck 1 Live V1 Minimum Voltage	0 to 1.25	pu	0.01	F001	70
47AB	Synchrocheck 1 Live V2 Minimum Voltage	0 to 1.25	pu	0.01	F001	70
47AC	Synchrocheck 1 Target	0 to 2		1	F109	0 (Self-reset)
47AD	Synchrocheck 1 Events	0 to 1		1	F102	0 (Disabled)
47AE	Synchrocheck 1 Block	0 to 65535		1	F300	0
47AF	Synchrocheck 1 Frequency Hysteresis	0 to 0.1	Hz	0.01	F001	6
47B0	Repeated for Synchrocheck 2					
Demand /	(Read/Write Setting)					
47D0	Demand Current Method	0 to 2		1	F139	0 (Thrm. Exponentia
47D1	Demand Power Method	0 to 2		1	F139	0 (Thrm. Exponentia
47D2	Demand Interval	0 to 5		1	F132	2 (15 MIN)
47D3	Demand Input	0 to 65535		1	F300	0
	(Read/Write Command)			1		-
47D4	Demand Clear Record	0 to 1		1	F126	0 (No)
Flexcurve	es A and B (Read/Write Settings)					
4800	FlexCurve A (120 items)	0 to 65535	ms	1	F011	0
48F0	FlexCurve B (120 items)	0 to 65535	ms	1	F011	0
	FlexCurve B (120 items) User Map (Read/Write Setting)	0 to 65535	ms	1	F011	0
Modbus (User Map (Read/Write Setting)	1	ms			-
Modbus U 4A00	User Map (Read/Write Setting) Modbus Address Settings for User Map (256 items)	0 to 65535 0 to 65535	I	1	F011	0
Modbus (4A00 User Disp	User Map (Read/Write Setting) Modbus Address Settings for User Map (256 items) plays Settings (Read/Write Setting) (16 modules)	1	I		F001	-
Modbus (4A00 User Disp 4C00	User Map (Read/Write Setting) Modbus Address Settings for User Map (256 items) plays Settings (Read/Write Setting) (16 modules) User-Definable Display 1 Top Line Text	0 to 65535		1	F001	0
4A00 User Disp	User Map (Read/Write Setting) Modbus Address Settings for User Map (256 items) plays Settings (Read/Write Setting) (16 modules) User-Definable Display 1 Top Line Text User-Definable Display 1 Bottom Line Text	0 to 65535		1	F001	0
Modbus (4A00 User Disp 4C00 4C0A 4C14	User Map (Read/Write Setting) Modbus Address Settings for User Map (256 items) plays Settings (Read/Write Setting) (16 modules) User-Definable Display 1 Top Line Text User-Definable Display 1 Bottom Line Text Modbus Addresses of Display 1 Items (5 items)	0 to 65535		1	F001 F202 F202 F001	0 "" 0
Modbus I 4A00 User Disp 4C00 4C0A 4C14 4C19	User Map (Read/Write Setting) Modbus Address Settings for User Map (256 items) plays Settings (Read/Write Setting) (16 modules) User-Definable Display 1 Top Line Text User-Definable Display 1 Bottom Line Text Modbus Addresses of Display 1 Items (5 items) Reserved (7 items)	0 to 65535		1 1	F001 F202 F202	0 " " "
Modbus I 4A00 User Disp 4C00 4C0A 4C14 4C19 4C20	User Map (Read/Write Setting) Modbus Address Settings for User Map (256 items) plays Settings (Read/Write Setting) (16 modules) User-Definable Display 1 Top Line Text User-Definable Display 1 Bottom Line Text Modbus Addresses of Display 1 Items (5 items) Reserved (7 items) Repeated for User-Definable Display 2	0 to 65535		1 1	F001 F202 F202 F001	0 "" 0
Modbus I 4A00 User Disp 4C00 4C0A 4C14 4C19 4C20 4C40	User Map (Read/Write Setting) Modbus Address Settings for User Map (256 items) plays Settings (Read/Write Setting) (16 modules) User-Definable Display 1 Top Line Text User-Definable Display 1 Bottom Line Text Modbus Addresses of Display 1 Items (5 items) Reserved (7 items) Repeated for User-Definable Display 2 Repeated for User-Definable Display 3	0 to 65535		1 1	F001 F202 F202 F001	0 "" 0
Modbus I 4A00 User Disp 4C00 4C0A 4C14 4C19 4C20 4C40 4C40	User Map (Read/Write Setting) Modbus Address Settings for User Map (256 items) plays Settings (Read/Write Setting) (16 modules) User-Definable Display 1 Top Line Text User-Definable Display 1 Bottom Line Text Modbus Addresses of Display 1 Items (5 items) Reserved (7 items) Repeated for User-Definable Display 2 Repeated for User-Definable Display 3 Repeated for User-Definable Display 4	0 to 65535		1 1	F001 F202 F202 F001	0 "" 0
Modbus I 4A00 User Disp 4C00 4C0A 4C14 4C19 4C20 4C40 4C60 4C80	User Map (Read/Write Setting) Modbus Address Settings for User Map (256 items) plays Settings (Read/Write Setting) (16 modules) User-Definable Display 1 Top Line Text User-Definable Display 1 Bottom Line Text Modbus Addresses of Display 1 Items (5 items) Reserved (7 items) Repeated for User-Definable Display 2 Repeated for User-Definable Display 3 Repeated for User-Definable Display 4 Repeated for User-Definable Display 5	0 to 65535		1 1	F001 F202 F202 F001	0 "" 0
Modbus I 4A00 User Disp 4C00 4C0A 4C14 4C19 4C20 4C40 4C60 4C80 4CA0	User Map (Read/Write Setting) Modbus Address Settings for User Map (256 items) plays Settings (Read/Write Setting) (16 modules) User-Definable Display 1 Top Line Text User-Definable Display 1 Bottom Line Text Modbus Addresses of Display 1 Items (5 items) Reserved (7 items) Repeated for User-Definable Display 2 Repeated for User-Definable Display 4 Repeated for User-Definable Display 5 Repeated for User-Definable Display 6	0 to 65535		1 1	F001 F202 F202 F001	0 "" 0
Modbus I 4A00 User Disp 4C00 4C0A 4C14 4C19 4C20 4C40 4C80 4CA0 4CA0	User Map (Read/Write Setting) Modbus Address Settings for User Map (256 items) plays Settings (Read/Write Setting) (16 modules) User-Definable Display 1 Top Line Text User-Definable Display 1 Bottom Line Text Modbus Addresses of Display 1 Items (5 items) Reserved (7 items) Repeated for User-Definable Display 2 Repeated for User-Definable Display 3 Repeated for User-Definable Display 4 Repeated for User-Definable Display 5 Repeated for User-Definable Display 6 Repeated for User-Definable Display 7	0 to 65535		1 1	F001 F202 F202 F001	0 "" 0
Modbus I 4A00 User Disp 4C00 4C0A 4C14 4C19 4C20 4C40 4C60 4C40 4C60	User Map (Read/Write Setting) Modbus Address Settings for User Map (256 items) plays Settings (Read/Write Setting) (16 modules) User-Definable Display 1 Top Line Text User-Definable Display 1 Bottom Line Text Modbus Addresses of Display 1 Items (5 items) Reserved (7 items) Repeated for User-Definable Display 2 Repeated for User-Definable Display 3 Repeated for User-Definable Display 4 Repeated for User-Definable Display 5 Repeated for User-Definable Display 6 Repeated for User-Definable Display 7 Repeated for User-Definable Display 8	0 to 65535		1 1	F001 F202 F202 F001	0 "" 0
Modbus I 4A00 User Disp 4C00 4C0A 4C14 4C19 4C20 4C40 4C60	User Map (Read/Write Setting) Modbus Address Settings for User Map (256 items) plays Settings (Read/Write Setting) (16 modules) User-Definable Display 1 Top Line Text User-Definable Display 1 Bottom Line Text Modbus Addresses of Display 1 Items (5 items) Reserved (7 items) Repeated for User-Definable Display 2 Repeated for User-Definable Display 3 Repeated for User-Definable Display 4 Repeated for User-Definable Display 5 Repeated for User-Definable Display 6 Repeated for User-Definable Display 7 Repeated for User-Definable Display 7	0 to 65535		1 1	F001 F202 F202 F001	0 "" 0
Modbus I 4A00 User Disp 4C00 4C00 4C04 4C14 4C19 4C20 4C40 4C60 4C80 4CA0 4C20 4C40 4C60 4C80 4CA0 4C20 4C40 4C80 4C40 4C20 4C40 4C80 4C20	User Map (Read/Write Setting) Modbus Address Settings for User Map (256 items) plays Settings (Read/Write Setting) (16 modules) User-Definable Display 1 Top Line Text User-Definable Display 1 Bottom Line Text Modbus Addresses of Display 1 Items (5 items) Reserved (7 items) Repeated for User-Definable Display 2 Repeated for User-Definable Display 3 Repeated for User-Definable Display 4 Repeated for User-Definable Display 5 Repeated for User-Definable Display 6 Repeated for User-Definable Display 8 Repeated for User-Definable Display 8 Repeated for User-Definable Display 9 Repeated for User-Definable Display 10	0 to 65535		1 1	F001 F202 F202 F001	0 "" 0
Modbus I 4A00 User Disp 4C00 4C00 4C04 4C14 4C19 4C20 4C40 4C60 4C80 4CA0 4C20 4C40 4C60 4C80 4CA0 4C20 4C40 4C80 4C40 4C20 4D00 4D20 4D40	User Map (Read/Write Setting) Modbus Address Settings for User Map (256 items) plays Settings (Read/Write Setting) (16 modules) User-Definable Display 1 Top Line Text User-Definable Display 1 Bottom Line Text Modbus Addresses of Display 1 Items (5 items) Reserved (7 items) Repeated for User-Definable Display 2 Repeated for User-Definable Display 3 Repeated for User-Definable Display 4 Repeated for User-Definable Display 5 Repeated for User-Definable Display 6 Repeated for User-Definable Display 8 Repeated for User-Definable Display 8 Repeated for User-Definable Display 8 Repeated for User-Definable Display 9 Repeated for User-Definable Display 10 Repeated for User-Definable Display 11	0 to 65535		1 1	F001 F202 F202 F001	0 "" 0
Modbus I 4A00 User Disp 4C00 4C00 4C04 4C14 4C19 4C20 4C40 4C60 4C80 4CC0 4C20 4C40 4C60 4C80 4C20 4C20 4C40 4C40 4C40 4C40 4C40 4C40 4D20 4D40 4D60	User Map (Read/Write Setting) Modbus Address Settings for User Map (256 items) plays Settings (Read/Write Setting) (16 modules) User-Definable Display 1 Top Line Text User-Definable Display 1 Bottom Line Text Modbus Addresses of Display 1 Items (5 items) Reserved (7 items) Repeated for User-Definable Display 2 Repeated for User-Definable Display 3 Repeated for User-Definable Display 4 Repeated for User-Definable Display 5 Repeated for User-Definable Display 6 Repeated for User-Definable Display 7 Repeated for User-Definable Display 8 Repeated for User-Definable Display 9 Repeated for User-Definable Display 10 Repeated for User-Definable Display 11 Repeated for User-Definable Display 12	0 to 65535		1 1	F001 F202 F202 F001	0 "" 0
Modbus I 4A00 User Disp 4C00 4C00 4C14 4C19 4C20 4C40 4C40 4C20 4C40 4C20 4C40 4C50 4D00 4D20 4D40 4D60 4D80	User Map (Read/Write Setting) Modbus Address Settings for User Map (256 items) plays Settings (Read/Write Setting) (16 modules) User-Definable Display 1 Top Line Text User-Definable Display 1 Bottom Line Text Modbus Addresses of Display 1 Items (5 items) Reserved (7 items) Repeated for User-Definable Display 2 Repeated for User-Definable Display 3 Repeated for User-Definable Display 4 Repeated for User-Definable Display 5 Repeated for User-Definable Display 6 Repeated for User-Definable Display 7 Repeated for User-Definable Display 8 Repeated for User-Definable Display 9 Repeated for User-Definable Display 10 Repeated for User-Definable Display 11 Repeated for User-Definable Display 12 Repeated for User-Definable Display 13	0 to 65535		1 1	F001 F202 F202 F001	0 "" 0
Modbus I 4A00 User Disp 4C00 4C04 4C14 4C19 4C20 4C40 4C40 4C20 4C40 4C20 4C40 4D40 4D80 4DA0	User Map (Read/Write Setting) Modbus Address Settings for User Map (256 items) plays Settings (Read/Write Setting) (16 modules) User-Definable Display 1 Top Line Text User-Definable Display 1 Bottom Line Text Modbus Addresses of Display 1 Items (5 items) Reserved (7 items) Repeated for User-Definable Display 2 Repeated for User-Definable Display 3 Repeated for User-Definable Display 4 Repeated for User-Definable Display 5 Repeated for User-Definable Display 6 Repeated for User-Definable Display 8 Repeated for User-Definable Display 9 Repeated for User-Definable Display 10 Repeated for User-Definable Display 11 Repeated for User-Definable Display 12 Repeated for User-Definable Display 13 Repeated for User-Definable Display 14	0 to 65535		1 1	F001 F202 F202 F001	0 "" 0
Wodbus Wodbus<	User Map (Read/Write Setting) Modbus Address Settings for User Map (256 items) plays Settings (Read/Write Setting) (16 modules) User-Definable Display 1 Top Line Text User-Definable Display 1 Bottom Line Text Modbus Addresses of Display 1 Items (5 items) Reserved (7 items) Repeated for User-Definable Display 2 Repeated for User-Definable Display 3 Repeated for User-Definable Display 4 Repeated for User-Definable Display 5 Repeated for User-Definable Display 6 Repeated for User-Definable Display 7 Repeated for User-Definable Display 8 Repeated for User-Definable Display 9 Repeated for User-Definable Display 10 Repeated for User-Definable Display 11 Repeated for User-Definable Display 12 Repeated for User-Definable Display 13 Repeated for User-Definable Display 13 Repeated for User-Definable Display 14 Repeated for User-Definable Display 15	0 to 65535		1 1	F001 F202 F202 F001	0 "" 0
Addbus Addbus<	User Map (Read/Write Setting) Modbus Address Settings for User Map (256 items) plays Settings (Read/Write Setting) (16 modules) User-Definable Display 1 Top Line Text User-Definable Display 1 Bottom Line Text Modbus Addresses of Display 1 Items (5 items) Reserved (7 items) Repeated for User-Definable Display 2 Repeated for User-Definable Display 3 Repeated for User-Definable Display 4 Repeated for User-Definable Display 5 Repeated for User-Definable Display 6 Repeated for User-Definable Display 8 Repeated for User-Definable Display 9 Repeated for User-Definable Display 10 Repeated for User-Definable Display 11 Repeated for User-Definable Display 12 Repeated for User-Definable Display 13 Repeated for User-Definable Display 14	0 to 65535		1 1	F001 F202 F202 F001	0 # # # 0

Table B-9: MODBUS MEMORY MAP (Sheet 18 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
4E01	User Programmable Pushbutton 1 Top Line				F202	(none)
4E0B	User Programmable Pushbutton 1 On Text				F202	(none)
4E15	User Programmable Pushbutton 1 Off Text				F202	(none)
4E1F	User Programmable Pushbutton 1 Drop-Out Time	0 to 60	S	0.05	F001	0
4E20	User Programmable Pushbutton 1 Target	0 to 2		1	F109	0 (Self-reset)
4E21	User Programmable Pushbutton 1 Events	0 to 1		1	F102	0 (Disabled)
4E22	User Programmable Pushbutton 1 LED Operand	0 to 65535		1	F300	0
4E23	User Programmable Pushbutton 1 Autoreset Delay	0 to 600	S	0.05	F001	0
4E24	User Programmable Pushbutton 1 Autoreset Function	0 to 1		1	F102	0 (Disabled)
4E25	User Programmable Pushbutton 1 Local Lock	0 to 65535		1	F300	0
4E26	User Programmable Pushbutton 1 Message Priority	0 to 2		1	F220	0 (Disabled)
4E27	User Programmable Pushbutton 1 Remote Lock	0 to 65535		1	F300	0
4E28	User Programmable Pushbutton 1 Reset	0 to 65535		1	F300	0
4E29	User Programmable Pushbutton 1 Set	0 to 65535		1	F300	0
4E2A	Repeated for User Programmable Pushbutton 2					
4E54	Repeated for User Programmable Pushbutton 3					
4E7E	Repeated for User Programmable Pushbutton 4					
4EA8	Repeated for User Programmable Pushbutton 5					
4ED2	Repeated for User Programmable Pushbutton 6					
4EFC	Repeated for User Programmable Pushbutton 7					
4F26	Repeated for User Programmable Pushbutton 8					
4F50	Repeated for User Programmable Pushbutton 9					
4F7A	Repeated for User Programmable Pushbutton 10					
4FA4	Repeated for User Programmable Pushbutton 11					
4FCE	Repeated for User Programmable Pushbutton 12					
Flexlogic	(Read/Write Setting)					
5000	FlexLogic™ Entry (512 items)	0 to 65535		1	F300	16384
RTD Inpu	its (Read/Write Setting) (48 modules)					
RTD Inpu 5400	tts (Read/Write Setting) (48 modules) RTD Input 1 Function	0 to 65535 0 to 1		1	F102	0 (Disabled)
RTD Inpu 5400 5401	tts (Read/Write Setting) (48 modules) RTD Input 1 Function RTD Input 1 ID	0 to 1 		1	F102 F205	0 (Disabled) "RTD lp 1"
RTD Inpu 5400 5401 5407	tts (Read/Write Setting) (48 modules) RTD Input 1 Function RTD Input 1 ID RTD Input 1 Type			1	F102	0 (Disabled)
RTD Inpu 5400 5401 5407 5413	tts (Read/Write Setting) (48 modules) RTD Input 1 Function RTD Input 1 ID RTD Input 1 Type Repeated for RTD Input 2	0 to 1 		1	F102 F205	0 (Disabled) "RTD lp 1"
RTD Inpu 5400 5401 5407 5413 5426	tts (Read/Write Setting) (48 modules) RTD Input 1 Function RTD Input 1 ID RTD Input 1 Type Repeated for RTD Input 2 Repeated for RTD Input 3	0 to 1 		1	F102 F205	0 (Disabled) "RTD lp 1"
RTD Input 5400 5401 5407 5413 5426 5439	Its (Read/Write Setting) (48 modules) RTD Input 1 Function RTD Input 1 ID RTD Input 1 TypeRepeated for RTD Input 2Repeated for RTD Input 3Repeated for RTD Input 4	0 to 1 		1	F102 F205	0 (Disabled) "RTD lp 1"
RTD Inpu 5400 5401 5407 5413 5426 5439 544C	tts (Read/Write Setting) (48 modules) RTD Input 1 Function RTD Input 1 ID RTD Input 1 Type Repeated for RTD Input 2 Repeated for RTD Input 3 Repeated for RTD Input 4 Repeated for RTD Input 5	0 to 1 		1	F102 F205	0 (Disabled) "RTD lp 1"
RTD Inpu 5400 5401 5407 5413 5426 5439 544C 5435F	tts (Read/Write Setting) (48 modules) RTD Input 1 Function RTD Input 1 ID RTD Input 1 Type Repeated for RTD Input 2 Repeated for RTD Input 3 Repeated for RTD Input 4 Repeated for RTD Input 5 Repeated for RTD Input 6	0 to 1 		1	F102 F205	0 (Disabled) "RTD lp 1"
RTD Inpu 5400 5401 5407 5413 5426 5439 544C 5439 544C 545F 5472	tts (Read/Write Setting) (48 modules) RTD Input 1 Function RTD Input 1 ID RTD Input 1 Type Repeated for RTD Input 2 Repeated for RTD Input 3 Repeated for RTD Input 4 Repeated for RTD Input 5 Repeated for RTD Input 6 Repeated for RTD Input 7	0 to 1 		1	F102 F205	0 (Disabled) "RTD lp 1"
RTD Inpu 5400 5401 5407 5413 5426 5439 544C 5439 544C 545F 5472 5485	ts (Read/Write Setting) (48 modules) RTD Input 1 Function RTD Input 1 ID RTD Input 1 Type Repeated for RTD Input 2 Repeated for RTD Input 3 Repeated for RTD Input 4 Repeated for RTD Input 5 Repeated for RTD Input 6 Repeated for RTD Input 7 Repeated for RTD Input 8	0 to 1 		1	F102 F205	0 (Disabled) "RTD lp 1"
RTD Inpu 5400 5401 5407 5413 5426 5439 544C 5439 544C 545F 54472 5485 5485 5498	ts (Read/Write Setting) (48 modules) RTD Input 1 Function RTD Input 1 ID RTD Input 1 Type Repeated for RTD Input 2 Repeated for RTD Input 3 Repeated for RTD Input 4 Repeated for RTD Input 5 Repeated for RTD Input 6 Repeated for RTD Input 7 Repeated for RTD Input 8 Repeated for RTD Input 9	0 to 1 		1	F102 F205	0 (Disabled) "RTD lp 1"
RTD Input 5400 5401 5407 5413 5426 5439 544C 5439 544C 545F 5472 5485 5498 54AB	tts (Read/Write Setting) (48 modules) RTD Input 1 Function RTD Input 1 ID RTD Input 1 Type Repeated for RTD Input 2 Repeated for RTD Input 3 Repeated for RTD Input 4 Repeated for RTD Input 5 Repeated for RTD Input 5 Repeated for RTD Input 6 Repeated for RTD Input 7 Repeated for RTD Input 8 Repeated for RTD Input 9 Repeated for RTD Input 10	0 to 1 		1	F102 F205	0 (Disabled) "RTD lp 1"
RTD Input 5400 5401 5407 5413 5426 5439 544C 5439 544C 545F 5472 5485 5498 54AB 54AB	Its (Read/Write Setting) (48 modules) RTD Input 1 Function RTD Input 1 ID RTD Input 1 TypeRepeated for RTD Input 2Repeated for RTD Input 3Repeated for RTD Input 4Repeated for RTD Input 5Repeated for RTD Input 6Repeated for RTD Input 7Repeated for RTD Input 8Repeated for RTD Input 9Repeated for RTD Input 10Repeated for RTD Input 11	0 to 1 		1	F102 F205	0 (Disabled) "RTD lp 1"
RTD Input 5400 5401 5407 5413 5426 5439 544C 5439 544C 545F 5472 5485 5472 5485 5498 54AB 54BE 54D1	Its (Read/Write Setting) (48 modules) RTD Input 1 Function RTD Input 1 ID RTD Input 1 TypeRepeated for RTD Input 2Repeated for RTD Input 3Repeated for RTD Input 4Repeated for RTD Input 5Repeated for RTD Input 6Repeated for RTD Input 7Repeated for RTD Input 8Repeated for RTD Input 9Repeated for RTD Input 10Repeated for RTD Input 11Repeated for RTD Input 12	0 to 1 		1	F102 F205	0 (Disabled) "RTD lp 1"
RTD Inpu 5400 5401 5407 5413 5426 5439 544C 5439 544C 545F 5472 5485 5485 5485 5488 5488 5488 5488 5448	Its (Read/Write Setting) (48 modules) RTD Input 1 Function RTD Input 1 ID RTD Input 1 TypeRepeated for RTD Input 2Repeated for RTD Input 3Repeated for RTD Input 4Repeated for RTD Input 5Repeated for RTD Input 6Repeated for RTD Input 6Repeated for RTD Input 8Repeated for RTD Input 9Repeated for RTD Input 10Repeated for RTD Input 12Repeated for RTD Input 12Repeated for RTD Input 13	0 to 1 		1	F102 F205	0 (Disabled) "RTD lp 1"
RTD Input 5400 5401 5407 5413 5426 5439 544C 5439 544C 545F 5472 5485 5498 5448 5485 5498 54AB 54BE 54D1 54E4 54F7	Its (Read/Write Setting) (48 modules) RTD Input 1 Function RTD Input 1 ID RTD Input 1 TypeRepeated for RTD Input 2Repeated for RTD Input 3Repeated for RTD Input 4Repeated for RTD Input 5Repeated for RTD Input 6Repeated for RTD Input 7Repeated for RTD Input 8Repeated for RTD Input 9Repeated for RTD Input 10Repeated for RTD Input 12Repeated for RTD Input 13Repeated for RTD Input 13Repeated for RTD Input 14	0 to 1 		1	F102 F205	0 (Disabled) "RTD lp 1"
RTD Input 5400 5401 5407 5413 5426 5439 544C 5439 544C 545F 5472 5485 5485 5498 5448 5448 5448 5448 5447 54F7 550A	Its (Read/Write Setting) (48 modules) RTD Input 1 Function RTD Input 1 ID RTD Input 1 TypeRepeated for RTD Input 2Repeated for RTD Input 3Repeated for RTD Input 4Repeated for RTD Input 5Repeated for RTD Input 6Repeated for RTD Input 7Repeated for RTD Input 8Repeated for RTD Input 9Repeated for RTD Input 10Repeated for RTD Input 12Repeated for RTD Input 13Repeated for RTD Input 14Repeated for RTD Input 14Repeated for RTD Input 15Repeated for RTD Input 15	0 to 1 		1	F102 F205	0 (Disabled) "RTD lp 1"
RTD Input 5400 5401 5407 5413 5426 5439 544C 545F 5472 5485 5498 544B 544B 544E4 54F7 550A 551D	Its (Read/Write Setting) (48 modules) RTD Input 1 Function RTD Input 1 ID RTD Input 1 TypeRepeated for RTD Input 2Repeated for RTD Input 3Repeated for RTD Input 4Repeated for RTD Input 5Repeated for RTD Input 6Repeated for RTD Input 7Repeated for RTD Input 8Repeated for RTD Input 9Repeated for RTD Input 10Repeated for RTD Input 12Repeated for RTD Input 13Repeated for RTD Input 13Repeated for RTD Input 15Repeated for RTD Input 15Repeated for RTD Input 15Repeated for RTD Input 16	0 to 1 		1	F102 F205	0 (Disabled) "RTD lp 1"
RTD Input 5400 5401 5407 5413 5426 5439 544C 545F 5472 5485 5498 54AB 544BE 54F7 545F3 5498 54AB 545F3 5498 545A 545F3 5498 545A 545B 545B 545D1 545F7 550A 55300	Its (Read/Write Setting) (48 modules) RTD Input 1 Function RTD Input 1 ID RTD Input 1 TypeRepeated for RTD Input 2Repeated for RTD Input 3Repeated for RTD Input 4Repeated for RTD Input 5Repeated for RTD Input 6Repeated for RTD Input 7Repeated for RTD Input 8Repeated for RTD Input 9Repeated for RTD Input 10Repeated for RTD Input 12Repeated for RTD Input 13Repeated for RTD Input 15Repeated for RTD Input 15Repeated for RTD Input 16Repeated for RTD Input 16Repeated for RTD Input 17	0 to 1 		1	F102 F205	0 (Disabled) "RTD lp 1"
RTD Input 5400 5401 5407 5413 5426 5439 544C 545F 5472 5485 5498 54AB 544E 54F7 550A 5530 5543	ts (Read/Write Setting) (48 modules) RTD Input 1 Function RTD Input 1 ID RTD Input 1 Type Repeated for RTD Input 2 Repeated for RTD Input 3 Repeated for RTD Input 4 Repeated for RTD Input 5 Repeated for RTD Input 6 Repeated for RTD Input 7 Repeated for RTD Input 8 Repeated for RTD Input 9 Repeated for RTD Input 10 Repeated for RTD Input 12 Repeated for RTD Input 13 Repeated for RTD Input 14 Repeated for RTD Input 15 Repeated for RTD Input 12 Repeated for RTD Input 13 Repeated for RTD Input 15 Repeated for RTD Input 16 Repeated for RTD Input 17 Repeated for RTD Input 18	0 to 1 		1	F102 F205	0 (Disabled) "RTD lp 1"
RTD Input 5400 5401 5407 5413 5426 5439 544C 545F 5472 5485 5498 54AB 544E1 54F7 550A 5543 5556	Its (Read/Write Setting) (48 modules) RTD Input 1 Function RTD Input 1 ID RTD Input 1 TypeRepeated for RTD Input 2Repeated for RTD Input 3Repeated for RTD Input 4Repeated for RTD Input 5Repeated for RTD Input 6Repeated for RTD Input 6Repeated for RTD Input 8Repeated for RTD Input 9Repeated for RTD Input 10Repeated for RTD Input 12Repeated for RTD Input 13Repeated for RTD Input 13Repeated for RTD Input 14Repeated for RTD Input 14Repeated for RTD Input 15Repeated for RTD Input 16Repeated for RTD Input 17Repeated for RTD Input 18Repeated for RTD Input 18Repeated for RTD Input 19Repeated for RTD	0 to 1 		1	F102 F205	0 (Disabled) "RTD lp 1"
RTD Input 5400 5401 5407 5413 5426 5439 544C 545F 5472 5485 5498 54AB 544E4 54F7 550A 5530 5556 5569	Its (Read/Write Setting) (48 modules) RTD Input 1 Function RTD Input 1 ID RTD Input 1 TypeRepeated for RTD Input 2Repeated for RTD Input 3Repeated for RTD Input 4Repeated for RTD Input 5Repeated for RTD Input 6Repeated for RTD Input 6Repeated for RTD Input 8Repeated for RTD Input 9Repeated for RTD Input 10Repeated for RTD Input 11Repeated for RTD Input 12Repeated for RTD Input 13Repeated for RTD Input 14Repeated for RTD Input 14Repeated for RTD Input 15Repeated for RTD Input 16Repeated for RTD Input 19Repeated for RTD Input 19Repeated for RTD Input 19Repeated for RTD Input 19Repeated for RTD Input 19Repeated for RTD Input 19Repeated for RTD Input 19Repeated for RTD Input 19Repeated for RTD Input 19Repeated for RTD Input 19Repeated for RTD Input 19Repeated for RTD Input 19Repeated for RTD Input 20	0 to 1 		1	F102 F205	0 (Disabled) "RTD lp 1"
RTD Input 5400 5401 5407 5413 5426 5439 544C 545F 5472 5485 5498 54AB 54BE 54D1 54E4 54F7 550A 5530 5556 5569 557C	Its (Read/Write Setting) (48 modules) RTD Input 1 Function RTD Input 1 ID RTD Input 1 TypeRepeated for RTD Input 2Repeated for RTD Input 3Repeated for RTD Input 4Repeated for RTD Input 5Repeated for RTD Input 6Repeated for RTD Input 6Repeated for RTD Input 8Repeated for RTD Input 9Repeated for RTD Input 10Repeated for RTD Input 11Repeated for RTD Input 12Repeated for RTD Input 13Repeated for RTD Input 14Repeated for RTD Input 14Repeated for RTD Input 15Repeated for RTD Input 15Repeated for RTD Input 16Repeated for RTD Input 19Repeated for RTD Input 19Repeated for RTD Input 19Repeated for RTD Input 19Repeated for RTD Input 19Repeated for RTD Input 19Repeated for RTD Input 19Repeated for RTD Input 19Repeated for RTD Input 20Repeated for RTD Input 21	0 to 1 		1	F102 F205	0 (Disabled) "RTD lp 1"
RTD Input 5400 5401 5407 5413 5426 5439 544C 545F 5472 5485 5498 54AB 54E4 54F7 550A 5530 5543 5556 5569 557C 558F	Its (Read/Write Setting) (48 modules) RTD Input 1 Function RTD Input 1 ID RTD Input 1 TypeRepeated for RTD Input 2Repeated for RTD Input 3Repeated for RTD Input 4Repeated for RTD Input 5Repeated for RTD Input 6Repeated for RTD Input 7Repeated for RTD Input 8Repeated for RTD Input 9Repeated for RTD Input 10Repeated for RTD Input 12Repeated for RTD Input 12Repeated for RTD Input 13Repeated for RTD Input 12Repeated for RTD Input 13Repeated for RTD Input 14Repeated for RTD Input 15Repeated for RTD Input 15Repeated for RTD Input 16Repeated for RTD Input 17Repeated for RTD Input 12Repeated for RTD Input 14Repeated for RTD Input 15Repeated for RTD Input 16Repeated for RTD Input 18Repeated for RTD Input 19Repeated for RTD Input 20Repeated for RTD Input 22	0 to 1 		1	F102 F205	0 (Disabled) "RTD lp 1"
RTD Input 5400 5401 5407 5413 5426 5439 544C 545F 5472 5485 5498 54AB 54BE 54D1 54E4 54F7 550A 5530 5556 5569 557C	Its (Read/Write Setting) (48 modules) RTD Input 1 Function RTD Input 1 ID RTD Input 1 TypeRepeated for RTD Input 2Repeated for RTD Input 3Repeated for RTD Input 4Repeated for RTD Input 5Repeated for RTD Input 6Repeated for RTD Input 6Repeated for RTD Input 8Repeated for RTD Input 9Repeated for RTD Input 10Repeated for RTD Input 11Repeated for RTD Input 12Repeated for RTD Input 13Repeated for RTD Input 14Repeated for RTD Input 14Repeated for RTD Input 15Repeated for RTD Input 15Repeated for RTD Input 16Repeated for RTD Input 19Repeated for RTD Input 19Repeated for RTD Input 19Repeated for RTD Input 19Repeated for RTD Input 19Repeated for RTD Input 19Repeated for RTD Input 19Repeated for RTD Input 19Repeated for RTD Input 20Repeated for RTD Input 21	0 to 1 		1	F102 F205	0 (Disabled) "RTD lp 1"

Table B–9: MODBUS MEMORY MAP (Sheet 19 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
55C8	Repeated for RTD Input 25					
55DB	Repeated for RTD Input 26					
55EE	Repeated for RTD Input 27					
5601	Repeated for RTD Input 28					
5614	Repeated for RTD Input 29					
5627	Repeated for RTD Input 30					
563A	Repeated for RTD Input 31					
564D	Repeated for RTD Input 32					
5660	Repeated for RTD Input 33					
5673	Repeated for RTD Input 34					
5686	Repeated for RTD Input 35					
5699	Repeated for RTD Input 36					
56AC	Repeated for RTD Input 37					
56BF	Repeated for RTD Input 38					
56D2	Repeated for RTD Input 39					
56E5	Repeated for RTD Input 40					
56F8	Repeated for RTD Input 41					
570B	Repeated for RTD Input 42					
571E	Repeated for RTD Input 43					
5731	Repeated for RTD Input 44					
5744	Repeated for RTD Input 45					
5757	Repeated for RTD Input 46					
576A	Repeated for RTD Input 47					
577D	Repeated for RTD Input 48					
	: Timers (Read/Write Setting) (32 modules)					
5800	FlexLogic™ Timer 1 Type	0 to 2		1	F129	0 (millisecond)
5801	FlexLogic™ Timer 1 Pickup Delay	0 to 60000		1	F001	0
5802	FlexLogic™ Timer 1 Dropout Delay	0 to 60000		1	F001	0
5803	Reserved (5 items)	0 to 65535		1	F001	0
5808	Repeated for FlexLogic™ Timer 2	0.10.03535		'	1001	0
5810	Repeated for FlexLogic™ Timer 3					
5818	Repeated for FlexLogic™ Timer 3					
5820						
	Repeated for FlexLogic™ Timer 5					
5828	Repeated for FlexLogic [™] Timer 5 Repeated for FlexLogic [™] Timer 6					
5828 5830	Repeated for FlexLogic [™] Timer 5 Repeated for FlexLogic [™] Timer 6 Repeated for FlexLogic [™] Timer 7					
5828 5830 5838	Repeated for FlexLogic [™] Timer 5 Repeated for FlexLogic [™] Timer 6 Repeated for FlexLogic [™] Timer 7 Repeated for FlexLogic [™] Timer 8					
5828 5830 5838 5840	Repeated for FlexLogic [™] Timer 5 Repeated for FlexLogic [™] Timer 6 Repeated for FlexLogic [™] Timer 7 Repeated for FlexLogic [™] Timer 8 Repeated for FlexLogic [™] Timer 9					
5828 5830 5838 5840 5848	Repeated for FlexLogic [™] Timer 5 Repeated for FlexLogic [™] Timer 6 Repeated for FlexLogic [™] Timer 7 Repeated for FlexLogic [™] Timer 8 Repeated for FlexLogic [™] Timer 9 Repeated for FlexLogic [™] Timer 10					
5828 5830 5838 5840 5848 5850	Repeated for FlexLogic [™] Timer 5Repeated for FlexLogic [™] Timer 6Repeated for FlexLogic [™] Timer 7Repeated for FlexLogic [™] Timer 8Repeated for FlexLogic [™] Timer 9Repeated for FlexLogic [™] Timer 10Repeated for FlexLogic [™] Timer 11					
5828 5830 5838 5840 5848 5850 5858	Repeated for FlexLogic [™] Timer 5Repeated for FlexLogic [™] Timer 6Repeated for FlexLogic [™] Timer 7Repeated for FlexLogic [™] Timer 8Repeated for FlexLogic [™] Timer 9Repeated for FlexLogic [™] Timer 10Repeated for FlexLogic [™] Timer 11Repeated for FlexLogic [™] Timer 12					
5828 5830 5838 5840 5848 5850 5858 5858 5860	Repeated for FlexLogic [™] Timer 5 Repeated for FlexLogic [™] Timer 6 Repeated for FlexLogic [™] Timer 7 Repeated for FlexLogic [™] Timer 8 Repeated for FlexLogic [™] Timer 9 Repeated for FlexLogic [™] Timer 10 Repeated for FlexLogic [™] Timer 11 Repeated for FlexLogic [™] Timer 12 Repeated for FlexLogic [™] Timer 13					
5828 5830 5838 5840 5848 5850 5858 5860 5868	Repeated for FlexLogic [™] Timer 5 Repeated for FlexLogic [™] Timer 6 Repeated for FlexLogic [™] Timer 7 Repeated for FlexLogic [™] Timer 8 Repeated for FlexLogic [™] Timer 9 Repeated for FlexLogic [™] Timer 10 Repeated for FlexLogic [™] Timer 11 Repeated for FlexLogic [™] Timer 12 Repeated for FlexLogic [™] Timer 13 Repeated for FlexLogic [™] Timer 14					
5828 5830 5838 5840 5848 5850 5868 5870	Repeated for FlexLogic [™] Timer 5 Repeated for FlexLogic [™] Timer 6 Repeated for FlexLogic [™] Timer 7 Repeated for FlexLogic [™] Timer 8 Repeated for FlexLogic [™] Timer 9 Repeated for FlexLogic [™] Timer 10 Repeated for FlexLogic [™] Timer 11 Repeated for FlexLogic [™] Timer 12 Repeated for FlexLogic [™] Timer 13 Repeated for FlexLogic [™] Timer 14 Repeated for FlexLogic [™] Timer 15					
5828 5830 5838 5840 5848 5850 5858 5860 5868 5870	Repeated for FlexLogic [™] Timer 5 Repeated for FlexLogic [™] Timer 6 Repeated for FlexLogic [™] Timer 7 Repeated for FlexLogic [™] Timer 8 Repeated for FlexLogic [™] Timer 9 Repeated for FlexLogic [™] Timer 10 Repeated for FlexLogic [™] Timer 11 Repeated for FlexLogic [™] Timer 12 Repeated for FlexLogic [™] Timer 13 Repeated for FlexLogic [™] Timer 14 Repeated for FlexLogic [™] Timer 15 Repeated for FlexLogic [™] Timer 16					
5828 5830 5838 5840 5848 5850 5858 5850 5868 5860 5868 5870 5878 5880	Repeated for FlexLogic [™] Timer 5 Repeated for FlexLogic [™] Timer 6 Repeated for FlexLogic [™] Timer 7 Repeated for FlexLogic [™] Timer 8 Repeated for FlexLogic [™] Timer 9 Repeated for FlexLogic [™] Timer 10 Repeated for FlexLogic [™] Timer 12 Repeated for FlexLogic [™] Timer 12 Repeated for FlexLogic [™] Timer 13 Repeated for FlexLogic [™] Timer 13 Repeated for FlexLogic [™] Timer 14 Repeated for FlexLogic [™] Timer 15 Repeated for FlexLogic [™] Timer 16 Repeated for FlexLogic [™] Timer 17					
5828 5830 5838 5840 5848 5850 5858 5860 5868 5870 5878 5888	Repeated for FlexLogic [™] Timer 5 Repeated for FlexLogic [™] Timer 6 Repeated for FlexLogic [™] Timer 7 Repeated for FlexLogic [™] Timer 8 Repeated for FlexLogic [™] Timer 9 Repeated for FlexLogic [™] Timer 10 Repeated for FlexLogic [™] Timer 12 Repeated for FlexLogic [™] Timer 12 Repeated for FlexLogic [™] Timer 13 Repeated for FlexLogic [™] Timer 13 Repeated for FlexLogic [™] Timer 14 Repeated for FlexLogic [™] Timer 15 Repeated for FlexLogic [™] Timer 15 Repeated for FlexLogic [™] Timer 17 Repeated for FlexLogic [™] Timer 17					
5828 5830 5838 5840 5848 5850 5868 5870 5878 5880 5888 5880	Repeated for FlexLogic [™] Timer 5 Repeated for FlexLogic [™] Timer 6 Repeated for FlexLogic [™] Timer 7 Repeated for FlexLogic [™] Timer 8 Repeated for FlexLogic [™] Timer 9 Repeated for FlexLogic [™] Timer 10 Repeated for FlexLogic [™] Timer 12 Repeated for FlexLogic [™] Timer 12 Repeated for FlexLogic [™] Timer 13 Repeated for FlexLogic [™] Timer 13 Repeated for FlexLogic [™] Timer 13 Repeated for FlexLogic [™] Timer 15 Repeated for FlexLogic [™] Timer 15 Repeated for FlexLogic [™] Timer 16 Repeated for FlexLogic [™] Timer 17 Repeated for FlexLogic [™] Timer 18 Repeated for FlexLogic [™] Timer 18					
5828 5830 5838 5840 5848 5850 5868 5870 5878 5880 5880 5880 5888 5890 5898	Repeated for FlexLogic [™] Timer 5 Repeated for FlexLogic [™] Timer 6 Repeated for FlexLogic [™] Timer 7 Repeated for FlexLogic [™] Timer 8 Repeated for FlexLogic [™] Timer 9 Repeated for FlexLogic [™] Timer 10 Repeated for FlexLogic [™] Timer 12 Repeated for FlexLogic [™] Timer 12 Repeated for FlexLogic [™] Timer 13 Repeated for FlexLogic [™] Timer 13 Repeated for FlexLogic [™] Timer 14 Repeated for FlexLogic [™] Timer 15 Repeated for FlexLogic [™] Timer 16 Repeated for FlexLogic [™] Timer 17 Repeated for FlexLogic [™] Timer 17 Repeated for FlexLogic [™] Timer 17 Repeated for FlexLogic [™] Timer 18 Repeated for FlexLogic [™] Timer 19 Repeated for FlexLogic [™] Timer 20					
5828 5830 5838 5840 5848 5850 5858 5860 5868 5870 5878 5880 5888 5890 5898 58A0	Repeated for FlexLogic TM Timer 5 Repeated for FlexLogic TM Timer 6 Repeated for FlexLogic TM Timer 7 Repeated for FlexLogic TM Timer 8 Repeated for FlexLogic TM Timer 9 Repeated for FlexLogic TM Timer 10 Repeated for FlexLogic TM Timer 12 Repeated for FlexLogic TM Timer 13 Repeated for FlexLogic TM Timer 13 Repeated for FlexLogic TM Timer 14 Repeated for FlexLogic TM Timer 15 Repeated for FlexLogic TM Timer 15 Repeated for FlexLogic TM Timer 16 Repeated for FlexLogic TM Timer 17 Repeated for FlexLogic TM Timer 17 Repeated for FlexLogic TM Timer 18 Repeated for FlexLogic TM Timer 19 Repeated for FlexLogic TM Timer 20 Repeated for FlexLogic TM Timer 21					
5828 5830 5838 5840 5848 5850 5858 5860 5868 5860 5868 5870 5878 5870 5878 5880 5888 5880 5888 5890 5898 5840	Repeated for FlexLogic [™] Timer 5 Repeated for FlexLogic [™] Timer 6 Repeated for FlexLogic [™] Timer 7 Repeated for FlexLogic [™] Timer 7 Repeated for FlexLogic [™] Timer 9 Repeated for FlexLogic [™] Timer 10 Repeated for FlexLogic [™] Timer 10 Repeated for FlexLogic [™] Timer 12 Repeated for FlexLogic [™] Timer 13 Repeated for FlexLogic [™] Timer 13 Repeated for FlexLogic [™] Timer 13 Repeated for FlexLogic [™] Timer 13 Repeated for FlexLogic [™] Timer 13 Repeated for FlexLogic [™] Timer 17 Repeated for FlexLogic [™] Timer 16 Repeated for FlexLogic [™] Timer 17 Repeated for FlexLogic [™] Timer 18 Repeated for FlexLogic [™] Timer 20 Repeated for FlexLogic [™] Timer 21 Repeated for FlexLogic [™] Timer 21					
5828 5830 5838 5840 5848 5850 5858 5860 5868 5870 5878 5870 5878 5880 5888 5880 5888 5880 5888 5880 5888 5880	Repeated for FlexLogic [™] Timer 5 Repeated for FlexLogic [™] Timer 6 Repeated for FlexLogic [™] Timer 7 Repeated for FlexLogic [™] Timer 7 Repeated for FlexLogic [™] Timer 9 Repeated for FlexLogic [™] Timer 10 Repeated for FlexLogic [™] Timer 10 Repeated for FlexLogic [™] Timer 12 Repeated for FlexLogic [™] Timer 13 Repeated for FlexLogic [™] Timer 13 Repeated for FlexLogic [™] Timer 13 Repeated for FlexLogic [™] Timer 14 Repeated for FlexLogic [™] Timer 15 Repeated for FlexLogic [™] Timer 16 Repeated for FlexLogic [™] Timer 17 Repeated for FlexLogic [™] Timer 18 Repeated for FlexLogic [™] Timer 19 Repeated for FlexLogic [™] Timer 20 Repeated for FlexLogic [™] Timer 21 Repeated for FlexLogic [™] Timer 23					
5828 5830 5838 5840 5848 5850 5858 5860 5868 5870 5878 5870 5878 5880 5888 5880 5888 5880 5888 5880 5888 5880 5888	Repeated for FlexLogic [™] Timer 5 Repeated for FlexLogic [™] Timer 6 Repeated for FlexLogic [™] Timer 7 Repeated for FlexLogic [™] Timer 7 Repeated for FlexLogic [™] Timer 9 Repeated for FlexLogic [™] Timer 10 Repeated for FlexLogic [™] Timer 10 Repeated for FlexLogic [™] Timer 12 Repeated for FlexLogic [™] Timer 12 Repeated for FlexLogic [™] Timer 13 Repeated for FlexLogic [™] Timer 13 Repeated for FlexLogic [™] Timer 14 Repeated for FlexLogic [™] Timer 15 Repeated for FlexLogic [™] Timer 16 Repeated for FlexLogic [™] Timer 17 Repeated for FlexLogic [™] Timer 18 Repeated for FlexLogic [™] Timer 19 Repeated for FlexLogic [™] Timer 20 Repeated for FlexLogic [™] Timer 21 Repeated for FlexLogic [™] Timer 23 Repeated for FlexLogic [™] Timer 24					
5828 5830 5838 5840 5848 5850 5858 5860 5868 5870 5878 5870 5878 5880 5888 5880 5888 5880 5888 5880 5888 5880	Repeated for FlexLogic [™] Timer 5 Repeated for FlexLogic [™] Timer 6 Repeated for FlexLogic [™] Timer 7 Repeated for FlexLogic [™] Timer 7 Repeated for FlexLogic [™] Timer 9 Repeated for FlexLogic [™] Timer 10 Repeated for FlexLogic [™] Timer 10 Repeated for FlexLogic [™] Timer 12 Repeated for FlexLogic [™] Timer 13 Repeated for FlexLogic [™] Timer 13 Repeated for FlexLogic [™] Timer 13 Repeated for FlexLogic [™] Timer 14 Repeated for FlexLogic [™] Timer 15 Repeated for FlexLogic [™] Timer 16 Repeated for FlexLogic [™] Timer 17 Repeated for FlexLogic [™] Timer 18 Repeated for FlexLogic [™] Timer 19 Repeated for FlexLogic [™] Timer 20 Repeated for FlexLogic [™] Timer 21 Repeated for FlexLogic [™] Timer 23					

Table B-9: MODBUS MEMORY MAP (Sheet 20 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
58D0	Repeated for FlexLogic™ Timer 27					
58D8	Repeated for FlexLogic™ Timer 28					
58E0	Repeated for FlexLogic™ Timer 29					
58E8	Repeated for FlexLogic™ Timer 30					
58F0	Repeated for FlexLogic™ Timer 31					
58F8	Repeated for FlexLogic™ Timer 32					
Phase Tir	me Overcurrent (Read/Write Grouped Setting) (6 modul	es)				
5900	Phase Time Overcurrent 1 Function	0 to 1		1	F102	0 (Disabled)
5901	Phase Time Overcurrent 1 Signal Source	0 to 5		1	F167	0 (SRC 1)
5902	Phase Time Overcurrent 1 Input	0 to 1		1	F122	0 (Phasor)
5903	Phase Time Overcurrent 1 Pickup	0 to 30	pu	0.001	F001	1000
5904	Phase Time Overcurrent 1 Curve	0 to 16		1	F103	0 (IEEE Mod Inv)
5905	Phase Time Overcurrent 1 Multiplier	0 to 600		0.01	F001	100
5906	Phase Time Overcurrent 1 Reset	0 to 1		1	F104	0 (Instantaneous)
5907	Phase Time Overcurrent 1 Voltage Restraint	0 to 1		1	F102	0 (Disabled)
5908	Phase TOC 1 Block For Each Phase (3 items)	0 to 65535		1	F300	0
590B	Phase Time Overcurrent 1 Target	0 to 2		1	F109	0 (Self-reset)
590C	Phase Time Overcurrent 1 Events	0 to 1		1	F102	0 (Disabled)
590D	Reserved (3 items)	0 to 1		1	F001	0
5910	Repeated for Phase Time Overcurrent 2					
5920	Repeated for Phase Time Overcurrent 3					
5930	Repeated for Phase Time Overcurrent 4					
5940	Repeated for Phase Time Overcurrent 5					
5950	Repeated for Phase Time Overcurrent 6					
Phase Ins	stantaneous Overcurrent (Read/Write Grouped Setting)	(12 modules)				
5A00	Phase Instantaneous Overcurrent 1 Function	0 to 1		1	F102	0 (Disabled)
5A01	Phase Instantaneous Overcurrent 1 Signal Source	0 to 5		1	F167	0 (SRC 1)
5A02	Phase Instantaneous Overcurrent 1 Pickup	0 to 30	pu	0.001	F001	1000
5A03	Phase Instantaneous Overcurrent 1 Delay	0 to 600	S	0.01	F001	0
5A04	Phase Instantaneous Overcurrent 1 Reset Delay	0 to 600	S	0.01	F001	0
5A05	Phase IOC1 Block For Phase A	0 to 65535		1	F300	0
5A06	Phase IOC1 Block For Phase B	0 to 65535		1	F300	0
5A07	Phase IOC1 Block For Phase C	0 to 65535		1	F300	0
5A08	Phase Instantaneous Overcurrent 1 Target	0 to 2		1	F109	0 (Self-reset)
5A09	Phase Instantaneous Overcurrent 1 Events	0 to 1		1	F102	0 (Disabled)
5A0A	Reserved (6 items)	0 to 1		1	F001	0
5A10	Repeated for Phase Instantaneous Overcurrent 2					
5A20	Repeated for Phase Instantaneous Overcurrent 3					
5A30	Repeated for Phase Instantaneous Overcurrent 4		_			
5A40 5A50	Repeated for Phase Instantaneous Overcurrent 5			<u> </u>		
	Repeated for Phase Instantaneous Overcurrent 6					
5A60 5A70	Repeated for Phase Instantaneous Overcurrent 7 Repeated for Phase Instantaneous Overcurrent 8					
5A70						
5A80 5A90	Repeated for Phase Instantaneous Overcurrent 9 Repeated for Phase Instantaneous Overcurrent 10					
5A90 5AA0	Repeated for Phase Instantaneous Overcurrent 11					
5AB0	Repeated for Phase Instantaneous Overcurrent 12			<u> </u>		
	ime Overcurrent (Read/Write Grouped Setting) (6 modu	iles)				
Neutral Ti					5100	0 (Disabled)
		0 to 1		1	F102	
5B00	Neutral Time Overcurrent 1 Function	0 to 1 0 to 5		1	F102 F167	· · · ·
5B00 5B01	Neutral Time Overcurrent 1 Function Neutral Time Overcurrent 1 Signal Source	0 to 5		1	F167	0 (SRC 1)
5B00 5B01 5B02	Neutral Time Overcurrent 1 Function Neutral Time Overcurrent 1 Signal Source Neutral Time Overcurrent 1 Input	0 to 5 0 to 1		1 1	F167 F122	0 (SRC 1) 0 (Phasor)
5B00 5B01	Neutral Time Overcurrent 1 Function Neutral Time Overcurrent 1 Signal Source	0 to 5		1	F167	0 (SRC 1)

Table B-9: MODBUS MEMORY MAP (Sheet 21 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
5B06	Neutral Time Overcurrent 1 Reset	0 to 1		1	F104	0 (Instantaneous)
5B07	Neutral Time Overcurrent 1 Block	0 to 65535		1	F300	0
5B08	Neutral Time Overcurrent 1 Target	0 to 2		1	F109	0 (Self-reset)
5B09	Neutral Time Overcurrent 1 Events	0 to 1		1	F102	0 (Disabled)
5B0A	Reserved (6 items)	0 to 1		1	F001	0
5B10	Repeated for Neutral Time Overcurrent 2					
5B20	Repeated for Neutral Time Overcurrent 3					
5B30	Repeated for Neutral Time Overcurrent 4					
5B40	Repeated for Neutral Time Overcurrent 5					
5B50	Repeated for Neutral Time Overcurrent 6					
Neutral li	nstantaneous Overcurrent (Read/Write Grouped Setting)) (12 modules)				
5C00	Neutral Instantaneous Overcurrent 1 Function	0 to 1		1	F102	0 (Disabled)
5C01	Neutral Instantaneous Overcurrent 1 Signal Source	0 to 5		1	F167	0 (SRC 1)
5C02	Neutral Instantaneous Overcurrent 1 Pickup	0 to 30	pu	0.001	F001	1000
5C03	Neutral Instantaneous Overcurrent 1 Delay	0 to 600	S	0.01	F001	0
5C04	Neutral Instantaneous Overcurrent 1 Reset Delay	0 to 600	s	0.01	F001	0
5C05	Neutral Instantaneous Overcurrent 1 Block	0 to 65535		1	F300	0
5C06	Neutral Instantaneous Overcurrent 1 Target	0 to 2		1	F109	0 (Self-reset)
5C07	Neutral Instantaneous Overcurrent 1 Events	0 to 1		1	F102	0 (Disabled)
5C08	Reserved (8 items)	0 to 1		1	F001	0
5C10	Repeated for Neutral Instantaneous Overcurrent 2					
5C20	Repeated for Neutral Instantaneous Overcurrent 3					
5C30	Repeated for Neutral Instantaneous Overcurrent 4					
5C40	Repeated for Neutral Instantaneous Overcurrent 5					
5C50	Repeated for Neutral Instantaneous Overcurrent 6					
5C60	Repeated for Neutral Instantaneous Overcurrent 7					
5C70	Repeated for Neutral Instantaneous Overcurrent 8					
5C80	Repeated for Neutral Instantaneous Overcurrent 9					
5C90	Repeated for Neutral Instantaneous Overcurrent 10					
5CA0	Repeated for Neutral Instantaneous Overcurrent 11					
5CB0	Repeated for Neutral Instantaneous Overcurrent 12					
Ground 1	Time Overcurrent (Read/Write Grouped Setting) (6 modu	iles)				
5D00	Ground Time Overcurrent 1 Function	0 to 1		1	F102	0 (Disabled)
5D01	Ground Time Overcurrent 1 Signal Source	0 to 5		1	F167	0 (SRC 1)
5D02	Ground Time Overcurrent 1 Input	0 to 1		1	F122	0 (Phasor)
5D03	Ground Time Overcurrent 1 Pickup	0 to 30	pu	0.001	F001	1000
5D04	Ground Time Overcurrent 1 Curve	0 to 16		1	F103	0 (IEEE Mod Inv)
5D05	Ground Time Overcurrent 1 Multiplier	0 to 600		0.01	F001	100
5D06	Ground Time Overcurrent 1 Reset	0 to 1		1	F104	0 (Instantaneous)
5D07	Ground Time Overcurrent 1 Block	0 to 65535		1	F300	0
5D08	Ground Time Overcurrent 1 Target	0 to 2		1	F109	0 (Self-reset)
5D09	Ground Time Overcurrent 1 Events	0 to 1		1	F102	0 (Disabled)
5D0A	Reserved (6 items)	0 to 1		1	F001	0
5D10	Repeated for Ground Time Overcurrent 2					-
5D20	Repeated for Ground Time Overcurrent 3					
5D30	Repeated for Ground Time Overcurrent 4			<u> </u>		
5D40	Repeated for Ground Time Overcurrent 5					
5D50	Repeated for Ground Time Overcurrent 6					
	nstantaneous Overcurrent (Read/Write Grouped Setting) (12 modules)	1		1	1
5E00	Ground Instantaneous Overcurrent 1 Signal Source	0 to 5		1	F167	0 (SRC 1)
5E01	Ground Instantaneous Overcurrent 1 Function	0 to 1		1	F102	0 (Disabled)
5E02	Ground Instantaneous Overcurrent 1 Pickup	0 to 30	pu	0.001	F001	1000
5E02	Ground Instantaneous Overcurrent 1 Delay	0 to 600	s	0.001	F001	0
	Ground instantaneous Overediterit i Delay	0.0000	3	0.01	1 001	0

Table B-9: MODBUS MEMORY MAP (Sheet 22 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
5E05	Ground Instantaneous Overcurrent 1 Block	0 to 65535		1	F300	0
5E06	Ground Instantaneous Overcurrent 1 Target	0 to 2		1	F109	0 (Self-reset)
5E07	Ground Instantaneous Overcurrent 1 Events	0 to 1		1	F102	0 (Disabled)
5E08	Reserved (8 items)	0 to 1		1	F001	0
5E10	Repeated for Ground Instantaneous Overcurrent 2					
5E20	Repeated for Ground Instantaneous Overcurrent 3					
5E30	Repeated for Ground Instantaneous Overcurrent 4					
5E40	Repeated for Ground Instantaneous Overcurrent 5					
5E50	Repeated for Ground Instantaneous Overcurrent 6					
5E60	Repeated for Ground Instantaneous Overcurrent 7					
5E70	Repeated for Ground Instantaneous Overcurrent 8					
5E80	Repeated for Ground Instantaneous Overcurrent 9					
5E90	Repeated for Ground Instantaneous Overcurrent 10					
5EA0	Repeated for Ground Instantaneous Overcurrent 11					
5EB0	Repeated for Ground Instantaneous Overcurrent 12					
L90 Trip I	Logic (Read/Write Grouped Setting)					
5EE0	87L Trip Function	0 to 1		1	F102	0 (Disabled)
5EE1	87L Trip Source	0 to 5		1	F167	0 (SRC 1)
5EE2	87L Trip Mode	0 to 1		1	F157	0 (3-Pole)
5EE3	87L Trip Supervision	0 to 65535		1	F300	0
5EE4	87L Trip Force 3 Phase	0 to 65535		1	F300	0
5EE5	87L Trip Seal In	0 to 1		1	F102	0 (Disabled)
5EE6	87L Trip Seal In Pickup	0.2 to 0.8	pu	0.01	F001	20
5EE7	87L Trip Target	0 to 2		1	F109	0 (Self-reset)
5EE8	87L Trip Events	0 to 1		1	F102	0 (Disabled)
Stub Bus	(Read/Write Grouped Setting)					
5F10	Stub Bus Function	0 to 1		1	F102	0 (Disabled)
5F11	Stub Bus Disconnect	0 to 65535		1	F300	0
5F12	Stub Bus Trigger			1	F300	0
5F13	Stub Bus Target	0 to 2		1	F109	0 (Self-reset)
5F14	Stub Bus Events	0 to 1		1	F102	0 (Disabled)
L90 50DD	0 (Read/Write Grouped Setting)					
5F20	50DD Function	0 to 1		1	F102	0 (Disabled)
5F21	50DD Non Current Supervision	0 to 65535		1	F300	0
5F22	50DD Control Logic	0 to 65535		1	F300	0
5F23	50DD Logic Seal In	0 to 65535		1	F300	0
5F24	50DD Events	0 to 1		1	F102	0 (Disabled)
Setting G	roups (Read/Write Setting)					
5F80	Setting Group for Modbus Comms (0 means group 1)	0 to 5		1	F001	0
5F81	Setting Groups Block	0 to 65535		1	F300	0
5F82	FlexLogic to Activate Groups 2 through 6 (5 items)	0 to 65535		1	F300	0
5F89	Setting Group Function	0 to 1		1	F102	0 (Disabled)
5F8A	Setting Group Events	0 to 1		1	F102	0 (Disabled)
Setting G	iroups (Read Only)					
5F8B	Current Setting Group	0 to 5		1	F001	0
Setting G	roup Names (Read/Write Setting)					
5F8C	Setting Group 1 Name				F203	(none)
5494	Setting Group 2 Name				F203	(none)
5F9C	Setting Group 3 Name				F203	(none)
5FA4	Setting Group 4 Name				F203	(none)
5FAC	Setting Group 5 Name				F203	(none)
5FB4	Setting Group 6 Name				F203	(none)
Current D	Differential 87L (Read/Write Grouped Setting)					
6000	87L Current Differential Function	0 to 1		1	F102	0 (Disabled)

Table B-9: MODBUS MEMORY MAP (Sheet 23 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
6001	87L Current Differential Block	0 to 65535		1	F300	0
6002	87L Current Differential Signal Source 1	0 to 5		1	F167	0 (SRC 1)
6003	87L Minimum Phase Current Sensitivity	0.1 to 4	pu	0.01	F001	20
6004	87L Current Differential Tap Setting	0.2 to 5		0.01	F001	100
6005	87L Current Differential Phase Percent Restraint 1	1 to 50	%	1	F001	30
6006	87L Current Differential Phase Percent Restraint 2	1 to 70	%	1	F001	50
6007	87L Current Differential Phase Dual Slope Breakpoint	0 to 20	pu	0.1	F001	10
600C	87L Current Differential Key DTT	0 to 1		1	F102	1 (Enabled)
600D	87L Current Differential External Key DTT	0 to 65535		1	F300	0
600E	87L Current Differential Target	0 to 2		1	F109	0 (Self-reset)
600F	87L Current Differential Event	0 to 1		1	F102	0 (Disabled)
6010	87L Current Differential Tap 2 Setting	0.2 to 5		0.01	F001	100
6011	87L Current Differential Signal Source 2	0 to 6		1	F211	0 (None)
6012	87L Current Differential Signal Source 3	0 to 6		1	F211	0 (None)
6014	87L Current Differential Signal Source 4	0 to 6		1	F211	0 (None)
Wattmetr	ic ground fault settings (read/write grouped, 2 module	s)			•	
6050	Wattmetric ground fault 1 function	0 to 1		1	F102	0 (Disabled)
6051	Wattmetric ground fault 1 source	0 to 5		1	F167	0 (SRC 1)
6052	Wattmetric ground fault 1 voltage	0 to 1		1	F234	0 (Calculated VN)
6053	Wattmetric ground fault 1 overvoltage pickup	0.02 to 3.00	pu	0.01	F001	20
6054	Wattmetric ground fault 1 current	0 to 1		1	F235	(Calculated IN)
6055	Wattmetric ground fault 1 overcurrent pickup	0.002 to 30.000	pu	0.001	F001	60
6056	Wattmetric ground fault 1 overcurrent pickup delay	0 to 600	S	0.01	F001	20
6057	Wattmetric ground fault 1 power pickup	0.001 to 1.2	pu	0.001	F001	100
6058	Wattmetric ground fault 1 ECA	0 to 360	° Lag	1	F001	0
6059	Wattmetric ground fault 1 power pickup delay	0 to 600	S	0.01	F001	20
605A	Wattmetric ground fault 1 curve	0 to 5		1	F236	0 (Definite Time)
605B	Wattmetric ground fault 1 multiplier	0.01 to 2	s	0.01	F001	100
605C	Wattmetric ground fault 1 block	0 to 65535		1	F300	0
605D	Wattmetric ground fault 1 target	0 to 2		1	F109	0 (Self-reset)
605E	Wattmetric ground fault 1 events	0 to 1		1	F102	0 (Disabled)
605F	Wattmetric ground fault 1 reference power	0.001 to 1.2	pu	0.001	F001	500
6060	Reserved					
6061	Repeated for wattmetric ground fault 2					
Wattmetr	ic ground fault actual values (read only)					
6072	Wattmetric ground fault 1 operating power	0.000 to 100000.000	W	0.001	F060	0
6074	Wattmetric ground fault 2 operating power	0.000 to 100000.000	W	0.001	F060	0
CT Failur	e Detector (Read/Write Setting)					
6124	CT Fail Function	0 to 1		1	F102	0 (Disabled)
6125	CT Fail Block	0 to 65535		1	F300	0
6126	CT Fail Current Source 1	0 to 5		1	F167	0 (SRC 1)
6127	CT Fail Current Pickup 1	0 to 2	pu	0.1	F001	2
6128	CT Fail Current Source 2	0 to 5		1	F167	1 (SRC 2)
6129	CT Fail Current Pickup 2	0 to 2	pu	0.1	F001	2
612A	CT Fail Voltage Source	0 to 5		1	F167	0 (SRC 1)
612B	CT Fail Voltage Pickup	0 to 2	pu	0.01	F001	20
612C	CT Fail Pickup Delay	0 to 65.535	S	0.001	F001	1000
612D	CT Fail Target	0 to 2		1	F109	0 (Self-reset)
612E	CT Fail Events	0 to 1		1	F102	0 (Disabled)
	bus Monitor (Read/Write Setting)			1		,,
6130	Continuous Monitor Function	0 to 1		1	F102	0 (Disabled)
6131	Continuous Monitor I OP	0 to 65535		1	F300	0
6132	Continuous Monitor I Supervision	0 to 65535		1	F300	0
6133	Continuous Monitor V OP	0 to 65535		1	F300	0
0100		0.000000		1	1000	0

Table B-9: MODBUS MEMORY MAP (Sheet 24 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT					
6134	Continuous Monitor V Supervision	0 to 65535		1	F300	0					
6135	Continuous Monitor Target	0 to 2		1	F109	0 (Self-reset)					
6136	Continuous Monitor Events	0 to 1		1	F102	0 (Disabled)					
Negative	Negative Sequence Time Overcurrent (Read/Write Grouped Setting) (2 modules)										
6300	Negative Sequence Time Overcurrent 1 Function	0 to 1		1	F102	0 (Disabled)					
6301	Negative Sequence Time Overcurrent 1 Signal Source	0 to 5		1	F167	0 (SRC 1)					
6302	Negative Sequence Time Overcurrent 1 Pickup	0 to 30	pu	0.001	F001	1000					
6303	Negative Sequence Time Overcurrent 1 Curve	0 to 16		1	F103	0 (IEEE Mod Inv)					
6304	Negative Sequence Time Overcurrent 1 Multiplier	0 to 600		0.01	F001	100					
6305	Negative Sequence Time Overcurrent 1 Reset	0 to 1		1	F104	0 (Instantaneous)					
6306	Negative Sequence Time Overcurrent 1 Block	0 to 65535		1	F300	0					
6307	Negative Sequence Time Overcurrent 1 Target	0 to 2		1	F109	0 (Self-reset)					
6308	Negative Sequence Time Overcurrent 1 Events	0 to 1		1	F102	0 (Disabled)					
6309	Reserved (7 items)	0 to 1		1	F001	0					
6310	Repeated for Negative Sequence Time Overcurrent 2										
Negative	Sequence Instantaneous Overcurrent (Read/Write Grou	uped Setting) (2 modules)									
6400	Negative Sequence Instantaneous OC 1 Function	0 to 1		1	F102	0 (Disabled)					
6401	Negative Sequence Instantaneous OC 1 Signal Source	0 to 5		1	F167	0 (SRC 1)					
6402	Negative Sequence Instantaneous Overcurrent 1 Pickup	0 to 30	pu	0.001	F001	1000					
6403	Negative Sequence Instantaneous Overcurrent 1 Delay	0 to 600	S	0.01	F001	0					
6404	Negative Sequence Instantaneous OC 1 Reset Delay	0 to 600	S	0.01	F001	0					
6405	Negative Sequence Instantaneous Overcurrent 1 Block	0 to 65535		1	F300	0					
6406	Negative Sequence Instantaneous Overcurrent 1 Target	0 to 2		1	F109	0 (Self-reset)					
6407	Negative Sequence Instantaneous Overcurrent 1 Events	0 to 1		1	F102	0 (Disabled)					
6408	Reserved (8 items)	0 to 1		1	F001	0					
6410	Repeated for Negative Sequence Instantaneous OC 2										
	ving Detect (Read/Write Grouped Setting)		-								
65C0	Power Swing Detect Function	0 to 1		1	F102	0 (Disabled)					
65C1	Power Swing Detect Source	0 to 5		1	F167	0 (SRC 1)					
65C2	Power Swing Detect Mode	0 to 1		1	F513	0 (Two Step)					
65C3	Power Swing Detect Supervision	0.05 to 30	pu	0.001	F001	600					
65C4	Power Swing Detect Forward Reach	0.1 to 500	ohms	0.01	F001	5000					
65C5	Power Swing Detect Forward RCA	40 to 90	degrees	1	F001	75					
65C6	Power Swing Detect Reverse Reach	0.1 to 500	ohms	0.01							
65C7				0.01	F001	5000					
	Power Swing Detect Reverse RCA	40 to 90	degrees	1	F001	75					
65C8	Power Swing Detect Outer Limit Angle	40 to 140	degrees	1 1	F001 F001	75 120					
65C9	Power Swing Detect Outer Limit Angle Power Swing Detect Middle Limit Angle	40 to 140 40 to 140	degrees degrees	1 1 1	F001 F001 F001	75 120 90					
65C9 65CA	Power Swing Detect Outer Limit Angle Power Swing Detect Middle Limit Angle Power Swing Detect Inner Limit Angle	40 to 140 40 to 140 40 to 140	degrees degrees degrees	1 1 1 1	F001 F001 F001 F001	75 120 90 60					
65C9 65CA 65CB	Power Swing Detect Outer Limit Angle Power Swing Detect Middle Limit Angle Power Swing Detect Inner Limit Angle Power Swing Detect Delay 1 Pickup	40 to 140 40 to 140 40 to 140 0 to 65.535	degrees degrees degrees s	1 1 1 0.001	F001 F001 F001 F001 F001	75 120 90 60 30					
65C9 65CA 65CB 65CC	Power Swing Detect Outer Limit Angle Power Swing Detect Middle Limit Angle Power Swing Detect Inner Limit Angle Power Swing Detect Delay 1 Pickup Power Swing Detect Delay 1 Reset	40 to 140 40 to 140 40 to 140 0 to 65.535 0 to 65.535	degrees degrees degrees s s	1 1 1 0.001 0.001	F001 F001 F001 F001 F001 F001	75 120 90 60 30 50					
65C9 65CA 65CB 65CC 65CD	Power Swing Detect Outer Limit Angle Power Swing Detect Middle Limit Angle Power Swing Detect Inner Limit Angle Power Swing Detect Delay 1 Pickup Power Swing Detect Delay 1 Reset Power Swing Detect Delay 2 Pickup	40 to 140 40 to 140 40 to 140 0 to 65.535 0 to 65.535 0 to 65.535	degrees degrees degrees s s s s	1 1 1 0.001 0.001 0.001	F001 F001 F001 F001 F001 F001 F001	75 120 90 60 30 50 17					
65C9 65CA 65CB 65CC 65CD 65CE	Power Swing Detect Outer Limit Angle Power Swing Detect Middle Limit Angle Power Swing Detect Inner Limit Angle Power Swing Detect Delay 1 Pickup Power Swing Detect Delay 1 Reset Power Swing Detect Delay 2 Pickup Power Swing Detect Delay 3 Pickup	40 to 140 40 to 140 40 to 140 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535	degrees degrees degrees s s s s s	1 1 1 0.001 0.001 0.001	F001 F001 F001 F001 F001 F001 F001 F001	75 120 90 60 30 50 17 9					
65C9 65CA 65CB 65CC 65CD 65CD 65CE	Power Swing Detect Outer Limit Angle Power Swing Detect Middle Limit Angle Power Swing Detect Inner Limit Angle Power Swing Detect Delay 1 Pickup Power Swing Detect Delay 1 Reset Power Swing Detect Delay 2 Pickup Power Swing Detect Delay 3 Pickup Power Swing Detect Delay 4 Pickup	40 to 140 40 to 140 40 to 140 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535	degrees degrees s s s s s s s s	1 1 1 0.001 0.001 0.001 0.001	F001 F001 F001 F001 F001 F001 F001 F001	75 120 90 60 30 50 17 9 17					
65C9 65CA 65CB 65CC 65CD 65CE 65CF 65CF	Power Swing Detect Outer Limit Angle Power Swing Detect Middle Limit Angle Power Swing Detect Inner Limit Angle Power Swing Detect Delay 1 Pickup Power Swing Detect Delay 1 Reset Power Swing Detect Delay 2 Pickup Power Swing Detect Delay 3 Pickup Power Swing Detect Delay 4 Pickup Power Swing Detect Delay 4 Pickup Power Swing Detect Seal In Delay	40 to 140 40 to 140 40 to 140 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535	degrees degrees S S S S S S S S S	1 1 1 0.001 0.001 0.001 0.001 0.001	F001 F001 F001 F001 F001 F001 F001 F001	75 120 90 60 30 50 17 9 17 400					
65C9 65CA 65CB 65CC 65CD 65CE 65CE 65CF 65D0 65D1	Power Swing Detect Outer Limit Angle Power Swing Detect Middle Limit Angle Power Swing Detect Inner Limit Angle Power Swing Detect Delay 1 Pickup Power Swing Detect Delay 1 Reset Power Swing Detect Delay 2 Pickup Power Swing Detect Delay 3 Pickup Power Swing Detect Delay 4 Pickup Power Swing Detect Delay 4 Pickup Power Swing Detect Trip Mode	40 to 140 40 to 140 40 to 140 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535	degrees degrees S S S S S S S S 	1 1 0.001 0.001 0.001 0.001 0.001 1	F001 F001 F001 F001 F001 F001 F001 F001	75 120 90 60 30 50 17 9 17 400 0 (Delayed)					
65C9 65CA 65CB 65CC 65CD 65CE 65CE 65CF 65D0 65D1 65D2	Power Swing Detect Outer Limit Angle Power Swing Detect Middle Limit Angle Power Swing Detect Inner Limit Angle Power Swing Detect Delay 1 Pickup Power Swing Detect Delay 1 Reset Power Swing Detect Delay 2 Pickup Power Swing Detect Delay 3 Pickup Power Swing Detect Delay 4 Pickup Power Swing Detect Seal In Delay Power Swing Detect Trip Mode Power Swing Detect Block	40 to 140 40 to 140 40 to 140 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 1 0 to 65535	degrees degrees S S S S S S S S 	1 1 0.001 0.001 0.001 0.001 0.001 1 1	F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F300	75 120 90 60 30 50 17 9 17 400 0 (Delayed) 0					
65C9 65CA 65CB 65CC 65CD 65CE 65CE 65CF 65D0 65D1 65D2 65D3	Power Swing Detect Outer Limit Angle Power Swing Detect Middle Limit Angle Power Swing Detect Inner Limit Angle Power Swing Detect Delay 1 Pickup Power Swing Detect Delay 1 Reset Power Swing Detect Delay 2 Pickup Power Swing Detect Delay 3 Pickup Power Swing Detect Delay 4 Pickup Power Swing Detect Delay 4 Pickup Power Swing Detect Trip Mode Power Swing Detect Block Power Swing Detect Target	40 to 140 40 to 140 40 to 140 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 1 0 to 65535 0 to 1 0 to 65535 0 to 2	degrees degrees S S S S S S S S 	1 1 0.001 0.001 0.001 0.001 0.001 1 1 1	F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F109	75 120 90 60 30 50 17 9 17 400 0 (Delayed) 0 0 (Self-reset)					
65C9 65CA 65CB 65CC 65CD 65CE 65CF 65D0 65D1 65D2 65D3 65D4	Power Swing Detect Outer Limit Angle Power Swing Detect Middle Limit Angle Power Swing Detect Inner Limit Angle Power Swing Detect Delay 1 Pickup Power Swing Detect Delay 1 Reset Power Swing Detect Delay 2 Pickup Power Swing Detect Delay 3 Pickup Power Swing Detect Delay 4 Pickup Power Swing Detect Seal In Delay Power Swing Detect Block Power Swing Detect Target Power Swing Detect Event	40 to 140 40 to 140 40 to 140 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 1 0 to 65535 0 to 2 0 to 1	degrees degrees S S S S S S S S 	1 1 0.001 0.001 0.001 0.001 0.001 1 1 1	F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F109 F102	75 120 90 60 30 50 17 9 17 400 0 (Delayed) 0 0 (Self-reset) 0 (Disabled)					
65C9 65CA 65CB 65CC 65CD 65CE 65CF 65D0 65D1 65D2 65D3 65D4 65D5	Power Swing Detect Outer Limit Angle Power Swing Detect Middle Limit Angle Power Swing Detect Inner Limit Angle Power Swing Detect Delay 1 Pickup Power Swing Detect Delay 1 Reset Power Swing Detect Delay 2 Pickup Power Swing Detect Delay 3 Pickup Power Swing Detect Delay 4 Pickup Power Swing Detect Seal In Delay Power Swing Detect Trip Mode Power Swing Detect Target Power Swing Detect Event Power Swing Detect Shape	40 to 140 40 to 140 40 to 140 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 1 0 to 65535 0 to 2 0 to 1 0 to 1 0 to 1	degrees degrees S S S S S S S S 	1 1 1 0.001 0.001 0.001 0.001 0.001 1 1 1	F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F010 F109 F102 F085	75 120 90 60 30 50 17 9 17 400 0 (Delayed) 0 0 (Self-reset) 0 (Disabled) 0 (Mho Shape)					
65C9 65CA 65CB 65CC 65CD 65CE 65CF 65D0 65D1 65D2 65D3 65D4 65D5 65D6	Power Swing Detect Outer Limit Angle Power Swing Detect Middle Limit Angle Power Swing Detect Inner Limit Angle Power Swing Detect Delay 1 Pickup Power Swing Detect Delay 1 Reset Power Swing Detect Delay 2 Pickup Power Swing Detect Delay 3 Pickup Power Swing Detect Delay 4 Pickup Power Swing Detect Seal In Delay Power Swing Detect Trip Mode Power Swing Detect Target Power Swing Detect Shape Power Swing Detect Shape	40 to 140 40 to 140 40 to 140 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 1 0 to 65535 0 to 2 0 to 1 0 to 1 0 to 1 0 to 1 0.1 to 500	degrees degrees s s s s s s s s ohms	1 1 1 0.001 0.001 0.001 0.001 0.001 1 1 1	F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F109 F102 F085 F001	75 120 90 60 30 50 17 9 17 400 0 (Delayed) 0 (Delayed) 0 (Self-reset) 0 (Disabled) 0 (Mho Shape) 6000					
65C9 65CA 65CB 65CC 65CD 65CE 65CF 65D0 65D1 65D2 65D3 65D4 65D5 65D6 65D7	Power Swing Detect Outer Limit Angle Power Swing Detect Middle Limit Angle Power Swing Detect Inner Limit Angle Power Swing Detect Delay 1 Pickup Power Swing Detect Delay 1 Reset Power Swing Detect Delay 2 Pickup Power Swing Detect Delay 3 Pickup Power Swing Detect Delay 4 Pickup Power Swing Detect Seal In Delay Power Swing Detect Trip Mode Power Swing Detect Target Power Swing Detect Shape Power Swing Detect Shape Power Swing Detect Quad Forward Middle	40 to 140 40 to 140 40 to 140 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 1 0 to 65535 0 to 2 0 to 1 0 to 2 0 to 1 0 to 1 0 to 1 0 to 1 0.1 to 500 0.1 to 500	degrees degrees S S S S S S S S S ohms ohms	1 1 1 0.001 0.001 0.001 0.001 1 1 1 1 1 0.01 0.01	F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F109 F102 F085 F001 F001	75 120 90 60 30 50 17 9 17 400 0 (Delayed) 0 (Delayed) 0 (Delayed) 0 (Self-reset) 0 (Disabled) 0 (Mho Shape) 6000 7000					
65C9 65CA 65CB 65CC 65CD 65CE 65CF 65D0 65D1 65D2 65D3 65D4 65D5 65D6 65D7 65D8	Power Swing Detect Outer Limit Angle Power Swing Detect Middle Limit Angle Power Swing Detect Inner Limit Angle Power Swing Detect Inner Limit Angle Power Swing Detect Delay 1 Pickup Power Swing Detect Delay 1 Reset Power Swing Detect Delay 2 Pickup Power Swing Detect Delay 3 Pickup Power Swing Detect Delay 4 Pickup Power Swing Detect Delay 4 Pickup Power Swing Detect Trip Mode Power Swing Detect Target Power Swing Detect Event Power Swing Detect Shape Power Swing Detect Quad Forward Middle Power Swing Detect Quad Forward Outer	40 to 140 40 to 140 40 to 140 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 1 0 to 65535 0 to 2 0 to 1 0 to 2 0 to 1 0 to 1 0.1 to 500 0.1 to 500	degrees degrees S S S S S S S S ohms ohms ohms	1 1 1 0.001 0.001 0.001 0.001 1 1 1 1 0.01 0.01 0.01	F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F102 F085 F001 F001 F001	75 120 90 60 30 50 17 9 17 400 0 (Delayed) 0 (Delayed) 0 (Delayed) 0 (Self-reset) 0 (Disabled) 0 (Mho Shape) 6000 7000 6000					
65C9 65CA 65CB 65CC 65CD 65CE 65CF 65D0 65D1 65D2 65D3 65D4 65D5 65D6 65D7	Power Swing Detect Outer Limit Angle Power Swing Detect Middle Limit Angle Power Swing Detect Inner Limit Angle Power Swing Detect Delay 1 Pickup Power Swing Detect Delay 1 Reset Power Swing Detect Delay 2 Pickup Power Swing Detect Delay 3 Pickup Power Swing Detect Delay 4 Pickup Power Swing Detect Seal In Delay Power Swing Detect Trip Mode Power Swing Detect Target Power Swing Detect Shape Power Swing Detect Shape Power Swing Detect Quad Forward Middle	40 to 140 40 to 140 40 to 140 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 65.535 0 to 1 0 to 65535 0 to 2 0 to 1 0 to 2 0 to 1 0 to 1 0 to 1 0 to 1 0.1 to 500 0.1 to 500	degrees degrees S S S S S S S S S ohms ohms	1 1 1 0.001 0.001 0.001 0.001 1 1 1 1 1 0.01 0.01	F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F001 F109 F102 F085 F001 F001	75 120 90 60 30 50 17 9 17 400 0 (Delayed) 0 (Delayed) 0 (Delayed) 0 (Self-reset) 0 (Disabled) 0 (Mho Shape) 6000 7000					

Table B-9: MODBUS MEMORY MAP (Sheet 25 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
65DB	Power Swing Detect Outer Left Blinder	0.1 to 500	ohms	0.01	F001	10000
65DC	Power Swing Detect Middle Right Blinder	0.1 to 500	ohms	0.01	F001	10000
65DD	Power Swing Detect Middle Left Blinder	0.1 to 500	ohms	0.01	F001	10000
65DE	Power Swing Detect Inner Right Blinder	0.1 to 500	ohms	0.01	F001	10000
65DF	Power Swing Detect Inner Left Blinder	0.1 to 500	ohms	0.01	F001	10000
Load Enc	roachment (Read/Write Grouped Setting)					
6700	Load Encroachment Function	0 to 1		1	F102	0 (Disabled)
6701	Load Encroachment Source	0 to 5		1	F167	0 (SRC 1)
6702	Load Encroachment Minimum Voltage	0 to 3	pu	0.001	F001	250
6703	Load Encroachment Reach	0.02 to 250	ohms	0.01	F001	100
6704	Load Encroachment Angle	5 to 50	degrees	1	F001	30
6705	Load Encroachment Pickup Delay	0 to 65.535	s	0.001	F001	0
6706	Load Encroachment Reset Delay	0 to 65.535	S	0.001	F001	0
6707	Load Encroachment Block	0 to 65535		1	F300	0
6708	Load Encroachment Target	0 to 2		1	F109	0 (Self-reset)
6709	Load Encroachment Events	0 to 1		1	F102	0 (Disabled)
670A	Reserved (6 items)	0 to 65535		1	F001	0
	ut (Read/Write Setting)	0.000000			1.001	Ŭ
6800	Trip Mode	0 to 2		1	F195	0 (Disabled)
6801	Trip 3-Pole Input1	0 to 65535		1	F300	0
6802	Trip 3-Pole Input2	0 to 65535		1	F300	0
6803	Trip 3-Pole Input3	0 to 65535		1	F300	0
6804	Trip 3-Pole Input4	0 to 65535		1	F300	0
6805	Trip 3-Pole Input5	0 to 65535		1	F300	0
6806	Trip 3-Pole Input6	0 to 65535		1	F300	0
6807	Trip 1-Pole Input	0 to 65535		1	F300	0
6808	Trip 1-Pole Input2	0 to 65535		1	F300	0
6809	Trip 1-Pole Input3	0 to 65535		1	F300	0
680A	Trip 1-Pole Input4	0 to 65535		1	F300	0
680B	Trip 1-Pole Input5	0 to 65535		1	F300	0
680C	Trip 1-Pole Input6	0 to 65535		1	F300	0
680D	Trip Reclose Input1	0 to 65535		1	F300	0
680E	Trip Reclose Input2	0 to 65535		1	F300	0
680F	Trip Reclose Input3	0 to 65535		1	F300	0
6810	Trip Reclose Input4	0 to 65535		1	F300 F300	0
6810	Trip Reclose Input5	0 to 65535		1	F300 F300	0
6812	Trip Reclose Input6	0 to 65535		1	F300	0
6813	Trip Force 3-Pole	0 to 65535		1	F300	0
6814	Trip Pilot Priority			0.001	F001	0
6815	Breaker Phase A Open	0 to 65.535 0 to 65535	S 	1	F300	0
6815	Breaker Phase B Open	0 to 65535		1	F300 F300	0
6816	Breaker Phase B Open Breaker Phase C Open	0 to 65535		1	F300 F300	0
6818	Trip Events				F300 F102	0 (Disabled)
	-	0 to 1		1		, ,
6819 681A	Reverse Fault Operand Trip Delay On Evolving Faults	0 to 65535		1	F300	0
681A		0 to 65.535	S	0.001	F001	0
681B	Reserved (5 items) e Detect (Read/Write Setting)	0 to 1		1	F001	0
		0 40 4	1	4	E400	0 (Dischild - 1)
6820	Open Pole Function	0 to 1		1	F102	0 (Disabled)
6821	Open Pole Block	0 to 65535		1	F300	0
6822	Open Pole Voltage Supervision	0 to 1		1	F102	0 (Disabled)
6823	Open Pole Current Pickup	0 to 30	pu	0.001	F001	50
6824	Open Pole Target	0 to 2		1	F109	0 (Self-reset)
6825	Open Pole Events	0 to 1		1	F102	0 (Disabled)
6826	Open Pole Line XC0	300 to 9999.9	ohms	0.1	F003	99999

Table B-9: MODBUS MEMORY MAP (Sheet 26 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
6828	Open Pole Line XC1	300 to 9999.9	ohms	0.1	F003	99999
682A	Open Pole Remote Current Pickup	0 to 30	pu	0.001	F001	50
682B	Reserved (5 items)	0 to 1		1	F001	0
Autorecic	ose 1P 3P (Read/Write Setting)			•		
6890	Autoreclose Mode	0 to 3		1	F080	0 (1 & 3 Pole)
6891	Autoreclose Maximum Number of Shots	1 to 4		1	F001	2
6892	Autoreclose Block Breaker 1	0 to 65535		1	F300	0
6893	Autoreclose Close Time Breaker 1	0 to 655.35	S	0.01	F001	10
6894	Autoreclose Breaker Manual Close	0 to 65535		1	F300	0
6895	Autoreclose Function	0 to 1		1	F102	0 (Disabled)
6896	Autoreclose Block Time Manual Close	0 to 655.35	S	0.01	F001	1000
6897	Autoreclose 1P Initiate	0 to 65535		1	F300	0
6898	Autoreclose 3P Initiate	0 to 65535		1	F300	0
6899	Autoreclose 3P TD Initiate	0 to 65535		1	F300	0
689A	Autoreclose Multi-Phase Fault	0 to 65535		1	F300	0
689B	Autoreclose Breaker 1 Pole Open	0 to 65535		1	F300	0
689C	Autoreclose Breaker 3 Pole Open	0 to 65535		1	F300	0
689D	Autoreclose 3-Pole Dead Time 1	0 to 655.35	S	0.01	F001	50
689E	Autoreclose 3-Pole Dead Time 2	0 to 655.35	S	0.01	F001	120
689F	Autoreclose Extend Dead T1	0 to 65535		1	F300	0
68A0	Autoreclose Dead T1 Extension	0 to 655.35	S	0.01	F001	50
68A1	Autoreclose Reset	0 to 65535		1	F300	0
68A2	Autoreclose Reset Time	0 to 655.35	S	0.01	F001	6000
68A3	Autoreclose Breaker Closed	0 to 65535		1	F300	0
68A4	Autoreclose Block	0 to 65535		1	F300	0
68A5	Autoreclose Pause	0 to 65535		1	F300	0
68A6	Autoreclose Incomplete Sequence Time	0 to 655.35	S	0.01	F001	500
68A7	Autoreclose Block Breaker 2	0 to 65535		1	F300	0
68A8	Autoreclose Close Time Breaker 2	0 to 655.35	S	0.01	F001	10
68A9	Autoreclose Transfer 1 to 2	0 to 1		1	F126	0 (No)
68AA	Autoreclose Transfer 2 to 1	0 to 1		1	F126	0 (No)
68AB	Autoreclose Breaker 1 Fail Option	0 to 1		1	F081	0 (Continue)
68AC	Autoreclose Breaker 2 Fail Option	0 to 1		1	F081	0 (Continue)
68AD	Autoreclose 1P Dead Time	0 to 655.35	S	0.01	F001	100
68AE	Autoreclose Breaker Sequence	0 to 4		1	F082	3 (1 - 2)
68AF	Autoreclose Transfer Time	0 to 655.35	S	0.01	F001	400
68B0	Autoreclose Event	0 to 1		1	F102	0 (Disabled)
68B1	Autoreclose 3P Dead Time 3	0 to 655.35	S	0.01	F001	200
68B2	Autoreclose 3P Dead Time 4	0 to 655.35	S	0.01	F001	400
68B3	Autoreclose Bus Fault Initiate	0 to 65535	S	0.01	F300	0
68B3	Reserved (14 items)				F001	0
Phase Un	dervoltage (Read/Write Grouped Setting) (2 modules)					
7000	Phase Undervoltage 1 Function	0 to 1		1	F102	0 (Disabled)
7001	Phase Undervoltage 1 Signal Source	0 to 5		1	F167	0 (SRC 1)
7002	Phase Undervoltage 1 Pickup	0 to 3	pu	0.001	F001	1000
7003	Phase Undervoltage 1 Curve	0 to 1		1	F111	0 (Definite Time)
7004	Phase Undervoltage 1 Delay	0 to 600	S	0.01	F001	100
7005	Phase Undervoltage 1 Minimum Voltage	0 to 3	pu	0.001	F001	100
7006	Phase Undervoltage 1 Block	0 to 65535		1	F300	0
7007	Phase Undervoltage 1 Target	0 to 2		1	F109	0 (Self-reset)
7008	Phase Undervoltage 1 Events	0 to 1		1	F102	0 (Disabled)
7009	Phase Undervoltage 1 Measurement Mode	0 to 1		1	F186	0 (Phase to Ground)
7004	Reserved (6 items)	0 to 1		1	F001	0
700A		0.0			1 001	0

Table B-9: MODBUS MEMORY MAP (Sheet 27 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
Phase Ov	vervoltage (Read/Write Grouped Setting)					
7040	Phase Overvoltage 1 Function	0 to 1		1	F102	0 (Disabled)
7041	Phase Overvoltage 1 Source	0 to 5		1	F167	0 (SRC 1)
7042	Phase Overvoltage 1 Pickup	0 to 3	pu	0.001	F001	1000
7043	Phase Overvoltage 1 Delay	0 to 600	S	0.01	F001	100
7044	Phase Overvoltage 1 Reset Delay	0 to 600	S	0.01	F001	100
7045	Phase Overvoltage 1 Block	0 to 65535		1	F300	0
7046	Phase Overvoltage 1 Target	0 to 2		1	F109	0 (Self-reset)
7047	Phase Overvoltage 1 Events	0 to 1		1	F102	0 (Disabled)
7048	Reserved (8 items)	0 to 1		1	F001	0
Distance	(Read/Write Grouped Setting)		•	•	•	
7060	Distance Signal Source	0 to 5		1	F167	0 (SRC 1)
7061	Memory Duration	5 to 25	cycles	1	F001	10
7062	Force Self-Polarization	0 to 65535		1	F300	0
7062	Force Memory Polarization	0 to 65535		1	F300	0
Phase Di	stance (Read/Write Grouped Setting) (5 modules)					
7070	Phase Distance Zone 1 Function	0 to 1		1	F102	0 (Disabled)
7071	Phase Distance Zone 1 Current Supervision	0.05 to 30	pu	0.001	F001	200
7072	Phase Distance Zone 1 Reach	0.02 to 500	ohms	0.01	F001	200
7073	Phase Distance Zone 1 Direction	0 to 2		1	F154	0 (Forward)
7074	Phase Distance Zone 1 Comparator Limit	30 to 90	degrees	1	F001	90
7075	Phase Distance Zone 1 Delay	0 to 65.535	S	0.001	F001	0
7076	Phase Distance Zone 1 Block	0 to 65535		1	F300	0
7077	Phase Distance Zone 1 Target	0 to 2		1	F109	0 (Self-reset)
7078	Phase Distance Zone 1 Events	0 to 1		1	F102	0 (Disabled)
7079	Phase Distance Zone 1 Shape	0 to 1		1	F120	0 (Mho)
707A	Phase Distance Zone 1 RCA	30 to 90	degrees	1	F001	85
707B	Phase Distance Zone 1 DIR RCA	30 to 90	degrees	1	F001	85
707C	Phase Distance Zone 1 DIR Comp Limit	30 to 90	degrees	1	F001	90
707D	Phase Distance Zone 1 Quad Right Blinder	0.02 to 500	ohms	0.01	F001	1000
707E	Phase Distance Zone 1 Quad Right Blinder RCA	60 to 90	degrees	1	F001	85
707F	Phase Distance Zone 1 Quad Left Blinder	0.02 to 500	ohms	0.01	F001	1000
7080	Phase Distance Zone 1 Quad Left Blinder RCA	60 to 90	degrees	1	F001	85
7081	Phase Distance Zone 1 Volt Limit	0 to 5	pu	0.001	F001	0
7082	Phase Distance Zone 1 Transformer Voltage Connection	0 to 12		1	F153	0 (None)
7083	Phase Distance Zone 1 Transformer Current Connection	0 to 12		1	F153	0 (None)
7084	Phase Distance Zone 1 Rev Reach	0.02 to 500	ohms	0.01	F001	200
7085	Phase Distance Zone 1 Rev Reach RCA	30 to 90	degrees	1	F001	85
7086	Reserved (10 items)				F001	0
7090	Repeated for Phase Distance Zone 2					
70B0	Repeated for Phase Distance Zone 3					
Line Pick	up (Read/Write Grouped Setting)					
71F0	Line Pickup Function	0 to 1		1	F102	0 (Disabled)
71F1	Line Pickup Signal Source	0 to 5		1	F167	0 (SRC 1)
71F2	Line Pickup Phase IOC Pickup	0 to 30	pu	0.001	F001	1000
71F3	Line Pickup UV Pickup	0 to 3	pu	0.001	F001	700
71F4	Line End Open Pickup Delay	0 to 65.535	S	0.001	F001	150
71F5	Line End Open Reset Delay	0 to 65.535	S	0.001	F001	90
71F6	Line Pickup OV Pickup Delay	0 to 65.535	S	0.001	F001	40
71F7	Autoreclose Coordination Pickup Delay	0 to 65.535	S	0.001	F001	45
71F8	Autoreclose Coordination Reset Delay	0 to 65.535	S	0.001	F001	5
71F9	Autoreclose Coordination Bypass	0 to 1		1	F102	1 (Enabled)
71FA	Line Pickup Block	0 to 65535		1	F300	0
71FB	Line Pickup Target	0 to 2		1	F109	0 (Self-reset)

Table B-9: MODBUS MEMORY MAP (Sheet 28 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
71FC	Line Pickup Events	0 to 1		1	F102	0 (Disabled)
71FD	Terminal Open	0 to 65535		1	F300	0
71FE	Autoreclose Accelerate	0 to 65535		1	F300	0
Phase Di	rectional Overcurrent (Read/Write Grouped Setting) (2	modules)				
7260	Phase Directional Overcurrent 1 Function	0 to 1		1	F102	0 (Disabled)
7261	Phase Directional Overcurrent 1 Source	0 to 5		1	F167	0 (SRC 1)
7262	Phase Directional Overcurrent 1 Block	0 to 65535		1	F300	0
7263	Phase Directional Overcurrent 1 ECA	0 to 359		1	F001	30
7264	Phase Directional Overcurrent 1 Pol V Threshold	0 to 3	pu	0.001	F001	700
7265	Phase Directional Overcurrent 1 Block Overcurrent	0 to 1		1	F126	0 (No)
7266	Phase Directional Overcurrent 1 Target	0 to 2		1	F109	0 (Self-reset)
7267	Phase Directional Overcurrent 1 Events	0 to 1		1	F102	0 (Disabled)
7268	Reserved (8 items)	0 to 1		1	F001	0
7270	Repeated for Phase Directional Overcurrent 2					
Neutral D	irectional Overcurrent (Read/Write Grouped Setting) (2	modules)				
7280	Neutral Directional Overcurrent 1 Function	0 to 1		1	F102	0 (Disabled)
7281	Neutral Directional Overcurrent 1 Source	0 to 5		1	F167	0 (SRC 1)
7282	Neutral Directional Overcurrent 1 Polarizing	0 to 2		1	F230	0 (Voltage)
7283	Neutral Directional Overcurrent 1 Forward ECA	-90 to 90	° Lag	1	F002	75
7284	Neutral Directional Overcurrent 1 Forward Limit Angle	40 to 90	degrees	1	F001	90
7285	Neutral Directional Overcurrent 1 Forward Pickup	0.002 to 30	pu	0.001	F001	50
7286	Neutral Directional Overcurrent 1 Reverse Limit Angle	40 to 90	degrees	1	F001	90
7287	Neutral Directional Overcurrent 1 Reverse Pickup	0.002 to 30	pu	0.001	F001	50
7288	Neutral Directional Overcurrent 1 Target	0 to 2		1	F109	0 (Self-reset)
7289	Neutral Directional Overcurrent 1 Block	0 to 65535		1	F300	0
728A	Neutral Directional Overcurrent 1 Events	0 to 1		1	F102	0 (Disabled)
728B	Neutral Directional Overcurrent 1 Polarizing Voltage	0 to 1		1	F231	0 (Calculated V0)
728C	Neutral Directional Overcurrent 1 Op Current	0 to 1		1	F196	0 (Calculated 3I0)
728D	Neutral Directional Overcurrent 1 Offset	0 to 250	ohms	0.01	F001	0
728E	Neutral Directional Overcurrent 1 Pos Seq Restraint	0 to 0.5		0.001	F001	63
728F	Reserved	0 to 1		1	F001	0
7290	Repeated for Neutral Directional Overcurrent 2					
_	sequence directional overcurrent (read/write grouped	settings) (2 modules)				
72A0	Negative Sequence Directional Overcurrent 1 Function	0 to 1		1	F102	0 (Disabled)
72A1	Negative Sequence Directional Overcurrent 1 Source	0 to 5		1	F167	0 (SRC 1)
72A2	Negative Sequence Directional Overcurrent 1 Type	0 to 1		1	F179	0 (Neg Sequence)
72A3	Neg Sequence Directional Overcurrent 1 Forward ECA	0 to 90	° Lag	1	F002	75
72A4	Neg Seq Directional Overcurrent 1 Forward Limit Angle	40 to 90	degrees	1	F001	90
72A5	Neg Sequence Directional Overcurrent 1 Forward Pickup	0.015 to 30	pu	0.05	F001	5
72A6	Neg Seq Directional Overcurrent 1 Reverse Limit Angle	40 to 90	degrees	1	F001	90
72A7	Neg Sequence Directional Overcurrent 1 Reverse Pickup		pu	0.05	F001	5
72A8	Negative Sequence Directional Overcurrent 1 Target	0 to 2		1	F109	0 (Self-reset)
72A9	Negative Sequence Directional Overcurrent 1 Block	0 to 65535		1	F300	0
72AA	Negative Sequence Directional Overcurrent 1 Events	0 to 1		1	F102	0 (Disabled)
72AB	Negative Sequence Directional Overcurrent 1 Offset	0 to 250	ohms	0.01	F001	0
72AC	Neg Seq Directional Overcurrent 1 Pos Seq Restraint	0 to 0.5		0.001	F001	63
72AD	Reserved (3 items)	0 to 1		1	F001	0
72B0	Repeated for Neg Seq Directional Overcurrent 2		L			
	Arcing Current Settings (Read/Write Setting) (2 modules			4	E100	0 (Dischlad)
72C0 72C1	Breaker 1 Arcing Current Function	0 to 1		1	F102	0 (Disabled) 0 (SRC 1)
	Breaker 1 Arcing Current Source	0 to 5		1	F167	. ,
72C2	Breaker 1 Arcing Current Initiate A	0 to 65535		1	F300	0
72C3	Breaker 1 Arcing Current Initiate B	0 to 65535		1	F300	0
72C4	Breaker 1 Arcing Current Initiate C	0 to 65535		1	F300	0

Table B–9: MODBUS MEMORY MAP (Sheet 29 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
72C5	Breaker 1 Arcing Current Delay	0 to 65.535	S	0.001	F001	0
72C6	Breaker 1 Arcing Current Limit	0 to 50000	kA ² -cyc	1	F001	1000
72C7	Breaker 1 Arcing Current Block	0 to 65535		1	F300	0
72C8	Breaker 1 Arcing Current Target	0 to 2		1	F109	0 (Self-reset)
72C9	Breaker 1 Arcing Current Events	0 to 1		1	F102	0 (Disabled)
72CA	Repeated for Breaker 2 Arcing Current					
72D4	Repeated for Breaker 3 Arcing Current					
72DE	Repeated for Breaker 4 Arcing Current					
dcmA Inp	outs (Read/Write Setting) (24 modules)					
7300	dcmA Inputs 1 Function	0 to 1		1	F102	0 (Disabled)
7301	dcmA Inputs 1 ID				F205	"DCMA I 1"
7307	Reserved 1 (4 items)	0 to 65535		1	F001	0
730B	dcmA Inputs 1 Units				F206	"mA"
730E	dcmA Inputs 1 Range	0 to 6		1	F173	6 (4 to 20 mA)
730F	dcmA Inputs 1 Minimum Value	-9999.999 to 9999.999		0.001	F004	4000
7311	dcmA Inputs 1 Maximum Value	-9999.999 to 9999.999		0.001	F004	20000
7313	Reserved (5 items)	0 to 65535		1	F001	0
7318	Repeated for dcmA Inputs 2					
7330	Repeated for dcmA Inputs 3					
7348	Repeated for dcmA Inputs 4					
7360	Repeated for dcmA Inputs 5					
7378	Repeated for dcmA Inputs 6					
7390	Repeated for dcmA Inputs 7					
73A8	Repeated for dcmA Inputs 8					
73C0	Repeated for dcmA Inputs 9					
73D8	Repeated for dcmA Inputs 10					
73F0	Repeated for dcmA Inputs 11					
7408	Repeated for dcmA Inputs 12					
7420	Repeated for dcmA Inputs 13					
7438	Repeated for dcmA Inputs 14					
7450	Repeated for dcmA Inputs 15					
7468	Repeated for dcmA Inputs 16					
7480	Repeated for dcmA Inputs 17					
7498	Repeated for dcmA Inputs 18					
74B0	Repeated for dcmA Inputs 19					
74C8	Repeated for dcmA Inputs 20					
74E0	Repeated for dcmA Inputs 21					
74F8	Repeated for dcmA Inputs 22					
7510	Repeated for dcmA Inputs 23					
7528	Repeated for dcmA Inputs 24					
	ect switches (read/write settings)				1	
7540	Disconnect switch 1 function	0 to 1		1	F102	0 (Disabled)
7541	Disconnect switch 1 name				F206	"SW 1"
7544	Disconnect switch 1 mode	0 to 1		1	F157	0 (3-Pole)
7545	Disconnect switch 1 open	0 to 65535		1	F300	0
7546	Disconnect switch 1 block open	0 to 65535		1	F300	0
7547	Disconnect switch 1 close	0 to 65535		1	F300	0
7548	Disconnect switch 1 block close	0 to 65535		1	F300	0
7549	Disconnect switch 1 phase A / three-pole closed	0 to 65535		1	F300	0
7549 754A	Disconnect switch 1 phase A / three-pole closed	0 to 65535		1	F300	0
754A 754B	Disconnect switch 1 phase B closed	0 to 65535		1	F300 F300	0
						-
754C	Disconnect switch 1 phase B opened	0 to 65535		1	F300	0
754D	Disconnect switch 1 phase C closed	0 to 65535		1	F300	0
754E	Disconnect switch 1 phase C opened	0 to 65535		1	F300	0

Table B-9: MODBUS MEMORY MAP (Sheet 30 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
754F	Disconnect switch 1 operate time	0 to 2	S	0.001	F001	70
7550	Disconnect switch 1 alarm delay	0 to 1000000	S	0.001	F003	0
7552	Disconnect switch 1 events	0 to 1		1	F102	0 (Disabled)
7553	Reserved (2 items)					
7555	Repeated for disconnect switch 2					
756A	Repeated for disconnect switch 3					
757F	Repeated for disconnect switch 4					
7594	Repeated for disconnect switch 5					
75A9	Repeated for disconnect switch 6					
75BE	Repeated for disconnect switch 7					
75D3	Repeated for disconnect switch 8					
75E8	Repeated for disconnect switch 9					
75FD	Repeated for disconnect switch 10					
7612	Repeated for disconnect switch 11					
7627	Repeated for disconnect switch 12					
763C	Repeated for disconnect switch 13					
7651	Repeated for disconnect switch 14					
7666	Repeated for disconnect switch 15					
767B	Repeated for disconnect switch 16					
User Prog	grammable Pushbuttons (Read/Write Setting) (16 modu	iles)				
7B60	User Programmable Pushbutton 1 Function	0 to 2		1	F109	2 (Disabled)
7B61	User Programmable Pushbutton 1 Top Line				F202	(none)
7B6B	User Programmable Pushbutton 1 On Text				F202	(none)
7B75	User Programmable Pushbutton 1 Off Text				F202	(none)
7B7F	User Programmable Pushbutton 1 Drop-Out Time	0 to 60	S	0.05	F001	0
7B80	User Programmable Pushbutton 1 Target	0 to 2		1	F109	0 (Self-reset)
7B81	User Programmable Pushbutton 1 Events	0 to 1		1	F102	0 (Disabled)
7B82	User Programmable Pushbutton 1 LED Operand	0 to 65535		1	F300	0
7B83	User Programmable Pushbutton 1 Autoreset Delay	0 to 600	S	0.05	F001	0
7B84	User Programmable Pushbutton 1 Autoreset Function	0 to 1		1	F102	0 (Disabled)
7B85	User Programmable Pushbutton 1 Local Lock	0 to 65535		1	F300	0
7B86	User Programmable Pushbutton 1 Message Priority	0 to 2		1	F220	0 (Disabled)
7B87	User Programmable Pushbutton 1 Remote Lock	0 to 65535		1	F300	0
7B88	User Programmable Pushbutton 1 Reset	0 to 65535		1	F300	0
7B89	User Programmable Pushbutton 1 Set	0 to 65535		1	F300	0
7B8A	User Programmable Pushbutton 1 Hold	0 to 10	S	0.1	F001	1
7B8B	Repeated for User Programmable Pushbutton 2					
7BB6	Repeated for User Programmable Pushbutton 3					
7BE1	Repeated for User Programmable Pushbutton 4					
7C0C	Repeated for User Programmable Pushbutton 5		1	1		
7C37	Repeated for User Programmable Pushbutton 6			1		
7C62	Repeated for User Programmable Pushbutton 7			1		
7C8D	Repeated for User Programmable Pushbutton 8		1	1		
7CB8	Repeated for User Programmable Pushbutton 9			1		
7CE3	Repeated for User Programmable Pushbutton 10					
7D0E	Repeated for User Programmable Pushbutton 11			1		
7D39	Repeated for User Programmable Pushbutton 12					
7D64	Repeated for User Programmable Pushbutton 13					
7D8F	Repeated for User Programmable Pushbutton 14					
7DBA	Repeated for User Programmable Pushbutton 15					
7DE5	Repeated for User Programmable Pushbutton 16		1	1		
7DES	-			1	1	
	vervoltage (Read/Write Grouped Setting) (3 modules)					
	vervoltage (Read/Write Grouped Setting) (3 modules) Neutral Overvoltage 1 Function	0 to 1		1	F102	0 (Disabled)

Table B-9: MODBUS MEMORY MAP (Sheet 31 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
7F02	Neutral Overvoltage 1 Pickup	0 to 3.00	pu	0.001	F001	300
7F03	Neutral Overvoltage 1 Pickup Delay	0 to 600	s	0.01	F001	100
7F04	Neutral Overvoltage 1 Reset Delay	0 to 600	S	0.01	F001	100
7F05	Neutral Overvoltage 1 Block	0 to 65535		1	F300	0
7F06	Neutral Overvoltage 1 Target	0 to 2		1	F109	0 (Self-reset)
7F07	Neutral Overvoltage 1 Events	0 to 1		1	F102	0 (Disabled)
7F08	Neutral Overvoltage 1 Curves	0 to 3		1	F116	0 (Definite Time)
7F09	Reserved (8 items)	0 to 65535		1	F001	0
7F10	Repeated for Neutral Overvoltage 2					
7F20	Repeated for Neutral Overvoltage 3					
Auxiliary	Overvoltage (Read/Write Grouped Setting) (3 modules)	3)				
7F30	Auxiliary Overvoltage 1 Function	0 to 1		1	F102	0 (Disabled)
7F31	Auxiliary Overvoltage 1 Signal Source	0 to 5		1	F167	0 (SRC 1)
7F32	Auxiliary Overvoltage 1 Pickup	0 to 3	pu	0.001	F001	300
7F33	Auxiliary Overvoltage 1 Pickup Delay	0 to 600	s	0.01	F001	100
7F34	Auxiliary Overvoltage 1 Reset Delay	0 to 600	S	0.01	F001	100
7F35	Auxiliary Overvoltage 1 Block	0 to 65535		1	F300	0
7F36	Auxiliary Overvoltage 1 Target	0 to 2		1	F109	0 (Self-reset)
7F37	Auxiliary Overvoltage 1 Events	0 to 1		1	F102	0 (Disabled)
7F38	Reserved (8 items)	0 to 65535		1	F001	0
7F40	Repeated for Auxiliary Overvoltage 2					
7F50	Repeated for Auxiliary Overvoltage 3					
Auxiliary	Undervoltage (Read/Write Grouped Setting) (3 module	es)				
7F60	Auxiliary Undervoltage 1 Function	0 to 1		1	F102	0 (Disabled)
7F61	Auxiliary Undervoltage 1 Signal Source	0 to 5		1	F167	0 (SRC 1)
7F62	Auxiliary Undervoltage 1 Pickup	0 to 3	pu	0.001	F001	700
7F63	Auxiliary Undervoltage 1 Delay	0 to 600	S	0.01	F001	100
7F64	Auxiliary Undervoltage 1 Curve	0 to 1		1	F111	0 (Definite Time)
7F65	Auxiliary Undervoltage 1 Minimum Voltage	0 to 3	pu	0.001	F001	100
7F66	Auxiliary Undervoltage 1 Block	0 to 65535		1	F300	0
7F67	Auxiliary Undervoltage 1 Target	0 to 2		1	F109	0 (Self-reset)
7F68	Auxiliary Undervoltage 1 Events	0 to 1		1	F102	0 (Disabled)
7F69	Reserved (7 items)	0 to 65535		1	F001	0
7F70	Repeated for Auxiliary Undervoltage 2					
7F80	Repeated for Auxiliary Undervoltage 3					
Frequen	cy (Read Only)		•			
8000	Tracking Frequency		Hz		F001	0
Breaker I	Failure (Read/Write Grouped Setting) (2 modules)					
8600	Breaker Failure 1 Function	0 to 1		1	F102	0 (Disabled)
8601	Breaker Failure 1 Mode	0 to 1		1	F157	0 (3-Pole)
8602	Breaker Failure 1 Source	0 to 5		1	F167	0 (SRC 1)
8603	Breaker Failure 1 Amp Supervision	0 to 1		1	F126	1 (Yes)
0004	Breaker Failure 1 Use Seal-In	0 to 1		1	F126	1 (Yes)
8604						
8604	Breaker Failure 1 Three Pole Initiate	0 to 65535		1	F300	0
	Breaker Failure 1 Three Pole Initiate Breaker Failure 1 Block	0 to 65535 0 to 65535		1 1	F300 F300	0
8605						-
8605 8606	Breaker Failure 1 Block	0 to 65535		1	F300	0
8605 8606 8607	Breaker Failure 1 Block Breaker Failure 1 Phase Amp Supv Pickup	0 to 65535 0.001 to 30	 pu	1 0.001	F300 F001	0 1050
8605 8606 8607 8608	Breaker Failure 1 Block Breaker Failure 1 Phase Amp Supv Pickup Breaker Failure 1 Neutral Amp Supv Pickup	0 to 65535 0.001 to 30 0.001 to 30	 pu pu	1 0.001 0.001	F300 F001 F001	0 1050 1050
8605 8606 8607 8608 8609 860A	Breaker Failure 1 Block Breaker Failure 1 Phase Amp Supv Pickup Breaker Failure 1 Neutral Amp Supv Pickup Breaker Failure 1 Use Timer 1	0 to 65535 0.001 to 30 0.001 to 30 0 to 1 0 to 65.535	 pu pu 	1 0.001 0.001 1	F300 F001 F001 F126 F001	0 1050 1050 1 (Yes) 0
8605 8606 8607 8608 8609	Breaker Failure 1 Block Breaker Failure 1 Phase Amp Supv Pickup Breaker Failure 1 Neutral Amp Supv Pickup Breaker Failure 1 Use Timer 1 Breaker Failure 1 Timer 1 Pickup	0 to 65535 0.001 to 30 0.001 to 30 0 to 1	 pu pu s	1 0.001 0.001 1 0.001	F300 F001 F001 F126	0 1050 1050 1 (Yes)
8605 8606 8607 8608 8609 860A 860B	Breaker Failure 1 Block Breaker Failure 1 Phase Amp Supv Pickup Breaker Failure 1 Neutral Amp Supv Pickup Breaker Failure 1 Use Timer 1 Breaker Failure 1 Timer 1 Pickup Breaker Failure 1 Use Timer 2 Breaker Failure 1 Timer 2 Pickup	0 to 65535 0.001 to 30 0.001 to 30 0 to 1 0 to 65.535 0 to 1	 pu pu s	1 0.001 0.001 1 0.001 1	F300 F001 F001 F126 F001 F126	0 1050 1050 1 (Yes) 0 1 (Yes) 0
8605 8606 8607 8608 8609 860A 860B 860C	Breaker Failure 1 Block Breaker Failure 1 Phase Amp Supv Pickup Breaker Failure 1 Neutral Amp Supv Pickup Breaker Failure 1 Use Timer 1 Breaker Failure 1 Timer 1 Pickup Breaker Failure 1 Use Timer 2	0 to 65535 0.001 to 30 0.001 to 30 0 to 1 0 to 65.535 0 to 1 0 to 65.535	 pu pu s s	1 0.001 0.001 1 0.001 1 0.001	F300 F001 F126 F001 F126 F001 F001	0 1050 1050 1 (Yes) 0 1 (Yes)

Table B-9: MODBUS MEMORY MAP (Sheet 32 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
8610	Breaker Failure 1 Breaker Status 2 Phase A/3P	0 to 65535		1	F300	0
8611	Breaker Failure 1 Breaker Test On	0 to 65535		1	F300	0
8612	Breaker Failure 1 Phase Amp Hiset Pickup	0.001 to 30	pu	0.001	F001	1050
8613	Breaker Failure 1 Neutral Amp Hiset Pickup	0.001 to 30	pu	0.001	F001	1050
8614	Breaker Failure 1 Phase Amp Loset Pickup	0.001 to 30	pu	0.001	F001	1050
8615	Breaker Failure 1 Neutral Amp Loset Pickup	0.001 to 30	pu	0.001	F001	1050
8616	Breaker Failure 1 Loset Time	0 to 65.535	s	0.001	F001	0
8617	Breaker Failure 1 Trip Dropout Delay	0 to 65.535	s	0.001	F001	0
8618	Breaker Failure 1 Target	0 to 2		1	F109	0 (Self-reset)
8619	Breaker Failure 1 Events	0 to 1		1	F102	0 (Disabled)
861A	Breaker Failure 1 Phase A Initiate	0 to 65535		1	F300	0
861B	Breaker Failure 1 Phase B Initiate	0 to 65535		1	F300	0
861C	Breaker Failure 1 Phase C Initiate	0 to 65535		1	F300	0
861D	Breaker Failure 1 Breaker Status 1 Phase B	0 to 65535		1	F300	0
861E	Breaker Failure 1 Breaker Status 1 Phase C	0 to 65535		1	F300	0
861F	Breaker Failure 1 Breaker Status 2 Phase B	0 to 65535		1	F300	0
8620	Breaker Failure 1 Breaker Status 2 Phase C	0 to 65535		1	F300	0
8621	Repeated for Breaker Failure 2					
8642	Repeated for Breaker Failure 3					
8663	Repeated for Breaker Failure 4					
8684	Repeated for Breaker Failure 5					
86A5	Repeated for Breaker Failure 6					
FlexState	Settings (Read/Write Setting)			•		
8800	FlexState Parameters (256 items)				F300	0
Digital El	ements (Read/Write Setting) (48 modules)		·			
8A00	Digital Element 1 Function	0 to 1		1	F102	0 (Disabled)
8A01	Digital Element 1 Name				F203	"Dig Element 1"
8A09	Digital Element 1 Input	0 to 65535		1	F300	0
8A0A	Digital Element 1 Pickup Delay	0 to 999999.999	s	0.001	F003	0
8A0C	Digital Element 1 Reset Delay	0 to 999999.999	s	0.001	F003	0
8A0E	Digital Element 1 Block	0 to 65535		1	F300	0
8A0F	Digital Element 1 Target	0 to 2		1	F109	0 (Self-reset)
8A10	Digital Element 1 Events	0 to 1		1	F102	0 (Disabled)
8A11	Digital Element 1 Pickup LED					
8A12		0 to 1		1	F102	1 (Enabled)
	Reserved (2 items)	0 to 1 		1	F102 F001	1 (Enabled) 0
8A14	Reserved (2 items) Repeated for Digital Element 2					. ,
8A14 8A28	· · · · · · · · · · · · · · · · · · ·					. ,
	Repeated for Digital Element 2					. ,
8A28	Repeated for Digital Element 2 Repeated for Digital Element 3					. ,
8A28 8A3C	Repeated for Digital Element 2 Repeated for Digital Element 3 Repeated for Digital Element 4					. ,
8A28 8A3C 8A50	Repeated for Digital Element 2 Repeated for Digital Element 3 Repeated for Digital Element 4 Repeated for Digital Element 5					. ,
8A28 8A3C 8A50 8A64	Repeated for Digital Element 2 Repeated for Digital Element 3 Repeated for Digital Element 4 Repeated for Digital Element 5 Repeated for Digital Element 6					. ,
8A28 8A3C 8A50 8A64 8A78	Repeated for Digital Element 2 Repeated for Digital Element 3 Repeated for Digital Element 4 Repeated for Digital Element 5 Repeated for Digital Element 6 Repeated for Digital Element 7					. ,
8A28 8A3C 8A50 8A64 8A78 8A8C	Repeated for Digital Element 2Repeated for Digital Element 3Repeated for Digital Element 4Repeated for Digital Element 5Repeated for Digital Element 6Repeated for Digital Element 7Repeated for Digital Element 8					. ,
8A28 8A3C 8A50 8A64 8A78 8A8C 8AA0	Repeated for Digital Element 2 Repeated for Digital Element 3 Repeated for Digital Element 4 Repeated for Digital Element 5 Repeated for Digital Element 6 Repeated for Digital Element 7 Repeated for Digital Element 8 Repeated for Digital Element 9 Repeated for Digital Element 10 Repeated for Digital Element 11					. ,
8A28 8A3C 8A50 8A64 8A78 8A8C 8AA0 8AB4	Repeated for Digital Element 2 Repeated for Digital Element 3 Repeated for Digital Element 4 Repeated for Digital Element 5 Repeated for Digital Element 6 Repeated for Digital Element 7 Repeated for Digital Element 8 Repeated for Digital Element 9 Repeated for Digital Element 10 Repeated for Digital Element 11 Repeated for Digital Element 12					. ,
8A28 8A3C 8A50 8A64 8A78 8A8C 8A8C 8AA0 8AB4 8AC8	Repeated for Digital Element 2 Repeated for Digital Element 3 Repeated for Digital Element 4 Repeated for Digital Element 5 Repeated for Digital Element 6 Repeated for Digital Element 7 Repeated for Digital Element 8 Repeated for Digital Element 9 Repeated for Digital Element 10 Repeated for Digital Element 11 Repeated for Digital Element 12 Repeated for Digital Element 13					. ,
8A28 8A3C 8A50 8A64 8A78 8A8C 8AA0 8AB4 8AC8 8ADC	Repeated for Digital Element 2 Repeated for Digital Element 3 Repeated for Digital Element 4 Repeated for Digital Element 5 Repeated for Digital Element 6 Repeated for Digital Element 7 Repeated for Digital Element 8 Repeated for Digital Element 9 Repeated for Digital Element 10 Repeated for Digital Element 11 Repeated for Digital Element 12					. ,
8A28 8A3C 8A50 8A64 8A78 8A8C 8A8C 8AA0 8AA0 8AB4 8AC8 8AF0	Repeated for Digital Element 2 Repeated for Digital Element 3 Repeated for Digital Element 4 Repeated for Digital Element 5 Repeated for Digital Element 6 Repeated for Digital Element 7 Repeated for Digital Element 8 Repeated for Digital Element 9 Repeated for Digital Element 10 Repeated for Digital Element 11 Repeated for Digital Element 12 Repeated for Digital Element 13					. ,
8A28 8A3C 8A50 8A64 8A78 8A8C 8A80 8A90 8A84 8A00 8A84 8A90 8A90 8A90 8A90	Repeated for Digital Element 2 Repeated for Digital Element 3 Repeated for Digital Element 4 Repeated for Digital Element 5 Repeated for Digital Element 6 Repeated for Digital Element 7 Repeated for Digital Element 8 Repeated for Digital Element 9 Repeated for Digital Element 10 Repeated for Digital Element 11 Repeated for Digital Element 12 Repeated for Digital Element 13 Repeated for Digital Element 14					
8A28 8A3C 8A50 8A64 8A78 8A8C 8AA0 8AB4 8AC8 8ADC 8AF0 8B04 8B18	Repeated for Digital Element 2 Repeated for Digital Element 3 Repeated for Digital Element 4 Repeated for Digital Element 5 Repeated for Digital Element 6 Repeated for Digital Element 7 Repeated for Digital Element 8 Repeated for Digital Element 9 Repeated for Digital Element 10 Repeated for Digital Element 11 Repeated for Digital Element 12 Repeated for Digital Element 13 Repeated for Digital Element 14 Repeated for Digital Element 14					
8A28 8A3C 8A50 8A64 8A78 8A8C 8AA0 8AB4 8AC8 8AC8 8AC2 8AF0 8B04 8B18 8B2C	Repeated for Digital Element 2 Repeated for Digital Element 3 Repeated for Digital Element 4 Repeated for Digital Element 5 Repeated for Digital Element 6 Repeated for Digital Element 7 Repeated for Digital Element 8 Repeated for Digital Element 9 Repeated for Digital Element 10 Repeated for Digital Element 11 Repeated for Digital Element 12 Repeated for Digital Element 13 Repeated for Digital Element 14 Repeated for Digital Element 14 Repeated for Digital Element 14 Repeated for Digital Element 14					
8A28 8A3C 8A50 8A64 8A78 8A8C 8AA0 8AB4 8AC8 8AA0 8AB4 8AC8 8ADC 8AF0 8B04 8B18 8B2C 8B40	Repeated for Digital Element 2 Repeated for Digital Element 3 Repeated for Digital Element 4 Repeated for Digital Element 5 Repeated for Digital Element 6 Repeated for Digital Element 7 Repeated for Digital Element 8 Repeated for Digital Element 9 Repeated for Digital Element 10 Repeated for Digital Element 11 Repeated for Digital Element 12 Repeated for Digital Element 13 Repeated for Digital Element 14 Repeated for Digital Element 15 Repeated for Digital Element 14 Repeated for Digital Element 14 Repeated for Digital Element 14					. ,

Table B-9: MODBUS MEMORY MAP (Sheet 33 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
8B90	Repeated for Digital Element 21					
8BA4	Repeated for Digital Element 22					
8BB8	Repeated for Digital Element 23					
8BCC	Repeated for Digital Element 24					
8BE0	Repeated for Digital Element 25					
8BF4	Repeated for Digital Element 26					
8C08	Repeated for Digital Element 27					
8C1C	Repeated for Digital Element 28					
8C30	Repeated for Digital Element 29					
8C44	Repeated for Digital Element 30					
8C58	Repeated for Digital Element 31					
8C6C	Repeated for Digital Element 32					
8C80	Repeated for Digital Element 33					
8C94	Repeated for Digital Element 34					
8C94 8CA8	Repeated for Digital Element 35					
	Repeated for Digital Element 36					
8CBC						
8CD0	Repeated for Digital Element 37					
8CE4	Repeated for Digital Element 38					
8CF8	Repeated for Digital Element 39					
8D0C	Repeated for Digital Element 40					
8D20	Repeated for Digital Element 41					
8D34	Repeated for Digital Element 42					
8D48	Repeated for Digital Element 43					
8D5C	Repeated for Digital Element 44					
8D70	Repeated for Digital Element 45					
8D84	Repeated for Digital Element 46					
8D98	Repeated for Digital Element 47					
8DAC	Repeated for Digital Element 48					
Trip Bus	(Read/Write Setting)					
8E00	Trip Bus 1 Function	0 to 1		1	F102	0 (Disabled)
8E01	Trip Bus 1 Block				F300	0
8E02	Trip Bus 1 Pickup Delay	0 to 600	S	0.01	F001	0
8E03	Trip Bus 1 Reset Delay	0 to 600	S	0.01	F001	0
8E04	Trip Bus 1 Input 1	0 to 65535		1	F300	0
8E05	Trip Bus 1 Input 2	0 to 65535		1	F300	0
8E06	Trip Bus 1 Input 3	0 to 65535		1	F300	0
8E07	Trip Bus 1 Input 4	0 to 65535		1	F300	0
8E08	Trip Bus 1 Input 5	0 to 65535		1	F300	0
8E09	Trip Bus 1 Input 6	0 to 65535		1	F300	0
8E0A	Trip Bus 1 Input 7	0 to 65535		1	F300	0
8E0B	Trip Bus 1 Input 8	0 to 65535		1	F300	0
8E0C	Trip Bus 1 Input 9	0 to 65535		1	F300	0
8E0D	Trip Bus 1 Input 10	0 to 65535		1	F300	0
8E0E	Trip Bus 1 Input 11	0 to 65535		1	F300	0
8E0F	Trip Bus 1 Input 12	0 to 65535		1	F300	0
8E10	Trip Bus 1 Input 13	0 to 65535		1	F300	0
8E11	Trip Bus 1 Input 14	0 to 65535		1	F300	0
8E12	Trip Bus 1 Input 15	0 to 65535		1	F300	0
8E13	Trip Bus 1 Input 16	0 to 65535		1	F300	0
8E14	Trip Bus 1 Latching	0 to 1		1	F102	0 (Disabled)
8E15	Trip Bus 1 Reset	0 to 65535		1	F300	0
8E16	Trip Bus 1 Target	0 to 2		1	F109	0 (Self-reset)
8E16	Trip Bus 1 Events	0 to 1		1	F103	0 (Disabled)
8E18	Reserved (8 items)				F102 F001	0 (Disabled)
0010	NESEIVEU (O ILEIIIS)				FUUI	U

Table B-9: MODBUS MEMORY MAP (Sheet 34 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
8E20	Repeated for Trip Bus 2					
8E40	Repeated for Trip Bus 3					
8E60	Repeated for Trip Bus 4					
8E80	Repeated for Trip Bus 5					
8EA0	Repeated for Trip Bus 6					
FlexElem	ent (Read/Write Setting) (16 modules)			l		
9000	FlexElement [™] 1 Function	0 to 1		1	F102	0 (Disabled)
9001	FlexElement™ 1 Name				F206	"FxE 1"
9004	FlexElement™ 1 InputP	0 to 65535		1	F600	0
9005	FlexElement™ 1 InputM	0 to 65535		1	F600	0
9006	FlexElement [™] 1 Compare	0 to 1		1	F516	0 (LEVEL)
9007	FlexElement™ 1 Input	0 to 1		1	F515	0 (SIGNED)
9008	FlexElement™ 1 Direction	0 to 1		1	F517	0 (OVER)
9009	FlexElement™ 1 Hysteresis	0.1 to 50	%	0.1	F001	30
900A	FlexElement [™] 1 Pickup	-90 to 90	pu	0.001	F004	1000
900C	FlexElement™ 1 DeltaT Units	0 to 2		1	F518	0 (Milliseconds)
900D	FlexElement™ 1 DeltaT	20 to 86400		1	F003	20
900F	FlexElement™ 1 Pickup Delay	0 to 65.535	s	0.001	F001	0
9010	FlexElement™ 1 Reset Delay	0 to 65.535	s	0.001	F001	0
9011	FlexElement™ 1 Block	0 to 65535		1	F300	0
9012	FlexElement [™] 1 Target	0 to 2		1	F109	0 (Self-reset)
9013	FlexElement™ 1 Events	0 to 1		1	F102	0 (Disabled)
9014	Repeated for FlexElement [™] 2				-	
9028	Repeated for FlexElement [™] 3					
903C	Repeated for FlexElement [™] 4					
9050	Repeated for FlexElement™ 5					
9064	Repeated for FlexElement [™] 6					
9078	Repeated for FlexElement [™] 7					
908C	Repeated for FlexElement™ 8					
90A0	Repeated for FlexElement™ 9					
90B4	Repeated for FlexElement™ 10					
90C8	Repeated for FlexElement™ 11					
90DC	Repeated for FlexElement™ 12					
90F0	Repeated for FlexElement™ 13					
9104	Repeated for FlexElement™ 14					
9118	Repeated for FlexElement™ 15					
912C	Repeated for FlexElement [™] 16					
Fault Rep	port Settings (Read/Write Setting) (up to 5 modules)			1		
9200	Fault Report 1 Source	0 to 5		1	F167	0 (SRC 1)
9201	Fault Report 1 Trigger	0 to 65535		1	F300	0
9202	Fault Report 1 Z1 Magnitude	0.01 to 250	ohms	0.01	F001	300
9203	Fault Report 1 Z1 Angle	25 to 90	degrees	1	F001	75
9204	Fault Report 1 Z0 Magnitude	0.01 to 650	ohms	0.01	F001	900
9205	Fault Report 1 Z0 Angle	25 to 90	degrees	1	F001	75
9206	Fault Report 1 Line Length Units	0 to 1		1	F147	0 (km)
9207	Fault Report 1 Line Length	0 to 2000		0.1	F001	1000
9208	Fault Report 1 VT Substitution	0 to 2		1	F270	0 (None)
9208	Fault Report 1 System Z0 Magnitude	0.01 to 650.00	ohms	0.01	F001	900
9208	Fault Report 1 System Z0 Angle	25 to 90	degrees	1	F001	75
920B	Repeated for Fault Report 2					
9216	Repeated for Fault Report 3		1			
9221	Repeated for Fault Report 4					
922C	Repeated for Fault Report 5		1			
			1			

Table B-9: MODBUS MEMORY MAP (Sheet 35 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
dcmA Ou	tputs (Read/Write Setting) (24 modules)					
9300	dcmA Output 1 Source	0 to 65535		1	F600	0
9301	dcmA Output 1 Range	0 to 2		1	F522	0 (-1 to 1 mA)
9302	dcmA Output 1 Minimum	-90 to 90	pu	0.001	F004	0
9304	dcmA Output 1 Maximum	-90 to 90	pu	0.001	F004	1000
9306	Repeated for dcmA Output 2					
930C	Repeated for dcmA Output 3					
9312	Repeated for dcmA Output 4					
9318	Repeated for dcmA Output 5					
931E	Repeated for dcmA Output 6					
9324	Repeated for dcmA Output 7					
932A	Repeated for dcmA Output 8					
9330	Repeated for dcmA Output 9					
9336	Repeated for dcmA Output 10					
933C	Repeated for dcmA Output 11					
9342	Repeated for dcmA Output 12					
9348	Repeated for dcmA Output 13					
934E	Repeated for dcmA Output 14					
9354	Repeated for dcmA Output 15					
935A	Repeated for dcmA Output 16					
9360	Repeated for dcmA Output 17					
9366	Repeated for dcmA Output 18					
936C	Repeated for dcmA Output 19					
9372	Repeated for dcmA Output 20					
9378	Repeated for dcmA Output 21					
937E	Repeated for dcmA Output 22					
9384	Repeated for dcmA Output 23					
938A	Repeated for dcmA Output 24					
FlexElem	ent Actuals (Read Only) (16 modules)					
9A01	FlexElement [™] 1 Actual	-2147483.647 to 2147483.647		0.001	F004	0
9A03	FlexElement [™] 2 Actual	-2147483.647 to 2147483.647		0.001	F004	0
9A05	FlexElement [™] 3 Actual	-2147483.647 to 2147483.647		0.001	F004	0
9A07	FlexElement [™] 4 Actual	-2147483.647 to 2147483.647		0.001	F004	0
9A09	FlexElement [™] 5 Actual	-2147483.647 to 2147483.647		0.001	F004	0
9A0B	FlexElement [™] 6 Actual	-2147483.647 to 2147483.647		0.001	F004	0
9A0D	FlexElement [™] 7 Actual	-2147483.647 to 2147483.647		0.001	F004	0
9A0F	FlexElement [™] 8 Actual	-2147483.647 to 2147483.647		0.001	F004	0
VT Fuse	Failure (Read/Write Setting) (6 modules)					-
A040	VT Fuse Failure Function	0 to 1		1	F102	0 (Disabled)
A041	Repeated for module number 2					· · · · · ·
A042	Repeated for module number 3					
A043	Repeated for module number 4					
A044	Repeated for module number 5					
A045	Repeated for module number 6					
	ve overreach transfer trip (POTT) settings (read/write)					
A070	POTT Scheme Function	0 to 1		1	F102	0 (Disabled)
A071	POTT Permissive Echo	0 to 1		1	F102	0 (Disabled)
A072	POTT Rx Pickup Delay	0 to 65.535	s	0.001	F001	0
A073	POTT Transient Block Pickup Delay	0 to 65.535	s	0.001	F001	20
A073	POTT Transient Block Reset Delay	0 to 65.535	s	0.001	F001	90
A074	POTT Echo Duration	0 to 65.535		0.001	F001	100
	POTT Line End Open Pickup Delay		s	0.001	F001	50
A076		0 to 65.535	s			
A077	POTT Seal In Delay	0 to 65.535	S	0.001	F001	400
A078	POTT Ground Direction OC Forward	0 to 65535		1	F300	0

Table B-9: MODBUS MEMORY MAP (Sheet 36 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
A079	POTT Rx	0 to 65535		1	F300	0
A07A	POTT Echo Lockout	0 to 65.535	S	0.001	F001	250
Selector	switch actual values (read only)					
A210	Selector switch 1 position	1 to 7		1	F001	0
A211	Selector switch 2 position	1 to 7		1	F001	1
Selector	switch settings (read/write, 2 modules)					
A280	Selector 1 Function	0 to 1		1	F102	0 (Disabled)
A281	Selector 1 Range	1 to 7		1	F001	7
A282	Selector 1 Timeout	3 to 60	S	0.1	F001	50
A283	Selector 1 Step Up	0 to 65535		1	F300	0
A284	Selector 1 Step Mode	0 to 1		1	F083	0 (Time-out)
A285	Selector 1 Acknowledge	0 to 65535		1	F300	0
A286	Selector 1 Bit0	0 to 65535		1	F300	0
A287	Selector 1 Bit1	0 to 65535		1	F300	0
A288	Selector 1 Bit2	0 to 65535		1	F300	0
A289	Selector 1 Bit Mode	0 to 1		1	F083	0 (Time-out)
A28A	Selector 1 Bit Acknowledge	0 to 65535		1	F300	0
A28B	Selector 1 Power Up Mode	0 to 2		1	F084	0 (Restore)
A28C	Selector 1 Target	0 to 2		1	F109	0 (Self-reset)
A28D	Selector 1 Events	0 to 1		1	F102	0 (Disabled)
A28E	Reserved (10 items)			1	F001	0
A298	Repeated for Selector 2					
DNP/IEC	Points (Read/Write Setting)					
A300	DNP/IEC 60870-5-104 Binary Input Points (256 items)	0 to 65535		1	F300	0
A400	DNP/IEC 60870-5-104 Analog Input Points (256 items)	0 to 65535		1	F300	0
Flexcurve	es C and D (Read/Write Setting)					
A600	FlexCurve C (120 items)	0 to 65535	ms	1	F011	0
A680	FlexCurve D (120 items)	0 to 65535	ms	1	F011	0
Non Vola	tile Latches (Read/Write Setting) (16 modules)					
A700	Non-Volatile Latch 1 Function	0 to 1		1	F102	0 (Disabled)
A701	Non-Volatile Latch 1 Type	0 to 1		1	F519	0 (Reset Dominant)
A702	Non-Volatile Latch 1 Set	0 to 65535		1	F300	0
A703	Non-Volatile Latch 1 Reset	0 to 65535		1	F300	0
A704	Non-Volatile Latch 1 Target	0 to 2		1	F109	0 (Self-reset)
A705	Non-Volatile Latch 1 Events	0 to 1		1	F102	0 (Disabled)
A706	Reserved (4 items)				F001	0
A70A	Repeated for Non-Volatile Latch 2					
A714	Repeated for Non-Volatile Latch 3					
A71E	Repeated for Non-Volatile Latch 4					
A728	Repeated for Non-Volatile Latch 5					
A732	Repeated for Non-Volatile Latch 6					
A73C	Repeated for Non-Volatile Latch 7					
100						
A746	Repeated for Non-Volatile Latch 8					
A746	Repeated for Non-Volatile Latch 8					
A746 A750	Repeated for Non-Volatile Latch 8 Repeated for Non-Volatile Latch 9					
A746 A750 A75A	Repeated for Non-Volatile Latch 8 Repeated for Non-Volatile Latch 9 Repeated for Non-Volatile Latch 10					
A746 A750 A75A A764	Repeated for Non-Volatile Latch 8 Repeated for Non-Volatile Latch 9 Repeated for Non-Volatile Latch 10 Repeated for Non-Volatile Latch 11					
A746 A750 A75A A764 A76E	Repeated for Non-Volatile Latch 8 Repeated for Non-Volatile Latch 9 Repeated for Non-Volatile Latch 10 Repeated for Non-Volatile Latch 11 Repeated for Non-Volatile Latch 12					
A746 A750 A75A A764 A76E A778	Repeated for Non-Volatile Latch 8 Repeated for Non-Volatile Latch 9 Repeated for Non-Volatile Latch 10 Repeated for Non-Volatile Latch 11 Repeated for Non-Volatile Latch 12 Repeated for Non-Volatile Latch 13					
A746 A750 A75A A764 A76E A778 A782	Repeated for Non-Volatile Latch 8 Repeated for Non-Volatile Latch 9 Repeated for Non-Volatile Latch 10 Repeated for Non-Volatile Latch 11 Repeated for Non-Volatile Latch 12 Repeated for Non-Volatile Latch 13 Repeated for Non-Volatile Latch 14					
A746 A750 A75A A764 A76E A778 A782 A796	Repeated for Non-Volatile Latch 8 Repeated for Non-Volatile Latch 9 Repeated for Non-Volatile Latch 10 Repeated for Non-Volatile Latch 11 Repeated for Non-Volatile Latch 12 Repeated for Non-Volatile Latch 13 Repeated for Non-Volatile Latch 14 Repeated for Non-Volatile Latch 15 Repeated for Non-Volatile Latch 16					
A746 A750 A75A A764 A76E A778 A782 A78C A796	Repeated for Non-Volatile Latch 8 Repeated for Non-Volatile Latch 9 Repeated for Non-Volatile Latch 10 Repeated for Non-Volatile Latch 11 Repeated for Non-Volatile Latch 12 Repeated for Non-Volatile Latch 13 Repeated for Non-Volatile Latch 14 Repeated for Non-Volatile Latch 15	0 to 1			F102	0 (Disabled)

Table B-9: MODBUS MEMORY MAP (Sheet 37 of 55)

al Counter 1 Units al Counter 1 Block al Counter 1 Up al Counter 1 Down al Counter 1 Down al Counter 1 Preset al Counter 1 Compare al Counter 1 Reset al Counter 1 Reset al Counter 1 Freeze/Reset al Counter 1 Freeze/Count al Counter 1 Set To Preset erved (11 items) peated for Digital Counter 2 peated for Digital Counter 3 peated for Digital Counter 4 peated for Digital Counter 5 peated for Digital Counter 5 peated for Digital Counter 6 peated for Digital Counter 7 peated for Digital Counter 8 ived analog settings (read/write) 61850 GOOSE analog input 1 mode 61850 GOOSE analog input 1 units 61850 GOOSE analog input 1 per-unit base	0 to 65535 0 to 655352147483647 to 21474836472147483647 to 2147483647 0 to 65535 0 to 65535 0 to 65535 0 to 65535		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F206 F300 F300 F004 F004 F300 F300 F300 F300	(none) 0 0 0 0 0 0 0 0 0 0 0 0 0
al Counter 1 Up al Counter 1 Down al Counter 1 Down al Counter 1 Preset al Counter 1 Compare al Counter 1 Reset al Counter 1 Reset al Counter 1 Freeze/Reset al Counter 1 Freeze/Count al Counter 1 Set To Preset erved (11 items) peated for Digital Counter 2 peated for Digital Counter 3 peated for Digital Counter 4 peated for Digital Counter 5 peated for Digital Counter 6 peated for Digital Counter 7 peated for Digital Counter 8 ived analog settings (read/write) 61850 GOOSE analog input 1 mode 61850 GOOSE analog input 1 units	0 to 65535 0 to 65535 -2147483647 to 2147483647 0 to 65535 0 to 65535 0 to 65535 0 to 65535 		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F300 F300 F004 F300 F300 F300 F300 F001	0 0 0 0 0 0 0 0 0
al Counter 1 Down al Counter 1 Preset al Counter 1 Compare al Counter 1 Compare al Counter 1 Reset al Counter 1 Reset al Counter 1 Freeze/Reset al Counter 1 Freeze/Count al Counter 1 Freeze/Count al Counter 1 Freeze/Count al Counter 1 Freeze/Count al Counter 1 Freeze/Count al Counter 1 Freeze/Count al Counter 1 Freeze/Count al Counter 1 Freeze/Reset al Counter 1 Freeze/Count al Counter 1 Freeze/Count al Counter 1 Freeze/Count al Counter 1 Freeze/Count al Counter 1 Freeze/Reset al Counter 2 peated for Digital Counter 3 peated for Digital Counter 5 peated for Digital Counter 7 peated for Digital Counter 7 peated for Digital Counter 8 ived analog settings (read/write) 61850 GOOSE analog 1 default value 61850 GOOSE analog input 1 mode 61850 GOOSE analog input 1 units	0 to 65535 -2147483647 to 2147483647 -2147483647 0 to 65535 0 to 65535 0 to 65535 		1 1 1 1 1 1 1 1 1 	F300 F004 F300 F300 F300 F300 F001	0 0 0 0 0 0 0 0
al Counter 1 Preset al Counter 1 Compare al Counter 1 Reset al Counter 1 Reset al Counter 1 Freeze/Reset al Counter 1 Freeze/Count al Counter 1 Freeze/Count al Counter 1 Freeze/Count al Counter 1 Freeze/Count al Counter 1 Freeze/Count al Counter 1 Freeze/Count al Counter 1 Freeze/Count al Counter 1 Freeze/Count al Counter 1 Freeze/Count al Counter 1 Freeze/Count al Counter 1 Freeze/Count al Counter 1 Freeze/Count al Counter 1 Freeze/Counter 2 peated for Digital Counter 2 peated for Digital Counter 3 peated for Digital Counter 5 peated for Digital Counter 6 peated for Digital Counter 7 peated for Digital Counter 8 ived analog settings (read/write) 61850 GOOSE analog 1 default value 61850 GOOSE analog input 1 mode 61850 GOOSE analog input 1 units	-2147483647 to 2147483647 -2147483647 to 2147483647 0 to 65535 0 to 65535 0 to 65535 		1 1 1 1 1 1 1 1 	F004 F004 F300 F300 F300 F001	0 0 0 0 0 0
al Counter 1 Compare al Counter 1 Reset al Counter 1 Freeze/Reset al Counter 1 Freeze/Count al Counter 1 Set To Preset erved (11 items) peated for Digital Counter 2 peated for Digital Counter 3 peated for Digital Counter 4 peated for Digital Counter 5 peated for Digital Counter 5 peated for Digital Counter 6 peated for Digital Counter 7 peated for Digital Counter 7 peated for Digital Counter 8 ived analog settings (read/write) 61850 GOOSE analog 1 default value 61850 GOOSE analog input 1 mode 61850 GOOSE analog input 1 units	2147483647 -2147483647 to 2147483647 0 to 65535 0 to 65535 0 to 65535 		1 1 1 1 	F004 F300 F300 F300 F001	0 0 0 0 0
al Counter 1 Reset al Counter 1 Freeze/Reset al Counter 1 Freeze/Count al Counter 1 Freeze/Count al Counter 1 Set To Preset erved (11 items) peated for Digital Counter 2 peated for Digital Counter 3 peated for Digital Counter 4 peated for Digital Counter 5 peated for Digital Counter 6 peated for Digital Counter 7 peated for Digital Counter 7 peated for Digital Counter 8 ived analog settings (read/write) 61850 GOOSE analog 1 default value 61850 GOOSE analog input 1 mode 61850 GOOSE analog input 1 units	2147483647 0 to 65535 0 to 65535 0 to 65535 		1 1 1 	F300 F300 F300 F001	0 0 0 0
al Counter 1 Freeze/Reset al Counter 1 Freeze/Count al Counter 1 Set To Preset erved (11 items) peated for Digital Counter 2 peated for Digital Counter 3 peated for Digital Counter 4 peated for Digital Counter 5 peated for Digital Counter 6 peated for Digital Counter 7 peated for Digital Counter 8 ived analog settings (read/write) 61850 GOOSE analog 1 default value 61850 GOOSE analog input 1 mode 61850 GOOSE analog input 1 units	0 to 65535 0 to 65535 		1 1 0.001	F300 F300 F300 F001	0 0 0
al Counter 1 Freeze/Count al Counter 1 Set To Preset erved (11 items) peated for Digital Counter 2 peated for Digital Counter 3 peated for Digital Counter 4 peated for Digital Counter 5 peated for Digital Counter 6 peated for Digital Counter 7 peated for Digital Counter 7 peated for Digital Counter 8 ived analog settings (read/write) 61850 GOOSE analog 1 default value 61850 GOOSE analog input 1 mode 61850 GOOSE analog input 1 units	0 to 65535 0 to 65535 		1 1 0.001	F300 F300 F001	0
al Counter 1 Set To Preset erved (11 items) peated for Digital Counter 2 peated for Digital Counter 3 peated for Digital Counter 4 peated for Digital Counter 5 peated for Digital Counter 6 peated for Digital Counter 7 peated for Digital Counter 7 peated for Digital Counter 8 ived analog settings (read/write) 61850 GOOSE analog 1 default value 61850 GOOSE analog input 1 mode 61850 GOOSE analog input 1 units	0 to 65535 		0.001	F300 F001	0
erved (11 items) peated for Digital Counter 2 peated for Digital Counter 3 peated for Digital Counter 3 peated for Digital Counter 4 peated for Digital Counter 5 peated for Digital Counter 6 peated for Digital Counter 7 peated for Digital Counter 8 ived analog settings (read/write) 61850 GOOSE analog 1 default value 61850 GOOSE analog input 1 mode 61850 GOOSE analog input 1 units			0.001	F001	-
peated for Digital Counter 2 peated for Digital Counter 3 peated for Digital Counter 4 peated for Digital Counter 5 peated for Digital Counter 6 peated for Digital Counter 7 peated for Digital Counter 7 peated for Digital Counter 8 ived analog settings (read/write) 61850 GOOSE analog 1 default value 61850 GOOSE analog input 1 mode 61850 GOOSE analog input 1 units	-1000000 to 1000000 0 to 1 		0.001		
peated for Digital Counter 3 peated for Digital Counter 4 peated for Digital Counter 5 peated for Digital Counter 6 peated for Digital Counter 7 peated for Digital Counter 7 peated for Digital Counter 8 ived analog settings (read/write) 61850 GOOSE analog 1 default value 61850 GOOSE analog input 1 mode 61850 GOOSE analog input 1 units	0 to 1 			F060	
peated for Digital Counter 4 peated for Digital Counter 5 peated for Digital Counter 6 peated for Digital Counter 7 peated for Digital Counter 8 ived analog settings (read/write) 61850 GOOSE analog 1 default value 61850 GOOSE analog input 1 mode 61850 GOOSE analog input 1 units	0 to 1 			F060	
peated for Digital Counter 5 peated for Digital Counter 6 peated for Digital Counter 7 peated for Digital Counter 8 ived analog settings (read/write) 61850 GOOSE analog 1 default value 61850 GOOSE analog input 1 mode 61850 GOOSE analog input 1 units	0 to 1 			F060	
peated for Digital Counter 6 peated for Digital Counter 7 peated for Digital Counter 7 peated for Digital Counter 8 ived analog settings (read/write) 61850 GOOSE analog 1 default value 61850 GOOSE analog input 1 mode 61850 GOOSE analog input 1 units	0 to 1 			F060	
peated for Digital Counter 7 peated for Digital Counter 8 ived analog settings (read/write) 61850 GOOSE analog 1 default value 61850 GOOSE analog input 1 mode 61850 GOOSE analog input 1 units	0 to 1 			F060	
peated for Digital Counter 8 ived analog settings (read/write) 61850 GOOSE analog 1 default value 61850 GOOSE analog input 1 mode 61850 GOOSE analog input 1 units	0 to 1 			F060	
ived analog settings (read/write) 61850 GOOSE analog 1 default value 61850 GOOSE analog input 1 mode 61850 GOOSE analog input 1 units	0 to 1 			F060	
61850 GOOSE analog 1 default value 61850 GOOSE analog input 1 mode 61850 GOOSE analog input 1 units	0 to 1 			F060	
61850 GOOSE analog input 1 mode 61850 GOOSE analog input 1 units	0 to 1 			F060	
61850 GOOSE analog input 1 units			1		1000
• •				F491	0 (Default Value)
61850 GOOSE analog input 1 per-unit base	0 to 999999999 999			F207	(none)
			0.001	F060	1
peated for IEC 61850 GOOSE analog input 2					
peated for IEC 61850 GOOSE analog input 3					
peated for IEC 61850 GOOSE analog input 4					
peated for IEC 61850 GOOSE analog input 5					
peated for IEC 61850 GOOSE analog input 6					
peated for IEC 61850 GOOSE analog input 7					
peated for IEC 61850 GOOSE analog input 8					
peated for IEC 61850 GOOSE analog input 9					
peated for IEC 61850 GOOSE analog input 10					
peated for IEC 61850 GOOSE analog input 11					
peated for IEC 61850 GOOSE analog input 12					
peated for IEC 61850 GOOSE analog input 13					
peated for IEC 61850 GOOSE analog input 14					
peated for IEC 61850 GOOSE analog input 15					
peated for IEC 61850 GOOSE analog input 16					
DSE/GSSE Configuration (Read/Write Setting)					
ult GOOSE/GSSE Update Time	1 to 60	S	1	F001	60
61850 GSSE Function (GsEna)	0 to 1		1	F102	1 (Enabled)
61850 GSSE ID				F209	"GSSEOut"
61850 GOOSE Function (GoEna)	0 to 1		1		0 (Disabled)
61850 GSSE Destination MAC Address					0
					"GOOSEOut"
61850 Standard GOOSE ID					0
61850 Standard GOOSE ID 61850 Standard GOOSE Destination MAC Address					4
61850 Standard GOOSE Destination MAC Address					0
61850 Standard GOOSE Destination MAC Address 61850 GOOSE VLAN Transmit Priority	(1 th 2095				0
61850 Standard GOOSE Destination MAC Address 61850 GOOSE VLAN Transmit Priority 61850 GOOSE VLAN ID					0
61850 Standard GOOSE Destination MAC Address 61850 GOOSE VLAN Transmit Priority 61850 GOOSE VLAN ID 61850 GOOSE ETYPE APPID	0 to 16383		1	1001	U
61850 Standard GOOSE Destination MAC Address 61850 GOOSE VLAN Transmit Priority 61850 GOOSE VLAN ID 61850 GOOSE ETYPE APPID erved (2 items)	0 to 16383 0 to 1		1		
61850 Standard GOOSE Destination MAC Address 61850 GOOSE VLAN Transmit Priority 61850 GOOSE VLAN ID 61850 GOOSE ETYPE APPID	0 to 16383 0 to 1		1	F001	102
618	50 GOOSE Function (GoEna) 50 GSSE Destination MAC Address 50 Standard GOOSE ID 50 Standard GOOSE Destination MAC Address 50 GOOSE VLAN Transmit Priority	50 GOOSE Function (GoEna)0 to 150 GSSE Destination MAC Address50 Standard GOOSE ID50 Standard GOOSE Destination MAC Address50 GOOSE VLAN Transmit Priority0 to 750 GOOSE VLAN ID0 to 4095	50 GOOSE Function (GoEna)0 to 150 GOSE Destination MAC Address50 Standard GOOSE ID50 Standard GOOSE Destination MAC Address50 GOOSE VLAN Transmit Priority0 to 750 GOOSE VLAN ID0 to 409550 GOOSE ETYPE APPID0 to 16383	50 GOOSE Function (GoEna) 0 to 1 1 50 GSSE Destination MAC Address 50 Standard GOOSE ID 50 Standard GOOSE Destination MAC Address 50 GOOSE VLAN Transmit Priority 0 to 7 1 50 GOOSE VLAN Transmit Priority 0 to 4095 1 50 GOOSE VLAN ID 0 to 16383 1 60 (2 items) 0 to 1 1	50 GOOSE Function (GoEna) 0 to 1 1 F102 50 GSSE Destination MAC Address F072 50 Standard GOOSE ID F209 50 Standard GOOSE Destination MAC Address F072 50 GOOSE VLAN Transmit Priority 0 to 7 1 F001 50 GOOSE VLAN ID 0 to 4095 1 F001 50 GOOSE ETYPE APPID 0 to 16383 1 F001 ad (2 items) 0 to 1 1 F001

Table B-9: MODBUS MEMORY MAP (Sheet 38 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
AAE1	IEC 61850 Logical Device Instance				F213	"LDInst"
AAF1	IEC 61850 LPHD Location				F204	"Location"
AB19	Include non-IEC 61850 Data	0 to 1		1	F102	0 (Disabled)
AB1A	IEC 61850 Server Data Scanning Function	0 to 1		1	F102	0 (Disabled)
AB1B	Reserved (15 items)					
IEC 61850	OXCBR configuration (read/write settings)					
AB24	Operand for IEC 61850 XCBR1.ST.Loc status	0 to 65535		1	F300	0
AB25	Command to clear XCBR1 OpCnt (operation counter)	0 to 1		1	F126	0 (No)
AB26	Operand for IEC 61850 XCBR2.ST.Loc status	0 to 65535		1	F300	0
AB27	Command to clear XCBR2 OpCnt (operation counter)	0 to 1		1	F126	0 (No)
AB28	Operand for IEC 61850 XCBR3.ST.Loc status	0 to 65535		1	F300	0
AB29	Command to clear XCBR3 OpCnt (operation counter)	0 to 1		1	F126	0 (No)
AB2A	Operand for IEC 61850 XCBR4.ST.Loc status	0 to 65535		1	F300	0
AB2B	Command to clear XCBR4 OpCnt (operation counter)	0 to 1		1	F126	0 (No)
AB2C	Operand for IEC 61850 XCBR5.ST.Loc status	0 to 65535		1	F300	0
AB2D	Command to clear XCBR5 OpCnt (operation counter)	0 to 1		1	F126	0 (No)
AB2E	Operand for IEC 61850 XCBR6.ST.Loc status	0 to 65535		1	F300	0
AB2F	Command to clear XCBR6 OpCnt (operation counter)	0 to 1		1	F126	0 (No)
IEC 61850) LN name prefixes (read/write settings)					
AB30	IEC 61850 logical node LPHD1 name prefix	0 to 65534		1	F206	(none)
AB33	IEC 61850 logical node PIOCx name prefix (72 items)	0 to 65534		1	F206	(none)
AC0B	IEC 61850 logical node PTOCx name prefix (24 items)	0 to 65534		1	F206	(none)
AC53	IEC 61850 logical node PTUVx name prefix (13 items)	0 to 65534		1	F206	(none)
AC7A	IEC 61850 logical node PTOVx name prefix (10 items)	0 to 65534		1	F206	(none)
AC98	IEC 61850 logical node PDISx name prefix (10 items)	0 to 65534		1	F206	(none)
ACB6	IEC 61850 logical node RBRFx name prefix (24 items)	0 to 65534		1	F206	(none)
ACFE	IEC 61850 logical node RPSBx name prefix	0 to 65534		1	F206	(none)
AD01	IEC 61850 logical node RRECx name prefix (6 items)	0 to 65534		1	F206	(none)
AD13	IEC 61850 logical node MMXUx name prefix (6 items)	0 to 65534		1	F206	(none)
AD25	IEC 61850 logical node GGIOx name prefix (4 items)	0 to 65534		1	F206	(none)
AD31	IEC 61850 logical node RFLOx name prefix (5 items)	0 to 65534		1	F206	(none)
AD40	IEC 61850 logical node XCBRx name prefix (6 items)	0 to 65534		1	F206	(none)
AD52	IEC 61850 logical node PTRCx name prefix (6 items)	0 to 65534		1	F206	(none)
AD64	IEC 61850 logical node PDIFx name prefix (6 items)	0 to 65534		1	F206	(none)
AD70	IEC 61850 logical node MMXNx name prefix (6 items)	0 to 65534		1	F206	(none)
	GGIO4 general analog configuration settings (read/w	-	1			
AF00	Number of analog points in GGIO4	4 to 32		4	F001	4
	GGIO4 analog input points configuration settings (rea				FCOO	0
AF10	IEC 61850 GGIO4 analog input 1 value				F600	0
AF11	IEC 61850 GGIO4 analog input 1 deadband	0.001 to 100	%	0.001	F003	100000
AF13	IEC 61850 GGIO4 analog input 1 minimum	-100000000000 to 100000000000		0.001	F060	0
AF15	IEC 61850 GGIO4 analog input 1 maximum	-100000000000 to 100000000000		0.001	F060	1000000
AF17	Repeated for IEC 61850 GGIO4 analog input 2			ļ		
AF1E	Repeated for IEC 61850 GGIO4 analog input 3		 			
AF25	Repeated for IEC 61850 GGIO4 analog input 4		ļ	ļ		
AF2C	Repeated for IEC 61850 GGIO4 analog input 5		ļ	ļ		
AF33	Repeated for IEC 61850 GGIO4 analog input 6		ļ	ļ		
AF3A	Repeated for IEC 61850 GGIO4 analog input 7			ļ		
AF41	Repeated for IEC 61850 GGIO4 analog input 8		ļ	ļ		
AF48	Repeated for IEC 61850 GGIO4 analog input 9			ļ		
AF4F	Repeated for IEC 61850 GGIO4 analog input 10			ļ		
AF56	Repeated for IEC 61850 GGIO4 analog input 11			ļ		
AF5D	Repeated for IEC 61850 GGIO4 analog input 12					

Table B-9: MODBUS MEMORY MAP (Sheet 39 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
AF64	Repeated for IEC 61850 GGIO4 analog input 13					
AF6B	Repeated for IEC 61850 GGIO4 analog input 14					
AF72	Repeated for IEC 61850 GGIO4 analog input 15					
AF79	Repeated for IEC 61850 GGIO4 analog input 16					
AF80	Repeated for IEC 61850 GGIO4 analog input 17					
AF87	Repeated for IEC 61850 GGIO4 analog input 18					
AF8E	Repeated for IEC 61850 GGIO4 analog input 19					
AF95	Repeated for IEC 61850 GGIO4 analog input 20		-			
AF9C	Repeated for IEC 61850 GGIO4 analog input 21					
AFA3	Repeated for IEC 61850 GGIO4 analog input 22					
AFAA	Repeated for IEC 61850 GGIO4 analog input 23					
AFB1	Repeated for IEC 61850 GGIO4 analog input 24					
AFB8	Repeated for IEC 61850 GGIO4 analog input 25					
AFBF	Repeated for IEC 61850 GGIO4 analog input 26					
AFC6	Repeated for IEC 61850 GGIO4 analog input 27					
AFCD	Repeated for IEC 61850 GGIO4 analog input 28					
AFD4	Repeated for IEC 61850 GGIO4 analog input 29					
AFDB	Repeated for IEC 61850 GGIO4 analog input 20					
AFE2	Repeated for IEC 61850 GGIO4 analog input 31					
AFE9	Repeated for IEC 61850 GGIO4 analog input 32					
	0 Logical Node Name Prefixes (Read/Write Setting)					
AB30	IEC 61850 Logical Node LPHD1 Name Prefix	0 to 65534		1	F206	(None)
AB33	IEC 61850 Logical Node PIOCx Name Prefix (72 items)	0 to 65534		1	F206	(None)
AC0B	IEC 61850 Logical Node PTOCx Name Prefix (24 items)	0 to 65534		1	F206	(None)
AC53	IEC 61850 Logical Node PTUVx Name Prefix (12 items)	0 to 65534		1	F206	(None)
AC77	IEC 61850 Logical Node PTOVx Name Prefix (8 items)	0 to 65534		1	F206	(None)
AC8F	IEC 61850 Logical Node PDISx Name Prefix (10 items)	0 to 65534		1	F206	(None)
ACAD	IEC 61850 Logical Node RRBFx Name Prefix (24 items)	0 to 65534		1	F206	(None)
ACF5	IEC 61850 Logical Node RPSBx Name Prefix	0 to 65534		1	F206	(None)
ACF8	IEC 61850 Logical Node RRECx Name Prefix (6 items)	0 to 65534		1	F206	(None)
AD0A	IEC 61850 Logical Node MMXUx Name Prefix (6 items)	0 to 65534		1	F206	(None)
AD0A AD1C				1	F206	. ,
AD1C AD28	IEC 61850 Logical Node GGIOx Name Prefix (4 items) IEC 61850 Logical Node RFLOx Name Prefix (5 items)	0 to 65534		1	F206	(None) (None)
		0 to 65534				()
AD37	IEC 61850 Logical Node XCBRx Name Prefix (2 items)	0 to 65534		1	F206	(None)
AD3D	IEC 61850 Logical Node PTRCx Name Prefix (2 items)	0 to 65534		1	F206	(None)
AD43	IEC 61850 Logical Node PDIFx Name Prefix (4 items)	0 to 65534		1	F206	(None)
AD4F	IEC 61850 Logical Node MMXNx Name Prefix (37 items)	0 to 65534		1	F206	(None)
	0 MMXU Deadbands (Read/Write Setting) (6 modules)	0.001 to 100	%	0.001	F003	10000
B0C0	IEC 61850 MMXU TotW Deadband 1	0.001 to 100		0.001		
B0C2	IEC 61850 MMXU TotVAr Deadband 1	0.001 to 100	%	0.001	F003	10000
B0C4	IEC 61850 MMXU TotVA Deadband 1	0.001 to 100	%	0.001	F003	10000
B0C6	IEC 61850 MMXU TotPF Deadband 1	0.001 to 100	%	0.001	F003	10000
B0C8	IEC 61850 MMXU Hz Deadband 1	0.001 to 100	%	0.001	F003	10000
BOCA	IEC 61850 MMXU PPV.phsAB Deadband 1	0.001 to 100	%	0.001	F003	10000
BOCC	IEC 61850 MMXU PPV.phsBC Deadband 1	0.001 to 100	%	0.001	F003	10000
BOCE	IEC 61850 MMXU PPV.phsCA Deadband 1	0.001 to 100	%	0.001	F003	10000
B0D0	IEC 61850 MMXU PhV.phsADeadband 1	0.001 to 100	%	0.001	F003	10000
B0D2	IEC 61850 MMXU PhV.phsB Deadband 1	0.001 to 100	%	0.001	F003	10000
B0D4	IEC 61850 MMXU PhV.phsC Deadband 1	0.001 to 100	%	0.001	F003	10000
B0D6	IEC 61850 MMXU A.phsA Deadband 1	0.001 to 100	%	0.001	F003	10000
B0D8	IEC 61850 MMXU A.phsB Deadband 1	0.001 to 100	%	0.001	F003	10000
B0DA	IEC 61850 MMXU A.phsC Deadband 1	0.001 to 100	%	0.001	F003	10000
B0DC	IEC 61850 MMXU A.neut Deadband 1	0.001 to 100	%	0.001	F003	10000
B0DE	IEC 61850 MMXU W.phsA Deadband 1	0.001 to 100	%	0.001	F003	10000

Table B-9: MODBUS MEMORY MAP (Sheet 40 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
B0E0	IEC 61850 MMXU W.phsB Deadband 1	0.001 to 100	%	0.001	F003	10000
B0E2	IEC 61850 MMXU W.phsC Deadband 1	0.001 to 100	%	0.001	F003	10000
B0E4	IEC 61850 MMXU VAr.phsA Deadband 1	0.001 to 100	%	0.001	F003	10000
B0E6	IEC 61850 MMXU VAr.phsB Deadband 1	0.001 to 100	%	0.001	F003	10000
B0E8	IEC 61850 MMXU VAr.phsC Deadband 1	0.001 to 100	%	0.001	F003	10000
B0EA	IEC 61850 MMXU VA.phsA Deadband 1	0.001 to 100	%	0.001	F003	10000
B0EC	IEC 61850 MMXU VA.phsB Deadband 1	0.001 to 100	%	0.001	F003	10000
B0EE	IEC 61850 MMXU VA.phsC Deadband 1	0.001 to 100	%	0.001	F003	10000
B0F0	IEC 61850 MMXU PF.phsA Deadband 1	0.001 to 100	%	0.001	F003	10000
B0F2	IEC 61850 MMXU PF.phsB Deadband 1	0.001 to 100	%	0.001	F003	10000
B0F4	IEC 61850 MMXU PF.phsC Deadband 1	0.001 to 100	%	0.001	F003	10000
B0F6	Repeated for Deadband 2					
B12C	Repeated for Deadband 3					
B162	Repeated for Deadband 4					
B198	Repeated for Deadband 5					
B1CE	Repeated for Deadband 6					
	GGIO2 Control Configuration (Read/Write Setting) (64	modules)				
B240	IEC 61850 GGIO2.CF.SPCSO1.ctlModel Value	0 to 2		1	F001	2
B241	IEC 61850 GGIO2.CF.SPCSO2.ctlModel Value	0 to 2		1	F001	2
B242	IEC 61850 GGIO2.CF.SPCSO3.ctlModel Value	0 to 2		1	F001	2
B243	IEC 61850 GGIO2.CF.SPCSO4.ctlModel Value	0 to 2		1	F001	2
B244	IEC 61850 GGIO2.CF.SPCSO5.ctlModel Value	0 to 2		1	F001	2
B245	IEC 61850 GGIO2.CF.SPCSO6.ctlModel Value	0 to 2		1	F001	2
B246	IEC 61850 GGIO2.CF.SPCSO7.ctlModel Value	0 to 2		1	F001	2
B247	IEC 61850 GGIO2.CF.SPCSO8.ctlModel Value	0 to 2		1	F001	2
B248	IEC 61850 GGIO2.CF.SPCSO9.ctlModel Value	0 to 2		1	F001	2
B249	IEC 61850 GGIO2.CF.SPCSO10.ctlModel Value	0 to 2		1	F001	2
B24A	IEC 61850 GGIO2.CF.SPCSO11.ctlModel Value	0 to 2		1	F001	2
B24B	IEC 61850 GGIO2.CF.SPCSO12.ctlModel Value	0 to 2		1	F001	2
B24C	IEC 61850 GGIO2.CF.SPCSO13.ctlModel Value	0 to 2		1	F001	2
B24D	IEC 61850 GGIO2.CF.SPCSO14.ctlModel Value	0 to 2		1	F001	2
B24E	IEC 61850 GGIO2.CF.SPCSO15.ctlModel Value	0 to 2		1	F001	2
B24E B24F	IEC 61850 GGIO2.CF.SPCSO16.ctlModel Value	0 to 2		1	F001	2
B250	IEC 61850 GGIO2.CF.SPCSO17.ctlModel Value	0 to 2		1	F001	2
B250	IEC 61850 GGIO2.CF.SPCSO18.ctlModel Value	0 to 2		1	F001	2
B251 B252	IEC 61850 GGIO2.CF.SPCSO19.ctlModel Value	0 to 2		1	F001	2
B253	IEC 61850 GGIO2.CF.SPCSO20.ctlModel Value	0 to 2		1	F001	2
B254	IEC 61850 GGIO2.CF.SPCSO21.ctlModel Value	0 to 2		1	F001	2
B254 B255	IEC 61850 GGIO2.CF.SPCSO21.ctiModel Value	0 to 2		1	F001	2
B256	IEC 61850 GGIO2.CF.SPCSO23.ctlModel Value	0 to 2		1	F001	2
B250 B257	IEC 61850 GGIO2.CF.SPCSO23.ctimodel Value	0 to 2		1	F001	2
B257 B258	IEC 61850 GGIO2.CF.SPCSO24.climodel value	0 to 2		1	F001	2
B259	IEC 61850 GGIO2.CF.SPCSO25.ctlModel Value	0 to 2		1	F001	2
B259 B25A	IEC 61850 GGIO2.CF.SPCSO26.ctimodel value	0 to 2		1	F001	2
B25A B25B	IEC 61850 GGIO2.CF.SPCSO27.ctilModel Value	0 to 2		1	F001	2
B25B B25C	IEC 61850 GGIO2.CF.SPCSO29.ctlModel Value	0 to 2		1	F001	2
B25C B25D	IEC 61850 GGIO2.CF.SPCSO29.ctilviodel Value	0 to 2			F001 F001	2
B25D B25E	IEC 61850 GGIO2.CF.SPCSO30.ctlModel Value	0 to 2		1	F001	2
B25E B25F						
	IEC 61850 GGIO2.CF.SPCSO32.ctlModel Value	0 to 2		1	F001	2
B260	IEC 61850 GGIO2.CF.SPCSO33.ctlModel Value	0 to 2		1	F001	2
B261	IEC 61850 GGIO2.CF.SPCSO34.ctlModel Value	0 to 2		1	F001	2
B262	IEC 61850 GGIO2.CF.SPCSO35.ctlModel Value	0 to 2		1	F001	2
B263	IEC 61850 GGIO2.CF.SPCSO36.ctlModel Value	0 to 2		1	F001	2
B264	IEC 61850 GGIO2.CF.SPCSO37.ctlModel Value	0 to 2		1	F001	2

Table B-9: MODBUS MEMORY MAP (Sheet 41 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
B265	IEC 61850 GGIO2.CF.SPCSO38.ctlModel Value	0 to 2		1	F001	2
B266	IEC 61850 GGIO2.CF.SPCSO39.ctlModel Value	0 to 2		1	F001	2
B267	IEC 61850 GGIO2.CF.SPCSO40.ctlModel Value	0 to 2		1	F001	2
B268	IEC 61850 GGIO2.CF.SPCSO41.ctlModel Value	0 to 2		1	F001	2
B269	IEC 61850 GGIO2.CF.SPCSO42.ctlModel Value	0 to 2		1	F001	2
B26A	IEC 61850 GGIO2.CF.SPCSO43.ctlModel Value	0 to 2		1	F001	2
B26B	IEC 61850 GGIO2.CF.SPCSO44.ctlModel Value	0 to 2		1	F001	2
B26C	IEC 61850 GGIO2.CF.SPCSO45.ctlModel Value	0 to 2		1	F001	2
B26D	IEC 61850 GGIO2.CF.SPCSO46.ctlModel Value	0 to 2		1	F001	2
B26E	IEC 61850 GGIO2.CF.SPCSO47.ctlModel Value	0 to 2		1	F001	2
B26F	IEC 61850 GGIO2.CF.SPCSO48.ctlModel Value	0 to 2		1	F001	2
B270	IEC 61850 GGIO2.CF.SPCSO49.ctlModel Value	0 to 2		1	F001	2
B271	IEC 61850 GGIO2.CF.SPCSO50.ctlModel Value	0 to 2		1	F001	2
B272	IEC 61850 GGIO2.CF.SPCSO51.ctlModel Value	0 to 2		1	F001	2
B272	IEC 61850 GGIO2.CF.SPCSO52.ctlModel Value	0 to 2		1	F001	2
B273	IEC 61850 GGIO2.CF.SPCSO53.ctlModel Value	0 to 2		1	F001	2
B275	IEC 61850 GGIO2.CF.SPCSO54.ctlModel Value IEC 61850 GGIO2.CF.SPCSO55.ctlModel Value	0 to 2		1	F001 F001	2
B276		0 to 2		1		2
B277	IEC 61850 GGIO2.CF.SPCSO56.ctlModel Value	0 to 2		1	F001	2
B278	IEC 61850 GGIO2.CF.SPCSO57.ctlModel Value	0 to 2		1	F001	2
B279	IEC 61850 GGIO2.CF.SPCSO58.ctlModel Value	0 to 2		1	F001	2
B27A	IEC 61850 GGIO2.CF.SPCSO59.ctlModel Value	0 to 2		1	F001	2
B27B	IEC 61850 GGIO2.CF.SPCSO60.ctlModel Value	0 to 2		1	F001	2
B27C	IEC 61850 GGIO2.CF.SPCSO61.ctlModel Value	0 to 2		1	F001	2
B27D	IEC 61850 GGIO2.CF.SPCSO62.ctlModel Value	0 to 2		1	F001	2
B27E	IEC 61850 GGIO2.CF.SPCSO63.ctlModel Value	0 to 2		1	F001	2
IEC 6185	0 Report Settings (Read/Write Setting) (14 modules)					
B280	IEC 61850 Report Control 1 RptID				F209	
B2A1	IEC 61850 Report Control 1 OptFlds	0 to 65535		 1	F001	0
B2A1 B2A2	IEC 61850 Report Control 1 OptFlds IEC 61850 Report Control 1 BufTm	0 to 65535 0 to 4294967295	-	1 1	F001 F003	0
B2A1	IEC 61850 Report Control 1 OptFlds	0 to 65535		1	F001	
B2A1 B2A2	IEC 61850 Report Control 1 OptFlds IEC 61850 Report Control 1 BufTm	0 to 65535 0 to 4294967295		1 1	F001 F003	0
B2A1 B2A2 B2A4	IEC 61850 Report Control 1 OptFlds IEC 61850 Report Control 1 BufTm IEC 61850 Report Control 1 TrgOps	0 to 65535 0 to 4294967295 0 to 65535		1 1 1	F001 F003 F001	0
B2A1 B2A2 B2A4 B2A5	IEC 61850 Report Control 1 OptFlds IEC 61850 Report Control 1 BufTm IEC 61850 Report Control 1 TrgOps IEC 61850 Report Control 1 IntgPd	0 to 65535 0 to 4294967295 0 to 65535		1 1 1	F001 F003 F001	0
B2A1 B2A2 B2A4 B2A5 B2A7	IEC 61850 Report Control 1 OptFlds IEC 61850 Report Control 1 BufTm IEC 61850 Report Control 1 TrgOps IEC 61850 Report Control 1 IntgPd Repeated for Report 2	0 to 65535 0 to 4294967295 0 to 65535		1 1 1	F001 F003 F001	0
B2A1 B2A2 B2A4 B2A5 B2A7 B2CE	IEC 61850 Report Control 1 OptFlds IEC 61850 Report Control 1 BufTm IEC 61850 Report Control 1 TrgOps IEC 61850 Report Control 1 IntgPd Repeated for Report 2 Repeated for Report 3	0 to 65535 0 to 4294967295 0 to 65535		1 1 1	F001 F003 F001	0
B2A1 B2A2 B2A4 B2A5 B2A7 B2CE B2F5	IEC 61850 Report Control 1 OptFlds IEC 61850 Report Control 1 BufTm IEC 61850 Report Control 1 TrgOps IEC 61850 Report Control 1 IntgPd Repeated for Report 2 Repeated for Report 3 Repeated for Report 4	0 to 65535 0 to 4294967295 0 to 65535		1 1 1	F001 F003 F001	0
B2A1 B2A2 B2A4 B2A5 B2A7 B2CE B2F5 B31C	IEC 61850 Report Control 1 OptFlds IEC 61850 Report Control 1 BufTm IEC 61850 Report Control 1 TrgOps IEC 61850 Report Control 1 IntgPd Repeated for Report 2 Repeated for Report 3 Repeated for Report 4 Repeated for Report 5	0 to 65535 0 to 4294967295 0 to 65535		1 1 1	F001 F003 F001	0
B2A1 B2A2 B2A4 B2A5 B2A7 B2CE B2F5 B31C B343	IEC 61850 Report Control 1 OptFlds IEC 61850 Report Control 1 BufTm IEC 61850 Report Control 1 TrgOps IEC 61850 Report Control 1 IntgPd Repeated for Report 2 Repeated for Report 3 Repeated for Report 4 Repeated for Report 5 Repeated for Report 6	0 to 65535 0 to 4294967295 0 to 65535		1 1 1	F001 F003 F001	0
B2A1 B2A2 B2A4 B2A5 B2A7 B2CE B2F5 B31C B343 B36A	IEC 61850 Report Control 1 OptFlds IEC 61850 Report Control 1 BufTm IEC 61850 Report Control 1 TrgOps IEC 61850 Report Control 1 IntgPd Repeated for Report 2 Repeated for Report 3 Repeated for Report 4 Repeated for Report 5 Repeated for Report 6 Repeated for Report 7	0 to 65535 0 to 4294967295 0 to 65535		1 1 1	F001 F003 F001	0
B2A1 B2A2 B2A4 B2A5 B2A7 B2CE B2F5 B31C B343 B36A B391	IEC 61850 Report Control 1 OptFlds IEC 61850 Report Control 1 BufTm IEC 61850 Report Control 1 TrgOps IEC 61850 Report Control 1 IntgPd Repeated for Report 2 Repeated for Report 3 Repeated for Report 4 Repeated for Report 5 Repeated for Report 6 Repeated for Report 7 Repeated for Report 8	0 to 65535 0 to 4294967295 0 to 65535		1 1 1	F001 F003 F001	0
B2A1 B2A2 B2A4 B2A5 B2A7 B2CE B31C B343 B36A B391 B388	IEC 61850 Report Control 1 OptFlds IEC 61850 Report Control 1 BufTm IEC 61850 Report Control 1 TrgOps IEC 61850 Report Control 1 IntgPd Repeated for Report 2 Repeated for Report 3 Repeated for Report 4 Repeated for Report 5 Repeated for Report 6 Repeated for Report 7 Repeated for Report 8 Repeated for Report 9	0 to 65535 0 to 4294967295 0 to 65535		1 1 1	F001 F003 F001	0
B2A1 B2A2 B2A4 B2A5 B2A7 B2CE B31C B343 B36A B391 B3B8 B3DF	IEC 61850 Report Control 1 OptFlds IEC 61850 Report Control 1 BufTm IEC 61850 Report Control 1 TrgOps IEC 61850 Report Control 1 IntgPd Repeated for Report 2 Repeated for Report 3 Repeated for Report 4 Repeated for Report 5 Repeated for Report 6 Repeated for Report 7 Repeated for Report 8 Repeated for Report 9 Repeated for Report 10	0 to 65535 0 to 4294967295 0 to 65535		1 1 1	F001 F003 F001	0
B2A1 B2A2 B2A4 B2A5 B2A7 B2CE B31C B343 B343 B36A B391 B388 B3DF B406	IEC 61850 Report Control 1 OptFlds IEC 61850 Report Control 1 BufTm IEC 61850 Report Control 1 TrgOps IEC 61850 Report Control 1 IntgPd Repeated for Report 2 Repeated for Report 3 Repeated for Report 4 Repeated for Report 5 Repeated for Report 6 Repeated for Report 6 Repeated for Report 7 Repeated for Report 8 Repeated for Report 9 Repeated for Report 10 Repeated for Report 11 Repeated for Report 12	0 to 65535 0 to 4294967295 0 to 65535		1 1 1	F001 F003 F001	0
B2A1 B2A2 B2A4 B2A5 B2A7 B2CE B31C B343 B343 B36A B391 B388 B30F B406 B42D B454	IEC 61850 Report Control 1 OptFlds IEC 61850 Report Control 1 BufTm IEC 61850 Report Control 1 TrgOps IEC 61850 Report Control 1 IntgPd Repeated for Report 2 Repeated for Report 3 Repeated for Report 4 Repeated for Report 5 Repeated for Report 6 Repeated for Report 6 Repeated for Report 7 Repeated for Report 8 Repeated for Report 9 Repeated for Report 10 Repeated for Report 11 Repeated for Report 12 Repeated for Report 13	0 to 65535 0 to 4294967295 0 to 65535		1 1 1	F001 F003 F001	0
B2A1 B2A2 B2A4 B2A5 B2A7 B2CE B31C B31C B343 B36A B391 B36A B391 B30F B406 B42D B454 B47B	IEC 61850 Report Control 1 OptFlds IEC 61850 Report Control 1 BufTm IEC 61850 Report Control 1 TrgOps IEC 61850 Report Control 1 IntgPd Repeated for Report 2 Repeated for Report 3 Repeated for Report 4 Repeated for Report 5 Repeated for Report 6 Repeated for Report 7 Repeated for Report 8 Repeated for Report 9 Repeated for Report 10 Repeated for Report 11 Repeated for Report 12 Repeated for Report 13 Repeated for Report 13 Repeated for Report 14	0 to 65535 0 to 4294967295 0 to 65535		1 1 1	F001 F003 F001	0
B2A1 B2A2 B2A4 B2A5 B2A7 B2CE B31C B343 B36A B391 B36A B391 B305 B406 B42D B454 B47B B4A2	IEC 61850 Report Control 1 OptFlds IEC 61850 Report Control 1 BufTm IEC 61850 Report Control 1 TrgOps IEC 61850 Report Control 1 IntgPd Repeated for Report 2 Repeated for Report 3 Repeated for Report 4 Repeated for Report 5 Repeated for Report 6 Repeated for Report 7 Repeated for Report 8 Repeated for Report 9 Repeated for Report 10 Repeated for Report 11 Repeated for Report 12 Repeated for Report 13 Repeated for Report 14 Repeated for Report 14 Repeated for Report 15	0 to 65535 0 to 4294967295 0 to 65535		1 1 1	F001 F003 F001	0
B2A1 B2A2 B2A4 B2A5 B2A7 B2CE B31C B343 B343 B36A B391 B388 B30F B406 B42D B454 B47B B442 B442 B442	IEC 61850 Report Control 1 OptFlds IEC 61850 Report Control 1 BufTm IEC 61850 Report Control 1 TrgOps IEC 61850 Report Control 1 IntgPd Repeated for Report 2 Repeated for Report 3 Repeated for Report 4 Repeated for Report 5 Repeated for Report 6 Repeated for Report 7 Repeated for Report 8 Repeated for Report 9 Repeated for Report 10 Repeated for Report 11 Repeated for Report 12 Repeated for Report 13 Repeated for Report 14 Repeated for Report 15 Repeated for Report 15 Repeated for Report 15 Repeated for Report 16	0 to 65535 0 to 4294967295 0 to 65535		1 1 1	F001 F003 F001	0
B2A1 B2A2 B2A4 B2A5 B2A7 B2CE B31C B343 B36A B391 B388 B30F B406 B42D B454 B47B B4A2 B4C9 EC 6185	IEC 61850 Report Control 1 OptFlds IEC 61850 Report Control 1 BufTm IEC 61850 Report Control 1 TrgOps IEC 61850 Report Control 1 IntgPd Repeated for Report 2 Repeated for Report 3 Repeated for Report 4 Repeated for Report 5 Repeated for Report 6 Repeated for Report 7 Repeated for Report 8 Repeated for Report 9 Repeated for Report 10 Repeated for Report 11 Repeated for Report 12 Repeated for Report 13 Repeated for Report 14 Repeated for Report 15 Repeated for Report 16 0 GGIO1 Configuration Settings (Read/Write Setting)	0 to 65535 0 to 4294967295 0 to 65535 0 to 4294967295			F001 F003 F001 F003	
B2A1 B2A2 B2A4 B2A5 B2A7 B2CE B31C B343 B36A B391 B388 B30F B406 B42D B454 B47B B442 B478 B4A2 B4C9 EC 6185 B500	IEC 61850 Report Control 1 OptFlds IEC 61850 Report Control 1 BufTm IEC 61850 Report Control 1 TrgOps IEC 61850 Report Control 1 IntgPd Repeated for Report 2 Repeated for Report 3 Repeated for Report 4 Repeated for Report 5 Repeated for Report 6 Repeated for Report 6 Repeated for Report 8 Repeated for Report 9 Repeated for Report 10 Repeated for Report 11 Repeated for Report 12 Repeated for Report 13 Repeated for Report 14 Repeated for Report 15 Repeated for Report 16 0 GGIO1 Configuration Settings (Read/Write Setting) Number of Status Indications in GGIO1	0 to 65535 0 to 4294967295 0 to 65535 0 to 4294967295 			F001 F003 F001 F003	
B2A1 B2A2 B2A4 B2A5 B2A7 B2CE B31C B343 B36A B391 B36A B391 B368 B30F B406 B42D B454 B47B B47B B442 B479 B462 B459 B462 B462 B462 B462 B462 B462 B462 B462	IEC 61850 Report Control 1 OptFlds IEC 61850 Report Control 1 BufTm IEC 61850 Report Control 1 TrgOps IEC 61850 Report Control 1 IntgPd Repeated for Report 2 Repeated for Report 3 Repeated for Report 4 Repeated for Report 5 Repeated for Report 6 Repeated for Report 6 Repeated for Report 7 Repeated for Report 9 Repeated for Report 9 Repeated for Report 10 Repeated for Report 11 Repeated for Report 12 Repeated for Report 13 Repeated for Report 14 Repeated for Report 15 Repeated for Report 16 O GGIO1 Configuration Settings (Read/Write Setting) Number of Status Indications in GGIO1 IEC 61850 GGIO1 Indication operands (128 items)	0 to 65535 0 to 4294967295 0 to 65535 0 to 4294967295 			F001 F003 F001 F003	
B2A1 B2A2 B2A4 B2A5 B2A7 B2CE B31C B343 B36A B391 B36A B391 B30F B406 B42D B454 B454 B47B B4A2 B452 B4C9 EC 6185	IEC 61850 Report Control 1 OptFlds IEC 61850 Report Control 1 BufTm IEC 61850 Report Control 1 TrgOps IEC 61850 Report Control 1 IntgPd Repeated for Report 2 Repeated for Report 3 Repeated for Report 4 Repeated for Report 5 Repeated for Report 6 Repeated for Report 6 Repeated for Report 7 Repeated for Report 9 Repeated for Report 9 Repeated for Report 10 Repeated for Report 11 Repeated for Report 12 Repeated for Report 13 Repeated for Report 14 Repeated for Report 15 Repeated for Report 16 0 GGIO1 Configuration Settings (Read/Write Setting) Number of Status Indications in GGIO1 IEC 61850 GGIO1 Indication operands (128 items) 0 Configurable GOOSE Transmission (Read/Write Setting)	0 to 65535 0 to 4294967295 0 to 65535 0 to 4294967295 0 to 4295676 0 to 4295676 0 to 42956766 0 to 42			F001 F003 F001 F003	
B2A1 B2A2 B2A4 B2A5 B2A7 B2CE B31C B343 B36A B391 B36A B391 B30F B406 B42D B454 B47B B454 B47B B454 B47B B452 B450 B500 B501 B501	IEC 61850 Report Control 1 OptFlds IEC 61850 Report Control 1 BufTm IEC 61850 Report Control 1 TrgOps IEC 61850 Report Control 1 IntgPd Repeated for Report 2 Repeated for Report 3 Repeated for Report 4 Repeated for Report 5 Repeated for Report 6 Repeated for Report 7 Repeated for Report 8 Repeated for Report 9 Repeated for Report 10 Repeated for Report 10 Repeated for Report 12 Repeated for Report 13 Repeated for Report 13 Repeated for Report 15 Repeated for Report 16 0 GGIO1 Configuration Settings (Read/Write Setting) Number of Status Indication operands (128 items) 0 Configurable GOOSE Transmission (Read/Write Setting) IEC 61850 Configurable GOOSE Function	0 to 65535 0 to 4294967295 0 to 65535 0 to 4294967295 0 to 1 to 4294967295 0 to 4294967295			F001 F003 F001 F003 F003 F001 F001 F300 F102	0 0 0
B2A1 B2A2 B2A4 B2A5 B2A7 B2CE B347 B343 B36A B391 B36A B391 B30F B406 B42D B454 B47B B454 B47B B452 B452 B459 B462 B462 B462 B462 B462 B462 B462 B462	IEC 61850 Report Control 1 OptFlds IEC 61850 Report Control 1 BufTm IEC 61850 Report Control 1 TrgOps IEC 61850 Report Control 1 IntgPd Repeated for Report 2 Repeated for Report 3 Repeated for Report 4 Repeated for Report 5 Repeated for Report 6 Repeated for Report 6 Repeated for Report 7 Repeated for Report 9 Repeated for Report 9 Repeated for Report 10 Repeated for Report 11 Repeated for Report 12 Repeated for Report 13 Repeated for Report 14 Repeated for Report 15 Repeated for Report 16 0 GGIO1 Configuration Settings (Read/Write Setting) Number of Status Indications in GGIO1 IEC 61850 GGIO1 Indication operands (128 items) 0 Configurable GOOSE Transmission (Read/Write Setting)	0 to 65535 0 to 4294967295 0 to 65535 0 to 4294967295 0 to 4295676 0 to 4295676 0 to 42956766 0 to 42			F001 F003 F001 F003	

Table B-9: MODBUS MEMORY MAP (Sheet 42 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
B5C5	IEC 61850 Configurable GOOSE VLAN Transmit Priority	0 to 7		1	F001	4
B5C6	IEC 61850 Configurable GOOSE VLAN ID	0 to 4095		1	F001	0
B5C7	IEC 61850 Configurable GOOSE ETYPE APPID	0 to 16383		1	F001	0
B5C8	IEC 61850 Configurable GOOSE ConfRev	1 to 4294967295		1	F003	1
B5CA	Configurable GOOSE Dataset Items for Transmission	0 to 256		1	F232	0 (None)
B60A	Repeated for Module 2					
B674	Repeated for Module 3					
B6DE	Repeated for Module 4					
B748	Repeated for Module 5					
B7B2	Repeated for Module 6					
B81C	Repeated for Module 7					
B886	Repeated for Module 8					
IEC 6185	0 Configurable GOOSE Reception (Read/Write Setting)	(8 modules)				
B900	Configurable GOOSE Dataset Items for Transmission	0 to 128		1	F233	0 (None)
B940	Repeated for Module 2					
B980	Repeated for Module 3					
B9C0	Repeated for Module 4					
BA00	Repeated for Module 5					
BA40	Repeated for Module 6					
BA80	Repeated for Module 7					
BAC0	Repeated for Module 8					
Contact I	nputs (Read/Write Setting) (96 modules)					
BB00	Contact Input 1 Name				F205	"Cont lp 1"
BB06	Contact Input 1 Events	0 to 1		1	F102	0 (Disabled)
BB07	Contact Input 1 Debounce Time	0 to 16	ms	0.5	F001	20
BB08	Repeated for Contact Input 2					
BB10	Repeated for Contact Input 3					
BB18	Repeated for Contact Input 4					
BB20	Repeated for Contact Input 5					
BB28	Repeated for Contact Input 6					
BB30	Repeated for Contact Input 7					
BB38	Repeated for Contact Input 8					
BB40	Repeated for Contact Input 9					
BB48	Repeated for Contact Input 10					
BB50	Repeated for Contact Input 11					
BB58	Repeated for Contact Input 12					
BB60	Repeated for Contact Input 13					
BB68	Repeated for Contact Input 14					
BB70	Repeated for Contact Input 15					
BB78	Repeated for Contact Input 16					
BB80	Repeated for Contact Input 17					
BB88	Repeated for Contact Input 18					
BB90	Repeated for Contact Input 19					
BB98	Repeated for Contact Input 20					
BBA0	Repeated for Contact Input 21					
BBA8	Repeated for Contact Input 22					
BBB0	Repeated for Contact Input 23					
BBB8	Repeated for Contact Input 24					
BBC0	Repeated for Contact Input 25					
BBC8	Repeated for Contact Input 26					
BBD0	Repeated for Contact Input 27		ļ			
BBD8	Repeated for Contact Input 28					
BBE0	Repeated for Contact Input 29					
BBE8	Repeated for Contact Input 30					

Table B-9: MODBUS MEMORY MAP (Sheet 43 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
BBF0	Repeated for Contact Input 31					
BBF8	Repeated for Contact Input 32					
BC00	Repeated for Contact Input 33					
BC08	Repeated for Contact Input 34					
BC10	Repeated for Contact Input 35					
BC18	Repeated for Contact Input 36					
BC20	Repeated for Contact Input 37					
BC28	Repeated for Contact Input 38					
BC30	Repeated for Contact Input 39					
BC38	Repeated for Contact Input 40					
BC40	Repeated for Contact Input 41					
BC48	Repeated for Contact Input 42					
BC50	Repeated for Contact Input 43					
BC58	Repeated for Contact Input 44					
BC60	Repeated for Contact Input 45					
BC68	Repeated for Contact Input 46					
BC70	Repeated for Contact Input 47					
BC78	Repeated for Contact Input 48					
BC80	Repeated for Contact Input 49					
BC88	Repeated for Contact Input 50					
BC90	Repeated for Contact Input 51					
BC98	Repeated for Contact Input 52					
BCA0	Repeated for Contact Input 53					
BCA8	Repeated for Contact Input 54					
BCB0	Repeated for Contact Input 55					
BCB8	Repeated for Contact Input 56					
BCD0	Repeated for Contact Input 57					
BCC8	Repeated for Contact Input 58					
BCC0 BCD0	Repeated for Contact Input 59					
BCD0 BCD8	Repeated for Contact Input 59					
BCE0	Repeated for Contact Input 60					
BCE0 BCE8	Repeated for Contact Input 61					
BCE0 BCF0	Repeated for Contact Input 62					
BCF0 BCF8						
	Repeated for Contact Input 64					
BD00	Repeated for Contact Input 65					
BD08	Repeated for Contact Input 66					
BD10	Repeated for Contact Input 67					
BD18	Repeated for Contact Input 68					
BD20	Repeated for Contact Input 69					
BD28	Repeated for Contact Input 70					
BD30	Repeated for Contact Input 71					
BD38	Repeated for Contact Input 72					
BD40	Repeated for Contact Input 73					
BD48	Repeated for Contact Input 74					
BD50	Repeated for Contact Input 75					
BD58	Repeated for Contact Input 76					
BD60	Repeated for Contact Input 77					
BD68	Repeated for Contact Input 78					
BD70	Repeated for Contact Input 79					
BD78	Repeated for Contact Input 80					
BD80	Repeated for Contact Input 81					
BD88	Repeated for Contact Input 82					
BD90	Repeated for Contact Input 83					
BD98	Repeated for Contact Input 84					

Table B-9: MODBUS MEMORY MAP (Sheet 44 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
BDA0	Repeated for Contact Input 85					
BDA8	Repeated for Contact Input 86					
BDB0	Repeated for Contact Input 87					
BDB8	Repeated for Contact Input 88					
BDC0	Repeated for Contact Input 89					
BDC8	Repeated for Contact Input 90					
BDD0	Repeated for Contact Input 91					
BDD8	Repeated for Contact Input 92					
BDE0	Repeated for Contact Input 93					
BDE8	Repeated for Contact Input 94					
BDF0	Repeated for Contact Input 95					
BDF8	Repeated for Contact Input 96					
Contact I	nput Thresholds (Read/Write Setting)					
BE00	Contact Input <i>n</i> Threshold, $n = 1$ to 24 (24 items)	0 to 3		1	F128	1 (33 Vdc)
Virtual In	puts (Read/Write Setting) (64 modules)					
BE30	Virtual Input 1 Function	0 to 1		1	F102	0 (Disabled)
BE31	Virtual Input 1 Name				F205	"Virt lp 1"
BE37	Virtual Input 1 Programmed Type	0 to 1		1	F127	0 (Latched)
BE38	Virtual Input 1 Events	0 to 1		1	F102	0 (Disabled)
BE39	Reserved (3 items)				F001	0
BE3C	Repeated for Virtual Input 2					
BE48	Repeated for Virtual Input 3					
BE54	Repeated for Virtual Input 4					
BE60	Repeated for Virtual Input 5					
BE6C	Repeated for Virtual Input 6					
BE78	Repeated for Virtual Input 7					
BE84	Repeated for Virtual Input 8					
BE90	Repeated for Virtual Input 9					
BE9C	Repeated for Virtual Input 10					
BEA8	Repeated for Virtual Input 11					
BEB4	Repeated for Virtual Input 12					
BEC0	Repeated for Virtual Input 13					
BECC	Repeated for Virtual Input 14					
BED8	Repeated for Virtual Input 15					
BEE4	Repeated for Virtual Input 16					
BEF0	Repeated for Virtual Input 17					
BEFC	Repeated for Virtual Input 18					
BF08	Repeated for Virtual Input 19					
BF14	Repeated for Virtual Input 20					
BF20	Repeated for Virtual Input 21					
BF2C	Repeated for Virtual Input 22					
BF38	Repeated for Virtual Input 23					
BF44	Repeated for Virtual Input 24					
BF50	Repeated for Virtual Input 25					
BF5C	Repeated for Virtual Input 26					
BF68	Repeated for Virtual Input 27					
BF74	Repeated for Virtual Input 28					
BF80	Repeated for Virtual Input 29					
BF8C	Repeated for Virtual Input 30					
BF98	Repeated for Virtual Input 31					
BFA4	Repeated for Virtual Input 32					
BFB0	Repeated for Virtual Input 33					
BFBC	Repeated for Virtual Input 34					
BFC8	Repeated for Virtual Input 35					

Table B-9: MODBUS MEMORY MAP (Sheet 45 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
BFD4	Repeated for Virtual Input 36					
BFE0	Repeated for Virtual Input 37					
BFEC	Repeated for Virtual Input 38					
BFF8	Repeated for Virtual Input 39					
C004	Repeated for Virtual Input 40					
C010	Repeated for Virtual Input 41					
C01C	Repeated for Virtual Input 42					
C028	Repeated for Virtual Input 43					
C034	Repeated for Virtual Input 44					
C040	Repeated for Virtual Input 45					
C04C	Repeated for Virtual Input 46					
C058	Repeated for Virtual Input 47					
C064	Repeated for Virtual Input 48					
C070	Repeated for Virtual Input 49					
C07C	Repeated for Virtual Input 50					
C088	Repeated for Virtual Input 51					
C094	Repeated for Virtual Input 52					
C0A0	Repeated for Virtual Input 53					
COAC	Repeated for Virtual Input 55					
C0AC C0B8	Repeated for Virtual Input 55					
C0D0	Repeated for Virtual Input 56					
C0D0	Repeated for Virtual Input 57					
CODC	Repeated for Virtual Input 58					
CODC COE8	Repeated for Virtual Input 59					
C0E8	Repeated for Virtual Input 60					
C100	Repeated for Virtual Input 60					
C100	Repeated for Virtual Input 61					
C10C	Repeated for Virtual Input 63					
C118 C124	Repeated for Virtual Input 65					
	utputs (Read/Write Setting) (96 modules)					
C130	Virtual Output 1 Name				F205	"Virt Op 1 "
C136	Virtual Output 1 Events	0 to 1		1	F102	0 (Disabled)
C137	Reserved				F001	0
C138	Repeated for Virtual Output 2				1001	•
C140	Repeated for Virtual Output 2					
C148						
0140	Repeated for Virtual Output 4					
C150	Repeated for Virtual Output 4					
C150	Repeated for Virtual Output 5					
C158	Repeated for Virtual Output 5 Repeated for Virtual Output 6					
C158 C160	Repeated for Virtual Output 5 Repeated for Virtual Output 6 Repeated for Virtual Output 7					
C158 C160 C168	Repeated for Virtual Output 5 Repeated for Virtual Output 6 Repeated for Virtual Output 7 Repeated for Virtual Output 8					
C158 C160 C168 C170	Repeated for Virtual Output 5 Repeated for Virtual Output 6 Repeated for Virtual Output 7 Repeated for Virtual Output 8 Repeated for Virtual Output 9					
C158 C160 C168 C170 C178	Repeated for Virtual Output 5 Repeated for Virtual Output 6 Repeated for Virtual Output 7 Repeated for Virtual Output 8 Repeated for Virtual Output 9 Repeated for Virtual Output 10					
C158 C160 C168 C170 C178 C180	Repeated for Virtual Output 5Repeated for Virtual Output 6Repeated for Virtual Output 7Repeated for Virtual Output 8Repeated for Virtual Output 9Repeated for Virtual Output 10Repeated for Virtual Output 11					
C158 C160 C168 C170 C178 C180 C188	Repeated for Virtual Output 5Repeated for Virtual Output 6Repeated for Virtual Output 7Repeated for Virtual Output 8Repeated for Virtual Output 9Repeated for Virtual Output 10Repeated for Virtual Output 11Repeated for Virtual Output 12					
C158 C160 C168 C170 C178 C180 C188 C190	Repeated for Virtual Output 5 Repeated for Virtual Output 6 Repeated for Virtual Output 7 Repeated for Virtual Output 8 Repeated for Virtual Output 9 Repeated for Virtual Output 10 Repeated for Virtual Output 11 Repeated for Virtual Output 12 Repeated for Virtual Output 13					
C158 C160 C168 C170 C178 C180 C188 C190 C198	Repeated for Virtual Output 5 Repeated for Virtual Output 6 Repeated for Virtual Output 7 Repeated for Virtual Output 8 Repeated for Virtual Output 9 Repeated for Virtual Output 10 Repeated for Virtual Output 11 Repeated for Virtual Output 12 Repeated for Virtual Output 13 Repeated for Virtual Output 14					
C158 C160 C168 C170 C178 C180 C188 C190 C198 C190 C198	Repeated for Virtual Output 5 Repeated for Virtual Output 6 Repeated for Virtual Output 7 Repeated for Virtual Output 8 Repeated for Virtual Output 9 Repeated for Virtual Output 10 Repeated for Virtual Output 11 Repeated for Virtual Output 12 Repeated for Virtual Output 13 Repeated for Virtual Output 14 Repeated for Virtual Output 15					
C158 C160 C168 C170 C178 C180 C188 C190 C198 C140 C1A8	Repeated for Virtual Output 5 Repeated for Virtual Output 6 Repeated for Virtual Output 7 Repeated for Virtual Output 8 Repeated for Virtual Output 9 Repeated for Virtual Output 10 Repeated for Virtual Output 11 Repeated for Virtual Output 12 Repeated for Virtual Output 13 Repeated for Virtual Output 14 Repeated for Virtual Output 15 Repeated for Virtual Output 16					
C158 C160 C168 C170 C178 C180 C188 C190 C198 C140 C1A8 C1A0 C1A8 C1B0	Repeated for Virtual Output 5 Repeated for Virtual Output 6 Repeated for Virtual Output 7 Repeated for Virtual Output 8 Repeated for Virtual Output 9 Repeated for Virtual Output 10 Repeated for Virtual Output 11 Repeated for Virtual Output 12 Repeated for Virtual Output 13 Repeated for Virtual Output 14 Repeated for Virtual Output 15 Repeated for Virtual Output 16 Repeated for Virtual Output 17					
C158 C160 C168 C170 C178 C180 C188 C190 C188 C190 C198 C1A0 C1A8 C1B0 C1B8	Repeated for Virtual Output 5 Repeated for Virtual Output 6 Repeated for Virtual Output 7 Repeated for Virtual Output 8 Repeated for Virtual Output 9 Repeated for Virtual Output 10 Repeated for Virtual Output 11 Repeated for Virtual Output 12 Repeated for Virtual Output 13 Repeated for Virtual Output 14 Repeated for Virtual Output 15 Repeated for Virtual Output 16 Repeated for Virtual Output 17 Repeated for Virtual Output 18					
C158 C160 C168 C170 C178 C180 C188 C190 C198 C140 C148 C1A0 C1A8 C1B0 C1B8 C1C0	Repeated for Virtual Output 5 Repeated for Virtual Output 6 Repeated for Virtual Output 7 Repeated for Virtual Output 8 Repeated for Virtual Output 9 Repeated for Virtual Output 10 Repeated for Virtual Output 11 Repeated for Virtual Output 12 Repeated for Virtual Output 13 Repeated for Virtual Output 14 Repeated for Virtual Output 15 Repeated for Virtual Output 16 Repeated for Virtual Output 17 Repeated for Virtual Output 18 Repeated for Virtual Output 18 Repeated for Virtual Output 18 Repeated for Virtual Output 19					
C158 C160 C168 C170 C178 C180 C188 C190 C198 C190 C198 C1A0 C1A8 C1B0 C1B8 C1C0 C1C8	Repeated for Virtual Output 5 Repeated for Virtual Output 6 Repeated for Virtual Output 7 Repeated for Virtual Output 8 Repeated for Virtual Output 9 Repeated for Virtual Output 10 Repeated for Virtual Output 11 Repeated for Virtual Output 12 Repeated for Virtual Output 13 Repeated for Virtual Output 14 Repeated for Virtual Output 15 Repeated for Virtual Output 15 Repeated for Virtual Output 17 Repeated for Virtual Output 18 Repeated for Virtual Output 19 Repeated for Virtual Output 19 Repeated for Virtual Output 19 Repeated for Virtual Output 19 Repeated for Virtual Output 19 Repeated for Virtual Output 20					
C158 C160 C168 C170 C178 C180 C188 C190 C198 C190 C198 C1A0 C1A8 C1B0 C1B8 C1C0	Repeated for Virtual Output 5 Repeated for Virtual Output 6 Repeated for Virtual Output 7 Repeated for Virtual Output 8 Repeated for Virtual Output 9 Repeated for Virtual Output 10 Repeated for Virtual Output 11 Repeated for Virtual Output 12 Repeated for Virtual Output 13 Repeated for Virtual Output 14 Repeated for Virtual Output 15 Repeated for Virtual Output 16 Repeated for Virtual Output 17 Repeated for Virtual Output 18 Repeated for Virtual Output 18 Repeated for Virtual Output 18 Repeated for Virtual Output 19					

Table B-9: MODBUS MEMORY MAP (Sheet 46 of 55)

ADDR		RANGE	UNITS	STEP	FORMAT	DEFAULT
C1E0	Repeated for Virtual Output 23					
C1E8	Repeated for Virtual Output 24					
C1F0	Repeated for Virtual Output 25					
C1F8	Repeated for Virtual Output 26					
C200	Repeated for Virtual Output 27					
C208	Repeated for Virtual Output 28					
C210	Repeated for Virtual Output 29					
C218	Repeated for Virtual Output 30					
C220	Repeated for Virtual Output 31					
C228	Repeated for Virtual Output 32					
C230	Repeated for Virtual Output 33					
C238	Repeated for Virtual Output 34					
C240	Repeated for Virtual Output 35					
C248	Repeated for Virtual Output 36					
C250	Repeated for Virtual Output 37					
C258	Repeated for Virtual Output 38					
C260	Repeated for Virtual Output 39					
C268	Repeated for Virtual Output 40					
C270	Repeated for Virtual Output 41					
C278	Repeated for Virtual Output 42					
C280	Repeated for Virtual Output 42					
C288	Repeated for Virtual Output 44					
C290	Repeated for Virtual Output 45					
C298	Repeated for Virtual Output 46					
C230	Repeated for Virtual Output 47					
C2A8	Repeated for Virtual Output 48					
C2B0	Repeated for Virtual Output 49					
C2B0	Repeated for Virtual Output 49					
C2D0	Repeated for Virtual Output 50					
C2C8	Repeated for Virtual Output 52					
C2D0	Repeated for Virtual Output 52					
C2D0	Repeated for Virtual Output 55					
C2E0	Repeated for Virtual Output 55					
C2E8	Repeated for Virtual Output 56					
C2E0	Repeated for Virtual Output 57					
C2F8	Repeated for Virtual Output 57					
C300	Repeated for Virtual Output 59					
C308 C310	Repeated for Virtual Output 60 Repeated for Virtual Output 61					
C310	Repeated for Virtual Output 61					
C318 C320	Repeated for Virtual Output 62					
C320 C328	Repeated for Virtual Output 63 Repeated for Virtual Output 64					
C328	Repeated for Virtual Output 64					
C338 C340	Repeated for Virtual Output 66 Repeated for Virtual Output 67					
	Repeated for Virtual Output 67 Repeated for Virtual Output 68					
C348						
C350	Repeated for Virtual Output 69					
C358	Repeated for Virtual Output 70					
C360	Repeated for Virtual Output 71					
C368	Repeated for Virtual Output 72					
C370	Repeated for Virtual Output 73					
C378	Repeated for Virtual Output 74					
C380	Repeated for Virtual Output 75					
C388	Repeated for Virtual Output 76					

Table B-9: MODBUS MEMORY MAP (Sheet 47 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
C390	Repeated for Virtual Output 77					
C398	Repeated for Virtual Output 78					
C3A0	Repeated for Virtual Output 79					
C3A8	Repeated for Virtual Output 80					
C3B0	Repeated for Virtual Output 81					
C3B8	Repeated for Virtual Output 82					
C3C0	Repeated for Virtual Output 83					
C3C8	Repeated for Virtual Output 84					
C3D0	Repeated for Virtual Output 85					
C3D8	Repeated for Virtual Output 86					
C3E0	Repeated for Virtual Output 87					
C3E8	Repeated for Virtual Output 88					
C3F0	Repeated for Virtual Output 89					
C3F8	Repeated for Virtual Output 90					
C400	Repeated for Virtual Output 91					
C408	Repeated for Virtual Output 92					
C410	Repeated for Virtual Output 93					
C418	Repeated for Virtual Output 94					
C420	Repeated for Virtual Output 95					
C428	Repeated for Virtual Output 96					
Mandato	ry (Read/Write Setting)				l	
C430	Test Mode Function	0 to 1		1	F102	0 (Disabled)
C431	Force VFD and LED	0 to 1		1	F126	0 (No)
C432	Test Mode Initiate	0 to 65535		1	F300	1
	mmands (read/write)			1		
C433	Clear All Relay Records Command	0 to 1		1	F126	0 (No)
						()
Synchrop	phasor actual values (read only)	·				
Synchrop C435	phasor actual values (read only) Synchrophasors active	0 to 1		1	F126	0 (No)
C435	Synchrophasors active	0 to 1		1	F126	0 (No)
C435	Synchrophasors active Outputs (Read/Write Setting) (64 modules)	0 to 1		1	F126 F205	
C435 Contact (Synchrophasors active Outputs (Read/Write Setting) (64 modules) Contact Output 1 Name			1	F205	0 (No) "Cont Op 1" 0
C435 Contact (C440 C446	Synchrophasors active Outputs (Read/Write Setting) (64 modules) Contact Output 1 Name Contact Output 1 Operation	 0 to 65535		 1	F205 F300	"Cont Op 1" 0
C435 Contact (C440	Synchrophasors active Outputs (Read/Write Setting) (64 modules) Contact Output 1 Name Contact Output 1 Operation Contact Output 1 Seal In	 0 to 65535 0 to 65535		 1 1	F205	"Cont Op 1"
C435 Contact (C440 C446 C447 C448	Synchrophasors active Outputs (Read/Write Setting) (64 modules) Contact Output 1 Name Contact Output 1 Operation Contact Output 1 Seal In Latching Output 1 Reset	 0 to 65535 0 to 65535 0 to 65535	 	 1 1 1	F205 F300 F300 F300	"Cont Op 1" 0 0 0
C435 Contact (C440 C446 C447 C448 C449	Synchrophasors active Outputs (Read/Write Setting) (64 modules) Contact Output 1 Name Contact Output 1 Operation Contact Output 1 Seal In Latching Output 1 Reset Contact Output 1 Events	 0 to 65535 0 to 65535 0 to 65535 0 to 1	 	 1 1 1 1	F205 F300 F300 F300 F102	"Cont Op 1" 0 0 0 1 (Enabled)
C435 Contact (C440 C446 C447 C448	Synchrophasors active Outputs (Read/Write Setting) (64 modules) Contact Output 1 Name Contact Output 1 Operation Contact Output 1 Seal In Latching Output 1 Reset	 0 to 65535 0 to 65535 0 to 65535	 	 1 1 1	F205 F300 F300 F300	"Cont Op 1" 0 0 0
C435 Contact (C440 C446 C447 C448 C449 C444 C448 C448	Synchrophasors active Outputs (Read/Write Setting) (64 modules) Contact Output 1 Name Contact Output 1 Operation Contact Output 1 Seal In Latching Output 1 Reset Contact Output 1 Events Latching Output 1 Type Reserved	 0 to 65535 0 to 65535 0 to 65535 0 to 1 0 to 1	 	 1 1 1 1 1 1	F205 F300 F300 F300 F102 F090	"Cont Op 1" 0 0 1 (Enabled) 0 (Operate-dominant)
C435 Contact (C440 C446 C447 C448 C449 C444 C448 C448 C44B C44C	Synchrophasors active Outputs (Read/Write Setting) (64 modules) Contact Output 1 Name Contact Output 1 Operation Contact Output 1 Operation Contact Output 1 Seal In Latching Output 1 Reset Contact Output 1 Events Latching Output 1 Type Reserved Repeated for Contact Output 2	 0 to 65535 0 to 65535 0 to 65535 0 to 1 0 to 1	 	 1 1 1 1 1 1	F205 F300 F300 F300 F102 F090	"Cont Op 1" 0 0 1 (Enabled) 0 (Operate-dominant)
C435 Contact (C440 C446 C447 C448 C447 C448 C449 C44A C44B C44A C44B C44C C458	Synchrophasors active Outputs (Read/Write Setting) (64 modules) Contact Output 1 Name Contact Output 1 Operation Contact Output 1 Operation Contact Output 1 Seal In Latching Output 1 Reset Contact Output 1 Events Latching Output 1 Type Reserved Repeated for Contact Output 2 Repeated for Contact Output 3	 0 to 65535 0 to 65535 0 to 65535 0 to 1 0 to 1	 	 1 1 1 1 1 1	F205 F300 F300 F300 F102 F090	"Cont Op 1" 0 0 1 (Enabled) 0 (Operate-dominant)
C435 Contact (C440 C446 C447 C448 C449 C444 C448 C448 C44B C44C	Synchrophasors active Outputs (Read/Write Setting) (64 modules) Contact Output 1 Name Contact Output 1 Operation Contact Output 1 Operation Contact Output 1 Seal In Latching Output 1 Reset Contact Output 1 Events Latching Output 1 Type Reserved Repeated for Contact Output 2	 0 to 65535 0 to 65535 0 to 65535 0 to 1 0 to 1	 	 1 1 1 1 1 1	F205 F300 F300 F300 F102 F090	"Cont Op 1" 0 0 1 (Enabled) 0 (Operate-dominant)
C435 Contact (C440 C446 C447 C448 C449 C448 C449 C44A C44B C44C C458 C464 C458	Synchrophasors active Outputs (Read/Write Setting) (64 modules) Contact Output 1 Name Contact Output 1 Operation Contact Output 1 Operation Contact Output 1 Seal In Latching Output 1 Reset Contact Output 1 Events Latching Output 1 Type Reserved Repeated for Contact Output 3 Repeated for Contact Output 4 Repeated for Contact Output 5	 0 to 65535 0 to 65535 0 to 65535 0 to 1 0 to 1	 	 1 1 1 1 1 1	F205 F300 F300 F300 F102 F090	"Cont Op 1" 0 0 1 (Enabled) 0 (Operate-dominant)
C435 Contact (C440 C446 C447 C448 C449 C448 C449 C44A C44B C44C C458 C464	Synchrophasors active Outputs (Read/Write Setting) (64 modules) Contact Output 1 Name Contact Output 1 Operation Contact Output 1 Operation Contact Output 1 Seal In Latching Output 1 Reset Contact Output 1 Events Latching Output 1 Type Reserved Repeated for Contact Output 2 Repeated for Contact Output 3 Repeated for Contact Output 4 Repeated for Contact Output 5 Repeated for Contact Output 5	 0 to 65535 0 to 65535 0 to 65535 0 to 1 0 to 1	 	 1 1 1 1 1 1	F205 F300 F300 F300 F102 F090	"Cont Op 1" 0 0 1 (Enabled) 0 (Operate-dominant)
C435 Contact (C440 C446 C447 C448 C449 C448 C449 C44A C44B C44C C458 C464 C470 C47C C488	Synchrophasors active Outputs (Read/Write Setting) (64 modules) Contact Output 1 Name Contact Output 1 Operation Contact Output 1 Operation Contact Output 1 Seal In Latching Output 1 Reset Contact Output 1 Events Latching Output 1 Type Reserved Repeated for Contact Output 3 Repeated for Contact Output 4 Repeated for Contact Output 5	 0 to 65535 0 to 65535 0 to 65535 0 to 1 0 to 1	 	 1 1 1 1 1 1	F205 F300 F300 F300 F102 F090	"Cont Op 1" 0 0 1 (Enabled) 0 (Operate-dominant)
C435 Contact C C440 C446 C447 C448 C449 C448 C449 C44A C44B C44C C458 C464 C470 C47C	Synchrophasors active Outputs (Read/Write Setting) (64 modules) Contact Output 1 Name Contact Output 1 Operation Contact Output 1 Operation Contact Output 1 Seal In Latching Output 1 Reset Contact Output 1 Events Latching Output 1 Type Reserved Repeated for Contact Output 2 Repeated for Contact Output 3 Repeated for Contact Output 4 Repeated for Contact Output 5 Repeated for Contact Output 6 Repeated for Contact Output 7	 0 to 65535 0 to 65535 0 to 65535 0 to 1 0 to 1	 	 1 1 1 1 1 1	F205 F300 F300 F300 F102 F090	"Cont Op 1" 0 0 1 (Enabled) 0 (Operate-dominant)
C435 Contact (C440 C446 C447 C448 C449 C448 C449 C44A C448 C442 C458 C464 C470 C47C C488 C494	Synchrophasors active Outputs (Read/Write Setting) (64 modules) Contact Output 1 Name Contact Output 1 Operation Contact Output 1 Operation Contact Output 1 Seal In Latching Output 1 Reset Contact Output 1 Reset Contact Output 1 Events Latching Output 1 Type Reserved Repeated for Contact Output 2 Repeated for Contact Output 3 Repeated for Contact Output 4 Repeated for Contact Output 5 Repeated for Contact Output 6 Repeated for Contact Output 7 Repeated for Contact Output 8 Repeated for Contact Output 9	 0 to 65535 0 to 65535 0 to 65535 0 to 1 0 to 1	 	 1 1 1 1 1 1	F205 F300 F300 F300 F102 F090	"Cont Op 1" 0 0 1 (Enabled) 0 (Operate-dominant)
C435 Contact C C440 C446 C447 C448 C449 C448 C449 C44A C44B C44C C458 C464 C470 C47C C47C C488 C494 C4A0 C4AC	Synchrophasors active Outputs (Read/Write Setting) (64 modules) Contact Output 1 Name Contact Output 1 Operation Contact Output 1 Operation Contact Output 1 Seal In Latching Output 1 Reset Contact Output 1 Events Latching Output 1 Type Reserved Repeated for Contact Output 2 Repeated for Contact Output 3 Repeated for Contact Output 4 Repeated for Contact Output 5 Repeated for Contact Output 5 Repeated for Contact Output 6 Repeated for Contact Output 8 Repeated for Contact Output 8 Repeated for Contact Output 9 Repeated for Contact Output 10	 0 to 65535 0 to 65535 0 to 65535 0 to 1 0 to 1	 	 1 1 1 1 1 1	F205 F300 F300 F300 F102 F090	"Cont Op 1" 0 0 1 (Enabled) 0 (Operate-dominant)
C435 Contact C C440 C446 C447 C448 C449 C448 C449 C44A C44B C44C C458 C464 C470 C47C C47C C488 C494 C4A0 C4AC C4B8	Synchrophasors active Outputs (Read/Write Setting) (64 modules) Contact Output 1 Name Contact Output 1 Operation Contact Output 1 Operation Contact Output 1 Seal In Latching Output 1 Reset Contact Output 1 Events Latching Output 1 Type Reserved Repeated for Contact Output 2 Repeated for Contact Output 3 Repeated for Contact Output 4 Repeated for Contact Output 5 Repeated for Contact Output 5 Repeated for Contact Output 6 Repeated for Contact Output 7 Repeated for Contact Output 8 Repeated for Contact Output 9 Repeated for Contact Output 10 Repeated for Contact Output 11	 0 to 65535 0 to 65535 0 to 65535 0 to 1 0 to 1	 	 1 1 1 1 1 1	F205 F300 F300 F300 F102 F090	"Cont Op 1" 0 0 1 (Enabled) 0 (Operate-dominant)
C435 Contact C C440 C446 C447 C448 C449 C448 C449 C44A C44B C44C C458 C464 C470 C47C C47C C488 C494 C4A0 C4AC C4B8 C4C4	Synchrophasors active Outputs (Read/Write Setting) (64 modules) Contact Output 1 Name Contact Output 1 Operation Contact Output 1 Operation Contact Output 1 Seal In Latching Output 1 Reset Contact Output 1 Events Latching Output 1 Type Reserved Repeated for Contact Output 2 Repeated for Contact Output 3 Repeated for Contact Output 4 Repeated for Contact Output 5 Repeated for Contact Output 5 Repeated for Contact Output 6 Repeated for Contact Output 7 Repeated for Contact Output 8 Repeated for Contact Output 9 Repeated for Contact Output 10 Repeated for Contact Output 11 Repeated for Contact Output 12	 0 to 65535 0 to 65535 0 to 65535 0 to 1 0 to 1	 	 1 1 1 1 1 1	F205 F300 F300 F300 F102 F090	"Cont Op 1" 0 0 1 (Enabled) 0 (Operate-dominant)
C435 Contact C C440 C446 C447 C448 C449 C448 C449 C44A C44B C44C C458 C464 C470 C47C C47C C488 C494 C4A0 C4AC C4B8 C4C4 C4D0	Synchrophasors active Outputs (Read/Write Setting) (64 modules) Contact Output 1 Name Contact Output 1 Operation Contact Output 1 Operation Contact Output 1 Seal In Latching Output 1 Reset Contact Output 1 Reset Contact Output 1 Type Reserved Repeated for Contact Output 2 Repeated for Contact Output 3 Repeated for Contact Output 4 Repeated for Contact Output 5 Repeated for Contact Output 5 Repeated for Contact Output 6 Repeated for Contact Output 8 Repeated for Contact Output 9 Repeated for Contact Output 9 Repeated for Contact Output 10 Repeated for Contact Output 11 Repeated for Contact Output 12 Repeated for Contact Output 13	 0 to 65535 0 to 65535 0 to 65535 0 to 1 0 to 1	 	 1 1 1 1 1 1	F205 F300 F300 F300 F102 F090	"Cont Op 1" 0 0 1 (Enabled) 0 (Operate-dominant)
C435 Contact C C440 C446 C447 C448 C449 C448 C449 C44A C44B C44C C458 C464 C470 C47C C47C C488 C494 C470 C47C C488 C494 C4A0 C4AC C4B8 C4C4 C4D0 C4DC	Synchrophasors active Outputs (Read/Write Setting) (64 modules) Contact Output 1 Name Contact Output 1 Operation Contact Output 1 Operation Contact Output 1 Seal In Latching Output 1 Reset Contact Output 1 Reset Contact Output 1 Events Latching Output 1 Type Reserved Repeated for Contact Output 2 Repeated for Contact Output 3 Repeated for Contact Output 4 Repeated for Contact Output 5 Repeated for Contact Output 6 Repeated for Contact Output 7 Repeated for Contact Output 8 Repeated for Contact Output 9 Repeated for Contact Output 10 Repeated for Contact Output 11 Repeated for Contact Output 13 Repeated for Contact Output 13 Repeated for Contact Output 13 Repeated for Contact Output 14	 0 to 65535 0 to 65535 0 to 65535 0 to 1 0 to 1	 	 1 1 1 1 1 1	F205 F300 F300 F300 F102 F090	"Cont Op 1" 0 0 1 (Enabled) 0 (Operate-dominant)
C435 Contact C C440 C446 C447 C448 C449 C448 C449 C44A C44B C44C C458 C464 C470 C47C C47C C47C C488 C494 C4A0 C4A0 C4AC C4B8 C4C4 C4D0 C4DC C4E8	Synchrophasors active Outputs (Read/Write Setting) (64 modules) Contact Output 1 Name Contact Output 1 Operation Contact Output 1 Operation Contact Output 1 Seal In Latching Output 1 Reset Contact Output 1 Reset Contact Output 1 Type Reserved Repeated for Contact Output 2 Repeated for Contact Output 3 Repeated for Contact Output 4 Repeated for Contact Output 5 Repeated for Contact Output 6 Repeated for Contact Output 7 Repeated for Contact Output 8 Repeated for Contact Output 9 Repeated for Contact Output 9 Repeated for Contact Output 10 Repeated for Contact Output 11 Repeated for Contact Output 12 Repeated for Contact Output 13 Repeated for Contact Output 13 Repeated for Contact Output 14 Repeated for Contact Output 13 Repeated for Contact Output 14 Repeated for Contact Output 15	 0 to 65535 0 to 65535 0 to 65535 0 to 1 0 to 1	 	 1 1 1 1 1 1	F205 F300 F300 F300 F102 F090	"Cont Op 1" 0 0 1 (Enabled) 0 (Operate-dominant)
C435 Contact C C440 C446 C447 C448 C449 C448 C449 C44A C44B C44C C458 C464 C470 C47C C458 C464 C470 C47C C488 C494 C4A0 C4A0 C4AC C4B8 C4C4 C4D0 C4DC C4E8 C4F4	Synchrophasors active Outputs (Read/Write Setting) (64 modules) Contact Output 1 Name Contact Output 1 Operation Contact Output 1 Operation Contact Output 1 Seal In Latching Output 1 Reset Contact Output 1 Events Latching Output 1 Type Reserved Repeated for Contact Output 2 Repeated for Contact Output 3 Repeated for Contact Output 4 Repeated for Contact Output 5 Repeated for Contact Output 6 Repeated for Contact Output 7 Repeated for Contact Output 8 Repeated for Contact Output 9 Repeated for Contact Output 10 Repeated for Contact Output 11 Repeated for Contact Output 12 Repeated for Contact Output 13 Repeated for Contact Output 13 Repeated for Contact Output 13 Repeated for Contact Output 14 Repeated for Contact Output 15 Repeated for Contact Output 15 Repeated for Contact Output 16	 0 to 65535 0 to 65535 0 to 65535 0 to 1 0 to 1	 	 1 1 1 1 1 1	F205 F300 F300 F300 F102 F090	"Cont Op 1" 0 0 1 (Enabled) 0 (Operate-dominant)
C435 Contact C C440 C446 C447 C448 C449 C448 C449 C44A C44B C44C C458 C464 C470 C47C C458 C464 C470 C47C C488 C494 C4A0 C4A0 C4AC C4B8 C4C4 C4B8 C4C4 C4D0 C4DC C4E8 C4F4 C500	Synchrophasors active Outputs (Read/Write Setting) (64 modules) Contact Output 1 Name Contact Output 1 Operation Contact Output 1 Operation Contact Output 1 Seal In Latching Output 1 Reset Contact Output 1 Events Latching Output 1 Type Reserved Repeated for Contact Output 2 Repeated for Contact Output 3 Repeated for Contact Output 4 Repeated for Contact Output 5 Repeated for Contact Output 6 Repeated for Contact Output 7 Repeated for Contact Output 8 Repeated for Contact Output 9 Repeated for Contact Output 10 Repeated for Contact Output 11 Repeated for Contact Output 12 Repeated for Contact Output 13 Repeated for Contact Output 13 Repeated for Contact Output 13 Repeated for Contact Output 13 Repeated for Contact Output 15 Repeated for Contact Output 15 Repeated for Contact Output 16 Repeated for Contact Output 16 Repeated for Contact Output 17	 0 to 65535 0 to 65535 0 to 65535 0 to 1 0 to 1	 	 1 1 1 1 1 1	F205 F300 F300 F300 F102 F090	"Cont Op 1" 0 0 1 (Enabled) 0 (Operate-dominant)
C435 Contact (C440 C446 C447 C448 C449 C448 C449 C44A C448 C4464 C470 C47C C458 C464 C470 C47C C488 C464 C470 C47C C488 C494 C4A0 C4A0 C4AC C4B8 C4C4 C4D0 C4DC C4E8 C4F4	Synchrophasors active Outputs (Read/Write Setting) (64 modules) Contact Output 1 Name Contact Output 1 Operation Contact Output 1 Operation Contact Output 1 Seal In Latching Output 1 Reset Contact Output 1 Events Latching Output 1 Type Reserved Repeated for Contact Output 2 Repeated for Contact Output 3 Repeated for Contact Output 4 Repeated for Contact Output 5 Repeated for Contact Output 6 Repeated for Contact Output 7 Repeated for Contact Output 8 Repeated for Contact Output 9 Repeated for Contact Output 10 Repeated for Contact Output 11 Repeated for Contact Output 12 Repeated for Contact Output 13 Repeated for Contact Output 13 Repeated for Contact Output 13 Repeated for Contact Output 14 Repeated for Contact Output 15 Repeated for Contact Output 15 Repeated for Contact Output 16	 0 to 65535 0 to 65535 0 to 65535 0 to 1 0 to 1	 	 1 1 1 1 1 1	F205 F300 F300 F300 F102 F090	"Cont Op 1" 0 0 1 (Enabled) 0 (Operate-dominant)

Table B–9: MODBUS MEMORY MAP (Sheet 48 of 55)

ADDR		RANGE	UNITS	STEP	FORMAT	DEFAULT
C524	Repeated for Contact Output 20			•••		
C530	Repeated for Contact Output 21					
C53C	Repeated for Contact Output 22					
C548	Repeated for Contact Output 23					
C554	Repeated for Contact Output 24					
C560	Repeated for Contact Output 25					
C56C	Repeated for Contact Output 26					
C578	Repeated for Contact Output 20					
C584	Repeated for Contact Output 28					
C590	Repeated for Contact Output 29					
C59C	Repeated for Contact Output 20					
C5A8	Repeated for Contact Output 30					
C5B4	Repeated for Contact Output 31					
C5C0	Repeated for Contact Output 32					
C5CC	Repeated for Contact Output 33					
C5D8	Repeated for Contact Output 34					
C5E4	Repeated for Contact Output 35					
C5E4 C5F0	Repeated for Contact Output 36					
C5F0 C5FC	Repeated for Contact Output 37					
C608 C614	Repeated for Contact Output 39 Repeated for Contact Output 40					
C614 C620	Repeated for Contact Output 40					
C620						
C62C	Repeated for Contact Output 42 Repeated for Contact Output 43					
C644	Repeated for Contact Output 44					
C650	Repeated for Contact Output 45					
C65C	Repeated for Contact Output 46					
C668	Repeated for Contact Output 47					
C674	Repeated for Contact Output 48					
C680	Repeated for Contact Output 49					
C68C	Repeated for Contact Output 50					
C698	Repeated for Contact Output 51					
C6A4	Repeated for Contact Output 52					
C6B0	Repeated for Contact Output 53					
C6BC	Repeated for Contact Output 54					
C6C8	Repeated for Contact Output 55					
C6D4	Repeated for Contact Output 56					
C6E0	Repeated for Contact Output 57					
C6EC	Repeated for Contact Output 58					
C6F8	Repeated for Contact Output 59					
C704	Repeated for Contact Output 60					
C710	Repeated for Contact Output 61					
C71C	Repeated for Contact Output 62					
C728	Repeated for Contact Output 63					
C734	Repeated for Contact Output 64					
	ead/Write Setting)	-	1	1		
C750	FlexLogic [™] operand which initiates a reset	0 to 65535		1	F300	0
	Pushbuttons (Read/Write Setting) (7 modules)	-	1	1		
C760	Control Pushbutton 1 Function	0 to 1		1	F102	0 (Disabled)
C761	Control Pushbutton 1 Events	0 to 1		1	F102	0 (Disabled)
C762	Repeated for Control Pushbutton 2					
C764	Repeated for Control Pushbutton 3					
C766	Repeated for Control Pushbutton 4					
C768	Repeated for Control Pushbutton 5					

Table B-9: MODBUS MEMORY MAP (Sheet 49 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
C76A	Repeated for Control Pushbutton 6					
C76C	Repeated for Control Pushbutton 7					
Clear Re	ecords (Read/Write Setting)					
C770	Clear Fault Reports operand	0 to 65535		1	F300	0
C772	Clear Event Records operand	0 to 65535		1	F300	0
C773	Clear Oscillography operand	0 to 65535		1	F300	0
C774	Clear Data Logger operand	0 to 65535		1	F300	0
C775	Clear Breaker 1 Arcing Current operand	0 to 65535		1	F300	0
C776	Clear Breaker 2 Arcing Current operand	0 to 65535		1	F300	0
C777	Clear Breaker 3 Arcing Current operand	0 to 65535		1	F300	0
C778	Clear Breaker 4 Arcing Current operand	0 to 65535		1	F300	0
C77B	Clear Demand operand	0 to 65535		1	F300	0
C77C	Clear Channel Status operand	0 to 65535		1	F300	0
C77D	Clear Energy operand	0 to 65535		1	F300	0
C77F	Clear Unauthorized Access operand	0 to 65535		1	F300	0
C782	Reserved (13 items)				F001	0
Force Co	ontact Inputs/Outputs (Read/Write Settings)					
C7A0	Force Contact Input x State (96 items)	0 to 2		1	F144	0 (Disabled)
C800	Force Contact Output x State (64 items)	0 to 3		1	F131	0 (Disabled)
_90 Cha	nnel Tests (Read/Write)					
C840	Local Loopback Function	0 to 1		1	F126	0 (No)
C841	Local Loopback Channel	1 to 2		1	F001	1
C842	Remote Loopback Function	0 to 1		1	F126	0 (No)
C843	Remote Loopback Channel	1 to 2		1	F001	1
C844	Remote Diagnostics Transmit	0 to 2		1	F223	0 (NO TEST)
Direct In	put/Output Settings (Read/Write Setting)					
C850	Direct Input Default States (8 items)	0 to 1		1	F108	0 (Off)
C858	Direct Input Default States (8 items)	0 to 1		1	F108	0 (Off)
C860	Direct Output x 1 Operand (8 items)	0 to 65535		1	F300	0
C868	Direct Output x 2 Operand (8 items)	0 to 65535		1	F300	0
Remote	Devices (Read/Write Setting) (16 modules)					
CB00	Remote Device 1 GSSE/GOOSE Application ID				F209	"Remote Device 1
CB21	Remote Device 1 GOOSE Ethernet APPID	0 to 16383		1	F001	0
CB22	Remote Device 1 GOOSE Dataset	0 to 8		1	F184	0 (Fixed)
CB23	Repeated for Device 2					
CB46	Repeated for Device 3					
CB69	Repeated for Device 4					
CB8C	Repeated for Device 5					
CBAF	Repeated for Device 6					
CBD2	Repeated for Device 7					
CBF5	Repeated for Device 8					
CC18	Repeated for Device 9					
CC3B	Repeated for Device 10					
CC5E	Repeated for Device 11					
CC81	Repeated for Device 12			-		
CCA4	Repeated for Device 13					
CCC7	Repeated for Device 14					
CCEA	Repeated for Device 15					
CD0D	Repeated for Device 16					
	Inputs (Read/Write Setting) (64 modules)				I	
	Remote Input 1 Device	1 to 16		1	F001	1
CEAO	Nonote input i Device	1 10 10		1 '	1001	
CFA0	Remote Input 1 Item	0 to 64		1	F156	O (Nono)
CFA0 CFA1 CFA2	Remote Input 1 Item Remote Input 1 Default State	0 to 64 0 to 3		1	F156 F086	0 (None) 0 (Off)

Table B-9: MODBUS MEMORY MAP (Sheet 50 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
CFA4	Remote Input 1 Name	1 to 64		1	F205	"Rem lp 1"
CFAA	Repeated for Remote Input 2					
CFB4	Repeated for Remote Input 3					
CFBE	Repeated for Remote Input 4					
CFC8	Repeated for Remote Input 5					
CFD2	Repeated for Remote Input 6					
CFDC	Repeated for Remote Input 7					
CFE6	Repeated for Remote Input 8					
CFF0	Repeated for Remote Input 9					
CFFA	Repeated for Remote Input 10					
D004	Repeated for Remote Input 11					
D00E	Repeated for Remote Input 12					
D018	Repeated for Remote Input 13					
D022	Repeated for Remote Input 14					
D02C	Repeated for Remote Input 15					
D036	Repeated for Remote Input 16					
D040	Repeated for Remote Input 17					
D04A	Repeated for Remote Input 18					
D054	Repeated for Remote Input 19					
D05E	Repeated for Remote Input 20					
D068	Repeated for Remote Input 21					
D072	Repeated for Remote Input 22					
D07C	Repeated for Remote Input 23					
D086	Repeated for Remote Input 24					
D090	Repeated for Remote Input 25					
D09A	Repeated for Remote Input 26					
D0A4	Repeated for Remote Input 27					
D0AE	Repeated for Remote Input 28					
D0B8	Repeated for Remote Input 29					
D0C2	Repeated for Remote Input 30					
DOCC	Repeated for Remote Input 31					
D0D6	Repeated for Remote Input 32					
Remote C	Output DNA Pairs (Read/Write Setting) (32 modules)	L				
D220	Remote Output DNA 1 Operand	0 to 65535		1	F300	0
D221	Remote Output DNA 1 Events	0 to 1		1	F102	0 (Disabled)
D222	Reserved (2 items)	0 to 1		1	F001	0
D224	Repeated for Remote Output 2					
D228	Repeated for Remote Output 3					
D22C	Repeated for Remote Output 4					
D230	Repeated for Remote Output 5					
D234	Repeated for Remote Output 6					
D238	Repeated for Remote Output 7					
D23C	Repeated for Remote Output 8					
D240	Repeated for Remote Output 9					
D244	Repeated for Remote Output 10					
D248	Repeated for Remote Output 11					
D24C	Repeated for Remote Output 12					
D250	Repeated for Remote Output 13					
D254	Repeated for Remote Output 14					
D258	Repeated for Remote Output 15					
D25C	Repeated for Remote Output 16			1		
D260	Repeated for Remote Output 17					
D264	Repeated for Remote Output 18			1		
D268	Repeated for Remote Output 19	1	1			

Table B-9: MODBUS MEMORY MAP (Sheet 51 of 55)

Repeated for Remote Output 20			1		
Repeated for Remote Output 21					
Repeated for Remote Output 22					
Repeated for Remote Output 23					
Repeated for Remote Output 24					
Repeated for Remote Output 25					
Repeated for Remote Output 26					
Repeated for Remote Output 27					
Repeated for Remote Output 28					
Repeated for Remote Output 29					
Repeated for Remote Output 30					
Repeated for Remote Output 31					
Repeated for Remote Output 32					
Output UserSt Pairs (Read/Write Setting) (32 modules)	Į				
Remote Output UserSt 1 Operand	0 to 65535		1	F300	0
Remote Output UserSt 1 Events	0 to 1		1	F102	0 (Disabled)
Reserved (2 items)	0 to 1		1	F001	0
Repeated for Remote Output 2					
Repeated for Remote Output 3					
Repeated for Remote Output 4					
· ·					
			}		
			L		
	0 to 4004007005		4	Food	0
					0
	0 to 4294967295		1	F003	0
-					
Repeated for Remote Device 3					
	Repeated for Remote Output 25 Repeated for Remote Output 26 Repeated for Remote Output 27 Repeated for Remote Output 28 Repeated for Remote Output 30 Repeated for Remote Output 31 Repeated for Remote Output 32 Dutput UserSt Pairs (Read/Write Setting) (32 modules) Remote Output UserSt 1 Operand Remote Output UserSt 1 Events Reserved (2 items) Repeated for Remote Output 3 Repeated for Remote Output 4 Repeated for Remote Output 4 Repeated for Remote Output 5 Repeated for Remote Output 5 Repeated for Remote Output 6 Repeated for Remote Output 7 Repeated for Remote Output 7 Repeated for Remote Output 8 Repeated for Remote Output 9 Repeated for Remote Output 10 Repeated for Remote Output 10 Repeated for Remote Output 11 Repeated for Remote Output 12 Repeated for Remote Output 13 Repeated for Remote Output 13 Repeated for Remote Output 14 Repeated for Remote Output 15 Repeated for Remote Output 13 Repeated for Remote Output 14 Repeated for Remote Output 15 Repeated for Remote Output 16 Repeated for Remote Output 17 Repeated for Remote Output 18 Repeated for Remote Output 20 Repeated for Remote Output 20 Repeated for Remote Output 21 Repeated for Remote Output 22 Repeated for Remote Output 23 	Repeated for Remote Output 25Repeated for Remote Output 26Repeated for Remote Output 28Repeated for Remote Output 28Repeated for Remote Output 29Repeated for Remote Output 30Repeated for Remote Output 31Repeated for Remote Output 32Repeated for Remote Output 32Repeated for Remote Output 32Repeated for Remote Output 32Repeated for Remote Output 32Repeated for Remote Output 32Repeated for Remote Output 22Repeated for Remote Output 2Oto 1Repeated for Remote Output 3Repeated for Remote Output 4Repeated for Remote Output 4Repeated for Remote Output 5Repeated for Remote Output 5Repeated for Remote Output 6Repeated for Remote Output 8Repeated for Remote Output 10Repeated for Remote Output 10Repeated for Remote Output 11Repeated for Remote Output 12Repeated for Remote Output 13Repeated for Remote Output 13Repeated for Remote Output 14Repeated for Remote Output 15Repeated for Remote Output 13Repeated for Remote Output 14Repeated for Remote Output 15Repeated for Remote Output 15Repeated for Remote Output 16Repeated for Remote Output 18Repeated for Remote Output 18Repeated for Remote Output 23Repeated for Remote Output 24Repeated for Remote Output 24Repeated for Remote Output 25Repeated for Remote Output 25Repeated for Remote Output 26Repeated for Remote Output 28Re	Repeated for Remote Output 25	Repeated for Remote Output 25	Repeated for Remote Output 25Image and the Remote Output 27Image and the Remote Output 27Repeated for Remote Output 27Image and the Remote Output 27Image and the Remote Output 28Repeated for Remote Output 30Image and the Remote Output 30Image and the Remote Output 30Repeated for Remote Output 30Image and the Remote Output 32Image and the Remote Output 32Repeated for Remote Output 32Image and the Remote Output 32Image and the Remote Output 32Repeated for Remote Output 32Image and the Remote Output 32Image and the Remote Output 32Remote Output UserSt 1 Operand0 to 65535Image and the Remote Output 3Repeated for Remote Output 3Image and the Remote Output 4Image and the Remote Output 4Repeated for Remote Output 4Image and the Remote Output 4Image and the Remote Output 4Repeated for Remote Output 4Image and the Remote Output 5Image and the Remote Output 6Repeated for Remote Output 7Image and the Remote Output 7Image and the Remote Output 7Repeated for Remote Output 10Image and the Remote Output 11Image and the Remote Output 12Repeated for Remote Output 13Image and the Remote Output 14Image and the Remote Output 14Repeated for Remote Output 14Image and the Remote Output 14Image and the Remote Output 14Repeated for Remote Output 16Image and the Remote Output 17Image and the Remote Output 14Repeated for Remote Output 17Image and the Remote Output 14Image and the Remote Output 14Repeated for R

Β

Table B-9: MODBUS MEMORY MAP (Sheet 52 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
D390	Repeated for Remote Device 5					
D394	Repeated for Remote Device 6					
D398	Repeated for Remote Device 7				-	
D39C	Repeated for Remote Device 8				-	
D3A0	Repeated for Remote Device 9					
D3A4	Repeated for Remote Device 10					
D3A8	Repeated for Remote Device 11					
D3AC	Repeated for Remote Device 12					
D3B0	Repeated for Remote Device 13					
D3B4	Repeated for Remote Device 14					
D3B8	Repeated for Remote Device 15					
D3BC	Repeated for Remote Device 16					
D3C0	Repeated for Remote Device 17					
D3C0	Repeated for Remote Device 17					
D3C4						
	Repeated for Remote Device 19					
D3CC	Repeated for Remote Device 20					
D3D0	Repeated for Remote Device 21					
D3D4	Repeated for Remote Device 22					
D3D8	Repeated for Remote Device 23					
D3DC	Repeated for Remote Device 24					
D3E0	Repeated for Remote Device 25					
D3E4	Repeated for Remote Device 26					
D3E8	Repeated for Remote Device 27					
D3EC	Repeated for Remote Device 28					
D3F0	Repeated for Remote Device 29					
D3F4	Repeated for Remote Device 30					
D3F8	Repeated for Remote Device 31					
D3FC	Repeated for Remote Device 32					
Phasor M	easurement Unit Communication (Read/Write Setting)					
D400	PMU 1 Communication Port 1 Type	0 to 3		1	F545	0 (Network)
D401	PMU 1 Communication Port 2 Type	0 to 3		1	F545	0 (Network)
D402	PMU 1 Communication Port 3 Type	0 to 3		1	F545	0 (Network)
D403	PMU 1 Port 1 PHS-x (14 items)	0 to 14		1	F543	1 (Va)
D411	PMU 1 Port 2 PHS-x (14 items)	0 to 14		1	F543	1 (Va)
D41F	PMU 1 Port 3 PHS-x (14 items)	0 to 14		1	F543	1 (Va)
D42D	PMU 1 Communication Port 1 PHS-x Name (14 items)				F203	"GE-UR-PMU-PHS 1"
D49D	PMU 1 Port 2 PHS-x Name (14 items)				F203	"GE-UR-PMU-PHS 1"
D50D	PMU 1 Port 3 PHS-x Name (14 items)				F203	"GE-UR-PMU-PHS 1"
D57D	PMU 1 Port 1 A-CH-x (8 items)	0 to 65535		1	F600	0
D585	PMU 1 Port 2 A-CH-x (8 items)	0 to 65535		1	F600	0
D58D	PMU 1 Port 3 A-CH-x (8 items)	0 to 65535		1	F600	0
D595	PMU 1 Port 1 A-CH-x Name (8 items)				F203	"AnalogChannel 1"
D5D5	PMU 1 Port 2 A-CH-x Name (8 items)				F203	"AnalogChannel 1"
D615	PMU 1 Port 3 A-CH-x Name (8 items)				F203	"AnalogChannel 1"
D655	PMU 1 Port 1 D-CH-x (16 items)	0 to 65535		1	F300	0
D665	PMU 1 Port 2 D-CH-x (16 items)	0 to 65535		1	F300	0
D675	PMU 1 Port 3 D-CH-x (16 items)	0 to 65535		1	F300	0
D685	PMU 1 Port 1 D-CH-x Name (16 items)				F203	"Dig Channel 1"
D705	PMU 1 Port 2 D-CH-x Name (16 items)				F203	"Dig Channel 1"
D785	PMU 1 Port 3 D-CH-x Name (16 items)				F203	"Dig Channel 1"
D785	PMU 1 Port 1 D-CH-x Normal State (16 items)			1	F203	0 (Off)
	· · · · · · · · · · · · · · · · · · ·	0 to 1				
D715	PMU 1 Port 2 D-CH-x Normal State (16 items)	0 to 1		1	F108	0 (Off)
D725	PMU 1 Port 3 D-CH-x Normal State (16 items)	0 to 1		1	F108	0 (Off)

Table B-9: MODBUS MEMORY MAP (Sheet 53 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
Phasor N	leasurement Unit Recording Command (Read/Write C	ommand)				
E4D4	PMU 1 Recording Clear Command	0 to 1		1	F126	0 (No)
E4D5	PMU 1 Recording Force Trigger	0 to 1		1	F126	0 (No)
Phasor N	leasurement Unit Recording (Read/Write Setting)					
E4DC	PMU 1 Recording Rate	0 to 10		1	F544	3 (10/sec.)
E4DD	Reserved			1	F001	0
E4DE	PMU 1 No Of Timed Records	1 to 128		1	F001	3
E4DF	PMU 1 Trigger Mode	0 to 1		1	F542	0 (Auto Overwrite)
E4E0	PMU 1 Timed Trigger Position	1 to 50	%	1	F001	10
E4E1	Reserved			1	F001	0
E4E2	PMU 1 Record PHS-1 (14 items)	0 to 14		1	F543	1 (Va)
E4F0	PMU 1 Record PHS-x Name (14 items)				F203	GE-UR-PMU-PHS
E560	PMU 1 Record A-CH-x (8 items)	0 to 65535		1	F600	0
E568	PMU 1 Record A-CH-x Name (8 items)				F203	AnalogChannel 1
E5A8	PMU 1 Record D-CH-x (16 items)	0 to 65535		1	F300	0
E5B8	PMU 1 Record D-CH-x Name (16 items)				F203	Dig Channel 1
hasor N	leasurement Unit Basic Configuration (Read/Write Se	tting)				•
EA58	PMU 1 Function	0 to 1		1	F102	0 (Disabled)
EA59	PMU 1 IDcode	1 to 65534		1	F001	1
EA5A	PMU 1 STN				F203	"GE-UR-PMU"
EA62	PMU 1 Source	0 to 5		1	F167	0 (SRC 1)
EA63	PMU 1 Post-Filter	0 to 3		1	F540	1 (Symm-3-point)
Phasor N	Measurement Unit Calibration (Read/Write Setting)				I	, , ,
EA88	PMU 1 Va Calibration Angle	-5 to 5	٥	0.05	F002	0
EA89	PMU 1 Vb Calibration Angle	-5 to 5	٥	0.05	F002	0
EA8A	PMU 1 Vc Calibration Angle	-5 to 5	٥	0.05	F002	0
EA8B	PMU 1 Vx Calibration Angle	-5 to 5	٥	0.05	F002	0
EA8C	PMU 1 la Calibration Angle	-5 to 5	0	0.05	F002	0
EA8D	PMU 1 lb Calibration Angle	-5 to 5	0	0.05	F002	0
EA8E	PMU 1 Ic Calibration Angle	-5 to 5	0	0.05	F002	0
EA8F	PMU 1 Ig Calibration Angle	-5 to 5	o	0.05	F002	0
EA90	PMU 1 Sequence Voltage Shift Angle	-180 to 180	0	30	F002	0
EA91	PMU 1 Sequence Current Shift Angle	-180 to 180	٥	30	F002	0
-	leasurement Unit Triggering (Read/Write Setting)					
EAB0	PMU 1 User Trigger	0 to 65535		1	F300	0
	leasurement Unit Current Trigger (Read/Write Setting)			·	1 000	Ŭ
EAB4	PMU 1 Current Trigger Function	0 to 1		1	F102	0 (Disabled)
EAB5	PMU 1 Current Trigger Pickup	0.1 to 30	pu	0.001	F001	1800
EAB6	PMU 1 Current Trigger Pickup Time	0 to 600	S	0.01	F001	10
EAB7	PMU 1 Current Trigger Dropout Time	0 to 600	s	0.01	F001	100
EAB8	PMU 1 Current Trigger Block (3 items)	0 to 65535		1	F300	0
EABB	PMU 1 Current Trigger Target	0 to 2		1	F109	0 (Self-reset)
EABC	PMU 1 Current Trigger Events	0 to 1		1	F102	0 (Disabled)
	Measurement Unit df/dt Trigger (Read/Write Setting)	0101			1102	o (Disabica)
EAD8	PMU 1 df/dt Trigger Function	0 to 1		1	F102	0 (Disabled)
EAD9	PMU 1 df/dt Trigger Raise	0.1 to 15	Hz/s	0.01	F001	25
EAD9	PMU 1 df/dt Trigger Fall	0.1 to 15	Hz/s	0.01	F001	25
EADA	PMU 1 df/dt Trigger Pickup Time	0.1 to 15		0.01	F001	10
EADB			s		F001	
	PMU 1 df/dt Trigger Dropout Time	0 to 600	S	0.01		100
EADD	PMU 1 df/dt Trigger Block (3 items)	0 to 65535		1	F300	0
EAE0	PMU 1 df/dt Trigger Target	0 to 2		1	F109	0 (Self-reset)
EAE1	PMU 1 df/dt Trigger Events	0 to 1		1	F102	0 (Disabled)
	leasurement Unit Frequency Trigger (Read/Write Setti		-		-	
EB00	PMU 1 Frequency Trigger Function	0 to 1		1	F102	0 (Disabled)

Table B-9: MODBUS MEMORY MAP (Sheet 54 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
EB01	PMU 1 Frequency Trigger Low Frequency	20 to 70	Hz	0.01	F001	4900
EB02	PMU 1 Frequency Trigger High Frequency	20 to 70	Hz	0.01	F001	6100
EB03	PMU 1 Frequency Trigger Pickup Time	0 to 600	S	0.01	F001	10
EB04	PMU 1 Frequency Trigger Dropout Time	0 to 600	S	0.01	F001	100
EB05	PMU 1 Frequency Trigger Block (3 items)	0 to 65535		1	F300	0
EB08	PMU 1 Frequency Trigger Target	0 to 2		1	F109	0 (Self-reset)
EB09	PMU 1 Frequency Trigger Events	0 to 1		1	F102	0 (Disabled)
Phasor M	easurement Unit Power Trigger (Read/Write Setting)			•		
EB28	PMU 1 Power Trigger Function	0 to 1		1	F102	0 (Disabled)
EB29	PMU 1 Power Trigger Active	0.25 to 3	pu	0.001	F001	1250
EB2A	PMU 1 Power Trigger Reactive	0.25 to 3	pu	0.001	F001	1250
EB2B	PMU 1 Power Trigger Apparent	0.25 to 3	pu	0.001	F001	1250
EB2C	PMU 1 Power Trigger Pickup Time	0 to 600	s	0.01	F001	10
EB2D	PMU 1 Power Trigger Dropout Time	0 to 600	s	0.01	F001	100
EB2E	PMU 1 Power Trigger Block (3 items)	0 to 65535		1	F300	0
EB31	PMU 1 Power Trigger Target	0 to 2		1	F109	0 (Self-reset)
EB32	PMU 1 Power Trigger Events	0 to 1		1	F102	0 (Disabled)
Phasor M	easurement Unit Voltage Trigger (Read/Write Setting)		•			
EB54	PMU 1 Voltage Trigger Function	0 to 1		1	F102	0 (Disabled)
EB55	PMU 1 Voltage Trigger Low Voltage	0.25 to 1.25	pu	0.001	F001	800
EB56	PMU 1 Voltage Trigger High Voltage	0.75 to 1.75	pu	0.001	F001	1200
EB57	PMU 1 Voltage Trigger Pickup Time	0 to 600	S	0.01	F001	10
EB58	PMU 1 Voltage Trigger Dropout Time	0 to 600	S	0.01	F001	100
EB59	PMU 1 Voltage Trigger Block (3 items)	0 to 65535		1	F300	0
EB5C	PMU 1 Voltage Trigger Target	0 to 2		1	F109	0 (Self-reset)
EB5D	PMU 1 Voltage Trigger Events	0 to 1		1	F102	0 (Disabled)
Phasor M	leasurement Unit Network Reporting Configuration (Re	ad/Write Setting)				
EB7C	PMU Network Reporting Function	0 to 1		1	F102	0 (Disabled)
EB7D	PMU Network Reporting ID Code	1 to 65534		1	F001	1
EB7D EB7E	PMU Network Reporting ID Code PMU Network Reporting Rate	1 to 65534 0 to 10		1 1	F001 F544	1 3 (10/sec.)
EB7E	PMU Network Reporting Rate	0 to 10		1	F544	3 (10/sec.)
EB7E EB7F	PMU Network Reporting Rate PMU Network Reporting Style	0 to 10 0 to 1		1	F544 F546	3 (10/sec.) 0 (Polar)
EB7E EB7F EB80 EB81	PMU Network Reporting Rate PMU Network Reporting Style PMU Network Reporting Format	0 to 10 0 to 1 0 to 1 0 to 1		1 1 1	F544 F546 F547	3 (10/sec.) 0 (Polar) 0 (Integer)
EB7E EB7F EB80 EB81	PMU Network Reporting Rate PMU Network Reporting Style PMU Network Reporting Format PMU Network PDC Control	0 to 10 0 to 1 0 to 1 0 to 1		1 1 1	F544 F546 F547	3 (10/sec.) 0 (Polar) 0 (Integer)
EB7E EB7F EB80 EB81 Phasor M	PMU Network Reporting Rate PMU Network Reporting Style PMU Network Reporting Format PMU Network PDC Control easurement Unit One-shot Command (Read/Write Sett	0 to 10 0 to 1 0 to 1 0 to 1 ing)	 	1 1 1 1	F544 F546 F547 F102	3 (10/sec.) 0 (Polar) 0 (Integer) 0 (Disabled)
EB7E EB7F EB80 EB81 Phasor M EB82	PMU Network Reporting Rate PMU Network Reporting Style PMU Network Reporting Format PMU Network PDC Control easurement Unit One-shot Command (Read/Write Sett PMU One-shot Function	0 to 10 0 to 1 0 to 1 0 to 1 ing) 0 to 1	 	1 1 1 1	F544 F546 F547 F102 F102	3 (10/sec.) 0 (Polar) 0 (Integer) 0 (Disabled) 0 (Disabled)
EB7E EB7F EB80 EB81 Phasor M EB82 EB83 EB84	PMU Network Reporting Rate PMU Network Reporting Style PMU Network Reporting Format PMU Network PDC Control easurement Unit One-shot Command (Read/Write Sett PMU One-shot Function PMU One-shot Sequence Number	0 to 10 0 to 1 0 to 1 0 to 1 ing) 0 to 1 0 to 59	 	1 1 1 1 1	F544 F546 F547 F102 F102 F001	3 (10/sec.) 0 (Polar) 0 (Integer) 0 (Disabled) 0 (Disabled) 1
EB7E EB7F EB80 EB81 Phasor M EB82 EB83 EB84 Phasor M EB86	PMU Network Reporting Rate PMU Network Reporting Style PMU Network Reporting Format PMU Network PDC Control easurement Unit One-shot Command (Read/Write Sett) PMU One-shot Function PMU One-shot Sequence Number PMU One-shot Time easurement Unit Test Values (Read/Write Setting) PMU 1 Test Function	0 to 10 0 to 1 0 to 1 0 to 1 ing) 0 to 1 0 to 59 0 to 235959 0 to 1	 	1 1 1 1 1 1 1 1	F544 F546 F547 F102 F102 F001 F050 F102	3 (10/sec.) 0 (Polar) 0 (Integer) 0 (Disabled) 0 (Disabled) 1 0 0 (Disabled)
EB7E EB7F EB80 EB81 Phasor M EB82 EB83 EB84 Phasor M EB86 EB87	PMU Network Reporting Rate PMU Network Reporting Style PMU Network Reporting Format PMU Network PDC Control easurement Unit One-shot Command (Read/Write Sett) PMU One-shot Function PMU One-shot Sequence Number PMU One-shot Time easurement Unit Test Values (Read/Write Setting)	0 to 10 0 to 1 0 to 1 0 to 1 ing) 0 to 1 0 to 59 0 to 235959 0 to 1 0 to 1 0 to 700	 KV	1 1 1 1 1 1 1	F544 F546 F547 F102 F102 F001 F001 F050	3 (10/sec.) 0 (Polar) 0 (Integer) 0 (Disabled) 0 (Disabled) 1 0 0 (Disabled) 50000
EB7E EB7F EB80 EB81 Phasor M EB82 EB83 EB84 Phasor M EB86 EB87 EB89	PMU Network Reporting Rate PMU Network Reporting Style PMU Network Reporting Format PMU Network PDC Control easurement Unit One-shot Command (Read/Write Sett) PMU One-shot Function PMU One-shot Sequence Number PMU One-shot Time easurement Unit Test Values (Read/Write Setting) PMU 1 Test Function PMU 1 Phase A Voltage Test Magnitude PMU 1 Phase A Voltage Test Angle	0 to 10 0 to 1 0 to 1 0 to 1 ing) 0 to 1 0 to 59 0 to 235959 0 to 1 0 to 700 -180 to 180	 kV o	1 1 1 1 1 1 1 0.01 0.05	F544 F546 F547 F102 F102 F001 F050 F102 F102 F102 F003 F002	3 (10/sec.) 0 (Polar) 0 (Integer) 0 (Disabled) 1 0 0 (Disabled) 0 (Disabled) 50000 0
EB7E EB7F EB80 EB81 Phasor M EB82 EB83 EB84 Phasor M EB86 EB87 EB89 EB84	PMU Network Reporting Rate PMU Network Reporting Style PMU Network Reporting Format PMU Network PDC Control easurement Unit One-shot Command (Read/Write Sett) PMU One-shot Function PMU One-shot Sequence Number PMU One-shot Time easurement Unit Test Values (Read/Write Setting) PMU 1 Test Function PMU 1 Phase A Voltage Test Magnitude PMU 1 Phase B Voltage Test Magnitude	0 to 10 0 to 1 0 to 1 0 to 1 ing) 0 to 1 0 to 59 0 to 235959 0 to 1 0 to 700 -180 to 180 0 to 700	 kV o kV	1 1 1 1 1 1 1 0.01 0.05 0.01	F544 F546 F547 F102 F102 F001 F050 F102 F102 F003 F002 F003	3 (10/sec.) 0 (Polar) 0 (Integer) 0 (Disabled) 0 (Disabled) 1 0 0 (Disabled) 50000 0 50000
EB7E EB7F EB80 EB81 Phasor M EB82 EB83 EB84 Phasor M EB86 EB87 EB89 EB8A EB8C	PMU Network Reporting Rate PMU Network Reporting Style PMU Network Reporting Format PMU Network PDC Control easurement Unit One-shot Command (Read/Write Sett) PMU One-shot Function PMU One-shot Sequence Number PMU One-shot Time easurement Unit Test Values (Read/Write Setting) PMU 1 Test Function PMU 1 Phase A Voltage Test Magnitude PMU 1 Phase B Voltage Test Magnitude PMU 1 Phase B Voltage Test Magnitude PMU 1 Phase B Voltage Test Magnitude PMU 1 Phase B Voltage Test Magnitude	0 to 10 0 to 1 0 to 1 0 to 1 ing) 0 to 1 0 to 59 0 to 235959 0 to 235959 0 to 1 0 to 700 -180 to 180 0 to 700 -180 to 180	 kV o kV o	1 1 1 1 1 1 1 0.01 0.05 0.01 0.05	F544 F546 F547 F102 F001 F001 F000 F102 F003 F002 F003 F002	3 (10/sec.) 0 (Polar) 0 (Integer) 0 (Disabled) 1 0 (Disabled) 1 0 0 (Disabled) 50000 0 50000 -120
EB7E EB7F EB80 EB81 Phasor M EB82 EB83 EB84 Phasor M EB86 EB87 EB87 EB89 EB8A EB8C EB8D	PMU Network Reporting Rate PMU Network Reporting Style PMU Network Reporting Format PMU Network PDC Control easurement Unit One-shot Command (Read/Write Setted) PMU One-shot Function PMU One-shot Sequence Number PMU One-shot Time easurement Unit Test Values (Read/Write Setting) PMU 1 Test Function PMU 1 Phase A Voltage Test Magnitude PMU 1 Phase B Voltage Test Angle PMU 1 Phase B Voltage Test Magnitude PMU 1 Phase C Voltage Test Magnitude	0 to 10 0 to 1 0 to 1 0 to 1 0 to 1 ing) 0 to 1 0 to 59 0 to 235959 0 to 235959 0 to 1 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700	 kV o kV o kV	1 1 1 1 1 1 1 0.01 0.05 0.01 0.05 0.01	F544 F546 F547 F102 F001 F001 F000 F102 F003 F002 F003 F002 F003	3 (10/sec.) 0 (Polar) 0 (Integer) 0 (Disabled) 0 (Disabled) 1 0 0 (Disabled) 50000 0 50000 -120 50000
EB7E EB7F EB80 EB81 Phasor M EB82 EB83 EB84 Phasor M EB86 EB87 EB89 EB8A EB8C EB8D EB8F	PMU Network Reporting Rate PMU Network Reporting Style PMU Network Reporting Format PMU Network PDC Control easurement Unit One-shot Command (Read/Write Setted) PMU One-shot Function PMU One-shot Sequence Number PMU One-shot Time easurement Unit Test Values (Read/Write Setting) PMU 1 Test Function PMU 1 Phase A Voltage Test Magnitude PMU 1 Phase B Voltage Test Magnitude PMU 1 Phase B Voltage Test Magnitude PMU 1 Phase C Voltage Test Magnitude PMU 1 Phase C Voltage Test Angle PMU 1 Phase C Voltage Test Angle	0 to 10 0 to 1 0 to 1 0 to 1 0 to 1 0 to 59 0 to 235959 0 to 235959 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180	 kV o kV o kV o kV	1 1 1 1 1 1 1 1 1 0.01 0.05 0.01 0.05 0.01 0.05	F544 F546 F547 F102 F001 F001 F000 F102 F003 F002 F003 F002 F003 F002	3 (10/sec.) 0 (Polar) 0 (Integer) 0 (Disabled) 0 (Disabled) 1 0 0 (Disabled) 50000 0 50000 -120 50000 120
EB7E EB7F EB80 EB81 Phasor M EB82 EB83 EB84 Phasor M EB86 EB87 EB89 EB8A EB87 EB80 EB8F EB90	PMU Network Reporting Rate PMU Network Reporting Style PMU Network Reporting Format PMU Network Reporting Format PMU Network PDC Control easurement Unit One-shot Command (Read/Write Sett) PMU One-shot Function PMU One-shot Sequence Number PMU One-shot Time easurement Unit Test Values (Read/Write Setting) PMU 1 Test Function PMU 1 Phase A Voltage Test Magnitude PMU 1 Phase B Voltage Test Magnitude PMU 1 Phase B Voltage Test Magnitude PMU 1 Phase C Voltage Test Magnitude PMU 1 Phase C Voltage Test Angle PMU 1 Phase C Voltage Test Magnitude PMU 1 Auxiliary Voltage Test Magnitude	0 to 10 0 to 1 0 to 1 0 to 1 ing) 0 to 1 0 to 59 0 to 235959 0 to 235959 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700	 kV o kV o kV o	1 1 1 1 1 1 1 1 1 1 0.01 0.05 0.01 0.05 0.01 0.05 0.01	F544 F546 F547 F102 F102 F001 F000 F102 F003 F002 F003 F002 F003 F002 F003 F002 F003	3 (10/sec.) 0 (Polar) 0 (Integer) 0 (Disabled) 0 (Disabled) 1 0 0 (Disabled) 50000 0 50000 0 50000 120 50000
EB7E EB7F EB80 EB81 Phasor M EB82 EB83 EB84 Phasor M EB86 EB87 EB89 EB8A EB8C EB8D EB8F EB90 EB92	PMU Network Reporting Rate PMU Network Reporting Style PMU Network Reporting Format PMU Network Reporting Format PMU Network PDC Control easurement Unit One-shot Command (Read/Write Sett) PMU One-shot Function PMU One-shot Sequence Number PMU One-shot Time easurement Unit Test Values (Read/Write Setting) PMU 1 Test Function PMU 1 Phase A Voltage Test Magnitude PMU 1 Phase B Voltage Test Angle PMU 1 Phase B Voltage Test Angle PMU 1 Phase C Voltage Test Angle PMU 1 Phase C Voltage Test Angle PMU 1 Phase C Voltage Test Angle PMU 1 Phase C Voltage Test Angle PMU 1 Auxiliary Voltage Test Magnitude PMU 1 Auxiliary Voltage Test Angle	0 to 10 0 to 1 0 to 1 0 to 1 0 to 1 ing) 0 to 1 0 to 59 0 to 235959 0 to 235959 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180	 KV o kV o kV o kV o kV	1 1 1 1 1 1 1 1 1 1 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05	F544 F546 F547 F102 F001 F001 F050 F102 F003 F002 F003 F002 F003 F002 F003 F002 F003 F002 F003 F002	3 (10/sec.) 0 (Polar) 0 (Integer) 0 (Disabled) 0 (Disabled) 1 0 0 (Disabled) 50000 0 50000 -120 50000 120 50000 0 0
EB7E EB7F EB80 EB81 Phasor M EB82 EB83 EB84 Phasor M EB86 EB87 EB89 EB8A EB8C EB8D EB8F EB90 EB92 EB93	PMU Network Reporting Rate PMU Network Reporting Style PMU Network Reporting Format PMU Network Reporting Format PMU Network PDC Control easurement Unit One-shot Command (Read/Write Sett) PMU One-shot Function PMU One-shot Sequence Number PMU One-shot Time easurement Unit Test Values (Read/Write Setting) PMU 1 Test Function PMU 1 Phase A Voltage Test Magnitude PMU 1 Phase B Voltage Test Angle PMU 1 Phase B Voltage Test Magnitude PMU 1 Phase C Voltage Test Magnitude PMU 1 Phase C Voltage Test Magnitude PMU 1 Phase C Voltage Test Magnitude PMU 1 Auxiliary Voltage Test Magnitude PMU 1 Auxiliary Voltage Test Magnitude PMU 1 Auxiliary Voltage Test Angle PMU 1 Phase A Current Test Magnitude	0 to 10 0 to 1 0 to 1 0 to 1 0 to 1 ing) 0 to 1 0 to 59 0 to 235959 0 to 235959 0 to 1 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 0 to 700 -180 to 180 0 to 700 0 to 9.999	 KV ° kV ° kV ° kV ° kV °	1 1 1 1 1 1 1 1 1 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01	F544 F546 F547 F102 F001 F001 F050 F102 F003 F002 F003 F002 F003 F002 F003 F002 F003 F002 F003 F002 F003 F002 F004	3 (10/sec.) 0 (Polar) 0 (Integer) 0 (Disabled) 0 (Disabled) 1 0 0 (Disabled) 50000 0 50000 -120 50000 120 50000 0 120 50000 0 120 50000 0 120 50000 0 120 50000 0 120 50000 0 120 50000 0 120 100 100 100 100 100 1
EB7E EB7F EB80 EB81 Phasor M EB82 EB83 EB84 Phasor M EB86 EB87 EB89 EB8A EB8C EB8D EB8F EB90 EB92 EB93 EB95	PMU Network Reporting Rate PMU Network Reporting Style PMU Network Reporting Format PMU Network PDC Control easurement Unit One-shot Command (Read/Write Sett) PMU One-shot Function PMU One-shot Sequence Number PMU One-shot Time easurement Unit Test Values (Read/Write Setting) PMU 1 Test Function PMU 1 Phase A Voltage Test Magnitude PMU 1 Phase B Voltage Test Angle PMU 1 Phase B Voltage Test Magnitude PMU 1 Phase C Voltage Test Angle PMU 1 Phase C Voltage Test Angle PMU 1 Auxiliary Voltage Test Angle PMU 1 Auxiliary Voltage Test Angle PMU 1 Phase A Current Test Magnitude PMU 1 Phase A Current Test Magnitude	0 to 10 0 to 1 0 to 1 0 to 1 0 to 1 ing) 0 to 1 0 to 59 0 to 235959 0 to 235959 0 to 700 -180 to 180 0 to 9.999 -180 to 180	 kV ° kV ° kV ° kV °	1 1 1 1 1 1 1 1 1 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.001 0.05	F544 F546 F547 F102 F001 F050 F102 F003 F002 F004 F002	3 (10/sec.) 0 (Polar) 0 (Integer) 0 (Disabled) 0 (Disabled) 1 0 0 (Disabled) 50000 0 50000 -120 50000 120 50000 0 120 50000 0 120 50000 0 120 50000 0 120 50000 0 120 50000 0 120 50000 0 120 120 50000 0 120 120 50000 120 120 120 120 120 120 120
EB7E EB7F EB80 EB81 Phasor M EB82 EB83 EB84 Phasor M EB86 EB87 EB89 EB8A EB8C EB80 EB8F EB90 EB92 EB93 EB95 EB96	PMU Network Reporting Rate PMU Network Reporting Style PMU Network Reporting Format PMU Network PDC Control easurement Unit One-shot Command (Read/Write Sett) PMU One-shot Function PMU One-shot Sequence Number PMU One-shot Time easurement Unit Test Values (Read/Write Setting) PMU 1 Test Function PMU 1 Phase A Voltage Test Magnitude PMU 1 Phase B Voltage Test Angle PMU 1 Phase B Voltage Test Magnitude PMU 1 Phase C Voltage Test Magnitude PMU 1 Phase C Voltage Test Angle PMU 1 Auxiliary Voltage Test Magnitude PMU 1 Auxiliary Voltage Test Angle PMU 1 Auxiliary Voltage Test Angle PMU 1 Auxiliary Voltage Test Angle PMU 1 Phase A Current Test Magnitude PMU 1 Phase A Current Test Magnitude PMU 1 Phase B Current Test Angle	0 to 10 0 to 1 0 to 1 0 to 1 0 to 1 ing) 0 to 1 0 to 59 0 to 235959 0 to 235959 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 9.999 -180 to 180 0 to 9.999	 	1 1 1 1 1 1 1 1 1 0.01 0.05 0.01 0.05 0.01 0.05 0.001 0.05 0.001 0.05 0.001	F544 F546 F547 F102 F001 F001 F000 F003 F002 F003 F002 F003 F002 F003 F002 F003 F002 F003 F002 F004 F004 F004	3 (10/sec.) 0 (Polar) 0 (Integer) 0 (Disabled) 0 (Disabled) 1 0 0 (Disabled) 50000 0 50000 -120 50000 120 50000 0 120 50000 0 120 50000 0 120 50000 0 120 50000 0 120 50000 0 120 50000 0 120 100
EB7E EB7F EB80 EB81 Phasor M EB82 EB83 EB84 Phasor M EB86 EB87 EB89 EB87 EB80 EB87 EB80 EB87 EB80 EB80 EB87 EB90 EB92 EB93 EB95 EB96 EB98	 PMU Network Reporting Rate PMU Network Reporting Style PMU Network Reporting Format PMU Network PDC Control easurement Unit One-shot Command (Read/Write Setting) PMU One-shot Function PMU One-shot Sequence Number PMU One-shot Sequence Number PMU One-shot Time easurement Unit Test Values (Read/Write Setting) PMU 1 Test Function PMU 1 Phase A Voltage Test Magnitude PMU 1 Phase A Voltage Test Magnitude PMU 1 Phase B Voltage Test Magnitude PMU 1 Phase C Voltage Test Magnitude PMU 1 Phase C Voltage Test Magnitude PMU 1 Phase C Voltage Test Magnitude PMU 1 Auxiliary Voltage Test Magnitude PMU 1 Auxiliary Voltage Test Magnitude PMU 1 Phase A Current Test Magnitude PMU 1 Phase B Current Test Magnitude PMU 1 Phase B Current Test Magnitude PMU 1 Phase B Current Test Magnitude PMU 1 Phase B Current Test Angle PMU 1 Phase B Current Test Magnitude PMU 1 Phase B Current Test Magnitude PMU 1 Phase B Current Test Angle PMU 1 Phase B Current Test Angle PMU 1 Phase B Current Test Angle PMU 1 Phase B Current Test Angle PMU 1 Phase B Current Test Angle 	0 to 10 0 to 1 0 to 1 0 to 1 0 to 1 ing) 0 to 1 0 to 59 0 to 235959 0 to 235959 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 9.999 -180 to 180	 kV ° kV ° kV ° kV °	1 1 1 1 1 1 1 1 1 1 0.01 0.05 0.01 0.05 0.01 0.05 0.05 0.05	F544 F546 F547 F102 F001 F001 F000 F003 F002 F003 F002 F003 F002 F003 F002 F003 F002 F004 F004 F004 F004 F002	3 (10/sec.) 0 (Polar) 0 (Integer) 0 (Disabled) 0 (Disabled) 1 0 0 (Disabled) 50000 0 50000 -120 50000 120 50000 120 50000 0 120 50000 120 50000 120 50000 120 50000 120 50000 120 50000 120 50000 120 50000 120 50000 120 50000 120 50000 120 130 130 130 130 130 130 130 13
EB7E EB7F EB80 EB81 Phasor M EB82 EB83 EB84 Phasor M EB86 EB87 EB89 EB87 EB80 EB87 EB80 EB87 EB80 EB87 EB80 EB87 EB90 EB92 EB93 EB95 EB96 EB98 EB99	PMU Network Reporting Rate PMU Network Reporting Style PMU Network Reporting Format PMU Network PDC Control easurement Unit One-shot Command (Read/Write Setting) PMU One-shot Function PMU One-shot Sequence Number PMU One-shot Time easurement Unit Test Values (Read/Write Setting) PMU 1 Test Function PMU 1 Phase A Voltage Test Magnitude PMU 1 Phase B Voltage Test Magnitude PMU 1 Phase B Voltage Test Angle PMU 1 Phase C Voltage Test Magnitude PMU 1 Phase C Voltage Test Angle PMU 1 Phase A Current Test Magnitude PMU 1 Phase A Current Test Magnitude PMU 1 Phase B Current Test Angle PMU 1 Phase B Current Test Magnitude	0 to 10 0 to 1 0 to 1 0 to 1 0 to 1 ing) 0 to 1 0 to 59 0 to 235959 0 to 235959 0 to 235959 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 9.999 -180 to 180 0 to 9.999 -180 to 180 0 to 9.999	 kV ° kV °	1 1 1 1 1 1 1 1 1 1 0.01 0.05 0.01 0.05 0.001 0.05 0.001 0.05 0.001 0.05 0.001 0.05 0.001	F544 F546 F547 F102 F001 F002 F003 F002 F003 F002 F003 F002 F003 F002 F003 F002 F004 F004 F004 F002 F004 F002 F004 F002 F003	3 (10/sec.) 0 (Polar) 0 (Integer) 0 (Disabled) 1 0 (Disabled) 1 0 0 (Disabled) 50000 0 50000 -120 50000 120 50000 120 50000 120 50000 120 50000 120 50000 120 50000 120 50000 120 50000 120 1000 1000 -130 1000
EB7E EB7F EB80 EB81 Phasor M EB82 EB83 EB84 Phasor M EB86 EB87 EB89 EB87 EB80 EB87 EB80 EB87 EB80 EB80 EB87 EB90 EB92 EB93 EB95 EB96 EB98	 PMU Network Reporting Rate PMU Network Reporting Style PMU Network Reporting Format PMU Network PDC Control easurement Unit One-shot Command (Read/Write Setting) PMU One-shot Function PMU One-shot Sequence Number PMU One-shot Sequence Number PMU One-shot Time easurement Unit Test Values (Read/Write Setting) PMU 1 Test Function PMU 1 Phase A Voltage Test Magnitude PMU 1 Phase A Voltage Test Magnitude PMU 1 Phase B Voltage Test Magnitude PMU 1 Phase C Voltage Test Magnitude PMU 1 Phase C Voltage Test Magnitude PMU 1 Phase C Voltage Test Magnitude PMU 1 Auxiliary Voltage Test Magnitude PMU 1 Auxiliary Voltage Test Magnitude PMU 1 Phase A Current Test Magnitude PMU 1 Phase B Current Test Magnitude PMU 1 Phase B Current Test Magnitude PMU 1 Phase B Current Test Magnitude PMU 1 Phase B Current Test Angle PMU 1 Phase B Current Test Magnitude PMU 1 Phase B Current Test Magnitude PMU 1 Phase B Current Test Angle PMU 1 Phase B Current Test Angle PMU 1 Phase B Current Test Angle PMU 1 Phase B Current Test Angle PMU 1 Phase B Current Test Angle 	0 to 10 0 to 1 0 to 1 0 to 1 0 to 1 ing) 0 to 1 0 to 59 0 to 235959 0 to 235959 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 700 -180 to 180 0 to 9.999 -180 to 180	 kV ° kV ° kV ° kV °	1 1 1 1 1 1 1 1 1 1 0.01 0.05 0.01 0.05 0.01 0.05 0.05 0.05	F544 F546 F547 F102 F001 F001 F000 F003 F002 F003 F002 F003 F002 F003 F002 F003 F002 F004 F004 F004 F004 F002	3 (10/sec.) 0 (Polar) 0 (Integer) 0 (Disabled) 0 (Disabled) 1 0 0 (Disabled) 50000 0 50000 -120 50000 120 50000 120 50000 0 120 50000 120 50000 120 50000 120 50000 120 50000 120 50000 120 50000 120 50000 120 50000 120 50000 120 50000 120 130 130 130 130 130 130 130 13

Table B-9: MODBUS MEMORY MAP (Sheet 55 of 55)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
EB9E	PMU 1 Ground Current Test Angle	-180 to 180	0	0.05	F002	0
EB9F	PMU 1 Test Frequency	20 to 70	Hz	0.001	F003	60000
EBA1	PMU 1 Test df/dt	-10 to 10	Hz/s	0.001	F002	0
Phasor M	Measurement Unit Recorder Configuration Counter Con	nmand (Read/Write Com	mand)			
EBF6	PMU 1 Recorder Clear Configuration Counter	0 to 1		1	F126	0 (No)
Phasor N	leasurement Unit Recording Values (Read Only)					
EBFA	PMU 1 Available Records	0 to 65535	0 to 65535		F001	0
EBFB	PMU 1 Second Per Record	0 to 6553.5		0.1	F001	0
EBFD	PMU 1 Last Cleared Date	0 to 40000000		1	F050	0
Setting fi	ile template values (read only)					
ED00	FlexLogic™ displays active	0 to 1		1	F102	1 (Enabled)
ED01	Reserved (6 items)					
ED07	Last settings change date	0 to 4294967295		1	F050	0
ED09	Template bitmask (750 items)	0 to 65535		1	F001	0
Phasor N	leasurement Unit Records (Read Only)					
EFFF	PMU Recording Number of Triggers	0 to 65535	samples	1	F001	0

B.4.2 DATA FORMATS

F001

UR_UINT16 UNSIGNED 16 BIT INTEGER

F002

UR_SINT16 SIGNED 16 BIT INTEGER

F003

UR_UINT32 UNSIGNED 32 BIT INTEGER (2 registers)

High order word is stored in the first register. Low order word is stored in the second register.

F004

UR_SINT32 SIGNED 32 BIT INTEGER (2 registers)

High order word is stored in the first register/ Low order word is stored in the second register.

F005

UR_UINT8 UNSIGNED 8 BIT INTEGER

F006

UR_SINT8 SIGNED 8 BIT INTEGER

F011

UR_UINT16 FLEXCURVE DATA (120 points)

A FlexCurve is an array of 120 consecutive data points (x, y) which are interpolated to generate a smooth curve. The y-axis is the user defined trip or operation time setting; the x-axis is the pickup ratio and is pre-defined. Refer to format F119 for a listing of the pickup ratios; the enumeration value for the pickup ratio indicates the offset into the FlexCurve base address where the corresponding time value is stored.

F012

DISPLAY_SCALE DISPLAY SCALING (unsigned 16-bit integer)

MSB indicates the SI units as a power of ten. LSB indicates the number of decimal points to display.

Example: Current values are stored as 32 bit numbers with three decimal places and base units in Amps. If the retrieved value is 12345.678 A and the display scale equals 0x0302 then the displayed value on the unit is 12.35 kA.

F013

POWER_FACTOR (SIGNED 16 BIT INTEGER)

Positive values indicate lagging power factor; negative values indicate leading.

F040

UR_UINT48 48-BIT UNSIGNED INTEGER

F050

UR_UINT32 TIME and DATE (UNSIGNED 32 BIT INTEGER)

Gives the current time in seconds elapsed since 00:00:00 January 1, 1970.

F051

UR_UINT32 DATE in SR format (alternate format for F050)

First 16 bits are Month/Day (MM/DD/xxxx). Month: 1=January, 2=February,...,12=December; Day: 1 to 31 in steps of 1 Last 16 bits are Year (xx/xx/YYYY): 1970 to 2106 in steps of 1

F052

UR_UINT32 TIME in SR format (alternate format for F050)

First 16 bits are Hours/Minutes (HH:MM:xx.xxx). Hours: 0=12am, 1=1am,...,12=12pm,...23=11pm; Minutes: 0 to 59 in steps of 1

Last 16 bits are Seconds (xx:xx:.SS.SSS): 0=00.000s, 1=00.001,...,59999=59.999s)

F060

FLOATING_POINT IEEE FLOATING POINT (32 bits)

F070

HEX2 2 BYTES - 4 ASCII DIGITS

F071 HEX4 4 BYTES - 8 ASCII DIGITS

F072 HEX6 6 BYTES - 12 ASCII DIGITS

F073

HEX8 8 BYTES - 16 ASCII DIGITS

F074 HEX20 20 BYTES - 40 ASCII DIGITS

F081

ENUMERATION: AUTORECLOSE 1P/3P BKR FAIL OPTION

0 = Continue, 1 = Lockout

F082 ENUMERATION: AUTORECLOSE SINGLE-PHASE / THREE-PHASE BREAKER SEQUENCE

0 = 1, 1 = 2, 2 = 1 & 2, 3 = 1 - 2, 4 = 2 - 1

F083

ENUMERATION: SELECTOR MODES

0 = Time-Out, 1 = Acknowledge

F084 ENUMERATION: SELECTOR POWER UP

0 = Restore, 1 = Synchronize, 2 = Sync/Restore

F085

ENUMERATION: POWER SWING SHAPE

0 = Mho Shape, 1 = Quad Shape

F086

ENUMERATION: DIGITAL INPUT DEFAULT STATE

0 = Off, 1 = On, 2= Latest/Off, 3 = Latest/On

F090

ENUMERATION: LATCHING OUTPUT TYPE

0 = Operate-dominant, 1 = Reset-dominant

F100

ENUMERATION: VT CONNECTION TYPE

0 = Wye; 1 = Delta

F101

ENUMERATION: MESSAGE DISPLAY INTENSITY

0 = 25%, 1 = 50%, 2 = 75%, 3 = 100%

F102 ENUMERATION: DISABLED/ENABLED

- - - -

0 = Disabled; 1 = Enabled

F103

ENUMERATION: CURVE SHAPES

	bitmask	curve shape	bitmask	curve shape
	0	IEEE Mod Inv	9	IAC Inverse
-	1	IEEE Very Inv	10	IAC Short Inv
	2	IEEE Ext Inv	11	l2t
	3	IEC Curve A	12	Definite Time
	4	IEC Curve B	13	FlexCurve™ A
	5	IEC Curve C	14	FlexCurve™ B
	6	IEC Short Inv	15	FlexCurve™ C
	7	IAC Ext Inv	16	FlexCurve [™] D
	8	IAC Very Inv		
	7	IAC Ext Inv	-	

F104

ENUMERATION: RESET TYPE

0 = Instantaneous, 1 = Timed, 2 = Linear

F105

ENUMERATION: LOGIC INPUT

0 = Disabled, 1 = Input 1, 2 = Input 2

F106

ENUMERATION: PHASE ROTATION

0 = ABC, 1 = ACB

F108

ENUMERATION: OFF/ON

0 = Off, 1 = On

F109

ENUMERATION: CONTACT OUTPUT OPERATION

0 = Self-reset, 1 = Latched, 2 = Disabled

F110

ENUMERATION: CONTACT OUTPUT LED CONTROL

0 = Trip, 1 = Alarm, 2 = None

F111

ENUMERATION: UNDERVOLTAGE CURVE SHAPES

0 = Definite Time, 1 = Inverse Time

F112 ENUMERATION: RS485 BAUD RATES

bitmask	value	bitmask	value	bitmask	value
0	300	4	9600	8	115200
1	1200	5	19200	9	14400
2	2400	6	38400	10	28800
3	4800	7	57600	11	33600

F113 ENUMERATION: PARITY

0 = None, 1 = Odd, 2 = Even

F114

ENUMERATION: IRIG-B SIGNAL TYPE

0 = None, 1 = DC Shift, 2 = Amplitude Modulated

F115 ENUMERATION: BREAKER STATUS

0 = Auxiliary A, 1 = Auxiliary B

F116

ENUMERATION: NEUTRAL OVERVOLTAGE CURVES

0 = Definite Time, 1 = FlexCurveTM A, 2 = FlexCurveTM B, 3 = FlexCurveTM C

F117

ENUMERATION: NUMBER OF OSCILLOGRAPHY RECORDS

 $0 = 1 \times 72$ cycles, $1 = 3 \times 36$ cycles, $2 = 7 \times 18$ cycles, $3 = 15 \times 9$ cycles

F118

ENUMERATION: OSCILLOGRAPHY MODE

0 = Automatic Overwrite, 1 = Protected

F119

ENUMERATION: FLEXCURVE™ PICKUP RATIOS

mask	value	mask	value	mask	value	mask	value
0	0.00	30	0.88	60	2.90	90	5.90
1	0.05	31	0.90	61	3.00	91	6.00
2	0.10	32	0.91	62	3.10	92	6.50
3	0.15	33	0.92	63	3.20	93	7.00
4	0.20	34	0.93	64	3.30	94	7.50
5	0.25	35	0.94	65	3.40	95	8.00
6	0.30	36	0.95	66	3.50	96	8.50
7	0.35	37	0.96	67	3.60	97	9.00
8	0.40	38	0.97	68	3.70	98	9.50
9	0.45	39	0.98	69	3.80	99	10.00
10	0.48	40	1.03	70	3.90	100	10.50
11	0.50	41	1.05	71	4.00	101	11.00
12	0.52	42	1.10	72	4.10	102	11.50
13	0.54	43	1.20	73	4.20	103	12.00
14	0.56	44	1.30	74	4.30	104	12.50
15	0.58	45	1.40	75	4.40	105	13.00
16	0.60	46	1.50	76	4.50	106	13.50
17	0.62	47	1.60	77	4.60	107	14.00
18	0.64	48	1.70	78	4.70	108	14.50
19	0.66	49	1.80	79	4.80	109	15.00
20	0.68	50	1.90	80	4.90	110	15.50
21	0.70	51	2.00	81	5.00	111	16.00
22	0.72	52	2.10	82	5.10	112	16.50
23	0.74	53	2.20	83	5.20	113	17.00
24	0.76	54	2.30	84	5.30	114	17.50
25	0.78	55	2.40	85	5.40	115	18.00
26	0.80	56	2.50	86	5.50	116	18.50
27	0.82	57	2.60	87	5.60	117	19.00
28	0.84	58	2.70	88	5.70	118	19.50
29	0.86	59	2.80	89	5.80	119	20.00

F120

ENUMERATION: DISTANCE SHAPE

0 = Mho, 1 = Quad

F122

ENUMERATION: ELEMENT INPUT SIGNAL TYPE

0 = Phasor, 1 = RMS

F123

ENUMERATION: CT SECONDARY

0 = 1 A, 1 = 5 A

F124

Β

ENUMERATION: LIST OF ELEMENTS

bitmask	element
0	Phase Instantaneous Overcurrent 1
1	Phase Instantaneous Overcurrent 2
2	Phase Instantaneous Overcurrent 3
3	
	Phase Instantaneous Overcurrent 4 Phase Instantaneous Overcurrent 5
4	
5	Phase Instantaneous Overcurrent 6
6	Phase Instantaneous Overcurrent 7
7	Phase Instantaneous Overcurrent 8
8	Phase Instantaneous Overcurrent 9
9	Phase Instantaneous Overcurrent 10
10	Phase Instantaneous Overcurrent 11
11	Phase Instantaneous Overcurrent 12
16	Phase Time Overcurrent 1
17	Phase Time Overcurrent 2
18	Phase Time Overcurrent 3
19	Phase Time Overcurrent 4
20	Phase Time Overcurrent 5
21	Phase Time Overcurrent 6
24	Phase Directional Overcurrent 1
25	Phase Directional Overcurrent 2
32	Neutral Instantaneous Overcurrent 1
33	Neutral Instantaneous Overcurrent 2
34	Neutral Instantaneous Overcurrent 3
35	Neutral Instantaneous Overcurrent 4
36	Neutral Instantaneous Overcurrent 5
38	Neutral Instantaneous Overcurrent 6 Neutral Instantaneous Overcurrent 7
39	Neutral Instantaneous Overcurrent 8
40	Neutral Instantaneous Overcurrent 9
40	Neutral Instantaneous Overcurrent 10
42	Neutral Instantaneous Overcurrent 11
43	Neutral Instantaneous Overcurrent 12
48	Neutral Time Overcurrent 1
49	Neutral Time Overcurrent 2
50	Neutral Time Overcurrent 3
51	Neutral Time Overcurrent 4
52	Neutral Time Overcurrent 5
53	Neutral Time Overcurrent 6
56	Neutral Directional Overcurrent 1
57	Neutral Directional Overcurrent 2
60	Negative Sequence Directional Overcurrent 1
61	Negative Sequence Directional Overcurrent 2
64	Ground Instantaneous Overcurrent 1
65	Ground Instantaneous Overcurrent 2
66	Ground Instantaneous Overcurrent 2
67	Ground Instantaneous Overcurrent 4
68	Ground Instantaneous Overcurrent 5
69	Ground Instantaneous Overcurrent 6
70	Ground Instantaneous Overcurrent 7

bitmask	element
71	Ground Instantaneous Overcurrent 8
72	Ground Instantaneous Overcurrent 9
73	Ground Instantaneous Overcurrent 10
73	Ground Instantaneous Overcurrent 11
75	Ground Instantaneous Overcurrent 12
80	Ground Time Overcurrent 1
81	Ground Time Overcurrent 2
82	Ground Time Overcurrent 3
83	Ground Time Overcurrent 4
84	Ground Time Overcurrent 5
85	Ground Time Overcurrent 6
96	Negative Sequence Instantaneous Overcurrent 1
97	Negative Sequence Instantaneous Overcurrent 2
101	Opposite Phase Rotation
112	Negative Sequence Time Overcurrent 1
113	Negative Sequence Time Overcurrent 2
120	Negative Sequence Overvoltage
121	Wattmetric Zero-Sequence Directional 1
122	Wattmetric Zero-Sequence Directional 2
140	Auxiliary Undervoltage 1
144	Phase Undervoltage 1
145	Phase Undervoltage 2
148	Auxiliary Overvoltage 1
152	Phase Overvoltage 1
156	Neutral Overvoltage 1
161	Phase Distance Zone 2
168	Line Pickup
172	Ground Distance Zone 1
173	Ground Distance Zone 2
180	Load Enchroachment
185	PUTT Pilot Scheme
190	Power Swing Detect
224	SRC1 VT Fuse Failure
225	SRC2 VT Fuse Failure
226	SRC3 VT Fuse Failure
227	SRC4 VT Fuse Failure
228	SRC5 VT Fuse Failure
229	SRC6 VT Fuse Failure
232	SRC1 50DD (Disturbance Detection)
232	SRC2 50DD (Disturbance Detection)
234	SRC3 50DD (Disturbance Detection)
234	SRC4 50DD (Disturbance Detection)
233	87L Current Differential 1
240	87L Current Differential 2
241	50DD Disturbance Detector
245	Continuous Monitor
246	CT Failure
254	87L Trip (Current Differential Trip)
255	Stub Bus
280	Breaker Failure 1
281	Breaker Failure 2
282	Breaker Failure 3
283	Breaker Failure 4

APPENDIX B

bitmask	element
288	Breaker Arcing Current 1
289	Breaker Arcing Current 2
290	Breaker Arcing Current 3
291	Breaker Arcing Current 4
292	Breaker Arcing Current 5
293	Breaker Arcing Current 6
294	Breaker 1 Flashover
295	Breaker 2 Flashover
311	Phasor measurement unit one-shot
312	Synchrocheck 1
313	Synchrocheck 2
336	Setting Group
337	Reset
360	Trip Output
362	Phase Selector
364	Open Pole Detector
376	Autoreclose (single-pole / three-pole)
388	Selector 1
389	Selector 2
390	Control pushbutton 1
390 391	Control pushbutton 2
391	Control pushbutton 3
392	Control pushbutton 4
393	Control pushbutton 5
394 395	
395	Control pushbutton 6
400	Control pushbutton 7 FlexElement™ 1
400	FlexElement [™] 2
401	FlexElement [™] 2
402	FlexElement [™] 4
403	FlexElement [™] 4
404	FlexElement [™] 5
405	FlexElement [™] 7
408	FlexElement [™] 8
420	Non-volatile Latch 1
421	Non-volatile Latch 2
422	Non-volatile Latch 3
423	Non-volatile Latch 4
424	Non-volatile Latch 5
425	Non-volatile Latch 6
426	Non-volatile Latch 7
427	Non-volatile Latch 8
428	Non-volatile Latch 9
429	Non-volatile Latch 10
430	Non-volatile Latch 11
431	Non-volatile Latch 12
432	Non-volatile Latch 13
433	Non-volatile Latch 14
434	Non-volatile Latch 15
435	Non-volatile Latch 16
544	Digital Counter 1
545	Digital Counter 2
546	Digital Counter 3

bitmask	element
547	Digital Counter 4
548	Digital Counter 5
549	Digital Counter 6
550	Digital Counter 7
551	Digital Counter 8
692	Digital Element 1
693	Digital Element 2
694	Digital Element 3
695	Digital Element 4
696	Digital Element 5
697	Digital Element 6
698	Digital Element 7
699	Digital Element 8
700	Digital Element 9
701	Digital Element 10
702	Digital Element 11
703	Digital Element 12
704	Digital Element 13
705	Digital Element 14
706	Digital Element 15
707	Digital Element 16
708	Digital Element 17
709	Digital Element 18
710	Digital Element 19
711	Digital Element 20
712	Digital Element 21
713	Digital Element 22
714	Digital Element 23
715	Digital Element 24
716	Digital Element 25
717	Digital Element 26
718	Digital Element 27
719	Digital Element 28
720	Digital Element 29
721	Digital Element 30
722	Digital Element 31
723	Digital Element 32
724	Digital Element 33
725	Digital Element 34
726	Digital Element 35
727	Digital Element 36
728	Digital Element 37
729	Digital Element 38
730	Digital Element 39
731	Digital Element 40
732	Digital Element 41
733	Digital Element 42
734	Digital Element 43
735	Digital Element 44
736	Digital Element 45
737	Digital Element 46
738	Digital Element 47
739	Digital Element 48

B.4 MEMORY MAPPING

bitmask	element
740	Phasor Measurement Unit 1 Frequency
746	Phasor Measurement Unit 1 Voltage
752	Phasor Measurement Unit 1 Current
758	Phasor Measurement Unit 1 Power
764	PMU 1 Rate of Change of Frequency
770	Phasor Measurement Unit 1
842	Trip Bus 1
843	Trip Bus 2
844	Trip Bus 3
845	Trip Bus 4
846	Trip Bus 5
847	Trip Bus 6
849	RTD Input 1
850	RTD Input 2
851	RTD Input 3
852	RTD Input 4
853	RTD Input 5
854	RTD Input 6
855	RTD Input 7
856	RTD Input 8
857	RTD Input 9
858	RTD Input 10
859	RTD Input 11
860	RTD Input 12
861	RTD Input 13
862	RTD Input 14
863	RTD Input 15
864	RTD Input 16
865	RTD Input 17
866	RTD Input 18
867	RTD Input 19
868	RTD Input 20
869	RTD Input 21
870	RTD Input 22
871	RTD Input 23
872	RTD Input 24
873	RTD Input 25
874	RTD Input 26
875	RTD Input 27
875	RTD Input 28
877	RTD Input 29
878	RTD Input 30
879	RTD Input 31
880	RTD Input 32
881	RTD Input 33
882	RTD Input 34
883	RTD Input 35
884	RTD Input 36
885	RTD Input 37
	RTD Input 37 RTD Input 38
886	
887	RTD Input 39
888	RTD Input 40
889	RTD Input 41

bitmask	element
890	RTD Input 42
891	RTD Input 43
892	RTD Input 44
893	RTD Input 45
894	RTD Input 46
895	RTD Input 47
896	RTD Input 48
900	User-Programmable Pushbutton 1
901	User-Programmable Pushbutton 2
902	User-Programmable Pushbutton 3
903	User-Programmable Pushbutton 4
904	User-Programmable Pushbutton 5
905	User-Programmable Pushbutton 6
906	User-Programmable Pushbutton 7
907	User-Programmable Pushbutton 8
908	User-Programmable Pushbutton 9
909	User-Programmable Pushbutton 10
910	User-Programmable Pushbutton 11
911	User-Programmable Pushbutton 12
912	User-Programmable Pushbutton 13
913	User-Programmable Pushbutton 14
914	User-Programmable Pushbutton 15
915	User-Programmable Pushbutton 16
920	Disconnect switch 1
921	Disconnect switch 2
922	Disconnect switch 3
923	Disconnect switch 4
924	Disconnect switch 5
925	Disconnect switch 6
926	Disconnect switch 7
927	Disconnect switch 8
928	Disconnect switch 9
929	Disconnect switch 10
930	Disconnect switch 11
931	Disconnect switch 12
932	Disconnect switch 13
933	Disconnect switch 14
934	Disconnect switch 15
935	Disconnect switch 16
968	Breaker 1
969	Breaker 2
970	Breaker 3
971	Breaker 4

F125

ENUMERATION: ACCESS LEVEL

0 = Restricted; 1 = Command, 2 = Setting, 3 = Factory Service

F126 ENUMERATION: NO/YES CHOICE

0 = No, 1 = Yes

ENUMERATION: LATCHED OR SELF-RESETTING

0 = Latched, 1 = Self-Reset

F128

ENUMERATION: CONTACT INPUT THRESHOLD

0 = 17 V DC, 1 = 33 V DC, 2 = 84 V DC, 3 = 166 V DC

F129

ENUMERATION: FLEXLOGIC TIMER TYPE

0 = millisecond, 1 = second, 2 = minute

F130

ENUMERATION: SIMULATION MODE

0 = Off. 1 = Pre-Fault, 2 = Fault, 3 = Post-Fault

F131

ENUMERATION: FORCED CONTACT OUTPUT STATE

0 = Disabled, 1 = Energized, 2 = De-energized, 3 = Freeze

F132

ENUMERATION: DEMAND INTERVAL

0 = 5 min, 1 = 10 min, 2 = 15 min, 3 = 20 min, 4 = 30 min, 5 = 60 min

F133 ENUMERATION: PROGRAM STATE

0 = Not Programmed, 1 = Programmed

F134

ENUMERATION: PASS/FAIL

0 = Fail, 1 = OK, 2 = n/a

F135

ENUMERATION: GAIN CALIBRATION

0 = 0x1, 1 = 1x16

F136

ENUMERATION: NUMBER OF OSCILLOGRAPHY RECORDS

0 = 31 x 8 cycles, 1 = 15 x 16 cycles, 2 = 7 x 32 cycles 3 = 3 x 64 cycles, 4 = 1 x 128 cycles

F137

ENUMERATION: USER-PROGRAMMABLE PUSHBUTTON FUNCTION

0 = Disabled, 1 = Self-Reset, 2 = Latched

F138

ENUMERATION: OSCILLOGRAPHY FILE TYPE

0 = Data File, 1 = Configuration File, 2 = Header File

F139

ENUMERATION: DEMAND CALCULATIONS

0 = Thermal Exponential, 1 = Block Interval, 2 = Rolling Demand

F140

ENUMERATION: CURRENT, SENS CURRENT, VOLTAGE, DISABLED

0 = Disabled, 1 = Current 46 A, 2 = Voltage 280 V, 3 = Current 4.6 A, 4 = Current 2 A, 5 = Notched 4.6 A, 6 = Notched 2 A

F141

ENUMERATION: SELF TEST ERRORS

0Any Self Tests1Maintenance Alert10FlexLogic Error Token11Equipment Mismatch13Unit Not Programmed14System Exception15Maintenance Alert16Ethernet Switch Failure17Maintenance Alert18Maintenance Alert20Maintenance Alert21Maintenance Alert22Maintenance Alert23Direct Device Off24Direct Device Off25EEPROM Data Error31Any Major Error33No DSP Interrupts34Unit Not Calibrated35EEPROM Data Error36SRAM Data Error37Program Memory38Watchdog Error39Low On Memory40Prototype Firmware41Module Failure 0142Module Failure 0243Module Failure 0445Module Failure 0546Module Failure 06	bitmask	error
10FlexLogic Error Token11Equipment Mismatch13Unit Not Programmed14System Exception15Maintenance Alert16Ethernet Switch Failure17Maintenance Alert18Maintenance Alert19Maintenance Alert20Maintenance Alert21Maintenance Alert22Maintenance Alert23Direct Device Off29Maintenance Alert30Any Minor Error31Any Major Error32DSP Error33No DSP Interrupts34Unit Not Calibrated35EEPROM Data Error36SRAM Data Error37Program Memory38Watchdog Error39Low On Memory40Prototype Firmware41Module Failure 0142Module Failure 0344Module Failure 0445Module Failure 05	0	Any Self Tests
11Equipment Mismatch13Unit Not Programmed14System Exception15Maintenance Alert16Ethernet Switch Failure17Maintenance Alert18Maintenance Alert19Maintenance Alert20Maintenance Alert21Maintenance Alert27Remote Device Off28Direct Device Off29Maintenance Alert30Any Minor Error31Any Major Error32DSP Error33No DSP Interrupts34Unit Not Calibrated35EEPROM Data Error36SRAM Data Error37Program Memory38Watchdog Error39Low On Memory40Prototype Firmware41Module Failure 0142Module Failure 0243Module Failure 0344Module Failure 05	1	Maintenance Alert
13Unit Not Programmed14System Exception15Maintenance Alert16Ethernet Switch Failure17Maintenance Alert18Maintenance Alert19Maintenance Alert20Maintenance Alert21Maintenance Alert27Remote Device Off28Direct Device Off29Maintenance Alert30Any Minor Error31Any Major Error32DSP Error33No DSP Interrupts34Unit Not Calibrated35EEPROM Data Error36SRAM Data Error37Program Memory38Watchdog Error39Low On Memory40Prototype Firmware41Module Failure 0142Module Failure 0243Module Failure 0344Module Failure 05	10	FlexLogic Error Token
14System Exception14System Exception15Maintenance Alert16Ethernet Switch Failure17Maintenance Alert18Maintenance Alert19Maintenance Alert20Maintenance Alert21Maintenance Alert27Remote Device Off28Direct Device Off29Maintenance Alert30Any Minor Error31Any Major Error32DSP Error33No DSP Interrupts34Unit Not Calibrated35EEPROM Data Error36SRAM Data Error37Program Memory38Watchdog Error39Low On Memory40Prototype Firmware41Module Failure 0142Module Failure 0243Module Failure 0344Module Failure 05	11	Equipment Mismatch
15Maintenance Alert16Ethernet Switch Failure17Maintenance Alert18Maintenance Alert19Maintenance Alert20Maintenance Alert21Maintenance Alert27Remote Device Off28Direct Device Off29Maintenance Alert30Any Minor Error31Any Major Error33No DSP Interrupts34Unit Not Calibrated35EEPROM Data Error36SRAM Data Error37Program Memory38Watchdog Error39Low On Memory40Prototype Firmware41Module Failure 0142Module Failure 0344Module Failure 0445Module Failure 05	13	Unit Not Programmed
16Ethernet Switch Failure17Maintenance Alert18Maintenance Alert19Maintenance Alert20Maintenance Alert21Maintenance Alert27Remote Device Off28Direct Device Off29Maintenance Alert30Any Minor Error31Any Major Error32DSP Error33No DSP Interrupts34Unit Not Calibrated35EEPROM Data Error36SRAM Data Error37Program Memory38Watchdog Error39Low On Memory40Prototype Firmware41Module Failure 0142Module Failure 0243Module Failure 0344Module Failure 05	14	System Exception
17Maintenance Alert18Maintenance Alert19Maintenance Alert20Maintenance Alert21Maintenance Alert27Remote Device Off28Direct Device Off29Maintenance Alert30Any Minor Error31Any Major Error32DSP Error33No DSP Interrupts34Unit Not Calibrated35EEPROM Data Error36SRAM Data Error37Program Memory38Watchdog Error39Low On Memory40Prototype Firmware41Module Failure 0142Module Failure 0344Module Failure 0445Module Failure 05	15	Maintenance Alert
18Maintenance Alert19Maintenance Alert20Maintenance Alert21Maintenance Alert27Remote Device Off28Direct Device Off29Maintenance Alert30Any Minor Error31Any Major Error32DSP Error33No DSP Interrupts34Unit Not Calibrated35EEPROM Data Error36SRAM Data Error37Program Memory38Watchdog Error39Low On Memory40Prototype Firmware41Module Failure 0142Module Failure 0344Module Failure 0445Module Failure 05	16	Ethernet Switch Failure
19Maintenance Alert20Maintenance Alert21Maintenance Alert27Remote Device Off28Direct Device Off29Maintenance Alert30Any Minor Error31Any Major Error32DSP Error33No DSP Interrupts34Unit Not Calibrated35EEPROM Data Error36SRAM Data Error37Program Memory38Watchdog Error39Low On Memory40Prototype Firmware41Module Failure 0142Module Failure 0243Module Failure 0344Module Failure 0445Module Failure 05	17	Maintenance Alert
20Maintenance Alert21Maintenance Alert27Remote Device Off28Direct Device Off29Maintenance Alert30Any Minor Error31Any Major Error32DSP Error33No DSP Interrupts34Unit Not Calibrated35EEPROM Data Error36SRAM Data Error37Program Memory38Watchdog Error39Low On Memory40Prototype Firmware41Module Failure 0142Module Failure 0243Module Failure 0344Module Failure 05	18	Maintenance Alert
21Maintenance Alert27Remote Device Off28Direct Device Off29Maintenance Alert30Any Minor Error31Any Major Error32DSP Error33No DSP Interrupts34Unit Not Calibrated35EEPROM Data Error36SRAM Data Error37Program Memory38Watchdog Error39Low On Memory40Prototype Firmware41Module Failure 0142Module Failure 0243Module Failure 0344Module Failure 0445Module Failure 05	19	Maintenance Alert
27Remote Device Off28Direct Device Off29Maintenance Alert30Any Minor Error31Any Major Error32DSP Error33No DSP Interrupts34Unit Not Calibrated35EEPROM Data Error36SRAM Data Error37Program Memory38Watchdog Error39Low On Memory40Prototype Firmware41Module Failure 0142Module Failure 0243Module Failure 0344Module Failure 05	20	Maintenance Alert
28Direct Device Off29Maintenance Alert30Any Minor Error31Any Major Error32DSP Error33No DSP Interrupts34Unit Not Calibrated35EEPROM Data Error36SRAM Data Error37Program Memory38Watchdog Error39Low On Memory40Prototype Firmware41Module Failure 0142Module Failure 0243Module Failure 0344Module Failure 05	21	Maintenance Alert
29Maintenance Alert30Any Minor Error31Any Major Error32DSP Error33No DSP Interrupts34Unit Not Calibrated35EEPROM Data Error36SRAM Data Error37Program Memory38Watchdog Error39Low On Memory40Prototype Firmware41Module Failure 0142Module Failure 0243Module Failure 0344Module Failure 0445Module Failure 05	27	Remote Device Off
30Any Minor Error31Any Major Error32DSP Error33No DSP Interrupts34Unit Not Calibrated35EEPROM Data Error36SRAM Data Error37Program Memory38Watchdog Error39Low On Memory40Prototype Firmware41Module Failure 0142Module Failure 0243Module Failure 0344Module Failure 0445Module Failure 05	28	Direct Device Off
31Any Major Error32DSP Error33No DSP Interrupts34Unit Not Calibrated35EEPROM Data Error36SRAM Data Error37Program Memory38Watchdog Error39Low On Memory40Prototype Firmware41Module Failure 0142Module Failure 0243Module Failure 0344Module Failure 0445Module Failure 05	29	Maintenance Alert
32DSP Error33No DSP Interrupts34Unit Not Calibrated35EEPROM Data Error36SRAM Data Error37Program Memory38Watchdog Error39Low On Memory40Prototype Firmware41Module Failure 0142Module Failure 0243Module Failure 0344Module Failure 0445Module Failure 05	30	Any Minor Error
33No DSP Interrupts34Unit Not Calibrated35EEPROM Data Error36SRAM Data Error37Program Memory38Watchdog Error39Low On Memory40Prototype Firmware41Module Failure 0142Module Failure 0243Module Failure 0344Module Failure 0445Module Failure 05	31	Any Major Error
34Unit Not Calibrated35EEPROM Data Error36SRAM Data Error37Program Memory38Watchdog Error39Low On Memory40Prototype Firmware41Module Failure 0142Module Failure 0243Module Failure 0344Module Failure 0445Module Failure 05	32	DSP Error
35EEPROM Data Error36SRAM Data Error37Program Memory38Watchdog Error39Low On Memory40Prototype Firmware41Module Failure 0142Module Failure 0243Module Failure 0344Module Failure 0445Module Failure 05	33	No DSP Interrupts
36SRAM Data Error37Program Memory38Watchdog Error39Low On Memory40Prototype Firmware41Module Failure 0142Module Failure 0243Module Failure 0344Module Failure 0445Module Failure 05	34	Unit Not Calibrated
37Program Memory38Watchdog Error39Low On Memory40Prototype Firmware41Module Failure 0142Module Failure 0243Module Failure 0344Module Failure 0445Module Failure 05	35	EEPROM Data Error
38Watchdog Error39Low On Memory40Prototype Firmware41Module Failure 0142Module Failure 0243Module Failure 0344Module Failure 0445Module Failure 05	36	SRAM Data Error
39Low On Memory40Prototype Firmware41Module Failure 0142Module Failure 0243Module Failure 0344Module Failure 0445Module Failure 05	37	Program Memory
40Prototype Firmware41Module Failure 0142Module Failure 0243Module Failure 0344Module Failure 0445Module Failure 05	38	Watchdog Error
41Module Failure 0142Module Failure 0243Module Failure 0344Module Failure 0445Module Failure 05	39	Low On Memory
42Module Failure 0243Module Failure 0344Module Failure 0445Module Failure 05	40	Prototype Firmware
43 Module Failure 03 44 Module Failure 04 45 Module Failure 05	41	Module Failure 01
44 Module Failure 04 45 Module Failure 05	42	Module Failure 02
45 Module Failure 05	43	Module Failure 03
	44	Module Failure 04
46 Module Failure 06	45	Module Failure 05
	46	Module Failure 06

B.4 MEMORY MAPPING

bitmask	error
47	Module Failure 07
48	Module Failure 08
49	Module Failure 09
50	Incompatible H/W
51	Maintenance Alert
52	Maintenance Alert
53	Maintenance Alert
54	Maintenance Alert
55	Maintenance Alert
56	Maintenance Alert

F142

ENUMERATION: EVENT RECORDER ACCESS FILE TYPE

0 = All Record Data, 1 = Headers Only, 2 = Numeric Event Cause

F143

UR_UINT32: 32 BIT ERROR CODE (F141 specifies bit number)

A bit value of 0 = no error, 1 = error

F144 **ENUMERATION: FORCED CONTACT INPUT STATE**

0 = Disabled, 1 = Open, 2 = Closed

F145 **ENUMERATION: ALPHABET LETTER**

bitmask	type	bitmask	type	bitmask	ty
0	null	7	G	14	Ν
1	А	8	Н	15	C
2	В	9	I	16	F
3	С	10	J	17	C
4	D	11	К	18	F
5	Е	12	L	19	S
6	F	13	М	20	Т

type	bitmask	type
Ν	21	U
0	22	V
Р	23	W
Q	24	Х
R	25	Y
S	26	Z
Т		

F146

ENUMERATION: MISCELLANEOUS EVENT CAUSES

bitmask	definition
0	Events Cleared
1	Oscillography Triggered
2	Date/time Changed
3	Default Settings Loaded
4	Test Mode On
5	Test Mode Off
6	Power On
7	Power Off
8	Relay In Service
9	Relay Out Of Service
10	Watchdog Reset
11	Oscillography Clear
12	Reboot Command
13	Led Test Initiated
14	Flash Programming
15	Fault Report Trigger
16	User Programmable Fault Report Trigger
17	Corrupt DSP Program
18	Reload DSP Settings
19	DSP Hardware Error
20	Ethernet Port 1 Offline
21	Ethernet Port 2 Offline
22	Ethernet Port 3 Offline
23	Ethernet Port 4 Offline
24	Ethernet Port 5 Offline
25	Ethernet Port 6 Offline

F147

ENUMERATION: LINE LENGTH UNITS

0 = km, 1 = miles

F148

ENUMERATION: FAULT TYPE

bitmask	fault type	bitmask	
0	NA	6	
1	AG	7	
2	BG	8	
3	CG	9	
4	AB	10	
5	BC	11	

bitmask	fault type
6	AC
7	ABG
8	BCG
9	ACG
10	ABC
11	ABCG

F151 ENUMERATION: RTD SELECTION

bitmask	RTD#	bitmask	RTD#	bitmask	RTD#
0	NONE	17	RTD 17	33	RTD 33
1	RTD 1	18	RTD 18	34	RTD 34
2	RTD 2	19	RTD 19	35	RTD 35
3	RTD 3	20	RTD 20	36	RTD 36
4	RTD 4	21	RTD 21	37	RTD 37
5	RTD 5	22	RTD 22	38	RTD 38
6	RTD 6	23	RTD 23	39	RTD 39
7	RTD 7	24	RTD 24	40	RTD 40
8	RTD 8	25	RTD 25	41	RTD 41
9	RTD 9	26	RTD 26	42	RTD 42
10	RTD 10	27	RTD 27	43	RTD 43
11	RTD 11	28	RTD 28	44	RTD 44
12	RTD 12	29	RTD 29	45	RTD 45
13	RTD 13	30	RTD 30	46	RTD 46
14	RTD 14	31	RTD 31	47	RTD 47
15	RTD 15	32	RTD 32	48	RTD 48
16	RTD 16				

F152

ENUMERATION: SETTING GROUP

0 = Active Group, 1 = Group 1, 2 = Group 2, 3 = Group 3 4 = Group 4, 5 = Group 5, 6 = Group 6

F153

ENUMERATION: DISTANCE TRANSFORMER CONNECTION

bitmask	type	bitmask	type	bitmask	type
0	None	5	Dy9	10	Yd7
1	Dy1	6	Dy11	11	Yd9
2	Dy3	7	Yd1	12	Yd11
3	Dy5	8	Yd3		
4	Dy7	9	Yd5		

F154

ENUMERATION: DISTANCE DIRECTION

0 = Forward, 1 = Reverse, 2 = Non-Directional

F155

ENUMERATION: REMOTE DEVICE STATE

0 = Offline, 1 = Online

F156 ENUMERATION: REMOTE INPUT BIT PAIRS

bitmask	value	bitmask	value
0	NONE	35	UserSt-3
1	DNA-1	36	UserSt-4
2	DNA-2	37	UserSt-5
3	DNA-3	38	UserSt-6
4	DNA-4	39	UserSt-7
5	DNA-5	40	UserSt-8
6	DNA-6	41	UserSt-9
7	DNA-7	42	UserSt-10
8	DNA-8	43	UserSt-11
9	DNA-9	44	UserSt-12
10	DNA-10	45	UserSt-13
11	DNA-11	46	UserSt-14
12	DNA-12	47	UserSt-15
13	DNA-13	48	UserSt-16
14	DNA-14	49	UserSt-17
15	DNA-15	50	UserSt-18
16	DNA-16	51	UserSt-19
17	DNA-17	52	UserSt-20
18	DNA-18	53	UserSt-21
19	DNA-19	54	UserSt-22
20	DNA-20	55	UserSt-23
21	DNA-21	56	UserSt-24
22	DNA-22	57	UserSt-25
23	DNA-23	58	UserSt-26
24	DNA-24	59	UserSt-27
25	DNA-25	60	UserSt-28
26	DNA-26	61	UserSt-29
27	DNA-27	62	UserSt-30
28	DNA-28	63	UserSt-31
29	DNA-29	64	UserSt-32
30	DNA-30	65	Dataset Item 1
31	DNA-31	66	Dataset Item 2
32	DNA-32	67	Dataset Item 3
33	UserSt-1	\downarrow	\downarrow
34	UserSt-2	128	Dataset Item 64

F157

ENUMERATION: BREAKER MODE

0 = 3-Pole, 1 = 1-Pole

F158

ENUMERATION: SCHEME CALIBRATION TEST

0 = Normal, 1 = Symmetry 1, 2 = Symmetry 2, 3 = Delay 1 4 = Delay 2

F159

ENUMERATION: BREAKER AUX CONTACT KEYING

0 = 52a, 1 = 52b, 2 = None

F167

ENUMERATION: AUXILIARY VT CONNECTION TYPE

0 = Vn, 1 = Vag, 2 = Vbg, 3 = Vcg, 4 = Vab, 5 = Vbc, 6 = Vca

ENUMERATION: SIGNAL SOURCE

0 = SRC 1, 1 = SRC 2, 2 = SRC 3, 3 = SRC 4, 4 = SRC 5, 5 = SRC 6

F168

ENUMERATION: INRUSH INHIBIT FUNCTION

0 = Disabled, 1 = Adapt. 2nd, 2 = Trad. 2nd

F170

ENUMERATION: LOW/HIGH OFFSET and GAIN TRANSDUCER INPUT/OUTPUT SELECTION

0 = LOW, 1 = HIGH

F171 ENUMERATION: TRANSDUCER CHANNEL INPUT TYPE

0 = dcmA IN, 1 = Ohms IN, 2 = RTD IN, 3 = dcmA OUT

F172

ENUMERATION: SLOT LETTERS

bitmask	slot	bitmask	slot	bitmask	slot	bitmask	slot
0	F	4	K	8	Р	12	U
1	G	5	L	9	R	13	V
2	Н	6	М	10	S	14	W
3	J	7	Ν	11	Т	15	Х

F173

ENUMERATION: DCMA INPUT/OUTPUT RANGE

bitmask	dcmA input/output range
0	0 to -1 mA
1	0 to 1 mA
2	-1 to 1 mA
3	0 to 5 mA
4	0 to 10 mA
5	0 to 20 mA
6	4 to 20 mA

F174 ENUMERATION: TRANSDUCER RTD INPUT TYPE

0 = 100 Ohm Platinum, 1 = 120 Ohm Nickel,

2 = 100 Ohm Nickel, 3 = 10 Ohm Copper

F175

ENUMERATION: PHASE LETTERS

0 = A, 1 = B, 2 = C

F176

ENUMERATION: SYNCHROCHECK DEAD SOURCE SELECT

bitmask	synchrocheck dead source
0	None
1	LV1 and DV2
2	DV1 and LV2
3	DV1 or DV2
4	DV1 Xor DV2
5	DV1 and DV2

F177

ENUMERATION: COMMUNICATION PORT

0 = None, 1 = COM1-RS485, 2 = COM2-RS485, 3 = Front Panel-RS232, 4 = Network - TCP, 5 = Network - UDP

F178 ENUMERATION: DATA LOGGER RATES

0 = 1 sec, 1 = 1 min, 2 = 5 min, 3 = 10 min, 4 = 15 min, 5 = 20 min, 6 = 30 min, 7 = 60 min, 8 = 15 ms, 9 = 30 ms, 10 = 100 ms, 11 = 500 ms

F179

ENUMERATION: NEGATIVE SEQUENCE DIRECTIONAL OVERCURRENT TYPE

0 = Neg Sequence, 1 = Zero Sequence

F180

ENUMERATION: PHASE/GROUND

0 = PHASE, 1 = GROUND

F181

ENUMERATION: ODD/EVEN/NONE

0 = ODD, 1 = EVEN, 2 = NONE

F183

ENUMERATION: AC INPUT WAVEFORMS

bitmask	definition
0	Off
1	8 samples/cycle
2	16 samples/cycle
3	32 samples/cycle
4	64 samples/cycle

ENUMERATION: REMOTE DEVICE GOOSE DATASET

value	GOOSE dataset
0	Off
1	Gooseln 1
2	Gooseln 2
3	Gooseln 3
4	Gooseln 4
5	Gooseln 5
6	Gooseln 6
7	Gooseln 7
8	Gooseln 8

F185

ENUMERATION: PHASE A,B,C, GROUND SELECTOR

0 = A, 1 = B, 2 = C, 3 = G

F186 ENUMERATION: MEASUREMENT MODE

0 = Phase to Ground, 1 = Phase to Phase

F190

ENUMERATION: SIMULATED KEYPRESS

bitmsk	keypress	bitmsk	keypress
0		23	Reset
	use between real keys	24	User 1
1	1	25	User 2
2	2	26	User 3
3	3	27	User-programmable key 1
4	4	28	User-programmable key 2
5	5	29	User-programmable key 3
6	6	30	User-programmable key 4
7	7	31	User-programmable key 5
8	8	32	User-programmable key 6
9	9	33	User-programmable key 7
10	0	34	User-programmable key 8
11	Decimal Pt	35	User-programmable key 9
12	Plus/Minus	36	User-programmable key 10
13	Value Up	37	User-programmable key 11
14	Value Down	38	User-programmable key 12
15	Message Up	43	User-programmable key 13
16	Message Down	44	User-programmable key 14
17	Message Left	45	User-programmable key 15
18	Message Right	46	User-programmable key 16
19	Menu	47	User 4 (control pushbutton)
20	Help	48	User 5 (control pushbutton)
21	Escape	49	User 6 (control pushbutton)
22	Enter	50	User 7 (control pushbutton)

F192

ENUMERATION: ETHERNET OPERATION MODE

0 = Half-Duplex, 1 = Full-Duplex

F194

ENUMERATION: DNP SCALE

0 = 0.01, 1 = 0.1, 2 = 1, 3 = 10, 4 = 100, 5 = 1000, 6 = 10000, 7 = 100000, 8 = 0.001

F195

ENUMERATION: SINGLE POLE TRIP MODE

0 = Disabled, 1 = 3 Pole Only, 2 = 3 Pole & 1 Pole

F196

ENUMERATION: NEUTRAL DIRECTIONAL OVERCURRENT OPERATING CURRENT

0 = Calculated 3I0, 1 = Measured IG

F199

ENUMERATION: DISABLED/ENABLED/CUSTOM

0 = Disabled, 1 = Enabled, 2 = Custom

F200

TEXT40: 40-CHARACTER ASCII TEXT

20 registers, 16 Bits: 1st Char MSB, 2nd Char. LSB

F201

TEXT8: 8-CHARACTER ASCII PASSCODE

4 registers, 16 Bits: 1st Char MSB, 2nd Char. LSB

F202

TEXT20: 20-CHARACTER ASCII TEXT

10 registers, 16 Bits: 1st Char MSB, 2nd Char. LSB

F203

TEXT16: 16-CHARACTER ASCII TEXT

F204

TEXT80: 80-CHARACTER ASCII TEXT

F205

TEXT12: 12-CHARACTER ASCII TEXT

F206

TEXT6: 6-CHARACTER ASCII TEXT

F207

TEXT4: 4-CHARACTER ASCII TEXT

B

TEXT2: 2-CHARACTER ASCII TEXT

F211 ENUI

В

ENUMERATION: SOURCE SELECTION

0 = None, 1 = SRC 1, 2 = SRC 2, 3 = SRC 3, 4 = SRC 4, 5 = SRC 5, 6 = SRC 6

F220

ENUMERATION: PUSHBUTTON MESSAGE PRIORITY

value	priority
0	Disabled
1	Normal
2	High Priority

F222

ENUMERATION: TEST ENUMERATION

0 = Test Enumeration 0, 1 = Test Enumeration 1

F223 ENUMERATION: L90 DIAGNOSTIC TEST

0 = No Test, 1 = Run Test, 2 = End Test

F226 ENUMERATION: REMOTE INPUT/OUTPUT TRANSFER METHOD

0 = None, 1 = GSSE, 2 = GOOSE

F227 ENUMERATION: RELAY SERVICE STATUS

0 = Unknown, 1 = Relay In Service, 2 = Relay Out Of Service

F230

ENUMERATION: DIRECTIONAL POLARIZING

0 = Voltage, 1 = Current, 2 = Dual

F231 ENUMERATION: POLARIZING VOLTAGE

0 = Calculated V0, 1 = Measured VX

F232

ENUMERATION: CONFIGURABLE GOOSE DATASET ITEMS FOR TRANSMISSION

value	GOOSE dataset item
0	None
1	GGIO1.ST.Ind1.q
2	GGIO1.ST.Ind1.stVal

GOOSE dataset item GGIO1.ST.Ind2.g
GGIO1.ST.Ind2.q GGIO1.ST.Ind2.stVal
↔ GGIO1.ST.Ind128.q
GGIO1.ST.Ind128.stVal
MMXU1.MX.TotW.mag.f
MMXU1.MX.TotVAr.mag.f
MMXU1.MX.TotVA.mag.f
MMXU1.MX.TotPF.mag.f
MMXU1.MX.Hz.mag.f
MMXU1.MX.PPV.phsAB.cVal.mag.f
MMXU1.MX.PPV.phsAB.cVal.ang.f
MMXU1.MX.PPV.phsBC.cVal.mag.
MMXU1.MX.PPV.phsBC.cVal.ang.f
MMXU1.MX.PPV.phsCA.cVal.mag.
MMXU1.MX.PPV.phsCA.cVal.ang.f
MMXU1.MX.PhV.phsA.cVal.mag.f
MMXU1.MX.PhV.phsA.cVal.ang.f
MMXU1.MX.PhV.phsB.cVal.mag.f
MMXU1.MX.PhV.phsB.cVal.ang.f
MMXU1.MX.PhV.phsC.cVal.mag.f
MMXU1.MX.PhV.phsC.cVal.ang.f
MMXU1.MX.A.phsA.cVal.mag.f
MMXU1.MX.A.phsA.cVal.ang.f
MMXU1.MX.A.phsB.cVal.mag.f
MMXU1.MX.A.phsB.cVal.ang.f
MMXU1.MX.A.phsC.cVal.mag.f
MMXU1.MX.A.phsC.cVal.ang.f
MMXU1.MX.A.neut.cVal.mag.f
MMXU1.MX.A.neut.cVal.ang.f
MMXU1.MX.W.phsA.cVal.mag.f
MMXU1.MX.W.phsB.cVal.mag.f
MMXU1.MX.W.phsC.cVal.mag.f
MMXU1.MX.VAr.phsA.cVal.mag.f
MMXU1.MX.VAr.phsB.cVal.mag.f
MMXU1.MX.VAr.phsC.cVal.mag.f
MMXU1.MX.VA.phsA.cVal.mag.f
MMXU1.MX.VA.phsB.cVal.mag.f
MMXU1.MX.VA.phsC.cVal.mag.f
MMXU1.MX.PF.phsA.cVal.mag.f
MMXU1.MX.PF.phsB.cVal.mag.f
MMXU1.MX.PF.phsC.cVal.mag.f
MMXU2.MX.TotW.mag.f
MMXU2.MX.TotVAr.mag.f
°
MMXU2.MX.TotVA.mag.f
MMXU2.MX.TotPF.mag.f
MMXU2.MX.Hz.mag.f
MMXU2.MX.PPV.phsAB.cVal.mag.f
MMXU2.MX.PPV.phsAB.cVal.ang.f
MMXU2.MX.PPV.phsBC.cVal.mag.f
MMXU2.MX.PPV.phsBC.cVal.ang.f
MMXU2.MX.PPV.phsCA.cVal.mag.f

APPENDIX B

value	GOOSE dataset item
305	MMXU2.MX.PhV.phsA.cVal.mag.f
306	MMXU2.MX.PhV.phsA.cVal.ang.f
307	MMXU2.MX.PhV.phsB.cVal.mag.f
308	MMXU2.MX.PhV.phsB.cVal.ang.f
309	MMXU2.MX.PhV.phsC.cVal.mag.f
310	MMXU2.MX.PhV.phsC.cVal.ang.f
311	MMXU2.MX.A.phsA.cVal.mag.f
312	MMXU2.MX.A.phsA.cVal.ang.f
313	MMXU2.MX.A.phsB.cVal.mag.f
314	MMXU2.MX.A.phsB.cVal.ang.f
315	MMXU2.MX.A.phsC.cVal.mag.f
316	MMXU2.MX.A.phsC.cVal.ang.f
317	MMXU2.MX.A.neut.cVal.mag.f
318	MMXU2.MX.A.neut.cVal.ang.f
319	MMXU2.MX.W.phsA.cVal.mag.f
320	MMXU2.MX.W.phsB.cVal.mag.f
320	MMXU2.MX.W.phsC.cVal.mag.f
322	MMXU2.MX.VAr.phsA.cVal.mag.f
323	MMXU2.MX.VAr.phsB.cVal.mag.f
324	MMXU2.MX.VAr.phsC.cVal.mag.f
325	MMXU2.MX.VA.phsA.cVal.mag.f
326	MMXU2.MX.VA.phsB.cVal.mag.f
327	MMXU2.MX.VA.phsC.cVal.mag.f
328	MMXU2.MX.PF.phsA.cVal.mag.f
329	MMXU2.MX.PF.phsB.cVal.mag.f
330	MMXU2.MX.PF.phsC.cVal.mag.f
331	MMXU3.MX.TotW.mag.f
332	MMXU3.MX.TotVAr.mag.f
333	MMXU3.MX.TotVA.mag.f
334	MMXU3.MX.TotPF.mag.f
335	MMXU3.MX.Hz.mag.f
336	MMXU3.MX.PPV.phsAB.cVal.mag.f
337	MMXU3.MX.PPV.phsAB.cVal.ang.f
338	MMXU3.MX.PPV.phsBC.cVal.mag.f
339	MMXU3.MX.PPV.phsBC.cVal.ang.f
340	MMXU3.MX.PPV.phsCA.cVal.mag.f
341	MMXU3.MX.PPV.phsCA.cVal.ang.f
342	MMXU3.MX.PhV.phsA.cVal.mag.f
343	MMXU3.MX.PhV.phsA.cVal.ang.f
344	MMXU3.MX.PhV.phsB.cVal.mag.f
345	MMXU3.MX.PhV.phsB.cVal.ang.f
346	MMXU3.MX.PhV.phsC.cVal.mag.f
347	MMXU3.MX.PhV.phsC.cVal.ang.f
348	MMXU3.MX.A.phsA.cVal.mag.f
349	MMXU3.MX.A.phsA.cVal.ang.f
350	MMXU3.MX.A.phsB.cVal.mag.f
351	MMXU3.MX.A.phsB.cVal.ang.f
352	MMXU3.MX.A.phsC.cVal.mag.f
353	MMXU3.MX.A.phsC.cVal.ang.f
354	MMXU3.MX.A.neut.cVal.mag.f
355	MMXU3.MX.A.neut.cVal.ang.f
356	MMXU3.MX.W.phsA.cVal.mag.f
357	MMXU3.MX.W.phsB.cVal.mag.f
001	min/co.m/.mphob.cval.mag.i

value	GOOSE dataset item
358	MMXU3.MX.W.phsC.cVal.mag.f
359	MMXU3.MX.VAr.phsA.cVal.mag.f
360	MMXU3.MX.VAr.phsB.cVal.mag.f
361	MMXU3.MX.VAr.phsC.cVal.mag.f
362	MMXU3.MX.VA.phsA.cVal.mag.f
363	MMXU3.MX.VA.phsB.cVal.mag.f
364	MMXU3.MX.VA.phsC.cVal.mag.f
365	MMXU3.MX.PF.phsA.cVal.mag.f
366	MMXU3.MX.PF.phsB.cVal.mag.f
367	MMXU3.MX.PF.phsC.cVal.mag.f
368	MMXU4.MX.TotW.mag.f
369	MMXU4.MX.TotVAr.mag.f
370	MMXU4.MX.TotVA.mag.f
370	MMXU4.MX.TotPF.mag.f
371	MMXU4.MX.Hz.mag.f
372	MMXU4.MX.PPV.phsAB.cVal.mag.f
373	MMXU4.MX.PPV.phsAB.cVal.ang.f
374	
	MMXU4.MX.PPV.phsBC.cVal.mag.f
376	MMXU4.MX.PPV.phsBC.cVal.ang.f
377	MMXU4.MX.PPV.phsCA.cVal.mag.f
378	MMXU4.MX.PPV.phsCA.cVal.ang.f
379	MMXU4.MX.PhV.phsA.cVal.mag.f
380	MMXU4.MX.PhV.phsA.cVal.ang.f
381	MMXU4.MX.PhV.phsB.cVal.mag.f
382	MMXU4.MX.PhV.phsB.cVal.ang.f
383	MMXU4.MX.PhV.phsC.cVal.mag.f
384	MMXU4.MX.PhV.phsC.cVal.ang.f
385	MMXU4.MX.A.phsA.cVal.mag.f
386	MMXU4.MX.A.phsA.cVal.ang.f
387	MMXU4.MX.A.phsB.cVal.mag.f
388	MMXU4.MX.A.phsB.cVal.ang.f
389	MMXU4.MX.A.phsC.cVal.mag.f
390	MMXU4.MX.A.phsC.cVal.ang.f
391	MMXU4.MX.A.neut.cVal.mag.f
392	MMXU4.MX.A.neut.cVal.ang.f
393	MMXU4.MX.W.phsA.cVal.mag.f
394	MMXU4.MX.W.phsB.cVal.mag.f
395	MMXU4.MX.W.phsC.cVal.mag.f
396	MMXU4.MX.VAr.phsA.cVal.mag.f
397	MMXU4.MX.VAr.phsB.cVal.mag.f
398	MMXU4.MX.VAr.phsC.cVal.mag.f
399	MMXU4.MX.VA.phsA.cVal.mag.f
400	MMXU4.MX.VA.phsB.cVal.mag.f
401	MMXU4.MX.VA.phsC.cVal.mag.f
402	MMXU4.MX.PF.phsA.cVal.mag.f
403	MMXU4.MX.PF.phsB.cVal.mag.f
404	MMXU4.MX.PF.phsC.cVal.mag.f
405	MMXU5.MX.TotW.mag.f
406	MMXU5.MX.TotVAr.mag.f
407	MMXU5.MX.TotVA.mag.f
408	MMXU5.MX.TotPF.mag.f
409	MMXU5.MX.Hz.mag.f
410	MMXU5.MX.PPV.phsAB.cVal.mag.f

B.4 MEMORY MAPPING

value

GOOSE dataset item

APPENDIX B

value	GOOSE dataset item
411	MMXU5.MX.PPV.phsAB.cVal.ang.f
412	MMXU5.MX.PPV.phsBC.cVal.mag.f
413	MMXU5.MX.PPV.phsBC.cVal.ang.f
414	MMXU5.MX.PPV.phsCA.cVal.mag.f
415	MMXU5.MX.PPV.phsCA.cVal.ang.f
416	MMXU5.MX.PhV.phsA.cVal.mag.f
417	MMXU5.MX.PhV.phsA.cVal.ang.f
418	MMXU5.MX.PhV.phsB.cVal.mag.f
419	MMXU5.MX.PhV.phsB.cVal.ang.f
420	MMXU5.MX.PhV.phsC.cVal.mag.f
421	MMXU5.MX.PhV.phsC.cVal.ang.f
422	MMXU5.MX.A.phsA.cVal.mag.f
423	MMXU5.MX.A.phsA.cVal.ang.f
424	MMXU5.MX.A.phsB.cVal.mag.f
425	MMXU5.MX.A.phsB.cVal.ang.f
426	
	MMXU5.MX.A.phsC.cVal.mag.f
427	MMXU5.MX.A.phsC.cVal.ang.f
428	MMXU5.MX.A.neut.cVal.mag.f
429	MMXU5.MX.A.neut.cVal.ang.f
430	MMXU5.MX.W.phsA.cVal.mag.f
431	MMXU5.MX.W.phsB.cVal.mag.f
432	MMXU5.MX.W.phsC.cVal.mag.f
433	MMXU5.MX.VAr.phsA.cVal.mag.f
434	MMXU5.MX.VAr.phsB.cVal.mag.f
435	MMXU5.MX.VAr.phsC.cVal.mag.f
436	MMXU5.MX.VA.phsA.cVal.mag.f
437	MMXU5.MX.VA.phsB.cVal.mag.f
438	MMXU5.MX.VA.phsC.cVal.mag.f
439	MMXU5.MX.PF.phsA.cVal.mag.f
440	MMXU5.MX.PF.phsB.cVal.mag.f
441	MMXU5.MX.PF.phsC.cVal.mag.f
442	MMXU6.MX.TotW.mag.f
443	MMXU6.MX.TotVAr.mag.f
444	MMXU6.MX.TotVA.mag.f
445	MMXU6.MX.TotPF.mag.f
446	MMXU6.MX.Hz.mag.f
447	MMXU6.MX.PPV.phsAB.cVal.mag.f
448	MMXU6.MX.PPV.phsAB.cVal.ang.f
449	MMXU6.MX.PPV.phsBC.cVal.mag.f
450	MMXU6.MX.PPV.phsBC.cVal.ang.f
451	MMXU6.MX.PPV.phsCA.cVal.mag.f
452	MMXU6.MX.PPV.phsCA.cVal.ang.f
453	MMXU6.MX.PhV.phsA.cVal.mag.f
454	MMXU6.MX.PhV.phsA.cVal.ang.f
455	MMXU6.MX.PhV.phsB.cVal.mag.f
456	MMXU6.MX.PhV.phsB.cVal.ang.f
457	MMXU6.MX.PhV.phsC.cVal.mag.f
458	MMXU6.MX.PhV.phsC.cVal.ang.f
459	MMXU6.MX.A.phsA.cVal.mag.f
460	MMXU6.MX.A.phsA.cVal.ang.f
461	MMXU6.MX.A.phsB.cVal.mag.f
462	MMXU6.MX.A.phsB.cVal.ang.f
463	MMXU6.MX.A.phsC.cVal.mag.f
L	

464 MMXU6.MX.A.phsC.cVal.ang.f 465 MMXU6.MX.A.neut.cVal.mag.f 466 MMXU6.MX.W.phsA.cVal.mag.f 467 MMXU6.MX.W.phsB.cVal.mag.f 468 MMXU6.MX.W.phsB.cVal.mag.f 469 MMXU6.MX.VAr.phsA.cVal.mag.f 470 MMXU6.MX.VAr.phsA.cVal.mag.f 471 MMXU6.MX.VAr.phsB.cVal.mag.f 472 MMXU6.MX.VAr.phsB.cVal.mag.f 473 MMXU6.MX.VA.phsB.cVal.mag.f 474 MMXU6.MX.VA.phsB.cVal.mag.f 475 MMXU6.MX.VA.phsB.cVal.mag.f 476 MMXU6.MX.PF.phsA.cVal.mag.f 477 MMXU6.MX.PF.phsB.cVal.mag.f 478 MMXU6.MX.PF.phsB.cVal.mag.f 479 GGIO4.MX.Anln1.mag.f 480 GGIO4.MX.Anln3.mag.f 481 GGIO4.MX.Anln3.mag.f 482 GGIO4.MX.Anln6.mag.f 483 GGIO4.MX.Anln1.mag.f 484 GGIO4.MX.Anln1.mag.f 485 GGIO4.MX.Anln10.mag.f 486 GGIO4.MX.Anln11.mag.f 490 GGIO4.MX.Anln11.mag.f 491 GGIO4.MX.Anln12.mag.f </th <th>value</th> <th>GOOSE dataset item</th>	value	GOOSE dataset item
466 MMXU6.MX.A.neut.cVal.ang.f 467 MMXU6.MX.W.phsA.cVal.mag.f 468 MMXU6.MX.W.phsB.cVal.mag.f 469 MMXU6.MX.W.phsB.cVal.mag.f 470 MMXU6.MX.VAr.phsB.cVal.mag.f 471 MMXU6.MX.VAr.phsB.cVal.mag.f 472 MMXU6.MX.VAr.phsC.cVal.mag.f 473 MMXU6.MX.VA.phsA.cVal.mag.f 474 MMXU6.MX.VA.phsB.cVal.mag.f 475 MMXU6.MX.VA.phsB.cVal.mag.f 476 MMXU6.MX.PF.phsA.cVal.mag.f 477 MMXU6.MX.PF.phsB.cVal.mag.f 478 MMXU6.MX.PF.phsB.cVal.mag.f 479 GGIO4.MX.AnIn1.mag.f 480 GGIO4.MX.AnIn2.mag.f 481 GGIO4.MX.AnIn5.mag.f 483 GGIO4.MX.AnIn5.mag.f 484 GGIO4.MX.AnIn6.mag.f 485 GGIO4.MX.AnIn10.mag.f 486 GGIO4.MX.AnIn11.mag.f 487 GGIO4.MX.AnIn11.mag.f 488 GGIO4.MX.AnIn11.mag.f 490 GGIO4.MX.AnIn13.mag.f 491 GGIO4.MX.AnIn13.mag.f 492 GGIO4.MX.AnIn14.mag.f <th>464</th> <td>MMXU6.MX.A.phsC.cVal.ang.f</td>	464	MMXU6.MX.A.phsC.cVal.ang.f
467 MMXU6.MX.W.phsA.cVal.mag.f 468 MMXU6.MX.W.phsB.cVal.mag.f 469 MMXU6.MX.W.phsC.cVal.mag.f 470 MMXU6.MX.VAr.phsA.cVal.mag.f 471 MMXU6.MX.VAr.phsB.cVal.mag.f 472 MMXU6.MX.VAr.phsC.cVal.mag.f 473 MMXU6.MX.VA.phsC.cVal.mag.f 474 MMXU6.MX.VA.phsC.cVal.mag.f 475 MMXU6.MX.VA.phsC.cVal.mag.f 476 MMXU6.MX.PF.phsA.cVal.mag.f 477 MMXU6.MX.PF.phsB.cVal.mag.f 478 MMXU6.MX.Anln1.mag.f 480 GGIO4.MX.Anln2.mag.f 481 GGIO4.MX.Anln3.mag.f 482 GGIO4.MX.Anln3.mag.f 483 GGIO4.MX.Anln4.mag.f 484 GGIO4.MX.Anln6.mag.f 485 GGIO4.MX.Anln10.mag.f 486 GGIO4.MX.Anln11.mag.f 487 GGIO4.MX.Anln11.mag.f 488 GGIO4.MX.Anln11.mag.f 490 GGIO4.MX.Anln11.mag.f 491 GGIO4.MX.Anln11.mag.f 492 GGIO4.MX.Anln13.mag.f 493 GGIO4.MX.Anln13.mag.f	465	MMXU6.MX.A.neut.cVal.mag.f
468 MMXU6.MX.W.phsB.cVal.mag.f 469 MMXU6.MX.W.phsC.cVal.mag.f 470 MMXU6.MX.VAr.phsA.cVal.mag.f 471 MMXU6.MX.VAr.phsB.cVal.mag.f 472 MMXU6.MX.VAr.phsC.cVal.mag.f 473 MMXU6.MX.VA.phsA.cVal.mag.f 474 MMXU6.MX.VA.phsB.cVal.mag.f 475 MMXU6.MX.VA.phsB.cVal.mag.f 476 MMXU6.MX.PF.phsA.cVal.mag.f 477 MMXU6.MX.PF.phsB.cVal.mag.f 478 MMXU6.MX.Anln1.mag.f 479 GGIO4.MX.Anln1.mag.f 480 GGIO4.MX.Anln2.mag.f 481 GGIO4.MX.Anln3.mag.f 482 GGIO4.MX.Anln3.mag.f 483 GGIO4.MX.Anln6.mag.f 484 GGIO4.MX.Anln6.mag.f 485 GGIO4.MX.Anln10.mag.f 486 GGIO4.MX.Anln10.mag.f 487 GGIO4.MX.Anln11.mag.f 490 GGIO4.MX.Anln11.mag.f 491 GGIO4.MX.Anln11.mag.f 492 GGIO4.MX.Anln13.mag.f 493 GGIO4.MX.Anln13.mag.f 494 GGIO4.MX.Anln14.mag.f	466	MMXU6.MX.A.neut.cVal.ang.f
469 MMXU6.MX.W.phsC.cVal.mag.f 470 MMXU6.MX.VAr.phsA.cVal.mag.f 471 MMXU6.MX.VAr.phsB.cVal.mag.f 472 MMXU6.MX.VAr.phsC.cVal.mag.f 473 MMXU6.MX.VA.phsA.cVal.mag.f 474 MMXU6.MX.VA.phsB.cVal.mag.f 475 MMXU6.MX.VA.phsB.cVal.mag.f 476 MMXU6.MX.PF.phsA.cVal.mag.f 477 MMXU6.MX.PF.phsB.cVal.mag.f 478 MMXU6.MX.PF.phsC.cVal.mag.f 479 GGIO4.MX.Anln1.mag.f 480 GGIO4.MX.Anln2.mag.f 481 GGIO4.MX.Anln3.mag.f 482 GGIO4.MX.Anln3.mag.f 483 GGIO4.MX.Anln6.mag.f 484 GGIO4.MX.Anln6.mag.f 485 GGIO4.MX.Anln6.mag.f 486 GGIO4.MX.Anln10.mag.f 487 GGIO4.MX.Anln10.mag.f 488 GGIO4.MX.Anln11.mag.f 490 GGIO4.MX.Anln11.mag.f 491 GGIO4.MX.Anln11.mag.f 492 GGIO4.MX.Anln13.mag.f 493 GGIO4.MX.Anln14.mag.f 494 GGIO4.MX.Anln14.mag.f	467	MMXU6.MX.W.phsA.cVal.mag.f
470 MMXU6.MX.VAr.phsA.cVal.mag.f 471 MMXU6.MX.VAr.phsB.cVal.mag.f 472 MMXU6.MX.VAr.phsC.cVal.mag.f 473 MMXU6.MX.VA.phsA.cVal.mag.f 474 MMXU6.MX.VA.phsB.cVal.mag.f 475 MMXU6.MX.VA.phsB.cVal.mag.f 476 MMXU6.MX.VA.phsC.cVal.mag.f 477 MMXU6.MX.PF.phsA.cVal.mag.f 478 MMXU6.MX.PF.phsB.cVal.mag.f 479 GGIO4.MX.AnIn1.mag.f 480 GGIO4.MX.Anln2.mag.f 481 GGIO4.MX.Anln3.mag.f 482 GGIO4.MX.Anln5.mag.f 483 GGIO4.MX.Anln6.mag.f 484 GGIO4.MX.Anln6.mag.f 485 GGIO4.MX.Anln7.mag.f 486 GGIO4.MX.Anln10.mag.f 487 GGIO4.MX.Anln10.mag.f 488 GGIO4.MX.Anln11.mag.f 490 GGIO4.MX.Anln11.mag.f 491 GGIO4.MX.Anln13.mag.f 492 GGIO4.MX.Anln13.mag.f 493 GGIO4.MX.Anln14.mag.f 494 GGIO4.MX.Anln13.mag.f 495 GGIO4.MX.Anln14.mag.f <t< th=""><th>468</th><th>MMXU6.MX.W.phsB.cVal.mag.f</th></t<>	468	MMXU6.MX.W.phsB.cVal.mag.f
471 MMXU6.MX.VAr.phsB.cVal.mag.f 472 MMXU6.MX.VAr.phsC.cVal.mag.f 473 MMXU6.MX.VA.phsA.cVal.mag.f 474 MMXU6.MX.VA.phsB.cVal.mag.f 475 MMXU6.MX.VA.phsC.cVal.mag.f 476 MMXU6.MX.PF.phsA.cVal.mag.f 477 MMXU6.MX.PF.phsA.cVal.mag.f 478 MMXU6.MX.PF.phsC.cVal.mag.f 479 GGIO4.MX.AnIn1.mag.f 480 GGIO4.MX.AnIn2.mag.f 481 GGIO4.MX.AnIn3.mag.f 482 GGIO4.MX.AnIn5.mag.f 483 GGIO4.MX.AnIn5.mag.f 484 GGIO4.MX.AnIn6.mag.f 485 GGIO4.MX.AnIn7.mag.f 486 GGIO4.MX.AnIn7.mag.f 487 GGIO4.MX.AnIn1.mag.f 488 GGIO4.MX.AnIn11.mag.f 490 GGIO4.MX.AnIn11.mag.f 491 GGIO4.MX.AnIn13.mag.f 492 GGIO4.MX.AnIn13.mag.f 493 GGIO4.MX.AnIn13.mag.f 494 GGIO4.MX.AnIn13.mag.f 495 GGIO4.MX.AnIn14.mag.f 496 GGIO4.MX.AnIn17.mag.f 497 <th>469</th> <th>MMXU6.MX.W.phsC.cVal.mag.f</th>	469	MMXU6.MX.W.phsC.cVal.mag.f
472 MMXU6.MX.VAr.phsC.cVal.mag.f 473 MMXU6.MX.VA.phsA.cVal.mag.f 474 MMXU6.MX.VA.phsB.cVal.mag.f 475 MMXU6.MX.VA.phsB.cVal.mag.f 476 MMXU6.MX.VA.phsC.cVal.mag.f 477 MMXU6.MX.PF.phsA.cVal.mag.f 477 MMXU6.MX.PF.phsB.cVal.mag.f 478 MMXU6.MX.PF.phsC.cVal.mag.f 479 GGIO4.MX.AnIn1.mag.f 480 GGIO4.MX.AnIn2.mag.f 481 GGIO4.MX.AnIn3.mag.f 482 GGIO4.MX.AnIn5.mag.f 483 GGIO4.MX.AnIn6.mag.f 484 GGIO4.MX.AnIn7.mag.f 485 GGIO4.MX.AnIn8.mag.f 486 GGIO4.MX.AnIn7.mag.f 487 GGIO4.MX.AnIn10.mag.f 488 GGIO4.MX.AnIn11.mag.f 490 GGIO4.MX.AnIn11.mag.f 491 GGIO4.MX.AnIn13.mag.f 492 GGIO4.MX.AnIn13.mag.f 493 GGIO4.MX.AnIn15.mag.f 494 GGIO4.MX.AnIn15.mag.f 493 GGIO4.MX.AnIn16.mag.f 494 GGIO4.MX.AnIn17.mag.f 495 <th>470</th> <th>MMXU6.MX.VAr.phsA.cVal.mag.f</th>	470	MMXU6.MX.VAr.phsA.cVal.mag.f
473 MMXU6.MX.VA.phsA.cVal.mag.f 474 MMXU6.MX.VA.phsB.cVal.mag.f 475 MMXU6.MX.VA.phsC.cVal.mag.f 476 MMXU6.MX.PF.phsA.cVal.mag.f 477 MMXU6.MX.PF.phsB.cVal.mag.f 477 MMXU6.MX.PF.phsB.cVal.mag.f 478 MMXU6.MX.PF.phsC.cVal.mag.f 479 GGIO4.MX.AnIn1.mag.f 480 GGIO4.MX.AnIn2.mag.f 481 GGIO4.MX.AnIn3.mag.f 482 GGIO4.MX.AnIn5.mag.f 483 GGIO4.MX.AnIn5.mag.f 484 GGIO4.MX.AnIn6.mag.f 485 GGIO4.MX.AnIn7.mag.f 486 GGIO4.MX.AnIn7.mag.f 487 GGIO4.MX.AnIn10.mag.f 488 GGIO4.MX.AnIn10.mag.f 489 GGIO4.MX.AnIn11.mag.f 490 GGIO4.MX.AnIn11.mag.f 491 GGIO4.MX.AnIn13.mag.f 492 GGIO4.MX.AnIn13.mag.f 493 GGIO4.MX.AnIn14.mag.f 493 GGIO4.MX.AnIn15.mag.f 494 GGIO4.MX.AnIn15.mag.f 495 GGIO4.MX.AnIn17.mag.f 496	471	MMXU6.MX.VAr.phsB.cVal.mag.f
474 MMXU6.MX.VA.phsB.cVal.mag.f 475 MMXU6.MX.VA.phsC.cVal.mag.f 476 MMXU6.MX.PF.phsA.cVal.mag.f 477 MMXU6.MX.PF.phsB.cVal.mag.f 478 MMXU6.MX.PF.phsB.cVal.mag.f 479 GGIO4.MX.AnIn1.mag.f 480 GGIO4.MX.AnIn1.mag.f 481 GGIO4.MX.AnIn3.mag.f 482 GGIO4.MX.AnIn3.mag.f 483 GGIO4.MX.AnIn5.mag.f 484 GGIO4.MX.AnIn6.mag.f 485 GGIO4.MX.AnIn7.mag.f 486 GGIO4.MX.AnIn7.mag.f 487 GGIO4.MX.AnIn10.mag.f 488 GGIO4.MX.AnIn10.mag.f 489 GGIO4.MX.AnIn10.mag.f 489 GGIO4.MX.AnIn11.mag.f 490 GGIO4.MX.AnIn11.mag.f 491 GGIO4.MX.AnIn13.mag.f 492 GGIO4.MX.AnIn13.mag.f 493 GGIO4.MX.AnIn15.mag.f 494 GGIO4.MX.AnIn16.mag.f 495 GGIO4.MX.AnIn17.mag.f 496 GGIO4.MX.AnIn17.mag.f 497 GGIO4.MX.AnIn18.mag.f 498 GGIO4	472	MMXU6.MX.VAr.phsC.cVal.mag.f
475 MMXU6.MX.VA.phsC.cVal.mag.f 476 MMXU6.MX.PF.phsA.cVal.mag.f 477 MMXU6.MX.PF.phsB.cVal.mag.f 478 MMXU6.MX.PF.phsB.cVal.mag.f 479 GGIO4.MX.AnIn1.mag.f 480 GGIO4.MX.AnIn1.mag.f 481 GGIO4.MX.AnIn2.mag.f 482 GGIO4.MX.AnIn3.mag.f 483 GGIO4.MX.AnIn5.mag.f 484 GGIO4.MX.AnIn5.mag.f 485 GGIO4.MX.AnIn6.mag.f 486 GGIO4.MX.AnIn7.mag.f 487 GGIO4.MX.AnIn7.mag.f 488 GGIO4.MX.AnIn10.mag.f 489 GGIO4.MX.AnIn10.mag.f 489 GGIO4.MX.AnIn10.mag.f 489 GGIO4.MX.AnIn11.mag.f 490 GGIO4.MX.AnIn11.mag.f 491 GGIO4.MX.AnIn13.mag.f 492 GGIO4.MX.AnIn13.mag.f 493 GGIO4.MX.AnIn14.mag.f 494 GGIO4.MX.AnIn15.mag.f 495 GGIO4.MX.AnIn17.mag.f 496 GGIO4.MX.AnIn17.mag.f 497 GGIO4.MX.AnIn18.mag.f 498 GGIO4.MX.AnI	473	MMXU6.MX.VA.phsA.cVal.mag.f
476 MMXU6.MX.PF.phsA.cVal.mag.f 477 MMXU6.MX.PF.phsB.cVal.mag.f 478 MMXU6.MX.PF.phsC.cVal.mag.f 479 GGIO4.MX.AnIn1.mag.f 480 GGIO4.MX.AnIn1.mag.f 481 GGIO4.MX.AnIn3.mag.f 482 GGIO4.MX.AnIn3.mag.f 483 GGIO4.MX.AnIn5.mag.f 484 GGIO4.MX.AnIn6.mag.f 485 GGIO4.MX.AnIn6.mag.f 486 GGIO4.MX.AnIn7.mag.f 487 GGIO4.MX.AnIn7.mag.f 488 GGIO4.MX.AnIn10.mag.f 489 GGIO4.MX.AnIn10.mag.f 489 GGIO4.MX.AnIn10.mag.f 489 GGIO4.MX.AnIn11.mag.f 490 GGIO4.MX.AnIn13.mag.f 491 GGIO4.MX.AnIn13.mag.f 492 GGIO4.MX.AnIn13.mag.f 493 GGIO4.MX.AnIn13.mag.f 494 GGIO4.MX.AnIn14.mag.f 495 GGIO4.MX.AnIn16.mag.f 494 GGIO4.MX.AnIn17.mag.f 495 GGIO4.MX.AnIn17.mag.f 496 GGIO4.MX.AnIn18.mag.f 497 GGIO4.MX.AnIn19.ma	474	MMXU6.MX.VA.phsB.cVal.mag.f
477 MMXU6.MX.PF.phsB.cVal.mag.f 478 MMXU6.MX.PF.phsC.cVal.mag.f 479 GGIO4.MX.AnIn1.mag.f 480 GGIO4.MX.AnIn2.mag.f 481 GGIO4.MX.AnIn3.mag.f 482 GGIO4.MX.AnIn3.mag.f 483 GGIO4.MX.AnIn5.mag.f 484 GGIO4.MX.AnIn5.mag.f 485 GGIO4.MX.AnIn6.mag.f 486 GGIO4.MX.AnIn7.mag.f 487 GGIO4.MX.AnIn7.mag.f 488 GGIO4.MX.AnIn10.mag.f 489 GGIO4.MX.AnIn11.mag.f 489 GGIO4.MX.AnIn11.mag.f 490 GGIO4.MX.AnIn12.mag.f 491 GGIO4.MX.AnIn13.mag.f 492 GGIO4.MX.AnIn13.mag.f 493 GGIO4.MX.AnIn13.mag.f 494 GGIO4.MX.AnIn13.mag.f 495 GGIO4.MX.AnIn17.mag.f 496 GGIO4.MX.AnIn17.mag.f 497 GGIO4.MX.AnIn18.mag.f 498 GGIO4.MX.AnIn19.mag.f 499 GGIO4.MX.AnIn19.mag.f 499 GGIO4.MX.AnIn19.mag.f 496 GGIO4.MX.AnIn18.mag.f <th>475</th> <th>MMXU6.MX.VA.phsC.cVal.mag.f</th>	475	MMXU6.MX.VA.phsC.cVal.mag.f
478 MMXU6.MX.PF.phsC.cVal.mag.f 479 GGIO4.MX.AnIn1.mag.f 480 GGIO4.MX.AnIn2.mag.f 481 GGIO4.MX.AnIn3.mag.f 482 GGIO4.MX.AnIn3.mag.f 483 GGIO4.MX.AnIn5.mag.f 484 GGIO4.MX.AnIn5.mag.f 485 GGIO4.MX.AnIn6.mag.f 486 GGIO4.MX.AnIn7.mag.f 487 GGIO4.MX.AnIn7.mag.f 488 GGIO4.MX.AnIn7.mag.f 489 GGIO4.MX.AnIn10.mag.f 489 GGIO4.MX.AnIn10.mag.f 489 GGIO4.MX.AnIn11.mag.f 490 GGIO4.MX.AnIn12.mag.f 491 GGIO4.MX.AnIn13.mag.f 492 GGIO4.MX.AnIn13.mag.f 493 GGIO4.MX.AnIn13.mag.f 494 GGIO4.MX.AnIn13.mag.f 495 GGIO4.MX.AnIn15.mag.f 496 GGIO4.MX.AnIn17.mag.f 497 GGIO4.MX.AnIn18.mag.f 498 GGIO4.MX.AnIn19.mag.f 499 GGIO4.MX.AnIn2.mag.f 499 GGIO4.MX.AnIn2.mag.f 499 GGIO4.MX.AnIn2.mag.f <th>476</th> <th>MMXU6.MX.PF.phsA.cVal.mag.f</th>	476	MMXU6.MX.PF.phsA.cVal.mag.f
479 GGIO4.MX.AnIn1.mag.f 480 GGIO4.MX.AnIn2.mag.f 481 GGIO4.MX.AnIn3.mag.f 482 GGIO4.MX.AnIn3.mag.f 483 GGIO4.MX.AnIn5.mag.f 484 GGIO4.MX.AnIn5.mag.f 485 GGIO4.MX.AnIn5.mag.f 486 GGIO4.MX.AnIn7.mag.f 487 GGIO4.MX.AnIn7.mag.f 488 GGIO4.MX.AnIn7.mag.f 489 GGIO4.MX.AnIn10.mag.f 489 GGIO4.MX.AnIn10.mag.f 490 GGIO4.MX.AnIn11.mag.f 491 GGIO4.MX.AnIn12.mag.f 492 GGIO4.MX.AnIn13.mag.f 493 GGIO4.MX.AnIn13.mag.f 494 GGIO4.MX.AnIn15.mag.f 495 GGIO4.MX.AnIn15.mag.f 496 GGIO4.MX.AnIn16.mag.f 497 GGIO4.MX.AnIn17.mag.f 498 GGIO4.MX.AnIn18.mag.f 499 GGIO4.MX.AnIn19.mag.f 498 GGIO4.MX.AnIn19.mag.f 499 GGIO4.MX.AnIn2.mag.f 500 GGIO4.MX.AnIn2.mag.f 501 GGIO4.MX.AnIn2.mag.f	477	MMXU6.MX.PF.phsB.cVal.mag.f
480 GGIO4.MX.AnIn2.mag.f 481 GGIO4.MX.AnIn3.mag.f 482 GGIO4.MX.AnIn3.mag.f 483 GGIO4.MX.AnIn5.mag.f 484 GGIO4.MX.AnIn5.mag.f 485 GGIO4.MX.AnIn5.mag.f 486 GGIO4.MX.AnIn7.mag.f 487 GGIO4.MX.AnIn7.mag.f 488 GGIO4.MX.AnIn9.mag.f 489 GGIO4.MX.AnIn9.mag.f 489 GGIO4.MX.AnIn10.mag.f 490 GGIO4.MX.AnIn11.mag.f 491 GGIO4.MX.AnIn12.mag.f 492 GGIO4.MX.AnIn13.mag.f 493 GGIO4.MX.AnIn13.mag.f 494 GGIO4.MX.AnIn15.mag.f 495 GGIO4.MX.AnIn15.mag.f 494 GGIO4.MX.AnIn16.mag.f 495 GGIO4.MX.AnIn17.mag.f 496 GGIO4.MX.AnIn17.mag.f 497 GGIO4.MX.AnIn18.mag.f 498 GGIO4.MX.AnIn19.mag.f 499 GGIO4.MX.AnIn2.mag.f 499 GGIO4.MX.AnIn2.mag.f 500 GGIO4.MX.AnIn2.mag.f 501 GGIO4.MX.AnIn23.mag.f	478	MMXU6.MX.PF.phsC.cVal.mag.f
481 GGIO4.MX.AnIn3.mag.f 482 GGIO4.MX.AnIn4.mag.f 483 GGIO4.MX.AnIn5.mag.f 484 GGIO4.MX.AnIn5.mag.f 485 GGIO4.MX.AnIn6.mag.f 486 GGIO4.MX.AnIn7.mag.f 487 GGIO4.MX.AnIn7.mag.f 488 GGIO4.MX.AnIn9.mag.f 489 GGIO4.MX.AnIn10.mag.f 489 GGIO4.MX.AnIn10.mag.f 490 GGIO4.MX.AnIn11.mag.f 490 GGIO4.MX.AnIn12.mag.f 491 GGIO4.MX.AnIn13.mag.f 492 GGIO4.MX.AnIn13.mag.f 493 GGIO4.MX.AnIn14.mag.f 494 GGIO4.MX.AnIn15.mag.f 495 GGIO4.MX.AnIn16.mag.f 494 GGIO4.MX.AnIn16.mag.f 495 GGIO4.MX.AnIn17.mag.f 496 GGIO4.MX.AnIn18.mag.f 497 GGIO4.MX.AnIn19.mag.f 498 GGIO4.MX.AnIn2.mag.f 499 GGIO4.MX.AnIn2.mag.f 500 GGIO4.MX.AnIn2.mag.f 501 GGIO4.MX.AnIn2.mag.f 502 GGIO4.MX.AnIn2.mag.f <th>479</th> <th>GGIO4.MX.AnIn1.mag.f</th>	479	GGIO4.MX.AnIn1.mag.f
482 GGIO4.MX.AnIn4.mag.f 483 GGIO4.MX.AnIn5.mag.f 484 GGIO4.MX.AnIn5.mag.f 485 GGIO4.MX.AnIn7.mag.f 486 GGIO4.MX.AnIn7.mag.f 487 GGIO4.MX.AnIn9.mag.f 488 GGIO4.MX.AnIn9.mag.f 489 GGIO4.MX.AnIn10.mag.f 489 GGIO4.MX.AnIn10.mag.f 490 GGIO4.MX.AnIn11.mag.f 491 GGIO4.MX.AnIn12.mag.f 492 GGIO4.MX.AnIn13.mag.f 493 GGIO4.MX.AnIn13.mag.f 494 GGIO4.MX.AnIn15.mag.f 495 GGIO4.MX.AnIn15.mag.f 494 GGIO4.MX.AnIn16.mag.f 495 GGIO4.MX.AnIn16.mag.f 496 GGIO4.MX.AnIn17.mag.f 497 GGIO4.MX.AnIn18.mag.f 498 GGIO4.MX.AnIn19.mag.f 499 GGIO4.MX.AnIn2.mag.f 499 GGIO4.MX.AnIn2.mag.f 500 GGIO4.MX.AnIn21.mag.f 501 GGIO4.MX.AnIn23.mag.f 502 GGIO4.MX.AnIn24.mag.f	480	GGIO4.MX.AnIn2.mag.f
483 GGIO4.MX.AnIn5.mag.f 484 GGIO4.MX.AnIn5.mag.f 485 GGIO4.MX.AnIn7.mag.f 486 GGIO4.MX.AnIn7.mag.f 487 GGIO4.MX.AnIn8.mag.f 488 GGIO4.MX.AnIn9.mag.f 489 GGIO4.MX.AnIn10.mag.f 489 GGIO4.MX.AnIn10.mag.f 489 GGIO4.MX.AnIn11.mag.f 490 GGIO4.MX.AnIn12.mag.f 491 GGIO4.MX.AnIn13.mag.f 492 GGIO4.MX.AnIn13.mag.f 493 GGIO4.MX.AnIn13.mag.f 494 GGIO4.MX.AnIn15.mag.f 495 GGIO4.MX.AnIn15.mag.f 496 GGIO4.MX.AnIn17.mag.f 497 GGIO4.MX.AnIn18.mag.f 498 GGIO4.MX.AnIn19.mag.f 499 GGIO4.MX.AnIn19.mag.f 499 GGIO4.MX.AnIn20.mag.f 499 GGIO4.MX.AnIn2.mag.f 500 GGIO4.MX.AnIn21.mag.f 501 GGIO4.MX.AnIn23.mag.f 502 GGIO4.MX.AnIn24.mag.f	481	GGIO4.MX.AnIn3.mag.f
484 GGIO4.MX.AnIn6.mag.f 485 GGIO4.MX.AnIn7.mag.f 486 GGIO4.MX.AnIn7.mag.f 487 GGIO4.MX.AnIn9.mag.f 488 GGIO4.MX.AnIn9.mag.f 489 GGIO4.MX.AnIn10.mag.f 489 GGIO4.MX.AnIn10.mag.f 490 GGIO4.MX.AnIn12.mag.f 491 GGIO4.MX.AnIn12.mag.f 492 GGIO4.MX.AnIn13.mag.f 493 GGIO4.MX.AnIn14.mag.f 494 GGIO4.MX.AnIn15.mag.f 495 GGIO4.MX.AnIn15.mag.f 496 GGIO4.MX.AnIn17.mag.f 497 GGIO4.MX.AnIn17.mag.f 498 GGIO4.MX.AnIn18.mag.f 499 GGIO4.MX.AnIn19.mag.f 498 GGIO4.MX.AnIn19.mag.f 499 GGIO4.MX.AnIn20.mag.f 499 GGIO4.MX.AnIn20.mag.f 500 GGIO4.MX.AnIn21.mag.f 501 GGIO4.MX.AnIn23.mag.f 502 GGIO4.MX.AnIn24.mag.f	482	GGIO4.MX.AnIn4.mag.f
485 GGIO4.MX.AnIn7.mag.f 486 GGIO4.MX.AnIn8.mag.f 487 GGIO4.MX.AnIn9.mag.f 488 GGIO4.MX.AnIn9.mag.f 489 GGIO4.MX.AnIn10.mag.f 489 GGIO4.MX.AnIn10.mag.f 490 GGIO4.MX.AnIn11.mag.f 491 GGIO4.MX.AnIn12.mag.f 492 GGIO4.MX.AnIn13.mag.f 493 GGIO4.MX.AnIn14.mag.f 494 GGIO4.MX.AnIn15.mag.f 495 GGIO4.MX.AnIn15.mag.f 496 GGIO4.MX.AnIn16.mag.f 497 GGIO4.MX.AnIn17.mag.f 498 GGIO4.MX.AnIn18.mag.f 499 GGIO4.MX.AnIn19.mag.f 498 GGIO4.MX.AnIn12.mag.f 499 GGIO4.MX.AnIn20.mag.f 499 GGIO4.MX.AnIn21.mag.f 500 GGIO4.MX.AnIn23.mag.f 501 GGIO4.MX.AnIn23.mag.f 502 GGIO4.MX.AnIn24.mag.f	483	GGIO4.MX.AnIn5.mag.f
486 GGIO4.MX.AnIn8.mag.f 487 GGIO4.MX.AnIn9.mag.f 488 GGIO4.MX.AnIn10.mag.f 489 GGIO4.MX.AnIn10.mag.f 490 GGIO4.MX.AnIn11.mag.f 491 GGIO4.MX.AnIn12.mag.f 492 GGIO4.MX.AnIn13.mag.f 493 GGIO4.MX.AnIn14.mag.f 494 GGIO4.MX.AnIn15.mag.f 495 GGIO4.MX.AnIn16.mag.f 496 GGIO4.MX.AnIn17.mag.f 497 GGIO4.MX.AnIn18.mag.f 498 GGIO4.MX.AnIn19.mag.f 499 GGIO4.MX.AnIn19.mag.f 499 GGIO4.MX.AnIn19.mag.f 499 GGIO4.MX.AnIn20.mag.f 499 GGIO4.MX.AnIn20.mag.f 500 GGIO4.MX.AnIn21.mag.f 501 GGIO4.MX.AnIn22.mag.f 502 GGIO4.MX.AnIn24.mag.f	484	GGIO4.MX.AnIn6.mag.f
487 GGIO4.MX.AnIn9.mag.f 488 GGIO4.MX.AnIn10.mag.f 488 GGIO4.MX.AnIn10.mag.f 489 GGIO4.MX.AnIn11.mag.f 490 GGIO4.MX.AnIn12.mag.f 491 GGIO4.MX.AnIn12.mag.f 492 GGIO4.MX.AnIn13.mag.f 493 GGIO4.MX.AnIn14.mag.f 494 GGIO4.MX.AnIn15.mag.f 495 GGIO4.MX.AnIn16.mag.f 496 GGIO4.MX.AnIn17.mag.f 497 GGIO4.MX.AnIn18.mag.f 498 GGIO4.MX.AnIn19.mag.f 499 GGIO4.MX.AnIn19.mag.f 499 GGIO4.MX.AnIn20.mag.f 499 GGIO4.MX.AnIn20.mag.f 500 GGIO4.MX.AnIn21.mag.f 501 GGIO4.MX.AnIn22.mag.f 502 GGIO4.MX.AnIn23.mag.f	485	GGIO4.MX.AnIn7.mag.f
488 GGIO4.MX.AnIn10.mag.f 489 GGIO4.MX.AnIn11.mag.f 490 GGIO4.MX.AnIn12.mag.f 491 GGIO4.MX.AnIn12.mag.f 492 GGIO4.MX.AnIn13.mag.f 493 GGIO4.MX.AnIn13.mag.f 494 GGIO4.MX.AnIn15.mag.f 495 GGIO4.MX.AnIn16.mag.f 496 GGIO4.MX.AnIn16.mag.f 497 GGIO4.MX.AnIn18.mag.f 498 GGIO4.MX.AnIn19.mag.f 499 GGIO4.MX.AnIn19.mag.f 500 GGIO4.MX.AnIn20.mag.f 501 GGIO4.MX.AnIn21.mag.f 502 GGIO4.MX.AnIn24.mag.f	486	GGIO4.MX.AnIn8.mag.f
489 GGIO4.MX.AnIn11.mag.f 490 GGIO4.MX.AnIn12.mag.f 491 GGIO4.MX.AnIn13.mag.f 492 GGIO4.MX.AnIn13.mag.f 493 GGIO4.MX.AnIn14.mag.f 494 GGIO4.MX.AnIn15.mag.f 495 GGIO4.MX.AnIn16.mag.f 496 GGIO4.MX.AnIn17.mag.f 497 GGIO4.MX.AnIn17.mag.f 498 GGIO4.MX.AnIn18.mag.f 499 GGIO4.MX.AnIn19.mag.f 499 GGIO4.MX.AnIn19.mag.f 500 GGIO4.MX.AnIn20.mag.f 501 GGIO4.MX.AnIn21.mag.f 502 GGIO4.MX.AnIn23.mag.f	487	GGIO4.MX.AnIn9.mag.f
490 GGIO4.MX.AnIn12.mag.f 491 GGIO4.MX.AnIn13.mag.f 492 GGIO4.MX.AnIn13.mag.f 493 GGIO4.MX.AnIn14.mag.f 494 GGIO4.MX.AnIn15.mag.f 495 GGIO4.MX.AnIn16.mag.f 496 GGIO4.MX.AnIn17.mag.f 497 GGIO4.MX.AnIn17.mag.f 498 GGIO4.MX.AnIn19.mag.f 499 GGIO4.MX.AnIn19.mag.f 500 GGIO4.MX.AnIn20.mag.f 501 GGIO4.MX.AnIn23.mag.f 502 GGIO4.MX.AnIn24.mag.f	488	GGIO4.MX.AnIn10.mag.f
491 GGIO4.MX.AnIn13.mag.f 492 GGIO4.MX.AnIn13.mag.f 493 GGIO4.MX.AnIn14.mag.f 493 GGIO4.MX.AnIn15.mag.f 494 GGIO4.MX.AnIn16.mag.f 495 GGIO4.MX.AnIn17.mag.f 496 GGIO4.MX.AnIn17.mag.f 497 GGIO4.MX.AnIn18.mag.f 498 GGIO4.MX.AnIn19.mag.f 499 GGIO4.MX.AnIn20.mag.f 500 GGIO4.MX.AnIn21.mag.f 501 GGIO4.MX.AnIn23.mag.f 502 GGIO4.MX.AnIn24.mag.f	489	GGIO4.MX.AnIn11.mag.f
492 GGIO4.MX.AnIn14.mag.f 493 GGIO4.MX.AnIn15.mag.f 494 GGIO4.MX.AnIn15.mag.f 495 GGIO4.MX.AnIn16.mag.f 496 GGIO4.MX.AnIn17.mag.f 497 GGIO4.MX.AnIn18.mag.f 498 GGIO4.MX.AnIn19.mag.f 499 GGIO4.MX.AnIn20.mag.f 499 GGIO4.MX.AnIn20.mag.f 500 GGIO4.MX.AnIn21.mag.f 501 GGIO4.MX.AnIn23.mag.f 502 GGIO4.MX.AnIn24.mag.f	490	GGIO4.MX.AnIn12.mag.f
493 GGIO4.MX.AnIn15.mag.f 494 GGIO4.MX.AnIn15.mag.f 495 GGIO4.MX.AnIn17.mag.f 496 GGIO4.MX.AnIn17.mag.f 497 GGIO4.MX.AnIn18.mag.f 498 GGIO4.MX.AnIn19.mag.f 499 GGIO4.MX.AnIn19.mag.f 499 GGIO4.MX.AnIn20.mag.f 500 GGIO4.MX.AnIn21.mag.f 501 GGIO4.MX.AnIn23.mag.f 502 GGIO4.MX.AnIn24.mag.f	491	GGIO4.MX.AnIn13.mag.f
494 GGIO4.MX.AnIn16.mag.f 495 GGIO4.MX.AnIn17.mag.f 496 GGIO4.MX.AnIn17.mag.f 497 GGIO4.MX.AnIn19.mag.f 498 GGIO4.MX.AnIn19.mag.f 499 GGIO4.MX.AnIn20.mag.f 499 GGIO4.MX.AnIn21.mag.f 500 GGIO4.MX.AnIn22.mag.f 501 GGIO4.MX.AnIn23.mag.f 502 GGIO4.MX.AnIn24.mag.f	492	GGIO4.MX.AnIn14.mag.f
495 GGIO4.MX.AnIn17.mag.f 496 GGIO4.MX.AnIn18.mag.f 497 GGIO4.MX.AnIn19.mag.f 498 GGIO4.MX.AnIn20.mag.f 499 GGIO4.MX.AnIn21.mag.f 500 GGIO4.MX.AnIn22.mag.f 501 GGIO4.MX.AnIn23.mag.f 502 GGIO4.MX.AnIn24.mag.f	493	GGIO4.MX.AnIn15.mag.f
496 GGIO4.MX.AnIn18.mag.f 497 GGIO4.MX.AnIn19.mag.f 498 GGIO4.MX.AnIn20.mag.f 499 GGIO4.MX.AnIn21.mag.f 500 GGIO4.MX.AnIn21.mag.f 501 GGIO4.MX.AnIn23.mag.f 502 GGIO4.MX.AnIn24.mag.f	494	GGIO4.MX.AnIn16.mag.f
497 GGIO4.MX.AnIn19.mag.f 498 GGIO4.MX.AnIn20.mag.f 499 GGIO4.MX.AnIn21.mag.f 500 GGIO4.MX.AnIn22.mag.f 501 GGIO4.MX.AnIn23.mag.f 502 GGIO4.MX.AnIn24.mag.f	495	GGIO4.MX.AnIn17.mag.f
498 GGIO4.MX.AnIn20.mag.f 499 GGIO4.MX.AnIn21.mag.f 500 GGIO4.MX.AnIn22.mag.f 501 GGIO4.MX.AnIn23.mag.f 502 GGIO4.MX.AnIn24.mag.f	496	GGIO4.MX.AnIn18.mag.f
499 GGIO4.MX.AnIn21.mag.f 500 GGIO4.MX.AnIn22.mag.f 501 GGIO4.MX.AnIn23.mag.f 502 GGIO4.MX.AnIn24.mag.f	497	GGIO4.MX.AnIn19.mag.f
500 GGIO4.MX.AnIn22.mag.f 501 GGIO4.MX.AnIn23.mag.f 502 GGIO4.MX.AnIn24.mag.f	498	GGIO4.MX.AnIn20.mag.f
501 GGIO4.MX.AnIn23.mag.f 502 GGIO4.MX.AnIn24.mag.f	499	GGIO4.MX.AnIn21.mag.f
502 GGIO4.MX.AnIn24.mag.f	500	GGIO4.MX.AnIn22.mag.f
	501	GGIO4.MX.AnIn23.mag.f
503 GGIO4.MX.AnIn25.mag.f	502	GGIO4.MX.AnIn24.mag.f
	503	GGIO4.MX.AnIn25.mag.f
504 GGIO4.MX.AnIn26.mag.f	504	GGIO4.MX.AnIn26.mag.f
505 GGIO4.MX.AnIn27.mag.f	505	GGIO4.MX.AnIn27.mag.f
506 GGIO4.MX.AnIn28.mag.f	506	GGIO4.MX.AnIn28.mag.f
507 GGIO4.MX.AnIn29.mag.f	507	GGIO4.MX.AnIn29.mag.f
508 GGIO4.MX.AnIn30.mag.f	508	GGIO4.MX.AnIn30.mag.f
509 GGIO4.MX.AnIn31.mag.f	509	GGIO4.MX.AnIn31.mag.f
510 GGIO4.MX.AnIn32.mag.f	510	GGIO4.MX.AnIn32.mag.f

ENUMERATION: CONFIGURABLE GOOSE DATASET ITEMS FOR RECEPTION

value	GOOSE dataset item
0	None
1	GGIO3.ST.Ind1.q
2	GGIO3.ST.Ind1.stVal
3	GGIO3.ST.Ind2.q
4	GGIO3.ST.Ind2.stVal
\downarrow	\downarrow
127	GGIO1.ST.Ind64q
128	GGIO1.ST.Ind64.stVal
129	GGIO3.MX.AnIn1.mag.f
130	GGIO3.MX.AnIn2.mag.f
131	GGIO3.MX.AnIn3.mag.f
132	GGIO3.MX.AnIn4.mag.f
133	GGIO3.MX.AnIn5.mag.f
134	GGIO3.MX.AnIn6.mag.f
135	GGIO3.MX.AnIn7.mag.f
136	GGIO3.MX.AnIn8.mag.f
137	GGIO3.MX.AnIn9.mag.f
138	GGIO3.MX.AnIn10.mag.f
139	GGIO3.MX.AnIn11.mag.f
140	GGIO3.MX.AnIn12.mag.f
141	GGIO3.MX.AnIn13.mag.f
142	GGIO3.MX.AnIn14.mag.f
143	GGIO3.MX.AnIn15.mag.f
144	GGIO3.MX.AnIn16.mag.f

F234

ENUMERATION: WATTMETRIC GROUND FAULT VOLTAGE

value	voltage
0	Calculated VN
1	Measured VX

F235

ENUMERATION: WATTMETRIC GROUND FAULT CURRENT

value	current
0	Calculated IN
1	Measured IG

F237

ENUMERATION: REAL TIME CLOCK MONTH

value	month
0	January
1	February
2	March
3	April
4	Мау

value	month
5	June
6	July
7	August
8	September
9	October
10	November
11	December

F238

ENUMERATION: REAL TIME CLOCK DAY

value	day
0	Sunday
1	Monday
2	Tuesday
3	Wednesday
4	Thursday
5	Friday
6	Saturday

F239

ENUMERATION: REAL TIME CLOCK DAYLIGHT SAVINGS TIME START DAY INSTANCE

value	instance
0	First
1	Second
2	Third
3	Fourth
4	Last

F260

ENUMERATION: DATA LOGGER MODE

0 = Continuous, 1 = Trigger

F239

ENUMERATION: FAULT REPORT SYSTEM Z0 MAGNITUDE

value	magnitude
0	None
1	10
2	V0

F300

UR_UINT16: FLEXLOGIC[™] BASE TYPE (6-bit type)

The FlexLogic[™] BASE type is 6 bits and is combined with a 9 bit descriptor and 1 bit for protection element to form a 16 bit value. The combined bits are of the form: PTTTTTTDDDDDDDDD, where P bit if set, indicates that the FlexLogic[™] type is associated with a protection element state and T represents bits for the BASE type, and D represents bits for the descriptor.

The values in square brackets indicate the base type with P prefix [PTTTTTT] and the values in round brackets indicate the descriptor range.

[0] Off(0) - this is boolean FALSE value [0] On (1) - this is boolean TRUE value [2] CONTACT INPUTS (1 to 96) [3] CONTACT INPUTS OFF (1 to 96) [4] VIRTUAL INPUTS (1 to 64) [6] VIRTUAL OUTPUTS (1 to 96) [10] CONTACT OUTPUTS VOLTAGE DETECTED (1 to 64) [11] CONTACT OUTPUTS VOLTAGE OFF DETECTED (1 to 64) [12] CONTACT OUTPUTS CURRENT DETECTED (1 to 64) [13] CONTACT OUTPUTS CURRENT OFF DETECTED (1 to 64) [14] REMOTE INPUTS (1 to 32) [28] INSERT (via keypad only) [32] END [34] NOT (1 INPUT) [36] 2 INPUT XOR (0) [38] LATCH SET/RESET (2 inputs) [40] OR (2 to 16 inputs) [42] AND (2 to 16 inputs) [44] NOR (2 to 16 inputs) [46] NAND (2 to 16 inputs) [48] TIMER (1 to 32) [50] ASSIGN VIRTUAL OUTPUT (1 to 96) [52] SELF-TEST ERROR (see F141 for range) [56] ACTIVE SETTING GROUP (1 to 6) [62] MISCELLANEOUS EVENTS (see F146 for range) [64 to 127] ELEMENT STATES

F400

UR_UINT16: CT/VT BANK SELECTION

bitmask	bank selection
0	Card 1 Contact 1 to 4
1	Card 1 Contact 5 to 8
2	Card 2 Contact 1 to 4
3	Card 2 Contact 5 to 8
4	Card 3 Contact 1 to 4
5	Card 3 Contact 5 to 8

F491 ENUMERATION: ANALOG INPUT MODE

0 = Default Value, 1 = Last Known

F500 UR_UINT16: PACKED BITFIELD

First register indicates input/output state with bits 0 (MSB) to 15 (LSB) corresponding to input/output state 1 to 16. The second register indicates input/output state with bits 0 to 15 corresponding to

input/output state 17 to 32 (if required) The third register indicates input/output state with bits 0 to 15 corresponding to input/output state 33 to 48 (if required). The fourth register indicates input/output state with bits 0 to 15 corresponding to input/output state 49 to 64 (if required).

The number of registers required is determined by the specific data item. A bit value of 0 = Off and 1 = On.

F501 UR_UINT16: LED STATUS

Low byte of register indicates LED status with bit 0 representing the top LED and bit 7 the bottom LED. A bit value of 1 indicates the LED is on, 0 indicates the LED is off.

F502

BITFIELD: ELEMENT OPERATE STATES

Each bit contains the operate state for an element. See the F124 format code for a list of element IDs. The operate bit for element ID X is bit [X mod 16] in register [X/16].

F504

BITFIELD: 3-PHASE ELEMENT STATE

bitmask	element state
0	Pickup
1	Operate
2	Pickup Phase A
3	Pickup Phase B
4	Pickup Phase C
5	Operate Phase A
6	Operate Phase B
7	Operate Phase C

F505 BITFIELD: CONTACT OUTPUT STATE

0 = Contact State, 1 = Voltage Detected, 2 = Current Detected

F506| BITFIELD: SINGLE-PHASE ELEMENT STATE

0 = Pickup, 1 = Operate

F507

BITFIELD: COUNTER ELEMENT STATE

0 = Count Greater Than, 1 = Count Equal To, 2 = Count Less Than

APPENDIX B

F508

BITFIELD: DISTANCE ELEMENT STATE

bitmask	distance element state
0	Pickup
1	Operate
2	Pickup AB
3	Pickup BC
4	Pickup CA
5	Operate AB
6	Operate BC
7	Operate CA
8	Timed
9	Operate IAB
10	Operate IBC
11	Operate ICA

F509

BITFIELD: SIMPLE ELEMENT STATE

0 = Operate

F510 BITFIELD: 87L ELEMENT STATE

bitmask	87L Element State
0	Operate A
1	Operate B
2	Operate C
3	Received DTT
4	Operate
5	Key DTT
6	PFLL FAIL
7	PFLL OK
8	Channel 1 FAIL
9	Channel 2 FAIL
10	Channel 1 Lost Packet
11	Channel 2 Lost Packet
12	Channel 1 CRC Fail
13	Channel 2 CRC Fail

F511

BITFIELD: 3-PHASE SIMPLE ELEMENT STATE

0 = Operate, 1 = Operate A, 2 = Operate B, 3 = Operate C

F513 ENUM

ENUMERATION: POWER SWING MODE

0 = Two Step, 1 = Three Step

F514 ENUMERATION: POWER SWING TRIP MODE

0 = Delayed, 1 = Early

F515

ENUMERATION ELEMENT INPUT MODE

0 = Signed, 1 = Absolute

F516

ENUMERATION ELEMENT COMPARE MODE

0 = Level, 1 = Delta

F517

ENUMERATION: ELEMENT DIRECTION OPERATION

0 = Over, 1 = Under

F518

ENUMERATION: FLEXELEMENT™ UNITS

0 = Milliseconds, 1 = Seconds, 2 = Minutes

F519

ENUMERATION: NON-VOLATILE LATCH

0 = Reset-Dominant, 1 = Set-Dominant

F521

ENUMERATION: GROUND DISTANCE POLARIZING CURRENT

0 = Zero-Sequence; 1 = Negative-Sequence

F522

ENUMERATION: TRANSDUCER DCMA OUTPUT RANGE

0 = -1 to 1 mA; 1 = 0 to 1 mA; 2 = 4 to 20 mA

F523

ENUMERATION: DNP OBJECTS 20, 22, AND 23 DEFAULT VARIATION

bitmask	default variation
0	1
1	2
2	5
3	6

F524

ENUMERATION: DNP OBJECT 21 DEFAULT VARIATION

bitmask	Default Variation		
0	1		
1	2		
2	9		
3	10		

ENUMERATION: DNP OBJECT 32 DEFAULT VARIATION

bitmask	default variation
0	1
1	2
2	3
3	4
4	5
5	7

F530

 ${f R}$

ENUMERATION: FRONT PANEL INTERFACE KEYPRESS

value	keypress	1	value	keypress	1	value	keypress
0	None		15	3		33	User PB 3
1	Menu		16	Enter		34	User PB 4
2	Message Up		17	Message Down		35	User PB 5
3	7	-	18	0	-	36	User PB 6
4	8		19	Decimal		37	User PB 7
5	9		20	+/		38	User PB 8
6	Help		21	Value Up		39	User PB 9
7	Message Left		22	Value Down		40	User PB 10
8	4		23	Reset		41	User PB 11
9	5		24	User 1		42	User PB 12
10	6		25	User 2		44	User 4
11	Escape		26	User 3		45	User 5
12	Message Right		31	User PB 1		46	User 6
13	1	1	32	User PB 2	1	47	User 7
14	2	1			-		

3 4 5 6 7 8 9 10 11 12

F531 **ENUMERATION: LANGUAGE**

0 = English, 1 = French, 2 = Chinese, 3 = Russian

F540 **ENUMERATION: PMU POST-FILTER**

0 = None, 1 = Symm-3-Point, 2 = Symm-5-Point, 3 = Symm-7-Point

F542 **ENUMERATION: PMU TRIGGERING MODE**

0 = Automatic Overwrite, 1 = Protected

F543

ENUMERATION: PMU PHASORS

value	phasor
0	Off
1	Va
2	Vb
3	Vc
4	Vx
5	la
6	lb
7	lc

value	phasor
8	lg
9	V_1
10	V_2
11	V_0
12	I_1
13	I_2
14	I_0

F544

ENUMERATION: PMU RECORDING/REPORTING RATE

value	rate
0	1/second
1	2/second
2	5/second
3	10/second
4	12/second
5	15/second

value	rate
6	20second
7	25/second
8	30/second
9	50/second
10	60/second

F545 **ENUMERATION: PMU COM PORT TYPE**

0 = Network, 1 = RS485, 2 = Dir Comm Ch1, 3 = Dir Comm Ch2

F546

ENUMERATION: PMU REPORTING STYLE

0 = Polar, 1 = Rectangular

F547

ENUMERATION: PMU REPORTING FORMAT

0 = Integer, 1 = Floating

F600 UR_UINT16: FLEXANALOG PARAMETER

Corresponds to the modbus address of the value used when this parameter is selected. Only certain values may be used as Flex-Analogs (basically all metering quantities used in protection).

The IEC 61850 standard is the result of electric utilities and vendors of electronic equipment to produce standardized communications systems. IEC 61850 is a series of standards describing client/server and peer-to-peer communications, substation design and configuration, testing, environmental and project standards. The complete set includes:

- IEC 61850-1: Introduction and overview
- IEC 61850-2: Glossary
- IEC 61850-3: General requirements
- IEC 61850-4: System and project management
- IEC 61850-5: Communications and requirements for functions and device models
- IEC 61850-6: Configuration description language for communication in electrical substations related to IEDs
- IEC 61850-7-1: Basic communication structure for substation and feeder equipment Principles and models
- IEC 61850-7-2: Basic communication structure for substation and feeder equipment Abstract communication service interface (ACSI)
- IEC 61850-7-3: Basic communication structure for substation and feeder equipment Common data classes
- IEC 61850-7-4: Basic communication structure for substation and feeder equipment Compatible logical node classes and data classes
- IEC 61850-8-1: Specific Communication Service Mapping (SCSM) Mappings to MMS (ISO 9506-1 and ISO 9506-2) and to ISO/IEC 8802-3
- IEC 61850-9-1: Specific Communication Service Mapping (SCSM) Sampled values over serial unidirectional multidrop point to point link
- IEC 61850-9-2: Specific Communication Service Mapping (SCSM) Sampled values over ISO/IEC 8802-3
- IEC 61850-10: Conformance testing

These documents can be obtained from the IEC (<u>http://www.iec.ch</u>). It is strongly recommended that all those involved with any IEC 61850 implementation obtain this document set.

C.1.2 COMMUNICATION PROFILES

IEC 61850 specifies the use of the Manufacturing Message Specification (MMS) at the upper (application) layer for transfer of real-time data. This protocol has been in existence for several of years and provides a set of services suitable for the transfer of data within a substation LAN environment. Actual MMS protocol services are mapped to IEC 61850 abstract services in IEC 61850-8-1.

The L90 relay supports IEC 61850 server services over both TCP/IP and TP4/CLNP (OSI) communication protocol stacks. The TP4/CLNP profile requires the L90 to have a network address or Network Service Access Point (NSAP) to establish a communication link. The TCP/IP profile requires the L90 to have an IP address to establish communications. These addresses are located in the **SETTINGS** \Rightarrow **PRODUCT SETUP** \Rightarrow **COMMUNICATIONS** \Rightarrow **NETWORK** menu. Note that the L90 supports IEC 61850 over the TP4/CLNP or TCP/IP stacks, and also operation over both stacks simultaneously. It is possible to have up to five simultaneous connections (in addition to DNP and Modbus/TCP (non-IEC 61850) connections).

- Client/server: This is a connection-oriented type of communication. The connection is initiated by the client, and communication activity is controlled by the client. IEC 61850 clients are often substation computers running HMI programs or SOE logging software. Servers are usually substation equipment such as protection relays, meters, RTUs, transformer tap changers, or bay controllers.
- **Peer-to-peer**: This is a non-connection-oriented, high speed type of communication usually between substation equipment such as protection relays. GSSE and GOOSE are methods of peer-to-peer communication.
- Substation configuration language (SCL): A substation configuration language is a number of files used to describe the configuration of substation equipment. Each configured device has an *IEC Capability Description* (ICD) file. The substation single line information is stored in a *System Specification Description* (SSD) file. The entire substation configuration is stored in a *Substation Configuration Description* (SCD) file. The SCD file is the combination of the individual ICD files and the SSD file.

IEC 61850 defines an object-oriented approach to data and services. An IEC 61850 *physical device* can contain one or more *logical device*(s). Each logical device can contain many *logical nodes*. Each logical node can contain many *data objects*. Each data object is composed of *data attributes* and *data attribute components*. Services are available at each level for performing various functions, such as reading, writing, control commands, and reporting.

Each L90 IED represents one IEC 61850 physical device. The physical device contains one logical device, and the logical device contains many logical nodes. The logical node LPHD1 contains information about the L90 IED physical device. The logical node LLN0 contains information about the L90 IED logical device.

C.2.2 GGIO1: DIGITAL STATUS VALUES

The GGIO1 logical node is available in the L90 to provide access to as many 128 digital status points and associated timestamps and quality flags. The data content must be configured before the data can be used. GGIO1 provides digital status points for access by clients.

It is intended that clients use GGIO1 in order to access digital status values from the L90. Configuration settings are provided to allow the selection of the number of digital status indications available in GGIO1 (8 to 128), and to allow the choice of the L90 FlexLogic[™] operands that drive the status of the GGIO1 status indications. Clients can utilize the IEC 61850 buffered and unbuffered reporting features available from GGIO1 in order to build sequence of events (SOE) logs and HMI display screens. Buffered reporting should generally be used for SOE logs since the buffering capability reduces the chances of missing data state changes. Unbuffered reporting should generally be used for local status display.

C.2.3 GGIO2: DIGITAL CONTROL VALUES

The GGIO2 logical node is available to provide access to the L90 virtual inputs. Virtual inputs are single-point control (binary) values that can be written by clients. They are generally used as control inputs. GGIO2 provides access to the virtual inputs through the IEC 61850 standard control model (ctlModel) services:

- Status only
- Direct control with normal security
- SBO control with normal security

Configuration settings are available to select the control model for each point. Each virtual input used through GGIO2 should have its **VIRTUAL INPUT 1(64) FUNCTION** setting programmed as "Enabled" and its corresponding **GGIO2 CF SPSCO1(64) CTLMODEL** setting programmed to the appropriate control configuration.

C.2.4 GGIO3: DIGITAL STATUS AND ANALOG VALUES FROM RECEIVED GOOSE DATA

The GGIO3 logical node is available to provide access for clients to values received via configurable GOOSE messages. The values of the digital status indications and analog values in GGIO3 originate in GOOSE messages sent from other devices.

C.2.5 GGIO4: GENERIC ANALOG MEASURED VALUES

The GGIO4 logical node provides access to as many as 32 analog value points, as well as associated timestamps and quality flags. The data content must be configured before the data can be used. GGIO4 provides analog values for access by clients.

It is intended that clients use GGIO4 to access generic analog values from the L90. Configuration settings allow the selection of the number of analog values available in GGIO4 (4 to 32) and the choice of the FlexAnalog[™] values that determine the value of the GGIO4 analog inputs. Clients can utilize polling or the IEC 61850 unbuffered reporting feature available from GGIO4 in order to obtain the analog values provided by GGIO4.

C.2.6 MMXU: ANALOG MEASURED VALUES

A limited number of measured analog values are available through the MMXU logical nodes.

Each MMXU logical node provides data from a L90 current and voltage source. There is one MMXU available for each configurable source (programmed in the SETTINGS \Rightarrow SYSTEM SETUP \Rightarrow SIGNAL SOURCES menu). MMXU1 provides data from L90 source 1, and MMXU2 provides data from L90 source 2.

MMXU data is provided in two forms: instantaneous and deadband. The instantaneous values are updated every time a read operation is performed by a client. The deadband values are calculated as described in IEC 61850 parts 7-1 and 7-3. The selection of appropriate deadband settings for the L90 is described in chapter 5 of this manual.

IEC 61850 buffered and unbuffered reporting capability is available in all MMXU logical nodes. MMXUx logical nodes provide the following data for each source:

- MMXU1.MX.TotW: three-phase real power
- MMXU1.MX.TotVAr: three-phase reactive power
- MMXU1.MX.TotVA: three-phase apparent power
- MMXU1.MX.TotPF: three-phase power factor
- MMXU1.MX.Hz: frequency
- MMXU1.MX.PPV.phsAB: phase AB voltage magnitude and angle
- MMXU1.MX.PPV.phsBC: phase BC voltage magnitude and angle
- MMXU1.MX.PPV.phsCA: Phase CA voltage magnitude and angle
- MMXU1.MX.PhV.phsA: phase AG voltage magnitude and angle
- MMXU1.MX.PhV.phsB: phase BG voltage magnitude and angle
- MMXU1.MX.PhV.phsC: phase CG voltage magnitude and angle
- MMXU1.MX.A.phsA: phase A current magnitude and angle
- MMXU1.MX.A.phsB: phase B current magnitude and angle
- MMXU1.MX.A.phsC: phase C current magnitude and angle
- MMXU1.MX.A.neut: ground current magnitude and angle
- MMXU1.MX.W.phsA: phase A real power
- MMXU1.MX.W.phsB: phase B real power
- MMXU1.MX.W.phsC: phase C real power
- MMXU1.MX.VAr.phsA: phase A reactive power
- MMXU1.MX.VAr.phsB: phase B reactive power
- MMXU1.MX.VAr.phsC: phase C reactive power
- MMXU1.MX.VA.phsA: phase A apparent power
- MMXU1.MX.VA.phsB: phase B apparent power
- MMXU1.MX.VA.phsC: phase C apparent power
- MMXU1.MX.PF.phsA: phase A power factor
- MMXU1.MX.PF.phsB: phase B power factor
- MMXU1.MX.PF.phsC: phase C power factor

C.2.7 PROTECTION AND OTHER LOGICAL NODES

The following list describes the protection elements for all UR-series relays. The L90 relay will contain a subset of protection elements from this list.

PDIF: bus differential, transformer instantaneous differential, transformer percent differential

C.2 SERVER DATA ORGANIZATION

- PDIS: phase distance, ground distance
- PIOC: phase instantaneous overcurrent, neutral instantaneous overcurrent, ground instantaneous overcurrent, negative-sequence instantaneous overcurrent.
- PTOC: phase time overcurrent, neutral time overcurrent, ground time overcurrent, negative-sequence time overcurrent, neutral directional overcurrent, negative-sequence directional overcurrent
- PTUV: phase undervoltage, auxiliary undervoltage, third harmonic neutral undervoltage
- PTOV: phase overvoltage, neutral overvoltage, auxiliary overvoltage, negative sequence overvoltage
- RBRF: breaker failure
- RREC: autoreclosure
- RPSB: power swing detection
- RFLO: fault locator
 - XCBR: breaker control

The protection elements listed above contain *start* (pickup) and *operate* flags. For example, the start flag for PIOC1 is PIOC1.ST.Str.general. The operate flag for PIOC1 is PIOC1.ST.Op.general. For the L90 protection elements, these flags take their values from the pickup and operate FlexLogic[™] operands for the corresponding element.

Some protection elements listed above contain directional start values. For example, the directional start value for PDIS1 is PDIS1.ST.Str.dirGeneral. This value is built from the directional FlexLogic[™] operands for the element.

The RFLO logical node contains the measurement of the distance to fault calculation in kilometers. This value originates in the fault locator function.

The XCBR logical node is directly associated with the breaker control feature.

- XCBR1.ST.Loc: This is the state of the XCBR1 local/remote switch. A setting is provided to assign a FlexLogic[™] operand to determine the state. When local mode is true, IEC 61850 client commands will be rejected.
- XCBR1.ST.Opcnt: This is an operation counter as defined in IEC 61850. Command settings are provided to allow the counter to be cleared.
- XCBR1.ST.Pos: This is the position of the breaker. The breaker control FlexLogic[™] operands are used to determine this state. If the breaker control logic indicates that the breaker, or any single pole of the breaker, is closed, then the breaker position state is "on". If the breaker control logic indicates that the breaker is open, then the breaker position state is "off".
- XCBR1.ST.BlkOpn: This is the state of the block open command logic. When true, breaker open commands from IEC 61850 clients will be rejected.
- XCBR1.ST.BlkCls: This is the state of the block close command logic. When true, breaker close commands from IEC 61850 clients will be rejected.
- XCBR1.CO.Pos: This is where IEC 61850 clients can issue open or close commands to the breaker. SBO control with normal security is the only supported IEC 61850 control model.
- XCBR1.CO.BlkOpn: This is where IEC 61850 clients can issue block open commands to the breaker. Direct control with normal security is the only supported IEC 61850 control model.
- XCBR1.CO.BlkCls: This is where IEC 61850 clients can issue block close commands to the breaker. Direct control
 with normal security is the only supported IEC 61850 control model.

C.3.1 BUFFERED/UNBUFFERED REPORTING

IEC 61850 buffered and unbuffered reporting is provided in the GGIO1 logical nodes (for binary status values) and MMXU1 to MMXU6 (for analog measured values). Report settings can be configured using the EnerVista UR Setup software, substation configurator software, or via an IEC 61850 client. The following items can be configured:

- **TrgOps**: Trigger options. The following bits are supported by the L90:
 - Bit 1: data-change
 - Bit 4: integrity
 - Bit 5: general interrogation
- OptFlds: Option Fields. The following bits are supported by the L90:
 - Bit 1: sequence-number
 - Bit 2: report-time-stamp
 - Bit 3: reason-for-inclusion
 - Bit 4: data-set-name
 - Bit 5: data-reference
 - Bit 6: buffer-overflow (for buffered reports only)
 - Bit 7: entryID (for buffered reports only)
 - Bit 8: conf-revision
 - Bit 9: segmentation
- IntgPd: Integrity period.
- BufTm: Buffer time.

C.3.2 FILE TRANSFER

MMS file services are supported to allow transfer of oscillography, event record, or other files from a L90 relay.

C.3.3 TIMESTAMPS AND SCANNING

The timestamp values associated with all IEC 61850 data items represent the *time of the last change* of either the value or quality flags of the data item. To accomplish this functionality, all IEC 61850 data items must be regularly scanned for data changes, and the timestamp updated when a change is detected, regardless of the connection status of any IEC 61850 clients. For applications where there is no IEC 61850 client in use, the IEC 61850 **SERVER SCANNING** setting can be programmed as "Disabled". If a client is in use, this setting should be programmed as "Enabled" to ensure the proper generation of IEC 61850 timestamps.

C.3.4 LOGICAL DEVICE NAME

The logical device name is used to identify the IEC 61850 logical device that exists within the L90. This name is composed of two parts: the IED name setting and the logical device instance. The complete logical device name is the combination of the two character strings programmed in the **IEDNAME** and **LD INST** settings. The default values for these strings are "IED-Name" and "LDInst". These values should be changed to reflect a logical naming convention for all IEC 61850 logical devices in the system.

C.3.5 LOCATION

The LPHD1 logical node contains a data attribute called *location* (LPHD1.DC.PhyNam.location). This is a character string meant to describe the physical location of the L90. This attribute is programmed through the **LOCATION** setting and its default value is "Location". This value should be changed to describe the actual physical location of the L90.

C.3.6 LOGICAL NODE NAME PREFIXES

IEC 61850 specifies that each logical node can have a name with a total length of 11 characters. The name is composed of:

- a five or six-character name prefix.
- a four-character standard name (for example, MMXU, GGIO, PIOC, etc.).
- a one or two-character instantiation index.

Complete names are of the form XXXXXPIOC1, where the XXXXXX character string is configurable. Details regarding the logical node naming rules are given in IEC 61850 parts 6 and 7-2. It is recommended that a consistent naming convention be used for an entire substation project.

C.3.7 CONNECTION TIMING

A built-in TCP/IP connection timeout of two minutes is employed by the L90 to detect 'dead' connections. If there is no data traffic on a TCP connection for greater than two minutes, the connection will be aborted by the L90. This frees up the connection to be used by other clients. Therefore, when using IEC 61850 reporting, clients should configure report control block items such that an integrity report will be issued at least every 2 minutes (120000 ms). This ensures that the L90 will not abort the connection. If other MMS data is being polled on the same connection at least once every 2 minutes, this timeout will not apply.

C.3.8 NON-IEC 61850 DATA

The L90 relay makes available a number of non-IEC 61850 data items. These data items can be accessed through the "UR" MMS domain. IEC 61850 data can be accessed through the standard IEC 61850 logical device. To access the non-IEC data items, the **INCLUDE NON-IEC DATA** setting must be "Enabled".

C.3.9 COMMUNICATION SOFTWARE UTILITIES

The exact structure and values of the supported IEC 61850 logical nodes can be seen by connecting to a L90 relay with an MMS browser, such as the "MMS Object Explorer and AXS4-MMS" DDE/OPC server from Sisco Inc.

C.4.1 OVERVIEW

IEC 61850 specifies two types of peer-to-peer data transfer services: Generic Substation State Events (GSSE) and Generic Object Oriented Substation Events (GOOSE). GSSE services are compatible with UCA 2.0 GOOSE. IEC 61850 GOOSE services provide virtual LAN (VLAN) support, Ethernet priority tagging, and Ethertype Application ID configuration. The support for VLANs and priority tagging allows for the optimization of Ethernet network traffic. GOOSE messages can be given a higher priority than standard Ethernet traffic, and they can be separated onto specific VLANs. Because of the additional features of GOOSE services versus GSSE services, it is recommended that GOOSE be used wherever backwards compatibility with GSSE (or UCA 2.0 GOOSE) is not required.

Devices that transmit GSSE and/or GOOSE messages also function as servers. Each GSSE publisher contains a "GSSE control block" to configure and control the transmission. Each GOOSE publisher contains a "GOOSE control block" to configure and control the transmission. The transmission is also controlled via device settings. These settings can be seen in the ICD and/or SCD files, or in the device configuration software or files.

IEC 61850 recommends a default priority value of 4 for GOOSE. Ethernet traffic that does not contain a priority tag has a default priority of 1. More details are specified in IEC 61850 part 8-1.

IEC 61850 recommends that the Ethertype Application ID number be configured according to the GOOSE source. In the L90, the transmitted GOOSE Application ID number must match the configured receive Application ID number in the receiver. A common number may be used for all GOOSE transmitters in a system. More details are specified in IEC 61850 part 8-1.

C.4.2 GSSE CONFIGURATION

IEC 61850 Generic Substation Status Event (GSSE) communication is compatible with UCA GOOSE communication. GSSE messages contain a number of double point status data items. These items are transmitted in two pre-defined data structures named DNA and UserSt. Each DNA and UserSt item is referred to as a 'bit pair'. GSSE messages are transmitted in response to state changes in any of the data points contained in the message. GSSE messages always contain the same number of DNA and UserSt bit pairs. Depending the on the configuration, only some of these bit pairs may have values that are of interest to receiving devices.

The GSSE FUNCTION, GSSE ID, and GSSE DESTINATION MAC ADDRESS settings are used to configure GSSE transmission. GSSE FUNCTION is set to "Enabled" to enable the transmission. If a valid multicast Ethernet MAC address is entered for the GSSE DESTINATION MAC ADDRESS setting, this address will be used as the destination MAC address for GSSE messages. If a valid multicast Ethernet MAC address is not entered (for example, 00 00 00 00 00 00 00), the L90 will use the source Ethernet MAC address as the destination, with the multicast bit set.

C.4.3 FIXED GOOSE

The L90 supports two types of IEC 61850 Generic Object Oriented Substation Event (GOOSE) communication: fixed GOOSE and configurable GOOSE. All GOOSE messages contain IEC 61850 data collected into a *dataset*. It is this dataset that is transferred using GOOSE message services. The dataset transferred using the L90 fixed GOOSE is the same data that is transferred using the GSSE feature; that is, the DNA and UserSt bit pairs. The FlexLogic[™] operands that determine the state of the DNA and UserSt bit pairs are configurable via settings, but the fixed GOOSE dataset always contains the same DNA/UserSt data structure. Upgrading from GSSE to GOOSE services is simply a matter of enabling fixed GOOSE and disabling GSSE. The remote inputs and outputs are configured in the same manner for both GSSE and fixed GOOSE.

It is recommended that the fixed GOOSE be used for implementations that require GOOSE data transfer between URseries IEDs. Configurable GOOSE may be used for implementations that require GOOSE data transfer between UR-series IEDs and devices from other manufacturers.

C.4.4 CONFIGURABLE GOOSE

The configurable GOOSE feature allows for the configuration of the datasets to be transmitted or received from the L90. The L90 supports the configuration of eight (8) transmission and reception datasets, allowing for the optimization of data transfer between devices.

C.4 GENERIC SUBSTATION EVENT SERVICES: GSSE AND GOOSE

Items programmed for dataset 1 will have changes in their status transmitted as soon as the change is detected. Dataset 1 should be used for high-speed transmission of data that is required for applications such as transfer tripping, blocking, and breaker fail initiate. At least one digital status value needs to be configured in dataset 1 to enable transmission of all data configured for dataset 1. Configuring analog data only to dataset 1 will not activate transmission.

Items programmed for datasets 2 through 8 will have changes in their status transmitted at a maximum rate of every 100 ms. Datasets 2 through 8 will regularly analyze each data item configured within them every 100 ms to identify if any changes have been made. If any changes in the data items are detected, these changes will be transmitted through a GOOSE message. If there are no changes detected during this 100 ms period, no GOOSE message will be sent.

For all datasets 1 through 8, the integrity GOOSE message will still continue to be sent at the pre-configured rate even if no changes in the data items are detected.

The GOOSE functionality was enhanced to prevent the relay from flooding a communications network with GOOSE messages due to an oscillation being created that is triggering a message.

The L90 has the ability of detecting if a data item in one of the GOOSE datasets is erroneously oscillating. This can be caused by events such as errors in logic programming, inputs improperly being asserted and de-asserted, or failed station components. If erroneously oscillation is detected, the L90 will stop sending GOOSE messages from the dataset for a minimum period of one second. Should the oscillation persist after the one second time-out period, the L90 will continue to block transmission of the dataset. The L90 will assert the **MAINTENANCE ALERT: GGIO Ind XXX oscill** self-test error message on the front panel display, where **XXX** denotes the data item detected as oscillating.

The configurable GOOSE feature is recommended for applications that require GOOSE data transfer between UR-series IEDs and devices from other manufacturers. Fixed GOOSE is recommended for applications that require GOOSE data transfer between UR-series IEDs.

IEC 61850 GOOSE messaging contains a number of configurable parameters, all of which must be correct to achieve the successful transfer of data. It is critical that the configured datasets at the transmission and reception devices are an exact match in terms of data structure, and that the GOOSE addresses and name strings match exactly. Manual configuration is possible, but third-party substation configuration software may be used to automate the process. The EnerVista UR Setup-software can produce IEC 61850 ICD files and import IEC 61850 SCD files produced by a substation configurator (refer to the *IEC 61850 IED configuration* section later in this appendix).

The following example illustrates the configuration required to transfer IEC 61850 data items between two devices. The general steps required for transmission configuration are:

- 1. Configure the transmission dataset.
- 2. Configure the GOOSE service settings.
- 3. Configure the data.

The general steps required for reception configuration are:

- 1. Configure the reception dataset.
- 2. Configure the GOOSE service settings.
- 3. Configure the data.

This example shows how to configure the transmission and reception of three IEC 61850 data items: a single point status value, its associated quality flags, and a floating point analog value.

The following procedure illustrates the transmission configuration.

- 1. Configure the transmission dataset by making the following changes in the PRODUCT SETUP ⇔ ♣ COMMUNICATION ⇔ ♣ IEC 61850 PROTOCOL ⇔ GSSE/GOOSE CONFIGURATION ⇔ TRANSMISSION ⇔ ♣ CONFIGURABLE GOOSE ⇒ CONFIGURABLE GOOSE 1 ⇔ ♣ CONFIG GSE 1 DATASET ITEMS settings menu:
 - Set **ITEM 1** to "GGIO1.ST.Ind1.q" to indicate quality flags for GGIO1 status indication 1.
 - Set ITEM 2 to "GGIO1.ST.Ind1.stVal" to indicate the status value for GGIO1 status indication 1.

The transmission dataset now contains a set of quality flags and a single point status Boolean value. The reception dataset on the receiving device must exactly match this structure.

2. Configure the GOOSE service settings by making the following changes in the PRODUCT SETUP ⇔↓ COMMUNICATION ⇔↓ IEC 61850 PROTOCOL ⇔ GSSE/GOOSE CONFIGURATION ⇔ TRANSMISSION ⇔↓ CONFIGURABLE GOOSE ⇔ CONFIGU-RABLE GOOSE 1 settings menu:

- Set CONFIG GSE 1 FUNCTION to "Enabled".
- Set CONFIG GSE 1 ID to an appropriate descriptive string (the default value is "GOOSEOut_1").
- Set CONFIG GSE 1 DST MAC to a multicast address (for example, 01 00 00 12 34 56).
- Set the **CONFIG GSE 1 VLAN PRIORITY**; the default value of "4" is OK for this example.
- Set the CONFIG GSE 1 VLAN ID value; the default value is "0", but some switches may require this value to be "1".
- Set the **CONFIG GSE 1 ETYPE APPID** value. This setting represents the Ethertype application ID and must match the configuration on the receiver (the default value is "0").
- Set the CONFIG GSE 1 CONFREV value. This value changes automatically as described in IEC 61850 part 7-2. For this example it can be left at its default value.
- 3. Configure the data by making the following changes in the **PRODUCT SETUP** ⇒ ^① **COMMUNICATION** ⇒ ^① **IEC 61850 PROTO-COL** ⇒ **GGIO1 STATUS CONFIGURATION** settings menu:
 - Set GGIO1 INDICATION 1 to a FlexLogic[™] operand used to provide the status of GGIO1.ST.Ind1.stVal (for example, a contact input, virtual input, a protection element status, etc.).

The L90 must be rebooted (control power removed and re-applied) before these settings take effect.

The following procedure illustrates the reception configuration.

- 1. Configure the reception dataset by making the following changes in the PRODUCT SETUP ⇒ ⊕ COMMUNICATION ⇒ ⊕ IEC 61850 PROTOCOL ⇒ GSSE/GOOSE CONFIGURATION ⇒ ⊕ RECEPTION ⇒ ⊕ CONFIGURABLE GOOSE ⇒ CONFIGURABLE GOOSE 1 ⇒ ⊕ CONFIG GSE 1 DATASET ITEMS settings menu:
 - Set ITEM 1 to "GGIO3.ST.Ind1.q" to indicate quality flags for GGIO3 status indication 1.
 - Set ITEM 2 to "GGIO3.ST.Ind1.stVal" to indicate the status value for GGIO3 status indication 1.

The reception dataset now contains a set of quality flags, a single point status Boolean value, and a floating point analog value. This matches the transmission dataset configuration above.

- 2. Configure the GOOSE service settings by making the following changes in the INPUTS/OUTPUTS ⇒ ♣ REMOTE DEVICES ⇒ ♣ REMOTE DEVICE 1 settings menu:
 - Set REMOTE DEVICE 1 ID to match the GOOSE ID string for the transmitting device. Enter "GOOSEOut_1".
 - Set REMOTE DEVICE 1 ETYPE APPID to match the Ethertype application ID from the transmitting device. This is "0" in the example above.
 - Set the REMOTE DEVICE 1 DATASET value. This value represents the dataset number in use. Since we are using configurable GOOSE 1 in this example, program this value as "GOOSEIn 1".
- 3. Configure the data by making the following changes in the INPUTS/OUTPUTS ⇔♣ REMOTE INPUTS ⇒♣ REMOTE INPUT 1 settings menu:
 - Set **REMOTE IN 1 DEVICE** to "GOOSEOut_1".
 - Set **REMOTE IN 1 ITEM** to "Dataset Item 2". This assigns the value of the GGIO3.ST.Ind1.stVal single point status item to remote input 1.

Remote input 1 can now be used in FlexLogic[™] equations or other settings. The L90 must be rebooted (control power removed and re-applied) before these settings take effect.

The value of remote input 1 (Boolean on or off) in the receiving device will be determined by the GGIO1.ST.Ind1.stVal value in the sending device. The above settings will be automatically populated by the EnerVista UR Setup software when a complete SCD file is created by third party substation configurator software.

C.4.5 ETHERNET MAC ADDRESS FOR GSSE/GOOSE

Ethernet capable devices each contain a unique identifying address called a Media Access Control (MAC) address. This address cannot be changed and is unique for each Ethernet device produced worldwide. The address is six bytes in length and is usually represented as six hexadecimal values (for example, 00 A0 F4 01 02 03). It is used in all Ethernet frames as the 'source' address of the frame. Each Ethernet frame also contains a *destination* address. The destination address can be different for each Ethernet frame depending on the intended destination of the frame.

С

C.4 GENERIC SUBSTATION EVENT SERVICES: GSSE AND GOOSE

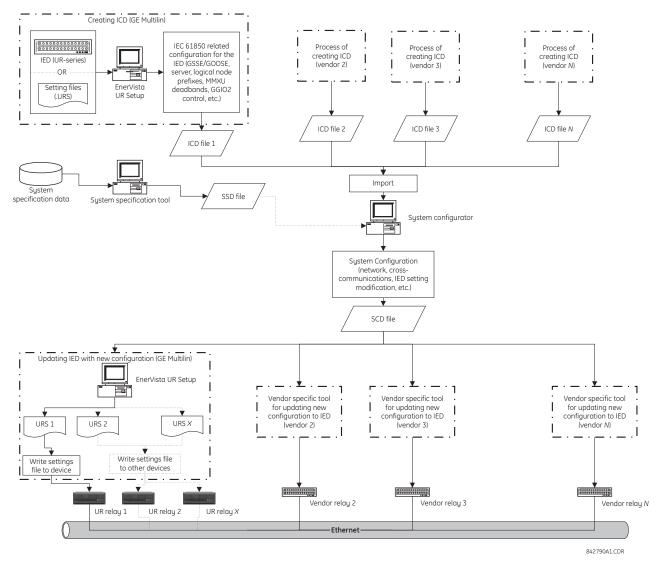
A special type of destination address called a *multicast* address is used when the Ethernet frame can be received by more than one device. An Ethernet MAC address is multicast when the least significant bit of the first byte is set (for example, 01 00 00 00 00 00 is a multicast address).

GSSE and GOOSE messages must have multicast destination MAC addresses.

By default, the L90 is configured to use an automated multicast MAC scheme. If the L90 destination MAC address setting is not a valid multicast address (that is, the least significant bit of the first byte is not set), the address used as the destination MAC will be the same as the local MAC address, but with the multicast bit set. Thus, if the local MAC address is 00 A0 F4 01 02 03, then the destination MAC address will be 01 A0 F4 01 02 03.

C.4.6 GSSE ID AND GOOSE ID SETTINGS

GSSE messages contain an identifier string used by receiving devices to identify the sender of the message, defined in IEC 61850 part 8-1 as GsID. This is a programmable 65-character string. This string should be chosen to provide a descriptive name of the originator of the GSSE message.


GOOSE messages contain an identifier string used by receiving devices to identify the sender of the message, defined in IEC 61850 part 8-1 as GoID. This programmable 65-character string should be a descriptive name of the originator of the GOOSE message. GOOSE messages also contain two additional character strings used for identification of the message: DatSet - the name of the associated dataset, and GoCBRef - the reference (name) of the associated GOOSE control block. These strings are automatically populated and interpreted by the L90; no settings are required.

С

The L90 can be configured for IEC 61850 via the EnerVista UR Setup software as follows.

- 1. An ICD file is generated for the L90 by the EnerVista UR Setup software that describe the capabilities of the IED.
- The ICD file is then imported into a system configurator along with other ICD files for other IEDs (from GE or other vendors) for system configuration.
- 3. The result is saved to a SCD file, which is then imported back to EnerVista UR Setup to create one or more settings file(s). The settings file(s) can then be used to update the relay(s) with the new configuration information.

The configuration process is illustrated below.

Figure 0–1: IED CONFIGURATION PROCESS

The following acronyms and abbreviations are used in the procedures describing the IED configuration process for IEC 61850:

- BDA: Basic Data Attribute, that is not structured
- DAI: Instantiated Data Attribute
- DO: Data Object type or instance, depending on the context

- DOI: Instantiated Data Object
- IED: Intelligent Electronic Device
- LDInst: Instantiated Logical Device
- LNInst: Instantiated Logical Node
- SCL: Substation Configuration Description Language. The configuration language is an application of the Extensible Markup Language (XML) version 1.0.
- SDI: Instantiated Sub DATA; middle name part of a structured DATA name
- UR: GE Multilin Universal Relay series
- URI: Universal Resource Identifier
- URS: UR-series relay setting file
- XML: Extensible Markup Language

The following SCL variants are also used:

- ICD: IED Capability Description
- CID: Configured IED Description
- SSD: System Specification Description
- SCD: Substation Configuration Description

The following IEC related tools are referenced in the procedures that describe the IED configuration process for IEC 61850:

- System configurator or Substation configurator: This is an IED independent system level tool that can import or export configuration files defined by IEC 61850-6. It can import configuration files (ICD) from several IEDs for system level engineering and is used to add system information shared by different IEDs. The system configuration generates a substation related configuration file (SCD) which is fed back to the IED configurator (for example, EnerVista UR Setup) for system related IED configuration. The system configurator should also be able to read a system specification file (SSD) to use as base for starting system engineering, or to compare it with an engineered system for the same substation.
- IED configurator: This is a vendor specific tool that can directly or indirectly generate an ICD file from the IED (for example, from a settings file). It can also import a system SCL file (SCD) to set communication configuration parameters (that is, required addresses, reception GOOSE datasets, IDs of incoming GOOSE datasets, etc.) for the IED. The IED configurator functionality is implemented in the GE Multilin EnerVista UR Setup software.

C.5.2 CONFIGURING IEC 61850 SETTINGS

Before creating an ICD file, the user can customize the IEC 61850 related settings for the IED. For example, the IED name and logical device instance can be specified to uniquely identify the IED within the substation, or transmission GOOSE datasets created so that the system configurator can configure the cross-communication links to send GOOSE messages from the IED. Once the IEC 61850 settings are configured, the ICD creation process will recognize the changes and generate an ICD file that contains the updated settings.

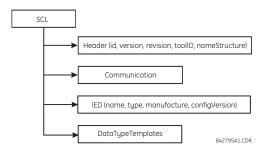
Some of the IED settings will be modified during they system configuration process. For example, a new IP address may be assigned, line items in a Transmission GOOSE dataset may be added or deleted, or prefixes of some logical nodes may be changed. While all new configurations will be mapped to the L90 settings file when importing an SCD file, all unchanged settings will preserve the same values in the new settings file.

These settings can be configured either directly through the relay panel or through the EnerVista UR Setup software (preferred method). The full list of IEC 61850 related settings for are as follows:

- Network configuration: IP address, IP subnet mask, and default gateway IP address (access through the Settings > Product Setup > Communications > Network menu tree in EnerVista UR Setup).
- Server configuration: IED name and logical device instance (access through the Settings > Product Setup > Communications > IEC 61850 > Server Configuration menu tree in EnerVista UR Setup).
- Logical node prefixes, which includes prefixes for all logical nodes except LLN0 (access through the Settings > Product Setup > Communications > IEC 61850 > Logical Node Prefixes menu tree in EnerVista UR Setup).

APPENDIX C

- MMXU deadbands, which includes deadbands for all available MMXUs. The number of MMXUs is related to the number of CT/VT modules in the relay. There are two MMXUs for each CT/VT module. For example, if a relay contains two CT/VT modules, there will be four MMXUs available (access through the Settings > Product Setup > Communications > IEC 61850 > MMXU Deadbands menu tree in EnerVista UR Setup).
- GGIO1 status configuration, which includes the number of status points in GGIO1 as well as the potential internal mappings for each GGIO1 indication. However only the number of status points will be used in the ICD creation process (access through the Settings > Product Setup > Communications > IEC 61850 > GGIO1 Status Configuration menu tree in EnerVista UR Setup).
- GGIO2 control configuration, which includes ctlModels for all SPCSOs within GGIO2 (access through the Settings > Product Setup > Communications > IEC 61850 > GGIO2 Control Configuration menu tree in EnerVista UR Setup).
- Configurable transmission GOOSE, which includes eight configurable datasets that can be used for GOOSE transmission. The GOOSE ID can be specified for each dataset (it must be unique within the IED as well as across the whole substation), as well as the destination MAC address, VLAN priority, VLAN ID, ETYPE APPID, and the dataset items. The selection of the dataset item is restricted by firmware version; for version 5.5x, only GGIO1.ST.Indx.stVal and GGIO1.ST.Indx.q are valid selection (where *x* is between 1 to *N*, and *N* is determined by number of GGIO1 status points). Although configurable transmission GOOSE can also be created and altered by some third-party system configurators, we recommend configuring transmission GOOSE for GE Multilin IEDs before creating the ICD, and strictly within EnerVista UR Setup software or the front panel display (access through the Settings > Product Setup > Communications > IEC 61850 > GSSE/GOOSE Configuration > Transmission > Tx Configurable GOOSE menu tree in EnerVista UR Setup).
- Configurable reception GOOSE, which includes eight configurable datasets that can be used for GOOSE reception. However, unlike datasets for transmission, datasets for reception only contains dataset items, and they are usually created automatically by process of importing the SCD file (access through the Settings > Product Setup > Communications > IEC 61850 > GSSE/GOOSE Configuration > Reception > Rx Configurable GOOSE menu tree in EnerVista UR Setup).
- Remote devices configuration, which includes remote device ID (GOOSE ID or GoID of the incoming transmission GOOSE dataset), ETYPE APPID (of the GSE communication block for the incoming transmission GOOSE), and DATASET (which is the name of the associated reception GOOSE dataset). These settings are usually done automatically by process of importing SCD file (access through the Settings > Inputs/Outputs > Remote Devices menu tree in EnerVista UR Setup).
- Remote inputs configuration, which includes device (remote device ID) and item (which dataset item in the associated reception GOOSE dataset to map) values. Only the items with cross-communication link created in SCD file should be mapped. These configurations are usually done automatically by process of importing SCD file (access through the Settings > Inputs/Outputs > Remote Inputs menu tree in EnerVista UR Setup).


C.5.3 ABOUT ICD FILES

The SCL language is based on XML, and its syntax definition is described as a W3C XML Schema. ICD is one type of SCL file (which also includes SSD, CID and SCD files). The ICD file describes the capabilities of an IED and consists of four major sections:

- Header
- Communication
- IEDs
- DataTypeTemplates

C.5 IEC 61850 IMPLEMENTATION VIA ENERVISTA UR SETUP

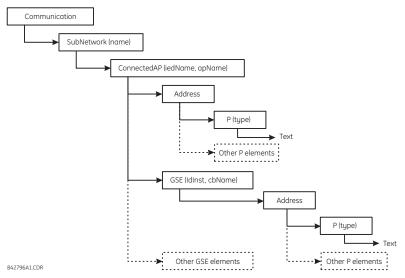

The root file structure of an ICD file is illustrated below.

Figure 0-2: ICD FILE STRUCTURE, SCL (ROOT) NODE

The Header node identifies the ICD file and its version, and specifies options for the mapping of names to signals

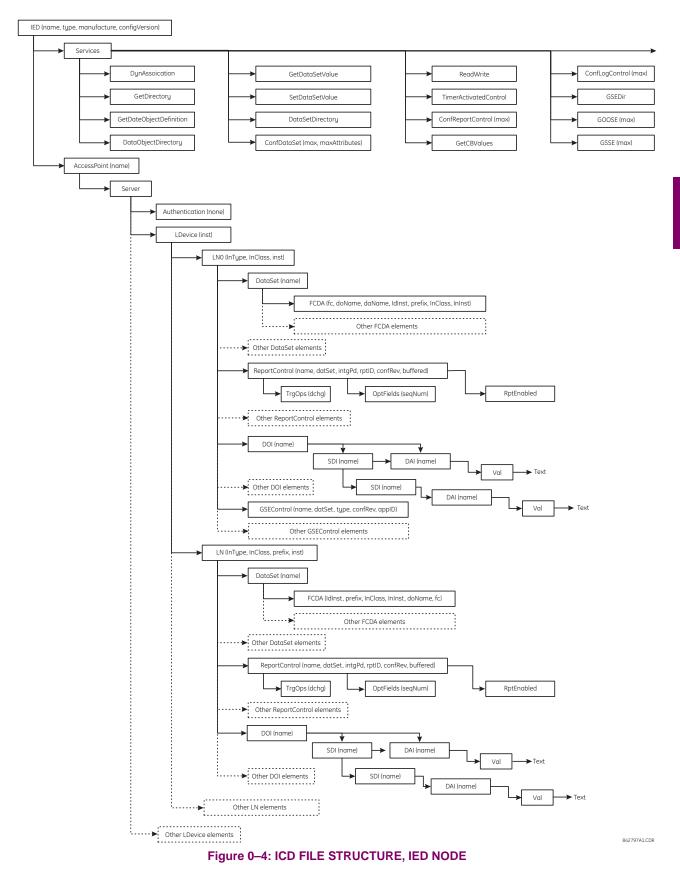

The **Communication** node describes the direct communication connection possibilities between logical nodes by means of logical buses (sub-networks) and IED access ports. The communication section is structured as follows.

Figure 0-3: ICD FILE STRUCTURE, COMMUNICATIONS NODE

The **SubNetwork** node contains all access points which can (logically) communicate with the sub-network protocol and without the intervening router. The **ConnectedAP** node describes the IED access point connected to this sub-network. The **Address** node contains the address parameters of the access point. The **GSE** node provides the address element for stating the control block related address parameters, where **IdInst** is the instance identification of the logical device within the IED on which the control block is located, and **cbName** is the name of the control block.

The **IED** node describes the (pre-)configuration of an IED: its access points, the logical devices, and logical nodes instantiated on it. Furthermore, it defines the capabilities of an IED in terms of communication services offered and, together with its **LNType**, instantiated data (DO) and its default or configuration values. There should be only one IED section in an ICD since it only describes one IED.

C.5 IEC 61850 IMPLEMENTATION VIA ENERVISTA UR SETUP

The **DataTypeTemplates** node defines instantiable logical node types. A logical node type is an instantiable template of the data of a logical node. A **LnodeType** is referenced each time that this instantiable type is needed with an IED. A logical node type template is built from DATA (DO) elements, which again have a DO type, which is derived from the DATA classes (CDC). DOs consist of attributes (DA) or of elements of already defined DO types (SDO). The attribute (DA) has a functional constraint, and can either have a basic type, be an enumeration, or a structure of a **DAType**. The DAType is built from BDA elements, defining the structure elements, which again can be **BDA** elements of have a base type such as DA.

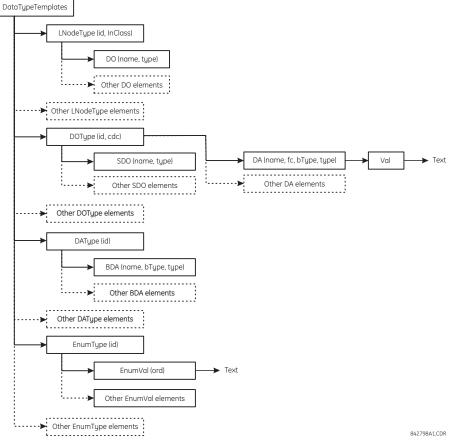
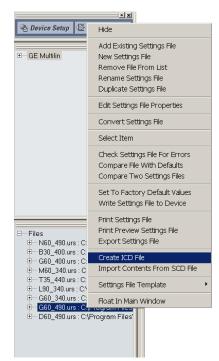



Figure 0–5: ICD FILE STRUCTURE, DATATYPETEMPLATES NODE

C.5.4 CREATING AN ICD FILE WITH ENERVISTA UR SETUP

An ICD file can be created directly from a connected L90 IED or from an offline L90 settings file with the EnerVista UR Setup software using the following procedure:

1. Right-click the connected UR-series relay or settings file and select Create ICD File.

2. The EnerVista UR Setup will prompt to save the file. Select the file path and enter the name for the ICD file, then click **OK** to generate the file.

The time to create an ICD file from the offline L90 settings file is typically much quicker than create an ICD file directly from the relay.

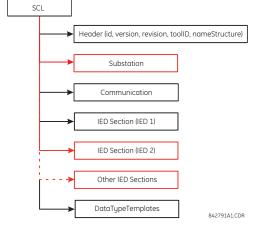
C.5.5 ABOUT SCD FILES

System configuration is performed in the system configurator. While many vendors (including GE Multilin) are working their own system configuration tools, there are some system configurators available in the market (for example, Siemens DIGSI version 4.6 or above and ASE Visual SCL Beta 0.12).

Although the configuration tools vary from one vendor to another, the procedure is pretty much the same. First, a substation project must be created, either as an empty template or with some system information by importing a system specification file (SSD). Then, IEDs are added to the substation. Since each IED is represented by its associated ICD, the ICD files are imported into the substation project, and the system configurator validates the ICD files during the importing process. If the ICD files are successfully imported into the substation project, it may be necessary to perform some additional minor steps to attach the IEDs to the substation (see the system configurator manual for details).

Once all IEDs are inserted into the substation, further configuration is possible, such as:

- assigning network addresses to individual IEDs
- customizing the prefixes of logical nodes
- creating cross-communication links (configuring GOOSE messages to send from one IED to others)


When system configurations are complete, the results are saved to an SCD file, which contains not only the configuration for each IED in the substation, but also the system configuration for the entire substation. Finally, the SCD file is passed back to the IED configurator (vendor specific tool) to update the new configuration into the IED.

The SCD file consists of at least five major sections:

- Header
- Substation
- Communication
- IED section (one or more)
- DataTypeTemplates

The root file structure of an SCD file is illustrated below.

Figure 0-6: SCD FILE STRUCTURE, SCL (ROOT) NODE

Like ICD files, the **Header** node identifies the SCD file and its version, and specifies options for the mapping of names to signals.

The Substation node describes the substation parameters:

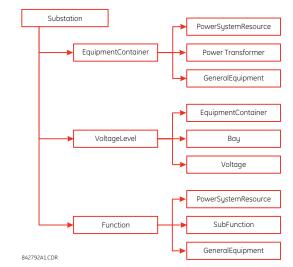
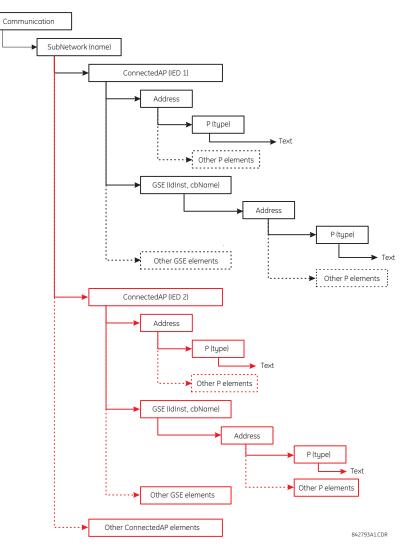
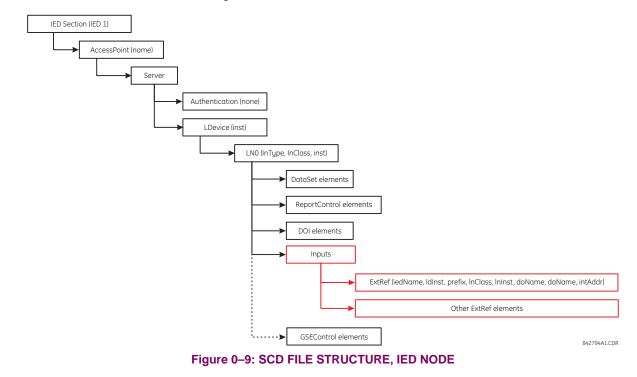


Figure 0–7: SCD FILE STRUCTURE, SUBSTATION NODE

The **Communication** node describes the direct communication connection possibilities between logical nodes by means of logical buses (sub-networks) and IED access ports. The communication section is structured as follows.

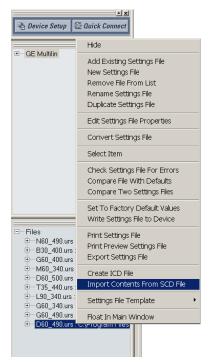



Figure 0-8: SCD FILE STRUCTURE, COMMUNICATIONS NODE

The **SubNetwork** node contains all access points which can (logically) communicate with the sub-network protocol and without the intervening router. The **ConnectedAP** node describes the IED access point connected to this sub-network. The **Address** node contains the address parameters of the access point. The **GSE** node provides the address element for stating the control block related address parameters, where **IdInst** is the instance identification of the logical device within the IED on which the control block is located, and **cbName** is the name of the control block.

APPENDIX C

C.5 IEC 61850 IMPLEMENTATION VIA ENERVISTA UR SETUP


The IED Section node describes the configuration of an IED.

C.5.6 IMPORTING AN SCD FILE WITH ENERVISTA UR SETUP

The following procedure describes how to update the L90 with the new configuration from an SCD file with the EnerVista UR Setup software.

1. Right-click anywhere in the files panel and select the Import Contents From SCD File item.

2. Select the saved SCD file and click **Open**.

C-20

APPENDIX C

3. The software will open the SCD file and then prompt the user to save a UR-series settings file. Select a location and name for the URS (UR-series relay settings) file.

If there is more than one GE Multilin IED defined in the SCD file, the software prompt the user to save a UR-series settings file for each IED.

- 4. After the URS file is created, modify any settings (if required).
- 5. To update the relay with the new settings, right-click on the settings file in the settings tree and select the **Write Settings File to Device** item.
- 6. The software will prompt for the target device. Select the target device from the list provided and click **Send**. The new settings will be updated to the selected device.

C.6.1 ACSI BASIC CONFORMANCE STATEMENT

SERVICE	S	SERVER/ PUBLISHER	UR-FAMILY
CLIENT-S	ERVER ROLES		
B11	Server side (of Two-party Application-Association)	c1	Yes
B12	Client side (of Two-party Application-Association)		
SCSMS S	UPPORTED		
B21	SCSM: IEC 61850-8-1 used		Yes
B22	SCSM: IEC 61850-9-1 used		
B23	SCSM: IEC 61850-9-2 used		
B24	SCSM: other		
GENERIC	SUBSTATION EVENT MODEL (GSE)	•	
B31	Publisher side	0	Yes
B32	Subscriber side		Yes
TRANSM	ISSION OF SAMPLED VALUE MODEL (SVC)		
B41	Publisher side	0	
B42	Subscriber side		

С

c1: shall be "M" if support for LOGICAL-DEVICE model has been declared

O: Optional

M: Mandatory

C.6.2 ACSI MODELS CONFORMANCE STATEMENT

SERVICES		SERVER/ PUBLISHER	UR-FAMILY
IF SERVE	R SIDE (B11) SUPPORTED		
M1	Logical device	c2	Yes
M2	Logical node	c3	Yes
M3	Data	c4	Yes
M4	Data set	c5	Yes
M5	Substitution	0	
M6	Setting group control	0	
	REPORTING	· · · · ·	
M7	Buffered report control	0	Yes
M7-1	sequence-number		
M7-2	report-time-stamp		
M7-3	reason-for-inclusion		
M7-4	data-set-name		
M7-5	data-reference		
M7-6	buffer-overflow		
M7-7	entryID		
M7-8	BufTm		
M7-9	IntgPd		
M7-10	GI		
M8	Unbuffered report control	0	Yes
M8-1	sequence-number		
M8-2	report-time-stamp		
M8-3	reason-for-inclusion		

SERVICE	S	SERVER/ PUBLISHER	UR-FAMILY
M8-4	data-set-name		
M8-5	data-reference		
M8-6	BufTm		
M8-7	IntgPd		
M8-8	GI		
	Logging	0	
M9	Log control	0	
M9-1	IntgPd		
M10	Log	0	
M11	Control	М	Yes
IF GSE (B	31/32) IS SUPPORTED	1	
	GOOSE	0	Yes
M12-1	entryID		
M12-2	DataRefInc		
M13	GSSE	0	Yes
IF SVC (B	41/B42) IS SUPPORTED	1	
M14	Multicast SVC	0	
M15	Unicast SVC	0	
M16	Time	М	Yes
M17	File transfer	0	Yes

c2: shall be "M" if support for LOGICAL-NODE model has been declared

c3: shall be "M" if support for DATA model has been declared

c4: shall be "M" if support for DATA-SET, Substitution, Report, Log Control, or Time models has been declared
c5: shall be "M" if support for Report, GSE, or SMV models has been declared
M: Mandatory

C.6.3 ACSI SERVICES CONFORMANCE STATEMENT

In the table below, the acronym AA refers to Application Associations (TP: Two Party / MC: Multicast). The c6 to c10 entries are defined in the notes following the table.

SERVIC	ES	AA: TP/MC	SERVER/ PUBLISHER	UR FAMILY
SERVER	(CLAUSE 6)			
S1	ServerDirectory	TP	М	Yes
APPLIC	ATION ASSOCIATION (CLAUSE 7)			
S2	Associate		М	Yes
S3	Abort		М	Yes
S4	Release		М	Yes
LOGICA	L DEVICE (CLAUSE 8)	·		•
S5	LogicalDeviceDirectory	TP	М	Yes
LOGICA	L NODE (CLAUSE 9)	·		•
S6	LogicalNodeDirectory	TP	М	Yes
S7	GetAllDataValues	TP	М	Yes
DATA (C	LAUSE 10)	·		•
S8	GetDataValues	TP	М	Yes
S9	SetDataValues	TP	0	Yes
S10	GetDataDirectory	TP	М	Yes
S11	GetDataDefinition	TP	М	Yes

C.6 ACSI CONFORMANCE

SERVICES		AA: TP/MC	SERVER/ PUBLISHER	UR FAMILY
DATA SET	CLAUSE 11)			
S12	GetDataSetValues	TP	М	Yes
S13	SetDataSetValues	TP	0	
S14	CreateDataSet	TP	0	
S15	DeleteDataSet	TP	0	
S16	GetDataSetDirectory	TP	0	Yes
SUBSTITU	JTION (CLAUSE 12)	I		
S17	SetDataValues	TP	M	
SETTING	GROUP CONTROL (CLAUSE 13)	1		
S18	SelectActiveSG	TP	0	
S19	SelectEditSG	TP	0	
S20	SetSGValues	TP	0	
S21	ConfirmEditSGValues	TP	0	
S22	GetSGValues	TP	0	
S23	GetSGCBValues	TP	0	
REPORTI	NG (CLAUSE 14)			
	BUFFERED REPORT CONTROL BLC	CK (BRCB)		
S24	Report	TP	c6	Yes
S24-1	data-change (dchg)			Yes
S24-2	qchg-change (qchg)			
S24-3	data-update (dupd)			
S25	GetBRCBValues	TP	c6	Yes
S26	SetBRCBValues	TP	c6	Yes
-	UNBUFFERED REPORT CONTROL BLOCK (URCB)			
S27	Report	TP	c6	Yes
S27-1	data-change (dchg)			Yes
S27-2	qchg-change (qchg)			
S27-3	data-update (dupd)			
S28	GetURCBValues	TP	c6	Yes
S29	SetURCBValues	TP	c6	Yes
LOGGING	(CLAUSE 14)			
	LOG CONTROL BLOCK			
S30	GetLCBValues	TP	М	
S31	SetLCBValues	TP	M	
	LOG			
S32	QueryLogByTime	TP	М	
S33	QueryLogByEntry	TP	M	
S34	GetLogStatusValues	TP	M	
	SUBSTATION EVENT MODEL (GSE) (CLA			
02.112.1.10	GOOSE-CONTROL-BLOCK			
S35	SendGOOSEMessage	MC	c8	Yes
S36	GetReference	TP	c9	100
S37	GetGOOSEElementNumber	TP	c9	
S38	GetGoCBValues	TP	0	Yes
S39	SetGoCBValues	TP	0	Yes
	GSSE-CONTROL-BLOCK		0	162
S40		МС	~	Yes
	SendGSSEMessage		c8	res
S41	GetReference	TP	c9	

L90 Line Current Differential System

SERVICES		AA: TP/MC	SERVER/ PUBLISHER	UR FAMILY
S42	GetGSSEElementNumber	TP	c9	
S43	GetGsCBValues	TP	0	Yes
S44	SetGsCBValues	TP	0	Yes
TRANSM	ISSION OF SAMPLE VALUE MODEL (SVC	C) (CLAUSE 16)		
	MULTICAST SVC			
S45	SendMSVMessage	MC	c10	
S46	GetMSVCBValues	TP	0	
S47	SetMSVCBValues	TP	0	
	UNICAST SVC			
S48	SendUSVMessage	MC	c10	
S49	GetUSVCBValues	TP	0	
S50	SetUSVCBValues	TP	0	
CONTRO	L (CLAUSE 16.4.8)			
S51	Select		0	Yes
S52	SelectWithValue	TP	0	
S53	Cancel	TP	0	Yes
S54	Operate	TP	М	Yes
S55	Command-Termination	TP	0	
S56	TimeActivated-Operate	TP	0	
FILE TRA	ANSFER (CLAUSE 20)			
S57	GetFile	TP	М	Yes
S58	SetFile	TP	0	
S59	DeleteFile	TP	0	
S60	GetFileAttributeValues	TP	М	Yes
TIME (CL	AUSE 5.5)		•	
T1	Time resolution of internal clock (nearest negative power of 2 in seconds)			20
T2	Time accuracy of internal clock			
Т3	supported TimeStamp resolution (nearest value of 2^{-n} in seconds, accoridng to 5.5.3.7.3.3)			20

С

NOTE

c6: shall declare support for at least one (BRCB or URCB)

c7: shall declare support for at least one (QueryLogByTime or QueryLogAfter)

c8: shall declare support for at least one (SendGOOSEMessage or SendGSSEMessage) **c9**: shall declare support if TP association is available

c10: shall declare support for at least one (SendMSVMessage or SendUSVMessage)

C.7.1 LOGICAL NODES TABLE

The UR-series of relays supports IEC 61850 logical nodes as indicated in the following table. Note that the actual instantiation of each logical node is determined by the product order code. For example, the logical node "PDIS" (distance protection) is available only in the D60 Line Distance Relay.

Table 0-1: IEC 61850 LOGICAL NODES (Sheet 1 of 3)

NODES	UR-FAMILY
L: SYSTEM LOGICAL NODES	
LPHD: Physical device information	Yes
LLN0: Logical node zero	Yes
P: LOGICAL NODES FOR PROTECTION FUNCTIONS	I
PDIF: Differential	Yes
PDIR: Direction comparison	
PDIS: Distance	Yes
PDOP: Directional overpower	
PDUP: Directional underpower	
PFRC: Rate of change of frequency	
PHAR: Harmonic restraint	
PHIZ: Ground detector	
PIOC: Instantaneous overcurrent	Yes
PMRI Motor restart inhibition	
PMSS: Motor starting time supervision	
POPF: Over power factor	
PPAM: Phase angle measuring	
PSCH: Protection scheme	
PSDE: Sensitive directional earth fault	
PTEF: Transient earth fault	
PTOC: Time overcurrent	Yes
PTOF: Overfrequency	
PTOV: Overvoltage	Yes
PTRC: Protection trip conditioning	Yes
PTTR: Thermal overload	Yes
PTUC: Undercurrent	
PTUV: Undervoltage	Yes
PUPF: Underpower factor	
PTUF: Underfrequency	
PVOC: Voltage controlled time overcurrent	
PVPH: Volts per Hz	
PZSU: Zero speed or underspeed	
R: LOGICAL NODES FOR PROTECTION RELATED FUNCTIONS	
RDRE: Disturbance recorder function	
RADR: Disturbance recorder channel analogue	
RBDR: Disturbance recorder channel binary	
RDRS: Disturbance record handling	
RBRF: Breaker failure	Yes
RDIR: Directional element	
RFLO: Fault locator	Yes
RPSB: Power swing detection/blocking	Yes
RREC: Autoreclosing	Yes

Table 0–1: IEC 61850 LOGICAL NODES (Sheet 2 of 3)

NODES	UR-FAMILY
RSYN: Synchronism-check or synchronizing	
C: LOGICAL NODES FOR CONTROL	•
CALH: Alarm handling	
CCGR: Cooling group control	
CILO: Interlocking	
CPOW: Point-on-wave switching	
CSWI: Switch controller	
G: LOGICAL NODES FOR GENERIC REFERENCES	·
GAPC: Generic automatic process control	
GGIO: Generic process I/O	Yes
GSAL: Generic security application	
I: LOGICAL NODES FOR INTERFACING AND ARCHIVING	
IARC: Archiving	
IHMI: Human machine interface	
ITCI: Telecontrol interface	
ITMI: Telemonitoring interface	
A: LOGICAL NODES FOR AUTOMATIC CONTROL	
ANCR: Neutral current regulator	
ARCO: Reactive power control	
ATCC: Automatic tap changer controller	
AVCO: Voltage control	
M: LOGICAL NODES FOR METERING AND MEASUREMENT	
MDIF: Differential measurements	
MHAI: Harmonics or interharmonics	
MHAN: Non phase related harmonics or interharmonic	
MMTR: Metering	
MMXN: Non phase related measurement	Yes
MMXU: Measurement	Yes
MSQI: Sequence and imbalance	
MSTA: Metering statistics	
S: LOGICAL NODES FOR SENSORS AND MONITORING	
SARC: Monitoring and diagnostics for arcs	
SIMG: Insulation medium supervision (gas)	
SIML: Insulation medium supervision (liquid)	
SPDC: Monitoring and diagnostics for partial discharges	
X: LOGICAL NODES FOR SWITCHGEAR	
XCBR: Circuit breaker	Yes
XSWI: Circuit switch	
T: LOGICAL NODES FOR INSTRUMENT TRANSFORMERS	
TCTR: Current transformer	
TVTR: Voltage transformer	
Y: LOGICAL NODES FOR POWER TRANSFORMERS	
YEFN: Earth fault neutralizer (Peterson coil)	
YLTC: Tap changer	
YPSH: Power shunt	

Table 0–1: IEC 61850 LOGICAL NODES (Sheet 3 of 3)

NODES	UR-FAMILY
Z: LOGICAL NODES FOR FURTHER POWER SYSTEM EQUIPMENT	
ZAXN: Auxiliary network	
ZBAT: Battery	
ZBSH: Bushing	
ZCAB: Power cable	
ZCAP: Capacitor bank	
ZCON: Converter	
ZGEN: Generator	
ZGIL: Gas insulated line	
ZLIN: Power overhead line	
ZMOT: Motor	
ZREA: Reactor	
ZRRC: Rotating reactive component	
ZSAR: Surge arrestor	
ZTCF: Thyristor controlled frequency converter	
ZTRC: Thyristor controlled reactive component	

D.1.1 INTEROPERABILITY DOCUMENT

This document is adapted from the IEC 60870-5-104 standard. For the section the boxes indicate the following: \blacksquare – used in standard direction; \square – not used; \blacksquare – cannot be selected in IEC 60870-5-104 standard.

1. SYSTEM OR DEVICE:

- □ System Definition
- Controlling Station Definition (Master)
- **Controlled Station Definition (Slave)**
- 2. NETWORK CONFIGURATION:
 - Point-to-Point
 - Multiple Point-to-Point
- Multipoint
 Multipoint Star

3. PHYSICAL LAYER

Transmission Speed (control direction):

Unbalanced Interchange Circuit V.24/V.28 Standard:	Unbalanced Interchange Circuit V.24/V.28 Recommended if >1200 bits/s:	Balanced Interchange Circuit X.24/X.27:
■ 100 bits/sec .	■ 2400 bits/sec .	■ 2400 bits/sec.
200 bits/sec.	4800 bits/sec .	4800 bits/sec .
300 bits/sec .	■ 9600 bits/sec .	9600 bits/sec.
600 bits/sec.		19200 bits/sec.
1200 bits/sec.		38400 bits/see . ■
		56000 bits/sec .
		■ 64000 bits/sec .

Transmission Speed (monitor direction):

Unbalanced Interchange Circuit V.24/V.28 Standard:	Unbalanced Interchange Circuit V.24/V.28 Recommended if >1200 bits/s:	Balanced Interchange Circuit X.24/X.27:
100 bits/sec.	■ 2400 bits/sec.	■ 2400 bits/sec.
200 bits/sec.	4800 bits/sec .	4800 bits/sec .
300 bits/sec .	■ 9600 bits/sec .	9600 bits/sec .
600 bits/sec.		19200 bits/sec.
1200 bits/sec .		38400 bits/sec .
		56000 bits/sec .
		■ 64000 bits/sec.

4. LINK LAYER

Link Transmission Procedure:	Address Field of the Link:	
Balanced Transmision	Not Present (Balanced Transmission Only)	
Unbalanced Transmission	One Octet	
	Two Octets	
	Structured	
	Unstructured	
Frame Length (maximum length, number of octets): Not selectable in companion IEC 60870-5-104 standard		

When using an unbalanced link layer, the following ADSU types are returned in class 2 messages (low priority) with the indicated causes of transmission:

■ The standard assignment of ADSUs to class 2 messages is used as follows:

A special assignment of ADSUs to class 2 messages is used as follows:

5. APPLICATION LAYER

Transmission Mode for Application Data:

Mode 1 (least significant octet first), as defined in Clause 4.10 of IEC 60870-5-4, is used exclusively in this companion stanadard.

Common Address of ADSU:

One Octet

🗵 Two Octets

Information Object Address:

- One Octet
 Structured
- Two Octets

Unstructured

In Three Octets

Cause of Transmission:

One Octet

It wo Octets (with originator address). Originator address is set to zero if not used.

Maximum Length of APDU: 253 (the maximum length may be reduced by the system.

Selection of standard ASDUs:

For the following lists, the boxes indicate the following: \square – used in standard direction; \square – not used; \blacksquare – cannot be selected in IEC 60870-5-104 standard.

Process information in monitor direction

I <1> := Single-point information	M_SP_NA_1
-<2> := Single-point information with time tag	M_SP_TA_1
\Box <3> := Double-point information	M_DP_NA_1
-<4> := Double-point information with time tag	M_DP_TA_1
□ <5> := Step position information	M_ST_NA_1
-<6> := Step position information with time tag	M_ST_TA_1
\Box <7> := Bitstring of 32 bits	M_BO_NA_1
-<8> := Bitstring of 32 bits with time tag	M_BO_TA_1
<	M_ME_NA_1
-<10> := Measured value, normalized value with time tag	M_NE_TA_1
<11> := Measured value, scaled value	M_ME_NB_1
-<12> := Measured value, scaled value with time tag	M_NE_TB_1
Image: <13> := Measured value, short floating point value	M_ME_NC_1
-<14> := Measured value, short fleating point value with time tag	M_NE_TC_1
15> := Integrated totals	M_IT_NA_1
-<16> := Integrated totals with time tag	M_IT_TA_1
-<17> := Event of protection equipment with time tag	M_EP_TA_1
-<18> := Packed start events of protection equipment with time tag	M_EP_TB_1
-<19> := Packed output circuit information of protection equipment with time tag	M_EP_TC_1
<20> := Packed single-point information with status change detection	M_SP_NA_1

<21> := Measured value, normalized value without quantity descriptor	M_ME_ND_1
Single-point information with time tag CP56Time2a	M_SP_TB_1
<31> := Double-point information wiht time tag CP56Time2a	M_DP_TB_1
\Box <32> := Step position information with time tag CP56Time2a	M_ST_TB_1
\Box <33> := Bitstring of 32 bits with time tag CP56Time2a	M_BO_TB_1
<34> := Measured value, normalized value with time tag CP56Time2a	M_ME_TD_1
\Box <35> := Measured value, scaled value with time tag CP56Time2a	M_ME_TE_1
<36> := Measured value, short floating point value with time tag CP56Time2a	M_ME_TF_1
<37> := Integrated totals with time tag CP56Time2a	M_IT_TB_1
<38> := Event of protection equipment with time tag CP56Time2a	M_EP_TD_1
<39> := Packed start events of protection equipment with time tag CP56Time2a	M_EP_TE_1
\Box <40> := Packed output circuit information of protection equipment with time tag CP56Time2a	M_EP_TF_1

Either the ASDUs of the set <2>, <4>, <6>, <8>, <10>, <12>, <14>, <16>, <17>, <18>, and <19> or of the set <30> to <40> are used.

Process information in control direction

⊠ <45> := Single command	C_SC_NA_1
□ <46> := Double command	C_DC_NA_1
<47> := Regulating step command	C_RC_NA_1
<48> := Set point command, normalized value	C_SE_NA_1
<49> := Set point command, scaled value	C_SE_NB_1
\Box <50> := Set point command, short floating point value	C_SE_NC_1
□ <51> := Bitstring of 32 bits	C_BO_NA_1
☑ <58> := Single command with time tag CP56Time2a	C_SC_TA_1
\Box <59> := Double command with time tag CP56Time2a	C_DC_TA_1
\Box <60> := Regulating step command with time tag CP56Time2a	C_RC_TA_1
\Box <61> := Set point command, normalized value with time tag CP56Time2a	C_SE_TA_1
<62> := Set point command, scaled value with time tag CP56Time2a	C_SE_TB_1
\Box <63> := Set point command, short floating point value with time tag CP56Time2a	C_SE_TC_1
<64> := Bitstring of 32 bits with time tag CP56Time2a	C_BO_TA_1

Either the ASDUs of the set <45> to <51> or of the set <58> to <64> are used.

System information in monitor direction

☑ <70> := End of initialization	M_EI_NA_1
System information in control direction	
☑ <100> := Interrogation command	C_IC_NA_1
Image: <101> := Counter interrogation command	C_CI_NA_1
⊠ <102> := Read command	C_RD_NA_1
<103> := Clock synchronization command (see Clause 7.6 in standard)	C_CS_NA_1
	C_TS_NA_1
☑ <105> := Reset process command	C_RP_NA_1
<106> := Delay acquisition command	C_CD_NA_1
☑ <107> := Test command with time tag CP56Time2a	C_TS_TA_1

Parameter in control direction

<110> := Parameter of measured value, normalized value	PE_ME_NA_1
<111> := Parameter of measured value, scaled value	PE_ME_NB_1
Image: Section 2014 - Image: Section 2014	PE_ME_NC_1
<113> := Parameter activation	PE_AC_NA_1
File transfer	
□ <120> := File Ready	F_FR_NA_1
□ <121> := Section Ready	F_SR_NA_1
<122> := Call directory, select file, call file, call section	F_SC_NA_1
<123> := Last section, last segment	F_LS_NA_1
□ <124> := Ack file, ack section	F_AF_NA_1
□ <125> := Segment	F_SG_NA_1
<126> := Directory (blank or X, available only in monitor [standard] direction)	C_CD_NA_1

Type identifier and cause of transmission assignments

(station-specific parameters)

In the following table:

•Shaded boxes are not required.

•Black boxes are not permitted in this companion standard.

•Blank boxes indicate functions or ASDU not used.

•'X' if only used in the standard direction

TYPE	IDENTIFICATION							С	AUS	E OF	TRA	NSM	ISSIC	N						
		PERIODIC, CYCLIC	BACKGROUND SCAN	SPONTANEOUS	INITIALIZED	REQUEST OR REQUESTED	ACTIVATION	ACTIVATION CONFIRMATION	DEACTIVATION	DEACTIVATION CONFIRMATION	ACTIVATION TERMINATION	RETURN INFO CAUSED BY LOCAL CMD	FILE TRANSFER	INTERROGATED BY GROUP <number></number>	REQUEST BY GROUP <n> COUNTER REQ</n>	UNKNOWN TYPE IDENTIFICATION	UNKNOWN CAUSE OF TRANSMISSION	UNKNOWN COMMON ADDRESS OF ADSU	UNKNOWN INFORMATION OBJECT ADDR	UNKNOWN INFORMATION OBJECT ADDR
NO.	MNEMONIC	1	2	3	4	5	6	7	8	9	10	11	12	13	20 to 36	37 to 41	44	45	46	47
<1>	M_SP_NA_1			Х		Х						Х	Х		Х					
<2>	M_SP_TA_1																			
<3>	M_DP_NA_1																			
<4>	M_DP_TA_1																			
<5>	M_ST_NA_1																			
<6>	M_ST_TA_1																			
<7>	M_BO_NA_1																			
<8>	M_BO_TA_1																			
<9>	M_ME_NA_1																			

TYPE IDENTIFICATION							С	AUS	E OF	TRA	NSM	ISSIC	N						
	PERIODIC, CYCLIC	BACKGROUND SCAN	SPONTANEOUS	INITIALIZED	REQUEST OR REQUESTED	ACTIVATION	ACTIVATION CONFIRMATION	DEACTIVATION	DEACTIVATION CONFIRMATION	ACTIVATION TERMINATION	RETURN INFO CAUSED BY LOCAL CMD	FILE TRANSFER	INTERROGATED BY GROUP <number></number>	REQUEST BY GROUP <n> COUNTER REQ</n>	UNKNOWN TYPE IDENTIFICATION	UNKNOWN CAUSE OF TRANSMISSION	UNKNOWN COMMON ADDRESS OF ADSU	UNKNOWN INFORMATION OBJECT ADDR	UNKNOWN INFORMATION OBJECT ADDR
NO. MNEMONIC	1	2	3	4	5	6	7	8	9	10	11	12	13	20 to 36	37 to 41	44	45	46	47
<10> M_ME_TA_1																			
<11> M_ME_NB_1																			
<12> M_ME_TB_1																			
<13> M_ME_NC_1	Х		Х		Х									Х					
<14> M_ME_TC_1																			
<15> M_IT_NA_1			Х												Х				
<16> M_IT_TA_1																			
<17> M_EP_TA_1																			
<18> M_EP_TB_1																			
<19> M_EP_TC_1																			
<20> M_PS_NA_1																			
<21> M_ME_ND_1																			
<30> M_SP_TB_1			Х								Х	Х							
<31> M_DP_TB_1																			
<32> M_ST_TB_1																			
<33> M_BO_TB_1																			
<34> M_ME_TD_1																			
<35> M_ME_TE_1																			
<36> M_ME_TF_1																			
<37> M_IT_TB_1			Х												Х				
<38> M_EP_TD_1																			
<39> M_EP_TE_1																			
<40> M_EP_TF_1																			
<45> C_SC_NA_1						Х	Х	Х	Х	Х									
<46> C_DC_NA_1																			
<47> C_RC_NA_1																			
<48> C_SE_NA_1																			
<49> C_SE_NB_1																			
<50> C_SE_NC_1																			
<51> C_BO_NA_1																			
<58> C_SC_TA_1						Х	Х	Х	Х	Х									
<59> C_DC_TA_1																			
<60> C_RC_TA_1																			

TYPE	IDENTIFICATION							С	AUS	E OF	TRA	NSM	ISSIC	N						
		PERIODIC, CYCLIC	BACKGROUND SCAN	SPONTANEOUS	INITIALIZED	REQUEST OR REQUESTED	ACTIVATION	ACTIVATION CONFIRMATION	DEACTIVATION	DEACTIVATION CONFIRMATION	ACTIVATION TERMINATION	RETURN INFO CAUSED BY LOCAL CMD	FILE TRANSFER	INTERROGATED BY GROUP <number></number>	REQUEST BY GROUP <n> COUNTER REQ</n>	UNKNOWN TYPE IDENTIFICATION	UNKNOWN CAUSE OF TRANSMISSION	UNKNOWN COMMON ADDRESS OF ADSU	UNKNOWN INFORMATION OBJECT ADDR	UNKNOWN INFORMATION OBJECT ADDR
NO.	MNEMONIC	1	2	3	4	5	6	7	8	9	10	11	12	13	20 to 36	37 to 41	44	45	46	47
<61>	C_SE_TA_1																			
<62>	C_SE_TB_1																			
<63>	C_SE_TC_1																			
<64>	C_BO_TA_1																			
<70>	M_EI_NA_1*)				X															
<100>	C_IC_NA_1						Х	Х	Х	Х	Х									
<101>	C_CI_NA_1						Х	Х			Х									
<102>	C_RD_NA_1					X														
<103>	C_CS_NA_1			X			Х	Х												
<104>	C_TS_NA_1																			
<105>	C_RP_NA_1						Х	Х												
<106>	C_CD_NA_1																			
<107>	C_TS_TA_1																			
<110>	P_ME_NA_1																			
<111>	P_ME_NB_1																			
<112>	P_ME_NC_1						Х	Х							Х					
<113>	P_AC_NA_1																			
<120>	F_FR_NA_1																			
<121>	F_SR_NA_1																			
<122>	F_SC_NA_1																			
<123>	F_LS_NA_1																			
<124>	F_AF_NA_1																			
<125>	F_SG_NA_1																			
<126>	F_DR_TA_1*)																			

6. BASIC APPLICATION FUNCTIONS

Station Initialization:

Remote initialization

Cyclic Data Transmission:

🗵 Cyclic data transmission

Read Procedure:

Read procedure

Spontaneous Transmission:

Spontaneous transmission

Double transmission of information objects with cause of transmission spontaneous:

The following type identifications may be transmitted in succession caused by a single status change of an information object. The particular information object addresses for which double transmission is enabled are defined in a project-specific list.

- □ Single point information: M_SP_NA_1, M_SP_TA_1, M_SP_TB_1, and M_PS_NA_1
- Double point information: M_DP_NA_1, M_DP_TA_1, and M_DP_TB_1
- □ Step position information: M_ST_NA_1, M_ST_TA_1, and M_ST_TB_1
- Bitstring of 32 bits: M_BO_NA_1, M_BO_TA_1, and M_BO_TB_1 (if defined for a specific project)
- □ Measured value, normalized value: M_ME_NA_1, M_ME_TA_1, M_ME_ND_1, and M_ME_TD_1
- □ Measured value, scaled value: M_ME_NB_1, M_ME_TB_1, and M_ME_TE_1
- □ Measured value, short floating point number: M_ME_NC_1, M_ME_TC_1, and M_ME_TF_1

Station interrogation:

🗵 Global

🗷 Group 1	🗵 Group 5	🗵 Group 9	Sroup 13
🗷 Group 2	🗵 Group 6	🗷 Group 10	Sroup 14
🗷 Group 3	🗵 Group 7	🗵 Group 11	🗵 Group 15
🗵 Group 4	🗵 Group 8	🗵 Group 12	🗷 Group 16

Clock synchronization:

Clock synchronization (optional, see Clause 7.6)

Command transmission:

- Direct command transmission
- Direct setpoint command transmission
- Select and execute command
- Select and execute setpoint command
- C_SE ACTTERM used
- No additional definition
- Short pulse duration (duration determined by a system parameter in the outstation)
- Long pulse duration (duration determined by a system parameter in the outstation)
- E Persistent output

Supervision of maximum delay in command direction of commands and setpoint commands

Maximum allowable delay of commands and setpoint commands: 10 s

Transmission of integrated totals:

- Mode A: Local freeze with spontaneous transmission
- Mode B: Local freeze with counter interrogation
- Mode C: Freeze and transmit by counter-interrogation commands
- Mode D: Freeze by counter-interrogation command, frozen values reported simultaneously
- Counter read
- Counter freeze without reset

- Counter freeze with reset
- Counter reset
- Seneral request counter
- Request counter group 1
- Request counter group 2
- Request counter group 3
- Request counter group 4

Parameter loading:

- Threshold value
- □ Smoothing factor
- Low limit for transmission of measured values
- □ High limit for transmission of measured values

Parameter activation:

Activation/deactivation of persistent cyclic or periodic transmission of the addressed object

Test procedure:

□ Test procedure

File transfer:

File transfer in monitor direction:

- □ Transparent file
- □ Transmission of disturbance data of protection equipment
- □ Transmission of sequences of events
- □ Transmission of sequences of recorded analog values

File transfer in control direction:

□ Transparent file

Background scan:

Background scan

Acquisition of transmission delay:

Acquisition of transmission delay

Definition of time outs:

PARAMETER	DEFAULT VALUE	REMARKS	SELECTED VALUE
t ₀	30 s	Timeout of connection establishment	120 s
t ₁	15 s	Timeout of send or test APDUs	15 s
<i>t</i> ₂	10 s	Timeout for acknowlegements in case of no data messages $t_2 < t_1$	10 s
t ₃	20 s	Timeout for sending test frames in case of a long idle state	20 s

Maximum range of values for all time outs: 1 to 255 s, accuracy 1 s

Maximum number of outstanding I-format APDUs *k* and latest acknowledge APDUs (*w*):

PARAMETER	DEFAULT VALUE	REMARKS	SELECTED VALUE
k	12 APDUs	Maximum difference receive sequence number to send state variable	12 APDUs
W	8 APDUs	Latest acknowledge after receiving W I-format APDUs	8 APDUs

Maximum range of values k:	1 to 32767 (2 ¹⁵ – 1) APDUs, accuracy 1 APDU
Maximum range of values w:	1 to 32767 APDUs, accuracy 1 APDU
	Recommendation: w should not exceed two-thirds of k.

Portnumber:

PARAMETER	VALUE	REMARKS
Portnumber	2404	In all cases

RFC 2200 suite:

RFC 2200 is an official Internet Standard which describes the state of standardization of protocols used in the Internet as determined by the Internet Architecture Board (IAB). It offers a broad spectrum of actual standards used in the Internet. The suitable selection of documents from RFC 2200 defined in this standard for given projects has to be chosen by the user of this standard.

- Ethernet 802.3
- □ Serial X.21 interface
- □ Other selection(s) from RFC 2200 (list below if selected)

D.1.2 POINT LIST

D

The IEC 60870-5-104 data points are configured through the SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow \bigcirc COMMUNICATIONS \Rightarrow \bigcirc DNP / IEC104 POINT LISTS menu. Refer to the *Communications* section of Chapter 5 for additional details.

D

E.1.1 DNP V3.00 DEVICE PROFILE

The following table provides a 'Device Profile Document' in the standard format defined in the DNP 3.0 Subset Definitions Document.

Table E-1: DNP V3.00 DEVICE PROFILE (Sheet 1 of 3)

(Also see the IMPLEMENTATION TABLE in the follo	wing section)
Vendor Name: General Electric Multilin	
Device Name: UR Series Relay	
Highest DNP Level Supported:	Device Function:
For Requests: Level 2	□ Master
For Responses: Level 2	⊠ Slave
Notable objects, functions, and/or qualifiers support list is described in the attached table):	ed in addition to the Highest DNP Levels Supported (the complete
Binary Inputs (Object 1)	
Binary Input Changes (Object 2)	
Binary Outputs (Object 10)	
Control Relay Output Block (Object 12)	
Binary Counters (Object 20)	
Frozen Counters (Object 21)	
Counter Change Event (Object 22)	
Frozen Counter Event (Object 23)	
Analog Inputs (Object 30)	
Analog Input Changes (Object 32)	
Analog Deadbands (Object 34)	
Time and Date (Object 50)	
File Transfer (Object 70)	
Internal Indications (Object 80)	
Maximum Data Link Frame Size (octets):	Maximum Application Fragment Size (octets):
Transmitted: 292	Transmitted: configurable up to 2048
Received: 292	Received: 2048
Maximum Data Link Re-tries:	Maximum Application Layer Re-tries:
⊠ None	
 ☐ Fixed at 3 ☐ Configurable 	Configurable
-	
Requires Data Link Layer Confirmation:	
⊠ Never □ Always	
☐ Sometimes	
Configurable	

Table E-1: DNP V3.00 DEVICE PROFILE (Sheet 2 of 3)

Requires App	lication Layer	Confirmation:			
			5		
Timeouts whi	le waiting for:				
Data Link Con	firm:	🗵 None	□ Fixed at	Variable	Configurable
Complete App	I. Fragment:	🗵 None	Fixed at	Variable	Configurable
Application Co	onfirm:	□ None	Fixed at 10 s	Variable	Configurable
Complete App	I. Response:	🗵 None	□ Fixed at	Variable	Configurable
Others:					
Transmission I	Delay:		No intentional de	elay	
Need Time Inte	erval:		Configurable (de	fault = 24 hrs.)	
Select/Operate	e Arm Timeout:		10 s		
Binary input ch	nange scanning	period:	8 times per powe	er system cycle	
- ·	hange scanning	-	500 ms		
-	ge scanning peri		500 ms		
	r event scanning		500 ms		
	sponse notification	-	100 ms		
Unsolicited res	sponse retry dela	ау	configurable 0 to	60 sec.	
Sends/Execut	tes Control Ope	erations:			
WRITE Binary	Outputs	🗵 Never	Always	Sometimes	Configurable
SELECT/OPE	RATE	Never	🗵 Always	Sometimes	Configurable
DIRECT OPER	RATE	Never	🗵 Always	Sometimes	Configurable
DIRECT OPE	RATE – NO ACK	C 🗆 Never	🗵 Always	Sometimes	Configurable
Count > 1	🗵 Never	Always	Sometimes	Configura	able
Pulse On	Never	Always	🗵 Sometimes	Configura	
Pulse Off	Never	Always	🗵 Sometimes	Configura	
Latch On	Never	Always	Sometimes	Configura	
Latch Off	□ Never	Always	Sometimes		able
Queue	🗵 Never	Always	□ Sometimes	🗆 Configura	
Clear Queue	🗵 Never	Always	□ Sometimes		able
determined	by the VIRTUAL	INPUT X TYPE se	ttings. Both "Pulse C	n" and "Latch On" op	persistence of Virtual Inputs is erations perform the same func- rtual Input is set to "Self-Reset".

xplanation of 'Sometimes': Object 12 points are mapped to UR Virtual Inputs. The persistence of Virtual Inputs is determined by the VIRTUAL INPUT X TYPE settings. Both "Pulse On" and "Latch On" operations perform the same function in the UR; that is, the appropriate Virtual Input is put into the "On" state. If the Virtual Input is set to "Self-Reset", it will reset after one pass of FlexLogic[™]. The On/Off times and Count value are ignored. "Pulse Off" and "Latch Off" operations put the appropriate Virtual Input into the "Off" state. "Trip" and "Close" operations both put the appropriate Virtual Input into the "Off" state.

Table E-1: DNP V3.00 DEVICE PROFILE (Sheet 3 of 3)

Reports Binary Input Change Events when no specific variation requested:	Reports time-tagged Binary Input Change Events when no specific variation requested:
 Never Only time-tagged Only non-time-tagged Configurable 	 Never Binary Input Change With Time Binary Input Change With Relative Time Configurable (attach explanation)
Sends Unsolicited Responses:	Sends Static Data in Unsolicited Responses:
 Never Configurable Only certain objects Sometimes (attach explanation) ENABLE/DISABLE unsolicited Function codes supported 	 Never When Device Restarts When Status Flags Change No other options are permitted.
Default Counter Object/Variation:	Counters Roll Over at:
 No Counters Reported Configurable (attach explanation) Default Object: 20 Default Variation: 1 Point-by-point list attached 	 No Counters Reported Configurable (attach explanation) 16 Bits (Counter 8) 32 Bits (Counters 0 to 7, 9) Other Value: Point-by-point list attached
Sends Multi-Fragment Responses:	
⊠ Yes □ No	

E.1.2 IMPLEMENTATION TABLE

The following table identifies the variations, function codes, and qualifiers supported by the L90 in both request messages and in response messages. For static (non-change-event) objects, requests sent with qualifiers 00, 01, 06, 07, or 08, will be responded with qualifiers 00 or 01. Static object requests sent with qualifiers 17 or 28 will be responded with qualifiers 17 or 28. For change-event objects, qualifiers 17 or 28 are always responded.

Table E-2: IMPLEMENTATION TABLE (Sheet 1 of 4)

OBJECT			REQUEST		RESPONSE	
OBJECT NO.	VARIATION NO.	DESCRIPTION	FUNCTION CODES (DEC)	QUALIFIER CODES (HEX)	FUNCTION CODES (DEC)	QUALIFIER CODES (HEX)
1	0	Binary Input (Variation 0 is used to request default variation)	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)		
	1	Binary Input	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
	2 Binary Input with Status		1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
2	0	Binary Input Change (Variation 0 is used to request default variation)	1 (read)	06 (no range, or all) 07, 08 (limited quantity)		
	1	Binary Input Change without Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	2	Binary Input Change with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response 130 (unsol. resp.)	17, 28 (index)
	3	Binary Input Change with Relative Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)		
10	0	Binary Output Status (Variation 0 is used to request default variation)	1 (read)	00, 01(start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)		
	2	Binary Output Status	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
12	1	Control Relay Output Block	3 (select) 4 (operate) 5 (direct op) 6 (dir. op, noack)	00, 01 (start-stop) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	echo of request
20	0	Binary Counter (Variation 0 is used to request default variation)	1 (read) 7 (freeze) 8 (freeze noack) 9 (freeze clear) 10 (frz. cl. noack) 22 (assign class)	00, 01(start-stop) 06(no range, or all) 07, 08(limited quantity) 17, 28(index)		
	1	32-Bit Binary Counter	1 (read) 7 (freeze) 8 (freeze noack) 9 (freeze clear) 10 (frz. cl. noack) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)

Note 1: A default variation refers to the variation responded when variation 0 is requested and/or in class 0, 1, 2, or 3 scans. The default variations for object types 1, 2, 20, 21, 22, 23, 30, and 32 are selected via relay settings. Refer to the *Communications* section in Chapter 5 for details. This optimizes the class 0 poll data size.

Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28, respectively. Otherwise, static object requests sent with qualifiers 00, 01, 06, 07, or 08, will be responded with qualifiers 00 or 01 (for changeevent objects, qualifiers 17 or 28 are always responded.)

Note 3: Cold restarts are implemented the same as warm restarts - the L90 is not restarted, but the DNP process is restarted.

Ε

Table E-2: IMPLEMENTATION TABLE (Sheet 2 of 4)

OBJECT			REQUEST		RESPONSE	
OBJECT NO.	VARIATION NO.	DESCRIPTION	FUNCTION CODES (DEC)	QUALIFIER CODES (HEX)	FUNCTION CODES (DEC)	QUALIFIER CODES (HEX)
20	2	16-Bit Binary Counter	1 (read)	00, 01 (start-stop)	129 (response)	00, 01 (start-stop)
cont'd			7 (freeze)	06 (no range, or all)		17, 28 (index)
			8 (freeze noack)	07, 08 (limited quantity)		(see Note 2)
			9 (freeze clear)	17, 28 (index)		
			10 (frz. cl. noack)			
			22 (assign class)			
	5	32-Bit Binary Counter without Flag	1 (read)	00, 01 (start-stop)	129 (response)	00, 01 (start-stop)
			7 (freeze)	06 (no range, or all)		17, 28 (index)
			8 (freeze noack)	07, 08 (limited quantity)		(see Note 2)
			9 (freeze clear)	17, 28 (index)		
			10 (frz. cl. noack)			
			22 (assign class)			
	6	16-Bit Binary Counter without Flag	1 (read)	00, 01 (start-stop)	129 (response)	00, 01 (start-stop)
			7 (freeze)	06 (no range, or all)	,	17, 28 (index)
			8 (freeze noack)	07, 08 (limited quantity)		(see Note 2)
			9 (freeze clear)	17, 28 (index)		, ,
			10 (frz. cl. noack)	, - ()		
			22 (assign class)			
21	0	Frozen Counter	1 (read)	00, 01 (start-stop)		
	Ŭ	(Variation 0 is used to request default	22 (assign class)	06 (no range, or all)		
		variation)		07, 08 (limited quantity)		
		Valiationy		17, 28 (index)		
	1	32-Bit Frozen Counter	1 (read)	00, 01 (start-stop)	129 (response)	00. 01 (start-stop)
	'	Sz-bit i lozen countei	22 (assign class)	00, 01 (start-stop) 06 (no range, or all)	129 (Tesponse)	17, 28 (index)
			ZZ (assign class)	07, 08 (limited quantity)		(see Note 2)
				17, 28 (index)		(366 1006 2)
	2	16-Bit Frozen Counter	4 ())		100 /	00.01 () ()
	2	To-Bit Frozen Counter	1 (read)	00, 01 (start-stop)	129 (response)	00, 01 (start-stop)
			22 (assign class)	06 (no range, or all)		17, 28 (index)
				07, 08 (limited quantity)		(see Note 2)
				17, 28 (index)		
	9	32-Bit Frozen Counter without Flag	1 (read)	00, 01 (start-stop)	129 (response)	00, 01 (start-stop)
			22 (assign class)	06 (no range, or all)		17, 28 (index)
				07, 08 (limited quantity)		(see Note 2)
				17, 28 (index)		
	10	16-Bit Frozen Counter without Flag	1 (read)	00, 01 (start-stop)	129 (response)	00, 01 (start-stop)
			22 (assign class)	06 (no range, or all)		17, 28 (index)
				07, 08 (limited quantity)		(see Note 2)
				17, 28 (index)		
22	0	Counter Change Event (Variation 0 is used	1 (read)	06 (no range, or all)		
		to request default variation)		07, 08 (limited quantity)		
	1	32-Bit Counter Change Event	1 (read)	06 (no range, or all)	129 (response)	17, 28 (index)
		C C	```	07, 08 (limited quantity)	130 (unsol. resp.)	, , ,
	2	16-Bit Counter Change Event	1 (read)	06 (no range, or all)	129 (response)	17, 28 (index)
	_		(· · · · /	07, 08 (limited quantity)	130 (unsol. resp.)	, ,
	5	32-Bit Counter Change Event with Time	1 (read)	06 (no range, or all)	129 (response)	17, 28 (index)
	J		. (1640)	07, 08 (limited quantity)	130 (unsol. resp.)	, 20 (muck)
	6	16-Bit Coupter Change Event with Time	1 (rood)	06 (no range, or all)	129 (response)	17 28 (index)
	0	16-Bit Counter Change Event with Time	1 (read)		129 (response) 130 (unsol. resp.)	17, 28 (index)
22	0	Frazan Countar Event (Variation O is used	1 (22.2.2)	07, 08 (limited quantity)	130 (unsol. resp.)	
23	0	Frozen Counter Event (Variation 0 is used	1 (read)	06 (no range, or all)		
		to request default variation)		07, 08 (limited quantity)		
	1	32-Bit Frozen Counter Event	1 (read)	06 (no range, or all)	129 (response)	17, 28 (index)
				07, 08 (limited quantity)	130 (unsol. resp.)	
	2	16-Bit Frozen Counter Event	1 (read)	06 (no range, or all)	129 (response)	17, 28 (index)
				07, 08 (limited quantity)	130 (unsol. resp.)	1

Note 1: A default variation refers to the variation responded when variation 0 is requested and/or in class 0, 1, 2, or 3 scans. The default variations for object types 1, 2, 20, 21, 22, 23, 30, and 32 are selected via relay settings. Refer to the *Communications* section in Chapter 5 for details. This optimizes the class 0 poll data size.

Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28, respectively. Otherwise, static object requests sent with qualifiers 00, 01, 06, 07, or 08, will be responded with qualifiers 00 or 01 (for changeevent objects, qualifiers 17 or 28 are always responded.)

Note 3: Cold restarts are implemented the same as warm restarts - the L90 is not restarted, but the DNP process is restarted.

Table E–2: IMPLEMENTATION TABLE (Sheet 3 of 4)

DBJECT			REQUEST		RESPONSE	
OBJECT NO.	VARIATION NO.	DESCRIPTION	FUNCTION CODES (DEC)	QUALIFIER CODES (HEX)	FUNCTION CODES (DEC)	QUALIFIER CODES (HEX)
23 cont'd	5	32-Bit Frozen Counter Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	6	16-Bit Frozen Counter Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
30	0	Analog Input (Variation 0 is used to request default variation)	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)		
	1	32-Bit Analog Input	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
	2	16-Bit Analog Input	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
	3	32-Bit Analog Input without Flag	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
	4	16-Bit Analog Input without Flag	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
	5	short floating point	1 (read) 22 (assign class)	00, 01 (start-stop) 06(no range, or all) 07, 08(limited quantity) 17, 28(index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
32	0	Analog Change Event (Variation 0 is used to request default variation)	1 (read)	06 (no range, or all) 07, 08 (limited quantity)		
	1	32-Bit Analog Change Event without Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	2	16-Bit Analog Change Event without Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	3	32-Bit Analog Change Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	4	16-Bit Analog Change Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	5	short floating point Analog Change Event without Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	7	short floating point Analog Change Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
34	0	Analog Input Reporting Deadband (Variation 0 is used to request default variation)	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)		
	1	16-bit Analog Input Reporting Deadband (default – see Note 1)	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
			2 (write)	00, 01 (start-stop) 07, 08 (limited quantity) 17, 28 (index)		

Note 1: A default variation refers to the variation responded when variation 0 is requested and/or in class 0, 1, 2, or 3 scans. The default variations for object types 1, 2, 20, 21, 22, 23, 30, and 32 are selected via relay settings. Refer to the *Communications* section in Chapter 5 for details. This optimizes the class 0 poll data size.

Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28, respectively. Otherwise, static object requests sent with qualifiers 00, 01, 06, 07, or 08, will be responded with qualifiers 00 or 01 (for changeevent objects, qualifiers 17 or 28 are always responded.)

Note 3: Cold restarts are implemented the same as warm restarts - the L90 is not restarted, but the DNP process is restarted.

Table E-2: IMPLEMENTATION TABLE (Sheet 4 of 4)

DBJECT			REQUEST		RESPONSE	
DBJECT NO.	VARIATION NO.	DESCRIPTION	FUNCTION CODES (DEC)	QUALIFIER CODES (HEX)	FUNCTION CODES (DEC)	QUALIFIER CODES (HEX)
34 cont'd	2	32-bit Analog Input Reporting Deadband	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
			2 (write)	00, 01 (start-stop) 07, 08 (limited quantity) 17, 28 (index)		
	3	Short floating point Analog Input Reporting Deadband	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
50	50 1 Time and Date (default – see Note 1)		1 (read) 2 (write)	00, 01 (start-stop) 06 (no range, or all) 07 (limited qty=1) 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
52	2	Time Delay Fine			129 (response)	07 (limited quantity) (quantity = 1)
60	0	Class 0, 1, 2, and 3 Data	1 (read) 20 (enable unsol) 21 (disable unsol) 22 (assign class)	06 (no range, or all)		
	1	Class 0 Data	1 (read) 22 (assign class)	06 (no range, or all)		
	2	Class 1 Data	1 (read)	06 (no range, or all)		
	3	Class 2 Data	20 (enable unsol)	07, 08 (limited quantity)		
	4	Class 3 Data	21 (disable unsol) 22 (assign class)			
70	0	File event - any variation	1 (read)	06 (no range, or all) 07, 08 (limited quantity)		
	-		22 (assign class)	06 (no range, or all)		
	2	File authentication	29 (authenticate)	5b (free format)	129 (response)	5b (free format)
	3	File command	25 (open) 27 (delete)	5b (free format)		
	4	File command status	26 (close) 30 (abort)	5b (free format)	129 (response) 130 (unsol. resp.)	5b (free format)
	5	File transfer	1 (read) 2 (write)	5b (free format)	129 (response) 130 (unsol. resp.)	5b (free format)
	6	File transfer status			129 (response) 130 (unsol. resp.)	5b (free format)
	7	File descriptor	28 (get file info.)	5b (free format)	129 (response) 130 (unsol. resp.)	5b (free format)
80	1	Internal Indications	1 (read) 2 (write)	00, 01 (start-stop) (index =7) 00 (start-stop)	129 (response)	00, 01 (start-stop)
			(see Note 3)	(index =7)		
		No Object (function code only) see Note 3	13 (cold restart)			
		No Object (function code only)	14 (warm restart)			
		No Object (function code only)	23 (delay meas.)	1	1	1

Note 1: A default variation refers to the variation responded when variation 0 is requested and/or in class 0, 1, 2, or 3 scans. The default variations for object types 1, 2, 20, 21, 22, 23, 30, and 32 are selected via relay settings. Refer to the Communications section in Chapter 5 for details. This optimizes the class 0 poll data size.

For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28, respec-Note 2: tively. Otherwise, static object requests sent with qualifiers 00, 01, 06, 07, or 08, will be responded with qualifiers 00 or 01 (for changeevent objects, qualifiers 17 or 28 are always responded.)

Note 3: Cold restarts are implemented the same as warm restarts - the L90 is not restarted, but the DNP process is restarted.

Ε

E.2.1 BINARY INPUT POINTS

The DNP binary input data points are configured through the **PRODUCT SETUP** \Rightarrow **\bigcirc COMMUNICATIONS** \Rightarrow **\bigcirc DNP / IEC104 POINT LISTS** \Rightarrow **BINARY INPUT / MSP POINTS** menu. Refer to the *Communications* section of Chapter 5 for additional details. When a freeze function is performed on a binary counter point, the frozen value is available in the corresponding frozen counter point.

BINARY INPUT POINTS

Static (Steady-State) Object Number: 1

Change Event Object Number: 2

Request Function Codes supported: 1 (read), 22 (assign class)

Static Variation reported when variation 0 requested: 2 (Binary Input with status), Configurable

Change Event Variation reported when variation 0 requested: 2 (Binary Input Change with Time), Configurable

Change Event Scan Rate: 8 times per power system cycle

Change Event Buffer Size: 500

Default Class for All Points: 1

E.2.2 BINARY AND CONTROL RELAY OUTPUT

Supported Control Relay Output Block fields: Pulse On, Pulse Off, Latch On, Latch Off, Paired Trip, Paired Close.

BINARY OUTPUT STATUS POINTS

Object Number: 10

Request Function Codes supported: 1 (read)

Default Variation reported when Variation 0 requested: 2 (Binary Output Status)

CONTROL RELAY OUTPUT BLOCKS

Object Number: 12

Request Function Codes supported: 3 (select), 4 (operate), 5 (direct operate), 6 (direct operate, noack)

Table E–3: BINARY/CONTROL OUTPUTS

POINT	NAME/DESCRIPTION
0	Virtual Input 1
1	Virtual Input 2
2	Virtual Input 3
3	Virtual Input 4
4	Virtual Input 5
5	Virtual Input 6
6	Virtual Input 7
7	Virtual Input 8
8	Virtual Input 9
9	Virtual Input 10
10	Virtual Input 11
11	Virtual Input 12
12	Virtual Input 13
13	Virtual Input 14
14	Virtual Input 15
15	Virtual Input 16
16	Virtual Input 17
17	Virtual Input 18
18	Virtual Input 19
19	Virtual Input 20
20	Virtual Input 21
21	Virtual Input 22
22	Virtual Input 23
23	Virtual Input 24
24	Virtual Input 25
25	Virtual Input 26
26	Virtual Input 27
27	Virtual Input 28
28	Virtual Input 29
29	Virtual Input 30
30	Virtual Input 31
31	Virtual Input 32

Table E-3: BINARY/CONTROL OUTPUTS

POINT	NAME/DESCRIPTION
32	Virtual Input 33
33	Virtual Input 34
34	Virtual Input 35
35	Virtual Input 36
36	Virtual Input 37
37	Virtual Input 38
38	Virtual Input 39
39	Virtual Input 40
40	Virtual Input 41
41	Virtual Input 42
42	Virtual Input 43
43	Virtual Input 44
44	Virtual Input 45
45	Virtual Input 46
46	Virtual Input 47
47	Virtual Input 48
48	Virtual Input 49
49	Virtual Input 50
50	Virtual Input 51
51	Virtual Input 52
52	Virtual Input 53
53	Virtual Input 54
54	Virtual Input 55
55	Virtual Input 56
56	Virtual Input 57
57	Virtual Input 58
58	Virtual Input 59
59	Virtual Input 60
60	Virtual Input 61
61	Virtual Input 62
62	Virtual Input 63
63	Virtual Input 64

The following table lists both Binary Counters (Object 20) and Frozen Counters (Object 21). When a freeze function is performed on a Binary Counter point, the frozen value is available in the corresponding Frozen Counter point.

BINARY COUNTERS							
Static (Steady-State) Object Number:	Static (Steady-State) Object Number: 20						
Change Event Object Number: 22							
Request Function Codes supported:	1 (read), 7 (freeze), 8 (freeze noack), 9 (freeze and clear), 10 (freeze and clear, noack), 22 (assign class)						
Static Variation reported when variation	on 0 requested: 1 (32-Bit Binary Counter with Flag)						
Change Event Variation reported whe	n variation 0 requested: 1 (32-Bit Counter Change Event without time)						
Change Event Buffer Size: 10							
Default Class for all points: 3							
FROZEN COUNTERS							
Static (Steady-State) Object Number:	21						
Change Event Object Number: 23	Change Event Object Number: 23						
Request Function Codes supported: 1	l (read)						
Static Variation reported when variation	Static Variation reported when variation 0 requested: 1 (32-Bit Frozen Counter with Flag)						
Change Event Variation reported when variation 0 requested: 1 (32-Bit Frozen Counter Event without time)							
Change Event Buffer Size: 10	Change Event Buffer Size: 10						
Default Class for all points: 3							

Table E-4: BINARY AND FROZEN COUNTERS

POINT INDEX	NAME/DESCRIPTION
0	Digital Counter 1
1	Digital Counter 2
2	Digital Counter 3
3	Digital Counter 4
4	Digital Counter 5
5	Digital Counter 6
6	Digital Counter 7
7	Digital Counter 8
8	Oscillography Trigger Count
9	Events Since Last Clear

A counter freeze command has no meaning for counters 8 and 9. L90 Digital Counter values are represented as 32-bit integers. The DNP 3.0 protocol defines counters to be unsigned integers. Care should be taken when interpreting negative counter values.

E.2.4 ANALOG INPUTS

The DNP analog input data points are configured through the **PRODUCT SETUP** \Rightarrow \bigcirc **COMMUNICATIONS** \Rightarrow \bigcirc **DNP / IEC104 POINT LISTS** \Rightarrow **ANALOG INPUT / MME POINTS** menu. Refer to the *Communications* section of Chapter 5 for additional details.

It is important to note that 16-bit and 32-bit variations of analog inputs are transmitted through DNP as signed numbers. Even for analog input points that are not valid as negative values, the maximum positive representation is 32767 for 16-bit values and 2147483647 for 32-bit values. This is a DNP requirement.

The deadbands for all Analog Input points are in the same units as the Analog Input quantity. For example, an Analog Input quantity measured in volts has a corresponding deadband in units of volts. This is in conformance with DNP Technical Bulletin 9809-001: Analog Input Reporting Deadband. Relay settings are available to set default deadband values according to data type. Deadbands for individual Analog Input Points can be set using DNP Object 34.

Static (Steady-State) Object Number: 30

Change Event Object Number: 32

Request Function Codes supported: 1 (read), 2 (write, deadbands only), 22 (assign class)

Static Variation reported when variation 0 requested: 1 (32-Bit Analog Input)

Change Event Variation reported when variation 0 requested: 1 (Analog Change Event without Time)

Change Event Scan Rate: defaults to 500 ms

Change Event Buffer Size: 256

Default Class for all Points: 2

Ε

F.1.1 REVISION HISTORY

Table F-1: REVISION HISTORY (Sheet 1 of 2)

MANUAL P/N	L90 REVISION	RELEASE DATE	ECO
1601-0081-A1	1.0x	04 November 1998	N/A
1601-0081-A2	1.0x	09 December 1998	URL-039
1601-0081-A3	1.5x	25 June 1999	URL-051
1601-0081-A4	1.5x	10 August 1999	URL-055
1601-0081-A5	1.5x	02 September 1999	URL-057
1601-0081-A6	2.0x	17 December 1999	URL-063
1601-0081-A7	2.0x	26 January 2000	URL-064
1601-0081-A7-2	2.0x	07 April 2000	URL-068
1601-0081-A8	2.2x	12 May 2000	URL-067
1601-0081-A9	2.2x	14 June 2000	URL-070
1601-0081-A9-2	2.2x	21 June 2000	URL-071
1601-0081-A9-2a	2.2x	28 June 2000	URL-071a
1601-0081-B1	2.4x	08 September 2000	URL-075
1601-0081-B2	2.4x	03 November 2000	URL-077
1601-0081-B3	2.6x	08 March 2001	URL-079
1601-0081-B4	2.8x	24 September 2001	URL-088
1601-0081-B5	2.9x	03 December 2001	URL-090
1601-0081-B6	2.6x	27 February 2004	URX-120
1601-0081-C1	3.0x	02 July 2002	URL-092
1601-0081-C2	3.1x	30 August 2002	URL-098
1601-0081-C3	3.0x	18 November 2002	URL-101
1601-0081-C4	3.1x	18 November 2002	URL-102
1601-0081-C5	3.0x	11 February 2003	URL-105
1601-0081-C6	3.1x	11 February 2003	URL-106
1601-0081-D1	3.2x	11 February 2003	URL-108
1601-0081-D2	3.2x	02 June 2003	URX-084
1601-0081-E1	3.3x	01 May 2003	URX-080
1601-0081-E2	3.3x	29 May 2003	URX-083
1601-0081-F1	3.4x	10 December 2003	URX-111
1601-0081-F2	3.4x	09 February 2004	URX-115
1601-0081-G1	4.0x	23 March 2004	URX-123
1601-0081-G2	4.0x	17 May 2004	URX-136
1601-0081-H1	4.2x	30 June 2004	URX-145
1601-0081-H2	4.2x	16 July 2004	URX-151
1601-0081-J1	4.4x	15 September 2004	URX-156
1601-0081-K1	4.6x	15 February 2005	URX-176
1601-0081-L1	4.8x	05 August 2005	URX-202
1601-0081-M1	4.9x	15 December 2005	URX-208
1601-0081-M2	4.9x	27 February 2006	URX-214
1601-0081-N1	5.0x	31 March 2006	URX-217
1601-0081-N2	5.0x	26 May 2006	URX-220
1601-0081-P1	5.2x	23 October 2006	URX-230
1601-0081-P2	5.2x	24 January 2007	URX-232
1601-0081-R1	5.4x	26 June 2007	URX-242
1601-0081-R2	5.4x	31 August 2007	URX-246

Table F-1: REVISION HISTORY (Sheet 2 of 2)

MANUAL P/N	L90 REVISION	RELEASE DATE	ECO
1601-0081-R3	5.4x	17 October 2007	URX-251
1601-0081-S1	5.5x	7 December 2007	URX-253
1601-0081-S2	5.5x	22 February 2008	URX-258
1601-0081-S3	5.5x	12 March 2008	URX-260

F.1.2 CHANGES TO THE L90 MANUAL

Table F-2: MAJOR UPDATES FOR L90 MANUAL REVISION S3

PAGE (S2)	PAGE (S3)	CHANGE	DESCRIPTION
Title	Title	Update	Manual part number to 1601-0081-S3
2-22	2-22	Update	Updated COMMUNICATIONS specifications section
2-23	2-23	Update	Updated INTER-RELAY COMMUNICATIONS specifications section
3-7	3-7	Update	Updated REAR TERMINAL LAYOUT section
	3-45	Add	Added ETHERNET SWITCH SELF-TEST ERRORS section
5-198	5-198	Update	Update 87L TRIP sub-section
7-6	7-7	Update	Updated MINOR SELF-TEST ERROR MESSAGES section
B-9	B-9	Update	Update MODBUS MEMORY MAP section

Table F-3: MAJOR UPDATES FOR L90 MANUAL REVISION S2

PAGE (S1)	PAGE (S2)	CHANGE	DESCRIPTION
Title	Title	Update	Manual part number to 1601-0081-S2
3-39	3-39	Update	Updated MANAGED ETHERNET SWITCH OVERVIEW section
3-39	3-39	Update	Updated MANAGED ETHERNET SWITCH MODULE HARDWARE section
	3-42	Add	Added UPLOADING L90 SWITCH MODULE FIRMWARE sub-section
	3-42	Add	Added SELECTING THE PROPER SWITCH FIRMWARE VERSION sub-section

Table F-4: MAJOR UPDATES FOR L90 MANUAL REVISION S1 (Sheet 1 of 2)

PAGE (R3)	PAGE (S1)	CHANGE	DESCRIPTION
Title	Title	Update	Manual part number to 1601-0081-S1
2-4	2-4	Update	Updated ORDERING section
2-6	2-6	Update	Updated REPLACEMENT MODULES section
2-21	2-21	Update	Updated OUTPUTS specifications section
2-22	2-22	Update	Updated COMMUNICATIONS specifications section
3-34	3-35	Update	Updated IEEE C37.94 INTERFACE section
	3-39	Add	Added MANAGED ETHERNET SWITCH MODULES section
5-8	5-8	Update	Updated PASSWORD SECURITY section (now titled SECURITY)
	5-31	Add	Added ETHERNET SWITCH sub-section
5-44	5-45	Update	Updated USER-PROGRAMMABLE PUSHBUTTONS section
5-62	5-64	Update	Updated BREAKERS section
	5-68	Add	Added DISCONNECT SWITCHES section

F

Table F-4: MAJOR UPDATES FOR L90 MANUAL REVISION S1 (Sheet 2 of 2)

PAGE (R3)	PAGE (S1)	CHANGE	DESCRIPTION
5-90	5-96	Update	Updated FLEXLOGIC OPERANDS table
	6-8	Add	Added ETHERNET SWITCH section
	6-22	Add	Added PHASOR MEASUREMENT UNIT RECORDS section
B-9	B-9	Update	Update MODBUS MEMORY MAP section for revision 5.5x

Table F-5: MAJOR UPDATES FOR L90 MANUAL REVISION R3

PAGE (R2)	PAGE (R3)	CHANGE	DESCRIPTION	
Title	Title	Update	Manual part number to 1601-0081-R3	
	4-4	Add	Added EXTENDED ENERVISTA UR SETUP FEATURES section	
6-24	6-24	Update	Updated MODEL INFORMATION section	

Table F–6: MAJOR UPDATES FOR L90 MANUAL REVISION R2

PAGE (R1)	PAGE (R2)	CHANGE	DESCRIPTION
Title	Title	Update	Manual part number to 1601-0081-R2
2-18	2-18	Update	Updated MONITORING specifications section
5-33	5-33	Update	Updated FAULT REPORTS section
6-21	6-21	Update	Updated FAULT REPORTS section
	8-23	Add	Added MULTI-ENDED FAULT LOCATOR section

F.2.1 STANDARD ABBREVIATIONS

A	Ampere	FF
	Alternating Current	FS
	Analog to Digital	F
AE	Accidental Energization, Application Entity	F>
AMP	Ampere	F\
ANG	Angle	
	American National Standards Institute	G
	Automatic Reclosure	G
ASDU	Application-layer Service Data Unit	G
ASYM		G
AUTO		G
AUX	Auxiliary	G
AVG	Average	
		H
	Bit Error Rate	H
	Breaker Fail	H(H
	Breaker Failure Initiate	H
BKR		H
BLK		п Н`
BLKG		
BRKR	Breakpoint of a characteristic	I
	DI Edkei	i
CAP	Capacitor	i_
	Coupling Capacitor	i.
	Coupling Capacitor Voltage Transformer	İĀ
	Configure / Configurable	ÍA
CEG	Filename extension for oscillography files	IB
CHK		IB
CHNL		iC
CLS		iC
CLSD		ÍD
CMND		IE
CMPRSN	Comparison	IE
CO	Contact Output	IE
COM	Communication	IG
	Communications	lg
	Compensated, Comparison	IŇ
CONN		IN
	Continuous, Contact	IN
	Coordination	IN
CPU	Central Processing Unit	IN
CRC	Cyclic Redundancy Code	I/C
CRT, CRNT		IC
	Canadian Standards Association	IC
	Current Transformer	IR
CVT	Capacitive Voltage Transformer	IS
-		IU
	Digital to Analog	
DC (dc)	Direct Current	K(kA
DD	Disturbance Detector	
DFLT		k۱
DGNST	Diagnostics	LE
DI	Digital input	LE
DIFF DIR		LF
		L
DISCREP	Discrepancy	LF
DMD		LF
	Distributed Network Protocol	ĹĬ
DPO		E1
DI O DSP	Digital Signal Processor	М
dt	Rate of Change	m
DTT	Direct Transfer Trip	M
	Direct Under-reaching Transfer Trip	M
2011	in 2 moor of a chaor reaching real of or rep	M
ENCRMNT	Encroachment	Μ
EPRI	Electric Power Research Institute	M
	Filename extension for event recorder files	M
	Extension, External	M
		Μ
F	Field	Μ
FAIL	Failure	M
	Fault Detector	M
	Fault Detector high-set	M
FDL	Fault Detector low-set	M
	Full Load Current	M
FO		M

	. Frequency
FSK	. Frequency-Shift Keying
FTP	. File Transfer Protocol
FXE FWD	. FlexElement™
FVVD	. Forward
G	. Generator
GE	. General Electric
GND	
GNTR	
GOOSE	. General Object Oriented Substation Event
GF 3	. Global Positioning System
	. Harmonic / Harmonics
	. High Current Time
HGF	. High-Impedance Ground Fault (CT)
	. High-Impedance and Arcing Ground
	. Human-Machine Interface
НҮВ	. Hyper lext mansier Flotocol
	. Instantaneous
I_U	. Zero Sequence current . Positive Sequence current
I_I	. Negative Sequence current
I_2	. Phase A current
IAB	. Phase A minus B current
IB	. Phase B current
IBC	. Phase B minus C current
	. Phase C current
	. Phase C minus A current
ID	
	. Intelligent Electronic Device . International Electrotechnical Commission
	. Institute of Electrical and Electronic Engineers
IG	. Ground (not residual) current
	. Differential Ground current
IŇ	. CT Residual Current (3lo) or Input
INC SEQ	. Incomplete Sequence
INIT	. Initiate . Instantaneous
INST INV	
I/O	
IOC	. Instantaneous Overcurrent
IOV	. Instantaneous Overvoltage
	Inter Dange Instrumentation Crown
IRIG	. Inter-Range Instrumentation Group
ISO	. International Standards Organization
ISO	. International Standards Organization . Instantaneous Undervoltage
ISO IUV	. International Standards Organization . Instantaneous Undervoltage
ISO IUV K0 kA	. International Standards Organization . Instantaneous Undervoltage . Zero Sequence Current Compensation . kiloAmpere
ISO IUV	. International Standards Organization . Instantaneous Undervoltage . Zero Sequence Current Compensation . kiloAmpere
ISO IUV K0 kA kV	. International Standards Organization . Instantaneous Undervoltage . Zero Sequence Current Compensation . kiloAmpere . kiloVolt
ISO IUV K0 kA kV LED	. International Standards Organization . Instantaneous Undervoltage . Zero Sequence Current Compensation . kiloAmpere . kiloVolt . Light Emitting Diode
ISO IUV K0 KA kV LED LEO LET BLD	 International Standards Organization Instantaneous Undervoltage Zero Sequence Current Compensation kiloAmpere kiloVolt Light Emitting Diode Line End Open Left Blinder
ISO IUV K0 KA kV LED LEO LFT BLD LOOP	 International Standards Organization Instantaneous Undervoltage Zero Sequence Current Compensation kiloAmpere kiloVolt Light Emitting Diode Line End Open Left Blinder Loopback
ISO IUV K0 KA KV LED LEO LFT BLD LOOP LPU	 International Standards Organization Instantaneous Undervoltage Zero Sequence Current Compensation kiloAmpere kiloVolt Light Emitting Diode Line End Open Left Blinder Loopback Line Pickup
ISO IUV K0 KA KV LED LEO LFT BLD LOOP LPU LRA	 International Standards Organization Instantaneous Undervoltage Zero Sequence Current Compensation kiloAmpere kiloVolt Light Emitting Diode Line End Open Left Blinder Loopback Line Pickup Locked-Rotor Current
ISO IUV K0 KA KV LED LEO LFT BLD LOOP LPU LRA	 International Standards Organization Instantaneous Undervoltage Zero Sequence Current Compensation kiloAmpere kiloVolt Light Emitting Diode Line End Open Left Blinder Loopback Line Pickup
ISO IUV KA kV LED LEO LFT BLD LOOP LOOP LPU LRA LTC M	 International Standards Organization Instantaneous Undervoltage Zero Sequence Current Compensation kiloAmpere kiloVolt Light Emitting Diode Line End Open Left Blinder Loopback Line Pickup Locked-Rotor Current Load Tap-Changer Machine
ISO IUV K0 KA KV LED LEO LFT BLD LOOP LPU LRA LTC M MA	 International Standards Organization Instantaneous Undervoltage Zero Sequence Current Compensation kiloAmpere kiloVolt Light Emitting Diode Line End Open Left Blinder Loopback Line Pickup Locked-Rotor Current Load Tap-Changer Machine MilliAmpere
ISO IUV K0 KA KV LED LEO LFT BLD LFT BLD LFT BLD LFT BLD LFT BLD LFT BLD LFT BLD LFT BLD LFT BLD LFT BLD MA MAG	 International Standards Organization Instantaneous Undervoltage Zero Sequence Current Compensation kiloAmpere kiloVolt Light Emitting Diode Line End Open Left Blinder Loopback Line Pickup Locked-Rotor Current Load Tap-Changer MalhAmpere Magnitude
ISO IUV K0 kA kV LED LEO LFT BLD LOOP LPU LRA LTC MAG MAN	 International Standards Organization Instantaneous Undervoltage Zero Sequence Current Compensation kiloAmpere kiloVolt Light Emitting Diode Line End Open Left Blinder Loopback Line Pickup Locked-Rotor Current Load Tap-Changer Machine MalliAmpere Magnitude Manual / Manually
ISO IUV K0 KA KV LED LEO LEO LFT BLD LOOP. LPU LRA LTC MA MAG MAN MAX	 International Standards Organization Instantaneous Undervoltage Zero Sequence Current Compensation kiloAmpere kiloVolt Light Emitting Diode Line End Open Left Blinder Loopback Line Pickup Locked-Rotor Current Load Tap-Changer Machine MilliAmpere Magnitude Manual / Manually Maximum
ISO IUV K0 KA KV LED LEO LFT BLD LOOP LFT BLD LOOP LFU LRA LTC M MAG MAG MAN MAX MIC	 International Standards Organization Instantaneous Undervoltage Zero Sequence Current Compensation kiloAmpere kiloVolt Light Emitting Diode Line End Open Left Blinder Loopback Line Pickup Locked-Rotor Current Load Tap-Changer Machine MilliAmpere Magnitude Manual / Manually Maximum Model Implementation Conformance
ISO IUV K0 KA KV LED LEO LFT BLD LOOP LPU LPU LRA LTC MAG MAG MAN MAX MIN	 International Standards Organization Instantaneous Undervoltage Zero Sequence Current Compensation kiloAmpere kiloVolt Light Emitting Diode Line End Open Left Blinder Loopback Line Pickup Locked-Rotor Current Load Tap-Changer Machine MilliAmpere Magnitude Manual / Manually Maximum Model Implementation Conformance Minimum, Minutes
ISO IUV K0 kA kV LED LEO LFT BLD LOOP LPU LRA LTC MAG MAG MAN MAS MIC MMI MMS	 International Standards Organization Instantaneous Undervoltage Zero Sequence Current Compensation kiloAmpere kiloVolt Light Emitting Diode Line End Open Left Blinder Loopback Line Pickup Locked-Rotor Current Load Tap-Changer Machine MalliAmpere Magnitude Manual / Manually Maximum Model Implementation Conformance Minimum, Minutes Manufacturing Message Specification
ISO IUV K0 KA KV LED LEO LFT BLD LOOP LFT BLD LOUP LPU LRA LTC MMAG MAG MAG MAS MIC MIN MMI MMS MRT	 International Standards Organization Instantaneous Undervoltage Zero Sequence Current Compensation kiloAmpere kiloVolt Light Emitting Diode Line End Open Left Blinder Loopback Line Pickup Locked-Rotor Current Load Tap-Changer Machine MilliAmpere Magnitude Manual / Manually Macimum Model Implementation Conformance Minimum, Minutes Man Machine Interface Manufacturing Message Specification Minimum Response Time
ISO IUV K0 KA KV LED LEO LFT BLD LOOP LPU LRA LTC M MAG MAG MAG MAS MIN MIN MMI MMS MRT MSG	 International Standards Organization Instantaneous Undervoltage Zero Sequence Current Compensation kiloAmpere kiloVolt Light Emitting Diode Line End Open Left Blinder Loopback Line Pickup Locked-Rotor Current Load Tap-Changer Machine MilliAmpere Magnitude Manual / Manually Maximum Model Implementation Conformance Minimum, Minutes Manufacturing Message Specification Minimum Response Time Message
ISO IUV K0 KA KV LED LEO LFT BLD LOOP LPU LRA LTC MAG MAG MAG MAN MAS MIN MIN MIN MMS MRT MSG MTA	 International Standards Organization Instantaneous Undervoltage Zero Sequence Current Compensation kiloAmpere kiloVolt Light Emitting Diode Line End Open Left Blinder Loopback Line Pickup Locked-Rotor Current Load Tap-Changer Machine MilliAmpere Magnitude Manual / Manually Maximum Model Implementation Conformance Minimum, Minutes Manufacturing Message Specification Minimum Response Time Message Maximum Torque Angle
ISO IUV K0 kA kV LED LEO LFT BLD LOOP LPU LRA LTC MAG MAG MAG MAS MIN MIN MIN MMS MRT MSG MTA MTA MTR	 International Standards Organization Instantaneous Undervoltage Zero Sequence Current Compensation kiloAmpere kiloVolt Light Emitting Diode Line End Open Left Blinder Loopback Line Pickup Locked-Rotor Current Load Tap-Changer Machine MaliAmpere Magnitude Manual / Manually Maximum Model Implementation Conformance Minimum, Minutes Manufacturing Message Specification Minimum Response Time Message Maximum Torque Angle
ISO IUV K0 kA kV LED LEO LFT BLD LOOP LPU LRA LTC MAG MAG MAS MAS MIC MIN MMI MMS MMS MAS MTA	 International Standards Organization Instantaneous Undervoltage Zero Sequence Current Compensation kiloAmpere kiloVolt Light Emitting Diode Line End Open Left Blinder Loopback Line Pickup Locked-Rotor Current Load Tap-Changer Machine MilliAmpere Magnitude Manual / Manually Maximum Model Implementation Conformance Minimum, Minutes Manufacturing Message Specification Minimum Response Time Maximum Torque Angle Motor MegaVolt-Ampere (total 3-phase)
ISO	 International Standards Organization Instantaneous Undervoltage Zero Sequence Current Compensation kiloAmpere kiloVolt Light Emitting Diode Line End Open Left Blinder Loopback Line Pickup Locked-Rotor Current Load Tap-Changer Machine MaliAmpere Magnitude Manual / Manually Maximum Model Implementation Conformance Minimum, Minutes Manufacturing Message Specification Minimum Response Time Message Maximum Torque Angle

APPENDIX F

MVAR	. MegaVar (total 3-phase)
	. MegaVar (phase A)
MVAR_B	. MegaVar (phase B)
MVAR_C	. MegaVar (phase C)
MVARH	. MegaVar-Hour
MW	. MegaWatt (total 3-phase)
MW_A	. MegaWatt (phase A)
MW_B	. MegaWatt (phase B)
MW_C	. MegaWatt (phase C)
MWH	. MegaWatt-Hour
N	Noutral
N	Not Applicable
	. Not Applicable
NEG NMPLT	Namenlate
NOM	
	. Network Service Access Protocol
NTR	
0	. Over
OC, O/C	
O/P, Op	
OP	. Operate
OPER	. Operate
OPERATG	. Operating
0/5	. Operating System
051	. Open Systems Interconnect
	. Out-of-Step Blocking
OUT	
OVEREREO	
OVERFREQ.	. Overfrequency
0100	. Overload
Р	. Phase
	. Phase Comparison, Personal Computer
PCNT	. Percent
PF	. Power Factor (total 3-phase)
PF_A	. Power Factor (phase A) . Power Factor (phase B)
PF_B	. Power Factor (phase B)
PF_C	. Power Factor (phase C)
PFLL	. Phase and Frequency Lock Loop
PHS	
	. Protocol Implementation & Conformance
סאס	Statement
PKP	
POS	. Power Line Carrier
	. Permissive Over-reaching Transfer Trip
PRESS	
PRI	
PROT	. Protection
	. Presentation Selector
pu	. Per Unit
PUIB	. Pickup Current Block
PUIT	. Pickup Current Trip
PUSHBTN	. Pushbutton
PUII	. Permissive Under-reaching Transfer Trip
PWW	. Pulse Width Modulated
PWR	. Power
QUAD	Quadrilatoral
QUAD	. Quadhlaterai
R	. Rate, Reverse
	. Reach Characteristic Angle
REF	. Reference
REM	. Remote
REV	. Reverse
RI	. Reclose Initiate
	. Reclose In Progress
RGT BLD	. Reclose In Progress . Right Blinder
RGT BLD ROD	. Reclose In Progress . Right Blinder . Remote Open Detector
RGT BLD ROD RST	. Reclose In Progress . Right Blinder . Remote Open Detector . Reset
RGT BLD ROD RST RSTR	. Reclose In Progress . Right Blinder . Remote Open Detector . Reset . Restrained
RGT BLD ROD RST RSTR RTD	. Reclose In Progress . Right Blinder . Remote Open Detector . Reset . Restrained . Resistance Temperature Detector
RGT BLD ROD RST RSTR RTD RTU	. Reclose In Progress . Right Blinder . Remote Open Detector . Reset . Restrained . Resistance Temperature Detector . Remote Terminal Unit
RGT BLD ROD RST RSTR RTD RTU	. Reclose In Progress . Right Blinder . Remote Open Detector . Reset . Restrained . Resistance Temperature Detector
RGT BLD ROD RST RSTR RTD RTU RTU RX (Rx)	. Reclose In Progress . Right Blinder . Remote Open Detector . Reset . Restrained . Resistance Temperature Detector . Remote Terminal Unit . Receive, Receiver
RGT BLD ROD RST RSTR RTD RTU	. Reclose In Progress . Right Blinder . Remote Open Detector . Reset . Restrained . Resistance Temperature Detector . Remote Terminal Unit . Receive, Receiver . second

SAT	CT Saturation
CO/ (1	Select Before Operate
	Select Delote Operate
SCADA	Supervisory Control and Data Acquisition
SEC	Secondary
	Select / Selector / Selection
SENS	
SEQ	Sequence
SIP	Source Impedance Ratio
	Source Impedance Ratio Simple Network Time Protocol
SNTP	Simple Network Time Protocol
SRC	Source
SSB	Single Side Band
000	
55EL	Session Selector
STATS	Statistics
SUPN	Supervision
SUPV	Supervise / Supervision
SV	Supervision, Service
OVNIC	Supehroebook
SYNC	Synchrocheck
SYNCHCHK	Synchrocheck
	•
.	T
1	Time, transformer
тс	Thermal Capacity
TCD	Transmission Control Protocol
ICU	Thermal Capacity Used Time Dial Multiplier
TD MULT	Time Dial Multiplier
	Temperature
1616	Temperature Trivial File Transfer Protocol
THD	Total Harmonic Distortion
	Timor
TMR	
тос	Time Overcurrent
TOV	Time Overvoltage
	Transfort
TRANS	. I ransient
TRANSF	Transfer
	Transport Selector
TUC	
TUC	Time Undercurrent
TUV	Time Undervoltage
$TY(T_{Y})$	Transmit, Transmitter
IA (IA)	
U	Under
ŬC	
UCA	Utility Communications Architecture User Datagram Protocol
UDP	User Datagram Protocol
	Underwriters Laboratories
UL	Underwhiters Laboratories
UNBAL	Unbalance
UR	Universal Relay Universal Recloser Control
UPC	Universal Recleser Centrel
URC	
.URS	Filename extension for settings files
UV	Undervoltage
•••	endervenage
	N/ IS 11 - S
V/Hz	Volts per Hertz
V 0	Zero Sequence voltage
√_1	Zero Sequence voltage Positive Sequence voltage
v_1	A ostave bequence voltage
v_2	ivegative Sequence voltage
VA	Negative Sequence voltage Phase A voltage
	Phase A to B voltage
V/NO	
VAG	Phase A to Ground voltage
VARH	Var-hour voltage
VB	Phase B voltage
	Dhaaa D ta A yaltaga
v BA	Phase B to A voltage
VBG	Phase B to Ground voltage
VC	Phase C voltage
VO	
VCA	Phase C to A voltage Phase C to Ground voltage
VCG	Phase C to Ground voltage
	Variable Frequency
	Villastics
VIBR	vidration
VT	Voltage Transformer
	Voltage Transformer Fuse Failure
V T F F	
V I'LOS	Voltage Transformer Loss Of Signal
	- 0
WDC	Winding
WDG	winding
WH	.Watt-hour
w/ opt	With Option
	With Deepeet Te
vv K I	With Respect To
Y	Reactance
X XDUCER	Iransducer
XFMR	Transformer
7	Impedance, Zone

For complete text of Warranty (including limitations and disclaimers), refer to GE Multilin Standard Conditions of Sale.

Numerics

10BASE-F	
communications options	3-22
description	3-25
interface	3-34
redundant option	3-22
settings	5-15
2 TERMINAL MODE	
3 TERMINAL MODE	2-10
87L	
see index entry for CURRENT DIFFERENTIAL	
87L DIFFERENTIAL	
Modbus registers	B-30
87L TRIP	
FlexLogic™ operands	5-96
settings	

Α

ABBREVIATIONS	F-4
AC CURRENT INPUTS2-20, 3-	
AC VOLTAGE INPUTS2-	,
ACTIVATING THE RELAY1-	
ACTIVE SETTING GROUP	
ACTUAL VALUES	0 117
description	2-11
main menu	
maintenance	
metering	
product information	
records	
status	
ALARM LEDs	
ALARMS	
ANSI DEVICES	
APPARENT POWER	19, 6-15
APPLICATION EXAMPLES	5 0 4 0
breaker trip circuit integrity	
contact inputs	
HV line configuration	
LV fault	
APPROVALS	
ARCHITECTURE	
ARCING CURRENT	5-222
AUTORECLOSE	
actual values	
description	
FlexLogic™ operands	
logic	
Modbus registers B-	
sequence	
settings 5-237, 5-240, 5-241, 5-24	
specifications	2-17
AUXILIARY OVERVOLTAGE	
FlexLogic™ operands	
logic	
Modbus registers	B-39
settings	5-194
specifications	2-17
AUXILIARY UNDERVOLTAGE	
FlexLogic™ operands	5-97
logic	

	Modbus registers	B-39
	settings	
	specifications	2-16
Α	UXILIARY VOLTAGE CHANNEL	
Α	UXILIARY VOLTAGE METERING	6-15

В

BANKS	
BATTERY FAILURE	
BINARY INPUT POINTS	
BINARY OUTPUT POINTS	E-9
BLOCK DIAGRAM	
BLOCK SETTING	
BREAKER ARCING CURRENT	
actual values	
clearing	
FlexLogic [™] operands	
logic	
measurement	
Modbus registers	B-15, B-36
settings	
specifications	
BREAKER CONTROL	
control of 2 breakers	
description	
dual breaker logic	
FlexLogic [™] operands	
Modbus registers	
settings	
BREAKER FAILURE	
description	
determination	
FlexLogic [™] operands	
logic	
main path sequence	
Modbus registers	
settings	
specifications	
BREAKER FLASHOVER	
FlexLogic™ operands	
logic	
Modbus registers	
settings	
specifications	
BREAKER-AND-A-HALF SCHEME .	
BRIGHTNESS	

С

C37.94 COMMUNICATIONS	
C37.94SM COMMUNICATIONS	
CE APPROVALS	
CHANGES TO L90 MANUAL	F-2
CHANGES TO MANUAL	F-2, F-3
CHANNEL ASYMMETRY	
settings	5-61
CHANNEL COMMUNICATION	3-27
CHANNEL MONITOR	2-10
CHANNEL STATUS	
Modbus registers	B-11
CHANNEL TESTS	
actual values	6-6

commands	
Modbus registers	B-57
procedures	
settings	
CHANNELS	
banks	
number of	
CHARGING CURRENT COMPEN	
CIRCUIT MONITORING APPLICA	
CLEANING	
CLEAR RECORDS	
CLEAR RELAY RECORDS	D 57
Modbus registers	
settings	
CLOCK	
setting date and time	
settings	
synchronization	
synchronization tests	
COMMANDS MENU	7-1
COMMUNICATIONS	
10BASE-F	
channel	
connecting to the UR	
CRC-16 error checking	
direct transfer trip	
•	
dnp	
G.703	
half duplex	
HTTP	
IEC 60870-5-104 protocol	
IEC 61850	
inter-relay communications	
тоорраск test	
•	
Modbus	5-15, 5-31, B-1, B-3
Modbus Modbus registers	5-15, 5-31, B-1, B-3 B-20
Modbus Modbus registers network	5-15, 5-31, B-1, B-3 B-20 5-15
Modbus Modbus registers network overview	5-15, 5-31, B-1, B-3 B-20 5-15 5-15 1-16, 2-9
Modbus Modbus registers network overview path diagram	5-15, 5-31, B-1, B-3 B-20 5-15 5-15 1-16, 2-9 2-10
Modbus Modbus registers network overview path diagram RS232	5-15, 5-31, B-1, B-3 B-20 5-15 5-15 1-16, 2-9 2-10 3-22
Modbus Modbus registers network overview path diagram RS232 RS485	5-15, 5-31, B-1, B-3 B-20 5-15 5-15 1-16, 2-9 2-10 3-22, 3-24, 5-14
Modbus Modbus registers network overview path diagram RS232 RS485 settings	5-15, 5-31, B-1, B-3 B-20 5-15 5-15 2-10 3-22, 3-24, 5-14 5-15, 5-16, 5-21, 5-30, 5-31
Modbus Modbus registers network overview path diagram RS232 RS485 settings specifications	
Modbus Modbus registers network overview path diagram RS232 RS485 settings specifications UCA/MMS	
Modbus Modbus registers network overview path diagram RS232 RS485 settings specifications UCA/MMS web server	
Modbus Modbus registers network overview path diagram RS232 RS485 settings specifications UCA/MMS	
Modbus Modbus registers network overview path diagram RS232 RS485 settings specifications UCA/MMS web server	
Modbus Modbus registers network overview path diagram RS232 RS485 settings specifications UCA/MMS web server COMTRADE CONDUCTED RFI	
Modbus Modbus registers network overview path diagram RS232 RS485 settings specifications UCA/MMS web server COMTRADE	
Modbus Modbus registers network overview path diagram RS232 RS485 settings specifications UCA/MMS web server COMTRADE CONDUCTED RFI CONTACT INFORMATION CONTACT INFORMATION	
Modbus Modbus registers network overview path diagram RS232 RS485 specifications UCA/MMS web server COMTRADE CONDUCTED RFI CONTACT INFORMATION CONTACT INFORMATION CONTACT INPUTS actual values	
Modbus Modbus registers network path diagram RS232 RS485 settings pecifications UCA/MMS web server COMTRADE CONDUCTED RFI CONTACT INFORMATION CONTACT INFORMATION CONTACT INPUTS actual values dry connections	
Modbus	
Modbus	
Modbus	
Modbus	
Modbus	
Modbus	
Modbus	
Modbus	
Modbus	
Modbus	$\begin{array}{c}$
Modbus	$\begin{array}{c}$
Modbus	
Modbus	
Modbus	$\begin{array}{c}$

logic Modbus registers	B-31
settings	
CONTROL ELEMENTS	5-200
CONTROL POWER	
description	3-11
specifications	2-21
CONTROL PUSHBUTTONS	
FlexLogic™ operands	5-96
Modbus registers	
settings	
specifications	
COUNTERS	
actual values	6-7
settings	
CRC-16 ALGORITHM	
CRITICAL FAILURE RELAY	
	,
CSA APPROVAL	2-24
CT BANKS	
settings	5-54
CT FAILURE	
FlexLogic [™] operands	
logic	
Modbus registers	
settings	
CT INPUTS	2, 5-6, 5-54
CT REQUIREMENTS	9-1
CT WIRING	3-12
CURRENT BANK	5-54
CURRENT DEMAND	
CURRENT DIFFERENTIAL	
applications	9-3
description	
FlexLogic™ operands	
logic	
metering	
Modbus registers	
settings	
specifications	
testing	
trip	
	0.40
actual values	
Modbus registers	
specifications	2-19
CURVES	
definite time	
FlexCurves™	
I2T	
IAC	
IEC	
IEEE	
inverse time undervoltage	5-189
types	5-152

D

DATA FORMATS, MODBUS	B-63
DATA LOGGER	
clearing	5-13, 7-2
Modbus	B-7
Modbus registers	B-11, B-21
settings	5-37
specifications	2-19
via COMTRADE	B-6
DATE	

DCMA INPUTS	
Modbus registers	
settings	
specifications DCMA OUTPUTS	
description	
Modbus registers	
settings	
specifications	2-21
DD	
see entry for DISTURBANCE DETECTOR	
DEFINITE TIME CURVE	.5-156, 5-189
Modbus registers	B-14 B-25
DEMAND METERING	D 14, D 20
actual values	6-16
settings	5-39
specifications	2-19
DEMAND RECORDS	
clearing	
DESIGN	
DEVICE ID DEVICE PROFILE DOCUMENT	
DIELECTRIC STRENGTH	
DIFFERENTIAL	
applications	
current	
current metering	6-12
element characteristics	
line elements	
stub bus	
theory	
trip DIGITAL COUNTERS	
actual values	6-7
FlexLogic™ operands	
logic	
Modbus registers	B-10, B-44
settings	5-219
DIGITAL ELEMENTS	5.047
application example FlexLogic™ operands	
Modbus registers	
settings	
DIGITAL INPUTS	
see entry for CONTACT INPUTS	
DIGITAL OUTPUTS	
see entry for CONTACT OUTPUTS	
DIMENSIONS DIRECT INPUTS	3-1, 3-2
actual values	6-4
description	
FlexLogic™ operands	
logic	
Modbus registers	B-11
settings	5-260
DIRECT INPUTS/OUTPUTS	
error messages	
DIRECT MESSAGES DIRECT OUTPUTS	5-257
description	5-260
logic	
settings	
DIRECT TRANSFER TRIP	
DIRECTIONAL OVERCURRENT	
see PHASE, GROUND, and NEUTRAL DIRECTI	
DIRECTIONAL POLARIZATION	5-161

DISCONNECT SWITCH	
FlexLogic [™] operands	5-102
logic	5-70
Modbus registers	
settings	
DISPLAY	
DISTANCE	-, -, -
application example	
ground	
mho characteristic	
Modbus registers	B-35
phase	
guad characteristic	
settings	
DISTURBANCE DETECTOR	
FlexLogic™ operands	
internal	
logic	
Modbus registers	
settings	
theory	
DNA-1 BIT PAIR	
DNP COMMUNICATIONS	
binary counters	E-10
binary input points	E-8
binary output points	
control relay output blocks	
device profile document	
frozen counters	E-10
implementation table	
Modbus registers	
settings	
DTT	
DUPLEX, HALF	
,	

Е

EGD PROTOCOL	
actual values	
ELECTROSTATIC DISCHARGE	
ELEMENTS	5-4
ENERGY METERING	
actual values	6-16
Modbus registers	B-13
specifications	
ENERGY METERING, CLEARING	
ENERVISTA UR SETUP	/
creating a site list	
event recorder	
firmware upgrades	
installation	
introduction	
oscillography	
overview	
requirements	
EQUATIONS	
definite time curve	5-156 5-180
FlexCurve™	,
l ² t curves	
IAC curves	
IEC curves	
IEEE curves	
EQUIPMENT MISMATCH ERROR	
ETHERNET	
actual values	
configuration	

error messages	7-8
Modbus registers	B-11
quick connect	
settings	
ETHERNET SWITCH	
actual values	6-8
configuration	
hardware	
Modbus registers	B-21
overview	
saving setting files	
settings	
uploading setting files	
EVENT CAUSE INDICATORS	4-15, 4-16
EVENT RECORDER	-, -
actual values	
clearing	
description	
Modbus	
Modbus registers	
specifications	
via EnerVista software	
EVENTS SETTING	
EXCEPTION RESPONSES	

F

F485	
FACEPLATE	
FACEPLATE PANELS	4-13, 4-23
FAST FORM-C RELAY	
FAST TRANSIENT TESTING	2-24
FAULT DETECTION	
FAULT LOCATOR	
logic	
Modbus registers	
operation	
specifications	
FAULT REPORT	
actual values	
clearing	
Modbus	
Modbus registers	
settings	
FAULT REPORTS	
Modbus registers	B-42
FAULT TYPE	
FAX NUMBERS	
FEATURES	
Fiber	
FIBER-LASER TRANSMITTERS	
FIRMWARE REVISION	
FIRMWARE UPGRADES	
FLASH MESSAGES	
FLEX STATE PARAMETERS	
actual values	6-8
Modbus registers	B-17, B-40
settings	5-50
specifications	
FLEXANALOG PARAMETER LIST	A-1
FLEXCURVES™	
equation	5-156
Modbus registers	B-25, B-44
settings	5-71
specifications	
table	5-71

FLEXELEMENTS™

actual values	6-18
direction	5-114
FlexLogic™ operands	5-98
hysteresis	
Modbus registers	
pickup	
scheme logic	
settings	
specifications	
FLEXLOGIC	
locking to a serial number	4-9
FLEXLOGIC™	
editing with EnerVista UR Setup	4-1
equation editor	5-110
error messages	
evaluation	5-105
example	
example equation	
gate characteristics	
locking equation entries	
Modbus registers	
operands	
operators	
rules	
security	
specifications	
timers	
worksheet	
FLEXLOGIC™ EQUATION EDITOR	
FLEXLOGIC™ TIMERS	
Modbus registers	P 27
settings	
FORCE CONTACT INPUTS	
FORCE CONTACT INFOTS	
FORCE TRIGGER	
FORM-A RELAY	0.44
high impedance circuits	
outputs	
specifications	2-21
FORM-C RELAY	
outputs	
specifications	2-21
FREQUENCY	
detection	
tracking	8-4
FREQUENCY METERING	
actual values	
Modbus registers	
settings	
specifications	
FREQUENCY TRACKING	
FREQUENCY, NOMINAL	5-55
FUNCTION SETTING	5-4
FUNCTIONALITY	
FUSE	2-20
FUSE FAILURE	
see VT FUSE FAILURE	

G

G.703	3-29, 3-30, 3-31, 3-34
GE TYPE IAC CURVES	5-155
GROUND CURRENT METERING	6-14
GROUND DIRECTIONAL SUPERVISION	5-141
GROUND DISTANCE	

FlexLogic™ operands	5-98
op scheme	5-139
scheme logic	
settings	
specifications	
GROUND IOC	
FlexLogic™ operands	5-98
logic	
Modbus registers	
settings	5-174
GROUND TIME OVERCURRENT	
see entry for GROUND TOC	
GROUND TOC	
FlexLogic™ operands	5-98
logic	
Modbus registers	
settings	
specifications	
GROUPED ELEMENTS	
GSSE	5-258, 5-259, 6-6

н

HALF-DUPLEX	B-1
HARDWARE REQUIREMENTS	8-10
HTTP PROTOCOL	5-29
HUMIDITY	2-24
HV LINE CONFIGURATION	9-13

L

I2T CURVES 5-156
121 CURVES
IAC CURVES 5-155
IEC 60870-5-104 PROTOCOL
interoperability documentD-1
· · · · ·
Modbus registersB-21
points listD-9
settings5-30
IEC 61850 PROTOCOL
device ID 5-258
DNA2 assignments 5-259
error messages7-8
Modbus registersB-45, B-46, B-47, B-48, B-49, B-50
remote device settings 5-257
remote inputs 5-258
settings
UserSt-1 bit pair
IEC CURVES
IED
IED SETUP
IEEE C37.94 COMMUNICATIONS
IEEE CURVES 5-153
IMPORTANT CONCEPTS1-4
IN SERVICE INDICATOR 1-17, 7-5
INCOMPATIBLE HARDWARE ERROR
INPUTS
AC current2-20, 5-54
AC voltage2-20, 5-55
contact inputs
dcmA inputs2-20, 3-21
direct inputs 5-260
IRIG-B
remote inputs
RTD inputs2-20, 3-21
virtual
virtual

INSPECTION CHECKLIST	1-1
INSTALLATION	
communications	
contact inputs/outputs 3-15, 3	
CT inputs	
RS485	
settings	5-53
INSTANTANEOUS OVERCURRENT	
see PHASE, GROUND, and NEUTRAL IOC entries	
INSULATION RESISTANCE	
INTELLIGENT ELECTRONIC DEVICE	1-2
INTER-RELAY COMMUNICATIONS	
INTRODUCTION	
INVERSE TIME UNDERVOLTAGE	
IOC	
see PHASE, GROUND, and NEUTRAL IOC entries	
IP ADDRESS	5-15
IRIG-B	
connection	2 25
error messages	
settings	
specifications	
ISO-9000 REGISTRATION	2-24

Κ

KEYPAD	1-17, 4-23

L

L90 POWER SYSTEM
Modbus registers
L90 TRIP
Modbus registers B-30
LAMPTEST
LANGUAGE
LASER MODULE
LATCHING OUTPUTS
application example 5-255, 5-256
error messages
settings
specifications2-21
LED INDICATORS
LED TEST
FlexLogic™ operand5-103
settings5-40
specifications2-18
LINE
pickup 5-123
LINE DIFFERENTIAL ELEMENTS 5-118
LINE PICKUP
FlexLogic™ operands5-98
logic
Modbus registers B-35
settings
specifications
LINK POWER BUDGET2-23
LOAD ENCROACHMENT
FlexLogic [™] operands
Modbus registers
settings
specifications2-17 LOCAL LOOPBACK
LOCAL LOOPBACK
LOGIC GATES
LOUF FILTER DLUCK DIAGRAMI

LOOPBACK	
LOST PASSWORD	
LV FAULT	

Μ

MAINTENANCE COMMANDS	
MANUFACTURING DATE	
MATCHING PHASELETS	
MEMORY MAP DATA FORMATS	B-63
MEMORY VOLTAGE LOGIC	5-126
MENU HEIRARCHY	
MENU NAVIGATION1-17,	
METERING	, -
conventions	6-9 6-10
current	
demand	
description	
frequency	
power	
•	
voltage METERING CONVENTIONS	
MHO DISTANCE CHARACTERISTIC	5-128
MODBUS	
data logger	
event recorder	
exception responses	
execute operation	
fault report	B-7
flex state parameters	
function code 03/04h	B-3
function code 05h	B-4
function code 06h	B-4
function code 10h	B-5
introduction	B-1
memory map data formats	B-63
obtaining files	B-6
oscillography	B-6
passwords	B-7
read/write settings/actual values	B-3
settings	5-15, 5-31
store multiple settings	
store single setting	B-4
supported function codes	
user map	B-11, B-25
MODEL INFORMATION	
MODIFICATION FILE NUMBER	
MODULE FAILURE ERROR	7-6
MODULES	
communications	
contact inputs/outputs3-15,	
СТ	
CT/VT	
direct inputs/outputs	
insertion	
order codes	,
power supply	
transducer I/O	
VT	
withdrawal	
MONITORING ELEMENTS	
MOTOR	
settings5-	152, 5-162
MOUNTING	
	,

Ν

NAMEPLATE	1-1
NEGATIVE SEQUENCE DIRECTIONAL OC	
Modbus registers	B-36
NEGATIVE SEQUENCE DIRECTIONAL OVERCUR	
characteristics	
FlexLogic [™] operands	
logic	
settings	
specifications	2-16
NEGATIVE SEQUENCE IOC	
FlexLogic™ operands	5-98
logic	
Modbus registers	
settings	
specifications	
NEGATIVE SEQUENCE TOC	
FlexLogic™ operands	
logic	
Modbus registers	B-32
settings	5-175
specifications	
NEUTRAL DIRECTIONAL OC	
Modbus registers	P 26
NEUTRAL DIRECTIONAL OVERCURRENT	
FlexLogic™ operands	
logic	
polarization	5-167
settings	
specifications	
NEUTRAL INSTANTANEOUS OVERCURRENT	
see entry for NEUTRAL IOC	
see entry for NEUTRAL IOC NEUTRAL IOC	
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic™ operands	5-98
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic™ operands logic	5-98 5-164
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic™ operands	5-98 5-164
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic™ operands logic	5-98 5-164 B-29
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic™ operands logic Modbus registers settings	5-98 5-164 B-29 5-164
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic™ operands logic Modbus registers settings specifications	5-98 5-164 B-29 5-164
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic [™] operands logic Modbus registers settings specifications NEUTRAL OVERVOLTAGE	5-98 5-164 B-29 5-164 2-15
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic [™] operands logic Modbus registers settings specifications NEUTRAL OVERVOLTAGE FlexLogic [™] operands	5-98 5-164 B-29 5-164 2-15 5-99
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic [™] operands logic Modbus registers settings specifications NEUTRAL OVERVOLTAGE FlexLogic [™] operands logic	5-98 5-164 8-29 5-164 2-15 5-99 5-193
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic [™] operands logic Modbus registers settings specifications NEUTRAL OVERVOLTAGE FlexLogic [™] operands logic Modbus registers	5-98 5-164 B-29 5-164 2-15 5-99 5-193 B-38
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic [™] operands logic Modbus registers settings specifications NEUTRAL OVERVOLTAGE FlexLogic [™] operands logic Modbus registers settings	5-98 5-164 8-29 5-164 2-15 5-99 5-193 8-38 5-192
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic [™] operands logic Modbus registers settings specifications NEUTRAL OVERVOLTAGE FlexLogic [™] operands logic Modbus registers settings specifications	5-98 5-164 8-29 5-164 2-15 5-99 5-193 8-38 5-192
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic [™] operands logic Modbus registers settings specifications NEUTRAL OVERVOLTAGE FlexLogic [™] operands logic Modbus registers settings	5-98 5-164 8-29 5-164 2-15 5-99 5-193 8-38 5-192
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic [™] operands	5-98 5-164 8-29 5-164 2-15 5-99 5-193 8-38 5-192
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic [™] operands logic Modbus registers settings specifications NEUTRAL OVERVOLTAGE FlexLogic [™] operands logic Modbus registers settings specifications NEUTRAL TIME OVERCURRENT see entry for NEUTRAL TOC	5-98 5-164 8-29 5-164 2-15 5-99 5-193 8-38 5-192
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic [™] operands	5-98 5-164 2-15 5-99 5-193
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic [™] operands logic Modbus registers settings specifications NEUTRAL OVERVOLTAGE FlexLogic [™] operands logic Modbus registers settings specifications NEUTRAL TIME OVERCURRENT see entry for NEUTRAL TOC NEUTRAL TOC FlexLogic [™] operands	
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic [™] operands	
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic [™] operands logic Modbus registers settings specifications NEUTRAL OVERVOLTAGE FlexLogic [™] operands logic Modbus registers settings specifications NEUTRAL TIME OVERCURRENT see entry for NEUTRAL TOC NEUTRAL TOC FlexLogic [™] operands logic Modbus registers	5-98 5-164 2-15 5-99 5-193 5-192 2-16 5-99 5-99 5-163 5-28
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic [™] operands logic Modbus registers settings specifications NEUTRAL OVERVOLTAGE FlexLogic [™] operands logic Modbus registers settings specifications NEUTRAL TIME OVERCURRENT see entry for NEUTRAL TOC NEUTRAL TOC FlexLogic [™] operands logic Modbus registers settings	5-98 5-164 2-15 5-99 5-193 8-38 5-192 2-16 5-99 5-99 5-163 8-28 5-163
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic [™] operands logic Modbus registers settings specifications NEUTRAL OVERVOLTAGE FlexLogic [™] operands logic Modbus registers settings specifications NEUTRAL TIME OVERCURRENT see entry for NEUTRAL TOC NEUTRAL TOC FlexLogic [™] operands logic Modbus registers settings specifications	5-98 5-164 2-15 5-99 5-193 8-38 5-192 2-16 5-99 5-99 5-163 8-28 5-163
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic [™] operands	
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic [™] operands	
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic [™] operands logic Modbus registers settings specifications NEUTRAL OVERVOLTAGE FlexLogic [™] operands logic Modbus registers settings specifications NEUTRAL TIME OVERCURRENT see entry for NEUTRAL TOC NEUTRAL TOC FlexLogic [™] operands logic Modbus registers settings specifications NON-VOLATILE LATCHES FlexLogic [™] operands	
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic [™] operands logic Modbus registers settings specifications NEUTRAL OVERVOLTAGE FlexLogic [™] operands logic Modbus registers settings specifications NEUTRAL TIME OVERCURRENT see entry for NEUTRAL TOC NEUTRAL TIME OVERCURRENT see entry for NEUTRAL TOC NEUTRAL TOC FlexLogic [™] operands logic Modbus registers settings specifications NON-VOLATILE LATCHES FlexLogic [™] operands Modbus registers	
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic [™] operands logic Modbus registers settings specifications NEUTRAL OVERVOLTAGE FlexLogic [™] operands logic Modbus registers settings specifications NEUTRAL TIME OVERCURRENT see entry for NEUTRAL TOC NEUTRAL TOC FlexLogic [™] operands logic Modbus registers settings specifications NON-VOLATILE LATCHES FlexLogic [™] operands Modbus registers settings specifications NON-VOLATILE LATCHES FlexLogic [™] operands Modbus registers settings	
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic [™] operands logic Modbus registers settings specifications NEUTRAL OVERVOLTAGE FlexLogic [™] operands logic Modbus registers settings specifications NEUTRAL TIME OVERCURRENT see entry for NEUTRAL TOC NEUTRAL TOC FlexLogic [™] operands logic Modbus registers settings specifications NON-VOLATILE LATCHES FlexLogic [™] operands Modbus registers settings specifications NON-VOLATILE LATCHES FlexLogic [™] operands Modbus registers settings specifications	
see entry for NEUTRAL IOC NEUTRAL IOC FlexLogic [™] operands logic Modbus registers settings specifications NEUTRAL OVERVOLTAGE FlexLogic [™] operands logic Modbus registers settings specifications NEUTRAL TIME OVERCURRENT see entry for NEUTRAL TOC NEUTRAL TOC FlexLogic [™] operands logic Modbus registers settings specifications NON-VOLATILE LATCHES FlexLogic [™] operands Modbus registers settings specifications NON-VOLATILE LATCHES FlexLogic [™] operands Modbus registers settings	

0

ONE SHOTS	5-105
OPEN POLE DETECTOR	
FlexLogic™ operands	5-99

logic	
Modbus registers	
settings	5-232
specifications	
OPERATING CONDITION CALCULATIO	NS 8-15
OPERATING TEMPERATURE	
OPERATING TIMES	
ORDER CODES	
ORDER CODES, UPDATING	7-2
ORDERING	
OSCILLATORY TRANSIENT TESTING .	
OSCILLOGRAPHY	0.00
actual values	
clearing	
description	
Modbus	
Modbus registers	,
settings	
specifications	
via COMTRADE	B-6
via EnerVista software	
OSI NETWORK ADDRESS	
OST	2-17, 5-144
OUT-OF-STEP TRIPPING	
OUTPUTS	,
contact outputs	
contact outputs	
control power	
control power critical failure relay	
control power critical failure relay direct outputs	
control power critical failure relay direct outputs Fast Form-C relay	
control power critical failure relay direct outputs Fast Form-C relay Form-A relay	
control power critical failure relay direct outputs Fast Form-C relay Form-A relay Form-C relay	
control power critical failure relay direct outputs Fast Form-C relay Form-A relay Form-C relay IRIG-B	
control power critical failure relay direct outputs Fast Form-C relay Form-A relay Form-C relay IRIG-B latching outputs	2-21 2-21 5-261 2-21 2-21, 3-13, 3-14, 3-19 2-21, 3-13, 3-19 2-21 2-21, 5-254
control power critical failure relay direct outputs Fast Form-C relay Form-A relay Form-C relay IRIG-B latching outputs remote outputs	2-21 2-21 5-261 2-21 2-21, 3-13, 3-14, 3-19 2-21, 3-13, 3-19 2-21 2-21, 5-254 5-259
control power critical failure relay direct outputs Fast Form-C relay Form-A relay Form-C relay IRIG-B latching outputs virtual outputs	2-21 2-21 5-261 2-21 2-21, 3-13, 3-14, 3-19 2-21, 3-13, 3-19 2-21, 3-13, 3-19 2-21, 5-254 5-259 5-256
control power critical failure relay direct outputs Fast Form-C relay Form-A relay Form-C relay IRIG-B latching outputs remote outputs virtual outputs OVERCURRENT CURVE TYPES	2-21 2-21 5-261 2-21 2-21, 3-13, 3-14, 3-19 2-21, 3-13, 3-19 2-21, 3-13, 3-19 2-21, 5-254 5-259 5-256
control power critical failure relay direct outputs Fast Form-C relay Form-C relay IRIG-B latching outputs remote outputs virtual outputs OVERCURRENT CURVE TYPES OVERCURRENT CURVES	2-21 2-21 2-21 2-21 2-21, 3-13, 3-14, 3-19 2-21, 3-13, 3-19 2-21, 3-13, 3-19 2-21, 5-254 5-259 5-256 5-152
control power critical failure relay direct outputs Fast Form-C relay Form-C relay Form-C relay IRIG-B latching outputs remote outputs virtual outputs OVERCURRENT CURVE TYPES OVERCURRENT CURVES definite time	$\begin{array}{c} 2-21\\ 2-21\\ 2-21\\ 2-21\\ 2-21\\ 2-21, 3-13, 3-14, 3-19\\ 2-21, 3-13, 3-19\\ 2-21, 3-13, 3-19\\ 2-21, 5-254\\ 5-259\\ 5-256\\ 5-259\\ 5-256\\ 5-152\\ 5-152\\ 5-156\\ \end{array}$
control power critical failure relay direct outputs Fast Form-C relay Form-C relay Form-C relay Iatching outputs remote outputs virtual outputs OVERCURRENT CURVE TYPES OVERCURRENT CURVES definite time FlexCurves™	$\begin{array}{c} 2-21\\ 2-21\\ 2-21\\ 2-21\\ 2-21\\ 2-21, 3-13, 3-14, 3-19\\ 2-21, 3-13, 3-19\\ 2-21, 3-13, 3-19\\ 2-21, 5-254\\ 5-259\\ 5-256\\ 5-256\\ 5-152\\ 5-156\\ 5-156\\ 5-156\\ 5-156\\ \end{array}$
control power critical failure relay direct outputs Fast Form-C relay Form-C relay Form-C relay IRIG-B latching outputs remote outputs virtual outputs OVERCURRENT CURVE TYPES OVERCURRENT CURVES definite time	$\begin{array}{c} 2-21\\ 2-21\\ 2-21\\ 2-21\\ 2-21\\ 2-21, 3-13, 3-14, 3-19\\ 2-21, 3-13, 3-19\\ 2-21, 3-13, 3-19\\ 2-21, 5-254\\ 5-259\\ 5-256\\ 5-256\\ 5-152\\ 5-156\\ 5-156\\ 5-156\\ 5-156\\ \end{array}$
control power critical failure relay direct outputs Fast Form-C relay Form-C relay Form-C relay Iatching outputs remote outputs virtual outputs OVERCURRENT CURVE TYPES OVERCURRENT CURVES definite time FlexCurves™	$\begin{array}{c} 2-21\\ 2-21\\ 2-21\\ 2-21\\ 2-21\\ 2-21, 3-13, 3-14, 3-19\\ 2-21, 3-13, 3-14\\ 2-21\\ 2-21, 3-13, 3-19\\ 2-21\\ 2-21, 5-254\\ 5-259\\ 5-256\\ 5-152\\ 5-152\\ 5-156\\$
control power critical failure relay direct outputs Fast Form-C relay Form-C relay Form-C relay IntG-B latching outputs remote outputs virtual outputs OVERCURRENT CURVE TYPES OVERCURRENT CURVES definite time FlexCurves™	$\begin{array}{c} 2-21\\ 2-21\\ 2-21\\ 2-21\\ 2-21\\ 2-21, 3-13, 3-14, 3-19\\ 2-21, 3-13, 3-14\\ 3-19\\ 2-21, 3-13, 3-19\\ 2-21\\ 2-21, 5-254\\ 5-256\\ 5-256\\ 5-152\\ 5-152\\ 5-156\\ 5-156\\ 5-156\\ 5-156\\ 5-156\\ 5-156\\ 5-156\\ 5-156\\ 5-155\\ \end{array}$
control power critical failure relay direct outputs Fast Form-C relay Form-C relay Form-C relay IRIG-B latching outputs remote outputs virtual outputs OVERCURRENT CURVE TYPES OVERCURRENT CURVES definite time FlexCurves™ I2T IAC	$\begin{array}{c} 2-21\\ 2-21\\ 2-21\\ 5-261\\ 2-21\\ 2-21, 3-13, 3-14, 3-19\\ 2-21, 3-13, 3-14\\ 3-19\\ 2-21, 3-13, 3-19\\ 2-21\\ 5-254\\ 5-256\\ 5-256\\ 5-152\\ 5-152\\ 5-156\\ 5-15$
control power critical failure relay direct outputs Fast Form-C relay Form-A relay Form-C relay IRIG-B latching outputs remote outputs virtual outputs OVERCURRENT CURVE TYPES OVERCURRENT CURVES definite time FlexCurves [™] I2T IAC IEC	$\begin{array}{c} 2-21\\ 2-21\\ 2-21\\ 5-261\\ 2-21\\ 2-21, 3-13, 3-14, 3-19\\ 2-21, 3-13, 3-14\\ 3-19\\ 2-21, 3-13, 3-19\\ 2-21\\ 5-254\\ 5-256\\ 5-256\\ 5-152\\ 5-152\\ 5-156\\ 5-156\\ 5-156\\ 5-156\\ 5-156\\ 5-156\\ 5-155\\ 5-154\\ 5-153\\ 5-155\\ 5-15\\ 5-15\\ 5-15\\ 5-15\\ 5-15\\ 5-$
control power critical failure relay fast Form-C relay Form-A relay Form-C relay Form-C relay IRIG-B latching outputs remote outputs virtual outputs virtual outputs VVERCURRENT CURVE TYPES OVERCURRENT CURVES definite time FlexCurves [™] I2T IAC IEC IEE OVERVIEW OVERVOLTAGE	$\begin{array}{c} 2-21\\ 2-21\\ 2-21\\ 5-261\\ 2-21\\ 2-21, 3-13, 3-14, 3-19\\ 2-21, 3-13, 3-19\\ 2-21, 3-221\\ 2-21, 5-254\\ 5-259\\ 5-256\\ 5-152\\ 5-152\\ 5-156\\ 5-156\\ 5-156\\ 5-156\\ 5-155\\ 5-155\\ 5-155\\ 5-155\\ 5-155\\ 5-153\\ 5-153\\ 2-3\end{array}$
control power critical failure relay direct outputs Fast Form-C relay Form-A relay Form-C relay IRIG-B latching outputs remote outputs virtual outputs VERCURRENT CURVE TYPES OVERCURRENT CURVES definite time FlexCurves™ I2T IAC IEE OVERVIEW	$\begin{array}{c} 2-21\\ 2-21\\ 2-21\\ 5-261\\ 2-21\\ 2-21, 3-13, 3-14, 3-19\\ 2-21, 3-13, 3-19\\ 2-21, 3-221\\ 2-21, 5-254\\ 5-259\\ 5-256\\ 5-152\\ 5-152\\ 5-156\\ 5-156\\ 5-156\\ 5-156\\ 5-155\\ 5-155\\ 5-155\\ 5-155\\ 5-155\\ 5-153\\ 5-153\\ 2-3\end{array}$
control power critical failure relay fast Form-C relay Form-A relay Form-C relay Form-C relay IRIG-B latching outputs remote outputs virtual outputs virtual outputs VVERCURRENT CURVE TYPES OVERCURRENT CURVES definite time FlexCurves [™] I2T IAC IEC IEE OVERVIEW OVERVOLTAGE	$\begin{array}{c} 2-21\\ 2-21\\ 2-21\\ 5-261\\ 2-21\\ 2-21, 3-13, 3-14, 3-19\\ 2-21, 3-13, 3-19\\ 2-21, 3-13, 3-19\\ 2-21\\ 5-254\\ 5-259\\ 5-256\\ 5-152\\ 5-152\\ 5-156\\ 5-156\\ 5-156\\ 5-156\\ 5-156\\ 5-155\\ 5-154\\ 5-153\\ 2-3\\ 2-3\\ 2-17, 5-194\\ \end{array}$
control power critical failure relay direct outputs Fast Form-C relay Form-A relay Form-C relay Form-C relay IRIG-B latching outputs remote outputs virtual outputs virtual outputs VVERCURRENT CURVE TYPES OVERCURRENT CURVES definite time FlexCurves™ I2T IAC IEE OVERVIEW OVERVOLTAGE auxiliary	$\begin{array}{c} 2-21\\ 2-21\\ 2-21\\ 5-261\\ 2-21\\ 2-21, 3-13, 3-14, 3-19\\ 2-21, 3-13, 3-19\\ 2-21, 3-13, 3-19\\ 2-21, 5-254\\ 5-259\\ 5-256\\ 5-152\\ 5-152\\ 5-156\\ 5-156\\ 5-156\\ 5-156\\ 5-156\\ 5-156\\ 5-155\\ 5-154\\ 5-153\\ 2-3\\ 2-17, 5-194\\ 2-16, 5-192\\ \end{array}$

Ρ

PANEL CUTOUT	3-1, 3-2
PARITY	
PASSWORD SECURITY	
PASSWORDS	
changing	
for settings templates	
lost password	
Modbus	B-7
Modbus registers	
overview	
security	
settings	
PC SOFTWARE	

see entry for ENERVISTA UR SETUP

PERMISSIVE FUNCTIONS	5-189
PERMISSIVE OVERREACH TRANSFER TRIP	
see entry for POTT PER-UNIT QUANTITY	E 4
PFLL STATUS	
PHASE ANGLE METERING	
PHASE CURRENT METERING	
PHASE DETECTION	
PHASE DIRECTIONAL OC	
Modbus registers	B-36
PHASE DIRECTIONAL OVERCURRENT	
FlexLogic™ operands	5-99
logic	
phase A polarization	
settings specifications	
PHASE DISTANCE	2-10
FlexLogic [™] operands	5-99
logic	
Modbus registers	
op scheme	
settings	5-126
specifications	2-14
PHASE INSTANTANEOUS OVERCURRENT	
see entry for PHASE IOC	
PHASE IOC	5 400
FlexLogic™ operands logic	
Modbus registers	
specifications	
PHASE LOCKING	
PHASE MEASUREMENT UNIT	
see entry for SYNCHROPHASOR	
PHASE OVERVOLTAGE	
FlexLogic™ operands	
logic	
Modbus registers	
settings	
specifications PHASE ROTATION	
PHASE SELECT	
FlexLogic [™] operands	
PHASE TIME OVERCURRENT	
see entry for PHASE TOC	
PHASE TOC	
FlexLogic™ operands	
logic	
Modbus registers	
settings	
specifications PHASE UNDERVOLTAGE	2-15
FlexLogic [™] operands	5-100
logic	
Modbus registers	
settings	
specifications	2-16
PHASELETS	8-1, 8-2
PHASOR MEASUREMENT UNIT	
actual values	
PHASORS	,
PILOT CHANNEL RELAYING PILOT SCHEMES	2-9
POTT	5-234
specifications	
PMU	
see entry for SYNCHROPHASOR	
POTT	

application of settings9-1 FlexLogic™ operands5-10 logic)1
Modbus registersB-4	13
settings5-234, 5-23	\$5
POWER METERING	
Modbus registersB-1	
specifications2-1	
values	5
POWER SUPPLY	
description	
low range	
specifications2-2 POWER SWING BLOCKING	
POWER SWING DETECT	.5
FlexLogic [™] operands	11
logic	
Modbus registersB-3	
settings	
specifications	
POWER SYSTEM	-
Modbus registersB-2	24
settings for L905-5	59
PREFERENCES	
Modbus registersB-2	20
PRODUCT INFORMATION	
PRODUCT SETUP	-8
PRODUCTION TESTS	
PROTECTION ELEMENTS	
PROTECTION FEATURES	
PU QUANTITY	-4
PUSHBUTTONS, USER-PROGRAMMABLE	
see USER-PROGRAMMBLE PUSHBUTTONS	

Q

QUAD DISTANCE CHARACTERISTIC .. 5-129, 5-130, 5-136, 5-137

R

	B-21, B-22
	ENTS
RECLOSING	
	. 5-237, 5-240, 5-241, 5-243, 5-244
	0
	l
REMOTE DEVICES	
FlexLogic™ operands	

Modbus registers	B-11, B-17, B-57, B-59
settings	
statistics	
REMOTE INPUTS	
actual values	6.2
FlexLogic [™] operands	
Modbus registers	
settings	
specifications	
REMOTE LOOPBACK	5-271
REMOTE OUTPUTS	
DNA-1 bit pair	
Modbus registers	
UserSt-1 bit pair	
REPLACEMENT MODULES	
REQUIREMENTS, HARDWARE	
RESETTING	
RESTRAINT CHARACTERISTICS	
REVISION HISTORY	
RFI SUSCEPTIBILITY	2-24
RFI, CONDUCTED	2-24
RMS CURRENT	2-19
RMS VOLTAGE	2-19
ROLLING DEMAND	5-40
RS232	
configuration	
specifications	
wiring	
RS422	
configuration	
timing	
two-channel application	
with fiber interface	
RS485	
communications	3-22
configuration	
description	
specifications	
RTD INPUTS	
actual values	6.20
Modbus registers	
settings	
specifications	2-20

S

SALES OFFICE	1-1
SCAN OPERATION	1-4
SELECTOR SWITCH	
actual values	6-7
application example	5-205
FlexLogic [™] operands	
logic	
Modbus registers	B-44
settings	
specifications	
timing	
SELF-TESTS	
description	2-12, 7-5
error messages	7-7
FlexLogic [™] operands	5-104
Modbus registers	
SERIAL NUMBER	
SERIAL PORTS	
Modbus registers	B-20
settings	5-14

SETTING GROUPS 5-101, 5-11	7, 5-200, B-30
SETTINGS TEMPLATES	
description	
editing	
enabling	
Modbus registers	
password protection	
removing	
viewing	
SETTINGS, CHANGING	4-26
SIGNAL SOURCES	
metering	
settings	
SIGNAL TYPES	
SINGLE-LINE DIAGRAM	
SITE LIST, CREATING	4-1
SNTP PROTOCOL	
error messages	
Modbus registers	
settings	5-30
SOFTWARE	
installation	
see entry for ENERVISTA UR SETUP	
SOFTWARE ARCHITECTURE	
SOFTWARE MODULES	2-13
SOFTWARE, PC	
see entry for EnerVista UR Setup	
SOURCE FREQUENCY	
SOURCE TRANSFER SCHEMES	5-189
SOURCES	
example use of	
metering	
Modbus registers	
settings	
ST TYPE CONNECTORS	3-25
STANDARD ABBREVIATIONS	
START-UP	
STATUS INDICATORS	4-14, 4-15
STUB BUS	
FlexLogic™ operands	
logic	
Modbus registers	
settings	
SUPERVISING ELEMENTS	
SURGE IMMUNITY	
SYMMETRICAL COMPONENTS METERING	
SYNCHROCHECK	0.40.0.40
actual values FlexLogic™ operands	0-18, 0-19
logic	
Modbus registers	
settings specifications	
SYNCHRONIZATION RELAY	
SYNCHROPHASORS	0-14
actual values	6 10
clearing PMU records	
commands	
FlexLogic™ operands	
network connection	
phase measurement unit triggering	
phase measurement configuration	
phasor measurement unit	
phasor measurement unit calibration	
phasor measurement unit communications	
phasor measurement unit recording	
test values	
SYSTEM FREQUENCY	

SYSTEM SETUP	5-54
	 0-04

Т

TARGET MESSAGES	7-5
TARGET SETTING	5-5
TARGETS MENU	7-5
TCP PORT NUMBER	5-29
TEMPERATURE, OPERATING	2-24
TERMINALS	
TESTING	
channel tests	5-271
clock synchronization	
final tests	
force contact inputs	
force contact outputs	
lamp test	
local-remote relay tests	
self-test error messages	
synchrophasors	
THEORY OF OPERATION	
THERMAL DEMAND CHARACTERISTIC	
TIME	
TIME OVERCURRENT	
see PHASE, NEUTRAL, and GROUND TOC entries	5
TIMERS	
TOC	
ground	5-173
neutral	
phase	
specifications	
TRACEABILITY	
data	. 4-11. 4-12
overview	
rules	
TRACKING FREQUENCY	.6-18. B-39
TRANSDUCER I/O	,
actual values	6-20
settings	
specifications	
wiring	
TRIP BUS	
FlexLogic [™] operands	5-102
Modbus registers	
settings	
TRIP DECISION EXAMPLE	
TRIP LEDs	
TRIP OUTPUT	
FlexLogic [™] operands	5-102
logic	
Modbus registers	
settings	
specifications	
TROUBLE INDICATOR	
TYPE TESTS	
TYPICAL WIRING DIAGRAM	

U

UL APPROVAL	
UNAUTHORIZED ACCESS	
commands	
resetting	
UNDERVOLTAGE	
auxiliary	2-16

phase UNDERVOLTAGE CHARACTERISTICS UNEXPECTED RESTART ERROR UNIT NOT PROGRAMMED UNPACKING THE RELAY UPDATING ORDER CODE URPC see entry for ENERVISTA UR SETUP	
,	
USER-DEFINABLE DISPLAYS	5 50
example	
invoking and scrolling	
Modbus registers	
settings	
specifications	2-18
USER-PROGRAMMABLE LEDs	
custom labeling	
defaults	
description	
Modbus registers	
settings	5-42
specifications	2-18
USER-PROGRAMMABLE PUSHBUTTONS	
FlexLogic™ operands	5-104
Modbus registers	B-25, B-38
settings	5-45
specifications	
USER-PROGRAMMABLE SELF TESTS	
Modbus registers	B-23
settings	
USERST-1 BIT PAIR	

V

VAR-HOURS	2-19, 6-16
VIBRATION TESTING	2-24
VIRTUAL INPUTS	
actual values	6-3
commands	7-1
FlexLogic™ operands	5-103
logic	5-253
Modbus registers	B-9, B-52
settings	5-253
VIRTUAL OUTPUTS	

actual values	6-5
FlexLogic™ operands	5-103
Modbus registers	
settings	5-256
VOLTAGE BANKS	5-55
VOLTAGE DEVIATIONS	2-24
VOLTAGE ELEMENTS	5-189
VOLTAGE METERING	
Modbus registers	B-12
specifications	2-19
values	6-14
VOLTAGE RESTRAINT CHARACTERISTIC	5-157
VT FUSE FAILURE	
logic	5-231
Modbus registers	
settings	5-231
VT INPUTS	3-12, 5-6, 5-55
VT WIRING	3-12
VTFF	
FlexLogic™ operands	5-101
see VT FUSE FAILURE	

W

WARRANTY	F-6
WATT-HOURS	2-19, 6-16
WATTMETRIC ZERO-SEQUENCE DIRECTIONAL	
actual values	6-19
FlexLogic [™] operands	5-102
Modbus registers	B-31
settings	5-170
specifications	2-16
WEB SERVER PROTOCOL	5-29
WEBSITE	1-1
WIRING DIAGRAM	3-9

Ζ

ZERO SEQUENCE CORE BALANCE	3-12
ZERO-SEQUENCE CURRENT REMOVAL	5-61