F60 Feeder Management Relay
 UR Series Instruction Manual

F60 Revision: 4.0x

Manual P/N: 1601-0093-G2 (GEK-106484A)
Copyright © 2004 GE Multilin

C ϵ

GE Multilin

215 Anderson Avenue, Markham, Ontario Canada L6E 1B3

Tel: (905) 294-6222 Fax: (905) 201-2098
Internet: http://www.GEindustrial.com/multilin

ADDENDUM

This Addendum contains information that relates to the F60 Feeder Management Relay relay, version 4.0x. This addendum lists a number of information items that appear in the instruction manual GEK-106484A (revision G2) but are not included in the current F60 operations.
The following functions/items are not yet available with the current version of the F60 relay:

- Signal Sources SRC 5 and SRC 6

The version 4.0 release of the F60 relay includes new hardware (CPU and CT/VT modules).

- The new CPU modules are specified with the following order codes: 9E, 9G, and 9H.
- The new CT/VT modules are specified with the following order codes: $8 \mathrm{~F}, 8 \mathrm{G}, 8 \mathrm{H}, 8 \mathrm{~J}$.

The following table maps the relationship between the old CPU and CT/VT modules to the newer versions:

MODULE	OLD	NEW	DESCRIPTION
CPU	9 A	9 E	RS485 and RS485 (Modbus RTU, DNP)
	9 C	9 G	RS485 and 10Base-F (MMS/UCA2, Modbus TCP/IP, DNP)
	9 D	9 H	RS485 and Redundant 10Base-F (MMS/UCA2, Modbus TCP/IP, DNP)
CT/VT	8 A	8 F	Standard 4CT/4VT
	8 B	8 G	Sensitive Ground 4CT/4VT
	8 C	8 H	Standard 8CT
	8 D	8 J	Sensitive Ground 8CT/8VT

The new CT/VT modules can only be used with the new CPUs (9E, 9G, 9H), and the old CT/VT modules can only be used with the old CPU modules (9A, 9C, 9D). To prevent any hardware mismatches, the new CPU and CT/VT modules have blue labels and a warning sticker stating "Attn.: Ensure CPU and DSP module label colors are the same!". In the event that there is a mismatch between the CPU and CT/VT module, the relay will not function and a DSP ERROR or HARDWARE MISMATCH error will be displayed.
All other input/output modules are compatible with the new hardware.
With respect to the firmware, firmware version $4.0 x$ is only compatible with the new CPU and CT/VT modules. Previous versions of the firmware (3.4 x and earlier) are only compatible with the older CPU and CT/VT modules.

The UCA2 specifications are not yet finalized. There will be changes to the object models described in Appendix C: UCA/MMS Protocol.

1. GETTING STARTED

2. PRODUCT DESCRIPTION

2.1 INTRODUCTION

2.1.1 OVERVIEW 2-1
2.1.2 ORDERING 2-2
2.2 SPECIFICATIONS
2.2.1 PROTECTION ELEMENTS 2-5
2.2.2 USER-PROGRAMMABLE ELEMENTS 2-8
2.2.3 MONITORING 2-9
2.2.4 METERING 2-9
2.2.5 INPUTS 2-10
2.2.6 POWER SUPPLY 2-10
2.2.7 OUTPUTS 2-11
2.2.8 COMMUNICATIONS 2-12
2.2.9 INTER-RELAY COMMUNICATIONS 2-12
2.2.10 ENVIRONMENTAL 2-13
2.2.11 TYPE TESTS 2-13
2.2.12 PRODUCTION TESTS 2-13
2.2.13 APPROVALS 2-13
2.2.14 MAINTENANCE 2-13

3. HARDWARE

3.1 DESCRIPTION

3.1.1 PANEL CUTOUT 3-1
3.1.2 MODULE WITHDRAWAL AND INSERTION 3-4
3.1.3 REAR TERMINAL LAYOUT 3-5
3.2 WIRING
3.2.1 TYPICAL WIRING 3-6
3.2.2 TYPICAL WIRING WITH HI-Z 3-7
3.2.3 DIELECTRIC STRENGTH 3-8
3.2.4 CONTROL POWER 3-9
3.2.5 CT/VT MODULES 3-10
3.2.6 CONTACT INPUTS/OUTPUTS 3-12
3.2.7 TRANSDUCER INPUTS/OUTPUTS 3-18
3.2.8 RS232 FACEPLATE PORT 3-19
3.2.9 CPU COMMUNICATION PORTS 3-20
3.2.10 IRIG-B 3-22
3.3 DIRECT I/O COMMUNICATIONS
3.3.1 DESCRIPTION 3-23
3.3.2 FIBER: LED AND ELED TRANSMITTERS 3-25
3.3.3 FIBER-LASER TRANSMITTERS 3-25
3.3.4 G.703 INTERFACE 3-26
3.3.5 RS422 INTERFACE 3-28
3.3.6 RS422 AND FIBER INTERFACE 3-31
3.3.7 G.703 AND FIBER INTERFACE 3-31
3.3.8 IEEE C37.94 INTERFACE 3-32
5.1 OVERVIEW
5.1.1 SETTINGS MAIN MENU 5-1
5.1.2 INTRODUCTION TO ELEMENTS 5-3
5.1.3 INTRODUCTION TO AC SOURCES 5-5
5.2 PRODUCT SETUP
5.2.1 PASSWORD SECURITY 5-8
5.2.2 DISPLAY PROPERTIES 5-9
5.2.3 CLEAR RELAY RECORDS 5-11
5.2.4 COMMUNICATIONS 5-12
5.2.5 MODBUS USER MAP 5-20
5.2.6 REAL TIME CLOCK 5-20
5.2.7 FAULT REPORTS 5-21
5.2.8 OSCILLOGRAPHY 5-22
5.2.9 DATA LOGGER 5-24
5.2.10 DEMAND 5-24
5.2.11 USER-PROGRAMMABLE LEDS 5-26
5.2.12 USER-PROGRAMMABLE SELF-TESTS 5-29
5.2.13 CONTROL PUSHBUTTONS 5-29
5.2.14 USER-PROGRAMMABLE PUSHBUTTONS 5-31
5.2.15 FLEX STATE PARAMETERS 5-32
5.2.16 USER-DEFINABLE DISPLAYS 5-33
5.2.17 DIRECT INPUTS/OUTPUTS 5-35
5.2.18 INSTALLATION 5-40
5.3 SYSTEM SETUP
5.3.1 AC INPUTS 5-41
5.3.2 POWER SYSTEM 5-42
5.3.3 SIGNAL SOURCES 5-43
5.3.4 BREAKERS 5-45
5.3.5 FLEXCURVES ${ }^{\text {TM }}$ 5-48
5.4 FLEXLOGIC ${ }^{\text {TM }}$
5.4.1 INTRODUCTION TO FLEXLOGIC ${ }^{\text {™ }}$ 5-55
5.4.2 FLEXLOGIC ${ }^{\text {TM }}$ RULES 5-63
5.4.3 FLEXLOGIC ${ }^{\text {TM }}$ EVALUATION 5-63
5.4.4 FLEXLOGIC ${ }^{\text {M }}$ EXAMPLE 5-64

4. HUMAN INTERFACES

5. SETTINGS
5.4.5 FLEXLOGIC ${ }^{\text {TM }}$ EQUATION EDITOR 5-68
5.4.6 FLEXLOGIC ${ }^{\text {TM }}$ TIMERS 5-68
5.4.7 FLEXELEMENTSTM 5-69
5.4.8 NON-VOLATILE LATCHES 5-73
5.5 GROUPED ELEMENTS
5.5.1 OVERVIEW 5-74
5.5.2 SETTING GROUP 5-74
5.5.3 LOAD ENCROACHMENT 5-75
5.5.4 PHASE CURRENT 5-77
5.5.5 NEUTRAL CURRENT 5-87
5.5.6 GROUND CURRENT 5-95
5.5.7 NEGATIVE SEQUENCE CURRENT 5-97
5.5.8 BREAKER FAILURE 5-103
5.5.9 VOLTAGE ELEMENTS 5-112
5.5.10 SENSITIVE DIRECTIONAL POWER 5-119
5.6 CONTROL ELEMENTS
5.6.1 OVERVIEW 5-122
5.6.2 SETTING GROUPS 5-122
5.6.3 SELECTOR SWITCH 5-123
5.6.4 UNDERFREQUENCY 5-128
5.6.5 OVERFREQUENCY 5-129
5.6.6 FREQUENCY RATE OF CHANGE 5-130
5.6.7 SYNCHROCHECK 5-132
5.6.8 AUTORECLOSE 5-136
5.6.9 DIGITAL ELEMENTS 5-142
5.6.10 DIGITAL COUNTERS 5-145
5.6.11 MONITORING ELEMENTS 5-147
5.6.12 COLD LOAD PICKUP 5-156
5.7 INPUTS/OUTPUTS
5.7.1 CONTACT INPUTS 5-158
5.7.2 VIRTUAL INPUTS 5-160
5.7.3 CONTACT OUTPUTS 5-161
5.7.4 LATCHING OUTPUTS 5-161
5.7.5 VIRTUAL OUTPUTS 5-163
5.7.6 REMOTE DEVICES 5-164
5.7.7 REMOTE INPUTS 5-165
5.7.8 REMOTE OUTPUTS 5-166
5.7.9 RESETTING 5-167
5.7.10 DIRECT INPUTS/OUTPUTS 5-167
5.8 TRANSDUCER I/O
5.8.1 DCMA INPUTS 5-171
5.8.2 RTD INPUTS 5-172
5.8.3 DCMA OUTPUTS 5-172
5.9 TESTING
5.9.1 TEST MODE 5-176
5.9.2 FORCE CONTACT INPUTS 5-176
5.9.3 FORCE CONTACT OUTPUTS 5-177

6.1 OVERVIEW

6.1.1 ACTUAL VALUES MAIN MENU .. 6-1

6.2 STATUS

6.2.1 CONTACT INPUTS 6-3
6.2.2 VIRTUAL INPUTS 6-3
6.2.3 REMOTE INPUTS 6-3
6.2.4 CONTACT OUTPUTS 6-4
6.2.5 VIRTUAL OUTPUTS 6-4
6.2.6 AUTORECLOSE 6-4
6.2.7 REMOTE DEVICES 6-4
6.2.8 DIGITAL COUNTERS 6-5
6.2.9 SELECTOR SWITCHES 6-5
6.2.10 FLEX STATES 6-5
6.2.11 ETHERNET 6-6

6. ACTUAL VALUES

6.2.12 HI-Z STATUS 6-6
6.2.13 DIRECT INPUTS 6-6
6.2.14 DIRECT DEVICES STATUS 6-7
6.2.15 EGD PROTOCOL STATUS 6-7
6.3 METERING
6.3.1 METERING CONVENTIONS 6-8
6.3.2 SOURCES 6-11
6.3.3 SENSITIVE DIRECTIONAL POWER 6-15
6.3.4 SYNCHROCHECK 6-16
6.3.5 TRACKING FREQUENCY 6-16
6.3.6 FREQUENCY RATE OF CHANGE 6-16
6.3.7 FLEXELEMENTS ${ }^{\text {™ }}$ 6-17
6.3.8 TRANSDUCER I/O 6-17
6.4 RECORDS
6.4.1 FAULT REPORTS 6-18
6.4.2 EVENT RECORDS 6-20
6.4.3 OSCILLOGRAPHY 6-20
6.4.4 DATA LOGGER 6-20
6.4.5 BREAKER MAINTENANCE 6-21
6.4.6 HI-Z RECORDS 6-21
6.5 PRODUCT INFORMATION
6.5.1 MODEL INFORMATION 6-22
6.5.2 FIRMWARE REVISIONS 6-22
7. COMMANDS AND TARGETS
7.1 COMMANDS
7.1.1 COMMANDS MENU 7-1
7.1.2 VIRTUAL INPUTS 7-1
7.1.3 CLEAR RECORDS 7-1
7.1.4 SET DATE AND TIME 7-2
7.1.5 RELAY MAINTENANCE 7-2
7.2 TARGETS
7.2.1 TARGETS MENU 7-3
7.2.2 TARGET MESSAGES 7-3
7.2.3 RELAY SELF-TESTS 7-3
8. THEORY OF OPERATION
8.1 HIGH-IMPEDANCE (HI-Z) FAULT DETECTION 8.1.1 DESCRIPTION 8-1
8.1.2 ENERGY ALGORITHM 8-1
8.1.3 RANDOMNESS ALGORITHM 8-2
8.1.4 EXPERT ARC DETECTOR ALGORITHM 8-2
8.1.5 SPECTRAL ANALYSIS ALGORITHM 8-2
8.1.6 LOAD EVENT DETECTOR ALGORITHM 8-2
8.1.7 LOAD ANALYSIS ALGORITHM 8-3
8.1.8 LOAD EXTRACTION ALGORITHM 8-3
8.1.9 ARC BURST PATTERN ANALYSIS ALGORITHM 8-3
8.1.10 ARCING SUSPECTED ALGORITHM 8-3
8.1.11 OVERCURRENT DISTURBANCE MONITORING 8-3
8.1.12 HI-Z EVEN HARMONIC RESTRAINT ALGORITHM 8-3
8.1.13 HI-Z VOLTAGE SUPERVISION ALGORITHM 8-4

A. FLEXANALOG
PARAMETERS
B. MODBUS
COMMUNICATIONS
B. 1 MODBUS RTU PROTOCOL
B.1.1 INTRODUCTION.. B-1
B.1.2 PHYSICAL LAYER. B-1
B.1.3 DATA LINK LAYER B-1
B.1.4 CRC-16 ALGORITHM B-2
B. 2 MODBUS FUNCTION CODES
B.2.1 SUPPORTED FUNCTION CODES B-3
B.2.2 READ ACTUAL VALUES OR SETTINGS (FUNCTION CODE 03/04H) B-3
B.2.3 EXECUTE OPERATION (FUNCTION CODE 05H) B-4
B.2.4 STORE SINGLE SETTING (FUNCTION CODE 06H) B-4
B.2.5 STORE MULTIPLE SETTINGS (FUNCTION CODE 10H) B-5
B.2.6 EXCEPTION RESPONSES B-5
B. 3 FILE TRANSFERS
B.3.1 OBTAINING RELAY FILES VIA MODBUS B-6
B.3.2 MODBUS PASSWORD OPERATION B-7
B. 4 MEMORY MAPPING
B.4.1 MODBUS MEMORY MAP B-8
B.4.2 DATA FORMATS B-48
C. UCA/MMS
COMMUNICATIONSC. 1 UCA/MMS PROTOCOL

D. IEC 60870-5-104
COMMUNICATIONS

D. 1 IEC 60870-5-104

D.1.1 INTEROPERABILITY DOCUMENT ...D-1
D.1.2 IEC 60870-5-104 POINT LIST ...D-10
C.1.1 UCA. C-1
C.1.2 MMS C-1
C.1.3 UCA REPORTING C-6
D.1.2 IEC 60870-5-104 POINT LIST -10
E. DNP COMMUNICATIONS
E. 1 DNP PROTOCOL
E.1.1 DEVICE PROFILE DOCUMENT. E-1
E.1.2 DNP IMPLEMENTATION E-4
E. 2 DNP POINT LISTS
E.2.1 BINARY INPUTS E-8
E.2.2 BINARY AND CONTROL RELAY OUTPUTS E-13
E.2.3 COUNTERS E-14
E.2.4 ANALOG INPUTS E-15
F. MISCELLANEOUS
F. 1 CHANGE NOTES
F.1.1 REVISION HISTORY F-1
F.1.2 CHANGES TO THE F60 MANUAL F-1
F. 2 ABBREVIATIONS
F.2.1 STANDARD ABBREVIATIONS F-4
F. 3 WARRANTY
F.3.1 GE MULTILIN WARRANTY F-6
INDEX

Please read this chapter to help guide you through the initial setup of your new relay.

Before attempting to install or use the relay, it is imperative that all WARNINGS and CAUTIONS in this manual are reviewed to help prevent personal injury, equipment damage, and/ or downtime.

- Open the relay packaging and inspect the unit for physical damage.
- View the rear nameplate and verify that the correct model has been ordered.

Feeder Management Relay ${ }^{\text {® }}$ GE Multilin		RATINGS: Control Power: $88-300 \mathrm{~V}$ DC @ $35 \mathrm{~W} / 77-265 \mathrm{~V}$ AC @ 35VA Contact Inputs: Contact Outputs: Standard Pilot Duty / 250V AC 7.5A 360V A Resistive / 125 V DC Break $4 \mathrm{~A} @ L / R=40 \mathrm{mS} / 300 \mathrm{~W}$		Model: Mods: Wiring Diagram Inst. Manual: Serial Number: Mfg. Date: MIfg. Date:	F60H0OHCHF8FH6AM6BP8GX7A 000 832769 D MAZB98000029 D $1998 / 01 / 05$
Technical Support: Tel: (905) 294-6222 Fax: (905) 201-2098	http://www.GEindustrial.com/multilin				

Figure 1-1: REAR NAMEPLATE (EXAMPLE)

- Ensure that the following items are included:
- Instruction Manual
- GE enerVista CD (includes the enerVista UR Setup software and manuals in PDF format)
- mounting screws
- registration card (attached as the last page of the manual)
- Fill out the registration form and return to GE Multilin (include the serial number located on the rear nameplate).
- For product information, instruction manual updates, and the latest software updates, please visit the GE Multilin website at http://www.GEindustrial.com/multilin.

If there is any noticeable physical damage, or any of the contents listed are missing, please contact GE Multilin immediately.

GE MULTILIN CONTACT INFORMATION AND CALL CENTER FOR PRODUCT SUPPORT:

GE Multilin
215 Anderson Avenue
Markham, Ontario
Canada L6E 1B3
TELEPHONE: (905) 294-6222, 1-800-547-8629 (North America only)
FAX: (905) 201-2098
E-MAIL: gemultilin@indsys.ge.com
HOME PAGE: http://www.GEindustrial.com/multilin

Historically, substation protection, control, and metering functions were performed with electromechanical equipment. This first generation of equipment was gradually replaced by analog electronic equipment, most of which emulated the singlefunction approach of their electromechanical precursors. Both of these technologies required expensive cabling and auxiliary equipment to produce functioning systems.
Recently, digital electronic equipment has begun to provide protection, control, and metering functions. Initially, this equipment was either single function or had very limited multi-function capability, and did not significantly reduce the cabling and auxiliary equipment required. However, recent digital relays have become quite multi-functional, reducing cabling and auxiliaries significantly. These devices also transfer data to central control facilities and Human Machine Interfaces using electronic communications. The functions performed by these products have become so broad that many users now prefer the term IED (Intelligent Electronic Device).
It is obvious to station designers that the amount of cabling and auxiliary equipment installed in stations can be even further reduced, to 20% to 70% of the levels common in 1990, to achieve large cost reductions. This requires placing even more functions within the IEDs.

Users of power equipment are also interested in reducing cost by improving power quality and personnel productivity, and as always, in increasing system reliability and efficiency. These objectives are realized through software which is used to perform functions at both the station and supervisory levels. The use of these systems is growing rapidly.

High speed communications are required to meet the data transfer rates required by modern automatic control and monitoring systems. In the near future, very high speed communications will be required to perform protection signaling with a performance target response time for a command signal between two IEDs, from transmission to reception, of less than 5 milliseconds. This has been established by the Electric Power Research Institute, a collective body of many American and Canadian power utilities, in their Utilities Communications Architecture 2 (MMS/UCA2) project. In late 1998, some European utilities began to show an interest in this ongoing initiative.
IEDs with the capabilities outlined above will also provide significantly more power system data than is presently available, enhance operations and maintenance, and permit the use of adaptive system configuration for protection and control systems. This new generation of equipment must also be easily incorporated into automation systems, at both the station and enterprise levels. The GE Multilin Universal Relay (UR) has been developed to meet these goals.

a) UR BASIC DESIGN

The UR is a digital-based device containing a central processing unit (CPU) that handles multiple types of input and output signals. The UR can communicate over a local area network (LAN) with an operator interface, a programming device, or another UR device.

Figure 1-2: UR CONCEPT BLOCK DIAGRAM
The CPU module contains firmware that provides protection elements in the form of logic algorithms, as well as programmable logic gates, timers, and latches for control features.

Input elements accept a variety of analog or digital signals from the field. The UR isolates and converts these signals into logic signals used by the relay.
Output elements convert and isolate the logic signals generated by the relay into digital or analog signals that can be used to control field devices.

b) UR SIGNAL TYPES

The contact inputs and outputs are digital signals associated with connections to hard-wired contacts. Both 'wet' and 'dry' contacts are supported.
The virtual inputs and outputs are digital signals associated with UR-series internal logic signals. Virtual inputs include signals generated by the local user interface. The virtual outputs are outputs of FlexLogic ${ }^{\text {TM }}$ equations used to customize the device. Virtual outputs can also serve as virtual inputs to FlexLogic ${ }^{\text {TM }}$ equations.
The analog inputs and outputs are signals that are associated with transducers, such as Resistance Temperature Detectors (RTDs).

The CT and VT inputs refer to analog current transformer and voltage transformer signals used to monitor AC power lines. The UR-series relays support 1 A and 5 A CTs.
The remote inputs and outputs provide a means of sharing digital point state information between remote UR-series devices. The remote outputs interface to the remote inputs of other UR-series devices. Remote outputs are FlexLogic ${ }^{\mathrm{TM}}$ operands inserted into UCA2 GOOSE messages and are of two assignment types: DNA standard functions and userdefined (UserSt) functions.
The direct inputs and outputs provide a means of sharing digital point states between a number of UR-series IEDs over a dedicated fiber (single or multimode), RS422, or G. 703 interface. No switching equipment is required as the IEDs are connected directly in a ring or redundant (dual) ring configuration. This feature is optimized for speed and intended for pilotaided schemes, distributed logic applications, or the extension of the input/output capabilities of a single relay chassis.

c) UR SCAN OPERATION

The UR-series devices operate in a cyclic scan fashion. The device reads the inputs into an input status table, solves the logic program (FlexLogic ${ }^{\text {TM }}$ equation), and then sets each output to the appropriate state in an output status table. Any resulting task execution is priority interrupt-driven.

Figure 1-3: UR-SERIES SCAN OPERATION
1.2.3 SOFTWARE ARCHITECTURE

The firmware (software embedded in the relay) is designed in functional modules which can be installed in any relay as required. This is achieved with Object-Oriented Design and Programming (OOD/OOP) techniques.
Object-Oriented techniques involve the use of 'objects' and 'classes'. An 'object' is defined as "a logical entity that contains both data and code that manipulates that data". A 'class' is the generalized form of similar objects. By using this concept, one can create a Protection Class with the Protection Elements as objects of the class such as Time Overcurrent, Instantaneous Overcurrent, Current Differential, Undervoltage, Overvoltage, Underfrequency, and Distance. These objects represent completely self-contained software modules. The same object-class concept can be used for Metering, l/O Control, HMI, Communications, or any functional entity in the system.

Employing OOD/OOP in the software architecture of the Universal Relay achieves the same features as the hardware architecture: modularity, scalability, and flexibility. The application software for any Universal Relay (e.g. Feeder Protection, Transformer Protection, Distance Protection) is constructed by combining objects from the various functionality classes. This results in a 'common look and feel' across the entire family of UR-series platform-based applications.
1.2.4 IMPORTANT CONCEPTS

As described above, the architecture of the UR-series relays differ from previous devices. To achieve a general understanding of this device, some sections of Chapter 5 are quite helpful. The most important functions of the relay are contained in "elements". A description of the UR-series elements can be found in the Introduction to Elements section in Chapter 5. An example of a simple element, and some of the organization of this manual, can be found in the Digital Elements section. An explanation of the use of inputs from CTs and VTs is in the Introduction to AC Sources section in Chapter 5. A description of how digital signals are used and routed within the relay is contained in the Introduction to FlexLogic ${ }^{\text {™ }}$ section in Chapter 5.

The faceplate keypad and display or the enerVista UR Setup software interface can be used to communicate with the relay. The enerVista UR Setup software interface is the preferred method to edit settings and view actual values because the PC monitor can display more information in a simple comprehensible format.
The following minimum requirements must be met for the enerVista UR Setup software to properly operate on a PC.

- Pentium class or higher processor (Pentium II 300 MHz or higher recommended)
- Windows 95, 98, 98SE, ME, NT 4.0 (Service Pack 4 or higher), 2000, XP
- Internet Explorer 4.0 or higher
- 128 MB of RAM (256 MB recommended)
- 200 MB of available space on system drive and 200 MB of available space on installation drive
- Video capable of displaying 800×600 or higher in high-color mode (16-bit color)
- RS232 and/or Ethernet port for communications to the relay

The following qualified modems have been tested to be compliant with the F60 and the enerVista UR Setup software.

- US Robotics external 56K FaxModem 5686
- US Robotics external Sportster 56K X2
- PCTEL 2304WT V. 92 MDC internal modem

After ensuring the minimum requirements for using enerVista UR Setup are met (see previous section), use the following procedure to install the enerVista UR Setup from the enclosed GE enerVista CD.

1. Insert the GE enerVista CD into your CD-ROM drive.
2. Click the Install Now button and follow the installation instructions to install the no-charge enerVista software.
3. When installation is complete, start the enerVista Launchpad application.
4. Click the IED Setup section of the Launch Pad window.

5. In the enerVista Launch Pad window, click the Install Software button and select the "F60 Feeder Management Relay" from the Install Software window as shown below. Select the "Web" option to ensure the most recent software
release, or select "CD" if you do not have a web connection, then click the Check Now button to list software items for the F60.

6. Select the F60 software program and release notes (if desired) from the list and click the Download Now button to obtain the installation program.

7. enerVista Launchpad will obtain the installation program from the Web or CD. Once the download is complete, doubleclick the installation program to install the enerVista UR Setup software.
8. Select the complete path, including the new directory name, where the enerVista UR Setup will be installed.
9. Click on Next to begin the installation. The files will be installed in the directory indicated and the installation program will automatically create icons and add enerVista UR Setup to the Windows start menu.

1 GETTING STARTED

10. Click Finish to end the installation. The F60 device will be added to the list of installed IEDs in the enerVista Launchpad window, as shown below.

This section is intended as a quick start guide to using the enerVista UR Setup software. Please refer to the enerVista UR Setup Help File and Chapter 4 of this manual for more information.

a) CONFIGURING AN ETHERNET CONNECTION

Before starting, verify that the Ethernet network cable is properly connected to the Ethernet port on the back of the relay. To setup the relay for Ethernet communications, it will be necessary to define a Site, then add the relay as a Device at that site.

1. Install and start the latest version of the enerVista UR Setup software (available from the GE enerVista CD or online from http://www.GEindustrial.com/multilin (see previous section for installation instructions).
2. Select the "UR" device from the enerVista Launchpad to start enerVista UR Setup.
3. Click the Device Setup button to open the Device Setup window, them click the Add Site button to define a new site.
4. Enter the desired site name in the "Site Name" field. If desired, a short description of site can also be entered along with the display order of devices defined for the site. Click the OK button when complete.
5. The new site will appear in the upper-left list in the enerVista UR Setup window. Click on the new site name and then click the Device Setup button to re-open the Device Setup window.
6. Click the Add Device button to define the new device.
7. Enter the desired name in the "Device Name" field and a description (optional) of the site.
8. Select "Ethernet" from the Interface drop-down list. This will display a number of interface parameters that must be entered for proper Ethernet functionality.

- Enter the relay IP address (from SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ COMMUNICATIONS $\Rightarrow \sqrt{ } \Rightarrow$ NETWORK \Rightarrow IP ADDRESS) in the "IP Address" field.
- Enter the relay Modbus address (from the PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ } \Rightarrow$ MODBUS PROTOCOL \Rightarrow MODbus SLAVE ADDRESS setting) in the "Slave Address" field.
- Enter the Modbus port address (from the PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ MODBUS PROTOCOL $\Rightarrow \sqrt{ }$ MODBUS TCP PORT NUMBER setting) in the "Modbus Port" field.

9. Click the Read Order Code button to connect to the F60 device and upload the order code. If an communications error occurs, ensure that the three enerVista UR Setup values entered in the previous step correspond to the relay setting values.
10. Click OK when the relay order code has been received. The new device will be added to the Site List window (or Online window) located in the top left corner of the main enerVista UR Setup window.
The Site Device has now been configured for Ethernet communications. Proceed to Section c) below to begin communications.

b) CONFIGURING AN RS232 CONNECTION

Before starting, verify that the RS232 serial cable is properly connected to the RS232 port on the front panel of the relay.

1. Install and start the latest version of the enerVista UR Setup software (available from the GE enerVista CD or online from http://www. GEindustrial.com/multilin.
2. Select the Device Setup button to open the Device Setup window and click the Add Site button to define a new site.
3. Enter the desired site name in the "Site Name" field. If desired, a short description of site can also be entered along with the display order of devices defined for the site. Click the OK button when complete.
4. The new site will appear in the upper-left list in the enerVista UR Setup window. Click on the new site name and then click the Device Setup button to re-open the Device Setup window.
5. Click the Add Device button to define the new device.
6. Enter the desired name in the "Device Name" field and a description (optional) of the site.
7. Select "Serial" from the Interface drop-down list. This will display a number of interface parameters that must be entered for proper serial communications.

- Enter the relay slave address and COM port values (from the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ COMMUNICATIONS $\Rightarrow \sqrt{ } \quad$ SERIAL PORTS menu) in the "Slave Address" and "COM Port" fields.
- Enter the physical communications parameters (baud rate and parity settings) in their respective fields.

8. Click the Read Order Code button to connect to the F60 device and upload the order code. If an communications error occurs, ensure that the enerVista UR Setup serial communications values entered in the previous step correspond to the relay setting values.
9. Click "OK" when the relay order code has been received. The new device will be added to the Site List window (or Online window) located in the top left corner of the main enerVista UR Setup window.
The Site Device has now been configured for RS232 communications. Proceed to Section c) Connecting to the Relay below to begin communications.

c) CONNECTING TO THE RELAY

1. Open the Display Properties window through the Site List tree as shown below:

2. The Display Properties window will open with a status indicator on the lower left of the enerVista UR Setup window.
3. If the status indicator is red, verify that the Ethernet network cable is properly connected to the Ethernet port on the back of the relay and that the relay has been properly setup for communications (steps A and B earlier).

If a relay icon appears in place of the status indicator, than a report (such as an oscillography or event record) is open. Close the report to re-display the green status indicator.
4. The Display Properties settings can now be edited, printed, or changed according to user specifications.

ㅁ Refer to Chapter 4 in this manual and the enerVista UR Setup Help File for more information about the using the enerVista UR Setup software interface.

Please refer to Chapter 3: Hardware for detailed mounting and wiring instructions. Review all WARNINGS and CAUTIONS carefully.

The enerVista UR Setup software communicates to the relay via the faceplate RS232 port or the rear panel RS485 / Ethernet ports. To communicate via the faceplate RS232 port, a standard "straight-through" serial cable is used. The DB-9 male end is connected to the relay and the DB-9 or DB-25 female end is connected to the PC COM1 or COM2 port as described in the CPU Communications Ports section of Chapter 3.

Figure 1-4: RELAY COMMUNICATIONS OPTIONS
To communicate through the F60 rear RS485 port from a PC RS232 port, the GE Multilin RS232/RS485 converter box is required. This device (catalog number F485) connects to the computer using a "straight-through" serial cable. A shielded twisted-pair (20, 22, or 24 AWG) connects the F485 converter to the F60 rear communications port. The converter terminals (,+- , GND) are connected to the F60 communication module (,,+- COM) terminals. Refer to the CPU Communications Ports section in Chapter 3 for option details. The line should be terminated with an R-C network (i.e. $120 \Omega, 1 \mathrm{nF}$) as described in the Chapter 3.

All messages are displayed on a 2×20 character vacuum fluorescent display to make them visible under poor lighting conditions. An optional liquid crystal display (LCD) is also available. Messages are displayed in English and do not require the aid of an instruction manual for deciphering. While the keypad and display are not actively being used, the display will default to defined messages. Any high priority event driven message will automatically override the default message and appear on the display.

Display messages are organized into 'pages' under the following headings: Actual Values, Settings, Commands, and Targets. The MENU key navigates through these pages. Each heading page is broken down further into logical subgroups.
The Δ MESSAGE ∇ keys navigate through the subgroups. The \otimes VALUE \oslash keys scroll increment or decrement numerical setting values when in programming mode. These keys also scroll through alphanumeric values in the text edit mode. Alternatively, values may also be entered with the numeric keypad.

The \cdot key initiates and advance to the next character in text edit mode or enters a decimal point. The help key may be pressed at any time for context sensitive help messages. The ENTER key stores altered setting values.
1.5.2 MENU NAVIGATION

Press the MENU key to select the desired header display page (top-level menu). The header title appears momentarily followed by a header display page menu item. Each press of the MENU key advances through the main heading pages as illustrated below.

1.5.3 MENU HIERARCHY

The setting and actual value messages are arranged hierarchically. The header display pages are indicated by double scroll bar characters (■■), while sub-header pages are indicated by single scroll bar characters (\square). The header display pages represent the highest level of the hierarchy and the sub-header display pages fall below this level. The MESSAGE Δ and ∇ keys move within a group of headers, sub-headers, setting values, or actual values. Continually pressing the MESSAGE key from a header display displays specific information for the header category. Conversely, continually pressing the MESSAGE key from a setting value or actual value display returns to the header display.

HIGHEST LEVEL

LOWEST LEVEL (SETting VALUE)

(4)

```
ACCESS LEVEL:
Restricted
```

The relay is defaulted to the "Not Programmed" state when it leaves the factory. This safeguards against the installation of a relay whose settings have not been entered. When powered up successfully, the Trouble LED will be on and the In Service LED off. The relay in the "Not Programmed" state will block signaling of any output relay. These conditions will remain until the relay is explicitly put in the "Programmed" state.
Select the menu message SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ INSTALLATION \Rightarrow RELAY SETTINGS

> | RELAY SETTINGS: |
| :--- |
| Not Programmed |

To put the relay in the "Programmed" state, press either of the VALUE keys once and then press ENTER. The faceplate Trouble LED will turn off and the In Service LED will turn on. The settings for the relay can be programmed manually (refer to Chapter 5) via the faceplate keypad or remotely (refer to the enerVista UR Setup Help file) via the enerVista UR Setup software interface.

It is recommended that passwords be set up for each security level and assigned to specific personnel. There are two user password security access levels, COMMAND and SETTING:

1. COMMAND

The COMMAND access level restricts the user from making any settings changes, but allows the user to perform the following operations:

- operate breakers via faceplate keypad
- change state of virtual inputs
- clear event records
- clear oscillography records
- operate user-programmable pushbuttons

2. SETTING

The SETTING access level allows the user to make any changes to any of the setting values.
Rection Refer to the Changing Settings section in Chapter 4 for complete instructions on setting up security level
1.5.6 FLEXLOGIC ${ }^{\text {TM }}$ CUSTOMIZATION

FlexLogic ${ }^{\text {TM }}$ equation editing is required for setting up user-defined logic for customizing the relay operations. See the FlexLogic ${ }^{\top \mathrm{M}}$ section in Chapter 5 for additional details.

1.5.7 COMMISSIONING

Templated tables for charting all the required settings before entering them via the keypad are available from the GE Multilin website at http://www. GEindustrial.com/multilin.

The F60 Feeder Management Relay is a microprocessor based relay designed for feeder protection.
Overvoltage and undervoltage protection, overfrequency and underfrequency protection, breaker failure protection, directional current supervision, fault diagnostics, RTU, and programmable logic functions are provided. This relay also provides phase, neutral, ground and negative sequence, instantaneous and time overcurrent protection. The time overcurrent function provides multiple curve shapes or FlexCurves ${ }^{\text {TM }}$ for optimum co-ordination. Automatic reclosing, synchrocheck, and line fault locator features are also provided. When equipped with a type 8 CT CTVT module, an element for detecting high impedance faults is provided.
Voltage, current, and power metering is built into the relay as a standard feature. Current parameters are available as total waveform RMS magnitude, or as fundamental frequency only RMS magnitude and angle (phasor).
Diagnostic features include a sequence of records capable of storing 1024 time-tagged events. The internal clock used for time-tagging can be synchronized with an IRIG-B signal or via the SNTP protocol over the Ethernet port. This precise time stamping allows the sequence of events to be determined throughout the system. Events can also be programmed (via FlexLogic ${ }^{\text {TM }}$ equations) to trigger oscillography data capture which may be set to record the measured parameters before and after the event for viewing on a personal computer (PC). These tools significantly reduce troubleshooting time and simplify report generation in the event of a system fault.

A faceplate RS232 port may be used to connect to a PC for the programming of settings and the monitoring of actual values. A variety of communications modules are available. Two rear RS485 ports allow independent access by operating and engineering staff. All serial ports use the Modbus ${ }^{\circledR}$ RTU protocol. The RS485 ports may be connected to system computers with baud rates up to 115.2 kbps . The RS232 port has a fixed baud rate of 19.2 kbps . Optional communications modules include a 10BaseF Ethernet interface which can be used to provide fast, reliable communications in noisy environments. Another option provides two 10BaseF fiber optic ports for redundancy. The Ethernet port supports MMS/UCA2, Modbus ${ }^{\circledR} /$ TCP, and TFTP protocols, and allows access to the relay via any standard web browser (F60 web pages). The IEC 60870-$5-104$ protocol is supported on the Ethernet port. DNP 3.0 and IEC 60870-5-104 cannot be enabled at the same time.

The F60 IEDs use flash memory technology which allows field upgrading as new features are added. The following Single Line Diagram illustrates the relay functionality using ANSI (American National Standards Institute) device numbers.

Table 2-1: ANSI DEVICE NUMBERS AND FUNCTIONS

DEVICE NUMBER	FUNCTION
$25(2)$	Synchrocheck
$27 \mathrm{P}(2)$	Phase Undervoltage
$27 X$	Auxiliary Undervoltage
32	Sensitive Directional Power
50BF / 50NBF (2)	Breaker Failure
50DD	Disturbance Detector
50G (2)	Ground Instantaneous Overcurrent
50N (2)	Neutral Instantaneous Overcurrent
50P (2)	Negative Sequence Instantaneous Overcurrent
50_2 (2)	Ground Time Overcurrent
51G (2)	Neutral Time Overcurrent
51N (2)	Phase Time Overcurrent
51P (2)	

DEVICE NUMBER	FUNCTION
$51 _2(2)$	Negative Sequence Time Overcurrent
52	AC Circuit Breaker
$59 N$	Neutral Overvoltage
$59 P$	Phase Overvoltage
$59 X$	Auxiliary Overvoltage
$59 _2$	Negative Sequence Overvoltage
$67 \mathrm{~N}(2)$	Neutral Directional Overcurrent
$67 \mathrm{P}(2)$	Negative Sequence Directional Overcurrent
$67 _2(2)$	Automatic Recloser
79	Overfrequency
$810(4)$	Underfrequency
$81 \mathrm{U}(6)$	

Figure 2-1: SINGLE LINE DIAGRAM
Table 2-2: OTHER DEVICE FUNCTIONS

FUNCTION
Breaker Arcing Current $\left(\mathrm{I}^{2} \mathrm{t}\right)$
Breaker Control (2)
Cold Load Pickup (2)
Contact Inputs (up to 96)
Contact Outputs (up to 64)
Control Pushbuttons
Data Logger
Demand
Digital Counters (8)
Digital Elements (16)
Direct Inputs/Outputs (32)
Event Recorder
Fault Detector and Fault Report

FUNCTION
Fault Locator
FlexElements $^{\mathrm{TM}}$ (8)
FlexLogic $^{\mathrm{TM}}$ Equations $^{\text {High Impedance Fault Detection (Hi-Z) }}$
Load Encroachment
MMS/UCA Communications
Metering: Current, Voltage, Power, PF, Energy, Frequency, Harmonics, THD
MMS/UCA Remote Inputs/Outputs ("GOOSE")
Modbus Communications
Modbus User Map
Non-Volatile Latches

FUNCTION
Non-Volatile Selector Switch
Oscillography
Setting Groups (6)
Time Synchronization over SNTP
Transducer Inputs/Outputs
User Definable Displays
User Programmable LEDs
User Programmable Pushbuttons
User Programmable Self-Tests
Virtual Inputs (32)
Virtual Outputs (64)
VT Fuse Failure

2.1.2 ORDERING

The relay is available as a 19-inch rack horizontal mount unit or a reduced size $(3 / 4)$ vertical mount unit, and consists of the following modules: power supply, CPU, CT/VT DSP, digital input/output, transducer input/output. Each of these modules can be supplied in a number of configurations specified at the time of ordering. The information required to completely specify the relay is provided in the following table (see Chapter 3 for full details of relay modules).

Table 2-3: F60 ORDER CODES

The order codes for replacement modules to be ordered separately are shown in the following table. When ordering a replacement CPU module or Faceplate, please provide the serial number of your existing unit.

Table 2-4: ORDER CODES FOR REPLACEMENT MODULES

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE

2.2.1 PROTECTION ELEMENTS

The operating times below include the activation time of a trip rated Form-A output contact unless otherwise indicated. FlexLogic ${ }^{T M}$ operands of a given element are 4 ms faster. This should be taken into account when using FlexLogic ${ }^{\text {TM }}$ to interconnect with other protection or control elements of the relay, building FlexLogic ${ }^{\text {TM }}$ equations, or interfacing with other IEDs or power system devices via communications or different output contacts.

PHASE/NEUTRAL/GROUND TOC

Current:
Pickup level:
Dropout level:
Level accuracy:
for 0.1 to $2.0 \times \mathrm{CT}$:
for $>2.0 \times$ CT:
Curve shapes:

Curve multiplier:

Reset type:
Timing accuracy:
Phasor or RMS
97% to 98% of Pickup (whichever is greater) base curve) 0.01
0.000 to 30.000 pu in steps of 0.001
$\pm 0.5 \%$ of reading or $\pm 1 \%$ of rated
$\pm 1.5 \%$ of reading $>2.0 \times \mathrm{CT}$ rating
IEEE Moderately/Very/Extremely Inverse; IEC (and BS) A/B/C and Short Inverse; GE IAC Inverse, Short/Very/ Extremely Inverse; $\mathrm{I}^{2} \mathrm{t}$; FlexCurves ${ }^{\mathrm{TM}}$ (programmable); Definite Time (0.01 s

Time Dial $=0.00$ to 600.00 in steps of
Instantaneous/Timed (per IEEE)
Operate at $>1.03 \times$ actual Pickup $\pm 3.5 \%$ of operate time or $\pm 1 / 2$ cycle (whichever is greater)

PHASE/NEUTRAL/GROUND IOC
Pickup level: $\quad 0.000$ to 30.000 pu in steps of 0.001
Dropout level: $\quad 97$ to 98% of pickup
Level accuracy:
0.1 to $2.0 \times$ CT rating: $\pm 0.5 \%$ of reading or $\pm 1 \%$ of rated (whichever is greater)
$>2.0 \times \mathrm{CT}$ rating
Overreach:
Pickup delay:
Reset delay:
Operate time:
Timing accuracy:

NEGATIVE SEQUENCE TOC

Pickup level:	0.000 to 30.000 pu in steps of 0.001
Dropout level:	97\% to 98\% of Pickup
Level accuracy:	$\pm 0.5 \%$ of reading or $\pm 1 \%$ of rated (whichever is greater) from 0.1 to $2.0 \times \mathrm{CT}$ rating $\pm 1.5 \%$ of reading $>2.0 \times$ CT rating
Curve shapes:	IEEE Moderately/Very/Extremely Inverse; IEC (and BS) A/B/C and Short Inverse; GE IAC Inverse, Short/Very/ Extremely Inverse; I^{2} t; FlexCurves ${ }^{\mathrm{TM}}$ (programmable); Definite Time (0.01 s base curve)
Curve multiplier (Time dial): 0.00 to 600.00 in steps of 0.01	
Reset type:	Instantaneous/Timed (per IEEE) and Linear
Timing accuracy:	Operate at > $1.03 \times$ Actual Pickup $\pm 3.5 \%$ of operate time or $\pm 1 / 2$ cycle (whichever is greater)

NEGATIVE SEQUENCE IOC

Pickup level:
0.000 to 30.000 pu in steps of 0.001

Dropout level: 97 to 98% of Pickup
Level accuracy:
0.1 to $2.0 \times$ CT rating: $\pm 0.5 \%$ of reading or $\pm 1 \%$ of rated (whichever is greater)
$>2.0 \times$ CT rating: $\pm 1.5 \%$ of reading

Overreach:	$<2 \%$
Pickup delay:	0.00 to 600.00 s in steps of 0.01
Reset delay:	0.00 to 600.00 s in steps of 0.01
Operate time:	$<20 \mathrm{~ms}$ at $3 \times$ Pickup at 60 Hz
Timing accuracy:	Operate at $1.5 \times$ Pickup $\pm 3 \%$ or $\pm 4 \mathrm{~ms}$ (whichever is greater)

PHASE DIRECTIONAL OVERCURRENT

Relay connection: $\quad 90^{\circ}$ (quadrature)
Quadrature voltage:
$A B C$ phase seq.: phase $A\left(V_{B C}\right)$, phase $B\left(V_{C A}\right)$, phase $C\left(V_{A B}\right)$
$A C B$ phase seq.: phase $A\left(V_{C B}\right)$, phase $B\left(V_{A C}\right)$, phase $C\left(V_{B A}\right)$
Polarizing voltage threshold: 0.000 to 3.000 pu in steps of 0.001
Current sensitivity threshold: 0.05 pu
Characteristic angle: 0 to 359° in steps of 1
Angle accuracy: $\pm 2^{\circ}$
Operation time (FlexLogic ${ }^{\text {™ }}$ operands):
Tripping (reverse load, forward fault): $<12 \mathrm{~ms}$, typically
Blocking (forward load, reverse fault): $<8 \mathrm{~ms}$, typically

NEUTRAL DIRECTIONAL OVERCURRENT

Directionality:	Co-existing forward and reverse	
Polarizing:	Voltage, Current, Dual	
Polarizing voltage:	V_0 or VX	
Polarizing current:	IG	
Operating current:	I_0	
Level sensing:	$3 \times\left(\left\|I _0\right\|-K \times \\| _1 \mid\right)$, IG	
Restraint, K :	0.000 to 0.500 in steps of 0.001	
Characteristic angle:	-90 to 90° in steps of 1	
Limit angle:	40 to 90° in steps of 1 , independent for	
	forward and reverse	
Angle accuracy:	$\pm 2^{\circ}$	
Offset impedance:	0.00 to 250.00Ω in steps of 0.01	
Pickup level:	0.05 to 30.00 pu in steps of 0.01	
Dropout level:	97 to 98%	
Operation time:	$<16 \mathrm{~ms}$ at $3 \times$ Pickup at 60 Hz	

NEGATIVE SEQUENCE DIRECTIONAL OC

Directionality:	Co-existing forward and reverse
Polarizing:	Voltage
Polarizing voltage:	V_2
Operating current:	$I _2$
Level sensing:	
\quad Zero-sequence:	$\left\|I _0\right\|-K \times\left\|I _1\right\|$
Negative-sequence:	$\left\|_2\right\|-K \times\left\|\left\|_1\right\|\right.$
Restraint, K :	0.000 to 0.500 in steps of 0.001
Characteristic angle:	0 to 90° in steps of 1
Limit angle:	40 to 90° in steps of 1 , independent for
	forward and reverse
Angle accuracy:	$\pm 2^{\circ}$
Offset impedance:	0.00 to 250.00Ω in steps of 0.01
Pickup level:	0.05 to 30.00 pu in steps of 0.01
Dropout level:	97 to 98%
Operation time:	$<16 \mathrm{~ms}$ at $3 \times$ Pickup at 60 Hz

SENSITIVE DIRECTIONAL POWER

Measured power: 3-phase, true RMS
Number of stages: 2
Characteristic angle: 0 to 359° in steps of 1
Calibration angle: $\quad 0.00$ to 0.95° in steps of 0.05
Minimum power: $\quad-1.200$ to 1.200 pu in steps of 0.001
Pickup level accuracy: $\pm 1 \%$ or $\pm 0.001 \mathrm{pu}$, whichever is greater
Hysteresis:
Pickup delay:
Time accuracy:
Operate time:
2% or 0.001 pu, whichever is greater 0 to 600.00 s in steps of 0.01 $\pm 3 \%$ or $\pm 4 \mathrm{~ms}$, whichever is greater 50 ms

PHASE UNDERVOLTAGE

Voltage:	Phasor only
Pickup level:	0.000 to 3.000 pu in steps of 0.001
Dropout level:	102 to 103% of Pickup
Level accuracy:	$\pm 0.5 \%$ of reading from 10 to 208 V
Curve shapes:	GE IAV Inverse;
	Definite Time $(0.1 \mathrm{~s}$ base curve) Curve multiplier: Time Dial $=0.00$ to 600.00 in steps of 0.01
Timing accuracy:	Operate at $<0.90 \times$ Pickup $\pm 3.5 \%$ of operate time or $\pm 4 \mathrm{~ms}$ (which- ever is greater)

AUXILIARY UNDERVOLTAGE

Pickup level: Dropout level:
Level accuracy: Curve shapes:
Curve multiplier:
Timing accuracy:
0.000 to 3.000 pu in steps of 0.001 102 to 103% of pickup $\pm 0.5 \%$ of reading from 10 to 208 V GE IAV Inverse, Definite Time Time Dial $=0$ to 600.00 in steps of 0.01 $\pm 3 \%$ of operate time or $\pm 4 \mathrm{~ms}$ (whichever is greater)

PHASE OVERVOLTAGE

Voltage:
Pickup level:
Dropout level:
Level accuracy:
Pickup delay:
Operate time:
Timing accuracy:

Phasor only 0.000 to 3.000 pu in steps of 0.001 97 to 98% of Pickup $\pm 0.5 \%$ of reading from 10 to 208 V 0.00 to 600.00 in steps of 0.01 s $<30 \mathrm{~ms}$ at $1.10 \times$ Pickup at 60 Hz $\pm 3 \%$ or $\pm 4 \mathrm{~ms}$ (whichever is greater)

NEUTRAL OVERVOLTAGE

Pickup level: $\quad 0.000$ to 1.250 pu in steps of 0.001
Dropout level: $\quad 97$ to 98% of Pickup
Level accuracy: $\quad \pm 0.5 \%$ of reading from 10 to 208 V
Pickup delay: $\quad 0.00$ to 600.00 s in steps of 0.01
Reset delay:
Timing accuracy: 0.00 to 600.00 s in steps of 0.01 $\pm 3 \%$ or $\pm 4 \mathrm{~ms}$ (whichever is greater)
Operate time:
$<30 \mathrm{~ms}$ at $1.10 \times$ Pickup at 60 Hz

AUXILIARY OVERVOLTAGE

Pickup level:
Dropout level:
Level accuracy:
Pickup delay:
Reset delay:
Timing accuracy:
Operate time:
0.000 to 3.000 pu in steps of 0.001 97 to 98% of Pickup
$\pm 0.5 \%$ of reading from 10 to 208 V
0 to 600.00 s in steps of 0.01
0 to 600.00 s in steps of 0.01
$\pm 3 \%$ of operate time or $\pm 4 \mathrm{~ms}$ (whichever is greater)

NEGATIVE SEQUENCE OVERVOLTAGE

Pickup level: $\quad 0.000$ to 1.250 pu in steps of 0.001
Dropout level: $\quad 97$ to 98% of Pickup
Level accuracy:
Pickup delay:
Reset delay:
Time accuracy:
Operate time:
$\pm 0.5 \%$ of reading from 10 to 208 V
0 to 600.00 s in steps of 0.01
0 to 600.00 s in steps of 0.01
$\pm 3 \%$ or $\pm 20 \mathrm{~ms}$, whichever is greater
$<30 \mathrm{~ms}$ at $1.10 \times$ Pickup at 60 Hz

UNDERFREQUENCY

Minimum signal:
Pickup level:
Dropout level:
Level accuracy:
Time delay:
Timer accuracy:

OVERFREQUENCY

Pickup level:
Dropout level:
Level accuracy:
Time delay:
Timer accuracy:

RATE OF CHANGE OF FREQUENCY

df/dt trend:
df/dt pickup level:
df/dt dropout level:
df/dt level accuracy:
Overvoltage supv.:
Overcurrent supv.:
Pickup delay:
Reset delay:
Time accuracy: $\quad \pm 3 \%$ or $\pm 4 \mathrm{~ms}$, whichever is greater
95% settling time for $\mathrm{df} / \mathrm{dt}$: < 24 cycles
Operate time:
0.10 to 1.25 pu in steps of 0.01
20.00 to 65.00 Hz in steps of 0.01

Pickup +0.03 Hz
$\pm 0.01 \mathrm{~Hz}$
0 to 65.535 s in steps of 0.001
$\pm 3 \%$ or 4 ms , whichever is greater
20.00 to 65.00 Hz in steps of 0.01

Pickup -0.03 Hz
$\pm 0.01 \mathrm{~Hz}$
0 to 65.535 s in steps of 0.001
$\pm 3 \%$ or 4 ms , whichever is greater
increasing, decreasing, bi-directional 0.10 to $15.00 \mathrm{~Hz} / \mathrm{s}$ in steps of 0.01 96% of pickup
$80 \mathrm{mHz} / \mathrm{s}$ or 3.5%, whichever is greater 0.100 to 3.000 pu in steps of 0.001 0.000 to 30.000 pu in steps of 0.001 0 to 65.535 s in steps of 0.001 0 to 65.535 s in steps of 0.001 $\pm 3 \%$ or $\pm 4 \mathrm{~ms}$, whichever is greater
at $2 \times$ pickup: 12 cycles
at $3 \times$ pickup: 8 cycles
at $5 \times$ pickup: 6 cycles

BREAKER FAILURE

Mode:

Current supervision:
1-pole, 3-pole

Current supv. pickup:
phase, neutral current
Current supv. dropout:
0.001 to 30.000 pu in steps of 0.001

97 to 98% of pickup
Current supv. accuracy:
0.1 to $2.0 \times$ CT rating: $\pm 0.75 \%$ of reading or $\pm 2 \%$ of rated (whichever is greater)
above $2 \times$ CT rating: $\quad \pm 2.5 \%$ of reading

SYNCHROCHECK

Max voltage difference: 0 to 100000 V in steps of 1
Max angle difference: 0 to 100° in steps of 1
Max freq. difference: $\quad 0.00$ to 2.00 Hz in steps of 0.01
Hysteresis for max. freq. diff.: 0.00 to 0.10 Hz in steps of 0.01
Dead source function: None, LV1 \& DV2, DV1 \& LV2, DV1 or DV2, DV1 xor DV2, DV1 \& DV2
($\mathrm{L}=$ Live, $\mathrm{D}=$ Dead)

AUTORECLOSURE

Single breaker applications, 3-pole tripping schemes
Up to 4 reclose attempts before lockout
Independent dead time setting before each shot
Possibility of changing protection settings after each shot with FlexLogic ${ }^{\text {TM }}$

LOAD ENCROACHMENT

Responds to:	Positive-sequence quantities
Minimum voltage:	0.000 to 3.000 pu in steps of 0.001
Reach (sec. Ω):	0.02 to 250.00Ω in steps of 0.01
Impedance accuracy:	$\pm 5 \%$
Angle:	5 to 50° in steps of 1
Angle accuracy:	$\pm 2^{\circ}$
Pickup delay:	0 to 65.535 s in steps of 0.001
Reset delay:	0 to 65.535 s in steps of 0.001
Time accuracy:	$\pm 3 \%$ or $\pm 4 \mathrm{~ms}$, whichever is greater
Operate time:	$<30 \mathrm{~ms}$ at 60 Hz

FLEXLOGIC ${ }^{\text {TM }}$

Programming language: Reverse Polish Notation with graphical visualization (keypad programmable)

Lines of code:	512			
Internal variables:	64			
Supported operations:	NOT, XOR, OR (2 to 16 inputs), AND (2 to 16 inputs), NOR (2 to 16 inputs),			
	NAND (2 to 16 inputs), Latch (Reset dominant), Edge Detectors, Timers any logical variable, contact, or virtual input			
Inputs:	32		Number of timers:	0 to 60000 (ms, sec., min.) in steps of 1
:---	:---			
Pickup delay:	0 to 60000 (ms, sec., min.) in steps of 1			

FLEXCURVES ${ }^{\text {™ }}$

Number:
Reset points:
Operate points:
Time delay:

FLEX STATES

Number:

Programmability: any logical variable, contact, or virtual input

FLEXELEMENTS ${ }^{\text {TM }}$
Number of elements: 8

Operating signal:
any analog actual value, or two values in differential mode
Operating signal mode: Signed or Absolute Value
Operating mode: Level, Delta
Comparator direction: Over, Under
Pickup Level:
Hysteresis:
Delta dt:
-30.000 to 30.000 pu in steps of 0.001

Pickup \& dropout delay: 0.000 to 65.535 s in steps of 0.001

NON-VOLATILE LATCHES

Type:
Number:
Output:
Execution sequence:

Set-dominant or Reset-dominant
16 (individually programmed) Stored in non-volatile memory
As input prior to protection, control, and FlexLogic ${ }^{\text {TM }}$

USER-PROGRAMMABLE LEDs

Number:	48 plus Trip and Alarm
Programmability:	from any logical variable, contact, or virtual input
Reset mode:	Self-reset or Latched
LED TEST	
Initiation:	from any digital input or user-programmable condition
Number of tests:	3 , interruptible at any time
Duration of full test:	approximately 3 minutes
Test sequence 1:	all LEDs on
Test sequence 2:	all LEDs off, one LED at a time on for 1 s
Test sequence 3:	all LEDs on, one LED at a time off for 1 s
USER-DEFINABLE DISPLAYS	
Number of displays:	16
Lines of display:	2×20 alphanumeric characters
Parameters:	up to 5, any Modbus register addresses
Invoking and scrolling:	keypad, or any user-programmable condition, including pushbuttons

CONTROL PUSHBUTTONS

Number of pushbuttons: 7
Operation: drive FlexLogic ${ }^{\text {TM }}$ operands

USER-PROGRAMMABLE PUSHBUTTONS (OPTIONAL)

Number of pushbuttons: 12
Mode: Self-Reset, Latched
Display message: 2 lines of 20 characters each

SELECTOR SWITCH

Number of elements: 2
Upper position limit: 1 to 7 in steps of 1
Selecting mode:
Time-out timer:
Control inputs:
Power-up mode:

Time-out or Acknowledge 3.0 to 60.0 s in steps of 0.1 step-up and 3-bit restore from non-volatile memory or synchronize to a 3-bit control input

OSCILLOGRAPHY

Maximum records:	64
Sampling rate:	64 samples per power cycle
Triggers:	Any element pickup, dropout or operate Digital input change of state Digital output change of state FlexLogic TM equation
Data:	AC input channels Element state
	Digital input state Digital output state
In non-volatile memory	

DATA LOGGER

Number of channels:	1 to 16
Parameters:	Any available analog actual value
Sampling rate:	$1 \mathrm{sec} . ; 1,5,10,15,20,30,60 \mathrm{~min}$.
Storage capacity:	(NN is dependent on memory)
1-second rate:	01 channel for NN days
\downarrow	16 channels for NN days \downarrow
60-minute rate:	01 channel for NN days
	16 channels for NN days
FAULT LOCATOR	
Method:	Single-ended
Maximum accuracy if:	Fault resistance is zero or fault currents from all line terminals are in phase
Relay accuracy:	$\pm 1.5 \%$ (V > $10 \mathrm{~V}, \mathrm{l}>0.1 \mathrm{pu}$)
Worst-case accuracy:	
$\mathrm{VT}_{\text {\%error }}{ }^{+}$	(user data)
CT\%error ${ }^{+}$	(user data)
$\mathrm{Z}_{\text {Line\%error }}{ }^{+}$	(user data)
METHOD\%er	+ (Chapter 6)
RELAY ACC	RACY\%error ${ }^{+}$(1.5\%)

HI-Z

Detections: Arc Suspected, Arc Detected, Downed Conductor, Phase Identification

RMS CURRENT: PHASE, NEUTRAL, AND GROUND
Accuracy at

0.1 to $2.0 \times$ CT rating:	$\pm 0.25 \%$ of reading or $\pm 0.1 \%$ of rated (whichever is greater)
$>2.0 \times$ CT rating:	$\pm 1.0 \%$ of reading

RMS VOLTAGE

Accuracy: $\quad \pm 0.5 \%$ of reading from 10 to 208 V
REAL POWER (WATTS)

Accuracy: \quad| $\pm 1.0 \%$ of reading at | |
| :--- | :--- |
| | $-0.8<\mathrm{PF} \leq-1.0$ and $0.8<\mathrm{PF} \leq 1.0$ |

REACTIVE POWER (VARS)

Accuracy: $\quad \pm 1.0 \%$ of reading at $-0.2 \leq \mathrm{PF} \leq 0.2$

APPARENT POWER (VA)	
Accuracy:	$\pm 1.0 \%$ of reading
WATT-HOURS (POSITIVE AND NEGATI	
Accuracy:	$\pm 2.0 \%$ of reading
Range:	± 0 to $2 \times 10^{9} \mathrm{MWh}$
Parameters:	3 -phase only
Update rate:	50 ms
VAR-HOURS (POSITIVE AND NEGATIVE)	
Accuracy:	$\pm 2.0 \%$ of reading
Range:	± 0 to $2 \times 10^{9} \mathrm{Mvarh}$
Parameters:	3 -phase only
Update rate:	50 ms

CURRENT HARMONICS
Harmonics:

Accuracy:
HARMONICS: 1. $\mathrm{f}_{1}>0.4 \mathrm{pu:}(0.20 \%+0.035 \% /$ harmonic $)$ of reading or 0.15% of 100%, whichever is greater
2. $\mathrm{f}_{1}<0.4$ pu: as above plus \%error of f_{1}

THD: 1. $f_{1}>0.4 \mathrm{pu}:(0.25 \%+0.035 \% /$ harmonic $)$ of reading or 0.20% of 100%, whichever is greater
2. $\mathrm{f}_{1}<0.4 \mathrm{pu}$: as above plus \%error of f_{1}

VOLTAGE HARMONICS
Harmonics:
2nd to 25th harmonic: per phase, displayed as a \% of f_{1} (fundamental frequency phasor)
THD: per phase, displayed as a $\%$ of f_{1}
Accuracy:
HARMONICS:

1. $f_{1}>0.4$ pu: $(0.20 \%+0.035 \% /$ harmonic $)$ of reading or 0.15% of 100%, whichever is greater
2. $\mathrm{f}_{1}<0.4$ pu: as above plus \%error of f_{1}

THD:
2nd to 25th harmonic: per phase, displayed as a $\%$ of f_{1} (fundamental frequency phasor)
THD: per phase, displayed as a $\%$ of f_{1}

HARMONICS: 1. $\mathrm{f}_{1}>0.4 \mathrm{pu}:(0.25 \%+0.035 \% /$ harmonic $)$ of reading or 0.20% of 100%, whichever is greater
2. $\mathrm{f}_{1}<0.4$ pu: as above plus \%error of f_{1}

FREQUENCY

$$
\begin{aligned}
& \text { Accuracy at } \\
& \begin{array}{l}
\mathrm{V}=0.8 \text { to } 1.2 \mathrm{pu}: \\
\mathrm{I}=0.1 \text { to } 0.25 \mathrm{pu}: \\
\mathrm{I}>0.25 \mathrm{pu}:
\end{array}
\end{aligned}
$$

$\pm 0.01 \mathrm{~Hz}$ (when voltage signal is used for frequency measurement)
$\pm 0.05 \mathrm{~Hz}$ $\pm 0.02 \mathrm{~Hz}$ (when current signal is used for frequency measurement)

DEMAND

Measurements:

Accuracy:

Phases A, B, and C present and maximum measured currents 3-Phase Power (P, Q, and S) present and maximum measured currents $\pm 2.0 \%$
2.2.5 INPUTS

AC CURRENT

CT rated primary:
CT rated secondary:
Nominal frequency:
Relay burden:
Conversion range:
Standard CT:
Sensitive Ground/HI-Z CT module:
0.002 to $4.6 \times$ CT rating RMS symmetrical

Current withstand: $\quad 20 \mathrm{~ms}$ at 250 times rated
1 sec . at 100 times rated continuous at 3 times rated

AC VOLTAGE

VT rated secondary:	50.0 to 240.0 V
VT ratio:	1.00 to 24000.00
Nominal frequency:	20 to 65 Hz
Relay burden:	$<0.25 \mathrm{VA}$ at 120 V
Conversion range:	1 to 275 V continuous at 260 V to neutral Voltage withstand:

CONTACT INPUTS

Dry contacts:	1000Ω maximum
Wet contacts:	300 V DC maximum
Selectable thresholds:	$17 \mathrm{~V}, 33 \mathrm{~V}, 84 \mathrm{~V}, 166 \mathrm{~V}$
Recognition time:	$<1 \mathrm{~ms}$
Debounce timer:	0.0 to 16.0 ms in steps of 0.5
DCMA INPUTS	
Current input (mA DC):	0 to $-1,0$ to $+1,-1$ to $+1,0$ to 5,0 to 10, 0 to 20,4 to 20 (programmable) Input impedance:
$379 \Omega \pm 10 \%$ Conversion range: -1 to +20 mA DC Accuracy: $\pm 0.2 \%$ of full scale Type: Passive	

RTD INPUTS

Types (3-wire):	100Ω Platinum, $100 \& 120 \Omega$ Nickel, 10
	Ω Copper
Sensing current:	5 mA
Range:	-50 to $+250^{\circ} \mathrm{C}$
Accuracy:	$\pm 2^{\circ} \mathrm{C}$
Isolation:	36 V pk-pk

IRIG-B INPUT

Amplitude modulation: 1 to 10 V pk-pk
DC shift: TTL
Input impedance: $\quad 22 \mathrm{k} \Omega$
Isolation: $\quad 2 \mathrm{kV}$

REMOTE INPUTS (MMS GOOSE)

Number of input points: 32, configured from 64 incoming bit pairs
Number of remote devices:16
Default states on loss of comms.: On, Off, Latest/Off, Latest/On

DIRECT INPUTS

Number of input points: 32
No. of remote devices: 16
Default states on loss of comms.: On, Off, Latest/Off, Latest/On
Ring configuration: Yes, No
Data rate: $\quad 64$ or 128 kbps
CRC: 32-bit
CRC alarm:
Responding to: Rate of messages failing the CRC
Monitoring message count: 10 to 10000 in steps of 1
Alarm threshold: $\quad 1$ to 1000 in steps of 1
Unreturned message alarm:
Responding to: Rate of unreturned messages in the ring configuration
Monitoring message count: 10 to 10000 in steps of 1
Alarm threshold: 1 to 1000 in steps of 1
2.2.6 POWER SUPPLY

LOW RANGE

Nominal DC voltage: $\quad 24$ to 48 V at 3 A
Min/max DC voltage: $20 / 60 \mathrm{~V}$
NOTE: Low range is DC only.

HIGH RANGE

Nominal DC voltage:
Min/max DC voltage:
Nominal AC voltage: $\quad 100$ to 240 V at $50 / 60 \mathrm{~Hz}, 0.7 \mathrm{~A}$
Min/max AC voltage: $\quad 88 / 265 \mathrm{~V}$ at 48 to 62 Hz

ALL RANGES

Volt withstand:
Voltage loss hold-up:
$2 \times$ Highest Nominal Voltage for 10 ms 50 ms duration at nominal
Power consumption: Typical = 15 VA ; Max. $=30 \mathrm{VA}$

INTERNAL FUSE

RATINGS

Low range power supply: 7.5 A / 600 V
High range power supply: $5 \mathrm{~A} / 600 \mathrm{~V}$
INTERRUPTING CAPACITY
AC: $\quad 100000$ A RMS symmetrical
DC: $\quad 10000 \mathrm{~A}$
2.2.7 OUTPUTS

FORM-A RELAY

Make and carry for 0.2 s : 30 A as per ANSI C37.90
Carry continuous: 6 A

Break at L/R of $40 \mathrm{~ms}:$	0.25 A DC max. at 48 V
	$0.10 \mathrm{~A} \mathrm{DC} \mathrm{max} at 125 V$.
Operate time:	$<4 \mathrm{~ms}$
Contact material:	Silver alloy

LATCHING RELAY

Make and carry for 0.2 s : 30 A as per ANSI C37.90
Carry continuous: 6 A
Break at L/R of 40 ms : 0.25 A DC max.
Operate time: $<4 \mathrm{~ms}$
Contact material: Silver alloy
Control: separate operate and reset inputs Control mode: operate-dominant or reset-dominant

FORM-A VOLTAGE MONITOR

Applicable voltage: approx. 15 to 250 V DC
Trickle current: approx. 1 to 2.5 mA

FORM-A CURRENT MONITOR

Threshold current: approx. 80 to 100 mA

FORM-C AND CRITICAL FAILURE RELAY

Make and carry for 0.2 s : 10 A

Carry continuous:	6 A
Break at L/R of $40 \mathrm{~ms}:$	$0.25 \mathrm{~A} \mathrm{DC} \mathrm{max} at 48 V$.
	$0.10 \mathrm{~A} \mathrm{DC} \mathrm{max} at 125 V$.
Operate time:	$<8 \mathrm{~ms}$
Contact material:	Silver alloy

FAST FORM-C RELAY

Make and carry: \quad 0.1 A max. (resistive load)
Minimum load impedance:

INPUT VOLTAGE	IMPEDANCE	
	2 W RESISTOR	1 W RESISTOR
250 V DC	$20 \mathrm{~K} \Omega$	$50 \mathrm{~K} \Omega$
120 V DC	$5 \mathrm{~K} \Omega$	$2 \mathrm{~K} \Omega$
48 V DC	$2 \mathrm{~K} \Omega$	$2 \mathrm{~K} \Omega$
24 VDC	$2 \mathrm{~K} \Omega$	$2 \mathrm{~K} \Omega$

Note: values for 24 V and 48 V are the same due to a required 95% voltage drop across the load impedance.
Operate time: $\quad<0.6 \mathrm{~ms}$
Internal Limiting Resistor: 100Ω, 2 W

SOLID-STATE OUTPUT RELAY

Operate and release time: $<100 \mu \mathrm{~s}$
Maximum voltage: 265 V DC
Maximum continuous current: 5 A at $45^{\circ} \mathrm{C} ; 4 \mathrm{~A}$ at $65^{\circ} \mathrm{C}$
Make and carry for 0.2 s : as per ANSI C37.90
Breaking capacity: 10 A at 250 V DC
L/R = $40 \mathrm{~ms}, 10000$ operations
IRIG-B OUTPUT
Amplitude:
Maximum load:
Time delay:

Isolation:
10 V peak-peak RS485 level 100 ohms
1 ms for AM input $40 \mu \mathrm{~s}$ for DC-shift input
solation: 2 kV

CONTROL POWER EXTERNAL OUTPUT (FOR DRY CONTACT INPUT)
 Capacity:
 100 mA DC at 48 V DC
 Isolation: $\pm 300 \mathrm{Vpk}$

REMOTE OUTPUTS (MMS GOOSE)

Standard output points: 32
User output points: 32
DIRECT OUTPUTS
Output points: 32
DCMA OUTPUTS

Range:
Max. load resistance: $\quad 12 \mathrm{k} \Omega$ for -1 to 1 mA range $12 \mathrm{k} \Omega$ for 0 to 1 mA range 600Ω for 4 to 20 mA range
Accuracy: $\pm 0.75 \%$ of full-scale for 0 to 1 mA range $\pm 0.5 \%$ of full-scale for -1 to 1 mA range $\pm 0.75 \%$ of full-scale for 0 to 20 mA range
99% Settling time to a step change: 100 ms
Isolation: $\quad 1.5 \mathrm{kV}$
Driving signal: any FlexAnalog quantity
Upper and lower limit for the driving signal: -90 to 90 pu in steps of 0.001
19.2 kbps, Modbus ${ }^{\circledR}$ RTU

Front port:

RS485

1 or 2 rear ports:
Typical distance:
Isolation:
Up to 115 kbps, Modbus ${ }^{\circledR}$ RTU, isolated together at 36 Vpk
1200 m
2 kV

ETHERNET PORT
10Base-F:

Redundant 10Base-F: 820 nm, multi-mode, half-duplex/fullduplex fiber optic with ST connector
10Base-T: RJ45 connector

Power budget: $\quad 10 \mathrm{db}$
Max optical input power: -7.6 dBm
Max optical output power: -20 dBm
Receiver sensitivity: $\quad-30 \mathrm{dBm}$
Typical distance: $\quad 1.65 \mathrm{~km}$
SNTP clock synchronization error: < 10 ms (typical)
2.2.9 INTER-RELAY COMMUNICATIONS

SHIELDED TWISTED-PAIR INTERFACE OPTIONS

INTERFACE TYPE	TYPICAL DISTANCE
RS422	1200 m
G.703	100 m

RS422 distance is based on transmitter power and does not take into consideration the clock source provided by the user.

LINK POWER BUDGET

EMITTER, FIBER TYPE	TRANSMIT POWER	RECEIVED SENSITIVITY	POWER BUDGET
820 nm LED, Multimode	-20 dBm	-30 dBm	10 dB
1300 nm LED, Multimode	-21 dBm	-30 dBm	9 dB
1300 nm ELED, Singlemode	-21 dBm	-30 dBm	9 dB
1300 nm Laser, Singlemode	-1 dBm	-30 dBm	29 dB
1550 nm Laser, Singlemode	+5 dBm	-30 dBm	35 dB

These Power Budgets are calculated from the manufacturer's worst-case transmitter power and worst case receiver sensitivity.

MAXIMUM OPTICAL INPUT POWER

EMITTER, FIBER TYPE	MAX. OPTICAL INPUT POWER
820 nm LED, Multimode	-7.6 dBm
1300 nm LED, Multimode	-11 dBm
1300 nm ELED, Singlemode	-14 dBm
1300 nm Laser, Singlemode	-14 dBm
1550 nm Laser, Singlemode	-14 dBm

TYPICAL LINK DISTANCE

EMITTER TYPE	FIBER TYPE	CONNECTOR TYPE	TYPICAL DISTANCE
820 nm LED	Multimode	ST	1.65 km
1300 nm LED	Multimode	ST	3.8 km
1300 nm ELED	Singlemode	ST	11.4 km
1300 nm Laser	Singlemode	ST	64 km
1550 nm Laser	Singlemode	ST	105 km

Typical distances listed are based on the following assumptions for system loss. As NOTE actual losses will vary from one installation to another, the distance covered by your system may vary.

CONNECTOR LOSSES (TOTAL OF BOTH ENDS)

ST connector 2 dB

FIBER LOSSES
820 nm multimode $\quad 3 \mathrm{~dB} / \mathrm{km}$
1300 nm multimode $\quad 1 \mathrm{~dB} / \mathrm{km}$
1300 nm singlemode $\quad 0.35 \mathrm{~dB} / \mathrm{km}$
1550 nm singlemode $\quad 0.25 \mathrm{~dB} / \mathrm{km}$
Splice losses: One splice every 2 km , at 0.05 dB loss per splice.

SYSTEM MARGIN

3 dB additional loss added to calculations to compensate for all other losses.

Compensated difference in transmitting and receiving (channel asymmetry) channel delays using GPS satellite clock: 10 ms

OPERATING TEMPERATURES	
Cold:	IEC $60028-2-1,16 \mathrm{~h}$ at $-40^{\circ} \mathrm{C}$
Dry Heat:	IEC $60028-2-2,16 \mathrm{~h}$ at $+85^{\circ} \mathrm{C}$

Dry Heat:
IEC $60028-2-2,16 \mathrm{~h}$ at $+85^{\circ} \mathrm{C}$

OTHER

Humidity (noncondensing): IEC 60068-2-30, 95\%, Variant 1, 6 days
Altitude: Up to 2000 m
Installation Category: II

Electrical fast transient:	ANSI/IEEE C37.90.1
	IEC 61000-4-4
	IEC 60255-22-4
Oscillatory transient:	ANSI/IEEE C37.90.1 IEC 61000-4-12
Insulation resistance:	IEC 60255-5
Dielectric strength:	IEC 60255-6
	ANSI/IEEE C37.90
Electrostatic discharge:	EN 61000-4-2
Surge immunity:	EN 61000-4-5
RFI susceptibility:	ANSI/IEEE C37.90.2
	IEC 61000-4-3
	IEC 60255-22-3
	Ontario Hydro C-5047-77

Conducted RFI: IEC 61000-4-6
Voltage dips/interruptions/variations:
IEC 61000-4-11
IEC 60255-11
Power frequency magnetic field immunity: IEC 61000-4-8
Vibration test (sinusoidal): IEC 60255-21-1
Shock and bump: IEC 60255-21-2

2.2.12 PRODUCTION TESTS

THERMAL

Products go through a 12 h burn-in process at $60^{\circ} \mathrm{C}$

APPROVALS

UL Listed for the USA and Canada
Manufactured under an ISO9000 registered system.

CE:
LVD 73/23/EEC: IEC 1010-1 EMC 81/336/EEC: EN 50081-2, EN 50082-2

MOUNTING

Attach mounting brackets using 20 inch-pounds (± 2 inch-pounds) of torque.

CLEANING

Normally, cleaning is not required; but for situations where dust has accumulated on the faceplate display, a dry cloth can be used.

The relay is available as a 19 -inch rack horizontal mount unit or as a reduced size ($3 / 4$) vertical mount unit, with a removable faceplate. The modular design allows the relay to be easily upgraded or repaired by a qualified service person. The faceplate is hinged to allow easy access to the removable modules, and is itself removable to allow mounting on doors with limited rear depth. There is also a removable dust cover that fits over the faceplate, which must be removed when attempting to access the keypad or RS232 communications port.

The vertical and horizontal case dimensions are shown below, along with panel cutout details for panel mounting. When planning the location of your panel cutout, ensure that provision is made for the faceplate to swing open without interference to or from adjacent equipment.
The relay must be mounted such that the faceplate sits semi-flush with the panel or switchgear door, allowing the operator access to the keypad and the RS232 communications port. The relay is secured to the panel with the use of four screws supplied with the relay.

Figure 3-1: F60 VERTICAL MOUNTING AND DIMENSIONS

Figure 3-2: F60 VERTICAL SIDE MOUNTING INSTALLATION

Figure 3-3: F60 VERTICAL SIDE MOUNTING REAR DIMENSIONS

Figure 3-4: F60 HORIZONTAL MOUNTING AND DIMENSIONS

Module withdrawal and insertion may only be performed when control power has been removed from the unit. Inserting an incorrect module type into a slot may result in personal injury, damage to the unit or connected equipment, or undesired operation!
Proper electrostatic discharge protection (i.e. a static strap) must be used when coming in contact with modules while the relay is energized!
WARNING
The relay, being modular in design, allows for the withdrawal and insertion of modules. Modules must only be replaced with like modules in their original factory configured slots. The faceplate can be opened to the left, once the sliding latch on the right side has been pushed up, as shown below. This allows for easy accessibility of the modules for withdrawal.

Figure 3-5: UR MODULE WITHDRAWALIINSERTION

- MODULE WITHDRAWAL: The ejector/inserter clips, located at the top and bottom of each module, must be pulled simultaneously to release the module for removal. Before performing this action, control power must be removed from the relay. Record the original location of the module to ensure that the same or replacement module is inserted into the correct slot. Modules with current input provide automatic shorting of external CT circuits.
- MODULE INSERTION: Ensure that the correct module type is inserted into the correct slot position. The ejector/ inserter clips located at the top and at the bottom of each module must be in the disengaged position as the module is smoothly inserted into the slot. Once the clips have cleared the raised edge of the chassis, engage the clips simultaneously. When the clips have locked into position, the module will be fully inserted.

Type 9G and 9H CPU modules are equipped with 10Base-T and 10Base-F Ethernet connectors. These connectors must be individually disconnected from the module before the it can be removed from the chassis.

The version 4.0 release of the F60 relay includes new hardware (CPU and CT/VT modules). The new CPU modules are specified with the following order codes: 9E, 9G, and 9H. The new CT/VT modules are specified with the following order codes: 8F, 8G, 8H, 8J.

The new CT/VT modules (8F, 8G, 8H, 8J) can only be used with the new CPUs (9E, 9G, 9H); similarly, the old CT/ VT modules (8A, 8B, 8C, 8D) can only be used with the old CPUs (9A, 9C, 9D). To prevent hardware mismatches, the new CPU and CT/VT modules have blue labels and a warning sticker stating "Attn.: Ensure CPU and DSP module label colors are the same!". In the event that there is a mismatch between the CPU and CT/VT module, the relay will not function and a DSP ERROR or HARDWARE MISMATCH error will be displayed.
All other input/output modules are compatible with the new hardware. Firmware version 4.0 x is only compatible with the new CPU and CT/VT modules. Previous versions of the firmware (3.4 x and earlier) are only compatible with the older CPU and CT/VT modules.

832768A1.CDR
Figure 3-6: REAR TERMINAL VIEW

A

Do not touch any rear terminals while the relay is energized!

The relay follows a convention with respect to terminal number assignments which are three characters long assigned in order by module slot position, row number, and column letter. Two-slot wide modules take their slot designation from the first slot position (nearest to CPU module) which is indicated by an arrow marker on the terminal block. See the following figure for an example of rear terminal assignments.

Figure 3-7: EXAMPLE OF MODULES IN F AND H SLOTS

Figure 3-8: TYPICAL WIRING DIAGRAM

FEEDER RELAY WITH HI-Z ELEMENT

This wiring diagram is based on the following order code: F60-H00-HCH-F8F-H6B-M8Z-P6C-Uxx-Wxx. This diagram provides an example of how the relay is typically wired, not specifically how to wire your own relay. Please refer to the following pages for examples to help you wire your relay correctly based on your own relay configuration and order code.

Figure 3-9: TYPICAL WIRING DIAGRAM WITH HI-Z

The dielectric strength of the UR-series module hardware is shown in the following table:
Table 3-1: DIELECTRIC STRENGTH OF UR-SERIES MODULE HARDWARE

$\begin{gathered} \hline \text { MODULE } \\ \text { TYPE } \end{gathered}$	MODULE FUNCTION	TERMINALS		DIELECTRIC STRENGTH (AC)
		FROM	TO	
1	Power Supply	High (+); Low (+); (-)	Chassis	2000 V AC for 1 minute
1	Power Supply	48 V DC (+) and (-)	Chassis	2000 V AC for 1 minute
1	Power Supply	Relay Terminals	Chassis	2000 V AC for 1 minute
2	Reserved	N/A	N/A	N/A
3	Reserved	N/A	N/A	N/A
4	Reserved	N/A	N/A	N/A
5	Analog Inputs/Outputs	All except 8b	Chassis	$<50 \mathrm{~V}$ DC
6	Digital Inputs/Outputs	All (See Precaution 2)	Chassis	2000 V AC for 1 minute
7	G. 703	All except 2b, 3a, 7b, 8a	Chassis	2000 V AC for 1 minute
	RS422	All except 6a, 7b, 8a	Chassis	< 50 V DC
8	CT/VT	All	Chassis	2000 V AC for 1 minute
9	CPU	All	Chassis	2000 V AC for 1 minute

Filter networks and transient protection clamps are used in module hardware to prevent damage caused by high peak voltage transients, radio frequency interference (RFI) and electromagnetic interference (EMI). These protective components can be damaged by application of the ANSI/IEEE C37.90 specified test voltage for a period longer than the specified one minute.

CONTROL POWER SUPPLIED TO THE RELAY MUST BE CONNECTED TO THE MATCHING POWER SUPPLY RANGE OF THE RELAY. IF THE VOLTAGE IS APPLIED TO THE WRONG TERMINALS, DAMAGE MAY OCCUR!

The F60 relay, like almost all electronic relays, contains electrolytic capacitors. These capacitors are well known to be subject to deterioration over time if voltage is not applied periodically. Deterioration can be avoided by powering the relays up once a year.
The power supply module can be ordered for two possible voltage ranges. Each range has a dedicated input connection for proper operation. The ranges are as shown below (see the Technical Specifications section for additional details):

- LO range: 24 to 48 V (DC only) nominal
- HI range: 125 to 250 V nominal

The power supply module provides power to the relay and supplies power for dry contact input connections.
The power supply module provides 48 V DC power for dry contact input connections and a critical failure relay (see the Typical Wiring Diagram earlier). The critical failure relay is a Form-C that will be energized once control power is applied and the relay has successfully booted up with no critical self-test failures. If on-going self-test diagnostic checks detect a critical failure (see the Self-Test Errors table in Chapter 7) or control power is lost, the relay will de-energize.

Figure 3-10: CONTROL POWER CONNECTION

A CT/VT module may have voltage inputs on Channels 1 through 4 inclusive, or Channels 5 through 8 inclusive. Channels 1 and 5 are intended for connection to Phase A, and are labeled as such in the relay. Channels 2 and 6 are intended for connection to Phase B, and are labeled as such in the relay. Channels 3 and 7 are intended for connection to Phase C and are labeled as such in the relay. Channels 4 and 8 are intended for connection to a single phase source. If voltage, this channel is labelled the auxiliary voltage (VX). If current, this channel is intended for connection to a CT between a system neutral and ground, and is labelled the ground current (IG).
a) CT INPUTS

VERIFY THAT THE CONNECTION MADE TO THE RELAY NOMINAL CURRENT OF 1 A OR 5 A MATCHES THE SECONDARY RATING OF THE CONNECTED CTs. UNMATCHED CTs MAY RESULT IN EQUIPMENT DAMAGE OR INADEQUATE PROTECTION.

The CT/VT module may be ordered with a standard ground current input that is the same as the phase current inputs (Type 8F) or with a sensitive ground input (Type 8G) which is 10 times more sensitive (see the Technical Specifications section for additional details). Each AC current input has an isolating transformer and an automatic shorting mechanism that shorts the input when the module is withdrawn from the chassis. There are no internal ground connections on the current inputs. Current transformers with 1 to 50000 A primaries and 1 A or 5 A secondaries may be used.

CT connections for both ABC and ACB phase rotations are identical as shown in the Typical Wiring Diagram.
The exact placement of a zero-sequence CT so that ground fault current will be detected is shown below. Twisted pair cabling on the zero-sequence CT is recommended.

Figure 3-11: ZERO-SEQUENCE CORE BALANCE CT INSTALLATION

b) VT INPUTS

The phase voltage channels are used for most metering and protection purposes. The auxiliary voltage channel is used as input for the Synchrocheck and Volts/Hertz features.

Figure 3-12: CT/VT MODULE WIRING

Figure 3-13: CT HI-Z MODULE WIRING
Wherever a tilde " \sim " symbol appears, substitute with the Slot Position of the module.

A feeder relay with the high impedance fault detection (Hi-Z) element typically includes two CT/VT modules: one Type 8 F or 8 G and one Type 8 Z . For correct operation of the Hi-Z element, the ground current terminals of the two CT modules must be connected to a ground current source, either a zero-sequence CT (see the Typical Wiring Diagram with Hi-Z earlier in this chapter) or, if a zero-sequence CT is not available, to the neutral conductor of the Phase CTs (see the following diagram).

Figure 3-14: TYPICAL $8 Z$ MODULE WIRING WITH PHASE CTS

Every digital input/output module has 24 terminal connections. They are arranged as 3 terminals per row, with 8 rows in total. A given row of three terminals may be used for the outputs of one relay. For example, for Form-C relay outputs, the terminals connect to the normally open (NO), normally closed (NC), and common contacts of the relay. For a Form-A output, there are options of using current or voltage detection for feature supervision, depending on the module ordered. The terminal configuration for contact inputs is different for the two applications. When a digital input/output module is ordered with contact inputs, they are arranged in groups of four and use two rows of three terminals. Ideally, each input would be totally isolated from any other input. However, this would require that every input have two dedicated terminals and limit the available number of contacts based on the available number of terminals. So, although each input is individually optically isolated, each group of four inputs uses a single common as a reasonable compromise. This allows each group of four outputs to be supplied by wet contacts from different voltage sources (if required) or a mix of wet and dry contacts.

The tables and diagrams on the following pages illustrate the module types (6A, etc.) and contact arrangements that may be ordered for the relay. Since an entire row is used for a single contact output, the name is assigned using the module slot position and row number. However, since there are two contact inputs per row, these names are assigned by module slot position, row number, and column position.

UR RELAY FORM-A OUTPUT CONTACTS:

Some Form-A outputs include circuits to monitor the DC voltage across the output contact when it is open, and the DC current through the output contact when it is closed. Each of the monitors contains a level detector whose output is set to logic "On = 1" when the current in the circuit is above the threshold setting. The voltage monitor is set to "On = 1 " when the current is above about 1 to 2.5 mA , and the current monitor is set to " $\mathrm{On}=1$ " when the current exceeds about 80 to 100 mA . The voltage monitor is intended to check the health of the overall trip circuit, and the current monitor can be used to seal-in the output contact until an external contact has interrupted current flow. The block diagrams of the circuits are below above for the Form-A outputs with:
a) optional voltage monitor
b) optional current monitor
c) with no monitoring

Figure 3-15: FORM-A CONTACT FUNCTIONS

The operation of voltage and current monitors is reflected with the corresponding FlexLogic ${ }^{\text {TM }}$ operands (Cont Op \# Von, Cont Op \# Voff, Cont Op \# lon, and Cont Op \# loff) which can be used in protection, control and alarm logic. The typical application of the voltage monitor is Breaker Trip Circuit Integrity monitoring; a typical application of the current monitor is seal-in of the control command. Refer to the Digital Elements section of Chapter 5 for an example of how Form-A contacts can be applied for Breaker Trip Circuit Integrity Monitoring.

Relay contacts must be considered unsafe to touch when the unit is energized! If the relay contacts need to be used for low voltage accessible applications, it is the customer's responsibility to ensure proper insulation levels!

NOTE

USE OF FORM-A OUTPUTS IN HIGH IMPEDANCE CIRCUITS

For Form-A output contacts internally equipped with a voltage measuring clrcuit across the contact, the circuit has an impedance that can cause a problem when used in conjunction with external high input impedance monitoring equipment such as modern relay test set trigger circuits. These monitoring circuits may continue to read the FormA contact as being closed after it has closed and subsequently opened, when measured as an impedance.

Table 3-2: DIGITAL INPUT/OUTPUT MODULE ASSIGNMENTS

$\sim 6 \mathrm{GA}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-C
~ 4	Form-C
$\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$	2 Inputs
$\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$	2 Inputs
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{~B}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-C
~ 4	Form-C
~ 5	Form-C
~ 6	Form-C
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{C}$ I/O MODULE	
TERMINAL	OUTPUT
ASSIGNMENT	
~ 1	Form-C
~ 2	Form-C
~ 3	Form-C
~ 4	Form-C
~ 5	Form-C
~ 6	Form-C
~ 7	Form-C
~ 8	Form-C

$\sim 6 \mathrm{D}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT
$\sim 1 \mathrm{a}, \sim 1 \mathrm{c}$	2 Inputs
$\sim 2 \mathrm{a}, \sim 2 \mathrm{c}$	2 Inputs
$\sim 3 \mathrm{a}, \sim 3 \mathrm{c}$	2 Inputs
$\sim 4 \mathrm{a}, \sim 4 \mathrm{c}$	2 Inputs
$\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$	2 Inputs
$\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$	2 Inputs
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{EE}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-C
~ 2	Form-C
~ 3	Form-C
~ 4	Form-C
$\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$	2 Inputs
$\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$	2 Inputs
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{~F}$ I/O MODULE	
TERMINAL	OUTPUT
ASSIGNMENT	
~ 1	Fast Form-C
~ 2	Fast Form-C
~ 3	Fast Form-C
~ 4	Fast Form-C
~ 5	Fast Form-C
~ 6	Fast Form-C
~ 7	Fast Form-C
~ 8	Fast Form-C

$\sim 6 \mathrm{G}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-A
~ 4	Form-A
$\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$	2 Inputs
$\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$	2 Inputs
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{H}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-A
~ 4	Form-A
~ 5	Form-A
~ 6	Form-A
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{~K}$ I/O MODULE	
TERMINAL	OUTPUT
ASSIGNMENT	
~ 1	Form-C
~ 2	Form-C
~ 3	Form-C
~ 4	Form-C
~ 5	Fast Form-C
~ 6	Fast Form-C
~ 7	Fast Form-C
~ 8	Fast Form-C

$\sim 6 \mathrm{~L}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-C
~ 4	Form-C
$\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$	2 Inputs
$\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$	2 Inputs
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{M}$ I/O MODULE	
TERMINAL	OUTPUT OR
ASSIGNMENT	INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-C
~ 4	Form-C
~ 5	Form-C
~ 6	Form-C
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{NN}$ I/O MODULE	
TERMINAL	OUTPUT OR INPUT
ASSIGNMENT	Form-A
~ 1	Form-A
~ 2	Form-A
~ 3	Form-A
~ 4	2 Inputs
$\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$	2 Inputs
$\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$	2 Inputs
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	

$\sim 6 \mathrm{P}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-A
~ 4	Form-A
~ 5	Form-A
~ 6	Form-A
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{R}$ I/O MODULE	
TERMINAL	OUTPUT OR INPUT
ASSIGNMENT	Form-A
~ 1	Form-A
~ 2	Form-C
~ 3	Form-C
~ 4	2 Inputs
$\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$	2 Inputs
$\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$	2 Inputs
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	

$\sim 6 \mathbf{S}$ I/O MODULE	
TERMINAL	OUTPUT OR
ASSIGNMENT	INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-C
~ 4	Form-C
~ 5	Form-C
~ 6	Form-C
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{~T}$ I/O MODULE	
TERMINAL	OUTPUT OR
ASSIGNMENT	INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-A
~ 4	Form-A
$\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$	2 Inputs
$\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$	2 Inputs
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{GU}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-A
~ 4	Form-A
~ 5	Form-A
~ 6	Form-A
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

~ 67 I/O MODULE	
TERMINAL	OUTPUT
ASSIGNMENT	
~ 1	Form-A
~ 2	Form-A
~ 3	Form-A
~ 4	Form-A
~ 5	Form-A
~ 6	Form-A
~ 7	Form-A
~ 8	Form-A

$\sim 4 \mathrm{~A}$ I/O MODULE	
TERMINAL	OUTPUT
ASSIGNMENT	
~ 1	Not Used
~ 2	Solid-State
~ 3	Not Used
~ 4	Solid-State
~ 5	Not Used
~ 6	Solid-State
~ 7	Not Used
~ 8	Solid-State

$\sim 4 \mathrm{~B}$ I/O MODULE	
TERMINAL	OUTPUT
ASSIGNMENT	
~ 1	Not Used
~ 2	Solid-State
~ 3	Not Used
~ 4	Solid-State
~ 5	Not Used
~ 6	Solid-State
~ 7	Not Used
~ 8	Solid-State

$\sim 4 \mathrm{C}$ I/O MODULE	
TERMINAL	OUTPUT
ASSIGNMENT	
~ 1	Not Used
~ 2	Solid-State
~ 3	Not Used
~ 4	Solid-State
~ 5	Not Used
~ 6	Solid-State
~ 7	Not Used
~ 8	Solid-State

$\sim 4 \mathrm{~L}$ I/O MODULE	
TERMINAL	OUTPUT
ASSIGNMENT	
~ 1	2 Outputs
~ 2	2 Outputs
~ 3	2 Outputs
~ 4	2 Outputs
~ 5	2 Outputs
~ 6	2 Outputs
~ 7	2 Outputs
~ 8	Not Used

82719CX-X1.dwg
Figure 3-16: DIGITAL INPUT/OUTPUT MODULE WIRING (1 of 2)

$\sim 5 \mathrm{a}$	+	CONTACT IN	~ 50	DIGITAL I/O	6G		$\sim 1 \mathrm{a}$
$\sim 5 \mathrm{c}$	+	CONTACT IN	$\sim 5 \mathrm{c}$			\pm	$\sim 1 \mathrm{~b}$
$\sim 6 \mathrm{a}$	+	CONTACT IN	$\sim 6 \mathrm{a}$				$\sim 1 \mathrm{c}$
$\sim 6 \mathrm{c}$	+	CONTACT IN	$\sim 6 \mathrm{c}$				$\sim 2 \mathrm{a}$
$\sim 5 \mathrm{~b}$	-	COMMON	$\sim 5 \mathrm{~b}$			2	$\sim 2 \mathrm{~b}$
$\sim 7 \mathrm{a}$	+	CONTACT IN	$\sim 7 \mathrm{a}$				$\sim 2 \mathrm{c}$
$\sim 7 \mathrm{c}$	+	CONTACT IN	$\sim 7 \mathrm{c}$				$\sim 3 \mathrm{ab}$
$\sim 8 \mathrm{a}$	+	CONTACT IN	$\sim 8 \mathrm{a}$			v	$\sim 3 \mathrm{~b}$
$\sim 8 \mathrm{c}$	+	CONTACT IN	$\sim 8 \mathrm{c}$				~ 3
$\sim 7 \mathrm{~b}$	-	COMMON	$\sim 7 \mathrm{~b}$			~ 4	$\sim 4 \mathrm{a}$
$\sim 8 \mathrm{~b}$	$\stackrel{1}{=}$	SURG					$\sim 4 \mathrm{c}$

1a,1b,1c		Not Used	~ 1	
$\sim 2 \mathrm{a}$	-	- V-7		
$\sim 2 \mathrm{~b}$	-	\%	~ 2	
~2c	+	4		
3a,3b,3c		Not Used	~ 3	
$\sim 4 \mathrm{a}$	-	-		
$\sim 4 \mathrm{~b}$	-		~ 4	
$\sim 4 \mathrm{c}$	+	4		
5a,5b,5c		Not Used	~ 5	
~6a	-	- V-		
$\sim 6 \mathrm{~b}$	-	\square	~ 6	
~6c	+			
7a,7b,7c		Not Used	~ 7	
$\sim 8 \mathrm{a}$	-	V-7		
~8b	-		~ 8	
$\sim 8 \mathrm{c}$	+			

(15) - MOSFET Solid State Contact

82719CX-X2.dwg
Figure 3-17: DIGITAL INPUT/OUTPUT MODULE WIRING (2 of 2)
CORRECT POLARITY MUST BE OBSERVED FOR ALL CONTACT INPUT CONNECTIONS OR EQUIPMENT DAMAGE MAY RESULT.

3 HARDWARE

A dry contact has one side connected to Terminal B3b. This is the positive 48 V DC voltage rail supplied by the power supply module. The other side of the dry contact is connected to the required contact input terminal. Each contact input group has its own common (negative) terminal which must be connected to the DC negative terminal (B3a) of the power supply module. When a dry contact closes, a current of 1 to 3 mA will flow through the associated circuit.

A wet contact has one side connected to the positive terminal of an external DC power supply. The other side of this contact is connected to the required contact input terminal. In addition, the negative side of the external source must be connected to the relay common (negative) terminal of each contact input group. The maximum external source voltage for this arrangement is 300 V DC.

The voltage threshold at which each group of four contact inputs will detect a closed contact input is programmable as 17 V DC for 24 V sources, 33 V DC for 48 V sources, 84 V DC for 110 to 125 V sources, and 166 V DC for 250 V sources.

Figure 3-18: DRY AND WET CONTACT INPUT CONNECTIONS

Wherever a tilde " \sim " symbol appears, substitute with the Slot Position of the module.

Contact outputs may be ordered as Form-A or Form-C. The Form A contacts may be connected for external circuit supervision. These contacts are provided with voltage and current monitoring circuits used to detect the loss of DC voltage in the circuit, and the presence of DC current flowing through the contacts when the Form-A contact closes. If enabled, the current monitoring can be used as a seal-in signal to ensure that the Form-A contact does not attempt to break the energized inductive coil circuit and weld the output contacts.

There is no provision in the relay to detect a DC ground fault on 48 V DC control power external output. We recommend using an external DC supply.

Transducer input modules can receive input signals from external dcmA output transducers (dcmA \ln) or resistance temperature detectors (RTD). Hardware and software is provided to receive signals from these external transducers and convert these signals into a digital format for use as required.
Transducer output modules provide DC current outputs in several standard dcmA ranges. Software is provided to configure virtually any analog quantity used in the relay to drive the analog outputs.

Every transducer input/output module has a total of 24 terminal connections. These connections are arranged as three terminals per row with a total of eight rows. A given row may be used for either inputs or outputs, with terminals in column "a" having positive polarity and terminals in column "c" having negative polarity. Since an entire row is used for a single input/ output channel, the name of the channel is assigned using the module slot position and row number.
Each module also requires that a connection from an external ground bus be made to Terminal 8 b . The current outputs require a twisted-pair shielded cable, where the shield is grounded at one end only. The figure below illustrates the transducer module types ($5 \mathrm{~A}, 5 \mathrm{C}, 5 \mathrm{D}, 5 \mathrm{E}$, and 5 F) and channel arrangements that may be ordered for the relay.

Wherever a tilde "~" symbol appears, substitute with the Slot Position of the module.

$\sim 1 \mathrm{l}$	Hot			0
$\sim 1 \mathrm{c}$	Comp		RTD	
$\sim 1 \mathrm{~b}$	Return	for	RTD ~1\&c ~2	
$\sim 2 \mathrm{a}$	Hot		RTD ~2	
$\sim 2 \mathrm{c}$	Comp		RTD ~2	
$\sim 3 \mathrm{a}$	Hot		RTD ~3	
$\sim 3 \mathrm{c}$	Comp			
$\sim 3 \mathrm{~b}$	Return	for	RTD ~38 ~4	
$\sim 4 \mathrm{a}$	Hot		RTD	
$\sim 4 \mathrm{C}$	Comp		RTD ~4	
$\sim 5 a$	Hot		RTD ~5	
$\sim 5 \mathrm{c}$	Comp		RTD ~5	
$\sim 5 \mathrm{~b}$	Return		RTD ~5\& ~6	
$\sim 6 \mathrm{a}$	Hot		RTD ~6	
$\sim 6 \mathrm{c}$	Comp			
$\sim 7 \mathrm{a}$	Hot		RTD ~7	
$\sim 7 \mathrm{c}$	Comp			
$\sim 7 \mathrm{~b}$	Return	for	RTD ~78c ~8	\bigcirc
$\sim 8 \mathrm{a}$	Hot		RTD ~8	\bigcirc
$\sim 8 \mathrm{c}$	Comp		RTD ~8	O
$\sim 8 \mathrm{~b}$	$\stackrel{1}{=}$		SURGE	寿

$\sim 1 \mathrm{a}$	Hot		RTD ~1	
$\sim 1 \mathrm{c}$	Comp		RTD ~	
$\sim 1 \mathrm{~b}$	Return	for	RTD ~1\& ~2	
$\sim 2 \mathrm{a}$	Hot			
$\sim 2 \mathrm{c}$	Comp		RTD ~2	
$\sim 3 \mathrm{a}$	Hot		RTD ~3	
$\sim 3 \mathrm{c}$	Comp		RTD ~3	
$\sim 3 \mathrm{~b}$	Return	for	RTD ~3\& ~4	
$\sim 4 \mathrm{a}$	Hot		RTD ~4	
$\sim 4 \mathrm{c}$	Comp			
$\sim 5 a$	+	dcmA Out ~5		
$\sim 5 \mathrm{c}$	-			
$\sim 6 \mathrm{a}$	+	demA Out ~6		
$\sim 6 \mathrm{c}$	-			
$\sim 7 \mathrm{a}$	+	dcmA Out ~7		\bigcirc
$\sim 7 \mathrm{c}$	-			
$\sim 8 \mathrm{a}$	+	demA Out ~8		¢
$\sim 8 \mathrm{c}$	-			
$\sim 8 \mathrm{~b}$	$\stackrel{1}{=}$		SURGE	

Figure 3-19: TRANSDUCER INPUT/OUTPUT MODULE WIRING

3 HARDWARE

A 9-pin RS232C serial port is located on the relay's faceplate for programming with a portable (personal) computer. All that is required to use this interface is a personal computer running the enerVista UR Setup software provided with the relay. Cabling for the RS232 port is shown in the following figure for both 9 pin and 25 pin connectors.
$\underset{\text { vore }}{5}$ The baud rate for this port is fixed at $\mathbf{1 9 2 0 0}$ bps.

Front panel 9 pin RS232 Program port

Figure 3-20: RS232 FACEPLATE PORT CONNECTION

a) OPTIONS

In addition to the RS232 port on the faceplate, the relay provides the user with two additional communication port(s) depending on the CPU module installed.

The 9E, 9G, and 9H CPU modules do not require a surge ground connection.

CPU TYPE	COM1	COM2
9E	RS485	RS485
9G	10Base-F and 10Base-T	RS485
9H	Redundant 10Base-F	RS485

827831AB-X6.DWG

Figure 3-21: CPU MODULE COMMUNICATIONS WIRING

b) RS485 PORTS

RS485 data transmission and reception are accomplished over a single twisted pair with transmit and receive data alternating over the same two wires. Through the use of these port(s), continuous monitoring and control from a remote computer, SCADA system or PLC is possible.

To minimize errors from noise, the use of shielded twisted pair wire is recommended. Correct polarity must also be observed. For instance, the relays must be connected with all RS485 " + " terminals connected together, and all RS485 "-" terminals connected together. The COM terminal should be connected to the common wire inside the shield, when provided. To avoid loop currents, the shield should be grounded at one point only. Each relay should also be daisy chained to the next one in the link. A maximum of 32 relays can be connected in this manner without exceeding driver capability. For larger systems, additional serial channels must be added. It is also possible to use commercially available repeaters to increase the number of relays on a single channel to more than 32 . Star or stub connections should be avoided entirely.

Lightning strikes and ground surge currents can cause large momentary voltage differences between remote ends of the communication link. For this reason, surge protection devices are internally provided at both communication ports. An isolated power supply with an optocoupled data interface also acts to reduce noise coupling. To ensure maximum reliability, all equipment should have similar transient protection devices installed.

Both ends of the RS485 circuit should also be terminated with an impedance as shown below.

Figure 3-22: RS485 SERIAL CONNECTION
c) 10BASE-F FIBER OPTIC PORT

The fiber optic communication ports allow for fast and efficient communications between relays at 10 Mbps . Optical fiber may be connected to the relay supporting a wavelength of 820 nanometers in multimode. Optical fiber is only available for CPU types 9G and 9H. The 9H CPU has a 10BaseF transmitter and receiver for optical fiber communications and a second pair of identical optical fiber transmitter and receiver for redundancy.
The optical fiber sizes supported include $50 / 125 \mu \mathrm{~m}, 62.5 / 125 \mu \mathrm{~m}$ and $100 / 140 \mu \mathrm{~m}$. The fiber optic port is designed such that the response times will not vary for any core that is $100 \mu \mathrm{~m}$ or less in diameter. For optical power budgeting, splices are required every 1 km for the transmitter/receiver pair (the ST type connector contributes for a connector loss of 0.2 dB). When splicing optical fibers, the diameter and numerical aperture of each fiber must be the same. In order to engage or disengage the ST type connector, only a quarter turn of the coupling is required.

IRIG-B is a standard time code format that allows stamping of events to be synchronized among connected devices within 1 millisecond. The IRIG time code formats are serial, width-modulated codes which can be either DC level shifted or amplitude modulated (AM). Third party equipment is available for generating the IRIG-B signal; this equipment may use a GPS satellite system to obtain the time reference so that devices at different geographic locations can also be synchronized.

Figure 3-23: IRIG-B CONNECTION
The IRIG-B repeater provides an amplified DC-shift IRIG-B signal to other equipment. By using one IRIG-B serial connection, several UR-series relays can be synchronized. The IRIG-B repeater has a bypass function to maintain the time signal even when a relay in the series is powered down.

Figure 3-24: IRIG-B REPEATER

The F60 direct inputs/outputs feature makes use of the Type 7 series of communications modules. These modules are also used by the L90 Line Differential Relay for inter-relay communications. The Direct I/O feature uses the communications channel(s) provided by these modules to exchange digital state information between relays. This feature is available on all UR-series relay models except for the L90 Line Differential relay.
The communications channels are normally connected in a ring configuration as shown below. The transmitter of one module is connected to the receiver of the next module. The transmitter of this second module is then connected to the receiver of the next module in the ring. This is continued to form a communications ring. The figure below illustrates a ring of four UR-series relays with the following connections: UR1-Tx to UR2-Rx, UR2-Tx to UR3-Rx, UR3-Tx to UR4-Rx, and UR4-Tx to UR1-Rx. A maximum of eight (8) UR-series relays can be connected in a single ring

Figure 3-25: DIRECT INPUT/OUTPUT SINGLE CHANNEL CONNECTION
The following diagram shows the interconnection for dual-channel Type 7 communications modules. Two channel modules allow for a redundant ring configuration. That is, two rings can be created to provide an additional independent data path. The required connections are as follows: UR1-Tx1 to UR2-Rx1, UR2-Tx1 to UR3-Rx1, UR3-Tx1 to UR4-Rx1, and UR4-Tx1 to UR1-Rx1 for the first ring; and UR1-Tx2 to UR2-Rx2, UR2-Tx2 to UR3-Rx2, UR3-Tx2 to UR4-Rx2, and UR4-Tx2 to UR1$R \times 2$ for the second ring.

Figure 3-26: DIRECT INPUT/OUTPUT DUAL CHANNEL CONNECTION

The following diagram shows the interconnection for three UR-series relays using two independent communication channels. UR1 and UR3 have single Type 7 communication modules; UR2 has a dual-channel module. The two communication channels can be of different types, depending on the Type 7 modules used. To allow the direct input/output data to 'crossover' from Channel 1 to Channel 2 on UR2, the DIRECT I/O CHANNEL CROSSOVER setting should be "Enabled" on UR2. This forces UR2 to forward messages received on Rx1 out Tx2, and messages received on Rx2 out Tx1.

Figure 3-27: DIRECT INPUT/OUTPUT SINGLE/DUAL CHANNEL COMBINATION CONNECTION
The interconnection requirements are described in further detail in this section for each specific variation of Type 7 communications module. These modules are listed in the following table. All fiber modules use ST type connectors.

Table 3-3: CHANNEL COMMUNICATION OPTIONS

MODULE TYPE	SPECIFICATION
7A	820 nm , multi-mode, LED, 1 Channel
7B	1300 nm, multi-mode, LED, 1 Channel
7 C	1300 nm, single-mode, ELED, 1 Channel
7D	1300 nm , single-mode, LASER, 1 Channel
7H	820 nm , multi-mode, LED, 2 Channels
71	1300 nm, multi-mode, LED, 2 Channels
7J	1300 nm , single-mode, ELED, 2 Channels
7K	1300 nm , single-mode, LASER, 2 Channels
7L	Channel 1: RS422, Channel: 820 nm , multi-mode, LED
7M	Channel 1: RS422, Channel 2: 1300 nm , multi-mode, LED
7N	Channel 1: RS422, Channel 2: 1300 nm , single-mode, ELED
7P	Channel 1: RS422, Channel 2: 1300 nm , single-mode, LASER
7R	G.703, 1 Channel
7S	G.703, 2 Channels
7T	RS422, 1 Channel
7W	RS422, 2 Channels
72	1550 nm, single-mode, LASER, 1 Channel
73	1550 nm, single-mode, LASER, 2 Channel
74	Channel 1 - RS422; Channel 2-1550 nm, single-mode, LASER
76	IEEE C37.94, 820 nm , multi-mode, LED, 1 Channel
77	IEEE C37.94, 820 nm , multi-mode, LED, 2 Channels

OBSERVING ANY FIBER TRANSMITTER OUTPUT MAY CAUSE INJURY TO THE EYE.

3 HARDWARE

The following figure shows the configuration for the $7 \mathrm{~A}, 7 \mathrm{~B}, 7 \mathrm{C}, 7 \mathrm{H}, 7 \mathrm{I}$, and 7 J fiber-only modules.

Figure 3-28: LED AND ELED FIBER MODULES

The following figure shows the configuration for the 72, 73, 7D, and 7K fiber-laser module.

Figure 3-29: LASER FIBER MODULES
When using a LASER Interface, attenuators may be necessary to ensure that you do not exceed Maximum Optical Input Power to the receiver.

a) DESCRIPTION

The following figure shows the 64K ITU G. 703 co-directional interface configuration.
AWG 22 twisted shielded pair is recommended for external connections, with the shield grounded only at one end. Connecting the shield to Pin X1a or X6a grounds the shield since these pins are internally connected to ground. Thus, if Pin X1a or X6a is used, do not ground at the other end. This interface module is protected by surge suppression devices.

$\stackrel{\text { ¢ }}{\sim}$	$\begin{gathered} \text { G. } 703 \\ \text { CHANNEL } 1 \end{gathered}$	Shld.	X1a
		Tx-	X1b
		Rx-	X2a
		Tx +	X2b
		Rx+	X3a
	SURGE	$\stackrel{1}{\underline{1}}$	X3b
$\begin{array}{\|c\|c\|} \substack{2 \\ 0 \\ 0} \\ \hline \end{array}$	$\begin{gathered} \text { G. } 703 \\ \text { CHANNEL } 2 \end{gathered}$	Shld.	X6a
		Tx-	X6b
		Rx-	X7a
		Tx +	X7b
		Rx +	X8a
	SURGE	$\stackrel{1}{ \pm}$	X8b

Figure 3-30: G. 703 INTERFACE CONFIGURATION
The following figure shows the typical pin interconnection between two G. 703 interfaces. For the actual physical arrangement of these pins, see the Rear Terminal Assignments section earlier in this chapter. All pin interconnections are to be maintained for a connection to a multiplexer.

Figure 3-31: TYPICAL PIN INTERCONNECTION BETWEEN TWO G. 703 INTERFACES
Pin nomenclature may differ from one manufacturer to another. Therefore, it is not uncommon to see pinouts numbered TxA, TxB, RxA and RxB. In such cases, it can be assumed that " A " is equivalent to " + " and " B " is equivalent to "-".

b) G. 703 SELECTION SWITCH PROCEDURES

1. Remove the G .703 module (7R or 7S):

The ejector/inserter clips located at the top and at the bottom of each module, must be pulled simultaneously in order to release the module for removal. Before performing this action, control power must be removed from the relay. The original location of the module should be recorded to help ensure that the same or replacement module is inserted into the correct slot.
2. Remove the module cover screw.
3. Remove the top cover by sliding it towards the rear and then lift it upwards.
4. Set the Timing Selection Switches (Channel 1, Channel 2) to the desired timing modes.
5. Replace the top cover and the cover screw.
6. Re-insert the G. 703 module Take care to ensure that the correct module type is inserted into the correct slot position. The ejector/inserter clips located at the top and at the bottom of each module must be in the disengaged position as

3 HARDWARE

the module is smoothly inserted into the slot. Once the clips have cleared the raised edge of the chassis, engage the clips simultaneously. When the clips have locked into position, the module will be fully inserted.

Table 3-4: G. 703 TIMING SELECTIONS

SWITCHES	FUNCTION
S1	OFF \rightarrow Octet Timing Disabled
	ON \rightarrow Octet Timing 8 kHz
S5 and S6	S5 = OFF and S6 = OFF \rightarrow Loop Timing Mode
	S5 = ON and S6 = OFF \rightarrow Internal Timing Mode
	S5 = OFF and S6 = ON \rightarrow Minimum Remote Loopback Mode
	S5 $=$ ON and S6 = ON \rightarrow Dual Loopback Mode

c) OCTET TIMING (SWITCH S1)

If Octet Timing is enabled (ON), this 8 kHz signal will be asserted during the violation of Bit 8 (LSB) necessary for connecting to higher order systems. When L90's are connected back to back, Octet Timing should be disabled (OFF).
d) TIMING MODES (SWITCHES S5 AND S6)

- Internal Timing Mode: The system clock generated internally. Therefore, the G. 703 timing selection should be in the Internal Timing Mode for back-to-back (UR-to-UR) connections. For Back to Back Connections, set for Octet Timing $(\mathrm{S} 1=\mathrm{OFF})$ and Timing Mode $=$ Internal Timing $(\mathrm{S} 5=\mathrm{ON}$ and S6 $=\mathrm{OFF})$.
- Loop Timing Mode: The system clock is derived from the received line signal. Therefore, the G. 703 timing selection should be in Loop Timing Mode for connections to higher order systems. For connection to a higher order system (UR-to-multiplexer, factory defaults), set to Octet Timing (S1 = ON) and set Timing Mode = Loop Timing (S5 = OFF and S6 $=$ OFF).

e) TEST MODES (SWITCHES S5 AND S6)

MINIMUM REMOTE LOOPBACK MODE:

In Minimum Remote Loopback mode, the multiplexer is enabled to return the data from the external interface without any processing to assist in diagnosing G. 703 Line Side problems irrespective of clock rate. Data enters from the G. 703 inputs, passes through the data stabilization latch which also restores the proper signal polarity, passes through the multiplexer and then returns to the transmitter. The Differential Received Data is processed and passed to the G. 703 Transmitter module after which point the data is discarded. The G. 703 Receiver module is fully functional and continues to process data and passes it to the Differential Manchester Transmitter module. Since timing is returned as it is received, the timing source is expected to be from the G .703 line side of the interface.

DUAL LOOPBACK MODE:

In Dual Loopback Mode, the multiplexers are active and the functions of the circuit are divided into two with each Receiver/ Transmitter pair linked together to deconstruct and then reconstruct their respective signals. Differential Manchester data enters the Differential Manchester Receiver module and then is returned to the Differential Manchester Transmitter module. Likewise, G. 703 data enters the G. 703 Receiver module and is passed through to the G. 703 Transmitter module to be returned as G .703 data. Because of the complete split in the communications path and because, in each case, the clocks are extracted and reconstructed with the outgoing data, in this mode there must be two independent sources of timing. One source lies on the G. 703 line side of the interface while the other lies on the Differential Manchester side of the interface.

3.3.5 RS422 INTERFACE

a) DESCRIPTION

The following figure shows the RS422 2-Terminal interface configuration at 64K baud. AWG 22 twisted shielded pair is recommended for external connections. This interface module is protected by surge suppression devices which optically isolated.

SHIELD TERMINATION

The shield pins (6a and 7b) are internally connected to the ground pin (8a). Proper shield termination is as follows:
Site 1: Terminate shield to pins 6 a and/or 7b; Site 2: Terminate shield to 'COM' pin 2b.

3 HARDWARE

The clock terminating impedance should match the impedance of the line.

W3b	Tx -	RS422 CHANNEL 1	3
W3a	Rx-		
W2a	Tx +		
W4b	Rx+		
W6a	Shld.		
W5b	Tx -	RS422 CHANNEL 2	
W5a	Rx-		
W4a	Tx+		
W6b	Rx+		
W7b	Shld.		
W7a	+	CLOCK	
W8b	-		
W 2b	com		
W8a	$\underline{\square}$	SURGE	

The following figure shows the typical pin interconnection between two RS422 interfaces. All pin interconnections are to be maintained for a connection to a multiplexer.

Figure 3-34: TYPICAL PIN INTERCONNECTION BETWEEN TWO RS422 INTERFACES

b) TWO CHANNEL APPLICATIONS VIA MULTIPLEXERS

The RS422 Interface may be used for ' 1 channel' or ' 2 channel' applications over SONET/SDH and/or Multiplexed systems. When used in 1 channel applications, the RS422 interface links to higher order systems in a typical fashion observing Tx, Rx, and Send Timing connections. However, when used in 2 channel applications, certain criteria have to be followed due to the fact that there is 1 clock input for the two RS422 channels. The system will function correctly if the following connections are observed and your Data Module has a feature called Terminal Timing. Terminal Timing is a common feature to most Synchronous Data Units that allows the module to accept timing from an external source. Using the Terminal Timing feature, 2 channel applications can be achieved if these connections are followed: The Send Timing outputs from the Multiplexer - Data Module 1, will connect to the Clock inputs of the UR-RS422 interface in the usual fashion. In addition, the Send Timing outputs of Data Module 1 will also be paralleled to the Terminal Timing inputs of Data Module 2. By using this configuration the timing for both Data Modules and both UR-RS422 channels will be derived from a single clock source. As a result, data sampling for both of the UR-RS422 channels will be synchronized via the Send Timing leads on Data Module 1 as shown in the following figure. If the Terminal Timing feature is not available or this type of connection is not desired, the G. 703 interface is a viable option that does not impose timing restrictions.

831022A2.CDR
Figure 3-35: TIMING CONFIGURATION FOR RS422 TWO-CHANNEL, 3-TERMINAL APPLICATION
Data Module 1 provides timing to the F60 RS422 interface via the $\mathrm{ST}(\mathrm{A})$ and $\mathrm{ST}(\mathrm{B})$ outputs. Data Module 1 also provides timing to Data Module $2 \mathrm{TT}(A)$ and $\mathrm{TT}(B)$ inputs via the $\mathrm{ST}(A)$ and $\mathrm{AT}(B)$ outputs. The Data Module pin numbers have been omitted in the figure above since they may vary depending on the manufacturer.

c) TRANSIT TIMING

The RS422 Interface accepts one clock input for Transmit Timing. It is important that the rising edge of the 64 kHz Transmit Timing clock of the Multiplexer Interface is sampling the data in the center of the Transmit Data window. Therefore, it is important to confirm Clock and Data Transitions to ensure Proper System Operation. For example, the following figure shows the positive edge of the Tx Clock in the center of the Tx Data bit.

Figure 3-36: CLOCK AND DATA TRANSITIONS

3 HARDWARE

d) RECEIVE TIMING

The RS422 Interface utilizes NRZI-MARK Modulation Code and; therefore, does not rely on an Rx Clock to recapture data. NRZI-MARK is an edge-type, invertible, self-clocking code.

To recover the Rx Clock from the data-stream, an integrated DPLL (Digital Phase Lock Loop) circuit is utilized. The DPLL is driven by an internal clock, which is over-sampled 16X, and uses this clock along with the data-stream to generate a data clock that can be used as the SCC (Serial Communication Controller) receive clock.
3.3.6 RS422 AND FIBER INTERFACE

The following figure shows the combined RS422 plus Fiber interface configuration at 64 K baud. The $7 \mathrm{~L}, 7 \mathrm{M}, 7 \mathrm{~N}, 7 \mathrm{P}$, and 74 modules are used in 2-terminal with a redundant channel or 3-terminal configurations where Channel 1 is employed via the RS422 interface (possibly with a multiplexer) and Channel 2 via direct fiber.
AWG 22 twisted shielded pair is recommended for external RS422 connections and the shield should be grounded only at one end. For the direct fiber channel, power budget issues should be addressed properly.

Figure 3-37: RS422 AND FIBER INTERFACE CONNECTION
Connections shown above are for multiplexers configured as DCE (Data Communications Equipment) units.
3.3.7 G.703 AND FIBER INTERFACE

The figure below shows the combined G. 703 plus Fiber interface configuration at 64 K baud. The 7E, 7F, 7G, 7Q, and 75 modules are used in configurations where Channel 1 is employed via the G. 703 interface (possibly with a multiplexer) and Channel 2 via direct fiber. AWG 22 twisted shielded pair is recommended for external G. 703 connections connecting the shield to Pin 1A at one end only. For the direct fiber channel, power budget issues should be addressed properly. See previous sections for more details on the G. 703 and Fiber interfaces.

When using a LASER Interface, attenuators may be necessary to ensure that you do not exceed Maximum Optical Input Power to the receiver.

Figure 3-38: G. 703 AND FIBER INTERFACE CONNECTION

The UR-series IEEE C37.94 communication modules (76 and 77) are designed to interface with IEEE C37.94 compliant digital multiplexers and/or an IEEE C37.94 compliant interface converter for use with direct input/output applications for firmware revisions 3.30 and higher. The IEEE C37.94 standard defines a point-to-point optical link for synchronous data between a multiplexer and a teleprotection device. This data is typically 64 kbps , but the standard provides for speeds up to $64 n$ kbps, where $n=1,2, \ldots, 12$. The UR-series C37.94 communication module is 64 kbps only with n fixed at 1 . The frame is a valid International Telecommunications Union (ITU-T) recommended G. 704 pattern from the standpoint of framing and data rate. The frame is 256 bits and is repeated at a frame rate of 8000 Hz , with a resultant bit rate of 2048 kbps .
The specifications for the module are as follows:
IEEE standard: C37.94 for $1 \times 64 \mathrm{kbps}$ optical fiber interface
Fiber optic cable type: 50 mm or 62.5 mm core diameter optical fiber
Fiber optic mode: multi-mode
Fiber optic cable length: up to 2 km
Fiber optic connector: type ST
Wavelength: $830 \pm 40 \mathrm{~nm}$
Connection: as per all fiber optic connections, a Tx to Rx connection is required.
The UR-series C37.94 communication module can be connected directly to any compliant digital multiplexer that supports the IEEE C37.94 standard as shown below.

The UR-series C37.94 communication module can be connected to the electrical interface (G.703, RS422, or X.21) of a non-compliant digital multiplexer via an optical-to-electrical interface converter that supports the IEEE C37.94 standard, as shown below.

The UR-series C37.94 communication module has six (6) switches that are used to set the clock configuration. The functions of these control switches is shown below.

Internal Timing Mode

Loop Timed

Switch	Internal	Loop Timed
$\mathbf{1}$	ON	OFF
$\mathbf{2}$	ON	OFF
$\mathbf{3}$	OFF	OFF
$\mathbf{4}$	OFF	OFF
$\mathbf{5}$	OFF	OFF
$\mathbf{6}$	OFF	OFF

3 HARDWARE

For the Internal Timing Mode, the system clock is generated internally. Therefore, the timing switch selection should be Internal Timing for Relay 1 and Loop Timed for Relay 2. There must be only one timing source configured.
For the Looped Timing Mode, the system clock is derived from the received line signal. Therefore, the timing selection should be in Loop Timing Mode for connections to higher order systems.

The C37.94 communications module cover removal procedure is as follows:

1. Remove the $\mathbf{C} 37.94$ module (76 or 77):

The ejector/inserter clips located at the top and at the bottom of each module, must be pulled simultaneously in order to release the module for removal. Before performing this action, control power must be removed from the relay. The original location of the module should be recorded to help ensure that the same or replacement module is inserted into the correct slot.
2. Remove the module cover screw.
3. Remove the top cover by sliding it towards the rear and then lift it upwards.
4. Set the Timing Selection Switches (Channel 1, Channel 2) to the desired timing modes (see description above).
5. Replace the top cover and the cover screw.
6. Re-insert the C37.94 module Take care to ensure that the correct module type is inserted into the correct slot position. The ejector/inserter clips located at the top and at the bottom of each module must be in the disengaged position as the module is smoothly inserted into the slot. Once the clips have cleared the raised edge of the chassis, engage the clips simultaneously. When the clips have locked into position, the module will be fully inserted.

Figure 3-39: C37.94 TIMING SELECTION SWITCH SETTING

The enerVista UR Setup software provides a graphical user interface (GUI) as one of two human interfaces to a UR device. The alternate human interface is implemented via the device's faceplate keypad and display (see Faceplate Interface section in this chapter).
The enerVista UR Setup software provides a single facility to configure, monitor, maintain, and trouble-shoot the operation of relay functions, connected over local or wide area communication networks. It can be used while disconnected (i.e. offline) or connected (i.e. on-line) to a UR device. In off-line mode, settings files can be created for eventual downloading to the device. In on-line mode, you can communicate with the device in real-time.
The enerVista UR Setup software, provided with every F60 relay, can be run from any computer supporting Microsoft Windows ${ }^{\circledR} 95,98$, NT, 2000, ME, and XP. This chapter provides a summary of the basic enerVista UR Setup software interface features. The enerVista UR Setup Help File provides details for getting started and using the enerVista UR Setup software interface.

4.1.2 CREATING A SITE LIST

To start using the enerVista UR Setup software, a site definition and device definition must first be created. See the enerVista UR Setup Help File or refer to the Connecting enerVista UR Setup with the F60 section in Chapter 1 for details.
4.1.3 ENERVISTA UR SETUP SOFTWARE OVERVIEW

a) ENGAGING A DEVICE

The enerVista UR Setup software may be used in on-line mode (relay connected) to directly communicate with a UR relay. Communicating relays are organized and grouped by communication interfaces and into sites. Sites may contain any number of relays selected from the UR product series.

b) USING SETTINGS FILES

The enerVista UR Setup software interface supports three ways of handling changes to relay settings:

- In off-line mode (relay disconnected) to create or edit relay settings files for later download to communicating relays.
- While connected to a communicating relay to directly modify any relay settings via relay data view windows, and then save the settings to the relay.
- You can create/edit settings files and then write them to the relay while the interface is connected to the relay.

Settings files are organized on the basis of file names assigned by the user. A settings file contains data pertaining to the following types of relay settings:

- Device Definition
- Product Setup
- System Setup
- FlexLogic ${ }^{\text {TM }}$
- Grouped Elements
- Control Elements
- Inputs/Outputs
- Testing

Factory default values are supplied and can be restored after any changes.
c) CREATING AND EDITING FLEXLOGIC ${ }^{\text {™ }}$

You can create or edit a FlexLogic ${ }^{\text {TM }}$ equation in order to customize the relay. You can subsequently view the automatically generated logic diagram.

d) VIEWING ACTUAL VALUES

You can view real-time relay data such as input/output status and measured parameters.

e) VIEWING TRIGGERED EVENTS

While the interface is in either on-line or off-line mode, you can view and analyze data generated by triggered specified parameters, via one of the following:

- Event Recorder facility: The event recorder captures contextual data associated with the last 1024 events, listed in chronological order from most recent to oldest.
- Oscillography facility: The oscillography waveform traces and digital states are used to provide a visual display of power system and relay operation data captured during specific triggered events.

f) FILE SUPPORT

- Execution: Any enerVista UR Setup file which is double clicked or opened will launch the application, or provide focus to the already opened application. If the file was a settings file (has a URS extension) which had been removed from the Settings List tree menu, it will be added back to the Settings List tree menu.
- Drag and Drop: The Site List and Settings List control bar windows are each mutually a drag source and a drop target for device-order-code-compatible files or individual menu items. Also, the Settings List control bar window and any Windows Explorer directory folder are each mutually a file drag source and drop target.
New files which are dropped into the Settings List window are added to the tree which is automatically sorted alphabetically with respect to settings file names. Files or individual menu items which are dropped in the selected device menu in the Site List window will automatically be sent to the on-line communicating device.

g) FIRMWARE UPGRADES

The firmware of a F60 device can be upgraded, locally or remotely, via the enerVista UR Setup software. The corresponding instructions are provided by the enerVista UR Setup Help file under the topic "Upgrading Firmware".

Modbus addresses assigned to firmware modules, features, settings, and corresponding data items (i.e. default values, min/max values, data type, and item size) may change slightly from version to version of firmware. The addresses are rearranged when new features are added or existing features are enhanced or modified. The "EEPROM DATA ERROR" message displayed after upgrading/downgrading the firmware is a resettable, self-test message intended to inform users that the Modbus addresses have changed with the upgraded firmware. This message does not signal any problems when appearing after firmware upgrades.

The enerVista UR Setup software main window supports the following primary display components:
a. Title bar which shows the pathname of the active data view
b. Main window menu bar
c. Main window tool bar
d. Site List control bar window
e. Settings List control bar window
f. Device data view window(s), with common tool bar
g. Settings File data view window(s), with common tool bar
h. Workspace area with data view tabs
i. Status bar

Figure 4-1: ENERVISTA UR SETUP SOFTWARE MAIN WINDOW

The keypad/display/LED interface is one of two alternate human interfaces supported. The other alternate human interface is implemented via the enerVista UR Setup software. The faceplate interface is available in two configurations: horizontal or vertical. The faceplate interface consists of several functional panels.
The faceplate is hinged to allow easy access to the removable modules. There is also a removable dust cover that fits over the faceplate which must be removed in order to access the keypad panel. The following two figures show the horizontal and vertical arrangement of faceplate panels.

Figure 4-2: UR-SERIES HORIZONTAL FACEPLATE PANELS

Figure 4-3: UR-SERIES VERTICAL FACEPLATE PANELS

a) LED PANEL 1

This panel provides several LED indicators, several keys, and a communications port. The RESET key is used to reset any latched LED indicator or target message, once the condition has been cleared (these latched conditions can also be reset via the SETTINGS $\Rightarrow \sqrt{ } \sqrt{\text { INPUT/OUTPUTS } \Rightarrow \sqrt{ } \text { RESETTING menu). The USER keys are used by the Breaker Control feature. The }}$ RS232 port is intended for connection to a portable PC.

Figure 4-4: LED PANEL 1

STATUS INDICATORS:

- IN SERVICE: Indicates that control power is applied; all monitored inputs/outputs and internal systems are OK; the relay has been programmed.
- TROUBLE: Indicates that the relay has detected an internal problem.
- TEST MODE: Indicates that the relay is in test mode.
- TRIP: Indicates that the selected FlexLogic ${ }^{\text {TM }}$ operand serving as a Trip switch has operated. This indicator always latches; the RESET command must be initiated to allow the latch to be reset.
- ALARM: Indicates that the selected FlexLogic ${ }^{T M}$ operand serving as an Alarm switch has operated. This indicator is never latched.
- PICKUP: Indicates that an element is picked up. This indicator is never latched.

EVENT CAUSE INDICATORS:

These indicate the input type that was involved in a condition detected by an element that is operated or has a latched flag waiting to be reset.

- VOLTAGE: Indicates voltage was involved.
- CURRENT: Indicates current was involved.
- FREQUENCY: Indicates frequency was involved.
- OTHER: Indicates a composite function was involved.
- PHASE A: Indicates Phase A was involved.
- PHASE B: Indicates Phase B was involved.
- PHASE C: Indicates Phase C was involved.
- NEUTRAL/GROUND: Indicates neutral or ground was involved.

b) LED PANELS 2 AND 3

These panels provide 48 amber LED indicators whose operation is controlled by the user. Support for applying a customized label beside every LED is provided.

User customization of LED operation is of maximum benefit in installations where languages other than English are used to communicate with operators. Refer to the User-Programmable LEDs section in Chapter 5 for the settings used to program the operation of the LEDs on these panels.

Figure 4-5: LED PANELS 2 AND 3 (INDEX TEMPLATE)
c) DEFAULT LABELS FOR LED PANEL 2

SETTINGS IN USE	BREAKER 1	SYNCHROCHECK
\square GROUP 1	OPEN	- NO1 IN-SYNCH
- GROUP 2	- Closed	\square NO2 IN-SYNCH
\square GROUP 3	- TROUBLE	
- GROUP 4		RECLOSE
- GROUP 5	BREAKER 2	\square ENABLED
- GROUP 6	- OPEN	\square disabled
- GROUP 7	- CLOSED	- IN PROGRESS
- GROUP 8	- TROUBLE	- LOCKED OUT

The default labels are intended to represent:

- GROUP 1...6: The illuminated GROUP is the active settings group.
- BREAKER n OPEN: The breaker is open.
- BREAKER n CLOSED: The breaker is closed.
- BREAKER n TROUBLE: A problem related to the breaker has been detected.
- SYNCHROCHECK NO n IN-SYNCH: Voltages have satisfied the synchrocheck element.
- RECLOSE ENABLED: The recloser is operational.
- RECLOSE DISABLED: The recloser is not operational.
- RECLOSE IN PROGRESS: A reclose operation is in progress.
- RECLOSE LOCKED OUT: The recloser is not operational and requires a reset.

Firmware revisions 2.9x and earlier support eight user setting groups; revisions 3.0x and higher support six setting groups. For convenience of users using earlier firmware revisions, the relay panel shows eight setting groups. Please note that the LEDs, despite their default labels, are fully user-programmable.
The relay is shipped with the default label for the LED panel 2 . The LEDs, however, are not pre-programmed. To match the pre-printed label, the LED settings must be entered as shown in the User-Programmable LEDs section of Chapter 5. The LEDs are fully user-programmable. The default labels can be replaced by user-printed labels for both LED panels 2 and 3 as explained in the next section.

d) INSTALLING THE CUSTOMIZED DISPLAY MODULE

Custom labeling of an LED-only panel is facilitated through a Microsoft Word file available from the following URL: http://www.GEindustrial.com/multilin/support/ur/
This file provides templates and instructions for creating appropriate labeling for the LED panel. The following procedures are contained in the downloadable file. The panel templates provide relative LED locations and located example text (x) edit boxes. The following procedure demonstrates how to install/uninstall the custom panel labeling.

1. Remove the clear Lexan Front Cover (GE Multilin Part Number: 1501-0014).

2. Pop out the LED Module and/or the Blank Module with a screwdriver as shown below. Be careful not to damage the plastic.

3. Place the left side of the customized module back to the front panel frame, then snap back the right side.
4. Put the clear Lexan Front Cover back into place.
e) CUSTOMIZING THE DISPLAY MODULE

The following items are required to customize the UR display module:

- Black and white or color printer (color preferred)
- Microsoft Word 97 or later software
- 1 each of: 8.5 " x 11 " white paper, exacto knife, ruler, custom display module (GE Multilin Part Number: 1516-0069), and a custom module cover (GE Multilin Part Number: 1502-0015)

1. Open the LED panel customization template with Microsoft Word. Add text in places of the LED \mathbf{x} text placeholders on the template(s). Delete unused place holders as required.
2. When complete, save the Word file to your local PC for future use.
3. Print the template(s) to a local printer.
4. From the printout, cut-out the Background Template from the three windows, using the cropmarks as a guide.
5. Put the Background Template on top of the custom display module (GE Multilin Part Number: 1513-0069) and snap the clear custom module cover (GE Multilin Part Number: 1502-0015) over it and the templates.

All messages are displayed on a 2×20 character vacuum fluorescent display to make them visible under poor lighting conditions. An optional liquid crystal display (LCD) is also available. Messages are displayed in English and do not require the aid of an instruction manual for deciphering. While the keypad and display are not actively being used, the display will default to defined messages. Any high priority event driven message will automatically override the default message and appear on the display.
4.2.4 KEYPAD

Display messages are organized into 'pages' under the following headings: Actual Values, Settings, Commands, and Targets. The MENU key navigates through these pages. Each heading page is broken down further into logical subgroups.
The $\triangle \varangle$ MESSAGE ∇ keys navigate through the subgroups. The Θ VALUE \odot keys scroll increment or decrement numerical setting values when in programming mode. These keys also scroll through alphanumeric values in the text edit mode. Alternatively, values may also be entered with the numeric keypad.
The - key initiates and advance to the next character in text edit mode or enters a decimal point. The HELP key may be pressed at any time for context sensitive help messages. The ENTER key stores altered setting values.
4.2.5 BREAKER CONTROL

a) DESCRIPTION

The F60 can interface with associated circuit breakers. In many cases the application monitors the state of the breaker, which can be presented on faceplate LEDs, along with a breaker trouble indication. Breaker operations can be manually initiated from faceplate keypad or automatically initiated from a FlexLogic ${ }^{\top M}$ operand. A setting is provided to assign names to each breaker; this user-assigned name is used for the display of related flash messages. These features are provided for two breakers; the user may use only those portions of the design relevant to a single breaker, which must be breaker No. 1.
For the following discussion it is assumed the SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ BREAKERS \Rightarrow BREAKER $n \Rightarrow$ BREAKER FUNCTION setting is "Enabled" for each breaker.

b) CONTROL MODE SELECTION AND MONITORING

Installations may require that a breaker is operated in the three-pole only mode (3-Pole), or in the one and three-pole (1Pole) mode, selected by setting. If the mode is selected as 3-pole, a single input tracks the breaker open or closed position. If the mode is selected as 1 -Pole, all three breaker pole states must be input to the relay. These inputs must be in agreement to indicate the position of the breaker.

For the following discussion it is assumed the SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ BREAKERS \Rightarrow BREAKER $n \Rightarrow \sqrt{ } \Rightarrow$ BREAKER PUSH BUTTON CONTROL setting is "Enabled" for each breaker..

c) FACEPLATE PUSHBUTTON (USER KEY) CONTROL

After the 30 minute interval during which command functions are permitted after a correct command password, the user cannot open or close a breaker via the keypad. The following discussions begin from the not-permitted state.

d) CONTROL OF TWO BREAKERS

For the following example setup, the symbol (Name) represents the user-programmed variable name.
For this application (setup shown below), the relay is connected and programmed for both breaker No. 1 and breaker No. 2. The USER 1 key performs the selection of which breaker is to be operated by the USER 2 and USER 3 keys. The USER 2 key is used to manually close the breaker and the USER 3 key is used to manually open the breaker.

ENTER COMMAND	
PASSWORD	This message appears when the USER 1 , USER 2, or USER 3 key is pressed and a
COMMAND PASSWORD is required; i.e. if COMMAND PASSWORD is enabled and no com-	
mands have been issued within the last 30 minutes.	

Press USER 1 To Select Breaker	This message appears if the correct password is entered or if none is required. This message will be maintained for 30 seconds or until the USER 1 key is pressed again.
BKR1- (Name) SELECTED USER 2=CLS/USER 3=OP	This message is displayed after the USER 1 key is pressed for the second time. Three possible actions can be performed from this state within 30 seconds as per items (1), (2) and (3) below:
(1)	
USER 2 OFF/ON To Close BKR1-(Name)	If the USER 2 key is pressed, this message appears for 20 seconds. If the USER 2 key is pressed again within that time, a signal is created that can be programmed to operate an output relay to close breaker No. 1.

(2)

If the USER 3 key is pressed, this message appears for 20 seconds. If the USER 3 key is pressed again within that time, a signal is created that can be programmed to operate an output relay to open breaker No. 1.
(3)

BKR2-(Name) SELECTED
If the USER 1 key is pressed at this step, this message appears showing that a different USER 2=CLS/USER 3=OP breaker is selected. Three possible actions can be performed from this state as per (1), (2) and (3). Repeatedly pressing the USER 1 key alternates between available breakers. Pressing keys other than USER 1, 2 or 3 at any time aborts the breaker control function.

e) CONTROL OF ONE BREAKER

For this application the relay is connected and programmed for breaker No. 1 only. Operation for this application is identical to that described for two breakers.
4.2.6 MENUS

a) NAVIGATION

Press the MENU key to select the desired header display page (top-level menu). The header title appears momentarily followed by a header display page menu item. Each press of the MENU key advances through the main heading pages as illustrated below.

b) HIERARCHY

The setting and actual value messages are arranged hierarchically. The header display pages are indicated by double scroll bar characters (■■), while sub-header pages are indicated by single scroll bar characters (\square). The header display pages represent the highest level of the hierarchy and the sub-header display pages fall below this level. The MESSAGE Δ and ∇ keys move within a group of headers, sub-headers, setting values, or actual values. Continually pressing the MESSAGE key from a header display displays specific information for the header category. Conversely, continually pressing the MESSAGE key from a setting value or actual value display returns to the header display.

HIGHEST LEVEL

$\triangleleft \left\lvert\, \begin{aligned} & \square \\ & \square \\ & \text { PASSWORD } \\ & \text { SECURITY }\end{aligned}\right.$

```
ACCESS LEVEL:
Restricted
```

c) EXAMPLE MENU NAVIGATION
$\square \square$ ACTUAL VALUES

$\square \square$ STATUS \quad| Press the menu key until the header for the first Actual Values page appears. This |
| :--- |
| page contains system and relay status information. Repeatedly press the |
| MESSAGE \square |

$\square ■ \square$	SETTINGS	
$\square \square$	PRODUCT SETUP	

Press the menu key until the header for the first page of Settings appears. This page contains settings to configure the relay.
$\sqrt{\Omega}$

$\square \square$	SETTINGS
$\square \square$	SYSTEM SETUP

Press the MESSAGE ∇ key to move to the next Settings page. This page contains settings for System Setup. Repeatedly press the \triangle MESSAGE ∇ keys to display the other setting headers and then back to the first Settings page header.
$\sqrt{\Omega}$

Press the MESSAGE \square key once more and this will display the first setting for Pass-

\square PASSWORD \square SECURITY

■ DISPLAY ■ PROPERTIES
\checkmark
FLASH MESSAGE TIME: 1.0 s
\checkmark
DEFAULT MESSAGE INTENSITY: 25\%

Pressing the MESSAGE ∇ key will display the second setting sub-header associated with the Product Setup header.

Press the MESSAGE \square key once more and this will display the first setting for Display Properties.

To view the remaining settings associated with the Display Properties subheader, repeatedly press the MESSAGE ∇ key. The last message appears as shown.

a) ENTERING NUMERICAL DATA

Each numerical setting has its own minimum, maximum, and increment value associated with it. These parameters define what values are acceptable for a setting.

FLASH MESSAGE TIME: 1.0 s	For example, select the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ DISPLAY PROPERTIES \Rightarrow FLASH MESSAGE TIME setting.
,	
$\begin{array}{lr} \text { MINIMUM: } & 0.5 \\ \text { MAXIMUM: } & 10.0 \end{array}$	Press the HELP key to view the minimum and maximum values. Press the HELP key again to view the next context sensitive help message.

Two methods of editing and storing a numerical setting value are available.

- 0 to 9 and (decimal point): The relay numeric keypad works the same as that of any electronic calculator. A number is entered one digit at a time. The leftmost digit is entered first and the rightmost digit is entered last. Pressing the MESSAGE (d key or pressing the ESCAPE key, returns the original value to the display.
- VALUE $\nabla_{\text {: }}$ The VALUE key increments the displayed value by the step value, up to the maximum value allowed. While at the maximum value, pressing the VALUE key again will allow the setting selection to continue upward from the minimum value. The VALUE σ key decrements the displayed value by the step value, down to the minimum value. While at the minimum value, pressing the VALUE \varnothing key again will allow the setting selection to continue downward from the maximum value.

b) ENTERING ENUMERATION DATA

Enumeration settings have data values which are part of a set, whose members are explicitly defined by a name. A set is comprised of two or more members.

ACCESS LEVEL:	For example, the selections available for ACCESS LEVEL are "Restricted", "Command",
Restricted	"Setting", and "Factory Service".

Enumeration type values are changed using the VALUE keys. The VALUE key displays the next selection while the VALUE ∇ key displays the previous selection.

ACCESS LEVEL: Setting	If the ACCESS LEVEL needs to be "Setting", press the VALUE keys until the proper selection is displayed. Press \square at any time for the context sensitive help messages.
,	
NEW SETTING HAS BEEN STORED	Changes are not registered by the relay until the ENTER \square key is pressed. Pressing \square stores the new value in memory. This flash message momentarily appears as confirmation of the storing process.

c) ENTERING ALPHANUMERIC TEXT

Text settings have data values which are fixed in length, but user-defined in character. They may be comprised of upper case letters, lower case letters, numerals, and a selection of special characters.

There are several places where text messages may be programmed to allow the relay to be customized for specific applications. One example is the Message Scratchpad. Use the following procedure to enter alphanumeric text messages.
For example: to enter the text, "Breaker \#1"

1. Press $\cdot \square$ to enter text edit mode.
2. Press the VALUE keys until the character 'B' appears; press $\quad \cdot$ to advance the cursor to the next position.
3. Repeat step 2 for the remaining characters: $\mathrm{r}, \mathrm{e}, \mathrm{a}, \mathrm{k}, \mathrm{e}, \mathrm{r}, ~ \#, 1$.
4. Press ENTER to store the text.
5. If you have any problem, press HELP to view context sensitive help. Flash messages will sequentially appear for several seconds each. For the case of a text setting message, pressing HELP displays how to edit and store new values.
d) ACTIVATING THE RELAY
```
RELAY SETTINGS: When the relay is powered up, the Trouble LED will be on, the In Service LED off, and
Not Programmed this message displayed, indicating the relay is in the "Not Programmed" state and is safeguarding (output relays blocked) against the installation of a relay whose settings have not been entered. This message remains until the relay is explicitly put in the "Programmed" state.
```

To change the RELAY SETtings: "Not Programmed" mode to "Programmed", proceed as follows:

1. Press the menu key until the settings header flashes momentarily and the settings Product setup message appears on the display.
2. Press the MESSAGE \square key until the PASSWORD SECURITY message appears on the display.
3. Press the MESSAGE ∇ key until the installation message appears on the display.
4. Press the MESSAGE key until the RELAY SETtings: Not Programmed message is displayed.

5. After the relay settings: Not Programmed message appears on the display, press the VALUE keys change the selection to "Programmed".
6. Press the ENTER key.

RELAY SETTINGS: Not Programmed	θ	RELAY SETTINGS: Programmed	ENTER	NEW SETTING HAS BEEN STORED

4 HUMAN INTERFACES

7. When the "NEW SETTING HAS BEEN STORED" message appears, the relay will be in "Programmed" state and the In Service LED will turn on.
e) ENTERING INITIAL PASSWORDS

To enter the initial Setting (or Command) Password, proceed as follows:

1. Press the MENU key until the 'SETTINGS' header flashes momentarily and the 'SETTINGS PRODUCT SETUP' message appears on the display.
2. Press the MESSAGE \square key until the 'ACCESS LEVEL:' message appears on the display.
3. Press the MESSAGE ∇ key until the 'CHANGE SETTING (or COMMAND) PASSWORD:' message appears on the display.

CHANGE COMMAND
PASSWORD: No

- CHANGE SETTING
PASSWORD: NO

ENCRYPTED COMMAND
PASSWORD: -----------
ENCRYPTED SETTING
PASSWORD: ----------
4. After the 'CHANGE...PASSWORD' message appears on the display, press the VALUE \otimes key or the VALUE \odot key to change the selection to Yes.
5. Press the Enter key and the display will prompt you to 'ENTER NEW PASSWORD'.
6. Type in a numerical password (up to 10 characters) and press the ENTER key.
7. When the 'VERIFY NEW PASSWORD' is displayed, re-type in the same password and press ENTER.

8. When the 'NEW PASSWORD HAS BEEN STORED' message appears, your new Setting (or Command) Password will be active.

f) CHANGING EXISTING PASSWORD

To change an existing password, follow the instructions in the previous section with the following exception. A message will prompt you to type in the existing password (for each security level) before a new password can be entered.
In the event that a password has been lost (forgotten), submit the corresponding Encrypted Password from the PASSWORD sECURITY menu to the Factory for decoding.

∇
(1)

\square
\square
PASSWORD
SECURITY

See page 5-8.

See page 5-9.

See page 5-11.

See page 5-12.

See page 5-20.

See page 5-20.

See page 5-21.

See page 5-22.

See page 5-24.

See page 5-24.

See page 5-26.

See page 5-29.

See page 5-29.

See page 5-31.

See page 5-32.

See page 5-33.

See page 5-35.

See page 5-40.

See page 5-41.

See page 5-42.

See page 5-43.

TEST MODE
FUNCTION: Disabled

See page 5-176.
See page 5-176.
See page 5-177.
See page 5-177.
5.1.2 INTRODUCTION TO ELEMENTS

In the design of UR relays, the term "element" is used to describe a feature that is based around a comparator. The comparator is provided with an input (or set of inputs) that is tested against a programmed setting (or group of settings) to determine if the input is within the defined range that will set the output to logic 1, also referred to as "setting the flag". A single
comparator may make multiple tests and provide multiple outputs; for example, the time overcurrent comparator sets a Pickup flag when the current input is above the setting and sets an Operate flag when the input current has been at a level above the pickup setting for the time specified by the time-current curve settings. All comparators, except the Digital Element which uses a logic state as the input, use analog parameter actual values as the input.

Elements are arranged into two classes, GROUPED and CONTROL. Each element classed as a GROUPED element is provided with six alternate sets of settings, in setting groups numbered 1 through 6 . The performance of a GROUPED element is defined by the setting group that is active at a given time. The performance of a CONTROL element is independent of the selected active setting group.

The main characteristics of an element are shown on the element logic diagram. This includes the input(s), settings, fixed logic, and the output operands generated (abbreviations used on scheme logic diagrams are defined in Appendix F).
Some settings for current and voltage elements are specified in per-unit (pu) calculated quantities:
pu quantity = (actual quantity) / (base quantity)

- For current elements, the 'base quantity' is the nominal secondary or primary current of the CT. Where the current source is the sum of two CTs with different ratios, the 'base quantity' will be the common secondary or primary current to which the sum is scaled (i.e. normalized to the larger of the 2 rated CT inputs). For example, if CT1 = 300/5 A and CT2 $=100 / 5 \mathrm{~A}$, then in order to sum these, CT2 is scaled to the CT1 ratio. In this case, the 'base quantity' will be 5 A secondary or 300 A primary.
- For voltage elements the 'base quantity' is the nominal primary voltage of the protected system which corresponds (based on VT ratio and connection) to secondary VT voltage applied to the relay. For example, on a system with a 13.8 kV nominal primary voltage and with $14400: 120 \mathrm{~V}$ Delta-connected VTs, the secondary nominal voltage (1 pu) would be:

$$
\begin{equation*}
\frac{13800}{14400} \times 120=115 \mathrm{~V} \tag{EQ5.1}
\end{equation*}
$$

For Wye-connected VTs, the secondary nominal voltage (1 pu) would be:

$$
\begin{equation*}
\frac{13800}{14400} \times \frac{120}{\sqrt{3}}=66.4 \mathrm{~V} \tag{EQ5.2}
\end{equation*}
$$

Many settings are common to most elements and are discussed below:

- FUNCTION setting: This setting programs the element to be operational when selected as "Enabled". The factory default is "Disabled". Once programmed to "Enabled", any element associated with the Function becomes active and all options become available.
- NAME setting: This setting is used to uniquely identify the element.
- SOURCE setting: This setting is used to select the parameter or set of parameters to be monitored.
- PICKUP setting: For simple elements, this setting is used to program the level of the measured parameter above or below which the pickup state is established. In more complex elements, a set of settings may be provided to define the range of the measured parameters which will cause the element to pickup.
- PICKUP DELAY setting: This setting sets a time-delay-on-pickup, or on-delay, for the duration between the Pickup and Operate output states.
- RESET DELAY setting: This setting is used to set a time-delay-on-dropout, or off-delay, for the duration between the Operate output state and the return to logic 0 after the input transits outside the defined pickup range.
- BLOCK setting: The default output operand state of all comparators is a logic 0 or "flag not set". The comparator remains in this default state until a logic 1 is asserted at the RUN input, allowing the test to be performed. If the RUN input changes to logic 0 at any time, the comparator returns to the default state. The RUN input is used to supervise the comparator. The BLOCK input is used as one of the inputs to RUN control.
- TARGET setting: This setting is used to define the operation of an element target message. When set to Disabled, no target message or illumination of a faceplate LED indicator is issued upon operation of the element. When set to SelfReset, the target message and LED indication follow the Operate state of the element, and self-resets once the operate element condition clears. When set to Latched, the target message and LED indication will remain visible after the element output returns to logic 0 - until a RESET command is received by the relay.
- EVENTS setting: This setting is used to control whether the Pickup, Dropout or Operate states are recorded by the event recorder. When set to Disabled, element pickup, dropout or operate are not recorded as events. When set to Enabled, events are created for:
(Element) PKP (pickup)
(Element) DPO (dropout)
(Element) OP (operate)
The DPO event is created when the measure and decide comparator output transits from the pickup state (logic 1) to the dropout state (logic 0). This could happen when the element is in the operate state if the reset delay time is not ' 0 '.
5.1.3 INTRODUCTION TO AC SOURCES

a) BACKGROUND

The F60 may be used on systems with breaker-and-a-half or ring bus configurations. In these applications, each of the two three-phase sets of individual phase currents (one associated with each breaker) can be used as an input to a breaker failure element. The sum of both breaker phase currents and 3I_0 residual currents may be required for the circuit relaying and metering functions. For a three-winding transformer application, it may be required to calculate watts and vars for each of three windings, using voltage from different sets of VTs. These requirements can be satisfied with a single UR, equipped with sufficient CT and VT input channels, by selecting the parameter to measure. A mechanism is provided to specify the AC parameter (or group of parameters) used as the input to protection/control comparators and some metering elements.

Selection of the parameter(s) to measure is partially performed by the design of a measuring element or protection/control comparator by identifying the type of parameter (fundamental frequency phasor, harmonic phasor, symmetrical component, total waveform RMS magnitude, phase-phase or phase-ground voltage, etc.) to measure. The user completes the process by selecting the instrument transformer input channels to use and some of the parameters calculated from these channels. The input parameters available include the summation of currents from multiple input channels. For the summed currents of phase, 31_0, and ground current, current from CTs with different ratios are adjusted to a single ratio before summation.
A mechanism called a "Source" configures the routing of CT and VT input channels to measurement sub-systems. Sources, in the context of UR series relays, refer to the logical grouping of current and voltage signals such that one source contains all the signals required to measure the load or fault in a particular power apparatus. A given source may contain all or some of the following signals: three-phase currents, single-phase ground current, three-phase voltages and an auxiliary voltage from a single VT for checking for synchronism.

To illustrate the concept of Sources, as applied to current inputs only, consider the breaker-and-a-half scheme below. In this application, the current flows as shown by the arrows. Some current flows through the upper bus bar to some other location or power equipment, and some current flows into transformer Winding 1. The current into Winding 1 is the phasor sum (or difference) of the currents in CT1 and CT2 (whether the sum or difference is used depends on the relative polarity of the CT connections). The same considerations apply to transformer Winding 2. The protection elements require access to the net current for transformer protection, but some elements may need access to the individual currents from CT1 and CT2.

Figure 5-1: BREAKER-AND-A-HALF SCHEME

In conventional analog or electronic relays, the sum of the currents is obtained from an appropriate external connection of all CTs through which any portion of the current for the element being protected could flow. Auxiliary CTs are required to perform ratio matching if the ratios of the primary CTs to be summed are not identical. In the UR series of relays, provisions have been included for all the current signals to be brought to the UR device where grouping, ratio correction and summation are applied internally via configuration settings.

A major advantage of using internal summation is that the individual currents are available to the protection device; for example, as additional information to calculate a restraint current, or to allow the provision of additional protection features that operate on the individual currents such as breaker failure.

Given the flexibility of this approach, it becomes necessary to add configuration settings to the platform to allow the user to select which sets of CT inputs will be added to form the net current into the protected device.
The internal grouping of current and voltage signals forms an internal source. This source can be given a specific name through the settings, and becomes available to protection and metering elements in the UR platform. Individual names can be given to each source to help identify them more clearly for later use. For example, in the scheme shown in the above diagram, the configures one Source to be the sum of CT1 and CT2 and can name this Source as "Wdg 1 Current".

Once the sources have been configured, the user has them available as selections for the choice of input signal for the protection elements and as metered quantities.

b) CT/VT MODULE CONFIGURATION

CT and VT input channels are contained in CT/VT modules. The type of input channel can be phase/neutral/other voltage, phase/ground current, or sensitive ground current. The CT/VT modules calculate total waveform RMS levels, fundamental frequency phasors, symmetrical components and harmonics for voltage or current, as allowed by the hardware in each channel. These modules may calculate other parameters as directed by the CPU module.

A CT/VT module contains up to eight input channels, numbered 1 through 8 . The channel numbering corresponds to the module terminal numbering 1 through 8 and is arranged as follows: Channels $1,2,3$ and 4 are always provided as a group, hereafter called a "bank," and all four are either current or voltage, as are Channels 5, 6, 7 and 8 . Channels 1, 2, 3 and 5, 6, 7 are arranged as phase A, B and C respectively. Channels 4 and 8 are either another current or voltage.
Banks are ordered sequentially from the block of lower-numbered channels to the block of higher-numbered channels, and from the CT/VT module with the lowest slot position letter to the module with the highest slot position letter, as follows:

INCREASING SLOT POSITION LETTER -->		
CT/VT MODULE 1	CT/VT MODULE 2	CT/VT MODULE 3
< bank 1 >	< bank 3 >	< bank 5 >
< bank 2 >	< bank 4 >	< bank 6 >

The UR platform allows for a maximum of three sets of three-phase voltages and six sets of three-phase currents. The result of these restrictions leads to the maximum number of CT/VT modules in a chassis to three. The maximum number of Sources is six. A summary of CT/VT module configurations is shown below.

ITEM	MAXIMUM NUMBER
CT/VT Module	3
CT Bank (3 phase channels, 1 ground channel)	6
VT Bank (3 phase channels, 1 auxiliary channel)	3

c) CT/VT INPUT CHANNEL CONFIGURATION

Upon relay startup, configuration settings for every bank of current or voltage input channels in the relay are automatically generated from the order code. Within each bank, a channel identification label is automatically assigned to each bank of channels in a given product. The 'bank' naming convention is based on the physical location of the channels, required by the user to know how to connect the relay to external circuits. Bank identification consists of the letter designation of the slot in which the CT/VT module is mounted as the first character, followed by numbers indicating the channel, either 1 or 5 .

For three-phase channel sets, the number of the lowest numbered channel identifies the set. For example, F1 represents the three-phase channel set of F1/F2/F3, where F is the slot letter and 1 is the first channel of the set of three channels.
Upon startup, the CPU configures the settings required to characterize the current and voltage inputs, and will display them in the appropriate section in the sequence of the banks (as described above) as follows for a maximum configuration: F1, F5, M1, M5, U1, and U5.

5 SETTINGS

The above section explains how the input channels are identified and configured to the specific application instrument transformers and the connections of these transformers. The specific parameters to be used by each measuring element and comparator, and some actual values are controlled by selecting a specific source. The source is a group of current and voltage input channels selected by the user to facilitate this selection. With this mechanism, a user does not have to make multiple selections of voltage and current for those elements that need both parameters, such as a distance element or a watt calculation. It also gathers associated parameters for display purposes.

The basic idea of arranging a source is to select a point on the power system where information is of interest. An application example of the grouping of parameters in a Source is a transformer winding, on which a three phase voltage is measured, and the sum of the currents from CTs on each of two breakers is required to measure the winding current flow.

PATH: SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow PASSWORD SECURITY

\squarePASSWORD SECURITY		(1)	ACCESS LEVEL: Restricted	Range: Restricted, Command, Setting, Factory Service (for factory use only) Range: No, Yes Range: No, Yes Range: O to 9999999999 Note: \qquad indicates no password Range: O to 9999999999 Note: \qquad indicates no password	
	MESSAGE	-	CHANGE COMMAND PASSWORD: No		
	MESSAGE	-	CHANGE SETTING PASSWORD: No		
	MESSAGE	-	ENCRYPTED COMMAND PASSWORD: ----------		
	MESSAGE	(2)	ENCRYPTED SETTING PASSWORD:		

Two levels of password security are provided: Command and Setting. Operations under password supervision are:

- COMMAND: operating the breakers via faceplate keypad, changing the state of virtual inputs, clearing the event records, clearing the oscillography records, clearing fault reports, changing the date and time, clearing the breaker arcing amps, clearing energy records, clearing the data logger
- SETTING: changing any setting, test mode operation

The Command and Setting passwords are defaulted to "Null" when the relay is shipped from the factory. When a password is set to "Null", the password security feature is disabled.
Programming a password code is required to enable each access level. A password consists of 1 to 10 numerical characters. When a CHANGE ... PASSWORD setting is set to "Yes", the following message sequence is invoked:

1. ENTER NEW PASSWORD: \qquad
2. VERIFY NEW PASSWORD: \qquad

3. NEW PASSWORD HAS BEEN STORED

To gain write access to a "Restricted" setting, set ACCESS LEVEL to "Setting" and then change the setting, or attempt to change the setting and follow the prompt to enter the programmed password. If the password is correctly entered, access will be allowed. If no keys are pressed for longer than 30 minutes or control power is cycled, accessibility will automatically revert to the "Restricted" level.

If an entered password is lost (or forgotten), consult the factory with the corresponding ENCRYPTED PASSWORD.
The F60 provides a means to raise an alarm upon failed password entry. Should password verification fail while accessing a password-protected level of the relay (either settings or commands), the UNAUTHORIZED ACCESS FlexLogic ${ }^{\text {™ }}$ operand is asserted. The operand can be programmed to raise an alarm via contact outputs or communications. This feature can be used to protect against both unauthorized and accidental access attempts.
The UNAUTHORIZED ACCESS operand is reset with the COMMANDS $\Rightarrow \sqrt{ }$ CLEAR RECORDS $\Rightarrow \Downarrow$ RESET UNAUTHORIZED ALARMS command. Therefore, to apply this feature with security, the command level should be password-protected.

The operand does not generate events or targets. If these are required, the operand can be assigned to a digital element programmed with event logs and/or targets enabled.

If the SETTING and COMMAND passwords are identical, this one password allows access to both commands and settings.
When enerVista UR Setup is used to access a particular level, the user will continue to have access to that level as long as there are open windows in the enerVista UR Setup software. To re-establish the Password Security feature, all windows must be closed for at least 30 minutes.

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ DISPLAY PROPERTIES

$\begin{array}{ll}\square & \text { DISPLAY } \\ \square & \text { PROPERTIES }\end{array}$		d	FLASH MESSAGE TIME: 1.0 s	Range: Range:	0.5 to 10.0 s in steps of 0.1 10 to 900 s in steps of 1
	MESSAGE		DEFAULT MESSAGE TIMEOUT: 300 s		
	MESSAGE	∇	DEFAULT MESSAGE INTENSITY: 25%	Range:	$25 \%, 50 \%, 75 \%, 100 \%$ Visible only if a VFD is installed
	MESSAGE	\square	SCREEN SAVER FEATURE: Disabled	Range:	Disabled, Enabled Visible only if an LCD is installed
	MESSAGE	Q	SCREEN SAVER WAIT TIME: 30 min	Range:	1 to 65535 min. in steps of 1 Visible only if an LCD is installed
	MESSAGE	-	CURRENT CUT-OFF LEVEL: 0.020 pu	Range:	0.002 to 0.020 pu in steps of 0.001
	MESSAGE	(2)	VOLTAGE CUT-OFF LEVEL: 1.0 V	Range:	0.1 to 1.0 V secondary in steps of 0.1

Some relay messaging characteristics can be modified to suit different situations using the display properties settings.

- FLASH MESSAGE TIME: Flash messages are status, warning, error, or information messages displayed for several seconds in response to certain key presses during setting programming. These messages override any normal messages. The duration of a flash message on the display can be changed to accommodate different reading rates.
- DEFAULT MESSAGE TIMEOUT: If the keypad is inactive for a period of time, the relay automatically reverts to a default message. The inactivity time is modified via this setting to ensure messages remain on the screen long enough during programming or reading of actual values.
- DEFAULT MESSAGE INTENSITY: To extend phosphor life in the vacuum fluorescent display, the brightness can be attenuated during default message display. During keypad interrogation, the display always operates at full brightness.
- SCREEN SAVER FEATURE and SCREEN SAVER WAIT TIME: These settings are only visible if the F60 has a liquid crystal display (LCD) and control its backlighting. When the SCREEN SAVER FEATURE is "Enabled", the LCD backlighting is turned off after the default message timeout followed by the SCREen SAVER WAIt time, providing that no keys have been pressed and no target messages are active. When a keypress occurs or a target becomes active, the LCD backlighting is turned on.
- CURRENT CUT-OFF LEVEL: This setting modifies the current cut-off threshold. Very low currents (1 to 2% of the rated value) are very susceptible to noise. Some customers prefer very low currents to display as zero, while others prefer the current be displayed even when the value reflects noise rather than the actual signal. The F60 applies a cutoff value to the magnitudes and angles of the measured currents. If the magnitude is below the cut-off level, it is substituted with zero. This applies to phase and ground current phasors as well as true RMS values and symmetrical components. The cut-off operation applies to quantities used for metering, protection, and control, as well as those used by communications protocols. Note that the cut-off level for the sensitive ground input is 10 times lower that the CURRENT CUT-OFF LEVEL setting value. Raw current samples available via oscillography are not subject to cut-off.
- VOLTAGE CUT-OFF LEVEL: This setting modifies the voltage cut-off threshold. Very low secondary voltage measurements (at the fractional volt level) can be affected by noise. Some customers prefer these low voltages to be displayed as zero, while others prefer the voltage to be displayed even when the value reflects noise rather than the actual signal. The F60 applies a cut-off value to the magnitudes and angles of the measured voltages. If the magnitude is below the cut-off level, it is substituted with zero. This operation applies to phase and auxiliary voltages, and symmetrical components. The cut-off operation applies to quantities used for metering, protection, and control, as well as those used by communications protocols. Raw samples of the voltages available via oscillography are not subject cut-off. This setting relates to the actual measured voltage at the VT secondary inputs. It can be converted to per-unit values (pu) by dividing by the PHASE VT SECONDARY setting value. For example, a PHASE VT SECONDARY setting of " 66.4 V " and a voltage cut-Off Level setting of "1.0 V" gives a cut-off value of $1.0 \mathrm{~V} / 66.4 \mathrm{~V}=0.015 \mathrm{pu}$.

The CURRENT CUT-OfF LEVEL and the VOLTAGE CUT-OFF LEVEL are used to determine the metered power cut-off levels. The power cut-off level is calculated as follows:

```
power cut-off level = CURRENT CUT-OFF LEVEL }\times\mathrm{ VOLTAGE CUT-OFF LEVEL }\times1.0\mathrm{ pu current }\times1.0\mathrm{ pu voltage (EQ 5.3)
```

For example, given the following settings:
CURRENT CUT-OFF LEVEL: "0.02 pu"
VOLTAGE CUT-OFF LEVEL: "1.0 V"
PHASE CT PRIMARY: "100 A"
PHASE VT SECONDARY: " 66.4 V "
PHASE VT RATIO: "208.00: 1".
We have:
1.0 pu current $=$ CT primary $=$ " 100 A ", and
1.0 pu voltage $=$ PHASE VT SECONDARY \times PHASE VT RATIO $=66.4 \mathrm{~V} \times 208=13811.2 \mathrm{~V}$

The power cut-off is therefore:

$$
\begin{aligned}
\text { power cut-off } & =\text { CURRENT CUT-OFF LEVEL } \times \text { VOLTAGE CUT-OFF LEVEL } \times 1.0 \text { pu current } \times 1.0 \text { pu voltage } \\
& =0.02 \mathrm{pu} \times 0.015 \mathrm{pu} \times 100 \mathrm{~A} \times 13811.2 \mathrm{~V} \\
& =416 \mathrm{watts}
\end{aligned}
$$

Any calculated power value below this cut-off will not be displayed. As well, the three-phase energy data will not accumulate if the total power from all three phases does not exceed the power cut-off.

Lower the VOLTAGE CUT-OFF LEVEL and CURRENT CUT-OFF LEVEL with care as the relay accepts lower signals as valid measurements. Unless dictated otherwise by a specific application, the default settings of " 0.02 pu" for CURRENT CUT-OFF LEVEL and "1.0 V" for VOLTAGE CUT-OFF LEVEL are recommended.

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{5}$ CLEAR RELAY RECORDS

\square CLEAR RELAYRECORDS		(1) 㽣	CLEAR FAULT REPORTS: Off	Range: FlexLogic ${ }^{\text {TM }}$ operand Range: FlexLogic ${ }^{\text {TM }}$ operand	
	MESSAGE		CLEAR EVENT RECORDS: Off		
	MESSAG	-	CLEAR OSCILLOGRAPHY? No	Range:	FlexLogic ${ }^{\text {TM }}$ operand
	MESSAG	-	CLEAR DATA LOGGER: Off	Range:	FlexLogic ${ }^{\text {TM }}$ operand
	MESSAG	-	CLEAR ARC AMPS 1: Off	Range:	FlexLogic ${ }^{\text {TM }}$ operand
	MESSAG	囪	$\begin{aligned} & \text { CLEAR ARC AMPS 2: } \\ & \text { Off } \end{aligned}$	Range:	FlexLogic ${ }^{\text {TM }}$ operand
	MESSAG	-	CLEAR DEMAND: Off	Range:	FlexLogic ${ }^{\text {TM }}$ operand
	MESSAG	-	CLEAR ENERGY: Off	Range:	FlexLogic ${ }^{\text {TM }}$ operand
	MESSAG	-	CLEAR HIZ RECORDS: Off	Range:	FlexLogic ${ }^{\text {TM }}$ operand
	MESSAG	-	RESET UNAUTH ACCESS: Off	Range:	FlexLogic ${ }^{\text {TM }}$ operand
	MESSAG	(2)	CLEAR DIR I/O STATS: Off	Range:	FlexLogic ${ }^{\text {TM }}$ operand. Valid only for units with Direct I/O module.

Selected records can be cleared from user-programmable conditions with FlexLogic ${ }^{\text {TM }}$ operands. Assigning user-programmable pushbuttons to clear specific records are typical applications for these commands. Since the F60 responds to rising edges of the configured FlexLogic ${ }^{T M}$ operands, they must be asserted for at least 50 ms to take effect.

Clearing records with user-programmable operands is not protected by the command password. However, user-programmable pushbuttons are protected by the command password. Thus, if they are used to clear records, the user-programmable pushbuttons can provide extra security if required.

For example, to assign User-Programmable Pushbutton 1 to clear demand records, the following settings should be applied.

1. Assign the clear demand function to Pushbutton 1 by making the following change in the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \quad$ CLEAR RELAY RECORDS menu:

CLEAR DEMAND: "PUSHBUTTON 1 ON"
2. Set the properties for User-Programmable Pushbutton 1 by making the following changes in the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \sqrt{ }$ USER-PROGRAMMABLE PUSHBUTTONS \Rightarrow USER PUSHBUTTON 1 menu:

PUSHBUTTON 1 FUNCTION: "Self-reset"
PUSHBTN 1 DROP-OUT TIME: "0.20 s"
a) MAIN MENU

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS

\square COMMUNICATIONS	(1)	\square SERIAL PORTS	See below.
MESSAG	-	\square NETWORK	See page 5-13.
MESSAG	-	\square MODBUS PROTOCOL	See page 5-13.
MESSAG	-	\square DNP PROTOCOL	See page 5-14.
MESSAG	-	\square UCA/MMS PROTOCOL	See page 5-16.
MESSAG	-	\square WEB SERVER \square HTTP PROTOCOL	See page 5-16.
MESSAG	-	\square TFTP PROTOCOL	See page 5-16.
MESSAG	-	\square IEC 60870-5-104 - PROTOCOL	See page 5-17.
MESSAG	-	\square SNTP PROTOCOL	See page 5-18.
MESSAG	(2)	\square EGD PROTOCOL	See page 5-18.

b) SERIAL PORTS

PATH: SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow 约 COMMUNICATIONS \Rightarrow SERIAL PORTS

\square SERIAL PORTS		(1)	$\begin{aligned} & \text { RS485 COM1 BAUD } \\ & \text { RATE: } 19200 \end{aligned}$	Range: 300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 33600, 38400, 57600, 115200. Only active if CPU 9E is ordered.	
	MESSAGE	-	RS485 COM1 PARITY: None	Range:	None, Odd, Even Only active if CPU Type 9E is ordered
	MESSAGE	-	$\begin{array}{lc}\text { RS485 COM1 } & \text { RESPONSE } \\ \text { MIN TIME: } & 0 \mathrm{~ms}\end{array}$	Range:	0 to 1000 ms in steps of 10 Only active if CPU Type 9E is ordered
	MESSAGE	-	RS485 COM2 BAUD RATE: 19200	Range:	$300,1200,2400,4800,9600,14400,19200$, 28800, 33600, 38400, 57600, 115200
	MESSAGE	-	RS485 COM2 PARITY: None	Range:	None, Odd, Even
	MESSAGE	(4)	RS485 COM2 RESPONSE MIN TIME: 0 ms	Range:	0 to 1000 ms in steps of 10

The F60 is equipped with up to 3 independent serial communication ports. The faceplate RS232 port is intended for local use and is fixed at 19200 baud and no parity. The rear COM1 port type is selected when ordering: either an Ethernet or RS485 port. The rear COM2 port is RS485. The RS485 ports have settings for baud rate and parity. It is important that these parameters agree with the settings used on the computer or other equipment that is connected to these ports. Any of these ports may be connected to a personal computer running enerVista UR Setup. This software can download and upload setting files, view measured parameters, and upgrade the relay firmware. A maximum of 32 relays can be daisychained and connected to a DCS, PLC or PC using the RS485 ports.

For each RS485 port, the minimum time before the port will transmit after receiving data from a host can be set. This feature allows operation with hosts which hold the RS485 transmitter active for some time after each transmission.

c) NETWORK

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ } \Rightarrow$ NETWORK

These messages appear only if the F60 is ordered with an Ethernet card. The ETHERNET PRI LINK MONITOR and ETHERNET SEC LINK MONITOR settings allow internal self-test targets to be triggered when either the primary or secondary Ethernet link status indicates a connection loss. When both channels are healthy, the primary Ethernet link will be the active link. In the event of a communication failure on the primary Ethernet link, the secondary link becomes the active link until the primary link failure has been rectified.

The IP addresses are used with the DNP, Modbus/TCP, MMS/UCA2, IEC 60870-5-104, TFTP, and HTTP protocols. The NSAP address is used with the MMS/UCA2 protocol over the OSI (CLNP/TP4) stack only. Each network protocol has a setting for the TCP/UDP PORT NUMBER. These settings are used only in advanced network configurations and should normally be left at their default values, but may be changed if required (for example, to allow access to multiple UR-series relays behind a router). By setting a different TCP/UDP PORT NUMBER for a given protocol on each UR-series relay, the router can map the relays to the same external IP address. The client software (enerVista UR Setup, for example) must be configured to use the correct port number if these settings are used.

When the NSAP address, any TCP/UDP Port Number, or any User Map setting (when used with DNP) is changed, it will not become active until power to the relay has been cycled (OFF/ON).
Do not set more than one protocol to use the same TCP/UDP PORT NUMBER, as this will result in unreliable operation of those protocols.

d) MODBUS PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ MODBUS PROTOCOL

The serial communication ports utilize the Modbus protocol, unless configured for DNP operation (see the DNP Protocol description below). This allows the enerVista UR Setup software to be used. The UR operates as a Modbus slave device only. When using Modbus protocol on the RS232 port, the F60 will respond regardless of the MODBUS SLAVE ADDRESS programmed. For the RS485 ports each F60 must have a unique address from 1 to 254 . Address 0 is the broadcast address
which all Modbus slave devices listen to. Addresses do not have to be sequential, but no two devices can have the same address or conflicts resulting in errors will occur. Generally, each device added to the link should use the next higher address starting at 1. Refer to Appendix B for more information on the Modbus protocol.
e) DNP PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ COMMUNICATIONS $\Rightarrow \sqrt{ } \Rightarrow$ DNP PROTOCOL

\square DNP PROTOCOL		(1)	DNP PORT: NONE	Range:	NONE, COM1-RS485, COM2-RS485, FRONT PANEL - RS232, NETWORK
	MESSAGE	8	DNP ADDRESS: 255	Range:	0 to 65519 in steps of 1
	MESSAGE	-	\square DNP NETWORK CLIENT ADDRESSES	Range:	Press the MESSAGE \Rightarrow key to enter the DNP NETWORK CLIENT ADDRESSES
	MESSAGE	\square	DNP TCP/UDP PORT NUMBER: 20000	Range:	1 to 65535 in steps of 1
	MESSAGE	-	DNP UNSOL RESPONSE FUNCTION: Disabled	Range:	Enabled, Disabled
	MESSAGE	-	DNP UNSOL RESPONSE TIMEOUT: 5 s	Range:	0 to 60 s in steps of 1
	MESSAGE	\otimes	DNP UNSOL RESPONSE MAX RETRIES: 10	Range:	1 to 255 in steps of 1
	MESSAGE	-	DNP UNSOL RESPONSE DEST ADDRESS: 1	Range:	0 to 65519 in steps of 1
	MESSAGE	-	USER MAP FOR DNP ANALOGS: Disabled	Range:	Enabled, Disabled
	MESSAGE	\square	NUMBER OF SOURCES IN ANALOG LIST: 1	Range:	1 to 2 in steps of 1
	MESSAGE	-	DNP CURRENT SCALE FACTOR: 1	Range:	0.01. 0.1, 1, 10, 100, 1000
	MESSAGE	\square	DNP VOLTAGE SCALE FACTOR: 1	Range:	0.01. 0.1, 1, 10, 100, 1000
	MESSAGE	-	DNP POWER SCALE FACTOR: 1	Range:	0.01. 0.1, 1, 10, 100, 1000
	MESSAGE	-	DNP ENERGY SCALE FACTOR: 1	Range:	0.01. 0.1, 1, 10, 100, 1000
	MESSAGE	-	DNP OTHER SCALE FACTOR: 1	Range:	0.01. 0.1, 1, 10, 100, 1000
	MESSAGE	-	DNP CURRENT DEFAULT DEADBAND: 30000	Range:	0 to 65535 in steps of 1
	MESSAGE	-	DNP VOLTAGE DEFAULT DEADBAND: 30000	Range:	0 to 65535 in steps of 1
	MESSAGE	-	DNP POWER DEFAULT DEADBAND: 30000	Range:	0 to 65535 in steps of 1
	MESSAGE	-	DNP ENERGY DEFAULT DEADBAND: 30000	Range:	0 to 65535 in steps of 1
	MESSAGE	$\stackrel{4}{\square}$	DNP OTHER DEFAULT DEADBAND: 30000	Range:	0 to 65535 in steps of 1

MESSAGE	-	DNP TIME SYNC IIN PERIOD: 1440 min	Range: 1 to 10080 min. in steps of 1
MESSAGE	-	DNP MESSAGE FRAGMENT SIZE: 240	Range: 30 to 2048 in steps of 1
MESSAGE	(\square DNP BINARY INPUTS USER MAP	

The F60 supports the Distributed Network Protocol (DNP) version 3.0. The F60 can be used as a DNP slave device connected to a single DNP master (usually an RTU or a SCADA master station). Since the F60 maintains one set of DNP data change buffers and connection information, only one DNP master should actively communicate with the F60 at one time. The DNP PORT setting selects the communications port assigned to the DNP protocol; only a single port can be assigned. Once DNP is assigned to a serial port, the Modbus protocol is disabled on that port. Note that COM1 can be used only in non-ethernet UR relays. When this setting is set to "Network", the DNP protocol can be used over either TCP/IP or UDP/IP. Refer to Appendix E for more information on the DNP protocol. The DNP ADDRESS setting is the DNP slave address. This number identifies the F60 on a DNP communications link. Each DNP slave should be assigned a unique address. The DNP NETWORK CLIENT ADDRESS setting can force the F60 to respond to a maximum of five specific DNP masters.
The DNP UNSOL RESPONSE FUNCTION should be "Disabled" for RS485 applications since there is no collision avoidance mechanism. The DNP UNSOL RESPONSE TIMEOUT sets the time the F60 waits for a DNP master to confirm an unsolicited response. The DNP UNSOL RESPONSE MAX RETRIES setting determines the number of times the F60 retransmits an unsolicited response without receiving confirmation from the master; a value of " 255 " allows infinite re-tries. The DNP UNSOL RESPONSE DEST ADDRESS is the DNP address to which all unsolicited responses are sent. The IP address to which unsolicited responses are sent is determined by the F60 from the current TCP connection or the most recent UDP message.
The USER MAP FOR DNP ANALOGS setting allows the large pre-defined Analog Inputs points list to be replaced by the much smaller Modbus User Map. This can be useful for users wishing to read only selected Analog Input points from the F60. See Appendix E for more information.

The NUMBER OF SOURCES IN ANALOG LIST setting allows the selection of the number of current/voltage source values that are included in the Analog Inputs points list. This allows the list to be customized to contain data for only the sources that are configured. This setting is relevant only when the User Map is not used.

The DNP SCALE FACTOR settings are numbers used to scale Analog Input point values. These settings group the F60 Analog Input data into types: current, voltage, power, energy, and other. Each setting represents the scale factor for all Analog Input points of that type. For example, if the DNP voltage scale factor setting is set to a value of 1000, all DNP Analog Input points that are voltages will be returned with values 1000 times smaller (e.g. a value of 72000 V on the F 60 will be returned as 72). These settings are useful when analog input values must be adjusted to fit within certain ranges in DNP masters. Note that a scale factor of 0.1 is equivalent to a multiplier of 10 (i.e. the value will be 10 times larger).
The DNP DEFAULT DEADBAND settings determine when to trigger unsolicited responses containing Analog Input data. These settings group the F60 Analog Input data into types: current, voltage, power, energy, and other. Each setting represents the default deadband value for all Analog Input points of that type. For example, to trigger unsolicited responses from the F60 when any current values change by 15 A, the DNP CURRENT DEFAULT DEADBAND setting should be set to " 15 ". Note that these settings are the deadband default values. DNP Object 34 points can be used to change deadband values, from the default, for each individual DNP Analog Input point. Whenever power is removed and re-applied to the F60, the default deadbands will be in effect.
The DNP TIME SYNC IIN PERIOD setting determines how often the Need Time Internal Indication (IIN) bit is set by the F60. Changing this time allows the DNP master to send time synchronization commands more or less often, as required.

The DNP MESSAGE FRAGMENT SIZE setting determines the size, in bytes, at which message fragmentation occurs. Large fragment sizes allow for more efficient throughput; smaller fragment sizes cause more application layer confirmations to be necessary which can provide for more robust data transfer over noisy communication channels.

The DNP BINARY INPUTS USER MAP setting allows for the creation of a custom DNP Binary Inputs points list. The default DNP Binary Inputs list contains 928 points representing various binary states (contact inputs and outputs, virtual inputs and outputs, protection element states, etc.). If not all of these points are required in the DNP master, a custom Binary Inputs points list can be created by selecting up to 58 blocks of 16 points. Each block represents 16 binary input points. Block 1 represents binary input points 0 to 15, block 2 represents binary input points 16 to 31, block 3 represents binary input points 32 to 47 , etc. The minimum number of binary input points that can be selected is 16 (1 block). If all of the BIN INPUT BLOCK \mathbf{X} settings are set to "Not Used", the standard list of 928 points will be in effect. The F60 will form the binary inputs points list from the BIN INPUT BLOCK X settings up to the first occurrence of a setting value of "Not Used".

When using the User Maps for DNP data points (analog inputs and/or binary inputs) for relays with ethernet installed, check the "DNP Points Lists" F60 web page to ensure the desired points lists are created. This web page can be viewed using a web browser by entering the F60 IP address to access the F60 "Main Menu", then by selecting the "Device Information Menu" > "DNP Points Lists" menu item.

f) UCA/MMS PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \Omega$, COMMUNICATIONS $\Rightarrow \Omega$ UCA/MMS PROTOCOL

\square UCA/MMS PROTOCOL		(1)	DEFAULT GOOSE UPDATE TIME: 60 s	Range: 1 to 60 s in steps of 1. See UserSt Bit Pairs in the Remote Outputs section of this Chapter. Range: Up to 16 alphanumeric characters representing the name of the UCA logical device.	
	MESSAGE	-	UCA LOGICAL DEVICE: UCADevice		
	MESSAGE	-	$\begin{array}{lc}\text { UCA/MMS } & \text { TCP PORT } \\ \text { NUMBER: } & 102\end{array}$	Range	1 to 65535 in steps of 1
	MESSAGE	-	GOOSE FUNCTION: Enabled	Range	Disabled, Enabled
	MESSAGE	(4)	GLOBE.ST.LOCRemDS: Off	Range	FlexLogic ${ }^{\text {TM }}$ operand

The F60 supports the Manufacturing Message Specification (MMS) protocol as specified by the Utility Communication Architecture (UCA). UCA/MMS is supported over two protocol stacks: TCP/IP over ethernet and TP4/CLNP (OSI) over ethernet. The F60 operates as a UCA/MMS server. The Remote Inputs/Outputs section in this chapter describe the peer-topeer GOOSE message scheme.

The UCA LOGICAL DEVICE setting represents the MMS domain name (UCA logical device) where all UCA objects are located. The GOOSE FUNCTION setting allows for the blocking of GOOSE messages from the F60. This can be used during testing or to prevent the relay from sending GOOSE messages during normal operation. The GLOBE.ST.LocRemDS setting selects a FlexLogic ${ }^{\text {TM }}$ operand to provide the state of the UCA GLOBE.ST.LocRemDS data item. Refer to Appendix C: UCA/MMS Communications for additional details on the F60 UCA/MMS support.

Since GOOSE messages are multicast ethernet by specification, router networks must not be used for UCA/MMS.
g) WEB SERVER HTTP PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ } \Rightarrow$ WEB SERVER HTTP PROTOCOL

The F60 contains an embedded web server and is capable of transferring web pages to a web browser such as Microsoft Internet Explorer or Netscape Navigator. This feature is available only if the F60 has the ethernet option installed. The web pages are organized as a series of menus that can be accessed starting at the F60 "Main Menu". Web pages are available showing DNP and IEC 60870-5-104 points lists, Modbus registers, Event Records, Fault Reports, etc. The web pages can be accessed by connecting the UR and a computer to an ethernet network. The Main Menu will be displayed in the web browser on the computer simply by entering the IP address of the F60 into the "Address" box on the web browser.

h) TFTP PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ TFTP PROTOCOL

\square TFTP PROTOCOL		(1)	TFTP MAIN UDP PORT NUMBER: 69	Range: 1 to 65535 in steps of 1 Range: 0 to 65535 in steps of 1
	MESSAGE	\square	TFTP DATA UDP PORT 1 NUMBER:	
	MESSAGE	(TFTP DATA UDP PORT 2 NUMBER: 0	Range: 0 to 65535 in steps of 1

The Trivial File Transfer Protocol (TFTP) can be used to transfer files from the UR over a network. The F60 operates as a TFTP server. TFTP client software is available from various sources, including Microsoft Windows NT. The dir.txt file obtained from the F60 contains a list and description of all available files (event records, oscillography, etc.).
i) IEC 60870-5-104 PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ IEC 60870-5-104 PROTOCOL

The F60 supports the IEC 60870-5-104 protocol. The F60 can be used as an IEC 60870-5-104 slave device connected to a single master (usually either an RTU or a SCADA master station). Since the F60 maintains one set of IEC 60870-5-104 data change buffers, only one master should actively communicate with the F60 at one time. For situations where a second master is active in a "hot standby" configuration, the UR supports a second IEC 60870-5-104 connection providing the standby master sends only IEC 60870-5-104 Test Frame Activation messages for as long as the primary master is active.

The NUMBER OF SOURCES IN MMENC1 LIST setting allows the selection of the number of current/voltage source values that are included in the M_ME_NC_1 (Measured value, short floating point) Analog points list. This allows the list to be customized to contain data for only the sources that are configured.
The IEC ------- DEFAULT THRESHOLD settings are the values used by the UR to determine when to trigger spontaneous responses containing M_ME_NC_1 analog data. These settings group the UR analog data into types: current, voltage, power, energy, and other. Each setting represents the default threshold value for all M_ME_NC_1 analog points of that type. For example, in order to trigger spontaneous responses from the UR when any current values change by 15 A , the IEC CURRENT DEFAULT THRESHOLD setting should be set to 15 . Note that these settings are the default values of the deadbands. P_ME_NC_1 (Parameter of measured value, short floating point value) points can be used to change threshold values, from the default, for each individual M_ME_NC_1 analog point. Whenever power is removed and re-applied to the UR, the default thresholds will be in effect.

The IEC 60870-5-104 and DNP protocols can not be used at the same time. When the IEC 60870-5-104 FUNCTION setting is set to "Enabled", the DNP protocol will not be operational. When this setting is changed it will not become active until power to the relay has been cycled (Off/On).

j) SNTP PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \curvearrowleft$ COMMUNICATIONS $\Rightarrow \sqrt{ } \Rightarrow$ SNTP PROTOCOL

The F60 supports the Simple Network Time Protocol specified in RFC-2030. With SNTP, the F60 can obtain clock time over an Ethernet network. The F60 acts as an SNTP client to receive time values from an SNTP/NTP server, usually a dedicated product using a GPS receiver to provide an accurate time. Both unicast and broadcast SNTP are supported.

If SNTP functionality is enabled at the same time as IRIG-B, the IRIG-B signal provides the time value to the F60 clock for as long as a valid signal is present. If the IRIG-B signal is removed, the time obtained from the SNTP server is used. If either SNTP or IRIG-B is enabled, the F60 clock value cannot be changed using the front panel keypad.

To use SNTP in unicast mode, SNTP SERVER IP ADDR must be set to the SNTP/NTP server IP address. Once this address is set and SNTP FUNCTION is "Enabled", the F60 attempts to obtain time values from the SNTP/NTP server. Since many time values are obtained and averaged, it generally takes three to four minutes until the F60 clock is closely synchronized with the SNTP/NTP server. It may take up to one minute for the F60 to signal an SNTP self-test error if the server is offline.

To use SNTP in broadcast mode, set the SNTP SERVER IP ADDR setting to "0.0.0.0" and SNTP FUNCTION to "Enabled". The F60 then listens to SNTP messages sent to the "all ones" broadcast address for the subnet. The F60 waits up to eighteen minutes (>1024 seconds) without receiving an SNTP broadcast message before signaling an SNTP self-test error.

The UR-series relays do not support the multicast or anycast SNTP functionality.
k) EGD PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ EGD PROTOCOL

The relay supports one fast Ethernet Global Data (EGD) exchange and two slow EGD exchanges. There are 20 data items in the fast-produced EGD exchange and 50 data items in each slow-produced exchange.
Ethernet Global Data (EGD) is a suite of protocols used for the real-time transfer of data for display and control purposes. The relay can be configured to 'produce' EGD data exchanges, and other devices can be configured to 'consume' EGD data exchanges. The number of produced exchanges (up to three), the data items in each exchange (up to 50), and the exchange production rate can be configured.
EGD cannot be used to transfer data between UR-series relays. The relay supports EGD production only. An EGD exchange will not be transmitted unless the destination address is non-zero, and at least the first data item address is set to a valid Modbus register address. Note that the default setting value of " 0 " is considered invalid.

The settings menu for the fast EGD exchange is shown below:

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ EGD PROTOCOL \Rightarrow FAST PROD EXCH 1 CONFIGURATION

Fast exchanges (50 to 1000 ms) are generally used in control schemes. The F 60 has one fast exchange (Exchange 1) and two slow exchanges (Exchanges 2 and 3).
The settings menu for the slow EGD exchanges is shown below:
PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ EGD PROTOCOL \Rightarrow SLOW PROD EXCH 1(2) CONFIGURATION

Slow EGD exchanges (500 to 1000 ms) are generally used for the transfer and display of data items. The settings for the fast and slow exchanges are described below:

- EXCH 1 DESTINATION: This setting specifies the destination IP address of the produced EGD exchange. This is usually unicast or broadcast.
- EXCH 1 DATA RATE: This setting specifies the rate at which this EGD exchange is transmitted. If the setting is 50 ms , the exchange data will be updated and sent once every 50 ms . If the setting is 1000 ms , the exchange data will be updated and sent once per second. EGD exchange 1 has a setting range of 50 to 1000 ms . Exchanges 2 and 3 have a setting range of 500 to 1000 ms .
- EXCH 1 DATA ITEM 1 to 20/50: These settings specify the data items that are part of this EGD exchange. Almost any data from the F60 memory map can be configured to be included in an EGD exchange. The settings are the starting Modbus register address for the data item in decimal format. Refer to Appendix B for the complete Modbus memory map. Note that the Modbus memory map displays shows addresses in hexadecimal format; as such, it will be necessary to convert these values to decimal format before entering them as values for these setpoints.
To select a data item to be part of an exchange, it is only necessary to choose the starting Modbus address of the item. That is, for items occupying more than one Modbus register (e.g. 32 bit integers and floating point values), only the first Modbus address is required. The EGD exchange configured with these settings contains the data items up to the first setting that contains a Modbus address with no data, or 0 . That is, if the first three settings contain valid Modbus addresses and the fourth is 0 , the produced EGD exchange will contain three data items.

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ MODBUS USER MAP

The Modbus User Map provides read-only access for up to 256 registers. To obtain a memory map value, enter the desired address in the ADDRESS line (this value must be converted from hex to decimal format). The corresponding value is displayed in the VALUE line. A value of " 0 " in subsequent register ADDRESS lines automatically returns values for the previous ADDRESS lines incremented by " 1 ". An address value of " 0 " in the initial register means "none" and values of " 0 " will be displayed for all registers. Different ADDRESS values can be entered as required in any of the register positions.

These settings can also be used with the DNP protocol. See the DNP Analog Input Points section in Appendix E for details.
5.2.6 REAL TIME CLOCK

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ REAL TIME CLOCK

The date and time for the relay clock can be synchronized to other relays using an IRIG-B signal. It has the same accuracy as an electronic watch, approximately ± 1 minute per month. An IRIG-B signal may be connected to the relay to synchronize the clock to a known time base and to other relays. If an IRIG-B signal is used, only the current year needs to be entered. See also the COMMANDS $\Rightarrow \sqrt{ }$ SET DATE AND TIME menu for manually setting the relay clock.

The real time clock events setting allows changes to the date and/or time to be captured in the event record.

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ FAULT REPORTS \Rightarrow FAULT REPORT 1

The F60 relay supports one fault report and an associated fault locator. The signal source and trigger condition, as well as the characteristics of the line or feeder, are entered in this menu.

The fault report stores data, in non-volatile memory, pertinent to an event when triggered. The captured data contained in the FaultReport.txt file includes:

- Fault report number
- Name of the relay, programmed by the user
- Firmware revision of the relay
- Date and time of trigger
- Name of trigger (specific operand)
- Line/Feeder ID via the name of a configured signal source
- Active setting group at the time of trigger
- Pre-fault current and voltage phasors (one-quarter cycle before the trigger)
- Fault current and voltage phasors (three-quarter cycle after the trigger)
- Elements operated at the time of triggering
- Events: 9 before trigger and 7 after trigger (only available via the relay webpage)

The captured data also includes the fault type and the distance to the fault location, as well as the reclose shot number (when applicable).

The trigger can be any FlexLogic ${ }^{T M}$ operand, but in most applications it is expected to be the same operand, usually a virtual output, that is used to drive an output relay to trip a breaker. To prevent the overwriting of fault events, the disturbance detector should not be used to trigger a fault report. A FAULT RPT TRIG event is automatically created when the report is triggered.
If a number of protection elements are ORed to create a fault report trigger, the first operation of any element causing the OR gate output to become high triggers a fault report. However, If other elements operate during the fault and the first operated element has not been reset (the OR gate output is still high), the fault report is not triggered again. Considering the reset time of protection elements, there is very little chance that fault report can be triggered twice in this manner. As the fault report must capture a usable amount of pre and post-fault data, it can not be triggered faster than every 20 ms .
Each fault report is stored as a file; the relay capacity is fifteen (15) files. An sixteenth (16th) trigger overwrites the oldest file.

The enerVista UR Setup software is required to view all captured data. The relay faceplate display can be used to view the date and time of trigger, the fault type, the distance location of the fault, and the reclose shot number.
The FAULT REPORT 1 SOURCE setting selects the Source for input currents and voltages and disturbance detection. The FAULT 1 REPORT TRIG setting assigns the FlexLogic ${ }^{\text {TM }}$ operand representing the protection element/elements requiring operational fault location calculations. The distance to fault calculations are initiated by this signal. The FAULT REPORT 1 Z1 MAG and FAULT REPORT 1 Z0 MAG impedances are entered in secondary ohms.
See the ACTUAL VALUES $\Rightarrow \sqrt{ }$ RECORDS \Rightarrow FAULT REPORTS menu for additional details.
5.2.8 OSCILLOGRAPHY
a) MAIN MENU

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ OSCILLOGRAPHY

Oscillography records contain waveforms captured at the sampling rate as well as other relay data at the point of trigger. Oscillography records are triggered by a programmable FlexLogic ${ }^{\text {TM }}$ operand. Multiple oscillography records may be captured simultaneously.
The NUMBER OF RECORDS is selectable, but the number of cycles captured in a single record varies considerably based on other factors such as sample rate and the number of operational CT/VT modules. There is a fixed amount of data storage for oscillography; the more data captured, the less the number of cycles captured per record. See the ACTUAL VALUES $\Rightarrow \Omega$ RECORDS $\Rightarrow \sqrt{ }$ OSCILLOGRAPHY menu to view the number of cycles captured per record. The following table provides sample configurations with corresponding cycles/record.

Table 5-1: OSCILLOGRAPHY CYCLES/RECORD EXAMPLE

\# RECORDS	\# CT/VTS	SAMPLE RATE	\# DIGITALS	\# ANALOGS	CYCLES/ RECORD
1	1	8	0	0	1872.0
1	1	16	16	0	1685.0
8	1	16	16	0	276.0
8	1	16	16	4	219.5
8	2	16	16	4	93.5
8	2	16	64	16	93.5
8	2	32	64	16	57.6
8	2	64	64	16	32.3
32	2	64	64	16	9.5

A new record may automatically overwrite an older record if TRIGGER MODE is set to "Automatic Overwrite".

Set the TRIGGER POSITION to a percentage of the total buffer size (e.g. 10\%, 50\%, 75\%, etc.). A trigger position of 25\% consists of 25% pre- and 75% post-trigger data. The TRIGGER SOURCE is always captured in oscillography and may be any FlexLogic ${ }^{T M}$ parameter (element state, contact input, virtual output, etc.). The relay sampling rate is 64 samples per cycle.
The AC INPUT WAVEFORMS setting determines the sampling rate at which AC input signals (i.e. current and voltage) are stored. Reducing the sampling rate allows longer records to be stored. This setting has no effect on the internal sampling rate of the relay which is always 64 samples per cycle, i.e. it has no effect on the fundamental calculations of the device.

When changes are made to the oscillography settings, all existing oscillography records will be CLEARED.
b) DIGITAL CHANNELS

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ OSCILLOGRAPHY $\Rightarrow \sqrt{ }$ DIGITAL CHANNELS

A digital channel setting selects the FlexLogic ${ }^{\text {TM }}$ operand state recorded in an oscillography trace. The length of each oscillography trace depends in part on the number of parameters selected here. Parameters set to "Off" are ignored. Upon startup, the relay will automatically prepare the parameter list.
c) ANALOG CHANNELS

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ OSCILLOGRAPHY $\Rightarrow \sqrt{ } \Rightarrow$ ANALOG CHANNELS

An ANALOG CHANNEL setting selects the metering actual value recorded in an oscillography trace. The length of each oscillography trace depends in part on the number of parameters selected here. Parameters set to "Off" are ignored. The parameters available in a given relay are dependent on: (a) the type of relay, (b) the type and number of CT/VT hardware modules installed, and (c) the type and number of Analog Input hardware modules installed. Upon startup, the relay will automatically prepare the parameter list. A list of all possible analog metering actual value parameters is presented in Appendix A: FlexAnalog Parameters. The parameter index number shown in any of the tables is used to expedite the selection of the parameter on the relay display. It can be quite time-consuming to scan through the list of parameters via the relay keypad/display - entering this number via the relay keypad will cause the corresponding parameter to be displayed.

All eight CT/VT module channels are stored in the oscillography file. The CT/VT module channels are named as follows:

```
<slot_letter><terminal_number>-<l or V><phase A, B, or C, or 4th input>
```

The fourth current input in a bank is called IG, and the fourth voltage input in a bank is called VX. For example, F2-IB designates the IB signal on Terminal 2 of the CT/VT module in slot F. If there are no CT/VT modules and Analog Input modules, no analog traces will appear in the file; only the digital traces will appear.

The source harmonic indices appear as oscillography analog channels numbered from 0 to 23 . These correspond directly to the to the 2 nd to 25th harmonics in the relay as follows:
Analog channel $0 \leftrightarrow 2$ nd Harmonic
Analog channel $1 \leftrightarrow 3$ 3rd Harmonic
Analog channel $23 \leftrightarrow 25$ th Harmonic

PATH: SETTINGS $\Rightarrow \sqrt{ }$ PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ DATA LOGGER

The data logger samples and records up to 16 analog parameters at a user-defined sampling rate. This recorded data may be downloaded to the enerVista UR Setup software and displayed with 'parameters' on the vertical axis and 'time' on the horizontal axis. All data is stored in non-volatile memory, meaning that the information is retained when power to the relay is lost.

For a fixed sampling rate, the data logger can be configured with a few channels over a long period or a larger number of channels for a shorter period. The relay automatically partitions the available memory between the channels in use.

Changing any setting affecting Data Logger operation will clear any data that is currently in the log.

- DATA LOGGER RATE: This setting selects the time interval at which the actual value data will be recorded.
- DATA LOGGER CHNL 1(16): This setting selects the metering actual value that is to be recorded in Channel 1(16) of the data log. The parameters available in a given relay are dependent on: the type of relay, the type and number of CT/ VT hardware modules installed, and the type and number of Analog Input hardware modules installed. Upon startup, the relay will automatically prepare the parameter list. A list of all possible analog metering actual value parameters is shown in Appendix A: FlexAnalog Parameters. The parameter index number shown in any of the tables is used to expedite the selection of the parameter on the relay display. It can be quite time-consuming to scan through the list of parameters via the relay keypad/display - entering this number via the relay keypad will cause the corresponding parameter to be displayed.
- DATA LOGGER CONFIG: This display presents the total amount of time the Data Logger can record the channels not selected to "Off" without over-writing old data.

5.2.10 DEMAND

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ DEMAND

\square DEMAND		(1)	CRNT DEMAND METHOD: Thermal Exponential	Range:	Thermal Exponential, Block Interval, Rolling Demand
	MESSAGE	-	POWER DEMAND METHOD: Thermal Exponential	Range:	Thermal Exponential, Block Interval, Rolling Demand
	MESSAGE	\square	DEMAND INTERVAL: 15 MIN	Range:	5, 10, 15, 20, 30, 60 minutes
	MESSAGE	-	DEMAND TRIGGER: Off	Range:	FlexLogic ${ }^{\text {TM }}$ operand Note: for calculation using Method $2 a$

The relay measures current demand on each phase, and three-phase demand for real, reactive, and apparent power. Current and Power methods can be chosen separately for the convenience of the user. Settings are provided to allow the user to emulate some common electrical utility demand measuring techniques, for statistical or control purposes. If the CRNT DEMAND METHOD is set to "Block Interval" and the DEMAND TRIGGER is set to "Off", Method 2 is used (see below). If DEMAND TRIGGER is assigned to any other FlexLogic ${ }^{\text {TM }}$ operand, Method 2 a is used (see below).

The relay can be set to calculate demand by any of three methods as described below:

CALCULATION METHOD 1: THERMAL EXPONENTIAL

This method emulates the action of an analog peak recording thermal demand meter. The relay measures the quantity (RMS current, real power, reactive power, or apparent power) on each phase every second, and assumes the circuit quantity remains at this value until updated by the next measurement. It calculates the 'thermal demand equivalent' based on the following equation:

$$
\begin{equation*}
d(t)=D\left(1-e^{-k t}\right) \tag{EQ5.4}
\end{equation*}
$$

where: $d=$ demand value after applying input quantity for time t (in minutes)
$D=$ input quantity (constant), and $k=2.3 /$ thermal 90% response time.
The 90% thermal response time characteristic of 15 minutes is illustrated below. A setpoint establishes the time to reach 90% of a steady-state value, just as the response time of an analog instrument. A steady state value applied for twice the response time will indicate 99% of the value.

Figure 5-2: THERMAL DEMAND CHARACTERISTIC

CALCULATION METHOD 2: BLOCK INTERVAL

This method calculates a linear average of the quantity (RMS current, real power, reactive power, or apparent power) over the programmed demand time interval, starting daily at 00:00:00 (i.e. 12:00 am). The 1440 minutes per day is divided into the number of blocks as set by the programmed time interval. Each new value of demand becomes available at the end of each time interval.

CALCULATION METHOD 2a: BLOCK INTERVAL (with Start Demand Interval Logic Trigger)

This method calculates a linear average of the quantity (RMS current, real power, reactive power, or apparent power) over the interval between successive Start Demand Interval logic input pulses. Each new value of demand becomes available at the end of each pulse. Assign a FlexLogic ${ }^{\text {TM }}$ operand to the DEMAND TRIGGER setting to program the input for the new demand interval pulses.

If no trigger is assigned in the DEMAND TRIGGER setting and the CRNT DEMAND METHOD is "Block Interval", use calculating method \#2. If a trigger is assigned, the maximum allowed time between 2 trigger signals is 60 minutes. If no trigger signal appears within 60 minutes, demand calculations are performed and available and the algorithm resets and starts the new cycle of calculations. The minimum required time for trigger contact closure is $20 \mu \mathrm{~s}$.

CALCULATION METHOD 3: ROLLING DEMAND

This method calculates a linear average of the quantity (RMS current, real power, reactive power, or apparent power) over the programmed demand time interval, in the same way as Block Interval. The value is updated every minute and indicates the demand over the time interval just preceding the time of update.
a) MAIN MENU

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ USER-PROGRAMMABLE LEDS

b) LED TEST

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \sqrt{ }$ USER-PROGRAMMABLE LEDS \Rightarrow LED TEST

When enabled, the LED Test can be initiated from any digital input or user-programmable condition such as user-programmable pushbutton. The control operand is configured under the LED TEST CONTROL setting. The test covers all LEDs, including the LEDs of the optional user-programmable pushbuttons.

The test consists of three stages.
Stage 1: All 62 LEDs on the relay are illuminated. This is a quick test to verify if any of the LEDs is "burned". This stage lasts as long as the control input is on, up to a maximum of 1 minute. After 1 minute, the test will end.

Stage 2: All the LEDs are turned off, and then one LED at a time turns on for 1 second, then back off. The test routine starts at the top left panel, moving from the top to bottom of each LED column. This test checks for hardware failures that lead to more than one LED being turned on from a single logic point. This stage can be interrupted at any time.
Stage 3: All the LEDs are turned on. One LED at a time turns off for 1 second, then back on. The test routine starts at the top left panel moving from top to bottom of each column of the LEDs. This test checks for hardware failures that lead to more than one LED being turned off from a single logic point. This stage can be interrupted at any time.
When testing is in progress, the LEDs are controlled by the test sequence, rather than the protection, control, and monitoring features. However, the LED control mechanism accepts all the changes to LED states generated by the relay and stores the actual LED states (On or Off) in memory. When the test completes, the LEDs reflect the actual state resulting from relay response during testing. The Reset pushbutton will not clear any targets when the LED Test is in progress.

A dedicated FlexLogic ${ }^{\text {TM }}$ operand, LED TEST IN PROGRESS, is set for the duration of the test. When the test sequence is initiated, the LED Test Initiated event is stored in the Event Recorder.
The entire test procedure is user-controlled. In particular, Stage 1 can last as long as necessary, and Stages 2 and 3 can be interrupted. The test responds to the position and rising edges of the control input defined by the LED TEST CONTROL setting. The control pulses must last at least 250 ms to take effect. The following diagram explains how the test is executed.

Figure 5-3: LED TEST SEQUENCE

APPLICATION EXAMPLE 1:

Assume one needs to check if any of the LEDs is "burned" through User-Programmable Pushbutton 1. The following settings should be applied.
Configure User-Programmable Pushbutton 1 by making the following entries in the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \sqrt{ }$ USERPROGRAMMABLE PUSHBUTTONS \Rightarrow USER PUSHBUTTON 1 menu:

PUSHBUTTON 1 FUNCTION: "Self-reset"
PUSHBTN 1 DROP-OUT TIME: " 0.10 s "
Configure the LED test to recognize User-Programmable Pushbutton 1 by making the following entries in the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \Omega$ USER-PROGRAMMABLE LEDS \Rightarrow LED TEST menu:

LED TEST FUNCTION: "Enabled"
LED TEST CONTROL: "PUSHBUTTON 1 ON"
The test will be initiated when the User-Programmable Pushbutton 1 is pressed. The pushbutton should remain pressed for as long as the LEDs are being visually inspected. When finished, the pushbutton should be released. The relay will then automatically start Stage 2. At this point forward, test may be aborted by pressing the pushbutton.

APPLICATION EXAMPLE 2:

Assume one needs to check if any LEDs are "burned" as well as exercise one LED at a time to check for other failures. This is to be performed via User-Programmable Pushbutton 1.

After applying the settings in Application Example 1, hold down the pushbutton as long as necessary to test all LEDs. Next, release the pushbutton to automatically start Stage 2. Once Stage 2 has started, the pushbutton can be released. When Stage 2 is completed, Stage 3 will automatically start. The test may be aborted at any time by pressing the pushbutton.

c) TRIP AND ALARM LEDS

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ USER-PROGRAMMABLE LEDS $\Rightarrow \sqrt{ } \Rightarrow$ TRIP \& ALARM LEDS

The Trip and Alarm LEDs are on LED Panel 1. Each indicator can be programmed to become illuminated when the selected FlexLogic ${ }^{\text {TM }}$ operand is in the Logic 1 state.
d) USER-PROGRAMMABLE LED 1(48)

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ USER-PROGRAMMABLE LEDS $\Rightarrow \sqrt{ } \Rightarrow$ USER-PROGRAMMABLE LED 1(48)

USER-PROGRAMMABLE LED 1	(1)	LED 1 OPERAND: Off	Range: FlexLogic ${ }^{\text {TM }}$ operand
MESSAGE	(4)	LED 1 TYPE: Self-Reset	Range: Self-Reset, Latched

There are 48 amber LEDs across the relay faceplate LED panels. Each of these indicators can be programmed to illuminate when the selected FlexLogic ${ }^{\text {TM }}$ operand is in the Logic 1 state.

- LEDs 1 through 24 inclusive are on LED Panel 2; LEDs 25 through 48 inclusive are on LED Panel 3.

Refer to the LED Indicators section in Chapter 4 for the locations of these indexed LEDs. This menu selects the operands to control these LEDs. Support for applying user-customized labels to these LEDs is provided. If the LED X TYPE setting is "Self-Reset" (default setting), the LED illumination will track the state of the selected LED operand. If the LED X TYPE setting is 'Latched', the LED, once lit, remains so until reset by the faceplate RESET button, from a remote device via a communications channel, or from any programmed operand, even if the LED operand state de-asserts.

Table 5-2: RECOMMENDED SETTINGS FOR LED PANEL 2 LABELS

SETTING	PARAMETER
LED 1 Operand	SETTING GROUP ACT 1
LED 2 Operand	SETTING GROUP ACT 2
LED 3 Operand	SETTING GROUP ACT 3
LED 4 Operand	SETTING GROUP ACT 4
LED 5 Operand	SETTING GROUP ACT 5
LED 6 Operand	SETTING GROUP ACT 6
LED 7 Operand	Off
LED 8 Operand	Off
LED 9 Operand	BREAKER 1 OPEN
LED 10 Operand	BREAKER 1 CLOSED
LED 11 Operand	BREAKER 1 TROUBLE
LED 12 Operand	Off

SETTING	PARAMETER
LED 13 Operand	Off
LED 14 Operand	BREAKER 2 OPEN
LED 15 Operand	BREAKER 2 CLOSED
LED 16 Operand	BREAKER 2 TROUBLE
LED 17 Operand	SYNC 1 SYNC OP
LED 18 Operand	SYNC 2 SYNC OP
LED 19 Operand	Off
LED 20 Operand	Off
LED 21 Operand	AR ENABLED
LED 22 Operand	AR DISABLED
LED 23 Operand	AR RIP
LED 24 Operand	AR LO

Refer to the Control of Setting Groups example in the Control Elements section of this chapter for group activation.

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ USER-PROGRAMMABLE SELF TESTS

\square USER-PROGRAMMABLE SELF TESTS	(1)	DIRECT RING BREAK FUNCTION: Enabled	Range:	Disabled, Enabled. Valid for units equipped with Direct I/O Module.
MESSAGE	\square	DIRECT DEVICE OFF FUNCTION: Enabled	Range:	Disabled, Enabled. Valid for units equipped with Direct I/O Module.
MESSAGE	-	REMOTE DEVICE OFF FUNCTION: Enabled	Range:	Disabled, Enabled. Valid for units equipped with CPU Type C or D.
MESSAGE	-	PRI. ETHERNET FAIL FUNCTION: Disabled	Range:	Disabled, Enabled. Valid for units equipped with CPU Type C or D.
MESSAGE	Q	SEC. ETHERNET FAIL FUNCTION: Disabled	Range:	Disabled, Enabled. Valid for units equipped with CPU Type D.
MESSAGE	-	BATTERY FAIL FUNCTION: Enabled	Range:	Disabled, Enabled.
MESSAGE	-	SNTP FAIL FUNCTION: Enabled	Range:	Disabled, Enabled. Valid for units equipped with CPU Type C or D.
MESSAGE	(1)	IRIG-B FAIL FUNCTION: Enabled	Range: Disabled, Enabled.	

All major self-test alarms are reported automatically with their corresponding FlexLogic ${ }^{\text {TM }}$ operands, events, and targets. Most of the Minor Alarms can be disabled if desired.

When in the "Disabled" mode, minor alarms will not assert a FlexLogic ${ }^{\top T M}$ operand, write to the event recorder, display target messages. Moreover, they will not trigger the ANY MINOR ALARM or ANY SELF-TEST messages. When in the "Enabled" mode, minor alarms continue to function along with other major and minor alarms. Refer to the Relay Self-Tests section in Chapter 7 for additional information on major and minor self-test alarms.

5.2.13 CONTROL PUSHBUTTONS

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ ת CONTROL PUSHBUTTONS \Rightarrow CONTROL PUSHBUTTON 1(7)

\square CONTROL \square PUSHBUTTON 1		(1)	CONTROL PUSHBUTTON 1 FUNCTION: Disabled	Range: Disabled, Enabled
	MESSAGE	(2)	CONTROL PUSHBUTTON 1 EVENTS: Disabled	Range: Disabled, Enabled

The three standard pushbuttons located on the top left panel of the faceplate are user-programmable and can be used for various applications such as performing an LED test, switching setting groups, and invoking and scrolling though user-programmable displays, etc. Firmware revisions $3.2 x$ and older use these three pushbuttons for manual breaker control. This functionality has been retained - if the Breaker Control feature is configured to use the three pushbuttons, they cannot be used as user-programmable control pushbuttons. The location of the control pushbuttons in the following figure.

An additonal four control pushbuttons are included when the F60 is ordered with twelve user programmable pushbuttons.

Figure 5-4: CONTROL PUSHBUTTONS
The control pushbuttons are typically not used for critical operations. As such, they are not protected by the control password. However, by supervising their output operands, the user can dynamically enable or disable the control pushbuttons for security reasons.

Each control pushbutton asserts its own FlexLogic ${ }^{\text {TM }}$ operand, CONTROL PUSHBTN 1(7) ON. These operands should be configured appropriately to perform the desired function. The operand remains asserted as long as the pushbutton is pressed and resets when the pushbutton is released. A dropout delay of 100 ms is incorporated to ensure fast pushbutton manipulation will be recognized by various features that may use control pushbuttons as inputs.

An event is logged in the Event Record (as per user setting) when a control pushbutton is pressed; no event is logged when the pushbutton is released. The faceplate keys (including control keys) cannot be operated simultaneously - a given key must be released before the next one can be pressed.

The control pushbuttons become user-programmable only if the Breaker Control feature is not configured for manual control via the User 1 through User 7 pushbuttons as shown below. If configured for manual control, the Breaker Control feature typically uses the larger, optional user-programmable pushbuttons, making the control pushbuttons available for other user applications.

Figure 5-5: CONTROL PUSHBUTTON LOGIC

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{2}$ USER-PROGRAMMABLE PUSHBUTTONS \Rightarrow USER PUSHBUTTON 1(12)

The F60 has 12 optional user-programmable pushbuttons available, each configured via 12 identical menus. The pushbuttons provide an easy and error-free method of manually entering digital information (On, Off) into FlexLogic ${ }^{\text {TM }}$ equations as well as protection and control elements. Typical applications include breaker control, autorecloser blocking, ground protection blocking, and setting groups changes.
The user-configurable pushbuttons are shown below. They can be custom labeled with a factory-provided template, available online at http://www.GEindustrial.com/multilin.

Figure 5-6: USER-PROGRAMMABLE PUSHBUTTONS
Each pushbutton asserts its own On and Off FlexLogic ${ }^{\text {TM }}$ operands, respectively. FlexLogic ${ }^{\text {TM }}$ operands should be used to program desired pushbutton actions. The operand names are PUSHBUTTON 1 ON and PUSHBUTTON 1 OFF.

A pushbutton may be programmed to latch or self-reset. An indicating LED next to each pushbutton signals the present status of the corresponding "On" FlexLogic ${ }^{\text {TM }}$ operand. When set to "Latched", the state of each pushbutton is stored in nonvolatile memory which is maintained during any supply power loss.

Pushbuttons states can be logged by the Event Recorder and displayed as target messages. User-defined messages can also be associated with each pushbutton and displayed when the pushbutton is ON.

- PUSHBUTTON 1 FUNCTION: This setting selects the characteristic of the pushbutton. If set to "Disabled", the pushbutton is deactivated and the corresponding FlexLogic ${ }^{\text {TM }}$ operands (both "On" and "Off") are de-asserted. If set to "Self-reset", the control logic of the pushbutton asserts the "On" corresponding FlexLogic ${ }^{\text {TM }}$ operand as long as the pushbutton is being pressed. As soon as the pushbutton is released, the FlexLogic ${ }^{\text {TM }}$ operand is de-asserted. The "Off" operand is asserted/de-asserted accordingly.

If set to "Latched", the control logic alternates the state of the corresponding FlexLogic ${ }^{\text {TM }}$ operand between "On" and "Off" on each push of the button. When operating in "Latched" mode, FlexLogic ${ }^{\text {TM }}$ operand states are stored in non-volatile memory. Should power be lost, the correct pushbutton state is retained upon subsequent power up of the relay.

- PUSHBTN 1 ID TEXT: This setting specifies the top 20-character line of the user-programmable message and is intended to provide ID information of the pushbutton. Refer to the User-Definable Displays section for instructions on how to enter alphanumeric characters from the keypad.
- PUSHBTN 1 ON TEXT: This setting specifies the bottom 20-character line of the user-programmable message and is displayed when the pushbutton is in the "on" position. Refer to the User-Definable Displays section for instructions on entering alphanumeric characters from the keypad.
- PUSHBTN 1 OFF TEXT: This setting specifies the bottom 20-character line of the user-programmable message and is displayed when the pushbutton is activated from the On to the Off position and the PUSHBUTTON 1 FUNCTION is "Latched". This message is not displayed when the PUSHBUTTON 1 FUNCTION is "Self-reset" as the pushbutton operand status is implied to be "Off" upon its release. All user text messaging durations for the pushbuttons are configured with the PRODUCT SETUP \Rightarrow 』 DISPLAY PROPERTIES \Rightarrow FLASH MESSAGE TIME setting.
- PUSHBTN 1 DROP-OUT TIME: This setting specifies a drop-out time delay for a pushbutton in the self-reset mode. A typical applications for this setting is providing a select-before-operate functionality. The selecting pushbutton should have the drop-out time set to a desired value. The operating pushbutton should be logically ANDed with the selecting pushbutton in FlexLogic ${ }^{\text {TM }}$. The selecting pushbutton LED remains on for the duration of the drop-out time, signaling the time window for the intended operation.
For example, consider a relay with the following settings: PUSHBTN 1 ID TEXT: "AUTORECLOSER", PUSHBTN 1 ON TEXT: "DISABLED - CALL 2199", and PUSHBTN 1 OFF TEXT. "ENABLED". When Pushbutton 1 changes its state to the "On" position, the following AUTOCLOSER DISABLED - Call 2199 message is displayed: When Pushbutton 1 changes its state to the "Off" position, the message will change to AUTORECLOSER ENABLED.

User-programmable pushbuttons require a type HP relay faceplate. If an HP-type faceplate was ordered separately, the relay order code must be changed to indicate the HP faceplate option. This can be done via enerVista UR Setup with the Maintenance > Enable Pushbutton command.

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ FLEX STATE PARAMETERS

This feature provides a mechanism where any of 256 selected FlexLogic ${ }^{\text {TM }}$ operand states can be used for efficient monitoring. The feature allows user-customized access to the FlexLogic ${ }^{\text {TM }}$ operand states in the relay. The state bits are packed so that 16 states may be read out in a single Modbus register. The state bits can be configured so that all of the states which are of interest to the user are available in a minimum number of Modbus registers.
The state bits may be read out in the "Flex States" register array beginning at Modbus address 900 hex. 16 states are packed into each register, with the lowest-numbered state in the lowest-order bit. There are 16 registers in total to accommodate the 256 state bits.
a) MAIN MENU

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ USER-DEFINABLE DISPLAYS

This menu provides a mechanism for manually creating up to 16 user-defined information displays in a convenient viewing sequence in the USER DISPLAYS menu (between the TARGETS and ACTUAL VALUES top-level menus). The sub-menus facilitate text entry and Modbus Register data pointer options for defining the User Display content.

Once programmed, the user-definable displays can be viewed in two ways.

- KEYPAD: Use the Menu key to select the USER DISPLAYS menu item to access the first user-definable display (note that only the programmed screens are displayed). The screens can be scrolled using the Up and Down keys. The display disappears after the default message time-out period specified by the PRODUCT SETUP $\Rightarrow \sqrt{ } \sqrt{3}$ DISPLAY PROPERTIES $\Rightarrow \sqrt{ } \quad$ DEFAULT MESSAGE TIMEOUT setting.
- USER-PROGRAMMABLE CONTROL INPUT: The user-definable displays also respond to the INVOKE AND SCROLL setting. Any FlexLogic ${ }^{\text {TM }}$ operand (in particular, the user-programmable pushbutton operands), can be used to navigate the programmed displays.
On the rising edge of the configured operand (such as when the pushbutton is pressed), the displays are invoked by showing the last user-definable display shown during the previous activity. From this moment onward, the operand acts exactly as the Down key and allows scrolling through the configured displays. The last display wraps up to the first one. The INVOKE AND SCROLL input and the Down keypad key operate concurrently.
When the default timer expires (set by the DEFAULT MESSAGE TIMEOUT setting), the relay will start to cycle through the user displays. The next activity of the INVOKE AND SCROLL input stops the cycling at the currently displayed user display, not at the first user-defined display. The INVOKE AND SCROLL pulses must last for at least 250 ms to take effect.
b) USER DISPLAY 1(16)

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ USER-DEFINABLE DISPLAYS \Rightarrow USER DISPLAY 1(16)

Any existing system display can be automatically copied into an available user display by selecting the existing display and pressing the ENTER key. The display will then prompt ADD TO USER DISPLAY LIST?. After selecting "Yes", a message indicates that the selected display has been added to the user display list. When this type of entry occurs, the sub-menus are automatically configured with the proper content - this content may subsequently be edited.

This menu is used to enter user-defined text and/or user-selected Modbus-registered data fields into the particular user display. Each user display consists of two 20-character lines (top and bottom). The tilde (\sim) character is used to mark the start of a data field - the length of the data field needs to be accounted for. Up to 5 separate data fields (ITEM 1(5)) can be entered in a user display - the nth tilde (\sim) refers to the nth item.

A User Display may be entered from the faceplate keypad or the enerVista UR Setup interface (preferred for convenience). The following procedure shows how to enter text characters in the top and bottom lines from the faceplate keypad:

1. Select the line to be edited.
2. Press the $\quad \cdot$ key to enter text edit mode.
3. Use either Value key to scroll through the characters. A space is selected like a character.
4. Press the \square key to advance the cursor to the next position.
5. Repeat step 3 and continue entering characters until the desired text is displayed.
6. The HELP key may be pressed at any time for context sensitive help information.
7. Press the ENTER key to store the new settings.

To enter a numerical value for any of the 5 items (the decimal form of the selected Modbus address) from the faceplate keypad, use the number keypad. Use the value of ' 0 ' for any items not being used. Use the HELP key at any selected system display (setting, actual value, or command) which has a Modbus address, to view the hexadecimal form of the Modbus address, then manually convert it to decimal form before entering it (enerVista UR Setup usage conveniently facilitates this conversion).
Use the MENU key to go to the user displays menu to view the user-defined content. The current user displays will show in sequence, changing every 4 seconds. While viewing a user display, press the ENTER key and then select the "Yes" option to remove the display from the user display list. Use the MENU key again to exit the user displays menu.

An example User Display setup and result is shown below:

\square USER DISPLAY 1		(1)	$\begin{aligned} & \text { DISP } 1 \text { TOP LINE: } \\ & \text { Current } \mathrm{X} \sim \end{aligned}$	Shows user-defined text with first Tilde marker.
	MESSAGE	-	DISP 1 BOTTOM LINE: Current Y \sim	Shows user-defined text with second Tilde marker.
	MESSAGE	Q	$\begin{gathered} \text { DISP } 1 \text { ITEM 1: } \\ 6016 \end{gathered}$	Shows decimal form of user-selected Modbus Register Address, corresponding to first Tilde marker.
	MESSAGE	-	$\begin{gathered} \text { DISP } 1 \text { ITEM 2: } \\ 6357 \end{gathered}$	Shows decimal form of user-selected Modbus Register Address, corresponding to 2nd Tilde marker.
	MESSAGE	-	$\begin{gathered} \text { DISP } 1 \text { ITEM 3: } \\ 0 \end{gathered}$	This item is not being used - there is no corresponding Tilde marker in Top or Bottom lines.
	MESSAGE	-	DISP 1 ITEM 4: 0	This item is not being used - there is no corresponding Tilde marker in Top or Bottom lines.
	MESSAGE	(2)	DISP 1 ITEM 5: 0	This item is not being used - there is no corresponding Tilde marker in Top or Bottom lines.
USER DISPLAYS		\rightarrow	Current X 0.850 A Current Y 0.327 A	Shows the resultant display content.

a) MAIN MENU

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ DIRECT I/O

Direct inputs/outputs are intended for exchange of status information (inputs and outputs) between UR-series relays connected directly via Type-7 digital communications cards. The mechanism is very similar to UCA GOOSE, except that communications takes place over a non-switchable isolated network and is optimized for speed. On Type 7 cards that support two channels, direct output messages are sent from both channels simultaneously. This effectively sends direct output messages both ways around a ring configuration. On Type 7 cards that support one channel, direct output messages are sent only in one direction. Messages will be resent (forwarded) when it is determined that the message did not originate at the receiver.

Direct output message timing is similar to GOOSE message timing. Integrity messages (with no state changes) are sent at least every 1000 ms . Messages with state changes are sent within the main pass scanning the inputs and asserting the outputs unless the communication channel bandwidth has been exceeded. Two Self-Tests are performed and signaled by the following FlexLogic ${ }^{\text {TM }}$ operands:

1. DIRECT RING BREAK (direct input/output ring break). This FlexLogic ${ }^{T M}$ operand indicates that direct output messages sent from a UR-series relay are not being received back by the relay.
2. DIRECT DEVICE 1(16) OFF (direct device offline). This FlexLogic ${ }^{\text {™ }}$ operand indicates that direct output messages from at least one direct device are not being received.
Direct input/output settings are similar to remote input/output settings. The equivalent of the remote device name strings for direct inputs/outputs is the DIRECT OUTPUT DEVICE ID. The DIRECT OUTPUT DEVICE ID identifies the relay in all direct output messages. All UR-series IEDs in a ring should have unique numbers assigned. The IED ID is used to identify the sender of the direct input/output message.
If the direct input/output scheme is configured to operate in a ring (DIRECT I/O RING CONFIGURATION: "Yes"), all direct output messages should be received back. If not, the Direct Input/Output Ring Break self-test is triggered. The self-test error is signaled by the DIRECT RING BREAK FlexLogic ${ }^{\text {TM }}$ operand.
Select the DIRECT I/O DATA RATE to match the data capabilities of the communications channel. Back-to-back connections of the local relays configured with the 7A, 7B, 7C, 7D, 7H, 7I, 7J, 7K, 72 and 73 fiber optic communication cards may be set to 128 kbps . For local relays configured with all other communication cards (i.e. 7E, 7F, 7G, 7L, 7M, 7N, 7P, 7R, 7S, 7T, 7W, $74,75,76$ and 77), the baud rate will be set to 64 kbps . All IEDs communicating over direct inputs/outputs must be set to
the same data rate. UR-series IEDs equipped with dual-channel communications cards apply the same data rate to both channels. Delivery time for direct input/output messages is approximately 0.2 of a power system cycle at 128 kbps and 0.4 of a power system cycle at 64 kbps , per each 'bridge'.
The DIRECT I/O CHANNEL CROSSOVER setting applies to F60s with dual-channel communication cards and allows crossing over messages from Channel 1 to Channel 2. This places all UR IEDs into one direct input/output network regardless of the physical media of the two communication channels.
The following application examples illustrate the basic concepts for direct input/output configuration. Please refer to the Inputs/Outputs section in this chapter for information on configuring FlexLogic ${ }^{\top M}$ operands (flags, bits) to be exchanged.

EXAMPLE 1: EXTENDING THE INPUT/OUTPUT CAPABILITIES OF A UR-SERIES RELAY

Consider an application that requires additional quantities of digital inputs and/or output contacts and/or lines of programmable logic that exceed the capabilities of a single UR-series chassis. The problem is solved by adding an extra UR-series IED, such as the C30, to satisfy the additional input/output and programmable logic requirements. The two IEDs are connected via single-channel digital communication cards as shown in the figure below.

Figure 5-7: INPUT/OUTPUT EXTENSION VIA DIRECT I/OS
In the above application, the following settings should be applied:
UR IED 1: DIRECT OUTPUT DEVICE ID: "1"
DIRECT I/O RING CONFIGURATION: "Yes"
DIRECT I/O DATA RATE: "128 kbps"
UR IED 2: DIRECT OUTPUT DEVICE ID: "2"
DIRECT I/O RING CONFIGURATION: "Yes"
DIRECT I/O DATA RATE: " $128 \mathrm{kbps} "$
The message delivery time is about 0.2 of power cycle in both ways (at 128 kbps); i.e., from Device 1 to Device 2, and from Device 2 to Device 1. Different communications cards can be selected by the user for this back-to-back connection (fiber, G.703, or RS422).

EXAMPLE 2: INTERLOCKING BUSBAR PROTECTION

A simple interlocking busbar protection scheme could be accomplished by sending a blocking signal from downstream devices, say 2,3 , and 4 , to the upstream device that monitors a single incomer of the busbar, as shown below.

Figure 5-8: SAMPLE INTERLOCKING BUSBAR PROTECTION SCHEME
For increased reliability, a dual-ring configuration (shown below) is recommended for this application.

Figure 5-9: INTERLOCKING BUS PROTECTION SCHEME VIA DIRECT I/OS
In the above application, the following settings should be applied:

UR IED 1: DIRECT OUTPUT DEVICE ID: "1" DIRECT I/O RING CONFIGURATION: "Yes"
UR IED 3: DIRECT OUTPUT DEVICE ID: "3" DIRECT I/O RING CONFIGURATION: "Yes"

UR IED 2: DIRECT OUTPUT DEVICE ID: "2" DIRECT I/O RING CONFIGURATION: "Yes"
UR IED 4: DIRECT OUTPUT DEVICE ID: "4" DIRECT I/O RING CONFIGURATION: "Yes"

Message delivery time is approximately 0.2 of power system cycle (at 128 kbps) times number of 'bridges' between the origin and destination. Dual-ring configuration effectively reduces the maximum 'communications distance' by a factor of two. In this configuration the following delivery times are expected (at 128 kbps) if both rings are healthy:

IED 1 to IED 2: 0.2 of power system cycle; IED 1 to IED 3: 0.4 of power system cycle;
IED 1 to IED 4: 0.2 of power system cycle; IED 2 to IED 3: 0.2 of power system cycle;
IED 2 to IED 4: 0.4 of power system cycle; IED 3 to IED 4: 0.2 of power system cycle
If one ring is broken (say TX2/RX2) the delivery times are as follows:
IED 1 to IED 2: 0.2 of power system cycle; IED 1 to IED 3: 0.4 of power system cycle;
IED 1 to IED 4: 0.6 of power system cycle; IED 2 to IED 3: 0.2 of power system cycle;
IED 2 to IED 4: 0.4 of power system cycle; IED 3 to IED 4: 0.2 of power system cycle
A coordinating timer for this bus protection scheme could be selected to cover the worst case scenario (0.4 of power system cycle). Upon detecting a broken ring, the coordination time should be adaptively increased to 0.6 of power system cycle. The complete application requires addressing a number of issues such as failure of both the communications rings, failure or out-of-service conditions of one of the relays, etc. Self-monitoring flags of the direct inputs/outputs feature would be primarily used to address these concerns.
EXAMPLE 3: PILOT-AIDED SCHEMES
Consider the three-terminal line protection application shown below:

Figure 5-10: THREE-TERMINAL LINE APPLICATION
A permissive pilot-aided scheme could be implemented in a two-ring configuration as shown below (IEDs 1 and 2 constitute a first ring, while IEDs 2 and 3 constitute a second ring):

Figure 5-11: SINGLE-CHANNEL OPEN LOOP CONFIGURATION
In the above application, the following settings should be applied:
UR IED 1: DIRECT OUTPUT DEVICE ID: "1" DIRECT I/O RING CONFIGURATION: "Yes"

UR IED 2: DIRECT OUTPUT DEVICE ID: "2" DIRECT I/O RING CONFIGURATION: "Yes"
UR IED 3: DIRECT OUTPUT DEVICE ID: "3" DIRECT I/O RING CONFIGURATION: "Yes"
In this configuration the following delivery times are expected (at 128 kbps):
IED 1 to IED 2: 0.2 of power system cycle; IED 1 to IED 3: 0.5 of power system cycle; IED 2 to IED 3: 0.2 of power system cycle
In the above scheme, IEDs 1 and 3 do not communicate directly. IED 2 must be configured to forward the messages as explained in the Inputs/Outputs section. A blocking pilot-aided scheme should be implemented with more security and, ideally, faster message delivery time. This could be accomplished using a dual-ring configuration as shown below.

Figure 5-12: DUAL-CHANNEL CLOSED LOOP (DUAL-RING) CONFIGURATION
In the above application, the following settings should be applied:
UR IED 1: DIRECT OUTPUT DEVICE ID: " 1 "
UR IED 2: DIRECT OUTPUT DEVICE ID: "2"
direct I/O RING CONFIGURATION: "Yes"
DIRECT I/O RING CONFIGURATION: "Yes"
UR IED 3: DIRECT OUTPUT DEVICE ID: "3"
DIRECT I/O RING CONFIGURATION: "Yes"
In this configuration the following delivery times are expected (at 128 kbps) if both the rings are healthy:
IED 1 to IED 2: 0.2 of power system cycle; IED 1 to IED 3: 0.2 of power system cycle;
IED 2 to IED 3: 0.2 of power system cycle
The two communications configurations could be applied to both permissive and blocking schemes. Speed, reliability and cost should be taken into account when selecting the required architecture.
b) CRC ALARM CH1(2)

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \Omega$ DIRECT I/O $\Rightarrow \Omega$ CRC ALARM CH1(2)

\square CRC ALARM CH1		(1)	CRC ALARM CH1 FUNCTION: Disabled	Range: Enabled, Disabled
	MESSAGE	-	CRC ALARM CH1 MESSAGE COUNT: 600	Range: 100 to 10000 in steps of 1
	MESSAGE	-	CRC ALARM CH1 THRESHOLD: 10	Range: 1 to 1000 in steps of 1
	MESSAGE	(2)	CRC ALARM CH1 EVENTS: Disabled	Range: Enabled, Disabled

The F60 checks integrity of the incoming Direct I/O messages using a 32-bit CRC. The CRC Alarm function is available for monitoring the communication medium noise by tracking the rate of messages failing the CRC check. The monitoring function counts all incoming messages, including messages that failed the CRC check. A separate counter adds up messages that failed the CRC check. When the failed CRC counter reaches the user-defined level specified by the CRC ALARM CH1 THRESHOLD setting within the user-defined message count CRC ALARM 1 CH1 COUNT, the DIR IO CH1 CRC ALARM FlexLogic ${ }^{\text {TM }}$ operand is set.

When the total message counter reaches the user-defined maximum specified by the CRC ALARM CH1 MESSAGE COUNT setting, both the counters reset and the monitoring process is restarted.
The operand shall be configured to drive an output contact, user-programmable LED, or selected communication-based output. Latching and acknowledging conditions - if required - should be programmed accordingly.
The CRC Alarm function is available on a per-channel basis. The total number of Direct I/O messages that failed the CRC check is available as the ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt{ }$ DIRECT INPUTS $\Rightarrow \sqrt{ }$ CRC FAIL COUNT CH1(2) actual value.

Message Count and Length of the Monitoring Window:

To monitor communications integrity, the relay sends 1 message per second (at 64 kbps) or 2 messages per second (128 kbps) even if there is no change in the Direct Outputs. For example, setting the CRC ALARM Ch1 message count to " 10000 ", corresponds a time window of about 160 minutes at 64 kbps and 80 minutes at 128 kbps . If the messages are sent faster as a result of Direct Outputs activity, the monitoring time interval will shorten. This should be taken into account when determining the CRC ALARM CH1 MESSAGE COUNT setting. For example, if the requirement is a maximum monitoring time interval of 10 minutes at 64 kbps , then the CRC ALARM CH1 MESSAGE COUNT should be set to $10 \times 60 \times 1=600$.

Correlation of Failed CRC and Bit Error Rate (BER):

The CRC check may fail if one or more bits in a packet are corrupted. Therefore, an exact correlation between the CRC fail rate and the BER is not possible. Under certain assumptions an approximation can be made as follows. A Direct I/O packet containing 20 bytes results in 160 bits of data being sent and therefore, a transmission of 63 packets is equivalent to 10,000 bits. A BER of 10^{-4} implies 1 bit error for every 10,000 bits sent/received. Assuming the best case of only 1 bit error in a failed packet, having 1 failed packet for every 63 received is about equal to a BER of 10^{-4}.
c) UNRETURNED MESSAGES ALARM CH1(2)

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ DIRECT I/O $\Rightarrow \sqrt{ }$ UNRETURNED MESSAGES ALARM CH1(2)

The F60 checks integrity of the Direct I/O communication ring by counting unreturned messages. In the ring configuration, all messages originating at a given device should return within a pre-defined period of time. The Unreturned Messages Alarm function is available for monitoring the integrity of the communication ring by tracking the rate of unreturned messages. This function counts all the outgoing messages and a separate counter adds the messages have failed to return. When the unreturned messages counter reaches the user-definable level specified by the UNRET MSGS ALARM CH1 THRESHOLD setting and within the user-defined message count UNRET MSGS ALARM CH1 COUNT, the DIR IO CH1 UNRET ALM FlexLogic ${ }^{\text {TM }}$ operand is set.
When the total message counter reaches the user-defined maximum specified by the UNRET MSGS ALARM CH1 MESSAGE count setting, both the counters reset and the monitoring process is restarted.

The operand shall be configured to drive an output contact, user-programmable LED, or selected communication-based output. Latching and acknowledging conditions, if required, should be programmed accordingly.
The Unreturned Messages Alarm function is available on a per-channel basis and is active only in the ring configuration. The total number of unreturned Direct I/O messages is available as the ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt{ }$ DIRECT INPUTS $\Rightarrow \sqrt{ }$ UNRETURNED MSG COUNT CH1(2) actual value.
5.2.18 INSTALLATION

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ INSTALLATION

To safeguard against the installation of a relay without any entered settings, the unit will not allow signaling of any output relay until RELAY SETTINGS is set to "Programmed". This setting is defaulted to "Not Programmed" when at the factory. The UNIT NOT PROGRAMMED self-test error message is displayed until the relay is put into the "Programmed" state.

The reLAY NAME setting allows the user to uniquely identify a relay. This name will appear on generated reports. This name is also used to identify specific devices which are engaged in automatically sending/receiving data over the Ethernet communications channel using the UCA2/MMS protocol.

a) CURRENT BANKS

PATH: SETTINGS $\Rightarrow \sqrt[b]{ }$ SYSTEM SETUP \Rightarrow AC INPUTS \Rightarrow CURRENT BANK F1(F5)

Because energy parameters are accumulated, these values should be recorded and then reset immediately prior to changing CT characteristics.

Two banks of phase/ground CTs can be set, where the current banks are denoted in the following format (X represents the module slot position letter):
$X a$, where $X=\{\mathbf{F}\}$ and $\mathbf{a}=\{\mathbf{1}, \mathbf{5}\}$.
See the Introduction to AC Sources section at the beginning of this chapter for additional details.
These settings are critical for all features that have settings dependent on current measurements. When the relay is ordered, the CT module must be specified to include a standard or sensitive ground input. As the phase CTs are connected in Wye (star), the calculated phasor sum of the three phase currents ($\mathrm{IA}+\mathrm{IB}+\mathrm{IC}=$ Neutral Current $=310$) is used as the input for the neutral overcurrent elements. In addition, a zero-sequence (core balance) CT which senses current in all of the circuit primary conductors, or a CT in a neutral grounding conductor may also be used. For this configuration, the ground CT primary rating must be entered. To detect low level ground fault currents, the sensitive ground input may be used. In this case, the sensitive ground CT primary rating must be entered. Refer to Chapter 3 for more details on CT connections.
Enter the rated CT primary current values. For both 1000:5 and 1000:1 CTs, the entry would be 1000. For correct operation, the CT secondary rating must match the setting (which must also correspond to the specific CT connections used).

The following example illustrates how multiple CT inputs (current banks) are summed as one source current. Given If the following current banks:

F1: CT bank with 500:1 ratio; F5: CT bank with 1000: ratio
The following rule applies:

$$
\begin{equation*}
\text { SRC } 1=\mathrm{F} 1+\mathrm{F} 5 \tag{EQ5.5}
\end{equation*}
$$

1 pu is the highest primary current. In this case, 1000 is entered and the secondary current from the $500: 1$ and 800:1 ratio CTs will be adjusted to that created by a 1000:1 CT before summation. If a protection element is set up to act on SRC 1 currents, then a pickup level of 1 pu will operate on 1000 A primary.
The same rule applies for current sums from CTs with different secondary taps (5A and 1 A).

b) VOLTAGE BANKS

PATH: SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP \Rightarrow AC INPUTS $\Rightarrow \curvearrowleft \sqrt{ }$ VOLTAGE BANK F5

Because energy parameters are accumulated, these values should be recorded and then reset immediately prior to changing VT characteristics.

One bank of phase/auxiliary VTs can be set, where voltage banks are denoted in the following format (X represents the module slot position letter):
$\boldsymbol{X a}$, where $\boldsymbol{X}=\{\mathbf{F}\}$ and $\boldsymbol{a}=\{\mathbf{5}\}$.
See the Introduction to AC Sources section at the beginning of this chapter for additional details.
With VTs installed, the relay can perform voltage measurements as well as power calculations. Enter the PHASE VT F5 CONNECTION made to the system as "Wye" or "Delta". An open-delta source VT connection would be entered as "Delta". See the Typical Wiring Diagram in Chapter 3 for details.

The nominal PHASE VT F5 SECONDARY voltage setting is the voltage across the relay input terminals when nominal voltage is applied to the VT primary.
For example, on a system with a 13.8 kV nominal primary voltage and with a 14400:120 volt VT in a Delta connection, the secondary voltage would be 115 , i.e. $(13800 / 14400) \times 120$. For a Wye connection, the voltage value entered must be the phase to neutral voltage which would be $115 / \sqrt{3}=66.4$.

On a 14.4 kV system with a Delta connection and a VT primary to secondary turns ratio of 14400:120, the voltage value entered would be 120, i.e. 14400 / 120.
5.3.2 POWER SYSTEM

PATH: SETTINGS $\Rightarrow \wedge$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ R POWER SYSTEM

The power system NOMINAL FREQUENCY value is used as a default to set the digital sampling rate if the system frequency cannot be measured from available signals. This may happen if the signals are not present or are heavily distorted. Before reverting to the nominal frequency, the frequency tracking algorithm holds the last valid frequency measurement for a safe period of time while waiting for the signals to reappear or for the distortions to decay.

The phase sequence of the power system is required to properly calculate sequence components and power parameters. The PhASE ROTATION setting matches the power system phase sequence. Note that this setting informs the relay of the actual system phase sequence, either ABC or ACB. CT and VT inputs on the relay, labeled as A, B, and C, must be connected to system phases A, B, and C for correct operation.

The frequency and phase reference setting determines which signal source is used (and hence which AC signal) for phase angle reference. The AC signal used is prioritized based on the AC inputs that are configured for the signal source: phase voltages takes precedence, followed by auxiliary voltage, then phase currents, and finally ground current.

For three phase selection, phase A is used for angle referencing ($V_{\text {ANGLE REF }}=V_{A}$), while Clarke transformation of the phase signals is used for frequency metering and tracking ($\left.V_{\text {FREQUENCY }}=\left(2 V_{A}-V_{B}-V_{C}\right) / 3\right)$ for better performance during fault, open pole, and VT and CT fail conditions.
The phase reference and frequency tracking AC signals are selected based upon the Source configuration, regardless of whether or not a particular signal is actually applied to the relay.
Phase angle of the reference signal will always display zero degrees and all other phase angles will be relative to this signal. If the pre-selected reference signal is not measurable at a given time, the phase angles are not referenced.

The phase angle referencing is done via a phase locked loop, which can synchronize independent UR-series relays if they have the same AC signal reference. These results in very precise correlation of time tagging in the event recorder between different UR relays provided the relays have an IRIG-B connection.

FREQUENCY TRACKING should only be set to "Disabled" in very unusual circumstances; consult the factory for special variable-frequency applications.

PATH: SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP \Rightarrow 约 SIGNAL SOURCES \Rightarrow SOURCE 1(2)

\square SOURCE 1		(1)	SOURCE 1 NAME: SRC 1	Range:	up to 6 alphanumeric characters
	MESSAGE	-	SOURCE 1 PHASE CT: None	Range:	None, F1, F5, F1+F5,... up to a combination of any 5 CTs. Only Phase CT inputs are displayed.
	MESSAGE	-	SOURCE 1 GROUND CT: None	Range:	None, F1, F5, F1+F5,... up to a combination of any 5 CTs. Only Ground CT inputs are displayed.
	MESSAGE	-	SOURCE 1 PHASE VT: None	Range:	None, F1, F5 Only phase voltage inputs will be displayed.
	MESSAGE	(4)	SOURCE 1 AUX VT: None	Range:	None, F1, F5 Only auxiliary voltage inputs will be displayed.

Two identical Source menus are available. The "SRC 1" text can be replaced by with a user-defined name appropriate for the associated source.
"F" represents the module slot position. The number directly following this letter represents either the first bank of four channels $(1,2,3,4)$ called " 1 " or the second bank of four channels $(5,6,7,8)$ called " 5 " in a particular CT/VT module. Refer to the Introduction to AC Sources section at the beginning of this chapter for additional details on this concept.

It is possible to select the sum of up to five (5) CTs. The first channel displayed is the CT to which all others will be referred. For example, the selection "F1+F5" indicates the sum of each phase from channels "F1" and "F5", scaled to whichever CT has the higher ratio. Selecting "None" hides the associated actual values.

The approach used to configure the AC sources consists of several steps; first step is to specify the information about each CT and VT input. For CT inputs, this is the nominal primary and secondary current. For VTs, this is the connection type, ratio and nominal secondary voltage. Once the inputs have been specified, the configuration for each Source is entered, including specifying which CTs will be summed together.

User Selection of AC Parameters for Comparator Elements:

CT/VT modules automatically calculate all current and voltage parameters from the available inputs. Users must select the specific input parameters to be measured by every element in the relevant settings menu. The internal design of the element specifies which type of parameter to use and provides a setting for Source selection. In elements where the parameter may be either fundamental or RMS magnitude, such as phase time overcurrent, two settings are provided. One setting specifies the Source, the second setting selects between fundamental phasor and RMS.

AC Input Actual Values:

The calculated parameters associated with the configured voltage and current inputs are displayed in the current and voltage sections of actual values. Only the phasor quantities associated with the actual AC physical input channels will be displayed here. All parameters contained within a configured source are displayed in the sources section of the actual values.

Disturbance Detectors (Internal):

The 50DD element is a sensitive current disturbance detector that detects any disturbance on the protected system. 50DD is intended for use in conjunction with measuring elements, blocking of current based elements (to prevent maloperation as a result of the wrong settings), and starting oscillography data capture. A disturbance detector is provided for each Source.
The 50DD function responds to the changes in magnitude of the sequence currents. The disturbance detector scheme logic is as follows:

Figure 5-13: DISTURBANCE DETECTOR LOGIC DIAGRAM
The disturbance detector responds to the change in currents of twice the current cut-off level. The default cut-off threshold is 0.02 pu ; thus by default the disturbance detector responds to a change of 0.04 pu . The metering sensitivity setting (PRODUCT SETUP $\Rightarrow \sqrt{ }$ DISPLAY PROPERTIES $\Rightarrow \sqrt{ }$ CURRENT CUT-OFF LEVEL) controls the sensitivity of the disturbance detector accordingly.

PATH: SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow 』$ BREAKERS \Rightarrow BREAKER 1(2)

A description of the operation of the breaker control and status monitoring features is provided in Chapter 4. Only information concerning programming of the associated settings is covered here. These features are provided for two breakers; a user may use only those portions of the design relevant to a single breaker, which must be Breaker No. 1.

- BREAKER 1(2) FUNCTION: Set to "Enable" to allow the operation of any breaker control feature.
- BREAKER1(2) PUSH BUTTON CONTROL: Set to "Enable" to allow faceplate push button operations.
- BREAKER 1(2) NAME: Assign a user-defined name (up to 6 characters) to the breaker. This name will be used in flash messages related to Breaker No. 1.
- BREAKER 1(2) MODE: Selects "3-pole" mode, where all breaker poles are operated simultaneously, or "1-pole" mode where all breaker poles are operated either independently or simultaneously.
- BREAKER 1(2) OPEN: Selects an operand that creates a programmable signal to operate an output relay to open Breaker No. 1.
- BREAKER 1(2) CLOSE: Selects an operand that creates a programmable signal to operate an output relay to close Breaker No. 1.
- BREAKER 1(2) ФA/3-POLE: Selects an operand, usually a contact input connected to a breaker auxiliary position tracking mechanism. This input can be either a $52 /$ a or $52 / \mathrm{b}$ contact, or a combination the $52 / \mathrm{a}$ and $52 / \mathrm{b}$ contacts, that must be programmed to create a logic 0 when the breaker is open. If BREAKER 1 MODE is selected as " 3 -Pole", this setting selects a single input as the operand used to track the breaker open or closed position. If the mode is selected as "1-Pole", the input mentioned above is used to track phase A and settings BREAKER 1 ФB and BREAKER 1 ФC select operands to track phases B and C, respectively.
- BREAKER 1(2) $\Phi \mathbf{B}$: If the mode is selected as 3-pole, this setting has no function. If the mode is selected as 1-pole, this input is used to track phase B as above for phase A.
- BREAKER 1(2) ФC: If the mode is selected as 3-pole, this setting has no function. If the mode is selected as 1-pole, this input is used to track phase C as above for phase A.
- BREAKER 1(2) EXT ALARM: Selects an operand, usually an external contact input, connected to a breaker alarm reporting contact.
- BREAKER 1(2) ALARM DELAY: Sets the delay interval during which a disagreement of status among the three pole position tracking operands will not declare a pole disagreement, to allow for non-simultaneous operation of the poles.
- MANUAL CLOSE RECAL1 TIME: Sets the interval required to maintain setting changes in effect after an operator has initiated a manual close command to operate a circuit breaker.
- BREAKER 1(2) OUT OF SV: Selects an operand indicating that Breaker No. 1 is out-of-service.
- UCA XCBR1(2) PwrSupSt0: Selects a FlexLogic ${ }^{\text {TM }}$ operand to provide a value for the UCA XCBR1(2) PwrSupSt bit 0 data item.
- UCA XCBR1(2) PresSt: Selects a FlexLogic ${ }^{\text {TM }}$ operand to provide a value for the UCA XCBR1(2) PresSt data item.
- UCA XCBR1(2) TrpCoil: Selects a FlexLogic ${ }^{\text {TM }}$ operand to provide a value for the UCA XCBR1(2) TrpCoil data item.
- BKR XCBR SBO TIMEOUT: The Select-Before-Operate timer specifies an interval from the receipt of the UCA Breaker Control Select signal until the automatic de-selection of the breaker, so that the breaker does not remain selected indefinitely. This setting applies only to UCA SBO operation.

Figure 5-14: DUAL BREAKER CONTROL SCHEME LOGIC
a) SETTINGS

PATH: SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ FLEXCURVES \Rightarrow FLEXCURVE A(D)

FlexCurves ${ }^{\text {TM }} \mathrm{A}$ through D have settings for entering times to Reset/Operate at the following pickup levels: 0.00 to 0.98 / 1.03 to 20.00. This data is converted into 2 continuous curves by linear interpolation between data points. To enter a custom FlexCurve ${ }^{\text {TM }}$, enter the Reset/Operate time (using the VALUE keys) for each selected pickup point (using the \triangle MESSAGE ∇ keys) for the desired protection curve (A, B, C, or D).

Table 5-3: FLEXCURVE ${ }^{\text {TM }}$ TABLE

RESET	$\begin{gathered} \text { TIME } \\ \text { MS } \end{gathered}$	RESET	$\begin{gathered} \text { TIME } \\ \text { MS } \end{gathered}$
0.00		0.68	
0.05		0.70	
0.10		0.72	
0.15		0.74	
0.20		0.76	
0.25		0.78	
0.30		0.80	
0.35		0.82	
0.40		0.84	
0.45		0.86	
0.48		0.88	
0.50		0.90	
0.52		0.91	
0.54		0.92	
0.56		0.93	
0.58		0.94	
0.60		0.95	
0.62		0.96	
0.64		0.97	
0.66		0.98	

OPERATE	TIME MS	OPERATE	TIME MS	OPERATE	TIME MS	OPERATE
MIME						
MS						

The relay using a given FlexCurve ${ }^{T M}$ applies linear approximation for times between the user-entered points. Special care must be applied when setting the two points that are close to the multiple of pickup of 1, i.e. 0.98 pu and 1.03 pu . It is recommended to set the two times to a similar value; otherwise, the linear approximation may result in undesired behavior for the operating quantity that is close to 1.00 pu .

b) FLEXCURVE ${ }^{\text {TM }}$ CONFIGURATION WITH ENERVISTA UR SETUP

The enerVista UR Setup software allows for easy configuration and management of FlexCurves ${ }^{\text {TM }}$ and their associated data points. Prospective FlexCurves ${ }^{\text {TM }}$ can be configured from a selection of standard curves to provide the best approximate fit, then specific data points can be edited afterwards. Alternately, curve data can be imported from a specified file (.csv format) by selecting the Import Data From enerVista UR Setup setting.

Curves and data can be exported, viewed, and cleared by clicking the appropriate buttons. FlexCurves ${ }^{\text {TM }}$ are customized by editing the operating time (ms) values at pre-defined per-unit current multiples. Note that the pickup multiples start at zero (implying the "reset time"), operating time below pickup, and operating time above pickup.

c) RECLOSER CURVE EDITING

Recloser Curve selection is special in that recloser curves can be shaped into a composite curve with a minimum response time and a fixed time above a specified pickup multiples. There are 41 recloser curve types supported. These definite operating times are useful to coordinate operating times, typically at higher currents and where upstream and downstream protective devices have different operating characteristics. The Recloser Curve configuration window shown below appears when the Initialize From enerVista UR Setup setting is set to "Recloser Curve" and the Initialize FlexCurve button is clicked.

Figure 5-15: RECLOSER CURVE INITIALIZATION
Multiplier and Adder settings only affect the curve portion of the characteristic and not the MRT and HCT settings. The HCT settings override the MRT settings for multiples of pickup greater than the HCT Ratio.

d) EXAMPLE

A composite curve can be created from the GE_ 111 standard with MRT $=200 \mathrm{~ms}$ and HCT initially disabled and then enabled at 8 times pickup with an operating time of 30 ms . At approximately 4 times pickup, the curve operating time is equal to the MRT and from then onwards the operating time remains at 200 ms (see below).

Figure 5-16: COMPOSITE RECLOSER CURVE WITH HCT DISABLED
With the HCT feature enabled, the operating time reduces to 30 ms for pickup multiples exceeding 8 times pickup.

Figure 5-17: COMPOSITE RECLOSER CURVE WITH HCT ENABLED
Configuring a composite curve with an increase in operating time at increased pickup multiples is not allowed. If this is attempted, the enerVista UR Setup software generates an error message and discards the proposed changes.
e) STANDARD RECLOSER CURVES

The standard Recloser curves available for the F60 are displayed in the following graphs.

Figure 5-18: RECLOSER CURVES GE101 TO GE106

Figure 5-19: RECLOSER CURVES GE113, GE120, GE138 AND GE142

Figure 5-20: RECLOSER CURVES GE134, GE137, GE140, GE151 AND GE201

Figure 5-21: RECLOSER CURVES GE131, GE141, GE152, AND GE200

Figure 5-22: RECLOSER CURVES GE133, GE161, GE162, GE163, GE164 AND GE165

Figure 5-23: RECLOSER CURVES GE116, GE117, GE118, GE132, GE136, AND GE139

Figure 5-24: RECLOSER CURVES GE107, GE111, GE112, GE114, GE115, GE121, AND GE122

Figure 5-25: RECLOSER CURVES GE119, GE135, AND GE202

To provide maximum flexibility to the user, the arrangement of internal digital logic combines fixed and user-programmed parameters. Logic upon which individual features are designed is fixed, and all other logic, from digital input signals through elements or combinations of elements to digital outputs, is variable. The user has complete control of all variable logic through FlexLogic ${ }^{\text {TM }}$. In general, the system receives analog and digital inputs which it uses to produce analog and digital outputs. The major sub-systems of a generic UR-series relay involved in this process are shown below.

Figure 5-26: UR ARCHITECTURE OVERVIEW
The states of all digital signals used in the F 60 are represented by flags (or FlexLogic ${ }^{\text {TM }}$ operands, which are described later in this section). A digital "1" is represented by a 'set' flag. Any external contact change-of-state can be used to block an element from operating, as an input to a control feature in a FlexLogic ${ }^{\text {TM }}$ equation, or to operate a contact output. The state of the contact input can be displayed locally or viewed remotely via the communications facilities provided. If a simple scheme where a contact input is used to block an element is desired, this selection is made when programming the element. This capability also applies to the other features that set flags: elements, virtual inputs, remote inputs, schemes, and human operators.
If more complex logic than presented above is required, it is implemented via FlexLogic ${ }^{\text {TM }}$. For example, if it is desired to have the closed state of contact input H 7 a and the operated state of the phase undervoltage element block the operation of the phase time overcurrent element, the two control input states are programmed in a FlexLogic ${ }^{T M}$ equation. This equation ANDs the two control inputs to produce a 'virtual output' which is then selected when programming the phase time overcurrent to be used as a blocking input. Virtual outputs can only be created by FlexLogic ${ }^{\text {TM }}$ equations.

Traditionally, protective relay logic has been relatively limited. Any unusual applications involving interlocks, blocking, or supervisory functions had to be hard-wired using contact inputs and outputs. FlexLogic ${ }^{\text {TM }}$ minimizes the requirement for auxiliary components and wiring while making more complex schemes possible.

The logic that determines the interaction of inputs, elements, schemes and outputs is field programmable through the use of logic equations that are sequentially processed. The use of virtual inputs and outputs in addition to hardware is available internally and on the communication ports for other relays to use (distributed FlexLogic ${ }^{\text {TM }}$).
FlexLogic ${ }^{\text {TM }}$ allows users to customize the relay through a series of equations that consist of operators and operands. The operands are the states of inputs, elements, schemes and outputs. The operators are logic gates, timers and latches (with set and reset inputs). A system of sequential operations allows any combination of specified operands to be assigned as inputs to specified operators to create an output. The final output of an equation is a numbered register called a virtual output. Virtual outputs can be used as an input operand in any equation, including the equation that generates the output, as a seal-in or other type of feedback.
A FlexLogic ${ }^{T M}$ equation consists of parameters that are either operands or operators. Operands have a logic state of 1 or 0. Operators provide a defined function, such as an AND gate or a Timer. Each equation defines the combinations of parameters to be used to set a Virtual Output flag. Evaluation of an equation results in either a 1 ($=\mathrm{ON}$, i.e. flag set) or 0 (=OFF, i.e. flag not set). Each equation is evaluated at least 4 times every power system cycle.
Some types of operands are present in the relay in multiple instances; e.g. contact and remote inputs. These types of operands are grouped together (for presentation purposes only) on the faceplate display. The characteristics of the different types of operands are listed in the table below.

Table 5-4: F60 FLEXLOGIC ${ }^{\text {TM }}$ OPERAND TYPES

OPERAND TYPE	STATE	EXAMPLE FORMAT	CHARACTERISTICS [INPUT IS '1' (= ON) IF...]
Contact Input	On	Cont Ip On	Voltage is presently applied to the input (external contact closed).
	Off	Cont Ip Off	Voltage is presently not applied to the input (external contact open).
Contact Output (type Form-A contact only)	Voltage On	Cont Op 1 VOn	Voltage exists across the contact.
	Voltage Off	Cont Op 1 VOff	Voltage does not exists across the contact.
	Current On	Cont Op 1 IOn	Current is flowing through the contact.
	Current Off	Cont Op 1 IOff	Current is not flowing through the contact.
Direct Input	On	DIRECT INPUT 1 On	The direct input is presently in the ON state.
Element (Analog)	Pickup	PHASE TOC1 PKP	The tested parameter is presently above the pickup setting of an element which responds to rising values or below the pickup setting of an element which responds to falling values.
	Dropout	PHASE TOC1 DPO	This operand is the logical inverse of the above PKP operand.
	Operate	PHASE TOC1 OP	The tested parameter has been above/below the pickup setting of the element for the programmed delay time, or has been at logic 1 and is now at logic 0 but the reset timer has not finished timing.
	Block	PH DIR1 BLK	The output of the comparator is set to the block function.
Element (Digital)	Pickup	Dig Element 1 PKP	The input operand is at logic 1.
	Dropout	Dig Element 1 DPO	This operand is the logical inverse of the above PKP operand.
	Operate	Dig Element 1 OP	The input operand has been at logic 1 for the programmed pickup delay time, or has been at logic 1 for this period and is now at logic 0 but the reset timer has not finished timing.
$\begin{aligned} & \text { Element } \\ & \text { (Digital Counter) } \end{aligned}$	Higher than	Counter 1 HI	The number of pulses counted is above the set number.
	Equal to	Counter 1 EQL	The number of pulses counted is equal to the set number.
	Lower than	Counter 1 LO	The number of pulses counted is below the set number.
Fixed	On	On	Logic 1
	Off	Off	Logic 0
Remote Input	On	REMOTE INPUT 1 On	The remote input is presently in the ON state.
Virtual Input	On	Virt Ip 1 On	The virtual input is presently in the ON state.
Virtual Output	On	Virt Op 1 On	The virtual output is presently in the set state (i.e. evaluation of the equation which produces this virtual output results in a "1").

The operands available for this relay are listed alphabetically by types in the following table.
Table 5-5: F60 FLEXLOGIC ${ }^{\text {™ }}$ OPERANDS (Sheet 1 of 6)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION
CONTROL PUSHBUTTONS	CONTROL PUSHBTN n ON	Control Pushbutton n ($n=1$ to 7) is being pressed.
DIRECT DEVICES	DIRECT DEVICE 1On DIRECT DEVICE 16On DIRECT DEVICE 1Off DIRECT DEVICE 16Off	Flag is set, logic=1 Flag is set, logic=1 Flag is set, logic=1 Flag is set, logic=1
DIRECT INPUT/ OUTPUT CHANNEL MONITORING	DIR IO CH1(2) CRC ALARM DIR IO CRC ALARM DIR IO CH1(2) UNRET ALM DIR IO UNRET ALM	The rate of Direct Input messages received on Channel 1(2) and failing the CRC exceeded the user-specified level. The rate of Direct Input messages failing the CRC exceeded the userspecified level on Channel 1 or 2. The rate of returned direct input/output messages on Channel 1(2) exceeded the user-specified level (ring configurations only). The rate of returned direct input/output messages exceeded the userspecified level on Channel 1 or 2 (ring configurations only).
ELEMENT: Autoreclose (per CT bank)	AR 1 ENABLED AR 1 RIP AR 1 LO AR 1 BLK FROM MAN CL AR 1 CLOSE AR 1 SHOT CNT=0 AR 1 SHOT CNT=4 AR 1 DISABLED	Autoreclose 1 is enabled Autoreclose 1 is in progress Autoreclose 1 is locked out Autoreclose 1 is temporarily disabled Autoreclose 1 close command is issued Autoreclose 1 shot count is 0 Autoreclose 1 shot count is 4 Autoreclose 1 is disabled
ELEMENT: Auxiliary OV	$\begin{aligned} & \text { AUX OV1 PKP } \\ & \text { AUX OV1 DPO } \\ & \text { AUX OV1 OP } \end{aligned}$	Auxiliary Overvoltage element has picked up Auxiliary Overvoltage element has dropped out Auxiliary Overvoltage element has operated
ELEMENT: Auxiliary UV	$\begin{aligned} & \text { AUX UV1 PKP } \\ & \text { AUX UV1 DPO } \\ & \text { AUX UV1 OP } \end{aligned}$	Auxiliary Undervoltage element has picked up Auxiliary Undervoltage element has dropped out Auxiliary Undervoltage element has operated
ELEMENT: Breaker Arcing	BKR ARC 1 OP BKR ARC 2 OP	Breaker Arcing 1 is operated Breaker Arcing 2 is operated
ELEMENT Breaker Failure	BKR FAIL 1 RETRIPA BKR FAIL 1 RETRIPB BKR FAIL 1 RETRIPC BKR FAIL 1 RETRIP BKR FAIL 1 T1 OP BKR FAIL 1 T2 OP BKR FAIL 1 T3 OP BKR FAIL 1 TRIP OP	Breaker Failure 1 re-trip phase A (only for 1-pole schemes) Breaker Failure 1 re-trip phase B (only for 1-pole schemes) Breaker Failure 1 re-trip phase C (only for 1-pole schemes) Breaker Failure 1 re-trip 3-phase Breaker Failure 1 Timer 1 is operated Breaker Failure 1 Timer 2 is operated Breaker Failure 1 Timer 3 is operated Breaker Failure 1 trip is operated
	BKR FAIL 2	Same set of operands as shown for BKR FAIL 1
ELEMENT: Breaker Control	BREAKER 1 OFF CMD BREAKER 1 ON CMD BREAKER 1 \&A CLSD BREAKER 1 \&B CLSD BREAKER 1 фC CLSD BREAKER 1 CLOSED BREAKER 1 OPEN BREAKER 1 DISCREP BREAKER 1 TROUBLE BREAKER 1 MNL CLS BREAKER 1 TRIP A BREAKER 1 TRIP B BREAKER 1 TRIP C BREAKER 1 ANY P OPEN BREAKER 1 ONE P OPEN BREAKER 1 OOS	Breaker 1 OFF command Breaker 1 ON command Breaker 1 phase A is closed Breaker 1 phase B is closed Breaker 1 phase C is closed Breaker 1 is closed Breaker 1 is open Breaker 1 has discrepancy Breaker 1 trouble alarm Breaker 1 manual close Breaker 1 trip phase A command Breaker 1 trip phase B command Breaker 1 trip phase C command At least one pole of Breaker 1 is open Only one pole of Breaker 1 is open Breaker 1 is out of service
	BREAKER 2	Same set of operands as shown for BREAKER 1
ELEMENT Cold Load Pickup	COLD LOAD 1 OP COLD LOAD 2 OP	Cold Load Pickup element 1 has operated Cold Load Pickup element 2 has operated

Table 5-5: F60 FLEXLOGIC ${ }^{\text {TM }}$ OPERANDS (Sheet 2 of 6)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION
ELEMENT: Digital Counter	Counter 1 HI Counter 1 EQL Counter 1 LO \downarrow Counter 8 HI Counter 8 EQL Counter 8 LO	Digital Counter 1 output is 'more than' comparison value Digital Counter 1 output is 'equal to' comparison value Digital Counter 1 output is 'less than' comparison value Digital Counter 8 output is 'more than' comparison value Digital Counter 8 output is 'equal to' comparison value Digital Counter 8 output is 'less than' comparison value
ELEMENT: Digital Element	Dig Element 1 PKP Dig Element 1 OP Dig Element 1 DPO Dig Element 16 PKP Dig Element 16 OP Dig Element 16 DPO	Digital Element 1 is picked up Digital Element 1 is operated Digital Element 1 is dropped out Digital Element 16 is picked up Digital Element 16 is operated Digital Element 16 is dropped out
ELEMENT: Sensitive Directional Power	DIR POWER 1 STG1 PKP DIR POWER 1 STG2 PKP DIR POWER 1 STG1 DPO DIR POWER 1 STG2 DPO DIR POWER 1 STG1 OP DIR POWER 1 STG2 OP DIR POWER 1 PKP DIR POWER 1 DPO DIR POWER 1 OP	Stage 1 of the Directional Power element 1 has picked up Stage 2 of the Directional Power element 1 has picked up Stage 1 of the Directional Power element 1 has dropped out Stage 2 of the Directional Power element 1 has dropped out Stage 1 of the Directional Power element 1 has operated Stage 2 of the Directional Power element 1 has operated The Directional Power element has picked up The Directional Power element has dropped out The Directional Power element has operated
	DIR POWER 2	Same set of operands as DIR POWER 1
ELEMENT Frequency Rate of Change	FREQ RATE n PKP FREQ RATE n DPO FREQ RATE n OP	The n-th Frequency Rate of Change element has picked up The n-th Frequency Rate of Change element has dropped out The n-th Frequency Rate of Change element has operated
ELEMENT: FlexElements ${ }^{\text {TM }}$	$\begin{aligned} & \text { FxE } 1 \mathrm{PKP} \\ & \text { FxE } 1 \mathrm{OP} \\ & \text { FxE } 1 \mathrm{DPO} \\ & \\ & \\ & \text { FxE } 8 \mathrm{PKP} \\ & \text { FxE } 8 \mathrm{OP} \\ & \text { FxE } 8 \text { DPO } \end{aligned}$	FlexElement ${ }^{\text {TM }} 1$ has picked up FlexElement ${ }^{T M} 1$ has operated FlexElement ${ }^{T M} 1$ has dropped out FlexElement ${ }^{\text {TM }} 8$ has picked up FlexElement ${ }^{T M} 8$ has operated FlexElement ${ }^{T M} 8$ has dropped out
ELEMENT: Ground IOC	GROUND IOC1 PKP GROUND IOC1 OP GROUND IOC1 DPO	Ground Instantaneous Overcurrent 1 has picked up Ground Instantaneous Overcurrent 1 has operated Ground Instantaneous Overcurrent 1 has dropped out
	GROUND IOC2	Same set of operands as shown for GROUND IOC 1
ELEMENT: Ground TOC	GROUND TOC1 PKP GROUND TOC1 OP GROUND TOC1 DPO	Ground Time Overcurrent 1 has picked up Ground Time Overcurrent 1 has operated Ground Time Overcurrent 1 has dropped out
	GROUND TOC2	Same set of operands as shown for GROUND TOC1
$\begin{aligned} & \text { ELEMENT } \\ & \text { Hi-Z } \end{aligned}$	HI-Z ARC DETECTED HI-Z ARC DETECTED-A HI-Z ARC DETECTED-B HI-Z ARC DETECTED-C HI-Z ARC DETECTED-N HI-Z DOWNED COND HI-Z DOWNED COND-A HI-Z DOWNED COND-B HI-Z DOWNED COND-C HI-Z DOWNED COND-N HI-Z ARC SUSPECTED HI-Z ARC SUSPECTED-A HI-Z ARC SUSPECTED-B HI-Z ARC SUSPECTED-C HI-Z ARC SUSPECTED-N HI-Z IOC A HI-Z IOC B HI-Z IOC C HI-Z LOSS OF LOAD-A HI-Z LOSS OF LOAD-B HI-Z LOSS OF LOAD-C	The Hi-Z element has operated The Hi-Z Phase A element has operated The Hi-Z Phase B element has operated The Hi-Z Phase C element has operated The Hi-Z Neutral element has operated The Hi-Z Downed Conductor element has operated The Hi-Z Downed Conductor Phase A element has operated The Hi-Z Downed Conductor Phase B element has operated The Hi-Z Downed Conductor Phase C element has operated The Hi-Z Downed Conductor Neutral element has operated The Hi-Z Arcing Suspected element has operated The Hi-Z Arcing Suspected Phase A element has operated The Hi-Z Arcing Suspected Phase B element has operated The Hi-Z Arcing Suspected Phase C element has operated The Hi-Z Arcing Suspected Neutral element has operated The Hi-Z IOC A element has operated The Hi-Z IOC B element has operated The Hi-Z IOC C element has operated The Hi-Z Phase A Loss of Load element has operated The Hi-Z Phase B Loss of Load element has operated The Hi-Z Phase C Loss of Load element has operated
ELEMENT Non-Volatile Latches	LATCH 1 ON LATCH 1 OFF LATCH 16 ON LATCH 16 OFF	Non-Volatile Latch 1 is ON (Logic = 1) Non-Voltage Latch 1 is OFF (Logic $=0$) \downarrow Non-Volatile Latch 16 is ON (Logic = 1) Non-Voltage Latch 16 is OFF (Logic $=0$)

Table 5-5: F60 FLEXLOGIC ${ }^{\text {TM }}$ OPERANDS (Sheet 3 of 6)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION
ELEMENT: Load Encroachment	LOAD ENCHR PKP LOAD ENCHR OP LOAD ENCHR DPO	Load Encroachment has picked up Load Encroachment has operated Load Encroachment has dropped out
ELEMENT: Negative Sequence Directional OC	NEG SEQ DIR OC1 FWD NEG SEQ DIR OC1 REV NEG SEQ DIR OC2 FWD NEG SEQ DIR OC2 REV	Negative Sequence Directional OC1 Forward has operated Negative Sequence Directional OC1 Reverse has operated Negative Sequence Directional OC2 Forward has operated Negative Sequence Directional OC2 Reverse has operated
ELEMENT: Negative Sequence IOC	NEG SEQ IOC1 PKP NEG SEQ IOC1 OP NEG SEQ IOC1 DPO	Negative Sequence Instantaneous Overcurrent 1 has picked up Negative Sequence Instantaneous Overcurrent 1 has operated Negative Sequence Instantaneous Overcurrent 1 has dropped out
	NEG SEQ IOC2	Same set of operands as shown for NEG SEQ IOC1
ELEMENT: Negative Sequence OV	NEG SEQ OV PKP NEG SEQ OV DPO NEG SEQ OV OP	Negative Sequence Overvoltage element has picked up Negative Sequence Overvoltage element has dropped out Negative Sequence Overvoltage element has operated
ELEMENT: Negative Sequence TOC	NEG SEQ TOC1 PKP NEG SEQ TOC1 OP NEG SEQ TOC1 DPO	Negative Sequence Time Overcurrent 1 has picked up Negative Sequence Time Overcurrent 1 has operated Negative Sequence Time Overcurrent 1 has dropped out
	NEG SEQ TOC2	Same set of operands as shown for NEG SEQ TOC1
ELEMENT: Neutral IOC	NEUTRAL IOC1 PKP NEUTRAL IOC1 OP NEUTRAL IOC1 DPO	Neutral Instantaneous Overcurrent 1 has picked up Neutral Instantaneous Overcurrent 1 has operated Neutral Instantaneous Overcurrent 1 has dropped out
	NEUTRAL IOC2	Same set of operands as shown for NEUTRAL IOC1
ELEMENT: Neutral OV	NEUTRAL OV1 PKP NEUTRAL OV1 DPO NEUTRAL OV1 OP	Neutral Overvoltage element has picked up Neutral Overvoltage element has dropped out Neutral Overvoltage element has operated
ELEMENT: Neutral TOC	NEUTRAL TOC1 PKP NEUTRAL TOC1 OP NEUTRAL TOC1 DPO	Neutral Time Overcurrent 1 has picked up Neutral Time Overcurrent 1 has operated Neutral Time Overcurrent 1 has dropped out
	NEUTRAL TOC2	Same set of operands as shown for NEUTRAL TOC1
ELEMENT: Neutral Directional	NTRL DIR OC1 FWD NTRL DIR OC1 REV	Neutral Directional OC1 Forward has operated Neutral Directional OC1 Reverse has operated
	NTRL DIR OC2	Same set of operands as shown for NTRL DIR OC1
ELEMENT: Overfrequency	OVERFREQ 1 PKP OVERFREQ 1 OP OVERFREQ 1 DPO	Overfrequency 1 has picked up Overfrequency 1 has operated Overfrequency 1 has dropped out
	OVERFREQ 2 to 4	Same set of operands as shown for OVERFREQ 1
ELEMENT: Phase Directional	PH DIR1 BLK A PH DIR1 BLK B PH DIR1 BLK C PH DIR1 BLK	Phase A Directional 1 Block Phase B Directional 1 Block Phase C Directional 1 Block Phase Directional 1 Block
	PH DIR2	Same set of operands as shown for PH DIR1
ELEMENT: Phase IOC	PHASE IOC1 PKP PHASE IOC1 OP PHASE IOC1 DPO PHASE IOC1 PKP A PHASE IOC1 PKP B PHASE IOC1 PKP C PHASE IOC1 OP A PHASE IOC1 OP B PHASE IOC1 OP C PHASE IOC1 DPO A PHASE IOC1 DPO B PHASE IOC1 DPO C	At least one phase of PHASE IOC1 has picked up At least one phase of PHASE IOC1 has operated At least one phase of PHASE IOC1 has dropped out Phase A of PHASE IOC1 has picked up Phase B of PHASE IOC1 has picked up Phase C of PHASE IOC1 has picked up Phase A of PHASE IOC1 has operated Phase B of PHASE IOC1 has operated Phase C of PHASE IOC1 has operated Phase A of PHASE IOC1 has dropped out Phase B of PHASE IOC1 has dropped out Phase C of PHASE IOC1 has dropped out
	PHASE IOC2	Same set of operands as shown for PHASE IOC1

Table 5-5: F60 FLEXLOGIC ${ }^{\text {TM }}$ OPERANDS (Sheet 4 of 6)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION
ELEMENT: Phase OV	PHASE OV1 PKP PHASE OV1 OP PHASE OV1 DPO PHASE OV1 PKP A PHASE OV1 PKP B PHASE OV1 PKP C PHASE OV1 OP A PHASE OV1 OP B PHASE OV1 OP C PHASE OV1 DPO A PHASE OV1 DPO B PHASE OV1 DPO C	At least one phase of Overvoltage 1 has picked up At least one phase of Overvoltage 1 has operated At least one phase of Overvoltage 1 has dropped out Phase A of Overvoltage 1 has picked up Phase B of Overvoltage 1 has picked up Phase C of Overvoltage 1 has picked up Phase A of Overvoltage 1 has operated Phase B of Overvoltage 1 has operated Phase C of Overvoltage 1 has operated Phase A of Overvoltage 1 has dropped out Phase B of Overvoltage 1 has dropped out Phase C of Overvoltage 1 has dropped out
ELEMENT: Phase TOC	PHASE TOC1 PKP PHASE TOC1 OP PHASE TOC1 DPO PHASE TOC1 PKP A PHASE TOC1 PKP B PHASE TOC1 PKP C PHASE TOC1 OP A PHASE TOC1 OP B PHASE TOC1 OP C PHASE TOC1 DPO A PHASE TOC1 DPO B PHASE TOC1 DPO C	At least one phase of PHASE TOC1 has picked up At least one phase of PHASE TOC1 has operated At least one phase of PHASE TOC1 has dropped out Phase A of PHASE TOC1 has picked up Phase B of PHASE TOC1 has picked up Phase C of PHASE TOC1 has picked up Phase A of PHASE TOC1 has operated Phase B of PHASE TOC1 has operated Phase C of PHASE TOC1 has operated Phase A of PHASE TOC1 has dropped out Phase B of PHASE TOC1 has dropped out Phase C of PHASE TOC1 has dropped out
	PHASE TOC2	Same set of operands as shown for PHASE TOC1
ELEMENT: Phase UV	PHASE UV1 PKP PHASE UV1 OP PHASE UV1 DPO PHASE UV1 PKP A PHASE UV1 PKP B PHASE UV1 PKP C PHASE UV1 OP A PHASE UV1 OP B PHASE UV1 OP C PHASE UV1 DPO A PHASE UV1 DPO B PHASE UV1 DPO C	At least one phase of UV1 has picked up At least one phase of UV1 has operated At least one phase of UV1 has dropped out Phase A of UV1 has picked up Phase B of UV1 has picked up Phase C of UV1 has picked up Phase A of UV1 has operated Phase B of UV1 has operated Phase C of UV1 has operated Phase A of UV1 has dropped out Phase B of UV1 has dropped out Phase C of UV1 has dropped out
	PHASE UV2	Same set of operands as shown for PHASE UV1
ELEMENT: Selector Switch	SELECTOR 1 POS Y SELECTOR 1 BIT 0 SELECTOR 1 BIT 1 SELECTOR 1 BIT 2 SELECTOR 1 STP ALARM SELECTOR 1 BIT ALARM SELECTOR 1 ALARM SELECTOR 1 PWR ALARM	Selector Switch 1 is in Position Y (mutually exclusive operands). First bit of the 3-bit word encoding position of Selector 1. Second bit of the 3-bit word encoding position of Selector 1. Third bit of the 3-bit word encoding position of Selector 1. Position of Selector 1 has been pre-selected with the stepping up control input but not acknowledged. Position of Selector 1 has been pre-selected with the 3-bit control input but not acknowledged. Position of Selector 1 has been pre-selected but not acknowledged. Position of Selector Switch 1 is undetermined when the relay powers up and synchronizes to the 3-bit input.
	SELECTOR 2	Same set of operands as shown above for SELECTOR 1
ELEMENT: Setting Group	SETTING GROUP ACT 1 SETTING GROUP ACT 6	Setting Group 1 is active Setting Group 6 is active
ELEMENT: Disturbance Detector	SRCx 50DD OP	Source x Disturbance Detector is operated
ELEMENT: VTFF	$\begin{aligned} & \hline \text { SRCx VT FUSE FAIL OP } \\ & \text { SRCx VT FUSE FAIL DPO } \\ & \text { SRCx VT FUSE FAIL VOL LOSS } \end{aligned}$	Source \times VT Fuse Failure detector has operated Source x VT Fuse Failure detector has dropped out Source x has lost voltage signals (V2 above 25\% or V1 below 70\% of nominal)

Table 5-5: F60 FLEXLOGIC ${ }^{\text {TM }}$ OPERANDS (Sheet 5 of 6)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION
ELEMENT: Synchrocheck	SYNC 1 DEAD S OP SYNC 1 DEAD S DPO SYNC 1 SYNC OP SYNC 1 SYNC DPO SYNC 1 CLS OP SYNC 1 CLS DPO SYNC 1 V1 ABOVE MIN SYNC 1 V1 BELOW MAX SYNC 1 V2 ABOVE MIN SYNC 1 V2 BELOW MAX	Synchrocheck 1 dead source has operated Synchrocheck 1 dead source has dropped out Synchrocheck 1 in synchronization has operated Synchrocheck 1 in synchronization has dropped out Synchrocheck 1 close has operated Synchrocheck 1 close has dropped out Synchrocheck 1 V 1 is above the minimum live voltage Synchrocheck 1 V 1 is below the maximum dead voltage Synchrocheck 1 V 2 is above the minimum live voltage Synchrocheck 1 V 2 is below the maximum dead voltage
	SYNC 2	Same set of operands as shown for SYNC 1
ELEMENT: Underfrequency	UNDERFREQ 1 PKP UNDERFREQ 1 OP UNDERFREQ 1 DPO	Underfrequency 1 has picked up Underfrequency 1 has operated Underfrequency 1 has dropped out
	UNDERFREQ 2 to 6	Same set of operands as shown for UNDERFREQ 1 above
FIXED OPERANDS	Off	Logic $=0$. Does nothing and may be used as a delimiter in an equation list; used as 'Disable' by other features.
	On	Logic $=1$. Can be used as a test setting.
INPUTS/OUTPUTS: Contact Inputs	Cont Ip 1 On Cont $\operatorname{lp} 2$ On Cont Ip 1 Off Cont lp 2 Off	(will not appear unless ordered) (will not appear unless ordered) \downarrow (will not appear unless ordered) (will not appear unless ordered)
INPUTS/OUTPUTS: Contact Outputs, Current (from detector on Form-A output only)	Cont Op 1 IOn Cont Op 2 IOn	(will not appear unless ordered) (will not appear unless ordered) \downarrow
	$\begin{array}{rr}\text { Cont Op 1 } & \text { IOff } \\ \text { Cont Op } 2 & \text { IOff } \\ \downarrow & \end{array}$	(will not appear unless ordered) (will not appear unless ordered) \downarrow
INPUTS/OUTPUTS: Contact Outputs, Voltage (from detector on Form-A output only)	Cont Op 1 VOn Cont Op 2 VOn	(will not appear unless ordered) (will not appear unless ordered) \downarrow
	Cont Op 1 VOff Cont Op 2 VOff \downarrow	(will not appear unless ordered) (will not appear unless ordered)
INPUTS/OUTPUTS Direct Inputs	DIRECT INPUT 1 On DIRECT INPUT 32 On	Flag is set, logic=1 Flag is set, logic=1
INPUTS/OUTPUTS: Remote Inputs	$\begin{aligned} & \text { REMOTE INPUT } 1 \text { On } \\ & \downarrow \\ & \text { REMOTE INPUT } 32 \text { On } \end{aligned}$	Flag is set, logic=1 Flag is set, logic=1
INPUTS/OUTPUTS: Virtual Inputs	Virt Ip 1 On Virt Ip 32 On	Flag is set, logic=1 Flag is set, logic=1
INPUTS/OUTPUTS: Virtual Outputs	Virt Op 1 On Virt Op 64 On	Flag is set, logic=1 Flag is set, logic=1
LED TEST	LED TEST IN PROGRESS	An LED test has been initiated and has not finished.
REMOTE DEVICES	REMOTE DEVICE 1 On REMOTE DEVICE 16 On	Flag is set, logic=1 Flag is set, logic=1
	REMOTE DEVICE 1 Off REMOTE DEVICE 16 Off	Flag is set, logic=1 Flag is set, logic=1
RESETTING	RESET OP RESET OP (COMMS) RESET OP (OPERAND) RESET OP (PUSHBUTTON)	Reset command is operated (set by all 3 operands below) Communications source of the reset command Operand (assigned in the INPUTS/OUTPUTS $\Rightarrow \sqrt{ } \sqrt{ }$ RESETTING menu) source of the reset command Reset key (pushbutton) source of the reset command

Table 5-5: F60 FLEXLOGIC ${ }^{\text {TM }}$ OPERANDS (Sheet 6 of 6)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION
$\begin{aligned} & \hline \text { SELF- } \\ & \text { DIAGNOSTICS } \end{aligned}$	ANY MAJOR ERROR ANY MINOR ERROR ANY SELF-TEST BATTERY FAIL DIRECT DEVICE OFF DIRECT RING BREAK DSP ERROR EEPROM DATA ERROR EQUIPMENT MISMATCH FLEXLOGIC ERR TOKEN IRIG-B FAILURE LATCHING OUT ERROR LOW ON MEMORY NO DSP INTERRUPTS PRI ETHERNET FAIL PROGRAM MEMORY PROTOTYPE FIRMWARE REMOTE DEVICE OFF SEC ETHERNET FAIL SNTP FAILURE SYSTEM EXCEPTION UNIT NOT CALIBRATED UNIT NOT PROGRAMMED WATCHDOG ERROR	Any of the major self-test errors generated (major error) Any of the minor self-test errors generated (minor error) Any self-test errors generated (generic, any error) See description in Chapter 7: Commands and Targets.
UNAUTHORIZED ACCESS ALARM	UNAUTHORIZED ACCESS	Asserted when a password entry fails while accessing a password-protected level of the relay.
USER- PROGRAMMABLE PUSHBUTTONS	$\begin{aligned} & \hline \text { PUSHBUTTON x ON } \\ & \text { PUSHBUTTON x OFF } \end{aligned}$	Pushbutton Number x is in the 'On' position Pushbutton Number x is in the 'Off' position

Some operands can be re-named by the user. These are the names of the breakers in the breaker control feature, the ID (identification) of contact inputs, the ID of virtual inputs, and the ID of virtual outputs. If the user changes the default name/ ID of any of these operands, the assigned name will appear in the relay list of operands. The default names are shown in the FlexLogic ${ }^{\text {TM }}$ Operands table above.

The characteristics of the logic gates are tabulated below, and the operators available in FlexLogic ${ }^{\text {TM }}$ are listed in the FlexLogic ${ }^{\text {TM }}$ Operators table.

Table 5-6: FLEXLOGIC ${ }^{\text {TM }}$ GATE CHARACTERISTICS

GATES	NUMBER OF INPUTS	OUTPUT IS '1' (= ON) IF...
NOT	1	input is '0'
OR	2 to 16	any input is '1'
AND	2 to 16	all inputs are '1'
NOR	2 to 16	all inputs are '0'
NAND	2 to 16	any input is '0'
XOR	2	only one input is '1'

Table 5-7: FLEXLOGIC ${ }^{\text {TM }}$ OPERATORS

TYPE	SYNTAX	DESCRIPTION	NOTES
Editor	INSERT	Insert a parameter in an equation list.	
	DELETE	Delete a parameter from an equation list.	
End	END	The first END encountered signifies the last entry in the list of processed FlexLogic ${ }^{\text {TM }}$ parameters.	
One Shot	POSITIVE ONE SHOT	One shot that responds to a positive going edge.	A 'one shot' refers to a single input gate that generates a pulse in response to an edge on the input. The output from a 'one shot' is True (positive) for only one pass through the FlexLogic ${ }^{\text {TM }}$ equation. There is a maximum of 32 'one shots'.
	NEGATIVE ONE SHOT	One shot that responds to a negative going edge.	
	DUAL ONE SHOT	One shot that responds to both the positive and negative going edges.	
Logic Gate	NOT	Logical Not	Operates on the previous parameter.
	$\begin{array}{\|l\|} \hline \text { OR(2) } \\ \downarrow \\ \text { OR(16) } \end{array}$	2 input OR gate 16 input OR gate	Operates on the 2 previous parameters. Operates on the 16 previous parameters.
	$\begin{aligned} & \operatorname{AND}(2) \\ & \downarrow \\ & \operatorname{AND}(16) \end{aligned}$	2 input AND gate 16 input AND gate	Operates on the 2 previous parameters. Operates on the 16 previous parameters.
	$\begin{aligned} & \hline \text { NOR(2) } \\ & \text { NOR(16) } \end{aligned}$	2 input NOR gate 16 input NOR gate	Operates on the 2 previous parameters. Operates on the 16 previous parameters.
	$\begin{aligned} & \hline \text { NAND(2) } \\ & \text { NAND(16) } \end{aligned}$	2 input NAND gate 16 input NAND gate	Operates on the 2 previous parameters. Operates on the 16 previous parameters.
	XOR(2)	2 input Exclusive OR gate	Operates on the 2 previous parameters.
	LATCH (S,R)	Latch (Set, Reset) - reset-dominant	The parameter preceding LATCH (S, R) is the Reset input. The parameter preceding the Reset input is the Set input.
Timer	$\begin{aligned} & \text { TIMER } 1 \\ & \text { } 1 \text { TIMER } 32 \end{aligned}$	Timer set with FlexLogic ${ }^{\text {TM }}$ Timer 1 settings. Timer set with FlexLogic ${ }^{\text {™ }}$ Timer 32 settings.	The timer is started by the preceding parameter. The output of the timer is TIMER \#.
Assign Virtual Output	$\begin{aligned} & =\text { Virt Op } 1 \\ & =\downarrow \text { Virt Op } 64 \end{aligned}$	Assigns previous FlexLogic ${ }^{\text {TM }}$ parameter to Virtual Output 1. Assigns previous FlexLogic ${ }^{\text {TM }}$ parameter to Virtual Output 64.	The virtual output is set by the preceding parameter

When forming a FlexLogic ${ }^{\text {TM }}$ equation, the sequence in the linear array of parameters must follow these general rules:

1. Operands must precede the operator which uses the operands as inputs.
2. Operators have only one output. The output of an operator must be used to create a virtual output if it is to be used as an input to two or more operators.
3. Assigning the output of an operator to a Virtual Output terminates the equation.
4. A timer operator (e.g. "TIMER 1") or virtual output assignment (e.g. " = Virt Op 1") may only be used once. If this rule is broken, a syntax error will be declared.
5.4.3 FLEXLOGIC ${ }^{\text {TM }}$ EVALUATION

Each equation is evaluated in the order in which the parameters have been entered.
FlexLogic ${ }^{\text {TM }}$ provides latches which by definition have a memory action, remaining in the set state after the set input has been asserted. However, they are volatile; i.e. they reset on the re-application of control power.
When making changes to settings, all FlexLogic ${ }^{T M}$ equations are re-compiled whenever any new setting value is entered, so all latches are automatically reset. If it is necessary to re-initialize FlexLogic ${ }^{\mathrm{TM}}$ during testing, for example, it is suggested to power the unit down and then back up.

This section provides an example of implementing logic for a typical application. The sequence of the steps is quite important as it should minimize the work necessary to develop the relay settings. Note that the example presented in the figure below is intended to demonstrate the procedure, not to solve a specific application situation.
In the example below, it is assumed that logic has already been programmed to produce Virtual Outputs 1 and 2, and is only a part of the full set of equations used. When using FlexLogic ${ }^{\text {TM }}$, it is important to make a note of each Virtual Output used - a Virtual Output designation (1 to 64) can only be properly assigned once.

Figure 5-27: EXAMPLE LOGIC SCHEME

1. Inspect the example logic diagram to determine if the required logic can be implemented with the FlexLogic ${ }^{\text {TM }}$ operators. If this is not possible, the logic must be altered until this condition is satisfied. Once this is done, count the inputs to each gate to verify that the number of inputs does not exceed the FlexLogic ${ }^{\text {TM }}$ limits, which is unlikely but possible. If the number of inputs is too high, subdivide the inputs into multiple gates to produce an equivalent. For example, if 25 inputs to an AND gate are required, connect Inputs 1 through 16 to AND(16), 17 through 25 to AND(9), and the outputs from these two gates to AND(2).
Inspect each operator between the initial operands and final virtual outputs to determine if the output from the operator is used as an input to more than one following operator. If so, the operator output must be assigned as a Virtual Output.

For the example shown above, the output of the AND gate is used as an input to both OR\#1 and Timer 1, and must therefore be made a Virtual Output and assigned the next available number (i.e. Virtual Output 3). The final output must also be assigned to a Virtual Output as Virtual Output 4, which will be programmed in the contact output section to operate relay H1 (i.e. Output Contact H1).
Therefore, the required logic can be implemented with two FlexLogic ${ }^{\text {TM }}$ equations with outputs of Virtual Output 3 and Virtual Output 4 as shown below.

Figure 5-28: LOGIC EXAMPLE WITH VIRTUAL OUTPUTS
2. Prepare a logic diagram for the equation to produce Virtual Output 3, as this output will be used as an operand in the Virtual Output 4 equation (create the equation for every output that will be used as an operand first, so that when these operands are required they will already have been evaluated and assigned to a specific Virtual Output). The logic for Virtual Output 3 is shown below with the final output assigned.

Figure 5-29: LOGIC FOR VIRTUAL OUTPUT 3
3. Prepare a logic diagram for Virtual Output 4, replacing the logic ahead of Virtual Output 3 with a symbol identified as Virtual Output 3, as shown below.

Figure 5-30: LOGIC FOR VIRTUAL OUTPUT 4
4. Program the FlexLogic ${ }^{\text {TM }}$ equation for Virtual Output 3 by translating the logic into available FlexLogic ${ }^{\text {TM }}$ parameters. The equation is formed one parameter at a time until the required logic is complete. It is generally easier to start at the output end of the equation and work back towards the input, as shown in the following steps. It is also recommended to list operator inputs from bottom to top. For demonstration, the final output will be arbitrarily identified as parameter 99, and each preceding parameter decremented by one in turn. Until accustomed to using FlexLogic ${ }^{\top \mathrm{TM}}$, it is suggested that a worksheet with a series of cells marked with the arbitrary parameter numbers be prepared, as shown below.

Figure 5-31: FLEXLOGIC ${ }^{\text {TM }}$ WORKSHEET
5. Following the procedure outlined, start with parameter 99, as follows:

99: The final output of the equation is Virtual Output 3, which is created by the operator "= Virt Op n". This parameter is therefore "= Virt Op 3."

98: The gate preceding the output is an AND, which in this case requires two inputs. The operator for this gate is a 2input AND so the parameter is "AND(2)". Note that FlexLogic ${ }^{\text {TM }}$ rules require that the number of inputs to most types of operators must be specified to identify the operands for the gate. As the 2-input AND will operate on the two operands preceding it, these inputs must be specified, starting with the lower.

97: This lower input to the AND gate must be passed through an inverter (the NOT operator) so the next parameter is "NOT". The NOT operator acts upon the operand immediately preceding it, so specify the inverter input next.
96: The input to the NOT gate is to be contact input H 1 c . The ON state of a contact input can be programmed to be set when the contact is either open or closed. Assume for this example the state is to be ON for a closed contact. The operand is therefore "Cont Ip H1c On".
95: The last step in the procedure is to specify the upper input to the AND gate, the operated state of digital element 2. This operand is "DIG ELEM 2 OP".

Writing the parameters in numerical order can now form the equation for VIRTUAL OUTPUT 3:

```
[95] DIG ELEM 2 OP
[96] Cont Ip H1c On
[97] NOT
[98] AND(2)
[99] = Virt Op 3
```

It is now possible to check that this selection of parameters will produce the required logic by converting the set of parameters into a logic diagram. The result of this process is shown below, which is compared to the Logic for Virtual Output 3 diagram as a check.

Figure 5-32: FLEXLOGIC ${ }^{\text {TM }}$ EQUATION FOR VIRTUAL OUTPUT 3
6. Repeating the process described for VIRTUAL OUTPUT 3, select the FlexLogic ${ }^{\text {TM }}$ parameters for Virtual Output 4.

99: The final output of the equation is VIRTUAL OUTPUT 4 which is parameter "= Virt Op 4".
98: The operator preceding the output is Timer 2, which is operand "TIMER 2". Note that the settings required for the timer are established in the timer programming section.

97: The operator preceding Timer 2 is OR \#2, a 3-input OR, which is parameter "OR(3)".
96: The lowest input to OR \#2 is operand "Cont Ip H1c On".
95: The center input to OR \#2 is operand "TIMER 1".
94: The input to Timer 1 is operand "Virt Op 3 On".
93: The upper input to OR \#2 is operand "LATCH (S, R) ".
92: There are two inputs to a latch, and the input immediately preceding the latch reset is OR \#1, a 4-input OR, which is parameter " $\mathrm{OR}(4)$ ".

91: The lowest input to OR \#1 is operand "Virt Op 3 On".
90: The input just above the lowest input to OR \#1 is operand " $\operatorname{XOR}(2)$ ".
89: The lower input to the XOR is operand "DIG ELEM 1 PKP".
88: The upper input to the XOR is operand "Virt Ip 1 On".
87: The input just below the upper input to OR \#1 is operand "Virt Op 2 On".
86: The upper input to OR \#1 is operand "Virt Op 1 On".
85: The last parameter is used to set the latch, and is operand "Virt Op 4 On".

The equation for VIRTUAL OUTPUT 4 is:
[85] Virt Op 4 On
[86] Virt Op 1 On
[87] Virt Op 2 On
[88] Virt Ip 1 On
[89] DIG ELEM 1 PKP
[90] XOR(2)
[91] $\operatorname{Virt~Op~} 3$ On
[92] OR(4)
[93] LATCH (S, R)
[94] Virt Op 3 On
[95] TIMER 1
[96] Cont Ip H1c On
[97] OR(3)
[98] TIMER 2
[99] = Virt Op 4

It is now possible to check that the selection of parameters will produce the required logic by converting the set of parameters into a logic diagram. The result of this process is shown below, which is compared to the Logic for Virtual Output 4 diagram as a check.

Figure 5-33: FLEXLOGIC ${ }^{\text {TM }}$ EQUATION FOR VIRTUAL OUTPUT 4
7. Now write the complete FlexLogic ${ }^{\text {TM }}$ expression required to implement the logic, making an effort to assemble the equation in an order where Virtual Outputs that will be used as inputs to operators are created before needed. In cases where a lot of processing is required to perform logic, this may be difficult to achieve, but in most cases will not cause problems as all logic is calculated at least 4 times per power frequency cycle. The possibility of a problem caused by sequential processing emphasizes the necessity to test the performance of FlexLogic ${ }^{\text {TM }}$ before it is placed in service.
In the following equation, Virtual Output 3 is used as an input to both Latch 1 and Timer 1 as arranged in the order shown below:

```
DIG ELEM 2 OP
Cont Ip H1c On
NOT
AND (2)
```

```
= Virt Op 3
Virt Op 4 On
Virt Op 1 On
Virt Op 2 On
Virt Ip 1 On
DIG ELEM 1 PKP
XOR (2)
Virt Op 3 On
OR(4)
LATCH (S,R)
Virt Op 3 On
TIMER 1
Cont Ip H1c On
OR(3)
TIMER 2
= Virt Op 4
END
```

In the expression above, the Virtual Output 4 input to the 4-input OR is listed before it is created. This is typical of a form of feedback, in this case, used to create a seal-in effect with the latch, and is correct.
8. The logic should always be tested after it is loaded into the relay, in the same fashion as has been used in the past. Testing can be simplified by placing an "END" operator within the overall set of FlexLogic ${ }^{\text {TM }}$ equations. The equations will then only be evaluated up to the first "END" operator.
The "On" and "Off" operands can be placed in an equation to establish a known set of conditions for test purposes, and the "INSERT" and "DELETE" commands can be used to modify equations.
5.4.5 FLEXLOGIC ${ }^{\text {TM }}$ EQUATION EDITOR

PATH: SETTINGS $\Rightarrow \Omega$ FLEXLOGIC \Rightarrow FLEXLOGIC EQUATION EDITOR

There are 512 FlexLogic $^{\text {™ }}$ entries available, numbered from 1 to 512 , with default 'END' entry settings. If a "Disabled" Element is selected as a FlexLogic ${ }^{\text {TM }}$ entry, the associated state flag will never be set to ' 1 '. The ' $+/-$ ' key may be used when editing FlexLogic ${ }^{T M}$ equations from the keypad to quickly scan through the major parameter types.

PATH: SETTINGS $\Rightarrow \sqrt{ }$ FLEXLOGIC $\Rightarrow \sqrt{ }$ FLEXLOGIC TIMERS \Rightarrow FLEXLOGIC TIMER 1(32)

\square FLEXLOGIC		(4)	$\begin{array}{\|l} \hline \text { TIMER } 1 \\ \text { TYPE: millisecond } \end{array}$	Range: millisecond, second, minute Range: 0 to 60000 in steps of 1
	MESSAGE		TIMER 1 PICKUP DELAY : 0	
	MESSAGE	Q	TIMER 1 DROPOUT DELAY: 0	Range: 0 to 60000 in steps of 1

There are 32 identical FlexLogic ${ }^{\text {TM }}$ timers available. These timers can be used as operators for FlexLogic ${ }^{\text {TM }}$ equations.

- TIMER 1 TYPE: This setting is used to select the time measuring unit.
- TIMER 1 PICKUP DELAY: Sets the time delay to pickup. If a pickup delay is not required, set this function to "0".
- TIMER 1 DROPOUT DELAY: Sets the time delay to dropout. If a dropout delay is not required, set this function to " 0 ".

PATH: SETTING $\Rightarrow \sqrt{ }$ FLEXLOGIC $\Rightarrow \sqrt{ }$ FLEXELEMENTS \Rightarrow FLEXELEMENT 1(8)

A FlexElement ${ }^{\text {TM }}$ is a universal comparator that can be used to monitor any analog actual value calculated by the relay or a net difference of any two analog actual values of the same type. The effective operating signal could be treated as a signed number or its absolute value could be used as per user's choice.
The element can be programmed to respond either to a signal level or to a rate-of-change (delta) over a pre-defined period of time. The output operand is asserted when the operating signal is higher than a threshold or lower than a threshold as per user's choice.

Figure 5-34: FLEXELEMENT ${ }^{\text {TM }}$ SCHEME LOGIC
The FLEXELEMENT $1+\mathbf{I N}$ setting specifies the first (non-inverted) input to the FlexElement ${ }^{\text {TM }}$. Zero is assumed as the input if this setting is set to "Off". For proper operation of the element at least one input must be selected. Otherwise, the element will not assert its output operands.
This FLEXELEMENT 1 -IN setting specifies the second (inverted) input to the FlexElement ${ }^{T M}$. Zero is assumed as the input if this setting is set to "Off". For proper operation of the element at least one input must be selected. Otherwise, the element will not assert its output operands. This input should be used to invert the signal if needed for convenience, or to make the element respond to a differential signal such as for a top-bottom oil temperature differential alarm. The element will not operate if the two input signals are of different types, for example if one tries to use active power and phase angle to build the effective operating signal.

The element responds directly to the differential signal if the FLEXELEMENT 1 INPUT MODE setting is set to "Signed". The element responds to the absolute value of the differential signal if this setting is set to "Absolute". Sample applications for the "Absolute" setting include monitoring the angular difference between two phasors with a symmetrical limit angle in both directions; monitoring power regardless of its direction, or monitoring a trend regardless of whether the signal increases of decreases.

The element responds directly to its operating signal - as defined by the FLEXELEMENT 1 +IN, FLEXELEMENT 1 -IN and FLEXELEMENT 1 INPUT MODE settings - if the FLEXELEMENT 1 COMP MODE setting is set to "Threshold". The element responds to the rate of change of its operating signal if the FLEXELEMENT 1 COMP MODE setting is set to "Delta". In this case the FLEXELEMENT 1 dt UNIT and FLEXELEMENT 1 dt settings specify how the rate of change is derived.
The FLEXELEMENT 1 DIRECTION setting enables the relay to respond to either high or low values of the operating signal. The following figure explains the application of the fLEXELEMENT 1 DIRECTION, FLEXELEMENT 1 PICKUP and FLEXELEMENT 1 HYsTERESIS settings.

Figure 5-35: FLEXELEMENT ${ }^{\text {TM }}$ DIRECTION, PICKUP, AND HYSTERESIS
In conjunction with the FLEXELEMENT 1 INPUT MODE setting the element could be programmed to provide two extra characteristics as shown in the figure below.

842706A2.CDR
Figure 5-36: FLEXELEMENT ${ }^{\text {TM }}$ INPUT MODE SETTING

The FLEXELEMENT 1 PICKUP setting specifies the operating threshold for the effective operating signal of the element. If set to "Over", the element picks up when the operating signal exceeds the FLEXELEMENT 1 PICKUP value. If set to "Under", the element picks up when the operating signal falls below the FLEXELEMENT 1 PICKUP value.
The fLexelement 1 hysteresis setting controls the element dropout. It should be noticed that both the operating signal and the pickup threshold can be negative facilitating applications such as reverse power alarm protection. The FlexElement ${ }^{T M}$ can be programmed to work with all analog actual values measured by the relay. The FLEXELEMENT 1 PICKUP setting is entered in per-unit values using the following definitions of the base units:

Table 5-8: FLEXELEMENT ${ }^{\text {TM }}$ BASE UNITS

BREAKER ARCING AMPS (Brk X Arc Amp A, B, and C)	BASE $=2000 \mathrm{kA}^{2} \times$ cycle
dcmA	BASE = maximum value of the DCMA INPUT MAX setting for the two transducers configured under the +IN and -IN inputs.
FREQUENCY	$f_{\text {BASE }}=1 \mathrm{~Hz}$
FREQUENCY RATE OF CHANGE	$d f / d t_{\text {BASE }}=1 \mathrm{~Hz} / \mathrm{s}$
PHASE ANGLE	$\varphi_{\text {BASE }}=360$ degrees (see the UR angle referencing convention)
POWER FACTOR	$\mathrm{PF}_{\text {BASE }}=1.00$
RTDs	BASE $=100^{\circ} \mathrm{C}$
SENSITIVE DIR POWER (Sns Dir Power)	$\mathrm{P}_{\text {BASE }}=$ maximum value of $3 \times \mathrm{V}_{\text {BASE }} \times \mathrm{I}_{\text {BASE }}$ for the +IN and -IN inputs of the sources configured for the sensitive power directional element(s).
SOURCE CURRENT	$\mathrm{I}_{\text {BASE }}=$ maximum nominal primary RMS value of the +IN and -IN inputs
SOURCE ENERGY (Positive and Negative Watthours, Positive and Negative Varhours)	$\mathrm{E}_{\text {BASE }}=10000$ MWh or MVAh, respectively
SOURCE POWER	$\mathrm{P}_{\text {BASE }}=$ maximum value of $\mathrm{V}_{\text {BASE }} \times \mathrm{I}_{\text {BASE }}$ for the +IN and -IN inputs
SOURCE THD \& HARMONICS	BASE $=100 \%$ of fundamental frequency component
SOURCE VOLTAGE	$\mathrm{V}_{\text {BASE }}=$ maximum nominal primary RMS value of the +IN and -IN inputs
SYNCHROCHECK (Max Delta Volts)	$\mathrm{V}_{\text {BASE }}=$ maximum primary RMS value of all the sources related to the +IN and -IN inputs

The FLEXELEMENT 1 HYSTERESIS setting defines the pickup-dropout relation of the element by specifying the width of the hysteresis loop as a percentage of the pickup value as shown in the FlexElement ${ }^{T M}$ Direction, Pickup, and Hysteresis diagram.
The FLEXELEMENT 1 DT UNIT setting specifies the time unit for the setting FLEXELEMENT 1 dt . This setting is applicable only if FLEXELEMENT 1 COMP MODE is set to "Delta". The FLEXELEMENT 1 DT setting specifies duration of the time interval for the rate of change mode of operation. This setting is applicable only if FLEXELEMENT 1 COMP MODE is set to "Delta".
This fLexelement 1 PKP delay setting specifies the pickup delay of the element. The flexelement 1 rst delay setting specifies the reset delay of the element.

PATH: SETTINGS $\Rightarrow \Omega$ FLEXLOGIC $\Rightarrow \sqrt{ } \Rightarrow$ NON-VOLATILE LATCHES \Rightarrow LATCH 1(16)

\square LATCH 1		(1)	LATCH 1 FUNCTION: Disabled	Range: Disabled, Enabled
	MESSAGE	®	LATCH 1 TYPE: Reset Dominant	Range: Reset Dominant, Set Dominant
	MESSAGE	-	LATCH 1 SET: Off	Range: FlexLogic ${ }^{\text {TM }}$ operand
	MESSAGE	-	LATCH 1 RESET: Off	Range: FlexLogic ${ }^{\text {TM }}$ operand
	MESSAGE	-	LATCH 1 TARGET: Self-reset	Range: Self-reset, Latched, Disabled
	MESSAGE	(4)	$\begin{aligned} & \text { LATCH } 1 \\ & \text { EVENTS: Disabled } \end{aligned}$	Range: Disabled, Enabled

The non-volatile latches provide a permanent logical flag that is stored safely and will not reset upon reboot after the relay is powered down. Typical applications include sustaining operator commands or permanently block relay functions, such as Autorecloser, until a deliberate HMI action resets the latch. The settings, logic, and element operation are described below:

- LATCH 1 TYPE: This setting characterizes Latch 1 to be Set- or Reset-dominant.
- LATCH 1 SET: If asserted, the specified FlexLogic ${ }^{\text {TM }}$ operands 'sets' Latch 1.
- LATCH 1 RESET: If asserted, the specified FlexLogic ${ }^{\text {TM }}$ operand 'resets' Latch 1.

LATCH N TYPE	$\begin{gathered} \text { LATCH N } \\ \text { SET } \end{gathered}$	$\begin{aligned} & \text { LATCHN } \\ & \text { RESET } \end{aligned}$	$\begin{gathered} \text { LATCH N } \\ \text { ON } \end{gathered}$	$\begin{gathered} \text { LATCH N } \\ \text { OFF } \end{gathered}$
Reset Dominant	ON	OFF	ON	OFF
	OFF	OFF	Previous State	Previous State
	ON	ON	OFF	ON
	OFF	ON	OFF	ON
Set Dominant	ON	OFF	ON	OFF
	ON	ON	ON	OFF
	OFF	OFF	Previous State	Previous State
	OFF	ON	OFF	ON

Figure 5-37: NON-VOLATILE LATCH OPERATION TABLE (N=1 to 16) AND LOGIC

Each protection element can be assigned up to six different sets of settings according to Setting Group designations 1 to 6 . The performance of these elements is defined by the active Setting Group at a given time. Multiple setting groups allow the user to conveniently change protection settings for different operating situations (e.g. altered power system configuration, season of the year). The active setting group can be preset or selected via the SETTING GROUPS menu (see the Control Elements section later in this chapter). See also the Introduction to Elements section at the beginning of this chapter.
5.5.2 SETTING GROUP

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6)

Each of the six Setting Group menus is identical. SETTING GROUP 1 (the default active group) automatically becomes active if no other group is active (see the Control Elements section for additional details).

PATH: SETTINGS $\Rightarrow \sqrt{ } \Rightarrow$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ })$ LOAD ENCROACHMENT

The Load Encroachment element responds to the positive-sequence voltage and current and applies a characteristic shown in the figure below.

Figure 5-38: LOAD ENCROACHMENT CHARACTERISTIC
The element operates if the positive-sequence voltage is above a settable level and asserts its output signal that can be used to block selected protection elements such as distance or phase overcurrent. The following figure shows an effect of the Load Encroachment characteristics used to block the Quad distance element.

Figure 5-39: LOAD ENCROACHMENT APPLIED TO DISTANCE ELEMENT

- LOAD ENCROACHMENT MIN VOLT: This setting specifies the minimum positive-sequence voltage required for operation of the element. If the voltage is below this threshold a blocking signal will not be asserted by the element. When selecting this setting one must remember that the F60 measures the phase-to-ground sequence voltages regardless of the VT connection.
The nominal VT secondary voltage as specified under PATH: SYSTEM SETUP $\Rightarrow \sqrt{ }$ AC INPUTS \Rightarrow VOLTAGE BANK X1 $\Rightarrow \sqrt{ }$ PHASE VT SECONDARY is the p.u. base for this setting.
- LOAD ENCROACHMENT REACH: This setting specifies the resistive reach of the element as shown in the Load Encroachment Characteristic diagram. This setting should be entered in secondary ohms and be calculated as the positive-sequence resistance seen by the relay under maximum load conditions and unity power factor.
- LOAD ENCROACHMENT ANGLE: This setting specifies the size of the blocking region as shown on the Load Encroachment Characteristic diagram and applies to the positive sequence impedance.

Figure 5-40: LOAD ENCROACHMENT SCHEME LOGIC
a) MAIN MENU

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ }$ PHASE CURRENT

The F60 Feeder Management Relay has two (2) phase time overcurrent, two (2) phase instantaneous overcurrent, and two (2) phase directional overcurrent elements.

b) INVERSE TOC CHARACTERISTICS

The inverse time overcurrent curves used by the time overcurrent elements are the IEEE, IEC, GE Type IAC, and I2t standard curve shapes. This allows for simplified coordination with downstream devices. If however, none of these curve shapes is adequate, FlexCurves ${ }^{\text {TM }}$ may be used to customize the inverse time curve characteristics. The Definite Time curve is also an option that may be appropriate if only simple protection is required.

Table 5-9: OVERCURRENT CURVE TYPES

| IEEE | IEC | GE TYPE IAC | |
| :--- | :--- | :--- | :--- | :--- |
| IEEE Extremely Inv. | IEC Curve A (BS142) | IAC Extremely Inv. | |
| IEEE Very Inverse | IEC Curve B (BS142) | IAC Very Inverse | |
| IEEE Moderately Inv. | IEC Curve C (BS142) | FlexCurves ${ }^{\text {™ } A, ~ B, ~ C, ~ a n d ~ D ~}$ | |
| | IEC Short Inverse | Recloser Curves | |

A time dial multiplier setting allows selection of a multiple of the base curve shape (where the time dial multiplier $=1$) with the curve shape (CURVE) setting. Unlike the electromechanical time dial equivalent, operate times are directly proportional to the time multiplier (TD MULTIPLIER) setting value. For example, all times for a multiplier of 10 are 10 times the multiplier 1 or base curve values. Setting the multiplier to zero results in an instantaneous response to all current levels above pickup.
Time overcurrent time calculations are made with an internal 'energy capacity' memory variable. When this variable indicates that the energy capacity has reached 100\%, a time overcurrent element will operate. If less than 100% energy capacity is accumulated in this variable and the current falls below the dropout threshold of 97 to 98% of the pickup value, the variable must be reduced. Two methods of this resetting operation are available: "Instantaneous" and "Timed". The Instantaneous selection is intended for applications with other relays, such as most static relays, which set the energy capacity directly to zero when the current falls below the reset threshold. The Timed selection can be used where the relay must coordinate with electromechanical relays. With this setting, the energy capacity variable is decremented according to the equation provided.

Graphs of standard time-current curves on 11 " $\times 17$ " log-log graph paper are available upon request from the GE Multilin literature department. The original files are also available in PDF format on the enerVista CD and the GE Multilin website at http://www.GEindustrial.com/multilin.

IEEE CURVES:

The IEEE time overcurrent curve shapes conform to industry standards and the IEEE C37.112-1996 curve classifications for extremely, very, and moderately inverse. The IEEE curves are derived from the formulae:

$$
\begin{equation*}
T=T D M \times\left[\frac{A}{\left(\frac{1}{l_{\text {pickup }}}\right)^{p}-1}+B\right], T_{\text {RESET }}=T D M \times\left[\frac{t_{r}}{\left(\frac{1}{l_{\text {pickup }}}\right)^{2}-1}\right] \tag{EQ5.6}
\end{equation*}
$$

where: $\quad T$ = operate time (in seconds), $T D M=$ Multiplier setting, $I=$ input current, $I_{\text {pickup }}=$ Pickup Current setting
$A, B, p=$ constants, $T_{\text {RESET }}=$ reset time in seconds (assuming energy capacity is 100% and RESET is "Timed"), $t_{r}=$ characteristic constant

Table 5-10: IEEE INVERSE TIME CURVE CONSTANTS

IEEE CURVE SHAPE	\mathbf{A}	\mathbf{B}	\mathbf{P}	$\mathbf{T}_{\mathbf{R}}$
IEEE Extremely Inverse	28.2	0.1217	2.0000	29.1
IEEE Very Inverse	19.61	0.491	2.0000	21.6
IEEE Moderately Inverse	0.0515	0.1140	0.02000	4.85

Table 5-11: IEEE CURVE TRIP TIMES (IN SECONDS)

$\begin{aligned} & \text { MULTIPLIER } \\ & \text { (TDM) } \end{aligned}$	CURRENT (/ / I pickup)									
	1.5	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
IEEE EXTREMELY INVERSE										
0.5	11.341	4.761	1.823	1.001	0.648	0.464	0.355	0.285	0.237	0.203
1.0	22.682	9.522	3.647	2.002	1.297	0.927	0.709	0.569	0.474	0.407
2.0	45.363	19.043	7.293	4.003	2.593	1.855	1.418	1.139	0.948	0.813
4.0	90.727	38.087	14.587	8.007	5.187	3.710	2.837	2.277	1.897	1.626
6.0	136.090	57.130	21.880	12.010	7.780	5.564	4.255	3.416	2.845	2.439
8.0	181.454	76.174	29.174	16.014	10.374	7.419	5.674	4.555	3.794	3.252
10.0	226.817	95.217	36.467	20.017	12.967	9.274	7.092	5.693	4.742	4.065
IEEE VERY INVERSE										
0.5	8.090	3.514	1.471	0.899	0.654	0.526	0.450	0.401	0.368	0.345
1.0	16.179	7.028	2.942	1.798	1.308	1.051	0.900	0.802	0.736	0.689
2.0	32.358	14.055	5.885	3.597	2.616	2.103	1.799	1.605	1.472	1.378
4.0	64.716	28.111	11.769	7.193	5.232	4.205	3.598	3.209	2.945	2.756
6.0	97.074	42.166	17.654	10.790	7.849	6.308	5.397	4.814	4.417	4.134
8.0	129.432	56.221	23.538	14.387	10.465	8.410	7.196	6.418	5.889	5.513
10.0	161.790	70.277	29.423	17.983	13.081	10.513	8.995	8.023	7.361	6.891
IEEE MODERATELY INVERSE										
0.5	3.220	1.902	1.216	0.973	0.844	0.763	0.706	0.663	0.630	0.603
1.0	6.439	3.803	2.432	1.946	1.688	1.526	1.412	1.327	1.260	1.207
2.0	12.878	7.606	4.864	3.892	3.377	3.051	2.823	2.653	2.521	2.414
4.0	25.756	15.213	9.729	7.783	6.753	6.102	5.647	5.307	5.041	4.827
6.0	38.634	22.819	14.593	11.675	10.130	9.153	8.470	7.960	7.562	7.241
8.0	51.512	30.426	19.458	15.567	13.507	12.204	11.294	10.614	10.083	9.654
10.0	64.390	38.032	24.322	19.458	16.883	15.255	14.117	13.267	12.604	12.068

IEC CURVES

For European applications, the relay offers three standard curves defined in IEC 255-4 and British standard BS142. These are defined as IEC Curve A, IEC Curve B, and IEC Curve C. The formulae for these curves are:

$$
T=T D M \times\left[\frac{K}{\left(I / I_{\text {pickup }}\right)^{E}-1}\right], T_{\text {RESET }}=T D M \times\left[\frac{t_{r}}{\left(I / I_{\text {pickup }}\right)^{2}-1}\right]
$$

(EQ 5.7)
where: $\quad T=$ operate time (in seconds), $T D M=$ Multiplier setting, $I=$ input current, $I_{\text {pickup }}=$ Pickup Current setting, $K, E=$ constants, $t_{r}=$ characteristic constant, and $T_{\text {RESET }}=$ reset time in seconds (assuming energy capacity is 100% and RESET is "Timed")

Table 5-12: IEC (BS) INVERSE TIME CURVE CONSTANTS

IEC (BS) CURVE SHAPE	\mathbf{K}	\mathbf{E}	$\mathbf{T}_{\mathbf{R}}$
IEC Curve A (BS142)	0.140	0.020	9.7
IEC Curve B (BS142)	13.500	1.000	43.2
IEC Curve C (BS142)	80.000	2.000	58.2
IEC Short Inverse	0.050	0.040	0.500

Table 5-13: IEC CURVE TRIP TIMES (IN SECONDS)

$\begin{gathered} \text { MULTIPLIER } \\ \text { (TDM) } \end{gathered}$	CURRENT (I I I ${ }_{\text {pickup }}$)									
	1.5	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
IEC CURVE A										
0.05	0.860	0.501	0.315	0.249	0.214	0.192	0.176	0.165	0.156	0.149
0.10	1.719	1.003	0.630	0.498	0.428	0.384	0.353	0.330	0.312	0.297
0.20	3.439	2.006	1.260	0.996	0.856	0.767	0.706	0.659	0.623	0.594
0.40	6.878	4.012	2.521	1.992	1.712	1.535	1.411	1.319	1.247	1.188
0.60	10.317	6.017	3.781	2.988	2.568	2.302	2.117	1.978	1.870	1.782
0.80	13.755	8.023	5.042	3.984	3.424	3.070	2.822	2.637	2.493	2.376
1.00	17.194	10.029	6.302	4.980	4.280	3.837	3.528	3.297	3.116	2.971
IEC CURVE B										
0.05	1.350	0.675	0.338	0.225	0.169	0.135	0.113	0.096	0.084	0.075
0.10	2.700	1.350	0.675	0.450	0.338	0.270	0.225	0.193	0.169	0.150
0.20	5.400	2.700	1.350	0.900	0.675	0.540	0.450	0.386	0.338	0.300
0.40	10.800	5.400	2.700	1.800	1.350	1.080	0.900	0.771	0.675	0.600
0.60	16.200	8.100	4.050	2.700	2.025	1.620	1.350	1.157	1.013	0.900
0.80	21.600	10.800	5.400	3.600	2.700	2.160	1.800	1.543	1.350	1.200
1.00	27.000	13.500	6.750	4.500	3.375	2.700	2.250	1.929	1.688	1.500
IEC CURVE C										
0.05	3.200	1.333	0.500	0.267	0.167	0.114	0.083	0.063	0.050	0.040
0.10	6.400	2.667	1.000	0.533	0.333	0.229	0.167	0.127	0.100	0.081
0.20	12.800	5.333	2.000	1.067	0.667	0.457	0.333	0.254	0.200	0.162
0.40	25.600	10.667	4.000	2.133	1.333	0.914	0.667	0.508	0.400	0.323
0.60	38.400	16.000	6.000	3.200	2.000	1.371	1.000	0.762	0.600	0.485
0.80	51.200	21.333	8.000	4.267	2.667	1.829	1.333	1.016	0.800	0.646
1.00	64.000	26.667	10.000	5.333	3.333	2.286	1.667	1.270	1.000	0.808
IEC SHORT TIME										
0.05	0.153	0.089	0.056	0.044	0.038	0.034	0.031	0.029	0.027	0.026
0.10	0.306	0.178	0.111	0.088	0.075	0.067	0.062	0.058	0.054	0.052
0.20	0.612	0.356	0.223	0.175	0.150	0.135	0.124	0.115	0.109	0.104
0.40	1.223	0.711	0.445	0.351	0.301	0.269	0.247	0.231	0.218	0.207
0.60	1.835	1.067	0.668	0.526	0.451	0.404	0.371	0.346	0.327	0.311
0.80	2.446	1.423	0.890	0.702	0.602	0.538	0.494	0.461	0.435	0.415
1.00	3.058	1.778	1.113	0.877	0.752	0.673	0.618	0.576	0.544	0.518

IAC CURVES:

The curves for the General Electric type IAC relay family are derived from the formulae:

$$
\begin{equation*}
T=\operatorname{TDM} \times\left(A+\frac{B}{\left(I / I_{p k p}\right)-C}+\frac{D}{\left(\left(I / I_{p k p}\right)-C\right)^{2}}+\frac{E}{\left(\left(I / I_{p k p}\right)-C\right)^{3}}\right), T_{R E S E T}=T D M \times\left[\frac{t_{r}}{\left(I / I_{p k p}\right)^{2}-1}\right] \tag{EQ5.8}
\end{equation*}
$$

where: $\quad T$ = operate time (in seconds), $T D M=$ Multiplier setting, $I=$ Input current, $I_{p k p}=$ Pickup Current setting, A to $E=$ constants, $t_{r}=$ characteristic constant, and $T_{\text {RESET }}=$ reset time in seconds (assuming energy capacity is 100% and RESET is "Timed")

Table 5-14: GE TYPE IAC INVERSE TIME CURVE CONSTANTS

IAC CURVE SHAPE	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	$\mathbf{T}_{\mathbf{R}}$
IAC Extreme Inverse	0.0040	0.6379	0.6200	1.7872	0.2461	6.008
IAC Very Inverse	0.0900	0.7955	0.1000	-1.2885	7.9586	4.678
IAC Inverse	0.2078	0.8630	0.8000	-0.4180	0.1947	0.990
IAC Short Inverse	0.0428	0.0609	0.6200	-0.0010	0.0221	0.222

Table 5-15: IAC CURVE TRIP TIMES

$\begin{gathered} \text { MULTIPLIER } \\ \text { (TDM) } \end{gathered}$	CURRENT (I I I pickup)									
	1.5	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
IAC EXTREMELY INVERSE										
0.5	1.699	0.749	0.303	0.178	0.123	0.093	0.074	0.062	0.053	0.046
1.0	3.398	1.498	0.606	0.356	0.246	0.186	0.149	0.124	0.106	0.093
2.0	6.796	2.997	1.212	0.711	0.491	0.372	0.298	0.248	0.212	0.185
4.0	13.591	5.993	2.423	1.422	0.983	0.744	0.595	0.495	0.424	0.370
6.0	20.387	8.990	3.635	2.133	1.474	1.115	0.893	0.743	0.636	0.556
8.0	27.183	11.987	4.846	2.844	1.966	1.487	1.191	0.991	0.848	0.741
10.0	33.979	14.983	6.058	3.555	2.457	1.859	1.488	1.239	1.060	0.926
IAC VERY INVERSE										
0.5	1.451	0.656	0.269	0.172	0.133	0.113	0.101	0.093	0.087	0.083
1.0	2.901	1.312	0.537	0.343	0.266	0.227	0.202	0.186	0.174	0.165
2.0	5.802	2.624	1.075	0.687	0.533	0.453	0.405	0.372	0.349	0.331
4.0	11.605	5.248	2.150	1.374	1.065	0.906	0.810	0.745	0.698	0.662
6.0	17.407	7.872	3.225	2.061	1.598	1.359	1.215	1.117	1.046	0.992
8.0	23.209	10.497	4.299	2.747	2.131	1.813	1.620	1.490	1.395	1.323
10.0	29.012	13.121	5.374	3.434	2.663	2.266	2.025	1.862	1.744	1.654
IAC INVERSE										
0.5	0.578	0.375	0.266	0.221	0.196	0.180	0.168	0.160	0.154	0.148
1.0	1.155	0.749	0.532	0.443	0.392	0.360	0.337	0.320	0.307	0.297
2.0	2.310	1.499	1.064	0.885	0.784	0.719	0.674	0.640	0.614	0.594
4.0	4.621	2.997	2.128	1.770	1.569	1.439	1.348	1.280	1.229	1.188
6.0	6.931	4.496	3.192	2.656	2.353	2.158	2.022	1.921	1.843	1.781
8.0	9.242	5.995	4.256	3.541	3.138	2.878	2.695	2.561	2.457	2.375
10.0	11.552	7.494	5.320	4.426	3.922	3.597	3.369	3.201	3.072	2.969
IAC SHORT INVERSE										
0.5	0.072	0.047	0.035	0.031	0.028	0.027	0.026	0.026	0.025	0.025
1.0	0.143	0.095	0.070	0.061	0.057	0.054	0.052	0.051	0.050	0.049
2.0	0.286	0.190	0.140	0.123	0.114	0.108	0.105	0.102	0.100	0.099
4.0	0.573	0.379	0.279	0.245	0.228	0.217	0.210	0.204	0.200	0.197
6.0	0.859	0.569	0.419	0.368	0.341	0.325	0.314	0.307	0.301	0.296
8.0	1.145	0.759	0.559	0.490	0.455	0.434	0.419	0.409	0.401	0.394
10.0	1.431	0.948	0.699	0.613	0.569	0.542	0.524	0.511	0.501	0.493

5 SETTINGS

12t CURVES:

The curves for the $\mathrm{I}^{2} \mathrm{t}$ are derived from the formulae:

$$
\begin{equation*}
T=\operatorname{TDM} \times\left[\frac{100}{\left(\frac{1}{I_{\text {pickup }}}\right)^{2}}\right], T_{\text {RESET }}=\operatorname{TDM} \times\left[\frac{100}{\left(\frac{1}{l_{\text {pickup }}}\right)^{-2}}\right] \tag{EQ5.9}
\end{equation*}
$$

where: $\quad T=$ Operate Time (sec.); TDM = Multiplier Setting; $I=$ Input Current; $I_{\text {pickup }}=$ Pickup Current Setting; $T_{\text {RESET }}=$ Reset Time in sec. (assuming energy capacity is 100% and RESET: Timed)

Table 5-16: ${ }^{2}$ T CURVE TRIP TIMES

$\begin{aligned} & \hline \text { MULTIPLIER } \\ & \text { (TDM) } \end{aligned}$	CURRENT (/ / I pickup $^{\text {) }}$									
	1.5	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
0.01	0.44	0.25	0.11	0.06	0.04	0.03	0.02	0.02	0.01	0.01
0.10	4.44	2.50	1.11	0.63	0.40	0.28	0.20	0.16	0.12	0.10
1.00	44.44	25.00	11.11	6.25	4.00	2.78	2.04	1.56	1.23	1.00
10.00	444.44	250.00	111.11	62.50	40.00	27.78	20.41	15.63	12.35	10.00
100.00	4444.4	2500.0	1111.1	625.00	400.00	277.78	204.08	156.25	123.46	100.00
600.00	26666.7	15000.0	6666.7	3750.0	2400.0	1666.7	1224.5	937.50	740.74	600.00

FLEXCURVES ${ }^{\text {TM }}$:

The custom FlexCurves ${ }^{\text {TM }}$ are described in detail in the FlexCurves ${ }^{\text {TM }}$ section of this chapter. The curve shapes for the FlexCurves ${ }^{\text {TM }}$ are derived from the formulae:

$$
\begin{gather*}
T=\mathrm{TDM} \times\left[\text { FlexCurve Time at }\left(\frac{1}{l_{\text {pickup }}}\right)\right] \text { when }\left(\frac{1}{l_{\text {pickup }}}\right) \geq 1.00 \tag{EQ5.10}\\
T_{R E S E T}=\mathrm{TDM} \times\left[\text { FlexCurve Time at }\left(\frac{1}{I_{\text {pickup }}}\right)\right] \text { when }\left(\frac{1}{I_{\text {pickup }}}\right) \leq 0.98
\end{gather*}
$$

(EQ 5.11)
where: $\quad T=$ Operate Time (sec.), TDM = Multiplier setting
$I=$ Input Current, $I_{\text {pickup }}=$ Pickup Current setting
$T_{\text {RESET }}=$ Reset Time in seconds (assuming energy capacity is 100% and RESET: Timed)

DEFINITE TIME CURVE:

The Definite Time curve shape operates as soon as the pickup level is exceeded for a specified period of time. The base definite time curve delay is in seconds. The curve multiplier of 0.00 to 600.00 makes this delay adjustable from instantaneous to 600.00 seconds in steps of 10 ms .

$$
\begin{gather*}
T=\text { TDM in seconds, when } I>I_{\text {pickup }} \tag{EQ5.12}\\
T_{R E S E T}=-\mathrm{TDM} \text { in seconds }
\end{gather*}
$$

(EQ 5.13)
where: $\quad T=$ Operate Time (sec.), TDM = Multiplier setting
$I=$ Input Current, $I_{\text {pickup }}=$ Pickup Current setting
$T_{\text {RESET }}=$ Reset Time in seconds (assuming energy capacity is 100% and RESET: Timed)

RECLOSER CURVES:

The F60 uses the FlexCurve ${ }^{\text {TM }}$ feature to facilitate programming of 41 recloser curves. Please refer to the FlexCurve ${ }^{T M}$ section in this chapter for additional details.
c) PHASE TIME OVERCURRENT (ANSI 51P)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow$ PHASE CURRENT \Rightarrow PHASE TOC1(2)

The phase time overcurrent element can provide a desired time-delay operating characteristic versus the applied current or be used as a simple Definite Time element. The phase current input quantities may be programmed as fundamental phasor magnitude or total waveform RMS magnitude as required by the application.

Two methods of resetting operation are available: "Timed" and "Instantaneous" (refer to the Inverse TOC Curves Characteristic sub-section earlier for details on curve setup, trip times and reset operation). When the element is blocked, the time accumulator will reset according to the reset characteristic. For example, if the element reset characteristic is set to "Instantaneous" and the element is blocked, the time accumulator will be cleared immediately.
The PHASE TOC1 PICKUP setting can be dynamically reduced by a voltage restraint feature (when enabled). This is accomplished via the multipliers (Mvr) corresponding to the phase-phase voltages of the voltage restraint characteristic curve (see the figure below); the pickup level is calculated as 'Mvr' times the PHASE TOC1 PICKUP setting. If the voltage restraint feature is disabled, the pickup level always remains at the setting value.

Figure 5-41: PHASE TOC VOLTAGE RESTRAINT CHARACTERISTIC

Figure 5-42: PHASE TOC1 SCHEME LOGIC
d) PHASE INSTANTANEOUS OVERCURRENT (ANSI 50P)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow$ PHASE CURRENT \Rightarrow PHASE IOC 1

\square PHASE IOC1		(1)	$\begin{aligned} & \text { PHASE IOC1 } \\ & \text { FUNCTION: Disabled } \end{aligned}$	Range: Disabled, Enabled Range: SRC 1, SRC 2	
	MESSAGE		PHASE IOC1 SIGNAL SOURCE: SRC 1		
	MESSAGE	-	PHASE IOC1 PICKUP: 1.000 pu	Range:	0.000 to 30.000 pu in steps of 0.001
	MESSAGE	-	PHASE IOC1 PICKUP DELAY: 0.00 s	Range:	0.00 to 600.00 s in steps of 0.01
	MESSAGE	-	PHASE IOC1 RESET DELAY: $\quad 0.00 \mathrm{~s}$	Range:	0.00 to 600.00 s in steps of 0.01
	MESSAGE	-	PHASE IOC1 BLOCK A: Off	Range:	FlexLogic ${ }^{\text {TM }}$ operand
	MESSAGE	-	PHASE IOC1 BLOCK B: Off	Range:	FlexLogic ${ }^{\text {TM }}$ operand
	MESSAGE	-	PHASE IOC1 BLOCK C: Off	Range:	FlexLogic ${ }^{\text {TM }}$ operand
	MESSAGE	-	PHASE IOC1 TARGET: Self-reset	Range:	Self-reset, Latched, Disabled
	MESSAGE	(2)	PHASE IOC1 EVENTS: Disabled	Range:	Disabled, Enabled

The phase instantaneous overcurrent element may be used as an instantaneous element with no intentional delay or as a Definite Time element. The input current is the fundamental phasor magnitude.

Figure 5-43: PHASE IOC1 SCHEME LOGIC

e) PHASE DIRECTIONAL OVERCURRENT (ANSI 67P)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6) \Rightarrow PHASE CURRENT \Rightarrow PHASE DIRECTIONAL 1(2)

The phase directional elements (one for each of phases A, B, and C) determine the phase current flow direction for steady state and fault conditions and can be used to control the operation of the phase overcurrent elements via the block inputs of these elements.

Figure 5-44: PHASE A DIRECTIONAL POLARIZATION
This element is intended to apply a block signal to an overcurrent element to prevent an operation when current is flowing in a particular direction. The direction of current flow is determined by measuring the phase angle between the current from the phase CTs and the line-line voltage from the VTs, based on the 90° or 'quadrature' connection. If there is a requirement to supervise overcurrent elements for flows in opposite directions, such as can happen through a bus-tie breaker, two phase directional elements should be programmed with opposite ECA settings.

To increase security for three phase faults very close to the VTs used to measure the polarizing voltage, a 'voltage memory' feature is incorporated. This feature stores the polarizing voltage the moment before the voltage collapses, and uses it to determine direction. The voltage memory remains valid for one second after the voltage has collapsed.
The main component of the phase directional element is the phase angle comparator with two inputs: the operating signal (phase current) and the polarizing signal (the line voltage, shifted in the leading direction by the characteristic angle, ECA).
The following table shows the operating and polarizing signals used for phase directional control:

PHASE	OPERATING		
		POLARIZING SIGNAL pol $_{\text {pol }}$	
	Angle of IA	ABC PHASE SEQUENCE	ACB PHASE SEQUENCE
A	Angle of VBC $\times(1 \angle \mathrm{ECA})$	Angle of VCB $\times(1 \angle E C A)$	
B	Angle of IC	Angle of $\mathrm{VCA} \times(1 \angle \mathrm{ECA})$	Angle of VAC $\times 1 \angle \mathrm{ECA})$

MODE OF OPERATION:

- When the function is "Disabled", or the operating current is below $5 \% \times$ CT nominal, the element output is " 0 ".
- When the function is "Enabled", the operating current is above $5 \% \times$ CT nominal, and the polarizing voltage is above the set threshold, the element output is dependent on the phase angle between the operating and polarizing signals:
- The element output is logic " 0 " when the operating current is within polarizing voltage $\pm 90^{\circ}$.
- For all other angles, the element output is logic " 1 ".
- Once the voltage memory has expired, the phase overcurrent elements under directional control can be set to block or trip on overcurrent as follows:
- When block when V mem exp is set to "Yes", the directional element will block the operation of any phase overcurrent element under directional control when voltage memory expires.
- When BLOCK WHEN V MEM EXP is set to "No", the directional element allows tripping of phase overcurrent elements under directional control when voltage memory expires.
In all cases, directional blocking will be permitted to resume when the polarizing voltage becomes greater than the 'polarizing voltage threshold'.

SETTINGS:

- PHASE DIR 1 SIGNAL SOURCE: This setting is used to select the source for the operating and polarizing signals. The operating current for the phase directional element is the phase current for the selected current source. The polarizing voltage is the line voltage from the phase VTs, based on the 90° or 'quadrature' connection and shifted in the leading direction by the element characteristic angle (ECA).
- PHASE DIR 1 ECA: This setting is used to select the element characteristic angle, i.e. the angle by which the polarizing voltage is shifted in the leading direction to achieve dependable operation. In the design of the UR-series elements, a block is applied to an element by asserting logic 1 at the blocking input. This element should be programmed via the ECA setting so that the output is logic 1 for current in the non-tripping direction.
- PHASE DIR 1 POL V THRESHOLD: This setting is used to establish the minimum level of voltage for which the phase angle measurement is reliable. The setting is based on VT accuracy. The default value is " 0.05 pu".
- PHASE DIR 1 BLOCK WHEN V MEM EXP: This setting is used to select the required operation upon expiration of voltage memory. When set to "Yes", the directional element blocks the operation of any phase overcurrent element under directional control, when voltage memory expires; when set to "No", the directional element allows tripping of phase overcurrent elements under directional control.

The Phase Directional element responds to the forward load current. In the case of a following reverse fault, the element needs some time - in the order of 8 ms - to establish a blocking signal. Some protection elements such as instantaneous overcurrent may respond to reverse faults before the blocking signal is established. Therefore, a coordination time of at least 10 ms must be added to all the instantaneous protection elements under the supervision of the Phase Directional element. If current reversal is of a concern, a longer delay - in the order of $\mathbf{2 0} \mathbf{~ m s}$ - may be needed.

Figure 5-45: PHASE DIRECTIONAL SCHEME LOGIC
a) MAIN MENU

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ }$ PHASE CURRENT

The F60 Feeder Management Relay has two (2) Neutral Time Overcurrent, two (2) Neutral Instantaneous Overcurrent, and two (2) Neutral Directional Overcurrent elements.
b) NEUTRAL TIME OVERCURRENT (ANSI 51N)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6) $\Rightarrow \sqrt{ }$ NEUTRAL CURRENT \Rightarrow NEUTRAL TOC1(2)

The Neutral Time Overcurrent element can provide a desired time-delay operating characteristic versus the applied current or be used as a simple Definite Time element. The neutral current input value is a quantity calculated as 3lo from the phase currents and may be programmed as fundamental phasor magnitude or total waveform RMS magnitude as required by the application.

Two methods of resetting operation are available: "Timed" and "Instantaneous" (refer to the Inverse TOC Curve Characteristics section for details on curve setup, trip times and reset operation). When the element is blocked, the time accumulator will reset according to the reset characteristic. For example, if the element reset characteristic is set to "Instantaneous" and the element is blocked, the time accumulator will be cleared immediately.

Figure 5-46: NEUTRAL TOC1 SCHEME LOGIC
c) NEUTRAL INSTANTANEOUS OVERCURRENT (ANSI 50N)

PATH: SETTINGS $\Rightarrow \Omega$ GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6) $\Rightarrow \Omega$ NEUTRAL CURRENT $\Rightarrow \Omega$ NEUTRAL IOC1(2)

The Neutral Instantaneous Overcurrent element may be used as an instantaneous function with no intentional delay or as a Definite Time function. The element essentially responds to the magnitude of a neutral current fundamental frequency phasor calculated from the phase currents. A "positive-sequence restraint" is applied for better performance. A small portion (6.25%) of the positive-sequence current magnitude is subtracted from the zero-sequence current magnitude when forming the operating quantity of the element as follows:

$$
\begin{equation*}
I_{o p}=3 \times\left(\left|\left|_0\right|-K \cdot\right| I _1 \mid\right) \quad \text { where } K=1 / 16 \tag{EQ5.14}
\end{equation*}
$$

The positive-sequence restraint allows for more sensitive settings by counterbalancing spurious zero-sequence currents resulting from:

- system unbalances under heavy load conditions
- transformation errors of current transformers (CTs) during double-line and three-phase faults
- switch-off transients during double-line and three-phase faults

The positive-sequence restraint must be considered when testing for pickup accuracy and response time (multiple of pickup). The operating quantity depends on how test currents are injected into the relay (single-phase injection: $I_{o p}=0.9375 \cdot I_{\text {injected }}$; three-phase pure zero-sequence injection: $\left.I_{o p}=3 \times I_{\text {injected }}\right)$.

Figure 5-47: NEUTRAL IOC1 SCHEME LOGIC
d) NEUTRAL DIRECTIONAL OVERCURRENT (ANSI 67N)

PATH: SETTINGS $\Rightarrow \Omega$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow$ NEUTRAL CURRENT $\Rightarrow \sqrt{ } \Rightarrow$ NEUTRAL DIRECTIONAL OC1(2)

There are two Neutral Directional Overcurrent protection elements available. The element provides both forward and reverse fault direction indications the NEUTRAL DIR OC1 FWD and NEUTRAL DIR OC1 REV operands, respectively. The output operand is asserted if the magnitude of the operating current is above a pickup level (overcurrent unit) and the fault direction is seen as "forward or "reverse", respectively (directional unit).

The overcurrent unit responds to the magnitude of a fundamental frequency phasor of the either the neutral current calculated from the phase currents or the ground current. There are two separate pickup settings for the forward- and reverselooking functions, respectively. If set to use the calculated 31_0, the element applies a "positive-sequence restraint" for better performance: a small user-programmable portion of the positive-sequence current magnitude is subtracted from the zero-sequence current magnitude when forming the operating quantity.

$$
\begin{equation*}
I_{o p}=3 \times\left(\left|I _0\right|-K \times\left|I _1\right|\right) \tag{EQ5.15}
\end{equation*}
$$

The positive-sequence restraint allows for more sensitive settings by counterbalancing spurious zero-sequence currents resulting from:

- System unbalances under heavy load conditions.
- Transformation errors of current transformers (CTs) during double-line and three-phase faults.
- Switch-off transients during double-line and three-phase faults.

The positive-sequence restraint must be considered when testing for pickup accuracy and response time (multiple of pickup). The operating quantity depends on the way the test currents are injected into the relay (single-phase injection: $I_{o p}=(1-K) \times I_{\text {injected }}$; three-phase pure zero-sequence injection: $\left.I_{o p}=3 \times I_{\text {injected }}\right)$.
The positive-sequence restraint is removed for low currents. If the positive-sequence current is below 0.8 pu , the restraint is removed by changing the constant K to zero. This facilitates better response to high-resistance faults when the unbalance is very small and there is no danger of excessive CT errors as the current is low.
The directional unit uses the zero-sequence current (I_0) or ground current (IG) for fault direction discrimination and may be programmed to use either zero-sequence voltage ("Calculated V0" or "Measured VX"), ground current (IG), or both for polarizing. The following tables define the neutral directional overcurrent element.

Table 5-17: QUANTITIES FOR "CALCULATED 3I0" CONFIGURATION

DIRECTIONAL UNIT				OVERCURRENT UNIT					
POLARIZING MODE	DIRECTION	COMPARED PHASORS							
Voltage	Forward	-V_0 + Z_offset \times I_0	I_0 $\times 1 \angle E C A$	$\begin{gathered} \mathrm{I}_{\mathrm{op}}=3 \times\left(\left\|I _0\right\|-\mathrm{K} \times\left\|\\|_{1} 1\right\|\right) \text { if } \\|_{1} \mid>0.8 \mathrm{pu} \\ \mathrm{I}_{\text {op }}=3 \times\left(\\| _ \text {(} \\| \text {) if }\left\|\\|_{1}\right\| \leq 0.8 \mathrm{pu}\right. \end{gathered}$					
	Reverse	-V_0 + Z_offset \times I_0	-I - $0 \times 1 \angle \mathrm{ECA}$						
Current	Forward	IG	I_0						
	Reverse	IG	-1_0						
Dual	Forward	-V_0 + Z_offset × I_0	$1 _0 \times 1 \angle E C A$						
		or							
		IG	I_0						
	Reverse	-V_0 + Z_offset × I_0	-I_0 $\times 1 \angle E C A$						
		or							
		IG	-l_0						

Table 5-18: QUANTITIES FOR "MEASURED IG" CONFIGURATION

DIRECTIONAL UNIT				OVERCURRENT UNIT
POLARIZING MODE	DIRECTION	COMPARED PHASORS		
Voltage	Forward	$-\mathrm{V} _0+\mathrm{Z}$ offset $\times \mathrm{IG} / 3$	$\mathrm{IG} \times 1 \angle \mathrm{ECA}$	$\mathrm{I}_{\mathrm{op}}=\|\mathrm{IG}\|$
	Reverse	$-\mathrm{V} _0+\mathrm{Z} _$offset $\times \mathrm{IG} / 3$	$-\mathrm{IG} \times 1 \angle \mathrm{ECA}$	

where: $\quad V_{-} 0=\frac{1}{3}(V A G+V B G+V C G)=$ zero sequence voltage ,
$\mathrm{I} _0=\frac{1}{3} \mathrm{IN}=\frac{1}{3}(\mathrm{IA}+\mathrm{IB}+\mathrm{IC})=$ zero sequence current,
ECA = element characteristic angle and IG = ground current
When NEUTRAL DIR OC1 POL VOLT is set to "Measured VX", one-third of this voltage is used in place of V_0. The following figure explains the usage of the voltage polarized directional unit of the element.
The figure below shows the voltage-polarized phase angle comparator characteristics for a phase A to ground fault, with:

> ECA $=90^{\circ}$ (element characteristic angle $=$ centerline of operating characteristic)
> FWD LA $=80^{\circ}$ (forward limit angle $=$ the \pm angular limit with the ECA for operation)
> REV LA $=80^{\circ}$ (reverse limit angle $=$ the \pm angular limit with the ECA for operation)

The element incorporates a current reversal logic: if the reverse direction is indicated for at least 1.25 of a power system cycle, the prospective forward indication will be delayed by 1.5 of a power system cycle. The element is designed to emulate an electromechanical directional device. Larger operating and polarizing signals will result in faster directional discrimination bringing more security to the element operation.

The forward-looking function is designed to be more secure as compared to the reverse-looking function, and therefore, should be used for the tripping direction. The reverse-looking function is designed to be faster as compared to the forwardlooking function and should be used for the blocking direction. This allows for better protection coordination.

The above bias should be taken into account when using the neutral directional overcurrent element to directionalize other protection elements.

Figure 5-48: NEUTRAL DIRECTIONAL VOLTAGE-POLARIZED CHARACTERISTICS

- NEUTRAL DIR OC1 POLARIZING: This setting selects the polarizing mode for the directional unit.
- If "Voltage" polarizing is selected, the element uses the zero-sequence voltage angle for polarization. The user can use either the zero-sequence voltage V_0 calculated from the phase voltages, or the zero-sequence voltage supplied externally as the auxiliary voltage $\overline{\mathrm{Vx}}$, both from the NEUTRAL DIR OC1 SOURCE.

The calculated $V _0$ can be used as polarizing voltage only if the voltage transformers are connected in Wye. The auxiliary voltage can be used as the polarizing voltage provided SYSTEM SETUP \Rightarrow AC INPUTS $\Rightarrow \sqrt{ } \Rightarrow$ VOLTAGE BANK $\Rightarrow \sqrt{ } \quad$ AUXILIARY VT CONNECTION is set to "Vn" and the auxiliary voltage is connected to a zero-sequence voltage source (such as open delta connected secondary of VTs).

The zero-sequence ($\mathrm{V} _0$) or auxiliary voltage (Vx), accordingly, must be higher than 0.02 pu nominal voltage to be validated as a polarizing signal. If the polarizing signal is invalid, neither forward nor reverse indication is given.

- If "Current" polarizing is selected, the element uses the ground current angle connected externally and configured under NEUTRAL OC1 SOURCE for polarization. The Ground CT must be connected between the ground and neutral point of an adequate local source of ground current. The ground current must be higher than 0.05 pu to be validated as a polarizing signal. If the polarizing signal is not valid, neither forward nor reverse indication is given.

For a choice of current polarizing, it is recommended that the polarizing signal be analyzed to ensure that a known direction is maintained irrespective of the fault location. For example, if using an autotransformer neutral current as a polarizing source, it should be ensured that a reversal of the ground current does not occur for a high-side fault. The low-side system impedance should be assumed minimal when checking for this condition. A similar situation arises for a Wye/Delta/Wye transformer, where current in one transformer winding neutral may reverse when faults on both sides of the transformer are considered.

- If "Dual" polarizing is selected, the element performs both directional comparisons as described above. A given direction is confirmed if either voltage or current comparators indicate so. If a conflicting (simultaneous forward and reverse) indication occurs, the forward direction overrides the reverse direction.
- NEUTRAL DIR OC1 POL VOLT: Selects the polarizing voltage used by the directional unit when "Voltage" or "Dual" polarizing mode is set. The polarizing voltage can be programmed to be either the zero-sequence voltage calculated from the phase voltages ("Calculated V0") or supplied externally as an auxiliary voltage ("Measured VX").
- NEUTRAL DIR OC1 OP CURR: This setting indicates whether the $31 _0$ current calculated from the phase currents, or the ground current shall be used by this protection. This setting acts as a switch between the neutral and ground modes of operation (67 N and 67 G). If set to "Calculated 310 " the element uses the phase currents and applies the pos-itive-sequence restraint; if set to "Measured IG" the element uses ground current supplied to the ground CT of the CT bank configured as NEUTRAL DIR OC1 SOURCE. Naturally, it is not possible to use the ground current as an operating and polarizing signal simultaneously. Therefore, "Voltage" is the only applicable selection for the polarizing mode under the "Measured IG" selection of this setting.
- NEUTRAL DIR OC1 POS-SEQ RESTRAINT: This setting controls the amount of the positive-sequence restraint. Set to 0.063 for backward compatibility with firmware revision 3.40 and older. Set to zero to remove the restraint. Set higher if large system unbalances or poor CT performance are expected.
- NEUTRAL DIR OC1 OFFSET: This setting specifies the offset impedance used by this protection. The primary application for the offset impedance is to guarantee correct identification of fault direction on series compensated lines. See the Chapter 9 for information on how to calculate this setting. In regular applications, the offset impedance ensures proper operation even if the zero-sequence voltage at the relaying point is very small. If this is the intent, the offset impedance shall not be larger than the zero-sequence impedance of the protected circuit. Practically, it shall be several times smaller. See Chapter 8 for additional details. The offset impedance shall be entered in secondary ohms.
- NEUTRAL DIR OC1 FWD ECA: This setting defines the characteristic angle (ECA) for the forward direction in the "Voltage" polarizing mode. The "Current" polarizing mode uses a fixed ECA of 0°. The ECA in the reverse direction is the angle set for the forward direction shifted by 180°.
- NEUTRAL DIR OC1 FWD LIMIT ANGLE: This setting defines a symmetrical (in both directions from the ECA) limit angle for the forward direction.
- NEUTRAL DIR OC1 FWD PICKUP: This setting defines the pickup level for the overcurrent unit of the element in the forward direction. When selecting this setting it must be kept in mind that the design uses a 'positive-sequence restraint' technique for the "Calculated 310 " mode of operation.
- NEUTRAL DIR OC1 REV LIMIT ANGLE: This setting defines a symmetrical (in both directions from the ECA) limit angle for the reverse direction.
- NEUTRAL DIR OC1 REV PICKUP: This setting defines the pickup level for the overcurrent unit of the element in the reverse direction. When selecting this setting it must be kept in mind that the design uses a 'positive-sequence restraint' technique for the "Calculated 310 " mode of operation.

Figure 5-49: NEUTRAL DIRECTIONAL OVERCURRENT LOGIC
a) GROUND TIME OVERCURRENT (ANSI 51G)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ })$ GROUND CURRENT \Rightarrow GROUND TOC1(2)

This element can provide a desired time-delay operating characteristic versus the applied current or be used as a simple Definite Time element. The ground current input value is the quantity measured by the ground input CT and is the fundamental phasor or RMS magnitude. Two methods of resetting operation are available; "Timed" and "Instantaneous" (refer to the Inverse TOC Characteristics section for details). When the element is blocked, the time accumulator will reset according to the reset characteristic. For example, if the element reset characteristic is set to "Instantaneous" and the element is blocked, the time accumulator will be cleared immediately.

These elements measure the current that is connected to the ground channel of a CT/VT module. This channel may be equipped with a standard or sensitive input. The conversion range of a standard channel is from 0.02 to 46 times the CT rating. The conversion range of a sensitive channel is from 0.002 to 4.6 times the CT rating.

Figure 5-50: GROUND TOC1 SCHEME LOGIC
b) GROUND INSTANTANEOUS OVERCURRENT (ANSI 50G)

PATH: SETTINGS $\Rightarrow \Omega$ GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6) $\Rightarrow \vDash$ GROUND CURRENT $\Rightarrow 』$ GROUND IOC1(2)

\square GROUND IOC1		(1)	GROUND IOC1 FUNCTION: Disabled	Range: Disabled, Enabled	
	MESSAGE	-	GROUND IOC1 SIGNAL SOURCE: SRC 1	Range	SRC 1, SRC 2
	MESSAGE	-	GROUND IOC1 PICKUP: 1.000 pu	Range	0.000 to 30.000 pu in steps of 0.001
	MESSAGE	-	GROUND IOC1 PICKUP DELAY: $\quad 0.00 \mathrm{~s}$	Range	0.00 to 600.00 s in steps of 0.01
	MESSAGE	-	GROUND IOC1 RESET DELAY: $\quad 0.00 \mathrm{~s}$	Range	0.00 to 600.00 s in steps of 0.01
	MESSAGE	-	GROUND IOC1 BLOCK: Off	Range	FlexLogic ${ }^{\text {TM }}$ operand
	MESSAGE	-	GROUND IOC1 TARGET: Self-reset	Range	Self-reset, Latched, Disabled
	MESSAGE	(2)	GROUND IOC1 EVENTS: Disabled	Range	Disabled, Enabled

The Ground IOC element may be used as an instantaneous element with no intentional delay or as a Definite Time element. The ground current input is the quantity measured by the ground input CT and is the fundamental phasor magnitude.

Figure 5-51: GROUND IOC1 SCHEME LOGIC
These elements measure the current that is connected to the ground channel of a CT/VT module. This channel may be equipped with a standard or sensitive input. The conversion range of a standard channel is from 0.02 to 46 times the CT rating. The conversion range of a sensitive channel is from 0.002 to 4.6 times the CT rating.
a) MAIN MENU

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ }$ PHASE CURRENT

The F60 Feeder Management Relay has two (2) Negative Sequence Time Overcurrent, two (2) Negative Sequence Instantaneous Overcurrent, and two (2) Negative Sequence Directional Overcurrent elements.
b) NEGATIVE SEQUENCE TIME OVERCURRENT (ANSI 51_2)

PATH: SETTINGS $\sqrt{ }$ GROUPED ELEMENTS $\Rightarrow \Omega$ SETTING GROUP 1(6) $\Rightarrow \Omega$ NEGATIVE SEQUENCE CURRENT \Rightarrow NEG SEQ TOC1(2)

\square NEG SEQ TOC1		(1)	NEG SEQ TOC1 FUNCTION: Disabled	Range: Disabled, Enabled	
	MESSAGE	-	NEG SEQ TOC1 SIGNAL SOURCE: SRC 1	Range: SRC 1, SRC 2	
	MESSAGE	-	NEG SEQ TOC1 PICKUP: 1.000 pu	Range: 0.000 to 30.000 pu in steps of 0.001	
	MESSAGE	-	NEG SEQ TOC1 CURVE: IEEE Mod Inv	Range: see OVERCURRENT CURVE TYPES table	
	MESSAGE	-	NEG SEQ TOC1 TD MULTIPLIER: 1.00	Range: 0.00 to 600.00 in steps of 0.01	
	MESSAGE	-	NEG SEQ TOC1 RESET: Instantaneous	Range: Instantaneous, Timed	
	MESSAGE	-	NEG SEQ TOC1 BLOCK: Off	Range: FlexLogic ${ }^{\text {TM }}$ operand	
	MESSAGE	-	NEG SEQ TOC1 TARGET: Self-reset	Range: Self-reset, Latched, Disabled	
	MESSAGE	(2)	NEG SEQ TOC1 EVENTS: Disabled	Range: Disabled, Enabled	

The negative sequence time overcurrent element may be used to determine and clear unbalance in the system. The input for calculating negative sequence current is the fundamental phasor value.
Two methods of resetting operation are available; "Timed" and "Instantaneous" (refer to the Inverse TOC Characteristics sub-section for details on curve setup, trip times and reset operation). When the element is blocked, the time accumulator will reset according to the reset characteristic. For example, if the element reset characteristic is set to "Instantaneous" and the element is blocked, the time accumulator will be cleared immediately.

Figure 5-52: NEGATIVE SEQUENCE TOC1 SCHEME LOGIC

c) NEGATIVE SEQUENCE INSTANTANEOUS OVERCURRENT (ANSI 50_2)

PATH: SETTINGS $\Rightarrow \Downarrow$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ })$ NEGATIVE SEQUENCE CURRENT $\Rightarrow \sqrt{ }$ NEG SEQ OC1(2)

The Negative Sequence Instantaneous Overcurrent element may be used as an instantaneous function with no intentional delay or as a Definite Time function. The element responds to the negative-sequence current fundamental frequency phasor magnitude (calculated from the phase currents) and applies a "positive-sequence" restraint for better performance: a small portion (12.5%) of the positive-sequence current magnitude is subtracted from the negative-sequence current magnitude when forming the operating quantity:

$$
\begin{equation*}
I_{o p}=\left|I _2\right|-K \cdot\left|I _1\right| \text { where } K=1 / 8 \tag{EQ5.16}
\end{equation*}
$$

The positive-sequence restraint allows for more sensitive settings by counterbalancing spurious negative-sequence currents resulting from:

- system unbalances under heavy load conditions
- transformation errors of current transformers (CTs) during three-phase faults
- fault inception and switch-off transients during three-phase faults

The positive-sequence restraint must be considered when testing for pickup accuracy and response time (multiple of pickup). The operating quantity depends on the way the test currents are injected into the relay (single phase injection: $I_{o p}=0.2917 \cdot I_{\text {injected }} ;$ three phase injection, opposite rotation: $\left.I_{o p}=I_{\text {injected }}\right)$.

Figure 5-53: NEGATIVE SEQUENCE IOC1 SCHEME LOGIC
d) NEGATIVE SEQUENCE DIRECTIONAL OVERCURRENT (ANSI 67_2)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6) $\Rightarrow \sqrt{ }$ NEGATIVE SEQUENCE CURRENT $\Rightarrow \sqrt{ }$ NEG SEQ DIR OC1(2)

There are two Negative Sequence Directional Overcurrent protection elements available. The element provides both forward and reverse fault direction indications through its output operands NEG SEQ DIR OC1 FWD and NEG SEQ DIR OC1 REV, respectively. The output operand is asserted if the magnitude of the operating current is above a pickup level (overcurrent unit) and the fault direction is seen as 'forward' or 'reverse', respectively (directional unit).
The overcurrent unit of the element essentially responds to the magnitude of a fundamental frequency phasor of either the negative-sequence or zero-sequence current as per user selection. The zero-sequence current should not be mistaken with the neutral current (factor 3 difference).

A 'positive-sequence restraint' is applied for better performance: a small user-programmable portion of the positivesequence current magnitude is subtracted from the negative- or zero-sequence current magnitude, respectively, when forming the element operating quantity.

$$
\begin{equation*}
I_{o p}=\left|I _2\right|-K \times\left|I _1\right| \quad \text { or } \quad I_{o p}=\left|I _0\right|-K \times\left|I _1\right| \tag{EQ5.17}
\end{equation*}
$$

The positive-sequence restraint allows for more sensitive settings by counterbalancing spurious negative- and zerosequence currents resulting from:

- System unbalances under heavy load conditions.
- Transformation errors of Current Transformers (CTs).
- Fault inception and switch-off transients.

The positive-sequence restraint must be considered when testing for pick-up accuracy and response time (multiple of pickup). The operating quantity depends on the way the test currents are injected into the relay:

- single-phase injection: $I_{o p}=1 / 3 \times(1-K) \times I_{\text {injected }}$
- three-phase pure zero- or negative-sequence injection, respectively: $I_{o p}=I_{\text {injected }}$.
- the directional unit uses the negative-sequence current and voltage for fault direction discrimination

The following table defines the Negative Sequence Directional Overcurrent element.

OVERCURRENT UNIT		DIRECTIONAL UNIT		
MODE	OPERATING CURRENT	DIRECTION	COMPARED PHASORS	
Negative-Sequence	$I_{\text {op }}=\left\|1 _2\right\|-K \times 1 _1 \mid$	Forward	-V_2+Z_offset $\times 1$ _2	I_2 $\times 1 \angle \mathrm{ECA}$
		Reverse	-V_2+Z_offset $\times 1$ _2	$-(1) 2 \times 1 \angle \mathrm{ECA})$
Zero-Sequence		Forward	-V_2+Z_offset $\times 1$ _2	I_2×1 2 ECA
		Reverse	-V_2 + Z_offset $\times 1$ _2	-(I_2 $\times 1 \angle \mathrm{ECA})$

The negative-sequence voltage must be higher than 1 V secondary in order to be validated for use as a polarizing signal. If the polarizing signal is not validated neither forward nor reverse indication is given. The following figure explains the usage of the voltage polarized directional unit of the element.

The figure below shows the phase angle comparator characteristics for a Phase A to ground fault, with settings of:

$$
\begin{array}{ll}
\text { ECA } & =75^{\circ} \text { (Element Characteristic Angle }=\text { centerline of operating characteristic) } \\
\text { FWD LA } & =80^{\circ} \text { (Forward Limit Angle }= \pm \text { the angular limit with the ECA for operation) } \\
\text { REV LA } & =80^{\circ} \text { (Reverse Limit Angle }= \pm \text { the angular limit with the ECA for operation) }
\end{array}
$$

The element incorporates a current reversal logic: if the reverse direction is indicated for at least 1.25 of a power system cycle, the prospective forward indication will be delayed by 1.5 of a power system cycle. The element is designed to emulate an electromechanical directional device. Larger operating and polarizing signals will result in faster directional discrimination bringing more security to the element operation.

Figure 5-54: NEG SEQ DIRECTIONAL CHARACTERISTICS
The forward-looking function is designed to be more secure as compared to the reverse-looking function, and therefore, should be used for the tripping direction. The reverse-looking function is designed to be faster as compared to the forwardlooking function and should be used for the blocking direction. This allows for better protection coordination. The above bias should be taken into account when using the Negative Sequence Directional Overcurrent element to 'directionalize' other protection elements.

- NEG SEQ DIR OC1 OFFSET: This setting specifies the offset impedance used by this protection. The primary application for the offset impedance is to guarantee correct identification of fault direction on series compensated lines (see the Application of Settings chapter for information on how to calculate this setting). In regular applications, the offset impedance ensures proper operation even if the negative-sequence voltage at the relaying point is very small. If this is the intent, the offset impedance shall not be larger than the negative-sequence impedance of the protected circuit. Practically, it shall be several times smaller. The offset impedance shall be entered in secondary ohms. See the Theory of Operation chapter for additional details.
- NEG SEQ DIR OC1 TYPE: This setting selects the operating mode for the overcurrent unit of the element. The choices are "Neg Sequence" and "Zero Sequence". In some applications it is advantageous to use a directional nega-tive-sequence overcurrent function instead of a directional zero-sequence overcurrent function as inter-circuit mutual effects are minimized.
- NEG SEQ DIR OC1 POS-SEQ RESTRAINT: This setting controls the amount of the positive-sequence restraint. Set to 0.063 (in "Zero Sequence" mode) or 0.125 (in "Neg Sequence" mode) for backward compatibility with firmware revision 3.40 and older. Set to zero to remove the restraint. Set higher if large system unbalances or poor CT performance are expected.
- NEG SEQ DIR OC1 FWD ECA: This setting select the element characteristic angle (ECA) for the forward direction. The element characteristic angle in the reverse direction is the angle set for the forward direction shifted by 180°.
- NEG SEQ DIR OC1 FWD LIMIT ANGLE: This setting defines a symmetrical (in both directions from the ECA) limit angle for the forward direction.
- NEG SEQ DIR OC1 FWD PICKUP: This setting defines the pickup level for the overcurrent unit in the forward direction. Upon NEG SEQ DIR OC1 TYPE selection, this pickup threshold applies to zero- or negative-sequence current. When selecting this setting it must be kept in mind that the design uses a 'positive-sequence restraint' technique.
- NEG SEQ DIR OC1 REV LIMIT ANGLE: This setting defines a symmetrical (in both directions from the ECA) limit angle for the reverse direction.
- NEG SEQ DIR OC1 REV PICKUP: This setting defines the pickup level for the overcurrent unit in the reverse direction. Upon NEG SEQ DIR OC1 TYPE selection, this pickup threshold applies to zero- or negative-sequence current. When selecting this setting it must be kept in mind that the design uses a 'positive-sequence restraint' technique.

Figure 5-55: NEGATIVE SEQUENCE DIRECTIONAL OC1 SCHEME LOGIC

5 SETTINGS

PATH: SETTINGS $\Rightarrow \sqrt{s}$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \Omega$ BREAKER FAILURE \Rightarrow BREAKER FAILURE 1 (2)

MESSAGE

MESSAGE

MESSAGE
MESSAGE

MESSAGE
MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAG

MESSAGE

MESSAGE

MESSAGE

BF1 TIMER 3 PICKUP
DELAY: 0.000 s

MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

BF1 MODE:
3-Pole

BF1 USE AMP SUPV:
Yes

∇	BF1 USE SEAL-IN: Yes

BF1 3-POLE INITIATE:
Off
BF1 BLOCK:
Off

BF1 PH AMP SUPV
PICKUP: 1.050 pu

BF1 USE TIMER 1:
Yes

DELAY: 0.000 s
BF1 USE TIMER 2: Range: Yes, No
Yes
BF1 TIMER 2 PICKUP

Off
BF1 BREAKER TEST ON:
Off

BF1 PH AMP HISET
PICKUP: 1.050 pu

BF1 N AMP HISET
PICKUP: 1.050 pu

BF1 PH AMP LOSET
PICKUP: 1.050 pu

Range: 3-Pole, 1-Pole

Range: Yes, No

Range: Yes, No

Range: 0.001 to 30.000 pu in steps of 0.001

Range: 0.001 to 30.000 pu in steps of 0.001

Range: Yes, No

Range: 0.000 to 65.535 s in steps of 0.001

Range: 0.000 to 65.535 s in steps of 0.001

Range: Yes, No

Range: 0.000 to 65.535 s in steps of 0.001

BF1 BKR POS1 $\phi \mathbf{A} / 3 \mathrm{P}:$ Off

BF1 BKR POS2 $\phi \mathrm{A} / 3 \mathrm{P}$: Range: FlexLogic ${ }^{\text {TM }}$ operand

Range: 0.001 to 30.000 pu in steps of 0.001

Range: 0.001 to 30.000 pu in steps of 0.001

| BF1 N AMP LOSET |
| :--- | :--- | :--- | :--- | :--- |
| PICKUP: 1.050 pu | Range: 0.001 to 30.000 pu in steps of 0.001

There are 2 identical Breaker Failure menus available, numbered 1 and 2.
In general, a breaker failure scheme determines that a breaker signaled to trip has not cleared a fault within a definite time, so further tripping action must be performed. Tripping from the breaker failure scheme should trip all breakers, both local and remote, that can supply current to the faulted zone. Usually operation of a breaker failure element will cause clearing of a larger section of the power system than the initial trip. Because breaker failure can result in tripping a large number of breakers and this affects system safety and stability, a very high level of security is required.
Two schemes are provided: one for three-pole tripping only (identified by the name "3BF") and one for three pole plus sin-gle-pole operation (identified by the name "1BF"). The philosophy used in these schemes is identical. The operation of a breaker failure element includes three stages: initiation, determination of a breaker failure condition, and output.

INITIATION STAGE:

A FlexLogic ${ }^{\text {TM }}$ operand representing the protection trip signal initially sent to the breaker must be selected to initiate the scheme. The initiating signal should be sealed-in if primary fault detection can reset before the breaker failure timers have finished timing. The seal-in is supervised by current level, so it is reset when the fault is cleared. If desired, an incomplete sequence seal-in reset can be implemented by using the initiating operand to also initiate a FlexLogic ${ }^{\text {TM }}$ timer, set longer than any breaker failure timer, whose output operand is selected to block the breaker failure scheme.
Schemes can be initiated either directly or with current level supervision. It is particularly important in any application to decide if a current-supervised initiate is to be used. The use of a current-supervised initiate results in the breaker failure element not being initiated for a breaker that has very little or no current flowing through it, which may be the case for transformer faults. For those situations where it is required to maintain breaker fail coverage for fault levels below the BF1 PH AMP SUPV PICKUP or the BF1 N AMP SUPV PICKUP setting, a current supervised initiate should not be used. This feature should be utilized for those situations where coordinating margins may be reduced when high speed reclosing is used. Thus, if this choice is made, fault levels must always be above the supervision pickup levels for dependable operation of the breaker fail scheme. This can also occur in breaker-and-a-half or ring bus configurations where the first breaker closes into a fault; the protection trips and attempts to initiate breaker failure for the second breaker, which is in the process of closing, but does not yet have current flowing through it.

When the scheme is initiated, it immediately sends a trip signal to the breaker initially signaled to trip (this feature is usually described as Re-Trip). This reduces the possibility of widespread tripping that results from a declaration of a failed breaker.

DETERMINATION OF A BREAKER FAILURE CONDITION:

The schemes determine a breaker failure condition via three 'paths'. Each of these paths is equipped with a time delay, after which a failed breaker is declared and trip signals are sent to all breakers required to clear the zone. The delayed paths are associated with Breaker Failure Timers 1, 2, and 3, which are intended to have delays increasing with increasing timer numbers. These delayed paths are individually enabled to allow for maximum flexibility.

Timer 1 logic (Early Path) is supervised by a fast-operating breaker auxiliary contact. If the breaker is still closed (as indicated by the auxiliary contact) and fault current is detected after the delay interval, an output is issued. Operation of the breaker auxiliary switch indicates that the breaker has mechanically operated. The continued presence of current indicates that the breaker has failed to interrupt the circuit.

Timer 2 logic (Main Path) is not supervised by a breaker auxiliary contact. If fault current is detected after the delay interval, an output is issued. This path is intended to detect a breaker that opens mechanically but fails to interrupt fault current; the logic therefore does not use a breaker auxiliary contact.

The Timer 1 and 2 paths provide two levels of current supervision, Hi-set and Lo-set, that allow the supervision level to change from a current which flows before a breaker inserts an opening resistor into the faulted circuit to a lower level after resistor insertion. The Hi-set detector is enabled after timeout of Timer 1 or 2, along with a timer that will enable the Lo-set detector after its delay interval. The delay interval between Hi-set and Lo-set is the expected breaker opening time. Both current detectors provide a fast operating time for currents at small multiples of the pickup value. The overcurrent detectors are required to operate after the breaker failure delay interval to eliminate the need for very fast resetting overcurrent detectors.

Timer 3 logic (Slow Path) is supervised by a breaker auxiliary contact and a control switch contact used to indicate that the breaker is in/out of service, disabling this path when the breaker is out of service for maintenance. There is no current level check in this logic as it is intended to detect low magnitude faults and it is therefore the slowest to operate.

OUTPUT:

The outputs from the schemes are:

- FlexLogic ${ }^{\text {TM }}$ operands that report on the operation of portions of the scheme
- FlexLogic ${ }^{T M}$ operand used to re-trip the protected breaker
- FlexLogic ${ }^{\text {™ }}$ operands that initiate tripping required to clear the faulted zone. The trip output can be sealed-in for an adjustable period.
- Target message indicating a failed breaker has been declared
- Illumination of the faceplate Trip LED (and the Phase A, B or C LED, if applicable)

MAIN PATH SEQUENCE:

Figure 5-56: BREAKER FAILURE MAIN PATH SEQUENCE

SETTINGS:

- BF1 MODE: This setting is used to select the breaker failure operating mode: single or three pole.
- BF1 USE AMP SUPV: If set to "Yes", the element will only be initiated if current flowing through the breaker is above the supervision pickup level.
- BF1 USE SEAL-IN: If set to "Yes", the element will only be sealed-in if current flowing through the breaker is above the supervision pickup level.
- BF1 3-POLE INITIATE: This setting selects the FlexLogic ${ }^{T M}$ operand that will initiate 3-pole tripping of the breaker.
- BF1 PH AMP SUPV PICKUP: This setting is used to set the phase current initiation and seal-in supervision level. Generally this setting should detect the lowest expected fault current on the protected breaker. It can be set as low as necessary (lower than breaker resistor current or lower than load current) - Hiset and Loset current supervision will guarantee correct operation.
- BF1 N AMP SUPV PICKUP: This setting is used to set the neutral current initiate and seal-in supervision level. Generally this setting should detect the lowest expected fault current on the protected breaker. Neutral current supervision is used only in the three phase scheme to provide increased sensitivity. This setting is valid only for three-pole tripping schemes.
- BF1 USE TIMER 1: If set to "Yes", the Early Path is operational.
- BF1 TIMER 1 PICKUP DELAY: Timer 1 is set to the shortest time required for breaker auxiliary contact Status-1 to open, from the time the initial trip signal is applied to the breaker trip circuit, plus a safety margin.
- BF1 USE TIMER 2: If set to "Yes", the Main Path is operational.
- BF1 TIMER 2 PICKUP DELAY: Timer 2 is set to the expected opening time of the breaker, plus a safety margin. This safety margin was historically intended to allow for measuring and timing errors in the breaker failure scheme equipment. In microprocessor relays this time is not significant. In F60 relays, which use a Fourier transform, the calculated current magnitude will ramp-down to zero one power frequency cycle after the current is interrupted, and this lag should be included in the overall margin duration, as it occurs after current interruption. The Breaker Failure Main Path Sequence diagram below shows a margin of two cycles; this interval is considered the minimum appropriate for most applications.

Note that in bulk oil circuit breakers, the interrupting time for currents less than 25% of the interrupting rating can be significantly longer than the normal interrupting time.

- BF1 USE TIMER 3: If set to "Yes", the Slow Path is operational.
- BF1 TIMER 3 PICKUP DELAY: Timer 3 is set to the same interval as Timer 2, plus an increased safety margin. Because this path is intended to operate only for low level faults, the delay can be in the order of 300 to 500 ms .
- BF1 BKR POS1 $\phi \mathrm{A} / 3 \mathrm{P}$: This setting selects the FlexLogic ${ }^{\text {TM }}$ operand that represents the protected breaker early-type auxiliary switch contact (52/a). When using 1-Pole breaker failure scheme, this operand represents the protected breaker early-type auxiliary switch contact on pole A. This is normally a non-multiplied Form-A contact. The contact may even be adjusted to have the shortest possible operating time.
- BF1 BKR POS2 $\phi A / 3 P$: This setting selects the FlexLogic ${ }^{T M}$ operand that represents the breaker normal-type auxiliary switch contact (52/a). When using 1-Pole breaker failure scheme, this operand represents the protected breaker auxiliary switch contact on pole A. This may be a multiplied contact.
- BF1 BREAKER TEST ON: This setting is used to select the FlexLogic ${ }^{\text {TM }}$ operand that represents the breaker In-Ser-vice/Out-of-Service switch set to the Out-of-Service position.
- BF1 PH AMP HISET PICKUP: This setting sets the phase current output supervision level. Generally this setting should detect the lowest expected fault current on the protected breaker, before a breaker opening resistor is inserted.
- BF1 N AMP HISET PICKUP: This setting sets the neutral current output supervision level. Generally this setting should detect the lowest expected fault current on the protected breaker, before a breaker opening resistor is inserted. Neutral current supervision is used only in the three pole scheme to provide increased sensitivity. This setting is valid only for 3-pole breaker failure schemes.
- BF1 PH AMP LOSET PICKUP: This setting sets the phase current output supervision level. Generally this setting should detect the lowest expected fault current on the protected breaker, after a breaker opening resistor is inserted (approximately 90% of the resistor current).
- BF1 N AMP LOSET PICKUP: This setting sets the neutral current output supervision level. Generally this setting should detect the lowest expected fault current on the protected breaker, after a breaker opening resistor is inserted (approximately 90% of the resistor current). This setting is valid only for 3-pole breaker failure schemes.
- BF1 LOSET TIME DELAY: Sets the pickup delay for current detection after opening resistor insertion.
- BF1 TRIP DROPOUT DELAY: This setting is used to set the period of time for which the trip output is sealed-in. This timer must be coordinated with the automatic reclosing scheme of the failed breaker, to which the breaker failure element sends a cancel reclosure signal. Reclosure of a remote breaker can also be prevented by holding a Transfer Trip signal on longer than the "reclaim" time.
- BF1 PH A INITIATE / BF1 PH B INITIATE / BF 1 PH C INITIATE: These settings select the FlexLogic ${ }^{\text {TM }}$ operand to initiate phase A, B, or C single-pole tripping of the breaker and the phase A, B, or C portion of the scheme, accordingly. This setting is only valid for 1-pole breaker failure schemes.
- BF1 BKR POS1 ϕ B / BF1 BKR POS $1 \phi C$: These settings select the FlexLogic ${ }^{\text {TM }}$ operand to represents the protected breaker early-type auxiliary switch contact on poles B or C, accordingly. This contact is normally a non-multiplied FormA contact. The contact may even be adjusted to have the shortest possible operating time. This setting is valid only for 1-pole breaker failure schemes.
- BF1 BKR POS2 $\phi \mathrm{B}$: Selects the FlexLogic ${ }^{T M}$ operand that represents the protected breaker normal-type auxiliary switch contact on pole B (52/a). This may be a multiplied contact. This setting is valid only for 1-pole breaker failure schemes.
- BF1 BKR POS2 $\phi \mathrm{C}$: This setting selects the FlexLogic $^{\text {TM }}$ operand that represents the protected breaker normal-type auxiliary switch contact on pole C (52/a). This may be a multiplied contact. For single-pole operation, the scheme has the same overall general concept except that it provides re-tripping of each single pole of the protected breaker. The approach shown in the following single pole tripping diagram uses the initiating information to determine which pole is supposed to trip. The logic is segregated on a per-pole basis. The overcurrent detectors have ganged settings. This setting is valid only for 1-pole breaker failure schemes.

Upon operation of the breaker failure element for a single pole trip command, a 3-pole trip command should be given via output operand BKR FAIL 1 TRIP OP.

Figure 5-57: BREAKER FAILURE 1-POLE [INITIATE] (Sheet 1 of 2)

Figure 5-58: BREAKER FAILURE 1-POLE [TIMERS] (Sheet 2 of 2)

Figure 5-59: BREAKER FAILURE 3-POLE [INITIATE] (Sheet 1 of 2)

Figure 5-60: BREAKER FAILURE 3-POLE [TIMERS] (Sheet 2 of 2)
a) MAIN MENU

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ })$ VOLTAGE ELEMENTS

These protection elements can be used for a variety of applications such as:
Undervoltage Protection: For voltage sensitive loads, such as induction motors, a drop in voltage increases the drawn current which may cause dangerous overheating in the motor. The undervoltage protection feature can be used to either cause a trip or generate an alarm when the voltage drops below a specified voltage setting for a specified time delay.
Permissive Functions: The undervoltage feature may be used to block the functioning of external devices by operating an output relay when the voltage falls below the specified voltage setting. The undervoltage feature may also be used to block the functioning of other elements through the block feature of those elements.
Source Transfer Schemes: In the event of an undervoltage, a transfer signal may be generated to transfer a load from its normal source to a standby or emergency power source.

The undervoltage elements can be programmed to have a Definite Time delay characteristic. The Definite Time curve operates when the voltage drops below the pickup level for a specified period of time. The time delay is adjustable from 0 to 600.00 seconds in steps of 10 ms . The undervoltage elements can also be programmed to have an inverse time delay characteristic. The undervoltage delay setting defines the family of curves shown below.

$$
T=\frac{D}{\left(1-\frac{V}{V_{\text {pickup }}}\right)}
$$

where: $\quad T=$ Operating Time
$D=$ Undervoltage Delay Setting ($D=0.00$ operates instantaneously)
$V=$ Secondary Voltage applied to the relay
$V_{\text {pickup }}=$ Pickup Level
At 0\% of pickup, the operating time equals the UNDERVOLTAGE DELAY setting.

Figure 5-61: INVERSE TIME UNDERVOLTAGE CURVES
b) PHASE UNDERVOLTAGE (ANSI 27P)

PATH: SETTINGS $\Rightarrow \sqrt{\Omega}$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ })$ VOLTAGE ELEMENTS \Rightarrow PHASE UNDERVOLTAGE1(2)

This element may be used to give a desired time-delay operating characteristic versus the applied fundamental voltage (phase-to-ground or phase-to-phase for Wye VT connection, or phase-to-phase for Delta VT connection) or as a Definite Time element. The element resets instantaneously if the applied voltage exceeds the dropout voltage. The delay setting selects the minimum operating time of the phase undervoltage. The minimum voltage setting selects the operating voltage below which the element is blocked (a setting of " 0 " will allow a dead source to be considered a fault condition).

Figure 5-62: PHASE UNDERVOLTAGE1 SCHEME LOGIC
c) PHASE OVERVOLTAGE (ANSI 59P)

PATH: SETTINGS $\Rightarrow \sqrt{ } /$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ })$ VOLTAGE ELEMENTS $\Rightarrow \sqrt{ }$ PHASE OVERVOLTAGE1

\square \square PHASE OVERVOLTAGE1		(1)	$\begin{aligned} & \text { PHASE OV1 } \\ & \text { FUNCTION: Disabled } \end{aligned}$	Range: Disabled, Enabled
	MESSAGE	-	PHASE OV1 SIGNAL SOURCE: SRC 1	Range: SRC 1, SRC 2
	MESSAGE	-	$\begin{aligned} & \text { PHASE OV1 } \\ & \text { PICKUP: } 1.000 \mathrm{pu} \end{aligned}$	Range: 0.000 to 3.000 pu in steps of 0.001
	MESSAGE	-	PHASE OV1 PICKUP DELAY: 1.00 s	Range: 0.00 to 600.00 s in steps of 0.01
	MESSAGE	-	PHASE OV1 RESET DELAY: 1.00 s	Range: 0.00 to 600.00 s in steps of 0.01
	MESSAGE	-	PHASE OV1 BLOCK: Off	Range: FlexLogic ${ }^{\text {TM }}$ Operand
	MESSAGE	Q	PHASE OV1 TARGET: Self-reset	Range: Self-reset, Latched, Disabled
	MESSAGE	(2)	PHASE OV1 EVENTS: Disabled	Range: Disabled, Enabled

The phase overvoltage element may be used as an instantaneous element with no intentional time delay or as a Definite Time element. The input voltage is the phase-to-phase voltage, either measured directly from Delta-connected VTs or as calculated from phase-to-ground (Wye) connected VTs. The specific voltages to be used for each phase are shown below.

Figure 5-63: PHASE OV SCHEME LOGIC
d) NEUTRAL OVERVOLTAGE (ANSI 59N)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ })$ VOLTAGE ELEMENTS $\Rightarrow \sqrt{ } \Rightarrow$ NEUTRAL OV1

The Neutral Overvoltage element can be used to detect asymmetrical system voltage condition due to a ground fault or to the loss of one or two phases of the source. The element responds to the system neutral voltage ($3 \mathrm{~V} _0$), calculated from the phase voltages. The nominal secondary voltage of the phase voltage channels entered under SETTINGS $\Rightarrow \Omega$ SYSTEM SETUP \Rightarrow AC INPUTS $\Rightarrow \sqrt{ }$ VOLTAGE BANK \Rightarrow PHASE VT SECONDARY is the $p . u$. base used when setting the pickup level.
VT errors and normal voltage unbalance must be considered when setting this element. This function requires the VTs to be Wye connected.

Figure 5-64: NEUTRAL OVERVOLTAGE1 SCHEME LOGIC
e) NEGATIVE SEQUENCE OVERVOLTAGE (ANSI 59_2)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ })$ VOLTAGE ELEMENTS $\Rightarrow \sqrt{ }$ NEG SEQ OV

\square NEG SEQ OV		(1)	NEG SEQ OV FUNCTION: Disabled	Range: Disabled, Enabled	
	MESSAGE	-	NEG SEQ OV SIGNAL SOURCE: SRC 1	Range: SRC 1, SRC 2	
	MESSAGE	-	NEG SEQ OV PICKUP: 0.300 pu	Range: 0.000 to 1.250 pu in steps of 0.001	
	MESSAGE	-	NEG SEQ OV PICKUP DELAY: $\quad 0.50 \mathrm{~s}$	Range: 0.00 to 600.00 s in steps of 0.01	
	MESSAGE	-	NEG SEQ OV RESET DELAY: 0.50 s	Range: 0.00 to 600.00 s in steps of 0.01	
	MESSAGE	-	NEG SEQ OV BLOCK: Off	Range: FlexLogic ${ }^{\text {TM }}$ operand	
	MESSAGE	Q	NEG SEQ OV TARGET: Self-reset	Range: Self-reset, Latched, Disabled	
	MESSAGE	(2)	NEG SEQ OV EVENTS: Disabled	Range: Disabled, Enabled	

The negative sequence overvoltage element may be used to detect loss of one or two phases of the source, a reversed phase sequence of voltage, or a non-symmetrical system voltage condition.

Figure 5-65: NEG SEQ OV SCHEME LOGIC

f) AUXILIARY UNDERVOLTAGE (ANSI 27X)

PATH: SETTINGS $\Rightarrow \sqrt{ } \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ })$ VOLTAGE ELEMENTS $\Rightarrow \sqrt{ }$ AUXILIARY UV1

This element is intended for monitoring undervoltage conditions of the auxiliary voltage. The AUX UV1 PICKUP selects the voltage level at which the time undervoltage element starts timing. The nominal secondary voltage of the auxiliary voltage channel entered under SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP \Rightarrow AC INPUTS $\Rightarrow \sqrt{ }$ VOLTAGE BANK X5 $\Rightarrow \sqrt{ }$ AUXILIARY VT X5 SECONDARY is the p.u. base used when setting the pickup level.
The AUX UV1 DELAY setting selects the minimum operating time of the auxiliary undervoltage element. Both AUX UV1 PICKUP and AUX UV1 DELAY settings establish the operating curve of the undervoltage element. The auxiliary undervoltage element can be programmed to use either Definite Time Delay or Inverse Time Delay characteristics. The operating characteristics and equations for both Definite and Inverse Time Delay are as for the Phase Undervoltage element.

The element resets instantaneously. The minimum voltage setting selects the operating voltage below which the element is blocked.

Figure 5-66: AUXILIARY UNDERVOLTAGE SCHEME LOGIC
g) AUXILIARY OVERVOLTAGE (ANSI 59X)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ })$ VOLTAGE ELEMENTS $\Rightarrow \sqrt{ }$ AUXILIARY OV1

\square AUXILIARY OV1		(1)	$\begin{aligned} & \text { AUX OV1 } \\ & \text { FUNCTION: Disabled } \end{aligned}$	Range: Disabled, Enabled	
	MESSAGE	-	AUX OV1 SIGNAL SOURCE : SRC 1	Range	SRC 1, SRC 2
	MESSAGE	-	AUX OV1 PICKUP: 0.300 pu	Range	0.000 to 3.000 pu in steps of 0.001
	MESSAGE	-	AUX OV1 PICKUP DELAY: 1.00 s	Range	0.00 to 600.00 s in steps of 0.01
	MESSAGE	Q	AUX OV1 RESET DELAY: 1.00 s	Range	0.00 to 600.00 s in steps of 0.01
	MESSAGE	-	AUX OV1 BLOCK: Off	Range	FlexLogic ${ }^{\text {TM }}$ operand
	MESSAGE	-	AUX OV1 TARGET: Self-reset	Range	Self-reset, Latched, Disabled
	MESSAGE	(AUX OV1 EVENTS: Disabled	Range	Disabled, Enabled

This element is intended for monitoring overvoltage conditions of the auxiliary voltage. A typical application for this element is monitoring the zero-sequence voltage ($3 \mathrm{~V}, 0$) supplied from an open-corner-delta VT connection. The nominal secondary voltage of the auxiliary voltage channel entered under SYSTEM SETUP \Rightarrow AC INPUTS $\sqrt{ } \Rightarrow$ VOLTAGE BANK X5 $\sqrt{ } \Rightarrow$ AUXILIARY VT X5 SECONDARY is the p.u. base used when setting the pickup level.

Figure 5-67: AUXILIARY OVERVOLTAGE SCHEME LOGIC

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ })$ SENSITIVE DIRECTIONAL... \Rightarrow DIRECTIONAL POWER 1(2)

The Directional Power element responds to three-phase active power and is designed for reverse power and low forward power applications for synchronous machines or interconnections involving co-generation. The relay measures the threephase power from either full set of wye-connected VTs or full-set of delta-connected VTs. In the latter case, the two-wattmeter method is used. Refer to the UR Metering Conventions section in Chapter 6 for conventions regarding the active and reactive powers used by the Directional Power element.

The element has an adjustable characteristic angle and minimum operating power as shown in the Directional Power Characteristic diagram. The element responds to the following condition:

$$
\begin{equation*}
P \cos \theta+Q \sin \theta>S M I N \tag{EQ5.18}
\end{equation*}
$$

where: P and Q are active and reactive powers as measured per the UR convention,
θ is a sum of the element characteristic (DIR POWER 1 RCA) and calibration (DIR POWER 1 CALIBRATION) angles, and SMIN is the minimum operating power

The operating quantity is available for display as under ACTUAL VALUES \Rightarrow METERING $\Rightarrow \sqrt{ } \sqrt{\text { SENSITIVE DIRECTIONAL POWER }}$ 1(2). The element has two independent (as to the pickup and delay settings) stages for alarm and trip, respectively.

Figure 5-68: DIRECTIONAL POWER CHARACTERISTIC
By making the characteristic angle adjustable and providing for both negative and positive values of the minimum operating power a variety of operating characteristics can be achieved as presented in the figure below. For example, Figure (a) below shows settings for reverse power application, while Figure (b) shows settings for low forward power application.

Figure 5-69: DIRECTIONAL POWER ELEMENT SAMPLE APPLICATIONS

- DIR POWER 1(2) RCA: Specifies the relay characteristic angle (RCA) for the directional power function. Application of this setting is threefold:

1. It allows the element to respond to active or reactive power in any direction (active overpower, active underpower, etc.)
2. Together with a precise calibration angle, it allows compensation for any CT and VT angular errors to permit more sensitive settings.
3. It allows for required direction in situations when the voltage signal is taken from behind a delta-wye connected power transformer and the phase angle compensation is required.

For example, the active overpower characteristic is achieved by setting DIR POWER 1(2) RCA to " 0° ", reactive overpower by setting DIR POWER 1 (2) RCA to " 90° ", active underpower by setting DIR POWER 1 (2) RCA to " 180° ", and reactive underpower by setting DIR POWER 1(2) RCA to " 270° ".

- DIR POWER 1(2) CALIBRATION: This setting allows the RCA to change in small steps of 0.05°. This may be useful when a small difference in VT and CT angular errors is to be compensated to permit more sensitive settings. This setting virtually enables calibration of the Directional Power function in terms of the angular error of applied VTs and CTs.

The element responds to the sum of the DIR POWER X RCA and DIR POWER X CALIBRATION settings.

- DIR POWER 1(2) STG1 SMIN: This setting specifies the minimum power as defined along the RCA angle for the stage 1 of the element. The positive values imply a shift towards the operate region along the RCA line. The negative values imply a shift towards the restrain region along the RCA line. Refer to the Directional Power Sample Applications figure for an illustration. Together with the RCA, this setting enables a wide range of operating characteristics. This setting applies to three-phase power and is entered in pu. The base quantity is $3 \times \mathrm{VT}$ pu base $\times \mathrm{CT}$ pu base.

For example, a setting of 2% for a 200 MW machine, is $0.02 \times 200 \mathrm{MW}=4 \mathrm{MW}$. If 7.967 kV is a primary VT voltage and 10 kA is a primary CT current, the source pu quantity is 239 MVA , and thus, SMIN should be set at $4 \mathrm{MW} /$ $239 \mathrm{MVA}=0.0167 \mathrm{pu} \approx 0.017 \mathrm{pu}$. If the reverse power application is considered, $\mathrm{RCA}=180^{\circ}$ and $\mathrm{SMIN}=0.017 \mathrm{pu}$.

The element drops out if the magnitude of the positive-sequence current becomes virtually zero, that is, it drops below the cutoff level.

- DIR POWER 1(2) STG1 DELAY: This setting specifies a time delay for the Stage 1 of the element. For reverse power or low forward power applications for a synchronous machine, Stage 1 is typically applied for alarming and Stage 2 for tripping.

Figure 5-70: DIRECTIONAL POWER SCHEME LOGIC

Control elements are generally used for control rather than protection. See the Introduction to Elements section at the beginning of this chapter for further information.

PATH: SETTINGS $\Rightarrow \sqrt{ }$ CONTROL ELEMENTS \Rightarrow SETTINGS GROUPS

The Setting Groups menu controls the activation/deactivation of up to six possible groups of settings in the GROUPED ELEMENTS settings menu. The faceplate 'Settings in Use' LEDs indicate which active group (with a non-flashing energized LED) is in service.

The SETTING GROUPS BLK setting prevents the active setting group from changing when the FlexLogic ${ }^{\text {TM }}$ parameter is set to "On". This can be useful in applications where it is undesirable to change the settings under certain conditions, such as the breaker being open.
Each GROUP n ACTIVATE ON setting selects a FlexLogic ${ }^{\text {TM }}$ operand which, when set, will make the particular setting group active for use by any grouped element. A priority scheme ensures that only one group is active at a given time - the high-est-numbered group which is activated by its GROUP n ACTIVATE ON parameter takes priority over the lower-numbered groups. There is no "activate on" setting for Group 1 (the default active group), because Group 1 automatically becomes active if no other group is active.

The relay can be set up via a FlexLogic ${ }^{\text {TM }}$ equation to receive requests to activate or de-activate a particular non-default settings group. The following FlexLogic ${ }^{\top 1}$ equation (see the figure below) illustrates requests via remote communications (e.g. VIRTUAL INPUT 1) or from a local contact input (e.g. H7a) to initiate the use of a particular settings group, and requests from several overcurrent pickup measuring elements to inhibit the use of the particular settings group. The assigned VIRTUAL OUTPUT 1 operand is used to control the "On" state of a particular settings group.

Figure 5-71: EXAMPLE FLEXLOGIC ${ }^{\text {TM }}$ CONTROL OF A SETTINGS GROUP

PATH: SETTINGS $\Rightarrow \Downarrow$ CONTROL ELEMENTS $\Rightarrow \sqrt{ }$ SELECTOR SWITCH \Rightarrow SELECTOR SWITCH 1(2)

The Selector Switch element is intended to replace a mechanical selector switch. Typical applications include setting group control or control of multiple logic sub-circuits in user-programmable logic.
The element provides for two control inputs. The step-up control allows stepping through selector position one step at a time with each pulse of the control input, such as a user-programmable pushbutton. The 3-bit control input allows setting the selector to the position defined by a 3-bit word.
The element allows pre-selecting a new position without applying it. The pre-selected position gets applied either after timeout or upon acknowledgement via separate inputs (user setting). The selector position is stored in non-volatile memory. Upon power-up, either the previous position is restored or the relay synchronizes to the current 3-bit word (user setting). Basic alarm functionality alerts the user under abnormal conditions; e.g. the 3-bit control input being out of range.

- SELECTOR 1 FULL RANGE: This setting defines the upper position of the selector. When stepping up through available positions of the selector, the upper position wraps up to the lower position (Position 1). When using a direct 3-bit control word for programming the selector to a desired position, the change would take place only if the control word is within the range of 1 to the SELECTOR FULL RANGE. If the control word is outside the range, an alarm is established by setting the SELECTOR ALARM FlexLogic ${ }^{\text {TM }}$ operand for 3 seconds.
- SELECTOR 1 TIME-OUT: This setting defines the time-out period for the selector. This value is used by the relay in the following two ways. When the SELECTOR STEP-UP MODE is "Time-out", the setting specifies the required period of
inactivity of the control input after which the pre-selected position is automatically applied. When the SELECTOR STEPUP MODE is "Acknowledge", the setting specifies the period of time for the acknowledging input to appear. The timer is re-started by any activity of the control input. The acknowledging input must come before the SELECTOR 1 TIME-OUT timer expires; otherwise, the change will not take place and an alarm will be set.
- SELECTOR 1 STEP-UP: This setting specifies a control input for the selector switch. The switch is shifted to a new position at each rising edge of this signal. The position changes incrementally, wrapping up from the last (SELECTOR 1 full range) to the first (Position 1). Consecutive pulses of this control operand must not occur faster than every 50 ms . After each rising edge of the assigned operand, the time-out timer is restarted and the SELECTOR SWITCH 1: POS Z CHNG INITIATED target message is displayed, where \boldsymbol{Z} the pre-selected position. The message is displayed for the time specified by the FLASH MESSAGE TIME setting. The pre-selected position is applied after the selector times out ("Time-out" mode), or when the acknowledging signal appears before the element times out ("Acknowledge" mode). When the new position is applied, the relay displays the SELECTOR SWITCH 1: POSITION Z IN USE message. Typically, a user-programmable pushbutton is configured as the stepping up control input.
- SELECTOR 1 STEP-UP MODE: This setting defines the selector mode of operation. When set to "Time-out", the selector will change its position after a pre-defined period of inactivity at the control input. The change is automatic and does not require any explicit confirmation of the intent to change the selector's position. When set to "Acknowledge", the selector will change its position only after the intent is confirmed through a separate acknowledging signal. If the acknowledging signal does not appear within a pre-defined period of time, the selector does not accept the change and an alarm is established by setting the SELECTOR STP ALARM output FlexLogic ${ }^{\text {™ }}$ operand for 3 seconds.
- SELECTOR 1 ACK: This setting specifies an acknowledging input for the stepping up control input. The pre-selected position is applied on the rising edge of the assigned operand. This setting is active only under "Acknowledge" mode of operation. The acknowledging signal must appear within the time defined by the SELECTOR 1 TIME-OUT setting after the last activity of the control input. A user-programmable pushbutton is typically configured as the acknowledging input.
- SELECTOR 1 3BIT A0, A1, and A2: These settings specify a 3-bit control input of the selector. The 3-bit control word pre-selects the position using the following encoding convention:

A2	A1	A0	POSITION
0	0	0	rest
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

The "rest" position $(0,0,0)$ does not generate an action and is intended for situations when the device generating the 3 -bit control word is having a problem. When SELECTOR 1 3BIT MODE is "Time-out", the pre-selected position is applied in SELECTOR 1 TIME-OUT seconds after the last activity of the 3-bit input. When SELECTOR 1 3BIT MODE is "Acknowledge", the pre-selected position is applied on the rising edge of the SELECTOR 1 3BIT ACK acknowledging input.

The stepping up control input (SELECTOR 1 STEP-UP) and the 3-bit control inputs (SELECTOR 1 3BIT A0 through A2) lockout mutually: once the stepping up sequence is initiated, the 3-bit control input is inactive; once the 3-bit control sequence is initiated, the stepping up input is inactive.

- SELECTOR 1 3BIT MODE: This setting defines the selector mode of operation. When set to "Time-out", the selector changes its position after a pre-defined period of inactivity at the control input. The change is automatic and does not require explicit confirmation to change the selector position. When set to "Acknowledge", the selector changes its position only after confirmation via a separate acknowledging signal. If the acknowledging signal does not appear within a pre-defined period of time, the selector rejects the change and an alarm established by invoking the SELECTOR BIT ALARM FlexLogic ${ }^{\text {TM }}$ operand for 3 seconds.
- SELECTOR 1 3BIT ACK: This setting specifies an acknowledging input for the 3-bit control input. The pre-selected position is applied on the rising edge of the assigned FlexLogic ${ }^{\top M}$ operand. This setting is active only under the "Acknowledge" mode of operation. The acknowledging signal must appear within the time defined by the SELECTOR TIME-OUT setting after the last activity of the 3-bit control inputs. Note that the stepping up control input and 3-bit control input have independent acknowledging signals (SELECTOR 1 ACK and SELECTOR 1 3BIT ACK, accordingly).
- SELECTOR 1 POWER-UP MODE: This setting specifies behavior of the element on power up of the relay. When set to "Restore", the last selector position, stored in non-volatile memory, is restored after powering up the relay. When set to "Synchronize", the selector sets to the current 3-bit control input after powering up the relay. This operation does not wait for time-out or the acknowledging input. When powering up, the rest position $(0,0,0)$ and the out-of-range 3-bit control words are also ignored, the output is set to Position 0 (no output operand selected), and an alarm is established (SELECTOR 1 PWR ALARM). If the position restored from memory is out-of-range, Position 0 (no output operand selected) is applied and an alarm is set (SELECTOR 1 PWR ALARM).
- SELECTOR 1 EVENTS: If enabled, the following events are logged:

EVENT NAME	DESCRIPTION
SELECTOR 1 POS Z	Selector 1 changed its position to Z.
SELECTOR 1 STP ALARM	The selector position pre-selected via the stepping up control input has not been confirmed before the time out.
SELECTOR 1 BIT ALARM	The selector position pre-selected via the 3-bit control input has not been confirmed before the time out.

The following figures illustrate the operation of the Selector Switch. In these diagrams, "T" represents a time-out setting.

Figure 5-72: TIME-OUT MODE

Figure 5-73: ACKNOWLEDGE MODE

APPLICATION EXAMPLE

Consider an application where the selector switch is used to control Setting Groups 1 through 4 in the relay. The setting groups are to be controlled from both User-Programmable Pushbutton 1 and from an external device via Contact Inputs 1 through 3. The active setting group shall be available as an encoded 3 -bit word to the external device and SCADA via output contacts 1 through 3 . The pre-selected setting group shall be applied automatically after 5 seconds of inactivity of the control inputs. When the relay powers up, it should synchronize the setting group to the 3 -bit control input.
Make the following changes to Setting Group Control in the SETTINGS $\Rightarrow \sqrt{ } \sqrt{ }$ CONTROL ELEMENTS \Rightarrow SETTING GROUPS menu:

```
SETTING GROUPS FUNCTION: "Enabled"
SETTING GROUPS BLK: "Off"
GROUP 2 ACTIVATE ON: "SELECTOR 1 POS 2"
GROUP 3 ACTIVATE ON: "SELECTOR }1\mathrm{ POS 3"
```

Make the following changes to Selector Switch element in the SETTINGS $\Rightarrow \sqrt{ }$ CONTROL ELEMENTS $\Rightarrow \sqrt{ }$ SELECTOR SWITCH \Rightarrow SELECTOR SWITCH 1 menu to assign control to User Programmable Pushbutton 1 and Contact Inputs 1 through 3:

```
SELECTOR 1 FUNCTION: "Enabled" SELECTOR 1 3bIt a0: "CONT IP 1 ON"
SELECTOR 1 FULL-RANGE: "4" SELECTOR 1 3BIT A1: "CONT IP 2 ON"
SELECTOR }1\mathrm{ STEP-UP MODE: "Time-out" SELECTOR 13BIT A2: "CONT IP 3 ON"
SELECTOR }1\mathrm{ TIME-OUT: " }5.0\textrm{s}\mathrm{ " SELECTOR }1\mathrm{ 3BIT MODE: "Time-out"
```

SELECTOR }1\mathrm{ STEP-UP: "PUSHBUTTON 1 ON"

```
SELECTOR }1\mathrm{ STEP-UP: "PUSHBUTTON 1 ON"
SELECTOR 1 ACK: "Off"
```

```
SELECTOR 1 ACK: "Off"
```

```
```

SELECTOR 1 3BIT MODE: "Time-out"

```
SELECTOR 1 3BIT MODE: "Time-out"
SELECTOR 1 3BIT ACK: "Off"
SELECTOR 1 3BIT ACK: "Off"
SELECTOR 1 POWER-UP MODE: "Synchronize"
```

SELECTOR 1 POWER-UP MODE: "Synchronize"

```
group 4 ACTIVATE ON: "SELECTOR 1 POS 4"
group 5 ACTIVATE ON: "Off"
group 6 ACTIVATE ON: "Off"

Now, assign the contact output operation (assume the H6E module) to the Selector Switch element by making the following changes in the SETTINGS \(\Rightarrow \sqrt{ }\) INPUTS/OUTPUTS \(\Rightarrow \sqrt{ }\) CONTACT OUTPUTS menu:
```

OUTPUT H1 OPERATE: "SELECTOR 1 BIT 0"
OUTPUT H2 OPERATE: "SELECTOR 1 BIT 1"
OUTPUT H3 OPERATE: "SELECTOR 1 BIT 2"

```

Finally, assign configure User-Programmable Pushbutton 1 by making the following changes in the SETTINGS \(\Rightarrow\) PRODUCT SETUP \(\Rightarrow \sqrt{ } \Rightarrow\) USER-PROGRAMMABLE PUSHBUTTONS \(\Rightarrow\) USER PUSHBUTTON 1 menu:

PUSHBUTTON 1 FUNCTION: "Self-reset"
PUSHBUTTON 1 DROP-OUT TIME: " 0.10 s"
The logic for the selector switch is shown below:


Figure 5-74: SELECTOR SWITCH LOGIC

PATH: SETTINGS \(\Rightarrow \sqrt{ }\) CONTROL ELEMENTS \(\Rightarrow \sqrt{ } \Rightarrow\) UNDERFREQUENCY \(\Rightarrow\) UNDERFREQUENCY 1(6)


There are six identical underfrequency elements, numbered from 1 through 6 inclusive.
The steady-state frequency of a power system is a certain indicator of the existing balance between the generated power and the load. Whenever this balance is disrupted through the loss of an important generating unit or the isolation of part of the system from the rest of the system, the effect will be a reduction in frequency. If the control systems of the system generators do not respond fast enough, the system may collapse. A reliable method to quickly restore the balance between load and generation is to automatically disconnect selected loads, based on the actual system frequency. This technique, called "load-shedding", maintains system integrity and minimize widespread outages. After the frequency returns to normal, the load may be automatically or manually restored.

The UNDERFREQ 1 SOURCE setting is used to select the source for the signal to be measured. The element first checks for a live phase voltage available from the selected Source. If voltage is not available, the element attempts to use a phase current. If neither voltage nor current is available, the element will not operate, as it will not measure a parameter above the minimum voltage/current setting.
The UNDERFREQ 1 MIN VOLT/AMP setting selects the minimum per unit voltage or current level required to allow the underfrequency element to operate. This threshold is used to prevent an incorrect operation because there is no signal to measure.

This UNDERFREQ 1 PICKUP setting is used to select the level at which the underfrequency element is to pickup. For example, if the system frequency is 60 Hz and the load shedding is required at 59.5 Hz , the setting will be 59.50 Hz .


Figure 5-75: UNDERFREQUENCY SCHEME LOGIC

PATH: SETTINGS \(\Rightarrow 』\) CONTROL ELEMENTS \(\Rightarrow \Downarrow\) OVERFREQUENCY \(\Rightarrow\) OVERFREQUENCY 1(4)


There are four overfrequency elements, numbered 1 through 4.
A frequency calculation for a given source is made on the input of a voltage or current channel, depending on which is available. The channels are searched for the signal input in the following order: voltage channel A, auxiliary voltage channel, current channel A, ground current channel. The first available signal is used for frequency calculation.

The steady-state frequency of a power system is an indicator of the existing balance between the generated power and the load. Whenever this balance is disrupted through the disconnection of significant load or the isolation of a part of the system that has a surplus of generation, the effect will be an increase in frequency. If the control systems of the generators do not respond fast enough, to quickly ramp the turbine speed back to normal, the overspeed can lead to the turbine trip. The overfrequency element can be used to control the turbine frequency ramp down at a generating location. This element can also be used for feeder reclosing as part of the "after load shedding restoration".
The OVERFREQ 1 SOURCE setting selects the source for the signal to be measured. The OVERFREQ 1 PICKUP setting selects the level at which the overfrequency element is to pickup.


Figure 5-76: OVERFREQUENCY SCHEME LOGIC

PATH: SETTINGS \(\Rightarrow \sqrt{ }\) CONTROL ELEMENTS \(\Rightarrow\), FREQUENCY RATE OF CHANGE \(\Rightarrow\) FREQUENCY RATE OF CHANGE 1(4)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{FREQUENCY RATE
OF CHANGE 1} & (1) & \[
\begin{aligned}
& \text { FREQ RATE } 1 \\
& \text { FUNCTION: Disabled }
\end{aligned}
\] & \multicolumn{2}{|l|}{Range: Disabled, Enabled} \\
\hline \multicolumn{6}{|c|}{MESSAGE \({ }^{\text {FREQ RATE } 1} \begin{aligned} & \text { FRC } \\ & \text { SRC }\end{aligned}\)} \\
\hline & MESSAGE & \(\nabla\) & FREQ RATE 1 TREND: Decreasing & Range: & Increasing, Decreasing, Bi-directional \\
\hline & MESSAGE & - & FREQ RATE 1 PICKUP:
\(0.50 \mathrm{~Hz} / \mathrm{sec}\) & Range: & 0.10 to \(15.00 \mathrm{~Hz} / \mathrm{sec}\) in steps of 0.01 \\
\hline & MESSAGE & - & FREQ RATE 1 OV SUPV PICKUP: 0.700 pu & Range: & 0.100 to 3.000 pu in steps of 0.001 \\
\hline & MESSAGE & - & FREQ RATE 1 OC SUPV PICKUP: 0.200 pu & Range: & 0.000 to 30.000 pu in steps of 0.001 \\
\hline & MESSAGE & - & FREQ RATE 1 MIN
FREQUENCY: 45.00 Hz & Range & 20.00 to 80.00 Hz in steps of 0.01 \\
\hline & MESSAGE & - & FREQ RATE 1 MAX
FREQUENCY: 65.00 Hz & Range & 20.00 to 80.00 Hz in steps of 0.01 \\
\hline & MESSAGE & - & FREQ RATE 1 PICKUP DELAY: 0.000 s & Range & 0 to 65.535 s in steps of 0.001 \\
\hline & MESSAGE & - & FREQ RATE 1 RESET DELAY: 0.000 s & Range & 0 to 65.535 s in steps of 0.001 \\
\hline & MESSAGE & - & FREQ RATE 1 BLOCK:
Off & Range & FlexLogic \({ }^{\text {TM }}\) operand \\
\hline & MESSAGE & - & FREQ RATE 1 TARGET: Self-Reset & Range & Self-Reset, Latched, Disabled \\
\hline & MESSAGE & - & FREQ RATE 1 EVENTS: Disabled & Range & Disabled, Enabled \\
\hline
\end{tabular}

Four (4) independent Rate of Change of Frequency elements are available. The element responds to rate of change of frequency with voltage, current and frequency supervision.
- FREQ RATE 1 TREND: This setting allows configuring the element to respond to increasing or decreasing frequency, or to frequency change in either direction.
- FREQ RATE 1 PICKUP: This setting specifies an intended \(d f / d t\) pickup threshold. For applications monitoring a decreasing trend, set FREQ RATE 1 TREND to "Decreasing" and specify the pickup threshold accordingly. The operating condition is: \(-d f / d t>\) Pickup .

For applications monitoring an increasing trend, set FREQ RATE 1 TREND to "Increasing" and specify the pickup threshold accordingly. The operating condition is: \(d f / d t>\) Pickup .
For applications monitoring rate of change of frequency in any direction set FREQ RATE 1 TREND to "Bi-Directional" and specify the pickup threshold accordingly. The operating condition is: abs \((d f / d t)>\) Pickup
- FREQ RATE 1 OV SUPV PICKUP: This setting defines minimum voltage level required for operation of the element. The supervising function responds to the positive-sequence voltage. Overvoltage supervision should be used to prevent operation under specific system conditions such as faults.
- FREQ RATE 1 OC SUPV PICKUP: This setting defines minimum current level required for operation of the element. The supervising function responds to the positive-sequence current. Typical application includes load shedding. Set the pickup threshold to zero if no overcurrent supervision is required.
- FREQ RATE 1 MIN FREQUENCY: This setting defines minimum frequency level required for operation of the element. The setting may be used to effectively block the feature based on frequency. For example, if the intent is to monitor an increasing trend but only if the frequency is already above certain level, this setting should be set to the required frequency level.
- FREQ RATE 1 MAX FREQUENCY: This setting defines maximum frequency level required for operation of the element. The setting may be used to effectively block the feature based on frequency. For example, if the intent is to monitor a decreasing trend but only if the frequency is already below certain level (such as for load shedding), this setting should be set to the required frequency level.


Figure 5-77: FREQUENCY RATE OF CHANGE SCHEME LOGIC

PATH: SETTINGS \(\Rightarrow \sqrt{ }\) CONTROL ELEMENTS \(\Rightarrow \sqrt{2}\) SYNCHROCHECK \(\Rightarrow\) SYNCHROCHECK 1(2)


The are two identical synchrocheck elements available, numbered 1 and 2.
The synchronism check function is intended for supervising the paralleling of two parts of a system which are to be joined by the closure of a circuit breaker. The synchrocheck elements are typically used at locations where the two parts of the system are interconnected through at least one other point in the system.

Synchrocheck verifies that the voltages (V1 and V2) on the two sides of the supervised circuit breaker are within set limits of magnitude, angle and frequency differences. The time that the two voltages remain within the admissible angle difference is determined by the setting of the phase angle difference \(\Delta \Phi\) and the frequency difference \(\Delta \mathrm{F}\) (slip frequency). It can be defined as the time it would take the voltage phasor V 1 or V 2 to traverse an angle equal to \(2 \times \Delta \Phi\) at a frequency equal to the frequency difference \(\Delta \mathrm{F}\). This time can be calculated by:
\[
\begin{equation*}
T=\frac{1}{\frac{360^{\circ}}{2 \times \Delta \Phi} \times \Delta F} \tag{EQ5.19}
\end{equation*}
\]
where: \(\Delta \Phi=\) phase angle difference in degrees; \(\Delta \mathrm{F}=\) frequency difference in Hz .

As an example; for the default values \(\left(\Delta \Phi=30^{\circ}, \Delta F=0.1 \mathrm{~Hz}\right)\), the time while the angle between the two voltages will be less than the set value is:
\[
\begin{equation*}
T=\frac{1}{\frac{360^{\circ}}{2 \times \Delta \Phi} \times \Delta F}=\frac{1}{\frac{360^{\circ}}{2 \times 30^{\circ}} \times 0.1 \mathrm{~Hz}}=1.66 \mathrm{sec} \tag{EQ5.20}
\end{equation*}
\]

If one or both sources are de-energized, the synchrocheck programming can allow for closing of the circuit breaker using undervoltage control to by-pass the synchrocheck measurements (Dead Source function).
- SYNCHK1 V1 SOURCE: This setting selects the source for voltage V1 (see NOTES below).
- SYNCHK1 V2 SOURCE: This setting selects the source for voltage V2, which must not be the same as used for the V1 (see NOTES below).
- SYNCHK1 MAX VOLT DIFF: This setting selects the maximum primary voltage difference in ' kV ' between the two sources. A primary voltage magnitude difference between the two input voltages below this value is within the permissible limit for synchronism.
- SYNCHK1 MAX ANGLE DIFF: This setting selects the maximum angular difference in degrees between the two sources. An angular difference between the two input voltage phasors below this value is within the permissible limit for synchronism.
- SYNCHK1 MAX FREQ DIFF: This setting selects the maximum frequency difference in 'Hz' between the two sources. A frequency difference between the two input voltage systems below this value is within the permissible limit for synchronism.
- SYNCHK1 MAX FREQ HYSTERESIS: This setting specifies the required hysteresis for the maximum frequency difference condition. The condition becomes satisfied when the frequency difference becomes lower than SYNCHK1 MAX FREQ DIFF. Once the Synchrocheck element has operated, the frequency difference must increase above the SYNCHK1 MAX FREQ DIFF + SYNCHK1 MAX FREQ HYSTERESIS sum to drop out (assuming the other two conditions, voltage and angle, remain satisfied).
- SYNCHK1 DEAD SOURCE SELECT: This setting selects the combination of dead and live sources that will by-pass synchronism check function and permit the breaker to be closed when one or both of the two voltages (V1 or/and V2) are below the maximum voltage threshold. A dead or live source is declared by monitoring the voltage level. Six options are available:
\begin{tabular}{ll} 
None: & Dead Source function is disabled \\
LV1 and DV2: & Live V1 and Dead V2 \\
DV1 and LV2: & Dead V1 and Live V2 \\
DV1 or DV2: & Dead V1 or Dead V2 \\
DV1 Xor DV2: & Dead V1 exclusive-or Dead V2 (one source is Dead and the other is Live) \\
DV1 and DV2: & Dead V1 and Dead V2
\end{tabular}
- SYNCHK1 DEAD V1 MAX VOLT: This setting establishes a maximum voltage magnitude for V1 in 1 'pu'. Below this magnitude, the V1 voltage input used for synchrocheck will be considered "Dead" or de-energized.
- SYNCHK1 DEAD V2 MAX VOLT: This setting establishes a maximum voltage magnitude for V2 in 'pu'. Below this magnitude, the V2 voltage input used for synchrocheck will be considered "Dead" or de-energized.
- SYNCHK1 LIVE V1 MIN VOLT: This setting establishes a minimum voltage magnitude for V1 in 'pu'. Above this magnitude, the V1 voltage input used for synchrocheck will be considered "Live" or energized.
- SYNCHK1 LIVE V2 MIN VOLT: This setting establishes a minimum voltage magnitude for V2 in 'pu'. Above this magnitude, the V2 voltage input used for synchrocheck will be considered "Live" or energized.

\section*{NOTES ON THE SYNCHROCHECK FUNCTION:}
1. The selected Sources for synchrocheck inputs V 1 and V 2 (which must not be the same Source) may include both a three-phase and an auxiliary voltage. The relay will automatically select the specific voltages to be used by the synchrocheck element in accordance with the following table.
\begin{tabular}{|c|c|c|c|c|c|}
\hline NO. & \begin{tabular}{c} 
V1 OR V2 \\
(SOURCE Y)
\end{tabular} & \begin{tabular}{c} 
V2 OR V1 \\
(SOURCE Z)
\end{tabular} & \multicolumn{2}{|c|}{\begin{tabular}{c} 
AUTO-SELECTED \\
COMBINATION
\end{tabular}} & \multirow{2}{*}{ AUTO-SELECTED VOLTAGE } \\
\cline { 4 - 4 } & & SOURCE Y & SOURCE Z & \\
\hline \hline 1 & \begin{tabular}{c} 
Phase VTs and \\
Auxiliary VT
\end{tabular} & \begin{tabular}{c} 
Phase VTs and \\
Auxiliary VT
\end{tabular} & Phase & Phase & VAB \\
\hline 2 & \begin{tabular}{c} 
Phase VTs and \\
Auxiliary VT
\end{tabular} & Phase VT & Phase & Phase & VAB \\
\hline 3 & Phase VT & Phase VT & Phase & Phase & VAB \\
\hline 4 & \begin{tabular}{c} 
Phase VT and \\
Auxiliary VT
\end{tabular} & Auxiliary VT & Phase & Auxiliary & \begin{tabular}{c} 
V auxiliary \\
(as set for Source z)
\end{tabular} \\
\hline 5 & Auxiliary VT & Auxiliary VT & Auxiliary & Auxiliary & \begin{tabular}{c} 
V auxiliary \\
(as set for selected sources)
\end{tabular} \\
\hline
\end{tabular}

The voltages V1 and V2 will be matched automatically so that the corresponding voltages from the two Sources will be used to measure conditions. A phase to phase voltage will be used if available in both sources; if one or both of the Sources have only an auxiliary voltage, this voltage will be used. For example, if an auxiliary voltage is programmed to VAG, the synchrocheck element will automatically select VAG from the other Source. If the comparison is required on a specific voltage, the user can externally connect that specific voltage to auxiliary voltage terminals and then use this "Auxiliary Voltage" to check the synchronism conditions.

If using a single CT/VT module with both phase voltages and an auxiliary voltage, ensure that only the auxiliary voltage is programmed in one of the Sources to be used for synchrocheck.


Exception: Synchronism cannot be checked between Delta connected phase VTs and a Wye connected auxiliary voltage.
2. The relay measures frequency and Volts/Hz from an input on a given Source with priorities as established by the configuration of input channels to the Source. The relay will use the phase channel of a three-phase set of voltages if programmed as part of that Source. The relay will use the auxiliary voltage channel only if that channel is programmed as part of the Source and a three-phase set is not.


Figure 5-78: SYNCHROCHECK SCHEME LOGIC

PATH: SETTINGS \(\Rightarrow \sqrt{ }\) CONTROL ELEMENTS \(\Rightarrow \sqrt{ }\) AUTORECLOSE \(\Rightarrow\) AUTORECLOSE 1(2)


MESSAGE
MESSAGE

MESSAGE
MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE
MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAG

MESSAGE

MESSAGE

MESSAGE

MESSAGE


Range: Disabled, Enabled

A AR1 INITIATE: Range: FlexLogic \({ }^{\text {TM }}\) operand
AR1 BLOCK:
Off

Range: FlexLogic \({ }^{\text {TM }}\) operand

AR1 MAX NUMBER OF Range: 1, 2, 3, 4
SHOTS: 1
AR1 REDUCE MAX TO 1:
Off

AR1 REDUCE MAX TO 2:
Off
\begin{tabular}{|l|l|}
\hline \begin{tabular}{|l|l}
\hline AR1 REDUCE MAX TO 3: \\
Off
\end{tabular} & Range: FlexLogic \({ }^{\text {TM }}\) operand \\
\hline \begin{tabular}{ll}
\hline AR1 MANUAL CLOSE: \\
Off
\end{tabular} & Range: FlexLogic \({ }^{\text {TM }}\) operand \\
\hline
\end{tabular}
\begin{tabular}{|l|l}
\hline AR1 MNL RST FRM LO: & Range: FlexLogic \({ }^{\text {TM }}\) operand \\
Off
\end{tabular}
\begin{tabular}{|l|}
\hline AR1 RESET LOCKOUT IF \\
BREAKER CLOSED: Off \\
\hline
\end{tabular}

Range: Off, On

AR1 RESET LOCKOUT ON Range: Off, On MANUAL CLOSE: Off

Range: FlexLogic \({ }^{\text {TM }}\) operand

Range: FlexLogic \({ }^{\text {TM }}\) operand
-

Range: FlexLogic \({ }^{\text {TM }}\) operand
\begin{tabular}{|l|l|}
\hline AR1 BKR CLOSED: & Range: FlexLogic \({ }^{\text {TM }}\) operand \\
Off & \\
\hline AR1 BKR OPEN: & Range: FlexLogic \(^{\text {TM }}\) operand \\
\hline
\end{tabular}

Off
\begin{tabular}{|l|}
\hline AR1 BLK TIME UPON \\
MNL CLS: 10.000 s \\
\hline
\end{tabular}

Range: 0.00 to 655.35 s in steps of 0.01


Range: 0.00 to 655.35 s in steps of 0.01

AR1 DEAD TIME 2: Range: 0.00 to 655.35 s in steps of 0.01
2.000 s
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { AR1 DEAD TIME 3: } \\
& 3.000 \mathrm{~s}
\end{aligned}
\] & Range: 0.00 to 655.35 s in steps of 0.01 \\
\hline \[
\begin{aligned}
& \text { AR1 DEAD TIME 4: } \\
& 4.000 \mathrm{~s}
\end{aligned}
\] & Range: 0.00 to 655.35 s in steps of 0.01 \\
\hline
\end{tabular}
AR1 ADD DELAY 1:
Off
\begin{tabular}{|l|}
\hline AR1 DELAY 1: \\
0.000 s \\
\hline
\end{tabular}

AR1 ADD DELAY 2: Range: FlexLogic \({ }^{\text {TM }}\) operand


The maximum number of autoreclosure elements available is equal to the number of installed CT banks.
The autoreclosure feature is intended for use with transmission and distribution lines, in three-pole tripping schemes for single breaker applications. Up to four selectable reclosures 'shots' are possible prior to locking out. Each shot has an independently settable dead time. The protection settings can be changed between shots if so desired, using FlexLogic \({ }^{\mathrm{TM}}\). Logic inputs are available for disabling or blocking the scheme.
Faceplate panel LEDs indicate the state of the autoreclose scheme as follows:
- Reclose Enabled: The scheme is enabled and may reclose if initiated.
- Reclose Disabled: The scheme is disabled.
- Reclose In Progress: An autoreclosure has been initiated but the breaker has not yet been signaled to close.
- Reclose Locked Out: The scheme has generated the maximum number of breaker closures allowed and, as the fault persists, will not close the breaker again; known as 'Lockout'. The scheme may also be sent in 'Lockout' when the incomplete sequence timer times out or when a block signal occurs while in 'reclose in progress'. The scheme must be reset from Lockout in order to perform reclose for further faults.
The reclosure scheme is considered enabled when all of the following conditions are true:
- The AR1(2) FUNCTION is set to "Enabled".
- The scheme is not in the 'Lockout' state.
- The 'Block' input is not asserted.
- The AR1(2) bLK TIME UPON MNL CLS timer is not active.

The autoreclose scheme is initiated by a trip signal from any selected protection feature operand. The scheme is initiated provided the circuit breaker is in the closed state before protection operation.
The reclose-in-progress (RIP) is set when a reclosing cycle begins following a reclose initiate signal. Once the cycle is successfully initiated, the RIP signal will seal-in and the scheme will continue through its sequence until one of the following conditions is satisfied:
- The close signal is issued when the dead timer times out, or
- The scheme goes to lockout.

While RIP is active, the scheme checks that the breaker is open and the shot number is below the limit, and then begins measuring the dead time.

Each of the four possible shots has an independently settable dead time. Two additional timers can be used to increase the initial set dead times 1 to 4 by a delay equal to AR1(2) DELAY 1 or AR1(2) DELAY 2 or the sum of these two delays depending on the selected settings. This offers enhanced setting flexibility using FlexLogic \({ }^{\text {TM }}\) operands to turn the two additional timers "on" and "off". These operands may possibly include AR1 SHOT CNT =n, SETTING GROUP ACT 1, etc. The autoreclose provides up to maximum 4 selectable shots. Maximum number of shots can be dynamically modified through the settings AR1(2) REDUCE MAX TO \(1(2,3)\), using the appropriate FlexLogic \({ }^{\text {TM }}\) operand.
Scheme lockout blocks all phases of the reclosing cycle, preventing automatic reclosure, if any of the following occurs:
- The maximum shot number was reached.
- A 'Block' input is in effect (for instance; Breaker Failure, bus differential protection operated, etc.).
- The 'Incomplete Sequence' timer times out.

The recloser will be latched in the Lockout state until a 'Reset from lockout' signal is asserted, either from a manual close of the breaker or from a manual reset command (local or remote). The reset from lockout can be accomplished by operator command, by manually closing the breaker, or whenever the breaker has been closed and stays closed for a preset time.

After the dead time elapses, the scheme issues the close signal. The close signal is latched until the breaker closes or the scheme goes to Lockout.

A reset timer output resets the recloser following a successful reclosure sequence. The reset time is based on the breaker 'reclaim time' which is the minimum time required between successive reclose sequences.

\section*{SETTINGS:}
- AR1(2) INITIATE: Selects the FlexLogic \({ }^{\text {TM }}\) operand that initiates the scheme, typically the trip signal from protection.
- AR1(2) BLOCK: Selects the FlexLogic \({ }^{\text {TM }}\) operand that blocks the autoreclosure initiate (it could be from the breaker failure, bus differential protection, etc.).
- AR1(2) MAX NUMBER OF SHOTS: Specifies the number of reclosures that can be attempted before reclosure goes to "Lockout" because the fault is permanent.
- AR1(2) REDUCE MAX TO 1(3): Selects the FlexLogic \({ }^{\text {TM }}\) operand that changes the maximum number of shots from the initial setting to 1,2 , or 3 , respectively.
- AR1(2) MANUAL CLOSE: Selects the logic input set when the breaker is manually closed.
- AR1(2) MNL RST FRM LO: Selects the FlexLogic \({ }^{\text {™ }}\) operand that resets the autoreclosure from Lockout condition. Typically this is a manual reset from lockout, local or remote.
- AR1(2) RESET LOCKOUT IF BREAKER CLOSED: This setting allows the autoreclose scheme to reset from Lockout if the breaker has been manually closed and stays closed for a preset time. In order for this setting to be effective, the next setting (AR1(2) RESET LOCKOUT ON MANUAL CLOSE) should be disabled.
- AR1(2) RESET LOCKOUT ON MANUAL CLOSE: This setting allows the autoreclose scheme to reset from Lockout when the breaker is manually closed regardless if the breaker remains closed or not. This setting overrides the previous setting (AR1 RESET LOCKOUT IF BREAKER CLOSED).
- AR1(2) BLK TIME UPON MNL CLS: The autoreclose scheme can be disabled for a programmable time delay after the associated circuit breaker is manually closed. This prevents reclosing onto a fault after a manual close. This delay must be longer than the slowest expected trip from any protection not blocked after manual closing. If no overcurrent trips occur after a manual close and this time expires, the autoreclose scheme is enabled.
- AR1(2) DEAD TIME 1 to AR1(2) DEAD TIME 4: These are the intentional delays before first, second, third, and fourth breaker automatic reclosures (1st, 2nd, and 3rd shots), respectively, and should be set longer than the estimated deionizing time following a three pole trip.
- AR1(2) ADD DELAY 1: This setting selects the FlexLogic \({ }^{\text {TM }}\) operand that introduces an additional delay (Delay 1) to the initial set Dead Time (1 to 4). When this setting is "Off", Delay 1 is by-passed.
- AR1(2) DELAY 1: This setting establishes the extent of the additional dead time Delay 1.
- AR1(2) ADD DELAY 2: This setting selects the FlexLogic \({ }^{\text {TM }}\) operand that introduces an additional delay (Delay 2 ) to the initial set Dead Time (1 to 4). When this setting is "Off", Delay 2 is by-passed.
- AR1(2) DELAY 2: This setting establishes the extent of the additional dead time Delay 2.
- AR1(2) RESET LOCKOUT DELAY: This setting establishes how long the breaker should stay closed after a manual close command, in order for the autorecloser to reset from Lockout.
- AR1(2) RESET TIME: A reset timer output resets the recloser following a successful reclosure sequence. The setting is based on the breaker 'reclaim time' which is the minimum time required between successive reclose sequences.
- AR1(2) INCOMPLETE SEQ TIME: This timer defines the maximum time interval allowed for a single reclose shot. It is started whenever a reclosure is initiated and is active when the scheme is in the 'reclose-in-progress' state. If all conditions allowing a breaker closure are not satisfied when this time expires, the scheme goes to "Lockout".


This timer must be set to a delay less than the reset timer.


Figure 5-79: AUTORECLOSURE SCHEME LOGIC (Sheet 1 of 2)


Figure 5-80: AUTORECLOSURE SCHEME LOGIC (Sheet 2 of 2)


Figure 5-81: SINGLE SHOT AUTORECLOSING SEQUENCE - PERMANENT FAULT

PATH: SETTINGS \(\Rightarrow \sqrt{ }\) CONTROL ELEMENTS \(\Rightarrow \sqrt{ }\) DIGITAL ELEMENTS \(\Rightarrow\) DIGITAL ELEMENT 1 (16)
\begin{tabular}{|c|c|c|c|}
\hline \(\square\) DIGITAL ELEMENT 1 & (1) & DIGITAL ELEMENT 1 FUNCTION: Disabled & Range: Disabled, Enabled \\
\hline MESSAGE & Q & DIG ELEM 1 NAME:
Dig Element 1 & Range: 16 alphanumeric characters \\
\hline MESSAGE & - &  & Range: FlexLogic \({ }^{\text {TM }}\) operand \\
\hline MESSAGE & - & \begin{tabular}{ll} 
DIG ELEM & 1 PICKUP \\
DELAY: & 0.000 s
\end{tabular} & Range: 0.000 to 999999.999 s in steps of 0.001 \\
\hline MESSAGE & - & \begin{tabular}{lr}
\hline DIG ELEM & 1 RESET \\
DELAY: & 0.000 s
\end{tabular} & Range: 0.000 to 999999.999 s in steps of 0.001 \\
\hline MESSAGE & - &  & Range: FlexLogic \({ }^{\text {TM }}\) operand \\
\hline MESSAGE & - & \begin{tabular}{ll}
\hline DIGITAL ELEMENT 1 \\
TARGET: Self-reset
\end{tabular} & Range: Self-reset, Latched, Disabled \\
\hline MESSAGE & (2) & DIGITAL ELEMENT 1
EVENTS: Disabled & Range: Disabled, Enabled \\
\hline
\end{tabular}

There are 16 identical Digital Elements available, numbered 1 to 16. A Digital Element can monitor any FlexLogic \({ }^{\text {™ }}\) operand and present a target message and/or enable events recording depending on the output operand state. The digital element settings include a 'name' which will be referenced in any target message, a blocking input from any selected FlexLogic \({ }^{\text {TM }}\) operand, and a timer for pickup and reset delays for the output operand.
- DIGITAL ELEMENT 1 INPUT: Selects a FlexLogic \({ }^{\text {TM }}\) operand to be monitored by the Digital Element.
- DIGITAL ELEMENT 1 PICKUP DELAY: Sets the time delay to pickup. If a pickup delay is not required, set to "0".
- DIGITAL ELEMENT 1 RESET DELAY: Sets the time delay to reset. If a reset delay is not required, set to " 0 ".


Figure 5-82: DIGITAL ELEMENT SCHEME LOGIC

\section*{CIRCUIT MONITORING APPLICATIONS:}

Some versions of the digital input modules include an active Voltage Monitor circuit connected across Form-A contacts. The Voltage Monitor circuit limits the trickle current through the output circuit (see Technical Specifications for Form-A).

As long as the current through the Voltage Monitor is above a threshold (see Technical Specifications for Form-A), the FlexLogic \({ }^{\text {TM }}\) operand "Cont Op \# VOn" will be set. (\# represents the output contact number). If the output circuit has a high resistance or the DC current is interrupted, the trickle current will drop below the threshold and the FlexLogic \({ }^{\text {TM }}\) operand "Cont Op \# VOff" will be set. Consequently, the state of these operands can be used as indicators of the integrity of the circuits in which Form-A contacts are inserted.

\section*{5 SETTINGS}

\section*{EXAMPLE 1: BREAKER TRIP CIRCUIT INTEGRITY MONITORING}

In many applications it is desired to monitor the breaker trip circuit integrity so problems can be detected before a trip operation is required. The circuit is considered to be healthy when the Voltage Monitor connected across the trip output contact detects a low level of current, well below the operating current of the breaker trip coil. If the circuit presents a high resistance, the trickle current will fall below the monitor threshold and an alarm would be declared.

In most breaker control circuits, the trip coil is connected in series with a breaker auxiliary contact which is open when the breaker is open (see diagram below). To prevent unwanted alarms in this situation, the trip circuit monitoring logic must include the breaker position.


Figure 5-83: TRIP CIRCUIT EXAMPLE 1
Assume the output contact H 1 is a trip contact. Using the contact output settings, this output will be given an ID name, e.g. "Cont Op 1". Assume a 52a breaker auxiliary contact is connected to contact input H7a to monitor breaker status. Using the contact input settings, this input will be given an ID name, e.g. "Cont Ip 1" and will be set "ON" when the breaker is closed. Using Digital Element 1 to monitor the breaker trip circuit, the settings will be:


The PICKUP DELAY setting should be greater than the operating time of the breaker to avoid nuisance alarms.

\section*{EXAMPLE 2: BREAKER TRIP CIRCUIT INTEGRITY MONITORING}

If it is required to monitor the trip circuit continuously, independent of the breaker position (open or closed), a method to maintain the monitoring current flow through the trip circuit when the breaker is open must be provided (as shown in the figure below). This can be achieved by connecting a suitable resistor (see figure below) across the auxiliary contact in the trip circuit. In this case, it is not required to supervise the monitoring circuit with the breaker position - the BLock setting is selected to "Off". In this case, the settings will be:


Table 5-19: VALUES OF RESISTOR 'R’
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
POWER \\
SUPPLY (V DC)
\end{tabular} & \begin{tabular}{c} 
RESISTANCE \\
(OHMS)
\end{tabular} & \begin{tabular}{c} 
POWER \\
(WATTS)
\end{tabular} \\
\hline \hline 24 & 1000 & 2 \\
\hline 30 & 5000 & 2 \\
\hline 48 & 10000 & 2 \\
\hline 110 & 25000 & 5 \\
\hline 125 & 25000 & 5 \\
\hline 250 & 50000 & 5 \\
\hline
\end{tabular}

Figure 5-84: TRIP CIRCUIT EXAMPLE 2

PATH: SETTINGS \(\Rightarrow \sqrt{ }\) CONTROL ELEMENTS \(\Rightarrow \Downarrow\) DIGITAL COUNTERS \(\Rightarrow\) COUNTER 1 (8)


There are 8 identical digital counters, numbered from 1 to 8 . A digital counter counts the number of state transitions from Logic 0 to Logic 1. The counter is used to count operations such as the pickups of an element, the changes of state of an external contact (e.g. breaker auxiliary switch), or pulses from a watt-hour meter.
- COUNTER 1 UNITS: Assigns a label to identify the unit of measure pertaining to the digital transitions to be counted. The units label will appear in the corresponding Actual Values status.
- COUNTER 1 PRESET: Sets the count to a required preset value before counting operations begin, as in the case where a substitute relay is to be installed in place of an in-service relay, or while the counter is running.
- COUNTER 1 COMPARE: Sets the value to which the accumulated count value is compared. Three FlexLogic \({ }^{\text {TM }}\) output operands are provided to indicate if the present value is 'more than (HI)', 'equal to (EQL)', or 'less than (LO)' the set value.
- COUNTER 1 UP: Selects the FlexLogic \({ }^{\text {TM }}\) operand for incrementing the counter. If an enabled UP input is received when the accumulated value is at the limit of \(+2,147,483,647\) counts, the counter will rollover to \(-2,147,483,648\).
- COUNTER 1 DOWN: Selects the FlexLogic \({ }^{\text {TM }}\) operand for decrementing the counter. If an enabled DOWN input is received when the accumulated value is at the limit of \(-2,147,483,648\) counts, the counter will rollover to \(+2,147,483,647\).
- COUNTER 1 BLOCK: Selects the FlexLogic \({ }^{\text {TM }}\) operand for blocking the counting operation. All counter operands are blocked.
- CNT1 SET TO PRESET: Selects the FlexLogic \({ }^{\text {TM }}\) operand used to set the count to the preset value. The counter will be set to the preset value in the following situations:
1. When the counter is enabled and the CNT1 SET TO PRESET operand has the value 1 (when the counter is enabled and CNT1 SET TO PRESET operand is 0 , the counter will be set to 0 ).
2. When the counter is running and the CNT1 SET TO PRESET operand changes the state from 0 to 1 (CNT1 SET TO PRESET changing from 1 to 0 while the counter is running has no effect on the count).
3. When a reset or reset/freeze command is sent to the counter and the CNT1 SET TO PRESET operand has the value 1 (when a reset or reset/freeze command is sent to the counter and the CNT1 SET TO PRESET operand has the value 0 , the counter will be set to 0 ).
- COUNTER 1 RESET: Selects the FlexLogic \({ }^{\text {TM }}\) operand for setting the count to either " 0 " or the preset value depending on the state of the CNT1 SET TO PRESET operand.
- COUNTER 1 FREEZE/RESET: Selects the FlexLogic \({ }^{\text {TM }}\) operand for capturing (freezing) the accumulated count value into a separate register with the date and time of the operation, and resetting the count to " 0 ".
- COUNTER 1 FREEZE/COUNT: Selects the FlexLogic \({ }^{\text {TM }}\) operand for capturing (freezing) the accumulated count value into a separate register with the date and time of the operation, and continuing counting. The present accumulated value and captured frozen value with the associated date/time stamp are available as actual values. If control power is interrupted, the accumulated and frozen values are saved into non-volatile memory during the power down operation.


Figure 5-85: DIGITAL COUNTER SCHEME LOGIC
a) MAIN MENU

PATH: SETTINGS \(\Rightarrow \sqrt{ } \Rightarrow\) CONTROL ELEMENTS \(\Rightarrow 』\) MONITORING ELEMENTS

b) HI-Z

PATH: SETTINGS \(\Rightarrow \sqrt{ }\) CONTROL ELEMENTS \(\Rightarrow \sqrt{ }\) MONITORING ELEMENTS \(\Rightarrow\) HI-Z

\begin{tabular}{ll|l|l} 
MESSAGE & Range: 0 (off) to \(100 \%\) in steps of 1 \\
HI-Z VOLTAGE SUPV \\
THRESHOLD: 5\%
\end{tabular}

Some faults in overhead distribution feeders are characterized by low fault current due to high ground resistance. If the fault current is in the order of expected unbalance load or less, it cannot be reliably detected by overcurrent protection. These faults are classified as high-impedance (Hi-Z) faults. Since a Hi-Z fault is not accompanied by excessive current, it is generally not dangerous to the electrical installation except for some damage to the overhead conductor at the fault location. However, an undetected Hi-Z fault is a risk to people and property as well as having a potential to evolve into a full-blown fault.
The following event types are associated with Hi-Z faults. It is assumed that for all cases that ground is involved.
- High impedance fault: a fault with fault impedance sufficiently high such that it is not detected by overcurrent protection
- High impedance, downed conductor fault: a high impedance fault for which the primary conductor is no longer intact on pole top insulators, but instead is in contact with earth or a grounded object
- Arcing fault: any high impedance fault which exhibits arcing

Combinations of these events are possible: for example, an arcing high impedance, downed conductor fault. The Hi-Z element is intended to detect high impedance faults that arc and to differentiate those that are downed conductors from those that are not. It should be noted that no known technology can detect all \(\mathrm{Hi}-\mathrm{Z}\) faults.
The Hi-Z element was primarily designed for solidly grounded systems. The similar Hi-Z element in the DFM200 relay has been tested with some success on impedance grounded systems as well. However, there are no guarantees of certain operation of the high impedance fault detection element on non-solidly grounded systems.
The Hi-Z data collection consists of RMS Data Capture and Hi-Z Data capture:
- RMS Data Capture: The RMS data captures are triggered by two-cycle Hi-Z overcurrent conditions, loss of load conditions, and high arc confidence conditions. Captures triggered by loss of load and high arc confidence conditions are saved to a temporary capture table, and deleted if the event does not result in an Arcing or Downed Conductor condition. The relay maintains a history of four captures and utilizes a combination of age, priority and access for determining which capture to save.
The RMS data capture contains the two-cycle RMS values for the voltage and current for each of the phases and current for the neutral channel. The capture frequency is half the system frequency. Each capture contains 1800 points.
- High-Z Data Capture: Hi-Z Data Captures are triggered and maintained in an identical manner as RMS Data Captures. The relay maintains four captures of 300 records each. The capture frequency is 1 Hz and the data collected is defined in the following two tables.

Table 5-20: HI-Z SPECIFIC DATA
\begin{tabular}{|l|l|l|}
\hline\(\#\) & NAME & DESCRIPTION \\
\hline \hline 0 & EadCounts & Total number of EAD counts for the phase \\
\hline 1 & ArcConfidence & ArcConfidence for the phase \\
\hline 2 & AccumArcConf & Accumulated ArcConfidence for the phase \\
\hline 3 & RmsCurrent & The 2-cycle RMS current for the phase \\
\hline 4 & HighROC & Flag indicating a high rate of change was detected \\
\hline 5 & IOC & Flag indicating an instantaneous 2-cycle overcurrent was detected \\
\hline 6 & LossOfLoad & Flag indicating a loss of load was detected \\
\hline 7 & EadZeroed & Flag indicating that this phase's EAD table was cleared \\
\hline 8 & HighZArmed & Flag indicating that this phase is armed for a high-Z detection \\
\hline 9 & VoltageDip & Flag indicating that a voltage dip was detected on this phase \\
\hline 10 & HighEad & Flag indicating that a high arc confidence occurred on this phase \\
\hline 11 & ArcBurst & Flag indicating that an arc burst was identified on this phase \\
\hline 12 & VDisturbanceCc & Cycle-to-cycle voltage disturbance \\
\hline 13 & VDisturbanceAbs & Absolute voltage disturbance \\
\hline 14 & HarmonicRestraint & Harmonic Restraint \\
\hline
\end{tabular}

Table 5-21: HI-Z CAPTURE DATA
\begin{tabular}{|c|c|c|}
\hline \# & NAME & DESCRIPTION \\
\hline 1 & StatusMask & ```
Bit-mask of the algorithm state (16 bits)
    BIT_ARCING
    BIT_DOWNED_COND
    BIT-ARC TREND
    BIT_PHAS̄E_A
    BIT_PHASE_B
    BIT-PHASE_C
    BIT-PHASE_N
    BIT_IOC_A
    BIT_IOC_B
    \(\mathrm{BIT}^{-} \mathrm{IOC}_{-}^{-} \mathrm{C}\)
    \(\mathrm{BIT}_{-}^{-} \mathrm{OOC}_{-}^{-} \mathrm{N}\)
    BIT_LOL_A
    BIT_LOL_B
    BIT-LOL
    BIT-IDIS̄TURBANCE
    BIT_-V_DISTURBANCE
``` \\
\hline 2 & AlgorithmState & Present value of the High-Z output state machine: Normal = 0 , Coordination Timeout \(=1\), Armed \(=2\), Arcing \(=5\), Downed Conductor \(=9\) \\
\hline 3 & EadZeroedFlag & Flag indicating the EAD table was cleared \\
\hline 4 & SpectralFlag & Flag indicating the Spectral algorithm has found a match \\
\hline 5 & ThreePhaseFlag & Flag indicating a three phase event was detected \\
\hline 6 & Phaselnfo[4] & Phase specific information for the three phase currents and the neutral (see table below) \\
\hline
\end{tabular}

The algorithm is in "Normal" state when it detects no abnormal activity on the power system. While in the "Normal" state, any one of several power system events (a high output of the Expert Arc Detector, a significant loss of load, or a Hi-Z overcurrent) cause the algorithm to move to the "Coordination Timeout" state, where it remains for the time specified by the OC PROTECTION COORD TIMEOUT setting. Following this interval, the algorithm moves into its "Armed" state. The criteria for detecting arcing or a downed conductor are:
1. the Expert Arc Detector Algorithm's output reaches a high level enough times, and
2. its high level was last reached when the algorithm's state was "Armed".

The "Arcing Sensitivity" setting determines what level constitutes a "high" output from the Expert Arc Detector Algorithm, and the number that constitutes what "enough times" means. If these criteria are met, the algorithm temporarily moves to either the "Arcing" state or the "Downed Conductor" state, the difference being determined by whether or not there was a
significant, precipitous loss of load (as determined by the LOSS OF LOAD THRESHOLD user setting) or a Hi-Z overcurrent (as determined by the PHASE OC MIN PICKUP and NEUTRAL OC MIN PICKUP user settings). If either of these caused the algorithm to move from its "Normal" state to its "Coordination Timeout" state, then the algorithm moves to the "Downed Conductor" state temporarily. Otherwise, it temporarily moves to the "Arcing" state. After pulsing either of these outputs, the algorithm's state returns to "Normal". Also, if two minutes pass without high levels from the Expert Arc Detector Algorithm while the algorithm is in its Armed state, then it moves from the "Armed" state directly back to the "Normal" state.
The Hi-Z settings are described below:
- HI-Z SOURCE: Selects the source for the RMS currents and voltages used in Hi-Z algorithms. The source should include currents from the 8F/8G CT module and appropriate voltages. If the source does not include voltages, Voltage Supervision is disabled.
- HI-Z ARCING SENSITIVITY: This setting establishes the belief-in-arcing confidence level at which the Hi-Z element will recognize arcing and the number of times the algorithm must conform its belief in arcing before it produces an output. The range is 1 to 10 , where 10 is the most sensitive and 1 is the least sensitive setting.
A higher setting would be suitable for a very quiet, well-behaved power system. An initial setting of 5 is suggested if the user has no previous experience with the \(\mathrm{Hi}-\mathrm{Z}\) element.
- HI-Z PHASE EVENT COUNT: Specifies how many individual belief-in-arcing indications for a phase current must be counted in a specified time period before it is determined that an arcing-suspected event exists. These belief-in-arcing indications are detected by arc detection algorithms (energy and randomness) for a specific set of non-fundamental frequency component energies. This setting affects only the Hi-Z Arcing Suspected outputs.
- HI-Z GROUND EVENT COUNT: Specifies how many individual belief-in-arcing indications for a ground/neutral current must be counted in a specified time period before it is determined that an arcing-suspected event exists. These belief-in-arcing indications are detected by arc detection algorithms (energy and randomness) for a specific set of non-fundamental frequency component energies. This setting affects only the Hi-Z Arcing Suspected outputs.
- HI-Z EVENT COUNT TIME: Specifies the time (in minutes) over which the relay monitors long-term, sporadic, arcing events for determination of an arcing-suspected event. This setting affects only the Hi-Z Arcing Suspected outputs.
- HI-Z OC PROTECTION COORD TIMEOUT: This setting coordinates between the Hi-Z element and conventional feeder overcurrent protection. A downed conductor or an arcing, intact conductor will not be indicated before the expiration of this timeout, which begins when the Hi-Z element detects a trigger condition (i.e. loss of load, high rate of change, overcurrent, breaker open, or high belief-in-arcing confidence). Note that this is a minimum operating time; the actual operating time will depend on the fault characteristics and will likely be significantly longer than this setting.
This value should be such that the conventional feeder overcurrent protection is given an opportunity to operate before the timeout expires. It is recommended that this timeout value not exceed 30 seconds, because arcing fault current often diminishes as the fault progresses, making the fault more difficult to detect with increasing time. After the timeout has expired, at least one additional arc burst must occur in order for the \(\mathrm{Hi}-\mathrm{Z}\) element to proceed with its analysis.
- HI-Z PHASE OC MIN PICKUP: Phase overcurrent minimum pickup indicates the level at which the Hi-Z element considers a phase current to be an overcurrent condition. The Hi-Z detection algorithms will ignore all data as long as an overcurrent condition exists on the system, because it is assumed that conventional feeder overcurrent protection will clear an overcurrent fault. It is recommended that this setting is above the maximum load current.
- HI-Z NEUTRAL OC MIN PICKUP: Neutral overcurrent minimum pickup indicates the level at which the Hi-Z element considers a neutral current to be an overcurrent condition. The Hi-Z detection algorithms will ignore all data as long as an overcurrent condition exists on the system, because it is assumed that conventional feeder overcurrent protection will clear an overcurrent fault. It is recommended that this setting is above the maximum 3lo (residual) current due to unbalanced loading.
- HI-Z PHASE RATE OF CHANGE: Establishes a threshold for determining when a high rate-of-change event occurs on a phase RMS current. An extremely high rate of change is not characteristic of most high impedance faults; it is more indicative of a low impedance fault or of the inrush of breaker closing. The inrush current produces substantial variations in the harmonics used by the high impedance algorithms. Therefore these algorithms ignore all data for several seconds following a high rate-of-change event that exceeds this setting.
The RMS currents in the Hi-Z algorithms are calculated over a two-cycle time window. The rate-of-change is calculated as the difference between two consecutive two-cycle RMS readings. The recommended setting is 150 A per two-cycle interval. The setting is given in primary amperes.
- HI-Z NEUTRAL RATE OF CHANGE: Establishes a threshold for determining when a high rate-of-change event occurs on a neutral RMS current. An extremely high rate of change is not characteristic of most high impedance faults; it is more indicative of a breaker closing, causing associated inrush. The inrush current produces substantial variations in the harmonics used by the high impedance algorithms. Therefore, these algorithms ignore all data for several seconds following a high rate-of-change event exceeding this setting.

The RMS currents in the \(\mathrm{Hi}-\mathrm{Z}\) algorithms are calculated over a two-cycle time window. The rate-of-change is calculated as the difference between two consecutive two-cycle RMS readings. The recommended setting is 150 A per two-cycle interval. The setting is given in primary amperes.
- HI-Z LOSS OF LOAD THRESHOLD: Establishes the loss of load level used as an indication of a downed conductor. A Loss of Load flag is set if the Hi-Z algorithms detect a percentage drop in phase current between two successive twocycle RMS values that equals or exceeds the Loss of Load Threshold. The amount the phase current must decrease between successive two-cycle RMS values is based on this setting times the recent average phase current level. The range is 5 to \(100 \%\); \(5 \%\) being the most sensitive.
- HI-Z 3-PHASE EVENT THRESHOLD: Establishes the level at which the Hi-Z element characterizes a sudden threephase current increase as a three-phase event. The Hi-Z detection algorithms ignore the data generated by a large three-phase event. The recommended setting is 25 A (primary).
- HI-Z VOLTAGE SUPV THRESHOLD: In the event that a fault simultaneously occurs on two adjacent feeders (line voltage from the same bus), the drop in line voltage will cause a subsequent drop in load current. This function will block the Loss of Load flag from being set while the voltage is depressed. Thus, if the voltage level drops by a percentage greater than this threshold in successive two-cycle RMS samples, the Loss of Load flag will be blocked. If the setting is " 0 ", the voltage supervision function will be disabled.
- HI-Z VOLTAGE SUPV DELAY: This setting adds time delay to the voltage supervision function. Specifically, the Loss of Load flag will continue to be blocked for the number of cycles specified by this setting.
- HI-Z EVEN HARMONIC RESTRAINT: This setting determines the level of the even harmonic at which the setting of the overcurrent flags is inhibited. The even harmonic content is evaluated on each phase current as a percentage of that phase's RMS current. The intent is to inhibit the setting of the overcurrent flags if the overcurrent is simply a surge caused by cold-load pickup or other inrush event.

IMPORTANT NOTE REGARDING INSTALLATION: The F60 Hi-Z algorithm is adaptive in nature. The algorithm's internal thresholds gradually adapt to background "noise" on circuits with a moderate to high level of transient activity. For the first three to five days after installation (or after being out-of-service for a significant period), the F60 may identify some of this noise as arcing. This should be taken into account when responding to alarms during these type of operating periods.

Figure 5-86: HI-Z SCHEME LOGIC

\section*{c) BREAKER ARCING CURRENT}

PATH: SETTINGS \(\Rightarrow \sqrt{ }\) CONTROL ELEMENTS \(\Rightarrow \sqrt{ }\) MONITORING ELEMENTS \(\Rightarrow\) BREAKER 1(2) ARCING CURRENT

There are 2 identical Breaker Arcing Current features available for Breakers 1 and 2. This element calculates an estimate of the per-phase wear on the breaker contacts by measuring and integrating the current squared passing through the breaker contacts as an arc. These per-phase values are added to accumulated totals for each phase and compared to a programmed threshold value. When the threshold is exceeded in any phase, the relay can set an output operand to " 1 ". The accumulated value for each phase can be displayed as an actual value.
The operation of the scheme is shown in the following logic diagram. The same output operand that is selected to operate the output relay used to trip the breaker, indicating a tripping sequence has begun, is used to initiate this feature. A time delay is introduced between initiation and the starting of integration to prevent integration of current flow through the breaker before the contacts have parted. This interval includes the operating time of the output relay, any other auxiliary relays and the breaker mechanism. For maximum measurement accuracy, the interval between change-of-state of the operand (from 0 to 1) and contact separation should be measured for the specific installation. Integration of the measured current continues for 100 ms , which is expected to include the total arcing period.
- BKR 1(2) ARC AMP INIT: Selects the same output operand that is selected to operate the output relay used to trip the breaker.
- BKR 1(2) ARC AMP DELAY: This setting is used to program the delay interval between the time the tripping sequence is initiated and the time the breaker contacts are expected to part, starting the integration of the measured current.
- BKR 1(2) ARC AMP LIMIT: Selects the threshold value above which the output operand is set.

Figure 5-87: ARCING CURRENT MEASUREMENT

5

Figure 5-88: BREAKER ARCING CURRENT SCHEME LOGIC

\section*{d) VT FUSE FAILURE}

PATH: SETTINGS \(\Rightarrow \sqrt{ }\) CONTROL ELEMENTS \(\Rightarrow \sqrt{ }\) MONITORING ELEMENTS \(\Rightarrow \sqrt{ }\) VT FUSE FAILURE 1(2)

Every signal source includes a fuse failure scheme.
The VT fuse failure detector can be used to raise an alarm and/or block elements that may operate incorrectly for a full or partial loss of AC potential caused by one or more blown fuses. Some elements that might be blocked (via the BLOCK input) are distance, voltage restrained overcurrent, and directional current.
There are two classes of fuse failure that may occur:
Class A: Loss of one or two phases.
Class B: Loss of all three phases.
Different means of detection are required for each class. An indication of Class A failures is a significant level of negative sequence voltage, whereas an indication of Class B failures is when positive sequence current is present and there is an insignificant amount of positive sequence voltage. These noted indications of fuse failure could also be present when faults are present on the system, so a means of detecting faults and inhibiting fuse failure declarations during these events is provided. Once the fuse failure condition is declared, it will be sealed-in until the cause that generated it disappears.
An additional condition is introduced to inhibit a fuse failure declaration when the monitored circuit is de-energized; positive sequence voltage and current are both below threshold levels.
The VT FUSE FAILURE 1(2) FUNCTION setting enables/disables the fuse failure feature for each source.

Figure 5-89: VT FUSE FAIL SCHEME LOGIC

PATH: SETTINGS \(\Rightarrow \sqrt{ }\) CONTROL ELEMENTS \(\Rightarrow \sqrt{ }\) COLD LOAD PICKUP \(\Rightarrow\) COLD LOAD PICKUP 1 (2)

There are two (2) identical Cold Load Pickup features available, numbered 1 and 2.
This feature can be used to change protection element settings when (by changing to another settings group) a cold load condition is expected to occur. A cold load condition can be caused by a prolonged outage of the load, by opening of the circuit breaker, or by a loss of supply even if the breaker remains closed. Upon the return of the source, the circuit will experience inrush current into connected transformers, accelerating currents into motors, and simultaneous demand from many other loads because the normal load diversity has been lost. During the cold load condition, the current level can be above the pickup setting of some protection elements, so this feature can be used to prevent the tripping that would otherwise be caused by the normal settings.

Without historical data on a particular feeder, some utilities assume an initial cold load current of about 500\% of normal load, decaying to \(300 \%\) after 1 second, \(200 \%\) after 2 seconds, and \(150 \%\) after 4 seconds.

Figure 5-90: TYPICAL COLD LOAD PICKUP CHARACTERISTIC
There are two methods of initiating the operation of this feature.
The first initiation method is intended to automatically respond to a loss of the source to the feeder, by detecting that all phase currents have declined to zero for some time. When zero current on all phases has been detected, a timer is started. This timer is set to an interval after which it is expected the normal load diversity will have been lost, so setting groups are not changed for short duration outages. After the delay interval, the output operand is set.

The second initiation method is intended to automatically respond to an event that will set an operand, such as an operatorinitiated virtual input. This second method of initiation sets the output operand immediately.

Both initiating inputs can be inhibited by a blocking input. Once cold load pickup is in operation, the output operand will remain set until at least one phase of the load has returned to a level above \(2 \%\) of CT nominal for the interval programmed by the ON-LOAD TIME BEFORE RESET setting has expired. The reset delay interval is intended to be set to a period until the feeder load has decayed to normal levels, after which other features may be used to switch setting groups.

Figure 5-91: COLD LOAD PICKUP SCHEME LOGIC

PATH: SETTINGS \(\Rightarrow \sqrt{ } \sqrt{ }\) INPUTS/OUTPUTS \(\Rightarrow\) CONTACT INPUTS

The contact inputs menu contains configuration settings for each contact input as well as voltage thresholds for each group of four contact inputs. Upon startup, the relay processor determines (from an assessment of the installed modules) which contact inputs are available and then display settings for only those inputs.
An alphanumeric ID may be assigned to a contact input for diagnostic, setting, and event recording purposes. The CONTACT IP X On" (Logic 1) FlexLogic \({ }^{\text {TM }}\) operand corresponds to contact input " \(X\) " being closed, while CONTACT IP X Off corresponds to contact input " \(X\) " being open. The CONTACT INPUT DEBNCE TIME defines the time required for the contact to overcome 'contact bouncing' conditions. As this time differs for different contact types and manufacturers, set it as a maximum contact debounce time (per manufacturer specifications) plus some margin to ensure proper operation. If CONTACT INPUT EVENTS is set to "Enabled", every change in the contact input state will trigger an event.

A raw status is scanned for all Contact Inputs synchronously at the constant rate of 0.5 ms as shown in the figure below. The DC input voltage is compared to a user-settable threshold. A new contact input state must be maintained for a usersettable debounce time in order for the F60 to validate the new contact state. In the figure below, the debounce time is set at 2.5 ms ; thus the 6th sample in a row validates the change of state (mark no. 1 in the diagram). Once validated (debounced), the contact input asserts a corresponding FlexLogic \({ }^{\text {TM }}\) operand and logs an event as per user setting.
A time stamp of the first sample in the sequence that validates the new state is used when logging the change of the contact input into the Event Recorder (mark no. 2 in the diagram).
Protection and control elements, as well as FlexLogic \({ }^{T M}\) equations and timers, are executed eight times in a power system cycle. The protection pass duration is controlled by the frequency tracking mechanism. The FlexLogic \({ }^{\text {M }}\) operand reflecting the debounced state of the contact is updated at the protection pass following the validation (marks no. 3 and 4 on the figure below). The update is performed at the beginning of the protection pass so all protection and control functions, as well as FlexLogic \({ }^{\text {TM }}\) equations, are fed with the updated states of the contact inputs.

The FlexLogic \({ }^{\text {TM }}\) operand response time to the contact input change is equal to the debounce time setting plus up to one protection pass (variable and depending on system frequency if frequency tracking enabled). If the change of state occurs just after a protection pass, the recognition is delayed until the subsequent protection pass; that is, by the entire duration of the protection pass. If the change occurs just prior to a protection pass, the state is recognized immediately. Statistically a delay of half the protection pass is expected. Owing to the 0.5 ms scan rate, the time resolution for the input contact is below 1 msec .

For example, 8 protection passes per cycle on a 60 Hz system correspond to a protection pass every 2.1 ms . With a contact debounce time setting of 3.0 ms , the FlexLogic \({ }^{\text {TM }}\) operand-assert time limits are: \(3.0+0.0=3.0 \mathrm{~ms}\) and \(3.0+2.1=5.1\) ms . These time limits depend on how soon the protection pass runs after the debouncing time.

Regardless of the contact debounce time setting, the contact input event is time-stamped with a \(1 \mu \mathrm{~s}\) accuracy using the time of the first scan corresponding to the new state (mark no. 2 below). Therefore, the time stamp reflects a change in the DC voltage across the contact input terminals that was not accidental as it was subsequently validated using the debounce timer. Keep in mind that the associated FlexLogic \({ }^{\top M}\) operand is asserted/de-asserted later, after validating the change.
The debounce algorithm is symmetrical: the same procedure and debounce time are used to filter the LOW-HIGH (marks no.1, 2, 3, and 4 in the figure below) and HIGH-LOW (marks no. 5, 6, 7, and 8 below) transitions.

Figure 5-92: INPUT CONTACT DEBOUNCING MECHANISM AND TIME-STAMPING SAMPLE TIMING
Contact inputs are isolated in groups of four to allow connection of wet contacts from different voltage sources for each group. The CONTACT INPUT THRESHOLDS determine the minimum voltage required to detect a closed contact input. This value should be selected according to the following criteria: 17 for 24 V sources, 33 for 48 V sources, 84 for 110 to 125 V sources and 166 for 250 V sources.

For example, to use contact input H 5 a as a status input from the breaker 52b contact to seal-in the trip relay and record it in the Event Records menu, make the following settings changes:
```

CONTACT INPUT H5A ID: "Breaker Closed (52b)"
CONTACT INPUT H5A EVENTS: "Enabled"

```

Note that the 52 b contact is closed when the breaker is open and open when the breaker is closed.

PATH: SETTINGS \(\Rightarrow \sqrt{ }\) INPUTS/OUTPUTS \(\Rightarrow \sqrt{ }\) VIRTUAL INPUTS \(\Rightarrow\)

There are 32 virtual inputs that can be individually programmed to respond to input signals from the keypad (COMMANDS menu) and communications protocols. All virtual input operands are defaulted to OFF \(=0\) unless the appropriate input signal is received. Virtual input states are preserved through a control power loss.
If the VIRTUAL INPUT x FUNCTION is to "Disabled", the input will be forced to 'OFF' (Logic 0) regardless of any attempt to alter the input. If set to "Enabled", the input operates as shown on the logic diagram and generates output FlexLogic \({ }^{\text {TM }}\) operands in response to received input signals and the applied settings.
There are two types of operation: Self-Reset and Latched. If VIRTUAL INPUT x TYPE is "Self-Reset", when the input signal transits from OFF \(=0\) to \(\mathrm{ON}=1\), the output operand will be set to \(\mathrm{ON}=1\) for only one evaluation of the FlexLogic \({ }^{\mathrm{TM}}\) equations and then return to OFF \(=0\). If set to "Latched", the virtual input sets the state of the output operand to the same state as the most recent received input, \(\mathrm{ON}=1\) or \(\mathrm{OFF}=0\).

The "Self-Reset" operating mode generates the output operand for a single evaluation of the FlexLogic \({ }^{\text {TM }}\) equations. If the operand is to be used anywhere other than internally in a FlexLogic \({ }^{\text {TM }}\) equation, it will likely have to be lengthened in time. A FlexLogic \({ }^{\text {TM }}\) timer with a delayed reset can perform this function.
The Select-Before-Operate timer sets the interval from the receipt of an Operate signal to the automatic de-selection of the virtual input, so that an input does not remain selected indefinitely (used only with the UCA Select-Before-Operate feature).

Figure 5-93: VIRTUAL INPUTS SCHEME LOGIC

PATH: SETTINGS \(\Rightarrow \Omega\) INPUTS/OUTPUTS \(\Rightarrow \Omega\) CONTACT OUTPUTS \(\Rightarrow\) CONTACT OUTPUT H1
\begin{tabular}{|c|c|c|c|}
\hline \(\square\) CONTACT OUTPUT H1 & (1) & CONTACT OUTPUT H1 ID Cont Op 1 & Range: Up to 12 alphanumeric characters \\
\hline MESSAG & - & OUTPUT H1 OPERATE: Off & Range: FlexLogic \({ }^{\text {TM }}\) operand \\
\hline MESSAG & - & OUTPUT H1 SEAL-IN: Off & Range: FlexLogic \({ }^{\text {TM }}\) operand \\
\hline MESSAG & (4) & \begin{tabular}{l}
CONTACT OUTPUT H1 \\
EVENTS: Enabled
\end{tabular} & Range: Disabled, Enabled \\
\hline
\end{tabular}

Upon startup of the relay, the main processor will determine from an assessment of the modules installed in the chassis which contact outputs are available and present the settings for only these outputs.
An ID may be assigned to each contact output. The signal that can OPERATE a contact output may be any FlexLogic \({ }^{\text {TM }}\) operand (virtual output, element state, contact input, or virtual input). An additional FlexLogic \({ }^{\text {TM }}\) operand may be used to SEAL-IN the relay. Any change of state of a contact output can be logged as an Event if programmed to do so.
EXAMPLE:
The trip circuit current is monitored by providing a current threshold detector in series with some Form-A contacts (see the Trip Circuit Example in the Digital Elements section). The monitor will set a flag (see the Specifications for Form-A). The name of the FlexLogic \({ }^{\text {TM }}\) operand set by the monitor, consists of the output relay designation, followed by the name of the flag; e.g. 'Cont Op 1 IOn' or 'Cont Op 1 IOff'.

In most breaker control circuits, the trip coil is connected in series with a breaker auxiliary contact used to interrupt current flow after the breaker has tripped, to prevent damage to the less robust initiating contact. This can be done by monitoring an auxiliary contact on the breaker which opens when the breaker has tripped, but this scheme is subject to incorrect operation caused by differences in timing between breaker auxiliary contact change-of-state and interruption of current in the trip circuit. The most dependable protection of the initiating contact is provided by directly measuring current in the tripping circuit, and using this parameter to control resetting of the initiating relay. This scheme is often called "trip seal-in".
This can be realized in the UR using the 'Cont Op 1 IOn' FlexLogic \({ }^{\text {TM }}\) operand to seal-in the Contact Output as follows:
```

CONTACT OUTPUT H1 ID: "Cont Op 1"
OUTPUT H1 OPERATE: any suitable FlexLogic 'MM operand
OUTPUT H1 SEAL-IN: "Cont Op 1 IOn"
CONTACT OUTPUT H1 EVENTS: "Enabled"

```

PATH: SETTINGS \(\Rightarrow \sqrt{ }\) INPUTS/OUTPUTS \(\Rightarrow \sqrt{ }\) LATCHING OUTPUTS \(\Rightarrow\) LATCHING OUTPUT H1a

The F60 latching output contacts are mechanically bi-stable and controlled by two separate (open and close) coils. As such they retain their position even if the relay is not powered up. The relay recognizes all latching output contact cards and populates the setting menu accordingly. On power up, the relay reads positions of the latching contacts from the hardware before executing any other functions of the relay (such as protection and control features or FlexLogic \({ }^{\text {TM }}\)).
The latching output modules, either as a part of the relay or as individual modules, are shipped from the factory with all latching contacts opened. It is highly recommended to double-check the programming and positions of the latching contacts when replacing a module.
Since the relay asserts the output contact and reads back its position, it is possible to incorporate self-monitoring capabilities for the latching outputs. If any latching outputs exhibits a discrepancy, the LATCHING OUTPUT ERROR self-test error is declared. The error is signaled by the LATCHING OUT ERROR FlexLogic \({ }^{\text {TM }}\) operand, event, and target message.
- OUTPUT H1a OPERATE: This setting specifies a FlexLogic \({ }^{\text {TM }}\) operand to operate the 'close coil' of the contact. The relay will seal-in this input to safely close the contact. Once the contact is closed and the RESET input is logic 0 (off), any activity of the OPERATE input, such as subsequent chattering, will not have any effect. With both the OPERATE and RESET inputs active (logic 1), the response of the latching contact is specified by the OUTPUT H1A TYPE setting.
- OUTPUT H1a RESET: This setting specifies a FlexLogic \({ }^{T M}\) operand to operate the 'trip coil' of the contact. The relay will seal-in this input to safely open the contact. Once the contact is opened and the OPERATE input is logic 0 (off), any activity of the RESET input, such as subsequent chattering, will not have any effect. With both the OPERATE and RESET inputs active (logic 1), the response of the latching contact is specified by the OUTPUT H1A TYPE setting.
- OUTPUT H1a TYPE: This setting specifies the contact response under conflicting control inputs; that is, when both the OPERATE and RESET signals are applied. With both control inputs applied simultaneously, the contact will close if set to "Operate-dominant" and will open if set to "Reset-dominant".

\section*{Application Example 1:}

A latching output contact H 1 a is to be controlled from two user-programmable pushbuttons (buttons number 1 and 2). The following settings should be applied.

Program the Latching Outputs by making the following changes in the SETTINGS \(\Rightarrow \sqrt[\Omega]{ }\) INPUTS/OUTPUT \(\Rightarrow \sqrt{ }\) LATCHING OUTPUTS \(\Rightarrow\) LATCHING OUTPUT H1a menu (assuming an H4L module):

OUTPUT H1a OPERATE: "PUSHBUTTON 1 ON"
OUTPUT H1a RESET: "PUSHBUTTON 2 ON"
Program the pushbuttons by making the following changes in the PRODUCT SETUP \(\Rightarrow \sqrt[\Omega]{ }\) USER-PROGRAMMABLE PUSHBUTTONS \(\Rightarrow \sqrt{2}\) USER PUSHBUTTON 1 and USER PUSHBUTTON 2 menus:
```

PUSHBUTTON 1 FUNCTION: "Self-reset" PUSHBUTTON 2 FUNCTION: "Self-reset"
PUSHBTN }1\mathrm{ DROP-OUT TIME: "0.00 s" PUSHBTN 2 DROP-OUT TIME: "0.00 s"

```

\section*{Application Example 2:}

A relay, having two latching contacts H 1 a and H 1 c , is to be programmed. The H1a contact is to be a Type-a contact, while the H1c contact is to be a Type-b contact (Type-a means closed after exercising the operate input; Type-b means closed after exercising the reset input). The relay is to be controlled from virtual outputs: VO1 to operate and VO2 to reset.
Program the Latching Outputs by making the following changes in the SETTINGS \(\Rightarrow \sqrt{ }\) INPUTS/OUTPUT \(\Rightarrow \sqrt{ }\) LATCHING OUTPUTS \(\Rightarrow\) LATCHING OUTPUT H1a and LATCHING OUTPUT H1c menus (assuming an H4L module):
```

OUTPUT H1a OPERATE: "VO1" OUTPUT H1c OPERATE: "VO2"
OUTPUT H1a RESET: "VO2" OUTPUT H1c RESET: "VO1"

```

Since the two physical contacts in this example are mechanically separated and have individual control inputs, they will not operate at exactly the same time. A discrepancy in the range of a fraction of a maximum operating time may occur. Therefore, a pair of contacts programmed to be a multi-contact relay will not guarantee any specific sequence of operation (such as make before break). If required, the sequence of operation must be programmed explicitly by delaying some of the control inputs as shown in the next application example.

\section*{Application Example 3:}

A make before break functionality must be added to the preceding example. An overlap of 20 ms is required to implement this functionality as described below:

Write the following FlexLogic \({ }^{\text {TM }}\) equation (enerVista UR Setup example shown):

Both timers (Timer 1 and Timer 2) should be set to 20 ms pickup and 0 ms dropout.
Program the Latching Outputs by making the following changes in the SETTINGS \(\Rightarrow \sqrt{ }\) INPUTS/OUTPUT \(\Rightarrow \sqrt{ }\) LATCHING OUTPUTS \(\Rightarrow\) LATCHING OUTPUT H1a and LATCHING OUTPUT H1c menus (assuming an H4L module):

OUTPUT H1a OPERATE: "VO1" OUTPUT H1c OPERATE: "VO2"
OUTPUT H1a RESET: "VO4"
OUTPUT H1c RESET: "VO3"

\section*{Application Example 4:}

A latching contact H 1 a is to be controlled from a single virtual output VO1. The contact should stay closed as long as VO1 is high, and should stay opened when VO1 is low. Program the relay as follows.

Write the following FlexLogic \({ }^{\text {TM }}\) equation (enerVista UR Setup example shown):
\begin{tabular}{|c|c|c|c|}
\hline FLIEDGIC INITY & TrPE & SYMIAx & \(\pm\) \\
\hline Yinornjks & Yeter & View & \\
\hline Flealagit Estry 1 & Poat Wibuas Outpus Oe & Vat Opi On(MOn) & \\
\hline FlesLest E4ty 2 & Nogt & 1 hrpaz & \\
\hline FlerLage Exy] 3 & Ween Witual OupuriAasy & - V/a Cp 2 MOC) & \\
\hline Flestagreter 4 & End of Ust & & * \\
\hline \multicolumn{4}{|l|}{D60 with Putcumoneurs Mestog:} \\
\hline
\end{tabular}

Program the Latching Outputs by making the following changes in the SETTINGS \(\Rightarrow \sqrt[\Omega]{ }\) INPUTS/OUTPUT \(\Rightarrow \sqrt{ }\) LATCHING OUTPUTS \(\Rightarrow\) LATCHING OUTPUT H1a menu (assuming an H4L module):

OUTPUT H1a OPERATE: "VO1"
OUTPUT H1a RESET: "VO2"

PATH: SETTINGS \(\Rightarrow \sqrt{ }\) INPUTS/OUTPUTS \(\Rightarrow \sqrt{ }\) VIRTUAL OUTPUTS \(\Rightarrow\) VIRTUAL OUTPUT 1(64)

There are 64 virtual outputs that may be assigned via FlexLogic \({ }^{T M}\). If not assigned, the output will be forced to 'OFF' (Logic 0). An ID may be assigned to each virtual output. Virtual outputs are resolved in each pass through the evaluation of the FlexLogic \({ }^{\text {TM }}\) equations. Any change of state of a virtual output can be logged as an event if programmed to do so.
For example, if Virtual Output 1 is the trip signal from FlexLogic \({ }^{\text {TM }}\) and the trip relay is used to signal events, the settings would be programmed as follows:
```

VIRTUAL OUTPUT 1 ID: "Trip"
VIRTUAL OUTPUT 1 EVENTS: "Disabled"

```

\section*{a) REMOTE I/O OVERVIEW}

Remote inputs and outputs, which are a means of exchanging information regarding the state of digital points between remote devices, are provided in accordance with the Electric Power Research Institute's (EPRI) UCA2 "Generic Object Oriented Substation Event (GOOSE)" specifications.

\section*{\({\underset{N O T}{2}}^{\square}\) \\ The UCA2 specification requires that communications between devices be implemented on Ethernet communications facilities. For UR relays, Ethernet communications is provided only on the type 9G and 9H versions of the CPU module.}

The sharing of digital point state information between GOOSE equipped relays is essentially an extension to FlexLogic \({ }^{\text {TM }}\) to allow distributed FlexLogic \({ }^{\text {TM }}\) by making operands available to/from devices on a common communications network. In addition to digital point states, GOOSE messages identify the originator of the message and provide other information required by the communication specification. All devices listen to network messages and capture data from only those messages that have originated in selected devices.

GOOSE messages are designed to be short, high priority and with a high level of reliability. The GOOSE message structure contains space for 128 bit pairs representing digital point state information. The UCA specification provides 32 "DNA" bit pairs, which are status bits representing pre-defined events. All remaining bit pairs are "UserSt" bit pairs, which are status bits representing user-definable events. The UR implementation provides 32 of the 96 available UserSt bit pairs.

The UCA2 specification includes features that are used to cope with the loss of communication between transmitting and receiving devices. Each transmitting device will send a GOOSE message upon a successful power-up, when the state of any included point changes, or after a specified interval (the "default update" time) if a change-of-state has not occurred. The transmitting device also sends a "hold time" which is set to three times the programmed default time, which is required by the receiving device.
Receiving devices are constantly monitoring the communications network for messages they require, as recognized by the identification of the originating device carried in the message. Messages received from remote devices include the message "hold" time for the device. The receiving relay sets a timer assigned to the originating device to the "hold" time interval, and if it has not received another message from this device at time-out, the remote device is declared to be non-communicating, so it will use the programmed default state for all points from that specific remote device. This mechanism allows a receiving device to fail to detect a single transmission from a remote device which is sending messages at the slowest possible rate, as set by its "default update" timer, without reverting to use of the programmed default states. If a message is received from a remote device before the "hold" time expires, all points for that device are updated to the states contained in the message and the hold timer is restarted. The status of a remote device, where 'Offline' indicates 'non-communicating', can be displayed.

The GOOSE facility provides for 32 remote inputs and 64 remote outputs.

\section*{b) LOCAL DEVICES: ID OF DEVICE FOR TRANSMITTING GOOSE MESSAGES}

In a UR relay, the device ID that identifies the originator of the message is programmed in the SETTINGS \(\Rightarrow\) PRODUCT SETUP \(\Rightarrow \sqrt{ } \quad\) INSTALLATION \(\Rightarrow \sqrt{ }\) RELAY NAME setting.
c) REMOTE DEVICES: ID OF DEVICE FOR RECEIVING GOOSE MESSAGES

PATH: SETTINGS \(\Rightarrow \sqrt[夕]{ }\) INPUTS/OUTPUTS \(\Rightarrow \sqrt{ }\) REMOTE DEVICES \(\Rightarrow\) REMOTE DEVICE 1(16)
\begin{tabular}{|l|}
\(\square\) \\
\(\square\)
\end{tabular} REMOTE DEVICE 1 (1) \begin{tabular}{l}
REMOTE DEVICE 1 ID: \\
Remote Device 1
\end{tabular}\(\quad\) Range: up to 20 alphanumeric characters

Sixteen Remote Devices, numbered from 1 to 16, can be selected for setting purposes. A receiving relay must be programmed to capture messages from only those originating remote devices of interest. This setting is used to select specific remote devices by entering (bottom row) the exact identification (ID) assigned to those devices.

PATH: SETTINGS \(\Rightarrow \sqrt{ } \Rightarrow\) INPUTS/OUTPUTS \(\Rightarrow \sqrt{ } \Rightarrow\) REMOTE INPUTS \(\Rightarrow\) REMOTE INPUT 1(32)

Remote Inputs which create FlexLogic \({ }^{\text {TM }}\) operands at the receiving relay, are extracted from GOOSE messages originating in remote devices. The relay provides 32 remote inputs, each of which can be selected from a list consisting of 64 selections: DNA-1 through DNA-32 and UserSt-1 through UserSt-32. The function of DNA inputs is defined in the UCA2 specifications and is presented in the UCA2 DNA Assignments table in the Remote Outputs section. The function of UserSt inputs is defined by the user selection of the FlexLogic \({ }^{\text {TM }}\) operand whose state is represented in the GOOSE message. A user must program a DNA point from the appropriate FlexLogic \({ }^{\text {TM }}\) operand.
Remote Input 1 must be programmed to replicate the logic state of a specific signal from a specific remote device for local use. This programming is performed via the three settings shown above.

REMOTE IN 1 DEVICE selects the number (1 to 16) of the remote device which originates the required signal, as previously assigned to the remote device via the setting REMOTE DEVICE NN ID (see the Remote Devices section). REMOTE IN 1 bIT PAIR selects the specific bits of the GOOSE message required.

The REMOTE IN 1 DEFAULT STATE setting selects the logic state for this point if the local relay has just completed startup or the remote device sending the point is declared to be non-communicating. The following choices are available:
- Setting remote in 1 default state to "On" value defaults the input to Logic 1.
- Setting REMOTE IN 1 DEFAULT STATE to "Off" value defaults the input to Logic 0.
- Setting REMOTE IN 1 DEFAULT STATE to "Latest/On" freezes the input in case of lost communications. If the latest state is not known, such as after relay power-up but before the first communication exchange, the input will default to Logic 1. When communication resumes, the input becomes fully operational.
- Setting REMOTE IN 1 DEFAULT STATE to "Latest/Off" freezes the input in case of lost communications. If the latest state is not known, such as after relay power-up but before the first communication exchange, the input will default to Logic 0 . When communication resumes, the input becomes fully operational.

For additional information on the GOOSE specification, refer to the Remote Devices section in this chapter and to Appendix C: UCA/MMS Communications.
a) DNA BIT PAIRS

PATH: SETTINGS \(\Rightarrow \sqrt[\zeta]{ }\) INPUTS/OUTPUTS \(\Rightarrow \sqrt{ } \Rightarrow\) REMOTE OUTPUTS DNA BIT PAIRS \(\Rightarrow\) REMOTE OUPUTS DNA- 1(32) BIT PAIR
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{lll}
\(\square\) & REMOTE & OUTPUTS \\
DNA- 1 & BIT PAIR
\end{tabular} & (1) & \[
\begin{aligned}
& \text { DNA- } 1 \text { OPERAND: } \\
& \text { Off }
\end{aligned}
\] & Range: FlexLogic \({ }^{\text {TM }}\) Operand \\
\hline MESSAGE & (2) & DNA- 1 EVENTS: Disabled & Range: Disabled, Enabled \\
\hline
\end{tabular}

Remote Outputs (1 to 32) are FlexLogic \({ }^{\text {TM }}\) operands inserted into GOOSE messages that are transmitted to remote devices on a LAN. Each digital point in the message must be programmed to carry the state of a specific FlexLogic \({ }^{\text {TM }}\) operand. The above operand setting represents a specific DNA function (as shown in the following table) to be transmitted.

Table 5-22: UCA DNA2 ASSIGNMENTS
\begin{tabular}{|c|c|c|c|c|}
\hline DNA & DEFINITION & INTENDED FUNCTION & LOGIC 0 & LOGIC 1 \\
\hline 1 & OperDev & & Trip & Close \\
\hline 2 & Lock Out & & LockoutOff & LockoutOn \\
\hline 3 & Initiate Reclosing & Initiate remote reclose sequence & InitRecloseOff & InitRecloseOn \\
\hline 4 & Block Reclosing & Prevent/cancel remote reclose sequence & BlockOff & BlockOn \\
\hline 5 & Breaker Failure Initiate & Initiate remote breaker failure scheme & BFIOff & BFIOn \\
\hline 6 & Send Transfer Trip & Initiate remote trip operation & TxXfrTripOff & TxXfrTripOn \\
\hline 7 & Receive Transfer Trip & Report receipt of remote transfer trip command & RxXfrTripOff & RxXfrTripOn \\
\hline 8 & Send Perm & Report permissive affirmative & TxPermOff & TxPermOn \\
\hline 9 & Receive Perm & Report receipt of permissive affirmative & RxPermOff & RxPermOn \\
\hline 10 & Stop Perm & Override permissive affirmative & StopPermOff & StopPermOn \\
\hline 11 & Send Block & Report block affirmative & TxBlockOff & TxBlockOn \\
\hline 12 & Receive Block & Report receipt of block affirmative & RxBlockOff & RxBlockOn \\
\hline 13 & Stop Block & Override block affirmative & StopBlockOff & StopBlockOn \\
\hline 14 & BkrDS & Report breaker disconnect 3-phase state & Open & Closed \\
\hline 15 & BkrPhsADS & Report breaker disconnect phase A state & Open & Closed \\
\hline 16 & BkrPhsBDS & Report breaker disconnect phase B state & Open & Closed \\
\hline 17 & BkrPhsCDS & Report breaker disconnect phase C state & Open & Closed \\
\hline 18 & DiscSwDS & & Open & Closed \\
\hline 19 & Interlock DS & & DSLockOff & DSLockOn \\
\hline 20 & LineEndOpen & Report line open at local end & Open & Closed \\
\hline 21 & Status & Report operating status of local GOOSE device & Offline & Available \\
\hline 22 & Event & & EventOff & EventOn \\
\hline 23 & Fault Present & & FaultOff & FaultOn \\
\hline 24 & Sustained Arc & Report sustained arc & SustArcOff & SustArcOn \\
\hline 25 & Downed Conductor & Report downed conductor & DownedOff & DownedOn \\
\hline 26 & Sync Closing & & SyncClsOff & SyncClsOn \\
\hline 27 & Mode & Report mode status of local GOOSE device & Normal & Test \\
\hline \(28 \rightarrow 32\) & Reserved & & & \\
\hline
\end{tabular}

For more information on GOOSE specifications, see the Remote I/O Overview in the Remote Devices section.

\section*{b) USERST BIT PAIRS}

PATH: SETTINGS \(\Rightarrow \sqrt[夕]{ }\) INPUTS/OUTPUTS \(\Rightarrow \sqrt{ } \Rightarrow\) REMOTE OUTPUTS UserSt BIT PAIRS \(\Rightarrow\) REMOTE OUTPUTS UserSt- 1(32) BIT PAIR

Remote Outputs 1 to 32 originate as GOOSE messages to be transmitted to remote devices. Each digital point in the message must be programmed to carry the state of a specific FlexLogic \({ }^{T M}\) operand. The setting above is used to select the operand which represents a specific UserSt function (as selected by the user) to be transmitted.
The following setting represents the time between sending GOOSE messages when there has been no change of state of any selected digital point. This setting is located in the PRODUCT SETUP \(\Rightarrow \sqrt{ }\) COMMUNICATIONS \(\Rightarrow \sqrt{ }\) UCA/MMS PROTOCOL settings menu.
\begin{tabular}{l|l}
\hline DEFAULT GOOSE UPDATE & Range: 1 to 60 s in steps of 1 \\
TIME: 60 s &
\end{tabular}

For more information on GOOSE specifications, see the Remote I/O Overview in the Remote Devices section.

PATH: SETTINGS \(\Rightarrow \sqrt[\Omega]{ }\) INPUTS/OUTPUTS \(\Rightarrow \sqrt{ }\) RESETTING
\begin{tabular}{|c|c|c|c|}
\hline \(\square\) RESETTING & (1) & RESET OPERAND: Off & Range: FlexLogic \({ }^{\text {TM }}\) operand \\
\hline
\end{tabular}

Some events can be programmed to latch the faceplate LED event indicators and the target message on the display. Once set, the latching mechanism will hold all of the latched indicators or messages in the set state after the initiating condition has cleared until a RESET command is received to return these latches (not including FlexLogic \({ }^{\text {TM }}\) latches) to the reset state. The RESET command can be sent from the faceplate Reset button, a remote device via a communications channel, or any programmed operand.

When the RESET command is received by the relay, two FlexLogic \({ }^{\text {TM }}\) operands are created. These operands, which are stored as events, reset the latches if the initiating condition has cleared. The three sources of RESET commands each create the RESET OP FlexLogic \({ }^{\text {TM }}\) operand. Each individual source of a RESET command also creates its individual operand RESET OP (PUSHBUTTON), RESET OP (COMMS) or RESET OP (OPERAND) to identify the source of the command. The setting shown above selects the operand that will create the RESET OP (OPERAND) operand.
5.7.10 DIRECT INPUTS/OUTPUTS

\section*{a) DIRECT INPUTS}

PATH: SETTINGS \(\Rightarrow \sqrt{ }\) INPUTS/OUTPUTS \(\Rightarrow \sqrt{ } \sqrt{ }\) DIRECT INPUTS \(\Rightarrow\) DIRECT INPUT 1(32)

These settings specify how the Direct Input information is processed. The DIRECT INPUT DEVICE ID represents the source of this Direct Input. The specified Direct Input is driven by the device identified here.

The direct input 1 bit number is the bit number to extract the state for this Direct Input. Direct Input \(x\) is driven by the bit identified here as DIRECT INPUT 1 BIT NUMBER. This corresponds to the Direct Output Number of the sending device.
The direct input 1 DEFAULT STATE represents the state of the Direct Input when the associated Direct Device is offline. The following choices are available:
- Setting DIRECT INPUT 1 DEFAULT STATE to "On" value defaults the input to Logic 1.
- Setting direct input 1 DEFAULT STATE to "Off" value defaults the input to Logic 0.
- Setting DIRECT INPUT 1 DEFAULT STATE to "Latest/On" freezes the input in case of lost communications. If the latest state is not known, such as after relay power-up but before the first communication exchange, the input will default to Logic 1. When communication resumes, the input becomes fully operational.
- Setting DIRECT INPUT 1 DEFAULT STATE to "Latest/Off" freezes the input in case of lost communications. If the latest state is not known, such as after relay power-up but before the first communication exchange, the input will default to Logic 0 . When communication resumes, the input becomes fully operational.

\section*{b) DIRECT OUTPUTS}

PATH: SETTINGS \(\Rightarrow \sqrt{ } \sqrt{ }\) INPUTS/OUTPUTS \(\Rightarrow \sqrt{ }\) DIRECT OUTPUTS \(\Rightarrow\) DIRECT OUTPUT 1(32)

The DIR OUT 1 OPERAND is the FlexLogic \({ }^{\text {TM }}\) operand that determines the state of this Direct Output.
c) APPLICATION EXAMPLES

The examples introduced in the Product Setup section for Direct I/Os are continued below to illustrate usage of the Direct Inputs and Outputs.

\section*{EXAMPLE 1: EXTENDING I/O CAPABILITIES OF A F60 RELAY}

Consider an application that requires additional quantities of digital inputs and/or output contacts and/or lines of programmable logic that exceed the capabilities of a single UR-series chassis. The problem is solved by adding an extra UR-series IED, such as the C30, to satisfy the additional I/Os and programmable logic requirements. The two IEDs are connected via single-channel digital communication cards as shown below.

Figure 5-94: INPUT/OUTPUT EXTENSION VIA DIRECT I/OS
Assume Contact Input 1 from UR IED 2 is to be used by UR IED 1. The following settings should be applied (Direct Input 5 and bit number 12 are used, as an example):

UR IED 1: DIRECT INPUT 5 DEVICE ID \(=\) " 2 "
UR IED 2: DIRECT OUT 12 OPERAND = "Cont Ip 1 On"
DIRECT INPUT 5 BIT NUMBER = "12"
The Cont Ip 1 On operand of UR IED 2 is now available in UR IED 1 as DIRECT INPUT 5 ON.

\section*{EXAMPLE 2: INTERLOCKING BUSBAR PROTECTION}

A simple interlocking busbar protection scheme can be accomplished by sending a blocking signal from downstream devices, say 2,3 and 4, to the upstream device that monitors a single incomer of the busbar, as shown in the figure below.

Figure 5-95: SAMPLE INTERLOCKING BUSBAR PROTECTION SCHEME
Assume that Phase IOC1 is used by Devices 2, 3, and 4 to block Device 1. If not blocked, Device 1 would trip the bus upon detecting a fault and applying a short coordination time delay.

The following settings should be applied (assume Bit 3 is used by all 3 devices to sent the blocking signal and Direct Inputs 7,8 , and 9 are used by the receiving device to monitor the three blocking signals):
UR IED 2: DIRECT OUT 3 OPERAND: "PHASE IOC1 OP"
UR IED 3: DIRECT OUT 3 OPERAND: "PHASE IOC1 OP"
UR IED 4: DIRECT OUT 3 OPERAND: "PHASE IOC1 OP"
UR IED 1: DIRECT INPUT 7 DEVICE ID: "2"
DIRECT INPUT 7 BIT NUMBER: "3"
DIRECT INPUT 7 DEFAULT STATE: select "On" for security, select "Off" for dependability
DIRECT INPUT 8 DEVICE ID: "3"
DIRECT INPUT 8 BIT NUMBER: "3"
DIRECT INPUT 8 DEFAULT STATE: select "On" for security, select "Off" for dependability
DIRECT INPUT 9 DEVICE ID: "4"
DIRECT INPUT 9 BIT NUMBER: "3"
DIRECT INPUT 9 DEFAULT STATE: select "On" for security, select "Off" for dependability
Now the three blocking signals are available in UR IED 1 as DIRECT INPUT 7 ON, DIRECT INPUT 8 ON, and DIRECT INPUT 9 ON. Upon losing communications or a device, the scheme is inclined to block (if any default state is set to "On"), or to trip the bus on any overcurrent condition (all default states set to "Off").
EXAMPLE 2: PILOT-AIDED SCHEMES
Consider a three-terminal line protection application shown in the figure below.

Figure 5-96: THREE-TERMINAL LINE APPLICATION
Assume the Hybrid Permissive Overreaching Transfer Trip (Hybrid POTT) scheme is applied using the architecture shown below. The scheme output operand HYB POTT TX1 is used to key the permission.

Figure 5-97: SINGLE-CHANNEL OPEN-LOOP CONFIGURATION
In the above architecture, Devices 1 and 3 do not communicate directly. Therefore, Device 2 must act as a 'bridge'. The following settings should be applied:

UR IED 1: DIRECT OUT 2 OPERAND: "HYB POTT TX1"
DIRECT INPUT 5 DEVICE ID: "2"
DIRECT INPUT 5 BIT NUMBER: "2" (this is a message from IED 2)
DIRECT INPUT 6 DEVICE ID: "2"
DIRECT INPUT 6 BIT NUMBER: "4" (effectively, this is a message from IED 3)
UR IED 3: DIRECT OUT 2 OPERAND: "HYB POTT TX1"
DIRECT INPUT 5 DEVICE ID: "2"
DIRECT INPUT 5 BIT NUMBER: "2" (this is a message from IED 2)
DIRECT INPUT 6 DEVICE ID: "2"
DIRECT INPUT 6 BIT NUMBER: "3" (effectively, this is a message from IED 1)
UR IED 2: DIRECT INPUT 5 DEVICE ID: "1"
DIRECT INPUT 5 BIT NUMBER: "2"
DIRECT INPUT 6 DEVICE ID: "3"
DIRECT INPUT 6 BIT NUMBER: "2"
DIRECT OUT 2 OPERAND: "HYB POTT TX1"
DIRECT OUT 3 OPERAND: "DIRECT INPUT 5" (forward a message from 1 to 3)
DIRECT OUT 4 OPERAND: "DIRECT INPUT 6" (forward a message from 3 to 1)
Signal flow between the three IEDs is shown in the figure below:

Figure 5-98: SIGNAL FLOW FOR DIRECT I/O EXAMPLE 3
In three-terminal applications, both the remote terminals must grant permission to trip. Therefore, at each terminal, Direct Inputs 5 and 6 should be ANDed in FlexLogic \({ }^{\text {TM }}\) and the resulting operand configured as the permission to trip (HYB POTT RX1 setting).

PATH: SETTINGS \(\Rightarrow \sqrt{ }\), TRANSDUCER I/O \(\Rightarrow \sqrt{ }\) DCMA INPUTS \(\Rightarrow\) DCMA INPUT H1(W8)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\(\square\) DCMA INPUT H1} & \multirow[t]{2}{*}{(1)} & DCMA INPUT H1
FUNCTION: Disabled & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Range: Disabled, Enabled \\
Range: up to 20 alphanumeric characters
\end{tabular}}} \\
\hline & MESSAGE & & \[
\begin{aligned}
& \text { DCMA INPUT H1 ID: } \\
& \text { DCMA Ip } 1
\end{aligned}
\] & & \\
\hline & MESSAGE & - & DCMA INPUT H1 UNITS: \(\mu \mathrm{A}\) & Range & 6 alphanumeric characters \\
\hline & MESSAGE & - & DCMA INPUT H1
RANGE : 0 to -1 mA & Range & 0 to \(-1 \mathrm{~mA}, 0\) to \(+1 \mathrm{~mA},-1\) to \(+1 \mathrm{~mA}, 0\) to 5 mA , 0 to \(10 \mathrm{~mA}, 0\) to \(20 \mathrm{~mA}, 4\) to 20 mA \\
\hline & MESSAGE & - & \begin{tabular}{ll}
\hline DCMA INPUT & H1 MIN \\
VALUE: & 0.000
\end{tabular} & Range & -9999.999 to +9999.999 in steps of 0.001 \\
\hline & MESSAGE & (2) & \begin{tabular}{ll}
DCMA INPUT & H1 MAX \\
VALUE : & 0.000
\end{tabular} & Range & -9999.999 to +9999.999 in steps of 0.001 \\
\hline
\end{tabular}

Hardware and software is provided to receive signals from external transducers and convert these signals into a digital format for use as required. The relay will accept inputs in the range of -1 to +20 mA DC, suitable for use with most common transducer output ranges; all inputs are assumed to be linear over the complete range. Specific hardware details are contained in Chapter 3.
Before the dcmA input signal can be used, the value of the signal measured by the relay must be converted to the range and quantity of the external transducer primary input parameter, such as DC voltage or temperature. The relay simplifies this process by internally scaling the output from the external transducer and displaying the actual primary parameter.
dcmA input channels are arranged in a manner similar to CT and VT channels. The user configures individual channels with the settings shown here.
The channels are arranged in sub-modules of two channels, numbered from 1 through 8 from top to bottom. On power-up, the relay will automatically generate configuration settings for every channel, based on the order code, in the same general manner that is used for CTs and VTs. Each channel is assigned a slot letter followed by the row number, 1 through 8 inclusive, which is used as the channel number. The relay generates an actual value for each available input channel.
Settings are automatically generated for every channel available in the specific relay as shown above for the first channel of a type 5F transducer module installed in slot H .
The function of the channel may be either "Enabled" or "Disabled". If "Disabled", no actual values are created for the channel. An alphanumeric "ID" is assigned to each channel; this ID will be included in the channel actual value, along with the programmed units associated with the parameter measured by the transducer, such as volts, \({ }^{\circ} \mathrm{C}\), megawatts, etc. This ID is also used to reference the channel as the input parameter to features designed to measure this type of parameter. The DCMA INPUT H1 RANGE setting specifies the mA DC range of the transducer connected to the input channel.
The dCmA input h1 min value and dcma input h1 max value settings are used to program the span of the transducer in primary units. For example, a temperature transducer might have a span from 0 to \(250^{\circ} \mathrm{C}\); in this case the DCMA INPUT H1 MIN VALUE value is " 0 " and the DCMA INPUT H1 MAX VALUE value is " 250 ". Another example would be a watts transducer with a span from -20 to +180 MW ; in this case the DCMA INPUT H1 MIN VALUE value would be " -20 " and the DCMA INPUT H1 MAX VALUE value " 180 ". Intermediate values between the min and max values are scaled linearly.

PATH: SETTINGS \(\Rightarrow \sqrt{ }\) TRANSDUCER I/O \(\Rightarrow \sqrt{ }\) RTD INPUTS \(\Rightarrow\) RTD INPUT H1(W8)

Hardware and software is provided to receive signals from external Resistance Temperature Detectors and convert these signals into a digital format for use as required. These channels are intended to be connected to any of the RTD types in common use. Specific hardware details are contained in Chapter 3.
RTD input channels are arranged in a manner similar to CT and VT channels. The user configures individual channels with the settings shown here.

The channels are arranged in sub-modules of two channels, numbered from 1 through 8 from top to bottom. On power-up, the relay will automatically generate configuration settings for every channel, based on the order code, in the same general manner that is used for CTs and VTs. Each channel is assigned a slot letter followed by the row number, 1 through 8 inclusive, which is used as the channel number. The relay generates an actual value for each available input channel.

Settings are automatically generated for every channel available in the specific relay as shown above for the first channel of a type 5C transducer module installed in slot H .

The function of the channel may be either "Enabled" or "Disabled". If "Disabled", there will not be an actual value created for the channel. An alphanumeric ID is assigned to the channel; this ID will be included in the channel actual values. It is also used to reference the channel as the input parameter to features designed to measure this type of parameter. Selecting the type of RTD connected to the channel configures the channel.

Actions based on RTD overtemperature, such as trips or alarms, are done in conjunction with the FlexElements \({ }^{\text {TM }}\) feature. In FlexElements \({ }^{\text {TM }}\), the operate level is scaled to a base of \(100^{\circ} \mathrm{C}\). For example, a trip level of \(150^{\circ} \mathrm{C}\) is achieved by setting the operate level at 1.5 pu . FlexElement \({ }^{\mathrm{TM}}\) operands are available to FlexLogic \({ }^{\mathrm{TM}}\) for further interlocking or to operate an output contact directly.
5.8.3 DCMA OUTPUTS

PATH: SETTINGS \(\Rightarrow \sqrt{ }\) TRANSDUCER I/O \(\Rightarrow \sqrt{ }\) DCMA OUTPUTS \(\Rightarrow\) DCMA OUTPUT H1(W8)

Hardware and software is provided to generate dcmA signals that allow interfacing with external equipment. Specific hardware details are contained in Chapter 3. The dcmA output channels are arranged in a manner similar to transducer input or CT and VT channels. The user configures individual channels with the settings shown below.

The channels are arranged in sub-modules of two channels, numbered 1 through 8 from top to bottom. On power-up, the relay automatically generates configuration settings for every channel, based on the order code, in the same manner used for CTs and VTs. Each channel is assigned a slot letter followed by the row number, 1 through 8 inclusive, which is used as the channel number.
Both the output range and a signal driving a given output are user-programmable via the following settings menu (an example for channel M5 is shown).

The relay checks the driving signal (\(x\) in equations below) for the minimum and maximum limits, and subsequently rescales so the limits defined as MIN VAL and MAX VAL match the output range of the hardware defined as RANGE. The following equation is applied:
\[
I_{\text {out }}=\left\{\begin{array}{l}
I_{\min } \quad \text { if } x<\operatorname{MIN} \text { VAL } \\
I_{\max } \\
\text { if } x>\operatorname{MAX} \text { VAL } \\
k(x-\text { MIN VAL })+I_{\min }
\end{array}\right. \text { otherwise }
\]
(EQ 5.21)
where: \(x\) is a driving signal specified by the SOURCE setting
\(I_{\text {min }}\) and \(I_{\text {max }}\) are defined by the RANGE setting
\(k\) is a scaling constant calculated as:
\[
\begin{equation*}
k=\frac{I_{\max }-I_{\min }}{\text { MAX VAL }- \text { MIN VAL }} \tag{EQ5.22}
\end{equation*}
\]

The feature is intentionally inhibited if the MAX VAL and MIN VAL settings are entered incorrectly, e.g. when MAX VAL - MIN \(\mathrm{VAL}<0.1 \mathrm{pu}\). The resulting characteristic is illustrated in the following figure.

Figure 5-99: DCMA OUTPUT CHARACTERISTIC
The dcmA output settings are described below.
- DCMA OUTPUT H1 SOURCE: This setting specifies an internal analog value to drive the analog output. Actual values (FlexAnalog parameters) such as power, current amplitude, voltage amplitude, power factor, etc. can be configured as sources driving dcmA outputs. Refer to Appendix A for a complete list of FlexAnalog parameters.
- DCMA OUTPUT H1 RANGE: This setting allows selection of the output range. Each dcmA channel may be set independently to work with different ranges. The three most commonly used output ranges are available.
- DCMA OUTPUT H1 MIN VAL: This setting allows setting the minimum limit for the signal that drives the output. This setting is used to control the mapping between an internal analog value and the output current (see the following examples). The setting is entered in per-unit values. The base units are defined in the same manner as the FlexElement \({ }^{\text {TM }}\) base units.
- DCMA OUTPUT H1 MAX VAL: This setting allows setting the maximum limit for the signal that drives the output. This setting is used to control the mapping between an internal analog value and the output current (see the following examples). The setting is entered in per-unit values. The base units are defined in the same manner as the FlexElement \({ }^{\text {TM }}\) base units.
Three application examples are described below.

\section*{EXAMPLE 1:}

A three phase active power on a 13.8 kV system measured via UR-series relay source 1 is to be monitored by the dcmA H 1 output of the range of -1 to 1 mA . The following settings are applied on the relay: CT ratio \(=1200: 5\), VT secondary 115 , VT connection is delta, and VT ratio \(=120\). The nominal current is 800 A primary and the nominal power factor is 0.90 . The power is to be monitored in both importing and exporting directions and allow for \(20 \%\) overload compared to the nominal.

The nominal three-phase power is:
\[
P=\sqrt{3} \times 13.8 \mathrm{kV} \times 0.8 \mathrm{kA} \times 0.9=17.21 \mathrm{MW}
\]
(EQ 5.23)
The three-phase power with \(20 \%\) overload margin is:
\[
\begin{equation*}
P_{\max }=1.2 \times 17.21 \mathrm{MW}=20.65 \mathrm{MW} \tag{EQ5.24}
\end{equation*}
\]

The base unit for power (refer to the FlexElements section in this chapter for additional details) is:
\[
\begin{equation*}
P_{B A S E}=115 \mathrm{~V} \times 120 \times 1.2 \mathrm{kA}=16.56 \mathrm{MW} \tag{EQ5.25}
\end{equation*}
\]

The minimum and maximum power values to be monitored (in pu) are:
\[
\begin{equation*}
\text { minimum power }=\frac{-20.65 \mathrm{MW}}{16.56 \mathrm{MW}}=-1.247 \mathrm{pu}, \quad \text { maximum power }=\frac{20.65 \mathrm{MW}}{16.56 \mathrm{MW}}=1.247 \mathrm{pu} \tag{EQ5.26}
\end{equation*}
\]

The following settings should be entered:
```

DCMA OUTPUT H1 SOURCE: "SRC 1 P"
DCMA OUTPUT H1 RANGE: "-1 to 1 mA"
DCMA OUTPUT H1 MIN VAL: "-1.247 pu"
DCMA OUTPUT H1 MIN VALL "1.247 pu"

```

With the above settings, the output will represent the power with the scale of 1 mA per 20.65 MW . The worst-case error for this application can be calculated by superimposing the following two sources of error:
- \(\pm 0.5 \%\) of the full scale for the analog output module, or \(\pm 0.005 \times(1-(-1)) \times 20.65 \mathrm{MW}= \pm 0.207 \mathrm{MW}\)
- \(\pm 1 \%\) of reading error for the active power at power factor of 0.9

For example at the reading of 20 MW , the worst-case error is \(0.01 \times 20 \mathrm{MW}+0.207 \mathrm{MW}=0.407 \mathrm{MW}\).

\section*{EXAMPLE 2:}

The phase A current (true RMS value) is to be monitored via the H 2 current output working with the range from 4 to 20 mA . The CT ratio is 5000:5 and the maximum load current is 4200 A . The current should be monitored from 0 A upwards, allowing for \(50 \%\) overload.
The phase current with the \(50 \%\) overload margin is:
\[
I_{\max }=1.5 \times 4.2 \mathrm{kA}=6.3 \mathrm{kA}
\]
(EQ 5.27)
The base unit for current (refer to the FlexElements section in this chapter for additional details) is:
\[
\begin{equation*}
I_{B A S E}=5 \mathrm{kA} \tag{EQ5.28}
\end{equation*}
\]

The minimum and maximum power values to be monitored (in pu) are:
\[
\begin{equation*}
\text { minimum current }=\frac{0 \mathrm{kA}}{5 \mathrm{kA}}=0 \mathrm{pu}, \quad \text { maximum current }=\frac{6.3 \mathrm{kA}}{5 \mathrm{kA}}=1.26 \mathrm{pu} \tag{EQ5.29}
\end{equation*}
\]

The following settings should be entered:
```

DCMA OUTPUT H2 SOURCE: "SRC }1\mathrm{ la RMS"
DCMA OUTPUT H2 RANGE: "4 to 20 mA"
DCMA OUTPUT H2 MIN VAL: "0.000 pu"
DCMA OUTPUT H2 MIN VAL: "1.260 pu"

```

The worst-case error for this application could be calculated by superimposing the following two sources of error:
- \(\pm 0.5 \%\) of the full scale for the analog output module, or \(\pm 0.005 \times(20-4) \times 6.3 \mathrm{kA}= \pm 0.504 \mathrm{kA}\)
- \(\pm 0.25 \%\) of reading or \(\pm 0.1 \%\) of rated (whichever is greater) for currents between 0.1 and 2.0 of nominal

For example, at the reading of 4.2 kA , the worst-case error is \(\max (0.0025 \times 4.2 \mathrm{kA}, 0.001 \times 5 \mathrm{kA})+0.504 \mathrm{kA}=0.515 \mathrm{kA}\).
EXAMPLE 3:
A positive-sequence voltage on a 400 kV system measured via Source 2 is to be monitored by the dcmA H 3 output with a range of 0 to 1 mA . The VT secondary setting is 66.4 V , the VT ratio setting is 6024 , and the VT connection setting is "Delta". The voltage should be monitored in the range from \(70 \%\) to \(110 \%\) of nominal.

\section*{5 SETTINGS}

The minimum and maximum positive-sequence voltages to be monitored are:
\[
\begin{equation*}
V_{\min }=0.7 \times \frac{400 \mathrm{kV}}{\sqrt{3}}=161.66 \mathrm{kV}, \quad V_{\max }=1.1 \times \frac{400 \mathrm{kV}}{\sqrt{3}}=254.03 \mathrm{kV} \tag{EQ5.30}
\end{equation*}
\]

The base unit for voltage (refer to the FlexElements section in this chapter for additional details) is:
\[
\begin{equation*}
V_{B A S E}=0.0664 \mathrm{kV} \times 6024=400 \mathrm{kV} \tag{EQ5.31}
\end{equation*}
\]

The minimum and maximum voltage values to be monitored (in pu) are:
\[
\begin{equation*}
\text { minimum voltage }=\frac{161.66 \mathrm{kV}}{400 \mathrm{kV}}=0.404 \mathrm{pu}, \quad \text { maximum voltage }=\frac{254.03 \mathrm{kV}}{400 \mathrm{kV}}=0.635 \mathrm{pu} \tag{EQ5.32}
\end{equation*}
\]

The following settings should be entered:
DCMA OUTPUT H3 SOURCE: "SRC 2 V_1 mag"
DCMA OUTPUT H3 RANGE: " 0 to 1 mA "
DCMA OUTPUT H3 MIN VAL: "0.404 pu"
DCMA OUTPUT H3 MIN VAL: "0.635 pu"
The limit settings differ from the expected 0.7 pu and 1.1 pu because the relay calculates the positive-sequence quantities scaled to the phase-to-ground voltages, even if the VTs are connected in "Delta" (refer to the Metering Conventions section in Chapter 6), while at the same time the VT nominal voltage is 1 pu for the settings. Consequently the settings required in this example differ from naturally expected by the factor of \(\sqrt{3}\).
The worst-case error for this application could be calculated by superimposing the following two sources of error:
- \(\pm 0.5 \%\) of the full scale for the analog output module, or \(\pm 0.005 \times(1-0) \times 254.03 \mathrm{kV}= \pm 1.27 \mathrm{kV}\)
- \(\pm 0.5 \%\) of reading

For example, under nominal conditions, the positive-sequence reads 230.94 kV and the worst-case error is \(0.005 \times 230.94 \mathrm{kV}+1.27 \mathrm{kV}=2.42 \mathrm{kV}\).

PATH: SETTINGS \(\Rightarrow \Omega\) TESTING \(\Rightarrow\) TEST MODE
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{ll}
\(\square \square\) & SETTINGS \\
\(\square\) & TESTING
\end{tabular} & & (1) & TEST MODE
FUNCTION: Disabled & Range: Disabled, Enabled \\
\hline & MESSAGE & (4) & TEST MODE INITIATE:
On & Range: FlexLogic \({ }^{\text {TM }}\) operand \\
\hline
\end{tabular}

The relay provides test settings to verify that functionality using simulated conditions for contact inputs and outputs. The Test Mode is indicated on the relay faceplate by a flashing Test Mode LED indicator.
To initiate the Test mode, the TEST MODE FUNCTION setting must be "Enabled" and the TEST MODE INITIATE setting must be set to Logic 1. In particular:
- To initiate Test Mode through relay settings, set test mode initiate to "On". The Test Mode starts when the test mode FUNCTION setting is changed from "Disabled" to "Enabled".
- To initiate Test Mode through a user-programmable condition, such as FlexLogic \({ }^{\text {TM }}\) operand (pushbutton, digital input, communication-based input, or a combination of these), set TEST MODE FUNCTION to "Enabled" and set TEST MODE INITIATE to the desired operand. The Test Mode starts when the selected operand assumes a Logic 1 state.
When in Test Mode, the F60 remains fully operational, allowing for various testing procedures. In particular, the protection and control elements, FlexLogic \({ }^{\text {TM }}\), and communication-based inputs and outputs function normally.
The only difference between the normal operation and the Test Mode is the behavior of the input and output contacts. The former can be forced to report as open or closed or remain fully operational; the latter can be forced to open, close, freeze, or remain fully operational. The response of the digital input and output contacts to the Test Mode is programmed individually for each input and output using the Force Contact Inputs and Force Contact Outputs test functions described in the following sections.
5.9.2 FORCE CONTACT INPUTS

PATH: SETTINGS \(\Rightarrow \sqrt{ }\) TESTING \(\Rightarrow \sqrt{ }\) FORCE CONTACT INPUTS

The relay digital inputs (contact inputs) could be pre-programmed to respond to the Test Mode in the following ways:
- If set to "Disabled", the input remains fully operational. It is controlled by the voltage across its input terminals and can be turned on and off by external circuitry. This value should be selected if a given input must be operational during the test. This includes, for example, an input initiating the test, or being a part of a user pre-programmed test sequence.
- If set to "Open", the input is forced to report as opened (Logic 0) for the entire duration of the Test Mode regardless of the voltage across the input terminals.
- If set to "Closed", the input is forced to report as closed (Logic 1) for the entire duration of the Test Mode regardless of the voltage across the input terminals.

The Force Contact Inputs feature provides a method of performing checks on the function of all contact inputs. Once enabled, the relay is placed into Test Mode, allowing this feature to override the normal function of contact inputs. The Test Mode LED will be On, indicating that the relay is in Test Mode. The state of each contact input may be programmed as "Disabled", "Open", or "Closed". All contact input operations return to normal when all settings for this feature are disabled.

PATH: SETTINGS \(\Rightarrow \sqrt{ }\) TESTING \(\Rightarrow \sqrt{ }\) FORCE CONTACT OUTPUTS

The relay contact outputs can be pre-programmed to respond to the Test Mode.
If set to "Disabled", the contact output remains fully operational. If operates when its control operand is Logic 1 and will resets when its control operand is Logic 0 . If set to "Energize", the output will close and remain closed for the entire duration of the Test Mode, regardless of the status of the operand configured to control the output contact. If set to "De-energize", the output will open and remain opened for the entire duration of the Test Mode regardless of the status of the operand configured to control the output contact. If set to "Freeze", the output retains its position from before entering the Test Mode, regardless of the status of the operand configured to control the output contact.

These settings are applied two ways. First, external circuits may be tested by energizing or de-energizing contacts. Second, by controlling the output contact state, relay logic may be tested and undesirable effects on external circuits avoided.

\section*{Example 1: Initiating a Test from User-Programmable Pushbutton 1}

The Test Mode should be initiated from User-Programmable Pushbutton 1. The pushbutton will be programmed as "Latched" (pushbutton pressed to initiate the test, and pressed again to terminate the test). During the test, Digital Input 1 should remain operational, Digital Inputs 2 and 3 should open, and Digital Input 4 should close. Also, Contact Output 1 should freeze, Contact Output 2 should open, Contact Output 3 should close, and Contact Output 4 should remain fully operational. The required settings are shown below.
To enable User-Programmable Pushbutton 1 to initiate the Test mode, make the following changes in the SETTINGS \(\Rightarrow \sqrt{ }\) TESTING \(\Rightarrow\) TEST MODE menu:

TEST MODE FUNCTION: "Enabled" and TEST MODE INITIATE: "PUSHBUTTON 1 ON"
Make the following changes to configure the Contact I/Os. In the SETTINGS \(\Rightarrow \sqrt{ }\) TESTING \(\Rightarrow \sqrt{ }\) FORCE CONTACT INPUTS and FORCE CONTACT INPUTS menus, set:

FORCE Cont Ip 1: "Disabled", fORCE Cont Ip 2: "Open", FORCE Cont Ip 3: "Open", and FORCE Cont Ip 4: "Closed"
FORCE Cont Op 1: "Freeze", FORCE Cont Op 2: "De-energized", FORCE Cont Op 3: "Open", and FORCE Cont Op 4: "Disabled"

\section*{Example 2: Initiating a Test from User-Programmable Pushbutton 1 or through Remote Input 1}

The Test should be initiated locally from User-Programmable Pushbutton 1 or remotely through Remote Input 1. Both the pushbutton and the remote input will be programmed as "Latched". The required settings are shown below.

Write the following FlexLogic \({ }^{\text {TM }}\) equation (enerVista UR Setup example shown):
\begin{tabular}{|c|c|c|c|}
\hline Eipmocacinimy & TMPE & shatax & - \\
\hline View Onythr. & Yiper & Mer & \\
\hline Fipibatic Filr. & Rametelinpts On & Henate LP I & \\
\hline Fmbiyse Ertrs 2 & Puturtion Eleniert & PUSNDUTTOH 1 ON & \\
\hline & CR & 2 linge & \\
\hline Flent ingitintry 4 & Were Vifual Ouputation! & * Vit Opt (VOT) & \\
\hline Finitagr. Titn S & Endet Lif & & * \\
\hline \multicolumn{3}{|l|}{De0wenfurtumirsurt Muloge} & \\
\hline
\end{tabular}

Set the User Programmable Pushbutton as latching by changing SETTINGS \(\Rightarrow\) PRODUCT SETUP \(\Rightarrow \sqrt{ } \Rightarrow\) USER-PROGRAMMABLE PUSHBUTTONS \(\Rightarrow\) USER PUSHBUTTON \(1 \Rightarrow\) PUSHBUTTON 1 FUNCTION to "Latched". To enable either Pushbutton 1 or Remote Input 1 to initiate the Test mode, make the following changes in the SETTINGS \(\Rightarrow \sqrt[r]{ }\) TESTING \(\Rightarrow\) TEST MODE menu:

TEST MODE FUNCTION: "Enabled" and TEST MODE INITIATE: "VO1"

See page 6-3.

See page 6-3.

See page 6-3.

See page 6-4.

See page 6-4.

See page 6-4.

See page 6-4.

See page 6-5.

See page 6-5.

See page 6-5.

See page 6-5.

See page 6-6.

See page 6-6.

See page 6-6.

See page 6-7.

See page 6-7.

See page 6-11.

See page 6-11.

See page 6-15.

See page 6-16.

See page 6-16.

\section*{\(\underbrace{\text { E }}_{\text {NOTE }}\) \\ For status reporting, 'On’ represents Logic 1 and 'Off’ represents Logic 0.}
6.2.1 CONTACT INPUTS

PATH: ACTUAL VALUES \(\Rightarrow\) STATUS \(\Rightarrow\) CONTACT INPUTS

The present status of the contact inputs is shown here. The first line of a message display indicates the ID of the contact input. For example, 'Cont Ip 1 ' refers to the contact input in terms of the default name-array index. The second line of the display indicates the logic state of the contact input.

PATH: ACTUAL VALUES \(\Rightarrow\) STATUS \(\Rightarrow \sqrt{ }\) VIRTUAL INPUTS

The present status of the 32 virtual inputs is shown here. The first line of a message display indicates the ID of the virtual input. For example, 'Virt lp 1' refers to the virtual input in terms of the default name-array index. The second line of the display indicates the logic state of the virtual input.

PATH: ACTUAL VALUES \(\Rightarrow\) STATUS \(\Rightarrow \sqrt{ } \sqrt{ }\) REMOTE INPUTS

The present state of the 32 remote inputs is shown here.
The state displayed will be that of the remote point unless the remote device has been established to be "Offline" in which case the value shown is the programmed default state for the remote input.

PATH: ACTUAL VALUES \(\Rightarrow\) STATUS \(\Rightarrow \sqrt{ }\) CONTACT OUTPUTS

The present state of the contact outputs is shown here. The first line of a message display indicates the ID of the contact output. For example, 'Cont Op 1' refers to the contact output in terms of the default name-array index. The second line of the display indicates the logic state of the contact output.

For Form-A outputs, the state of the voltage(V) and/or current(I) detectors will show as: Off, VOff, IOff, On, VOn, and/or IOn. For Form-C outputs, the state will show as Off or On.
6.2.5 VIRTUAL OUTPUTS

PATH: ACTUAL VALUES \(\Rightarrow\) STATUS \(\Rightarrow \Downarrow\) VIRTUAL OUTPUTS

The present state of up to 64 virtual outputs is shown here. The first line of a message display indicates the ID of the virtual output. For example, 'Virt Op 1' refers to the virtual output in terms of the default name-array index. The second line of the display indicates the logic state of the virtual output, as calculated by the FlexLogic \({ }^{\text {TM }}\) equation for that output.
6.2.6 AUTORECLOSE

PATH: ACTUAL VALUES \(\Rightarrow\) STATUS \(\Rightarrow \sqrt{ } \Rightarrow\) AUTORECLOSE \(\Rightarrow\) AUTORECLOSE 1
\begin{tabular}{|c|c|c|c|}
\hline \(\square\) AUTORECLOSE 1 & (1) & \begin{tabular}{l}
AUTORECLOSE 1 \\
SHOT COUNT:
\end{tabular} & Range: 0, 1, 2, 3, 4 \\
\hline
\end{tabular}

The automatic reclosure shot count is shown here.
6.2.7 REMOTE DEVICES
a) STATUS

PATH: ACTUAL VALUES \(\Rightarrow\) STATUS \(\Rightarrow \sqrt{ } \sqrt{ }\) REMOTE DEVICES STATUS

MESSAGE

Range: Online, Offline

The present state of up to 16 programmed Remote Devices is shown here. The ALL REMOTE DEVICES ONLINE message indicates whether or not all programmed Remote Devices are online. If the corresponding state is "No", then at least one required Remote Device is not online.

\section*{b) STATISTICS}

PATH: ACTUAL VALUES \(\Rightarrow\) STATUS \(\Rightarrow \sqrt{ }\) REMOTE DEVICES STATISTICS \(\Rightarrow\) REMOTE DEVICE 1(16)

Statistical data (2 types) for up to 16 programmed Remote Devices is shown here.
The StNum number is obtained from the indicated Remote Device and is incremented whenever a change of state of at least one DNA or UserSt bit occurs. The SqNum number is obtained from the indicated Remote Device and is incremented whenever a GOOSE message is sent. This number will rollover to zero when a count of \(4,294,967,295\) is incremented.

\subsection*{6.2.8 DIGITAL COUNTERS}

PATH: ACTUAL VALUES \(\Rightarrow\) DIGITAL COUNTERS \(\Rightarrow \Omega\) DIGITAL COUNTERS \(\Rightarrow\) DIGITAL COUNTERS Counter 1(8)

The present status of the 8 digital counters is shown here. The status of each counter, with the user-defined counter name, includes the accumulated and frozen counts (the count units label will also appear). Also included, is the date/time stamp for the frozen count. The Counter n micros value refers to the microsecond portion of the time stamp.
6.2.9 SELECTOR SWITCHES

PATH: ACTUAL VALUES \(\Rightarrow\) STATUS \(\Rightarrow \sqrt{ }\) SELECTOR SWITCHES

The display shows both the current position and the full range. The current position only (an integer from 0 through 7) is the actual value.
6.2.10 FLEX STATES

PATH: ACTUAL VALUES \(\Rightarrow\) STATUS \(\Rightarrow \Downarrow\) FLEX STATES

There are 256 FlexState bits available. The second line value indicates the state of the given FlexState bit.

PATH: ACTUAL VALUES \(\Rightarrow\) STATUS \(\Rightarrow \sqrt{ }\) ETHERNET

6.2.12 HI-Z STATUS

PATH: ACTUAL VALUES \(\Rightarrow\) STATUS \(\Rightarrow \sqrt{ }\) HIZ STATUS
\begin{tabular}{|c|c|c|c|c|}
\hline \(\square\) HIZ STATUS & & (1) & HIZ STATUS: NORMAL & \multirow[t]{2}{*}{Range: Normal, Coordination Timeout, Armed, Arcing, Down Conductor} \\
\hline & MESSAGE & (2) & ARC CONFIDENCE A:100 B:100 C:100 N:100 \% & \\
\hline
\end{tabular}

PATH: ACTUAL VALUES \(\Rightarrow\) STATUS \(\Rightarrow \sqrt{ }\) DIRECT INPUTS

The average msg return time is the time taken for Direct Output messages to return to the sender in a Direct I/O ring configuration (this value is not applicable for non-ring configurations). This is a rolling average calculated for the last 10 messages. There are two return times for dual-channel communications modules.
The UNRETURNED MSG COUNT values (one per communications channel) count the Direct Output messages that do not make the trip around the communications ring. The CRC FAIL COUNT values (one per communications channel) count the Direct Output messages that have been received but fail the CRC check. High values for either of these counts may indicate on a problem with wiring, the communication channel, or the relay(s). The UNRETURNED MSG COUNT and CRC FAIL COUNT values can be cleared using the CLEAR DIRECT I/O COUNTERS command.
The DIRECT INPUT \(\mathbf{x}\) values represent the state of the \(x\)-th Direct Input.

PATH: ACTUAL VALUES \(\Rightarrow\) STATUS \(\Rightarrow \sqrt{ } \Rightarrow\) DIRECT DEVICES STATUS
\begin{tabular}{|l|l|l|}
\hline\(\square\) DIRECT DEVICES & \begin{tabular}{l}
DIRECT DEVICE 1 \\
STATUS
\end{tabular} \\
& MESSAGE Offline
\end{tabular}

These actual values represent the state of Direct Devices 1 through 8 .
a) FAST EXCHANGE

PATH: ACTUAL VALUES \(\Rightarrow\) STATUS \(\Rightarrow \sqrt{ } \Rightarrow\) EGD PROTOCOL STATUS \(\Rightarrow\) PRODUCER STATUS \(\Rightarrow\) FAST EXCHANGE 1

These values provide information that may be useful for debugging an EGD network. The EGD signature and packet size for the fast EGD exchange is displayed.
b) SLOW EXCHANGE

PATH: ACTUAL VALUES \(\Rightarrow\) STATUS \(\Rightarrow \sqrt{ }\) EGD PROTOCOL STATUS \(\Rightarrow\) PRODUCER STATUS \(\Rightarrow \sqrt{ }\) SLOW EXCHANGE 1(2)

These values provide information that may be useful for debugging an EGD network. The EGD signature and packet size for the slow EGD exchanges are displayed.

\section*{a) UR CONVENTION FOR MEASURING POWER AND ENERGY}

The following figure illustrates the conventions established for use in UR-series relays.

\section*{PER IEEE CONVENTIONS}

Figure 6-1: FLOW DIRECTION OF SIGNED VALUES FOR WATTS AND VARS

\section*{b) UR CONVENTION FOR MEASURING PHASE ANGLES}

All phasors calculated by UR-series relays and used for protection, control and metering functions are rotating phasors that maintain the correct phase angle relationships with each other at all times.

For display and oscillography purposes, all phasor angles in a given relay are referred to an AC input channel pre-selected by the SETTINGS \(\Rightarrow \sqrt{ }\) SYSTEM SETUP \(\Rightarrow \sqrt{ }\) POWER SYSTEM \(\Rightarrow \sqrt{ }\) FREQUENCY AND PHASE REFERENCE setting. This setting defines a particular Source to be used as the reference.

The relay will first determine if any "Phase VT" bank is indicated in the Source. If it is, voltage channel VA of that bank is used as the angle reference. Otherwise, the relay determines if any "Aux VT" bank is indicated; if it is, the auxiliary voltage channel of that bank is used as the angle reference. If neither of the two conditions is satisfied, then two more steps of this hierarchical procedure to determine the reference signal include "Phase CT" bank and "Ground CT" bank.

If the \(A C\) signal pre-selected by the relay upon configuration is not measurable, the phase angles are not referenced. The phase angles are assigned as positive in the leading direction, and are presented as negative in the lagging direction, to more closely align with power system metering conventions. This is illustrated below.

827845A1.CDR
Figure 6-2: UR PHASE ANGLE MEASUREMENT CONVENTION

\section*{c) UR CONVENTION FOR SYMMETRICAL COMPONENTS}

The UR-series of relays calculate voltage symmetrical components for the power system phase A line-to-neutral voltage, and symmetrical components of the currents for the power system phase A current. Owing to the above definition, phase angle relations between the symmetrical currents and voltages stay the same irrespective of the connection of instrument transformers. This is important for setting directional protection elements that use symmetrical voltages.

For display and oscillography purposes the phase angles of symmetrical components are referenced to a common reference as described in the previous sub-section.

\section*{WYE-CONNECTED INSTRUMENT TRANSFORMERS:}
- ABC phase rotation:
\[
\begin{aligned}
& V_{-} 0=\frac{1}{3}\left(V_{A G}+V_{B G}+V_{C G}\right) \\
& V_{-} 1=\frac{1}{3}\left(V_{A G}+a V_{B G}+a^{2} V_{C G}\right) \\
& V_{-} 2=\frac{1}{3}\left(V_{A G}+a^{2} V_{B G}+a V_{C G}\right)
\end{aligned}
\]
- ACB phase rotation:
\[
\begin{aligned}
& V_{-} 0=\frac{1}{3}\left(V_{A G}+V_{B G}+V_{C G}\right) \\
& V_{-} 1=\frac{1}{3}\left(V_{A G}+a^{2} V_{B G}+a V_{C G}\right) \\
& V_{-} 2=\frac{1}{3}\left(V_{A G}+a V_{B G}+a^{2} V_{C G}\right)
\end{aligned}
\]

The above equations apply to currents as well.

\section*{DELTA-CONNECTED INSTRUMENT TRANSFORMERS:}
- ABC phase rotation:
\[
\begin{aligned}
& \mathrm{V}_{-} 0=\mathrm{N} / \mathrm{A} \\
& \mathrm{~V}_{-} 1=\frac{1 \angle-30^{\circ}}{3 \sqrt{3}}\left(V_{A B}+a V_{B C}+a^{2} V_{C A}\right) \\
& V_{-} 2=\frac{1 \angle 30^{\circ}}{3 \sqrt{3}}\left(V_{A B}+a^{2} V_{B C}+a V_{C A}\right)
\end{aligned}
\]
- ACB phase rotation:
\[
\begin{aligned}
& \mathrm{V}_{-} 0=\mathrm{N} / \mathrm{A} \\
& \mathrm{~V}_{-} 1=\frac{1 \angle 30^{\circ}}{3 \sqrt{3}}\left(V_{A B}+a^{2} V_{B C}+a V_{C A}\right) \\
& \mathrm{V}_{-} 2=\frac{1 \angle-30^{\circ}}{3 \sqrt{3}}\left(V_{A B}+a V_{B C}+a^{2} V_{C A}\right)
\end{aligned}
\]

The zero-sequence voltage is not measurable under the Delta connection of instrument transformers and is defaulted to zero. The table below shows an example of symmetrical components calculations for the ABC phase rotation.
Table 6-1: SYMMETRICAL COMPONENTS CALCULATION EXAMPLE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{SYSTEM VOLTAGES, SEC. \(\mathrm{V}^{*}\)} & \multirow[t]{2}{*}{VT CONN.} & \multicolumn{3}{|l|}{RELAY INPUTS, SEC. V} & \multicolumn{3}{|l|}{SYMM. COMP, SEC. V} \\
\hline \(\mathrm{V}_{\text {AG }}\) & \(\mathrm{V}_{\text {BG }}\) & \(\mathrm{V}_{\text {CG }}\) & \(\mathrm{V}_{\mathrm{AB}}\) & \(\mathrm{V}_{\mathrm{BC}}\) & \(\mathrm{V}_{\text {CA }}\) & & F5AC & F6AC & F7AC & \(\mathrm{V}_{0}\) & \(\mathrm{V}_{1}\) & \(\mathrm{V}_{2}\) \\
\hline \[
\begin{aligned}
& 13.9 \\
& \angle 0^{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& \hline 76.2 \\
& \angle-125^{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& \hline 79.7 \\
& \angle-250^{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& \hline 84.9 \\
& \angle-313^{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& 138.3 \\
& \angle-97^{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& \hline 85.4 \\
& \angle-241^{\circ}
\end{aligned}
\] & WYE & \[
\begin{aligned}
& 13.9 \\
& \angle 0^{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& \hline \hline 76.2 \\
& \angle-125^{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& \hline \hline 79.7 \\
& \angle-250^{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& \hline \hline 19.5 \\
& \angle-192^{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& \hline 56.5 \\
& \angle-7^{\circ}
\end{aligned}
\] & \[
\begin{gathered}
\hline \hline \angle-187^{\circ}
\end{gathered}
\] \\
\hline \multicolumn{3}{|l|}{UNKNOWN (only \(V_{1}\) and \(V_{2}\) can be determined)} & \[
\begin{aligned}
& 84.9 \\
& \angle 0^{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& 138.3 \\
& \angle-144^{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& 85.4 \\
& \angle-288^{\circ}
\end{aligned}
\] & DELTA & \[
\begin{aligned}
& 84.9 \\
& \angle 0^{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& 138.3 \\
& \angle-144^{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& 85.4 \\
& \angle-288^{\circ}
\end{aligned}
\] & N/A & \[
\begin{aligned}
& 56.5 \\
& \angle-54^{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& \hline 23.3 \\
& \angle-234^{\circ}
\end{aligned}
\] \\
\hline
\end{tabular}
* The power system voltages are phase-referenced - for simplicity - to VAG and VAB, respectively. This, however, is a relative matter. It is important to remember that the F60 displays are always referenced as specified under SETTINGS \(\Rightarrow \sqrt{3}\) SYSTEM SETUP \(\Rightarrow \sqrt{ }\) POWER SYSTEM \(\Rightarrow\) 』 FREQUENCY AND PHASE REFERENCE.

The example above is illustrated in the following figure.

Figure 6-3: MEASUREMENT CONVENTION FOR SYMMETRICAL COMPONENTS

PATH: ACTUAL VALUES \(\Rightarrow \sqrt{ }\) METERING \(\Rightarrow\) SOURCE SRC \(1 \Rightarrow\)
Because energy values are accumulated, these values should be recorded and then reset immediately prior to changing CT or VT characteristics.

\begin{tabular}{|c|c|}
\hline MESSAGE 亩 & \[
\begin{array}{cc}
\hline \text { SRC 1 } & \text { DMD W: } \\
0.000 & \mathrm{~W}
\end{array}
\] \\
\hline MESSAGE 亩 & \[
\begin{array}{|ll}
\hline \text { SRC } 1 & \text { DMD W MAX: } \\
0.000 & \text { W }
\end{array}
\] \\
\hline MESSAGE 亩 & \[
\begin{array}{|lrl}
\hline \text { SRC 1 DMD W DATE: } \\
2001 / 07 / 31 & 16: 30: 07
\end{array}
\] \\
\hline MESSAGE 亩 & \[
\begin{aligned}
& \text { SRC } 1 \text { DMD VAR: } \\
& 0.000 \text { var }
\end{aligned}
\] \\
\hline MESSAGE 亩 & \[
\begin{aligned}
& \text { SRC } 1 \text { DMD VAR MAX: } \\
& 0.000 \text { var }
\end{aligned}
\] \\
\hline
\end{tabular}

MESSAGE

MESSAGE

MESSAGE

MESSAGE

（1）

－
\begin{tabular}{|l|}
\hline\(\square\) \\
\hline CURRENT HARMONICS \\
SRC 1
\end{tabular}

MESSAGE
\begin{tabular}{|lll|}
\hline SRC & 1 & THD Va： 0.0 \\
\(\mathrm{Vb}:\) & 0.0 & \(\mathrm{Vc}:\) \\
\hline
\end{tabular}

MESSAGE
MESSAGE

MESSAGE

\begin{tabular}{|lll|}
\hline SRC & 1 & 2ND Va： \\
\(\mathrm{Vb}:\) & 0.0 & \(\mathrm{Vc}:\) \\
\hline
\end{tabular}

SRC 1 3RD Va： 0.0
\(\mathrm{Vb}: 0.0 \mathrm{Vc}: 0.0 \%\)

Two identical Source menus are available．The＂SRC 1＂text will be replaced by whatever name was programmed by the user for the associated source（see SETTINGS \(\Rightarrow \sqrt{ }\) SYSTEM SETUP \(\Rightarrow \sqrt{ }\) SIGNAL SOURCES）．

The relay measures (absolute values only) SOURCE DEMAND on each phase and average three phase demand for real, reactive, and apparent power. These parameters can be monitored to reduce supplier demand penalties or for statistical metering purposes. Demand calculations are based on the measurement type selected in the SETTINGS \(\Rightarrow\) PRODUCT SETUP \(\Rightarrow \sqrt{ } \quad\) DEMAND menu. For each quantity, the relay displays the demand over the most recent demand time interval, the maximum demand since the last maximum demand reset, and the time and date stamp of this maximum demand value. Maximum demand quantities can be reset to zero with the CLEAR RECORDS \(\Rightarrow \sqrt{ }\) CLEAR DEMAND RECORDS command.
SOURCE FREQUENCY is measured via software-implemented zero-crossing detection of an AC signal. The signal is either a Clarke transformation of three-phase voltages or currents, auxiliary voltage, or ground current as per source configuration (see the SYSTEM SETUP \(\Rightarrow \sqrt{ }\) POWER SYSTEM settings). The signal used for frequency estimation is low-pass filtered. The final frequency measurement is passed through a validation filter that eliminates false readings due to signal distortions and transients.

CURRENT HARMONICS are measured for each Source for the THD and 2nd to 25th harmonics per phase.
The technique used to extract the 2nd to 25th voltage harmonics is as follows. Each harmonic is computer per-phase, where:
```

N=64 is the number of samples per cycle
\omega
k=1,2,···,N-1 is the index over one cycle for the FFT
m}\mathrm{ is the last sample number for the sliding window
h=1,2,···,}25\mathrm{ is the harmonic number

```

The short-time Fourier transform is applied to the unfiltered signal:
\[
\begin{align*}
& F_{\text {real }}(m, h)=\frac{2}{N} \sum_{k}\left(f(m-k) \cdot \cos \left(h \cdot \omega_{0} \cdot t(k)\right)\right) \\
& F_{\text {imag }}(m, h)=\frac{2}{N} \sum_{k}\left(f(m-k) \cdot \sin \left(h \cdot \omega_{0} \cdot t(k)\right)\right) \tag{EQ6.1}\\
& F_{\text {ampl }}(m, h)=\sqrt{F_{\text {real }}(m, h)^{2}+F_{\text {imag }}(m, h)^{2}}
\end{align*}
\]

The harmonics are a percentage of the fundamental signal obtained by multiplying the amplitudes obtained above 100\%. The total harmonic distortion (THD) is the ratio of the total harmonic content to the fundamental:
\[
\begin{equation*}
\mathrm{THD}=\sqrt{F_{2}^{2}+F_{3}^{2}+\ldots+F_{25}^{2}} \tag{EQ6.2}
\end{equation*}
\]

PATH: ACTUAL VALUES \(\Rightarrow \sqrt{ }\) 红 METERING \(\Rightarrow\) 约 SENSITIVE DIRECTIONAL POWER

The effective operating quantities of the sensitive directional power elements are displayed here. The display may be useful to calibrate the feature by compensating the angular errors of the CTs and VTs with the use of the rCA and calibration settings.

PATH: ACTUAL VALUES \(\Rightarrow \sqrt{ } \Rightarrow\) METERING \(\Rightarrow \sqrt{ }\) SYNCHROCHECK \(\Rightarrow\) SYNCHROCHECK 1(2)

The Actual Values menu for Synchrocheck 2 is identical to that of Synchrocheck 1. If a synchrocheck function setting is "Disabled", the corresponding actual values menu item will not be displayed.

PATH: ACTUAL VALUES \(\Rightarrow \sqrt{ }\) METERING \(\Rightarrow \sqrt{ }\) TRACKING FREQUENCY

The tracking frequency is displayed here. The frequency is tracked based on configuration of the reference source. The TRACKING FREQUENCY is based upon positive sequence current phasors from all line terminals and is synchronously adjusted at all terminals. If currents are below 0.125 pu , then the NOMINAL FREQUENCY is used.

PATH: ACTUAL VALUES \(\Rightarrow \sqrt{ }\) METERING \(\Rightarrow \sqrt{ }\) FREQUENCY RATE OF CHANGE

The metered frequency rate of change for the four elements is shown here.

PATH: ACTUAL VALUES \(\Rightarrow \sqrt{ }\) METERING \(\Rightarrow \sqrt{ }\) FLEXELEMENTS \(\Rightarrow\) FLEXELEMENT 1 (8)

\begin{tabular}{l}
FLEXELEMENT 1 \\
OpSig: 0.000 pu \\
\hline
\end{tabular}

The operating signals for the FlexElements \({ }^{\mathrm{TM}}\) are displayed in pu values using the following definitions of the base units.

Table 6-2: FLEXELEMENT \({ }^{\text {TM }}\) BASE UNITS
\begin{tabular}{|c|c|}
\hline BREAKER ARCING AMPS (Brk X Arc Amp A, B, and C) & BASE \(=2000 \mathrm{kA}{ }^{2} \times\) cycle \\
\hline dcmA & BASE = maximum value of the DCMA INPUT MAX setting for the two transducers configured under the +IN and -IN inputs. \\
\hline FREQUENCY & \(\mathrm{f}_{\text {BASE }}=1 \mathrm{~Hz}\) \\
\hline FREQUENCY RATE OF CHANGE & \(d f / d t_{\text {BASE }}=1 \mathrm{~Hz} / \mathrm{s}\) \\
\hline PHASE ANGLE & \(\varphi_{\text {BASE }}=360\) degrees (see the UR angle referencing convention) \\
\hline POWER FACTOR & \(\mathrm{PF}_{\text {BASE }}=1.00\) \\
\hline RTDs & BASE \(=100^{\circ} \mathrm{C}\) \\
\hline SENSITIVE DIR POWER (Sns Dir Power) & \(\mathrm{P}_{\text {BASE }}=\) maximum value of \(3 \times \mathrm{V}_{\text {BASE }} \times \mathrm{I}_{\text {BASE }}\) for the +IN and -IN inputs of the sources configured for the sensitive power directional element(s). \\
\hline SOURCE CURRENT & \(\mathrm{I}_{\text {BASE }}=\) maximum nominal primary RMS value of the +IN and -IN inputs \\
\hline \begin{tabular}{l}
SOURCE ENERGY \\
(SRC X Positive and Negative Watthours); (SRC X Positive and Negative Varhours)
\end{tabular} & \(\mathrm{E}_{\text {BASE }}=10000 \mathrm{MWh}\) or MVAh, respectively \\
\hline SOURCE POWER & \(\mathrm{P}_{\text {BASE }}=\) maximum value of \(\mathrm{V}_{\text {BASE }} \times \mathrm{I}_{\text {BASE }}\) for the +IN and -IN inputs \\
\hline SOURCE THD \& HARMONICS & BASE \(=100 \%\) of fundamental frequency component \\
\hline SOURCE VOLTAGE & \(\mathrm{V}_{\text {BASE }}=\) maximum nominal primary RMS value of the +IN and -IN inputs \\
\hline SYNCHROCHECK (Max Delta Volts) & \(\mathrm{V}_{\text {BASE }}=\) maximum primary RMS value of all the sources related to the +IN and -IN inputs \\
\hline
\end{tabular}

PATH: ACTUAL VALUES \(\Rightarrow \sqrt{ }\) METERING \(\Rightarrow \sqrt{ }\) TRANSDUCER I/O DCMA INPUTS \(\Rightarrow\) DCMA INPUT xx
\begin{tabular}{|c|c|c|}
\hline \(\square\) DCMA INPUT \(\square x\) & (1) & \[
\begin{aligned}
& \text { DCMA INPUT } x \times \\
& 0.000 \mathrm{~mA}
\end{aligned}
\] \\
\hline
\end{tabular}

Actual values for each dcmA input channel that is enabled are displayed with the top line as the programmed Channel ID and the bottom line as the value followed by the programmed units.

PATH: ACTUAL VALUES \(\Rightarrow \sqrt{ }\) METERING \(\Rightarrow \sqrt{ }\) TRANSDUCER I/O RTD INPUTS \(\Rightarrow\) RTD INPUT \(\mathbf{x x}\)

Actual values for each RTD input channel that is enabled are displayed with the top line as the programmed Channel ID and the bottom line as the value.

PATH: ACTUAL VALUES \(\Rightarrow \sqrt{ }\) RECORDS \(\Rightarrow\) FAULT REPORTS \(\Rightarrow\) FAULT REPORT 1(15)

The latest 15 fault reports can be stored. The most recent fault location calculation (when applicable) is displayed in this menu, along with the date and time stamp of the event which triggered the calculation. See the SETTINGS \(\Rightarrow\) PRODUCT SETUP \(\Rightarrow \sqrt{ }\) FAULT REPORTS \(\Rightarrow\) FAULT REPORT 1 menu for assigning the source and trigger for fault calculations. Refer to the COMMANDS \(\Rightarrow \sqrt{ }\) CLEAR RECORDS menu for manual clearing of the fault reports and to the SETTINGS \(\Rightarrow\) PRODUCT SETUP \(\Rightarrow \sqrt{ }\) CLEAR RELAY RECORDS menu for automated clearing of the fault reports.

Fault type determination is required for calculation of fault location - the algorithm uses the angle between the negative and positive sequence components of the relay currents. To improve accuracy and speed of operation, the fault components of the currents are used, i.e., the pre-fault phasors are subtracted from the measured current phasors. In addition to the angle relationships, certain extra checks are performed on magnitudes of the negative and zero-sequence currents.

The single-ended fault location method assumes that the fault components of the currents supplied from the local (A) and remote (B) systems are in phase. The figure below shows an equivalent system for fault location.

Figure 6-4: EQUIVALENT SYSTEM FOR FAULT LOCATION
The following equations hold true for this equivalent system.
\[
\begin{equation*}
V_{A}=m \cdot Z \cdot I_{A}+R_{F} \cdot\left(I_{A}+I_{B}\right) \tag{EQ6.3}
\end{equation*}
\]
where: \(\quad m=\) sought pu distance to fault, \(Z=\) positive sequence impedance of the line.
The currents from the local and remote systems can be parted between their fault (F) and pre-fault load (pre) components:
\[
\begin{equation*}
I_{A}=I_{A F}+I_{A p r e} \tag{EQ6.4}
\end{equation*}
\]
and neglecting shunt parameters of the line:
\[
\begin{equation*}
I_{B}=I_{B F}-I_{\text {Apre }} \tag{EQ6.5}
\end{equation*}
\]

Inserting the \(I_{A}\) and \(I_{B}\) equations into the \(V_{A}\) equation and solving for the fault resistance yields:
\[
\begin{equation*}
R_{F}=\frac{V_{A}-m \cdot Z \cdot I_{A}}{I_{A F} \cdot\left(1+\frac{I_{B F}}{I_{A F}}\right)} \tag{EQ6.6}
\end{equation*}
\]

Assuming the fault components of the currents, \(I_{A F}\) and \(I_{B F}\) are in phase, and observing that the fault resistance, as impedance, does not have any imaginary part gives:
\[
\begin{equation*}
\operatorname{Im}\left(\frac{V_{A}-m \cdot Z \cdot I_{A}}{I_{A F}}\right)=0 \tag{EQ6.7}
\end{equation*}
\]
where: \(\operatorname{lm}()\) represents the imaginary part of a complex number. Solving the above equation for the unknown \(m\) creates the following fault location algorithm:
\[
\begin{equation*}
m=\frac{\operatorname{Im}\left(V_{A} \cdot I_{A F}{ }^{*}\right)}{\operatorname{Im}\left(Z \cdot I_{A} \cdot I_{A F}{ }^{*}\right)} \tag{EQ6.8}
\end{equation*}
\]
where * denotes the complex conjugate and:
\[
\begin{equation*}
I_{A F}=I_{A}-I_{A p r e} \tag{EQ6.9}
\end{equation*}
\]

Depending on the fault type, appropriate voltage and current signals are selected from the phase quantities before applying the two equations above (the superscripts denote phases, the subscripts denote stations):
- For AG faults: \(V_{A}=V_{A}^{A}, \quad I_{A}=I_{A}^{A}+K_{0} \cdot I_{0 A}\)
- For BG faults: \(V_{A}=V_{A}^{B}, \quad I_{A}=I_{A}^{B}+K_{0} \cdot I_{0 A}\)
- For CG faults: \(V_{A}=V_{A}^{C}, \quad I_{A}=I_{A}^{B C}+K_{0} \cdot I_{0 A}\)
- For AB and ABG faults: \(V_{A}=V_{A}^{A}-V_{A}^{B}, \quad I_{A}=I_{A}^{A}-I_{A}^{B}\)
- For BC and BCG faults: \(V_{A}=V_{A}^{B}-V_{A}^{C}, \quad I_{A}=I_{A}^{B}-I_{A}^{C}\)
- For CA and CAG faults: \(V_{A}=V_{A}^{C}-V_{A}^{A}, \quad I_{A}=I_{A}^{C}-I_{A}^{A}\)
where \(K_{0}\) is the zero sequence compensation factor (for the first six equations above)
- For \(A B C\) faults, all three \(A B, B C\), and \(C A\) loops are analyzed and the final result is selected based upon consistency of the results

The element calculates the distance to the fault (with \(m\) in miles or kilometers) and the phases involved in the fault.

Figure 6-5: FAULT LOCATOR SCHEME

PATH: ACTUAL VALUES \(\Rightarrow \sqrt{ }\) RECORDS \(\Rightarrow \sqrt{ }\) EVENT RECORDS

The Event Records menu shows the contextual data associated with up to the last 1024 events, listed in chronological order from most recent to oldest. If all 1024 event records have been filled, the oldest record will be removed as a new record is added. Each event record shows the event identifier/sequence number, cause, and date/time stamp associated with the event trigger. Refer to the COMMANDS \(\sqrt{ }\) CLEAR RECORDS menu for clearing event records.

PATH: ACTUAL VALUES \(\Rightarrow \sqrt{ }\) RECORDS \(\Rightarrow \sqrt{ }\), OSCILLOGRAPHY
\begin{tabular}{|c|c|c|c|c|}
\hline \(\square\) OSCILIOGRAPHY & & (1) & FORCE TRIGGER? No & \multirow[t]{5}{*}{Range: No, Yes} \\
\hline & MESSAGE & - & NUMBER OF TRIGGERS:
\[
0
\] & \\
\hline & MESSAGE & - & AVAILABLE RECORDS: 0 & \\
\hline & MESSAGE & - & \[
\begin{aligned}
& \text { CYCLES PER RECORD: } \\
& 0.0
\end{aligned}
\] & \\
\hline & MESSAGE & (2) & \[
\begin{aligned}
& \text { LAST CLEARED DATE: } \\
& \text { 2000/07/14 015:40:16 }
\end{aligned}
\] & \\
\hline
\end{tabular}

This menu allows the user to view the number of triggers involved and number of oscillography traces available. The 'cycles per record' value is calculated to account for the fixed amount of data storage for oscillography. See the Oscillography section of Chapter 5 for further details.

A trigger can be forced here at any time by setting "Yes" to the FORCE TRIGGER? command. Refer to the COMMANDS \(\Rightarrow \sqrt{ }\) CLEAR RECORDS menu for clearing the oscillography records.

PATH: ACTUAL VALUES \(\Rightarrow \sqrt{ }\) RECORDS \(\Rightarrow \sqrt{ }\) DATA LOGGER

The OLDEST SAMPLE TIME is the time at which the oldest available samples were taken. It will be static until the log gets full, at which time it will start counting at the defined sampling rate. The NEWEST SAMPLE TIME is the time the most recent samples were taken. It counts up at the defined sampling rate. If Data Logger channels are defined, then both values are static.

Refer to the COMMANDS \(\Rightarrow \sqrt{ }\) CLEAR RECORDS menu for clearing data logger records.

PATH: ACTUAL VALUES \(\Rightarrow \sqrt{ } \Rightarrow\) RECORDS \(\Rightarrow \Omega\) MAINTENANCE \(\Rightarrow\) BREAKER 1(2)

MESSAGE

MESSAGE

BKR 1 ARCING AMP \(\phi A\) :
0.00 kA2-cyc

BKR 1 ARCING AMP \(\phi \mathrm{B}\) :
0.00 kA2-cyc

BKR 1 ARCING AMP \(\phi C\) :
\(0.00 \mathrm{kA} 2-\mathrm{cyc}\)

There is an identical menu for each of the two breakers. The BKR 1 ARCING AMP values are in units of \(k A^{2}\)-cycles. Refer to the COMMANDS \(\Rightarrow \sqrt[\Omega]{ }\) CLEAR RECORDS menu for clearing breaker arcing current records.

PATH: ACTUAL VALUES \(\Rightarrow \sqrt{ }\) RECORDS \(\Rightarrow \sqrt{ }\) HIZ RECORDS

PATH: ACTUAL VALUES \(\Rightarrow \sqrt{ } \sqrt{ }\) PRODUCT INFO \(\Rightarrow\) MODEL INFORMATION

The product order code, serial number, Ethernet MAC address, date/time of manufacture, and operating time are shown here.

PATH: ACTUAL VALUES \(\Rightarrow \sqrt{ }\) PRODUCT INFO \(\Rightarrow \sqrt{ }\) FIRMWARE REVISIONS
\begin{tabular}{|c|c|c|c|c|}
\hline \(\square\) FIRMWARE REVISIONS & (1) & \begin{tabular}{l}
F60 Feeder Relay REVISION: \\
4.00
\end{tabular} & Range: & \begin{tabular}{l}
0.00 to 655.35 \\
Revision number of the application firmware.
\end{tabular} \\
\hline MESSAG & - & MODIFICATION FILE
NUMBER: 0 & Range: & \begin{tabular}{l}
0 to 65535 (ID of the MOD FILE) \\
Value is 0 for each standard firmware release.
\end{tabular} \\
\hline MESSAG & - & BOOT PROGRAM REVISION : & Range: & 0.00 to 655.35 Revision number of the boot program firmware. \\
\hline MESSAG & - & \begin{tabular}{ll}
FRONT PANEL PROGRAM \\
REVISION: & 0.08
\end{tabular} & Range: & \begin{tabular}{l}
0.00 to 655.35 \\
Revision number of faceplate program firmware.
\end{tabular} \\
\hline MESSAG & - & COMPILE DATE:
2003/11/20 04:55:16 & Range: & \begin{tabular}{l}
Any valid date and time. \\
Date and time when product firmware was built.
\end{tabular} \\
\hline MESSAG & (4) & \[
\begin{aligned}
& \text { BOOT DATE: } \\
& 2003 / 11 / 20 \text { 16:41:32 }
\end{aligned}
\] & Range: & \begin{tabular}{l}
Any valid date and time. \\
Date and time when the boot program was built.
\end{tabular} \\
\hline
\end{tabular}

The shown data is illustrative only. A modification file number of 0 indicates that, currently, no modifications have been installed.

The Commands menu contains relay directives intended for operations personnel. All commands can be protected from unauthorized access via the Command Password; see the Password Security section of Chapter 5. The following flash message appears after successfully command entry:

PATH: COMMANDS \(\sqrt{ } \sqrt{ }\) COMMANDS VIRTUAL INPUTS

The states of up to 32 virtual inputs are changed here. The first line of the display indicates the ID of the virtual input. The second line indicates the current or selected status of the virtual input. This status will be a logical state 'Off' (0) or 'On' (1).

PATH: COMMANDS \(\sqrt{ } \sqrt{ }\) COMMANDS CLEAR RECORDS
\begin{tabular}{|c|c|c|c|}
\hline COMMANDS
\(\square\) CLEAR RECORDS & (1) & CLEAR FAULT REPORTS? No & Range: No, Yes \\
\hline & \(\theta\) & CLEAR EVENT RECORDS? No & Range: No, Yes \\
\hline & - & CLEAR OSCILLOGRAPHY? No & Range: No, Yes \\
\hline & - & CLEAR DATA LOGGER? No & Range: No, Yes \\
\hline
\end{tabular}

This menu contains commands for clearing historical data such as the Event Records. Data is cleared by changing a command setting to "Yes" and pressing the ENTER key. After clearing data, the command setting automatically reverts to "No".
7.1.4 SET DATE AND TIME

PATH: COMMANDS \(\sqrt{ }\) SET DATE AND TIME

The date and time can be entered here via the faceplate keypad only if the IRIG-B signal is not in use. The time setting is based on the 24 -hour clock. The complete date, as a minimum, must be entered to allow execution of this command. The new time will take effect at the moment the ENTER key is clicked.
7.1.5 RELAY MAINTENANCE

PATH: COMMANDS \(\sqrt{8}\) RELAY MAINTENANCE

This menu contains commands for relay maintenance purposes. Commands are activated by changing a command setting to "Yes" and pressing the ENTER key. The command setting will then automatically revert to "No".

The PERFORM LAMPTEST command turns on all faceplate LEDs and display pixels for a short duration. The UPDATE ORDER CODE command causes the relay to scan the backplane for the hardware modules and update the order code to match. If an update occurs, the following message is shown.
```

UPDATING . . .
PLEASE WAIT

```

There is no impact if there have been no changes to the hardware modules. When an update does not occur, the ORDER CODE NOT UPDATED message will be shown.

The status of any active targets will be displayed in the Targets menu. If no targets are active, the display will read No Active Targets:

\subsection*{7.2.2 TARGET MESSAGES}

When there are no active targets, the first target to become active will cause the display to immediately default to that message. If there are active targets and the user is navigating through other messages, and when the default message timer times out (i.e. the keypad has not been used for a determined period of time), the display will again default back to the target message.
The range of variables for the target messages is described below. Phase information will be included if applicable. If a target message status changes, the status with the highest priority will be displayed.

Table 7-1: TARGET MESSAGE PRIORITY STATUS
\begin{tabular}{|c|l|l|}
\hline PRIORITY & ACTIVE STATUS & DESCRIPTION \\
\hline \hline 1 & OP & element operated and still picked up \\
\hline 2 & PKP & element picked up and timed out \\
\hline 3 & LATCHED & element had operated but has dropped out \\
\hline
\end{tabular}

If a self test error is detected, a message appears indicating the cause of the error. For example UNIT NOT PROGRAMMED indicates that the minimal relay settings have not been programmed.

The relay performs a number of self-test diagnostic checks to ensure device integrity. The two types of self-tests (major and minor) are listed in the tables below. When either type of self-test error occurs, the Trouble LED Indicator will turn on and a target message displayed. All errors record an event in the event recorder. Latched errors can be cleared by pressing the RESET key, providing the condition is no longer present.

Major self-test errors also result in the following:
- the critical fail relay on the power supply module is de-energized
- all other output relays are de-energized and are prevented from further operation
- the faceplate In Service LED indicator is turned off
- a RELAY OUT OF SERVICE event is recorded

Most of the minor self-test errors can be disabled. Refer to the settings in the User-Programmable Self-Tests section in Chapter 5 for additional details.

Table 7-2: MAJOR SELF-TEST ERROR MESSAGES
\begin{tabular}{|c|c|c|c|c|}
\hline SELF-TEST ERROR MESSAGE & LATCHED TARGET MESSAGE? & DESCRIPTION OF PROBLEM & HOW OFTEN THE TEST IS PERFORMED & WHAT TO DO \\
\hline DSP ERRORS: A/D Calibration, A/D Interrupt, A/D Reset, Inter DSP Rx, Sample Int, Rx Interrupt, Tx Interrupt, Rx Sample Index, Invalid Settings, Rx Checksum & Yes & CT/VT module with digital signal processor may have a problem. & Every 1/8th of a cycle. & Cycle the control power (if the problem recurs, contact the factory). \\
\hline DSP ERROR: INVALID REVISION & Yes & One or more DSP modules in a multiple DSP unit has Rev. C hardware & Rev. C DSP needs to be replaced with a Rev. D DSP. & Contact the factory \\
\hline EQUIPMENT MISMATCH with 2nd-line detail message & No & Configuration of modules does not match the order code stored in the CPU. & On power up; thereafter, the backplane is checked for missing cards every 5 seconds. & Check all modules against the order code, ensure they are inserted properly, and cycle control power (if problem persists, contact factory). \\
\hline FLEXLOGIC ERR TOKEN with 2nd-line detail message & No & FlexLogic \({ }^{\text {TM }}\) equations do not compile properly. & Event driven; whenever FlexLogic \({ }^{\text {TM }}\) equations are modified. & Finish all equation editing and use self test to debug any errors. \\
\hline LATCHING OUTPUT ERROR & No & Discrepancy in the position of a latching contact between relay firmware and hardware has been detected. & Every 1/8th of a cycle. & Latching output module failed. Replace the Module. \\
\hline PROGRAM MEMORY Test Failed & Yes & Error was found while checking Flash memory. & Once flash is uploaded with new firmware. & Contact the factory. \\
\hline UNIT NOT CALIBRATED & No & Settings indicate the unit is not calibrated. & On power up. & Contact the factory. \\
\hline UNIT NOT PROGRAMMED & No & PRODUCT SETUP \(\Rightarrow \sqrt{2}\) INSTALLATION setting indicates relay is not in a programmed state. & On power up and whenever the RELAY PROGRAMMED setting is altered. & Program all settings (especially those under PRODUCT SETUP \(\Rightarrow \sqrt{ }\) INSTALLATION). \\
\hline
\end{tabular}

Table 7-3: MINOR SELF-TEST ERROR MESSAGES
\begin{tabular}{|c|c|c|c|c|}
\hline SELF-TEST ERROR MESSAGE & LATCHED TARGET MESSAGE & DESCRIPTION OF PROBLEM & HOW OFTEN THE TEST IS PERFORMED & WHAT TO DO \\
\hline BATTERY FAIL & Yes & Battery is not functioning. & Monitored every 5 seconds. Reported after 1 minute if problem persists. & Replace the battery. \\
\hline DIRECT RING BREAK & No & Direct I/O settings configured for a ring, but the connection is not in a ring. & Every second. & Check Direct I/O configuration and/or wiring. \\
\hline DIRECT DEVICE OFF & No & Direct Device is configured but not connected & Every second. & Check Direct I/O configuration and/or wiring. \\
\hline \[
\begin{aligned}
& \hline \text { EEPROM DATA } \\
& \text { ERROR }
\end{aligned}
\] & Yes & The non-volatile memory has been corrupted. & On power up only. & Contact the factory. \\
\hline IRIG-B FAILURE & No & Bad IRIG-B input signal. & Monitored whenever an IRIG-B signal is received. & Ensure IRIG-B cable is connected, check cable functionality (i.e. look for physical damage or perform continuity test), ensure IRIG-B receiver is functioning, and check input signal level (it may be less than specification). If none of these apply, contact the factory \\
\hline LATCHING OUT ERROR & Yes & Latching output failure. & Event driven. & Contact the factory. \\
\hline LOW ON MEMORY & Yes & Memory is close to 100\% capacity & Monitored every 5 seconds. & Contact the factory. \\
\hline PRI ETHERNET FAIL & Yes & Primary Ethernet connection failed & Monitored every 2 seconds & Check connections. \\
\hline PROTOTYPE FIRMWARE & Yes & A prototype version of the firmware is loaded. & On power up only. & Contact the factory. \\
\hline REMOTE DEVICE OFF & No & One or more GOOSE devices are not responding & Event driven. Occurs when a device programmed to receive GOOSE messages stops receiving. Every 1 to 60 s., depending on GOOSE packets. & Check GOOSE setup \\
\hline SEC ETHERNET FAIL & Yes & Sec. Ethernet connection failed & Monitored every 2 seconds & Check connections. \\
\hline SNTP FAILURE & No & SNTP server not responding. & 10 to 60 seconds. & Check SNTP configuration and/or network connections. \\
\hline SYSTEM EXCEPTION & Yes & Abnormal restart from modules being removed/inserted when powered-up, abnormal DC supply, or internal relay failure. & Event driven. & Contact the factory. \\
\hline WATCHDOG ERROR & No & Some tasks are behind schedule & Event driven. & Contact the factory. \\
\hline
\end{tabular}

The Hi-Z element accomplishes high-impedance fault detection using a variety of algorithms, all coordinated by an expert system. At the heart of the high-impedance fault-detection system is the identification of arcing on a feeder. If the \(\mathrm{Hi}-\mathrm{Z}\) element detects arcing, it then determines whether or not the arcing persists for a significant period of time. If it does, the Hi-Z element determines whether the persistent arcing is from a downed conductor or from an intact conductor and then generates an output to indicate either the detection of a downed conductor or the detection of arcing, respectively.

Distinction between an arcing intact conductor and an arcing downed conductor is determined by looking at patterns in the load current at the beginning of the fault. A downed conductor is indicated only when a precipitous loss of load or an overcurrent condition precedes arcing detection. Otherwise, the \(\mathrm{Hi}-\mathrm{Z}\) element assumes that the line is intact, even if arcing is present. In such a case, if the detected arcing can be classified as persistent, and an output contact is configured for 'arcing detected', the Hi-Z element will close that contact.

In some cases, arcing is determined to be present, but not persistent. For example, if it is caused by tree limb contact or insulator degradation, arcing will typically be present intermittently with relatively long periods of inactivity (e.g. minutes) interspersed. In such cases, arcing may be affected by such factors as the motion of a tree limb or the moisture and contamination on an insulator. Conditions such as these, characterized by a high number of brief occurrences of arcing over an extended period of time (e.g. from a fraction of an hour to one or two hours), lead the Hi-Z element to recognize and flag an "arcing suspected" event. None of these brief occurrences of arcing, if taken individually, are sufficient to indicate detection of a downed conductor or to set off an alarm indicating that persistent arcing has been detected. When considered cumulatively, however, they do indicate a need for attention. If an output contact is configured to indicate 'arcing suspected', the Hi\(Z\) element recognition of such sporadic arcing will close that contact and appropriate actions can be taken.
If the \(\mathrm{Hi}-\mathrm{Z}\) element determines that a downed conductor exists, oscillography and fault data are captured. In addition, target messages and appropriate LEDs are activated on the relay faceplate.
The detection of a downed conductor or arcing condition is accomplished through the execution of the following algorithms:
- Energy Algorithm
- Randomness Algorithm
- Expert Arc Detector Algorithm
- Load Event Detector Algorithm
- Load Analysis Algorithm
- Load Extraction Algorithm
- Arc Burst Pattern Analysis Algorithm
- Spectral Analysis Algorithm
- Arcing-Suspected Identifier Algorithm
- Even Harmonic Restraint Algorithm
- Voltage Supervision Algorithm

The Energy Algorithm monitors a specific set of non-fundamental frequency component energies of phase and neutral current. After establishing an average value for a given component energy, the algorithm indicates arcing if it detects a sudden, sustained increase in the value of that component. The HI-Z ELEMENT runs the Energy Algorithm on each of the following parameters for each phase current and for the neutral:
- even harmonics
- odd harmonics
- non-harmonics

On a 60 Hz system, the non-harmonic component consists of a sum of the \(30,90,150, \ldots, 750 \mathrm{~Hz}\) components, while on a 50 Hz system, it consists of a sum of the \(25,75,125, \ldots, 625 \mathrm{~Hz}\) components. If the Energy Algorithm detects a sudden, sustained increase in one of these component energies, it reports this to the Expert Arc Detector Algorithm, resets itself, and continues to monitor for another sudden increase.

The Randomness Algorithm monitors the same set of component energies as the Energy Algorithm. However, rather than checking for a sudden, sustained increase in the value of the monitored component energy, it looks for a sudden increase in a component followed by highly erratic behavior. This type of highly erratic behavior is indicative of many arcing faults. Just as with the Energy Algorithm, if the Randomness Algorithm detects a suspicious event in one of its monitored components, it reports it to the Expert Arc Detector Algorithm, resets itself, and continues to monitor for another suspicious event.
8.1.4 EXPERT ARC DETECTOR ALGORITHM

The purpose of the Expert Arc Detector Algorithm is to assimilate the outputs of the basic arc detection algorithms into one "arcing confidence" level per phase. Note that there are actually 24 independent basic arc detection algorithms, since both the Energy Algorithm and the Randomness Algorithm are run for the even harmonics, odd harmonics, and non-harmonics for each phase current and for the neutral. The assimilation performed by the Expert Arc Detector Algorithm, then, is accomplished by counting the number of arcing indications determined by any one of the twenty-four algorithms over a short period of time (e.g. the last 30 seconds). Also taken into account is the number of different basic algorithms that indicate arcing.

In the Expert Arc Detector Algorithm, the arcing confidence level for each phase increases as the number of basic algorithms that indicate arcing (per phase) increases. It also increases with increasing numbers of indications from any one basic algorithm. These increases in confidence levels occur because multiple, consecutive indications from a given algorithm and indications from multiple independent algorithms are more indicative of the presence of arcing than a single algorithm giving a single indication.
8.1.5 SPECTRAL ANALYSIS ALGORITHM

The Spectral Analysis algorithm is the third and final confirmation algorithm performed only when a high impedance condition is suspected.
The Spectral Analysis algorithm receives five seconds of averaged non-harmonic residual current spectrum data and compares it to an ideal \(1 / f\) curve. Depending on the result, three percent can be added to the arcing confidence level generated by the Expert Arc Detector Algorithm.

\subsection*{8.1.6 LOAD EVENT DETECTOR ALGORITHM}

The Load Event Detector Algorithm examines, on a per-phase basis, one reading of RMS values per two-cycle interval for each phase current and the neutral. It then sets flags for each phase current and for the neutral based on the following events:
- an overcurrent condition
- a precipitous loss of load
- a high rate-of-change
- a significant three-phase event
- a breaker open condition.

These flags are examined by the Load Analysis Algorithm. Their states contribute to that algorithm's differentiation between arcing downed conductors and arcing intact conductors, and inhibit the Expert Arc Detector Algorithm from indicating the need for an arcing alarm for a limited time following an overcurrent or breaker open condition.
Any of the above five flags will zero the Expert Arc Detector buffer, since the power system is in a state of change and the values being calculated for use by the Energy and Randomness algorithms are probably not valid.

An extremely high rate of change is not characteristic of most high impedance faults and is more indicative of a breaker closing, causing associated inrush. Since this type of inrush current causes substantial variations in the harmonics used by the high impedance algorithms, these algorithms ignore all data for several seconds following a high rate-of-change event that exceeds the associated rate-of-change threshold, in order to give the power system a chance to stabilize.

The purpose of the Load Analysis Algorithm is to differentiate between arcing downed conductors and arcing intact conductors by looking for a precipitous loss of load and/or an overcurrent disturbance at the beginning of an arcing episode. The presence of arcing on the system is determined based on the output of the Expert Arc Detector Algorithm. If the Hi-Z element finds persistent arcing on the power system, the Load Analysis Algorithm then considers the type of incident that initiated the arcing and classifies the arcing conductor as either downed or intact. Another function of the algorithm is to provide coordination between the \(\mathrm{Hi}-\mathrm{Z}\) element and the power system's conventional overcurrent protection by observing a timeout, via the HI-Z OC PROTECTION COORD TIMEOUT setting from the beginning of the arcing before giving an indication of arcing.

If the Load Analysis Algorithm determines that a downed conductor or arcing exists, it attempts to determine the phase on which the high impedance fault condition exists. It does this in a hierarchical manner. First, if a significant loss of load triggered the Load Analysis Algorithm, and if there was a significant loss on only one phase, that phase is identified. If there was not a single phase loss of load, and if an overcurrent condition on only one phase triggered the algorithm, that phase is identified. If both of these tests fail to identify the phase, the phase with a significantly higher confidence level (e.g. higher than the other two phases by at least \(25 \%\)) is identified. Finally, if none of these tests provides phase identification, the result of the Arc Burst Pattern Analysis Algorithm is checked. If that test fails, the phase is not identified.

\subsection*{8.1.8 LOAD EXTRACTION ALGORITHM}

The Load Extraction Algorithm attempts to find a quiescent period during an arcing fault so that it can determine the background load current level in the neutral current. If it is successful in doing so, it then removes the load component from the total measured current, resulting in a signal which consists only of the fault component of the neutral current. This information is then provided as input to the Arc Burst Pattern Analysis Algorithm.

\subsection*{8.1.9 ARC BURST PATTERN ANALYSIS ALGORITHM}

The Arc Burst Pattern Analysis Algorithm attempts to provide faulted phase identification information based on a correlation between the fault component of the measured neutral current and the phase voltages. The phase identified will be the one whose phase voltage peak lines up with the neutral current burst. The fault component is received from the Load Extraction Algorithm. The result of the analysis is checked by the Load Analysis Algorithm if its other phase identification methods prove unsuccessful.
8.1.10 ARCING SUSPECTED ALGORITHM

The purpose of the Arcing Suspected Algorithm is to detect multiple, sporadic arcing events. If taken individually, such events are not sufficient to warrant an arcing alarm. When taken cumulatively, however, these events do warrant an alarm to system operators so that the cause of the recurrent arcing can be investigated.

\subsection*{8.1.11 OVERCURRENT DISTURBANCE MONITORING}

This function is part of High Impedance Fault Detection and should not be confused with Conventional Overcurrent Protection. The Hi-Z element monitors for an overcurrent condition on the feeder by establishing overcurrent thresholds for the phases and for the neutral and then checking for a single two-cycle RMS current that exceeds those thresholds. Oscillography and fault data are captured if it is determined that an overcurrent condition exists.

\subsection*{8.1.12 HI-Z EVEN HARMONIC RESTRAINT ALGORITHM}

Every two-cycle interval the algorithm evaluates the even harmonic content of each phase current. The even harmonic content is evaluated as a percentage of the phase RMS current. If for any phase the percentage is greater than the HI-Z EVEN HARMONIC RESTRAINT setting, the algorithm will inhibit setting of the overcurrent flags. This is to prevent a cold-load pickup event from starting the Hi-Z logic sequence (which requires the overcurrent flag or the loss-of-load flag to be set at the beginning of an arcing event). The duration over which the algorithm inhibits the setting of the overcurrent flag(s) is from the time the even-harmonic level (as a percentage of RMS) increases above the threshold until one second after it falls back below the threshold.

This algorithm was implemented to minimize the probability of a false \(\mathrm{Hi}-\mathrm{Z}\) indication due to bus voltage dips (e.g. from parallel feeder faults). A fault on a parallel line can cause voltage dips that will produce a decrease in the line load which can be mistaken by Hi-Z element as Loss of Load.
Every two cycle the voltage on each phase is checked against the HI-Z V SUPV THRESHOLD. If the voltage on any phase has dropped by a percentage greater then or equal to this setting, the Loss of Load flag will be blocked. The blocking is not done on a per- phase basis. If one phase voltage shows a dip, the block is applied for all phases. Also the High Impedance Oscillography will record that a voltage dip was experienced. The Oscillography record is phase specific.

Table A-1: FLEXANALOG DATA ITEMS (Sheet 1 of 13)
\begin{tabular}{|c|c|c|}
\hline ADDR & DATA ITEM & FLEXANALOG NAME \\
\hline 5760 & Sens Dir Power 1 Actual & Sns Dir Power 1 \\
\hline 5762 & Sens Dir Power 2 Actual & Sns Dir Power 2 \\
\hline 5856 & Frequency Rate of Change 1 Actual & Freq Rate 1 Value \\
\hline 5860 & Frequency Rate of Change 2 Actual & Freq Rate 2 Value \\
\hline 5864 & Frequency Rate of Change 3 Actual & Freq Rate 3 Value \\
\hline 5868 & Frequency Rate of Change 4 Actual & Freq Rate 4 Value \\
\hline 6144 & SRC 1 Phase A Current RMS & SRC 1 la RMS \\
\hline 6146 & SRC 1 Phase B Current RMS & SRC 1 lb RMS \\
\hline 6148 & SRC 1 Phase C Current RMS & SRC 1 Ic RMS \\
\hline 6150 & SRC 1 Neutral Current RMS & SRC 1 In RMS \\
\hline 6152 & SRC 1 Phase A Current Magnitude & SRC 1 la Mag \\
\hline 6154 & SRC 1 Phase A Current Angle & SRC 1 la Angle \\
\hline 6155 & SRC 1 Phase B Current Magnitude & SRC 1 lb Mag \\
\hline 6157 & SRC 1 Phase B Current Angle & SRC 1 lb Angle \\
\hline 6158 & SRC 1 Phase C Current Magnitude & SRC 1 Ic Mag \\
\hline 6160 & SRC 1 Phase C Current Angle & SRC 1 Ic Angle \\
\hline 6161 & SRC 1 Neutral Current Magnitude & SRC 1 In Mag \\
\hline 6163 & SRC 1 Neutral Current Angle & SRC 1 In Angle \\
\hline 6164 & SRC 1 Ground Current RMS & SRC 1 Ig RMS \\
\hline 6166 & SRC 1 Ground Current Magnitude & SRC 1 Ig Mag \\
\hline 6168 & SRC 1 Ground Current Angle & SRC 1 Ig Angle \\
\hline 6169 & SRC 1 Zero Seq. Current Magnitude & SRC 1 I_0 Mag \\
\hline 6171 & SRC 1 Zero Sequence Current Angle & SRC 1 I_0 Angle \\
\hline 6172 & SRC 1 Pos. Seq. Current Magnitude & SRC 1 I_1 Mag \\
\hline 6174 & SRC 1 Pos. Seq. Current Angle & SRC 1 I_1 Angle \\
\hline 6175 & SRC 1 Neg. Seq. Current Magnitude & SRC 1 I_2 Mag \\
\hline 6177 & SRC 1 Neg. Seq. Current Angle & SRC 1 I_2 Angle \\
\hline 6178 & SRC 1 Differential Gnd Current Mag. & SRC 1 Igd Mag \\
\hline 6180 & SRC 1 Diff. Gnd. Current Angle & SRC 1 Igd Angle \\
\hline 6208 & SRC 2 Phase A Current RMS & SRC 2 la RMS \\
\hline 6210 & SRC 2 Phase B Current RMS & SRC 2 lb RMS \\
\hline 6212 & SRC 2 Phase C Current RMS & SRC 2 Ic RMS \\
\hline 6214 & SRC 2 Neutral Current RMS & SRC 2 In RMS \\
\hline 6216 & SRC 2 Phase A Current Magnitude & SRC 2 la Mag \\
\hline 6218 & SRC 2 Phase A Current Angle & SRC 2 la Angle \\
\hline 6219 & SRC 2 Phase B Current Magnitude & SRC 2 lb Mag \\
\hline 6221 & SRC 2 Phase B Current Angle & SRC 2 lb Angle \\
\hline 6222 & SRC 2 Phase C Current Magnitude & SRC 2 Ic Mag \\
\hline 6224 & SRC 2 Phase C Current Angle & SRC 2 Ic Angle \\
\hline 6225 & SRC 2 Neutral Current Magnitude & SRC 2 In Mag \\
\hline 6227 & SRC 2 Neutral Current Angle & SRC 2 In Angle \\
\hline 6228 & SRC 2 Ground Current RMS & SRC 2 Ig RMS \\
\hline 6230 & SRC 2 Ground Current Magnitude & SRC 2 Ig Mag \\
\hline 6232 & SRC 2 Ground Current Angle & SRC 2 Ig Angle \\
\hline 6233 & SRC 2 Zero Seq. Current Magnitude & SRC 2 I_0 Mag \\
\hline 6235 & SRC 2 Zero Sequence Current Angle & SRC 2 I_0 Angle \\
\hline 6236 & SRC 2 Pos. Seq. Current Magnitude & SRC 2 I_1 Mag \\
\hline 6238 & SRC 2 Positive Seq. Current Angle & SRC 2 I_1 Angle \\
\hline 6239 & SRC 2 Neg. Seq. Current Magnitude & SRC 2 I_2 Mag \\
\hline
\end{tabular}

Table A-1: FLEXANALOG DATA ITEMS (Sheet 2 of 13)
\begin{tabular}{|c|c|c|}
\hline ADDR & DATA ITEM & FLEXANALOG NAME \\
\hline 6241 & SRC 2 Negative Seq. Current Angle & SRC 2 I_2 Angle \\
\hline 6242 & SRC 2 Differential Gnd Current Mag. & SRC 2 Igd Mag \\
\hline 6244 & SRC 2 Diff. Gnd Current Angle & SRC 2 Igd Angle \\
\hline 6656 & SRC 1 Phase AG Voltage RMS & SRC 1 Vag RMS \\
\hline 6658 & SRC 1 Phase BG Voltage RMS & SRC 1 Vbg RMS \\
\hline 6660 & SRC 1 Phase CG Voltage RMS & SRC 1 Vcg RMS \\
\hline 6662 & SRC 1 Phase AG Voltage Magnitude & SRC 1 Vag Mag \\
\hline 6664 & SRC 1 Phase AG Voltage Angle & SRC 1 Vag Angle \\
\hline 6665 & SRC 1 Phase BG Voltage Magnitude & SRC 1 Vbg Mag \\
\hline 6667 & SRC 1 Phase BG Voltage Angle & SRC 1 Vbg Angle \\
\hline 6668 & SRC 1 Phase CG Voltage Magnitude & SRC 1 Vcg Mag \\
\hline 6670 & SRC 1 Phase CG Voltage Angle & SRC 1 Vcg Angle \\
\hline 6671 & SRC 1 Phase AB Voltage RMS & SRC 1 Vab RMS \\
\hline 6673 & SRC 1 Phase BC Voltage RMS & SRC 1 Vbc RMS \\
\hline 6675 & SRC 1 Phase CA Voltage RMS & SRC 1 Vca RMS \\
\hline 6677 & SRC 1 Phase AB Voltage Magnitude & SRC 1 Vab Mag \\
\hline 6679 & SRC 1 Phase AB Voltage Angle & SRC 1 Vab Angle \\
\hline 6680 & SRC 1 Phase BC Voltage Magnitude & SRC 1 Vbc Mag \\
\hline 6682 & SRC 1 Phase BC Voltage Angle & SRC 1 Vbc Angle \\
\hline 6683 & SRC 1 Phase CA Voltage Magnitude & SRC 1 Vca Mag \\
\hline 6685 & SRC 1 Phase CA Voltage Angle & SRC 1 Vca Angle \\
\hline 6686 & SRC 1 Auxiliary Voltage RMS & SRC 1 Vx RMS \\
\hline 6688 & SRC 1 Auxiliary Voltage Magnitude & SRC 1 Vx Mag \\
\hline 6690 & SRC 1 Auxiliary Voltage Angle & SRC 1 Vx Angle \\
\hline 6691 & SRC 1 Zero Sequence Voltage Mag. & SRC 1 V_0 Mag \\
\hline 6693 & SRC 1 Zero Sequence Voltage Angle & SRC 1 V_0 Angle \\
\hline 6694 & SRC 1 Positive Seq. Voltage Mag. & SRC 1 V_1 Mag \\
\hline 6696 & SRC 1 Positive Seq. Voltage Angle & SRC 1 V_1 Angle \\
\hline 6697 & SRC 1 Negative Seq. Voltage Mag. & SRC 1 V_2 Mag \\
\hline 6699 & SRC 1 Negative Seq. Voltage Angle & SRC 1 V_2 Angle \\
\hline 6720 & SRC 2 Phase AG Voltage RMS & SRC 2 Vag RMS \\
\hline 6722 & SRC 2 Phase BG Voltage RMS & SRC 2 Vbg RMS \\
\hline 6724 & SRC 2 Phase CG Voltage RMS & SRC 2 Vcg RMS \\
\hline 6726 & SRC 2 Phase AG Voltage Magnitude & SRC 2 Vag Mag \\
\hline 6728 & SRC 2 Phase AG Voltage Angle & SRC 2 Vag Angle \\
\hline 6729 & SRC 2 Phase BG Voltage Magnitude & SRC 2 Vbg Mag \\
\hline 6731 & SRC 2 Phase BG Voltage Angle & SRC 2 Vbg Angle \\
\hline 6732 & SRC 2 Phase CG Voltage Magnitude & SRC 2 Vcg Mag \\
\hline 6734 & SRC 2 Phase CG Voltage Angle & SRC 2 Vcg Angle \\
\hline 6735 & SRC 2 Phase AB Voltage RMS & SRC 2 Vab RMS \\
\hline 6737 & SRC 2 Phase BC Voltage RMS & SRC 2 Vbc RMS \\
\hline 6739 & SRC 2 Phase CA Voltage RMS & SRC 2 Vca RMS \\
\hline 6741 & SRC 2 Phase AB Voltage Magnitude & SRC 2 Vab Mag \\
\hline 6743 & SRC 2 Phase AB Voltage Angle & SRC 2 Vab Angle \\
\hline 6744 & SRC 2 Phase BC Voltage Magnitude & SRC 2 Vbc Mag \\
\hline 6746 & SRC 2 Phase BC Voltage Angle & SRC 2 Vbc Angle \\
\hline 6747 & SRC 2 Phase CA Voltage Magnitude & SRC 2 Vca Mag \\
\hline 6749 & SRC 2 Phase CA Voltage Angle & SRC 2 Vca Angle \\
\hline 6750 & SRC 2 Auxiliary Voltage RMS & SRC 2 Vx RMS \\
\hline
\end{tabular}

Table A-1: FLEXANALOG DATA ITEMS (Sheet 3 of 13)
\begin{tabular}{|c|c|c|}
\hline ADDR & DATA ITEM & FLEXANALOG NAME \\
\hline 6752 & SRC 2 Auxiliary Voltage Magnitude & SRC 2 Vx Mag \\
\hline 6754 & SRC 2 Auxiliary Voltage Angle & SRC 2 Vx Angle \\
\hline 6755 & SRC 2 Zero Seq. Voltage Magnitude & SRC 2 V_0 Mag \\
\hline 6757 & SRC 2 Zero Sequence Voltage Angle & SRC 2 V_0 Angle \\
\hline 6758 & SRC 2 Positive Seq. Voltage Mag. & SRC 2 V_1 Mag \\
\hline 6760 & SRC 2 Positive Seq. Voltage Angle & SRC 2 V_1 Angle \\
\hline 6761 & SRC 2 Negative Seq. Voltage Mag. & SRC 2 V_2 Mag \\
\hline 6763 & SRC 2 Negative Seq. Voltage Angle & SRC 2 V_2 Angle \\
\hline 7168 & SRC 1 Three Phase Real Power & SRC 1 P \\
\hline 7170 & SRC 1 Phase A Real Power & SRC 1 Pa \\
\hline 7172 & SRC 1 Phase B Real Power & SRC 1 Pb \\
\hline 7174 & SRC 1 Phase C Real Power & SRC 1 Pc \\
\hline 7176 & SRC 1 Three Phase Reactive Power & SRC 1 Q \\
\hline 7178 & SRC 1 Phase A Reactive Power & SRC 1 Qa \\
\hline 7180 & SRC 1 Phase B Reactive Power & SRC 1 Qb \\
\hline 7182 & SRC 1 Phase C Reactive Power & SRC 1 Qc \\
\hline 7184 & SRC 1 Three Phase Apparent Power & SRC 1 S \\
\hline 7186 & SRC 1 Phase A Apparent Power & SRC 1 Sa \\
\hline 7188 & SRC 1 Phase B Apparent Power & SRC 1 Sb \\
\hline 7190 & SRC 1 Phase C Apparent Power & SRC 1 Sc \\
\hline 7192 & SRC 1 Three Phase Power Factor & SRC 1 PF \\
\hline 7193 & SRC 1 Phase A Power Factor & SRC 1 Phase A PF \\
\hline 7194 & SRC 1 Phase B Power Factor & SRC 1 Phase B PF \\
\hline 7195 & SRC 1 Phase C Power Factor & SRC 1 Phase C PF \\
\hline 7200 & SRC 2 Three Phase Real Power & SRC 2 P \\
\hline 7202 & SRC 2 Phase A Real Power & SRC 2 Pa \\
\hline 7204 & SRC 2 Phase B Real Power & SRC 2 Pb \\
\hline 7206 & SRC 2 Phase C Real Power & SRC 2 Pc \\
\hline 7208 & SRC 2 Three Phase Reactive Power & SRC 2 Q \\
\hline 7210 & SRC 2 Phase A Reactive Power & SRC 2 Qa \\
\hline 7212 & SRC 2 Phase B Reactive Power & SRC 2 Qb \\
\hline 7214 & SRC 2 Phase C Reactive Power & SRC 2 Qc \\
\hline 7216 & SRC 2 Three Phase Apparent Power & SRC 2 S \\
\hline 7218 & SRC 2 Phase A Apparent Power & SRC 2 Sa \\
\hline 7220 & SRC 2 Phase B Apparent Power & SRC 2 Sb \\
\hline 7222 & SRC 2 Phase C Apparent Power & SRC 2 Sc \\
\hline 7224 & SRC 2 Three Phase Power Factor & SRC 2 PF \\
\hline 7225 & SRC 2 Phase A Power Factor & SRC 2 Phase A PF \\
\hline 7226 & SRC 2 Phase B Power Factor & SRC 2 Phase B PF \\
\hline 7227 & SRC 2 Phase C Power Factor & SRC 2 Phase C PF \\
\hline 7552 & SRC 1 Frequency & SRC 1 Frequency \\
\hline 7553 & SRC 2 Frequency & SRC 2 Frequency \\
\hline 7680 & SRC 1 Demand la & SRC 1 Demand la \\
\hline 7682 & SRC 1 Demand lb & SRC 1 Demand lb \\
\hline 7684 & SRC 1 Demand Ic & SRC 1 Demand Ic \\
\hline 7686 & SRC 1 Demand Watt & SRC 1 Demand Watt \\
\hline 7688 & SRC 1 Demand Var & SRC 1 Demand var \\
\hline 7690 & SRC 1 Demand Va & SRC 1 Demand Va \\
\hline 7696 & SRC 2 Demand la & SRC 2 Demand la \\
\hline 7698 & SRC 2 Demand lb & SRC 2 Demand lb \\
\hline 7700 & SRC 2 Demand Ic & SRC 2 Demand Ic \\
\hline 7702 & SRC 2 Demand Watt & SRC 2 Demand Watt \\
\hline
\end{tabular}

Table A-1: FLEXANALOG DATA ITEMS (Sheet 4 of 13)
\begin{tabular}{|c|c|c|}
\hline ADDR & DATA ITEM & FLEXANALOG NAME \\
\hline 7704 & SRC 2 Demand Var & SRC 2 Demand var \\
\hline 7706 & SRC 2 Demand Va & SRC 2 Demand Va \\
\hline 8064 & SRC 1 Va THD & SRC 1 Va THD \\
\hline 8065 & SRC 1 Va Harmonics & SRC 1 Va Harm[0] \\
\hline 8066 & SRC 1 Va Harmonics & SRC 1 Va Harm[1] \\
\hline 8067 & SRC 1 Va Harmonics & SRC 1 Va Harm[2] \\
\hline 8068 & SRC 1 Va Harmonics & SRC 1 Va Harm[3] \\
\hline 8069 & SRC 1 Va Harmonics & SRC 1 Va Harm[4] \\
\hline 8070 & SRC 1 Va Harmonics & SRC 1 Va Harm[5] \\
\hline 8071 & SRC 1 Va Harmonics & SRC 1 Va Harm[6] \\
\hline 8072 & SRC 1 Va Harmonics & SRC 1 Va Harm[7] \\
\hline 8073 & SRC 1 Va Harmonics & SRC 1 Va Harm[8] \\
\hline 8074 & SRC 1 Va Harmonics & SRC 1 Va Harm[9] \\
\hline 8075 & SRC 1 Va Harmonics & SRC 1 Va Harm[10] \\
\hline 8076 & SRC 1 Va Harmonics & SRC 1 Va Harm[11] \\
\hline 8077 & SRC 1 Va Harmonics & SRC 1 Va Harm[12] \\
\hline 8078 & SRC 1 Va Harmonics & SRC 1 Va Harm[13] \\
\hline 8079 & SRC 1 Va Harmonics & SRC 1 Va Harm[14] \\
\hline 8080 & SRC 1 Va Harmonics & SRC 1 Va Harm[15] \\
\hline 8081 & SRC 1 Va Harmonics & SRC 1 Va Harm[16] \\
\hline 8082 & SRC 1 Va Harmonics & SRC 1 Va Harm[17] \\
\hline 8083 & SRC 1 Va Harmonics & SRC 1 Va Harm[18] \\
\hline 8084 & SRC 1 Va Harmonics & SRC 1 Va Harm[19] \\
\hline 8085 & SRC 1 Va Harmonics & SRC 1 Va Harm[20] \\
\hline 8086 & SRC 1 Va Harmonics & SRC 1 Va Harm[21] \\
\hline 8087 & SRC 1 Va Harmonics & SRC 1 Va Harm[22] \\
\hline 8088 & SRC 1 Va Harmonics & SRC 1 Va Harm[23] \\
\hline 8089 & SRC 1 Vb THD & SRC 1 Vb THD \\
\hline 8090 & SRC 1 Vb Harmonics & SRC 1 Vb Harm[0] \\
\hline 8091 & SRC 1 Vb Harmonics & SRC 1 Vb Harm[1] \\
\hline 8092 & SRC 1 Vb Harmonics & SRC 1 Vb Harm[2] \\
\hline 8093 & SRC 1 Vb Harmonics & SRC 1 Vb Harm[3] \\
\hline 8094 & SRC 1 Vb Harmonics & SRC 1 Vb Harm[4] \\
\hline 8095 & SRC 1 Vb Harmonics & SRC 1 Vb Harm[5] \\
\hline 8096 & SRC 1 Vb Harmonics & SRC 1 Vb Harm[6] \\
\hline 8097 & SRC 1 Vb Harmonics & SRC 1 Vb Harm[7] \\
\hline 8098 & SRC 1 Vb Harmonics & SRC 1 Vb Harm[8] \\
\hline 8099 & SRC 1 Vb Harmonics & SRC 1 Vb Harm[9] \\
\hline 8100 & SRC 1 Vb Harmonics & SRC 1 Vb Harm[10] \\
\hline 8101 & SRC 1 Vb Harmonics & SRC 1 Vb Harm[11] \\
\hline 8102 & SRC 1 Vb Harmonics & SRC 1 Vb Harm[12] \\
\hline 8103 & SRC 1 Vb Harmonics & SRC 1 Vb Harm[13] \\
\hline 8104 & SRC 1 Vb Harmonics & SRC 1 Vb Harm[14] \\
\hline 8105 & SRC 1 Vb Harmonics & SRC 1 Vb Harm[15] \\
\hline 8106 & SRC 1 Vb Harmonics & SRC 1 Vb Harm[16] \\
\hline 8107 & SRC 1 Vb Harmonics & SRC 1 Vb Harm[17] \\
\hline 8108 & SRC 1 Vb Harmonics & SRC 1 Vb Harm[18] \\
\hline 8109 & SRC 1 Vb Harmonics & SRC 1 Vb Harm[19] \\
\hline 8110 & SRC 1 Vb Harmonics & SRC 1 Vb Harm[20] \\
\hline 8111 & SRC 1 Vb Harmonics & SRC 1 Vb Harm[21] \\
\hline 8112 & SRC 1 Vb Harmonics & SRC 1 Vb Harm[22] \\
\hline 8113 & SRC 1 Vb Harmonics & SRC 1 Vb Harm[23] \\
\hline
\end{tabular}

Table A-1: FLEXANALOG DATA ITEMS (Sheet 5 of 13)
\begin{tabular}{|c|c|c|}
\hline ADDR & DATA ITEM & FLEXANALOG NAME \\
\hline 8114 & SRC 1 Vc THD & SRC 1 Vc THD \\
\hline 8115 & SRC 1 Vc Harmonics & SRC 1 Vc Harm[0] \\
\hline 8116 & SRC 1 Vc Harmonics & SRC 1 Vc Harm[1] \\
\hline 8117 & SRC 1 Vc Harmonics & SRC 1 Vc Harm[2] \\
\hline 8118 & SRC 1 Vc Harmonics & SRC 1 Vc Harm[3] \\
\hline 8119 & SRC 1 Vc Harmonics & SRC 1 Vc Harm[4] \\
\hline 8120 & SRC 1 Vc Harmonics & SRC 1 Vc Harm[5] \\
\hline 8121 & SRC 1 Vc Harmonics & SRC 1 Vc Harm[6] \\
\hline 8122 & SRC 1 Vc Harmonics & SRC 1 Vc Harm[7] \\
\hline 8123 & SRC 1 Vc Harmonics & SRC 1 Vc Harm[8] \\
\hline 8124 & SRC 1 Vc Harmonics & SRC 1 Vc Harm[9] \\
\hline 8125 & SRC 1 Vc Harmonics & SRC 1 Vc Harm[10] \\
\hline 8126 & SRC 1 Vc Harmonics & SRC 1 Vc Harm[11] \\
\hline 8127 & SRC 1 Vc Harmonics & SRC 1 Vc Harm[12] \\
\hline 8128 & SRC 1 Vc Harmonics & SRC 1 Vc Harm[13] \\
\hline 8129 & SRC 1 Vc Harmonics & SRC 1 Vc Harm[14] \\
\hline 8130 & SRC 1 Vc Harmonics & SRC 1 Vc Harm[15] \\
\hline 8131 & SRC 1 Vc Harmonics & SRC 1 Vc Harm[16] \\
\hline 8132 & SRC 1 Vc Harmonics & SRC 1 Vc Harm[17] \\
\hline 8133 & SRC 1 Vc Harmonics & SRC 1 Vc Harm[18] \\
\hline 8134 & SRC 1 Vc Harmonics & SRC 1 Vc Harm[19] \\
\hline 8135 & SRC 1 Vc Harmonics & SRC 1 Vc Harm[20] \\
\hline 8136 & SRC 1 Vc Harmonics & SRC 1 Vc Harm[21] \\
\hline 8137 & SRC 1 Vc Harmonics & SRC 1 Vc Harm[22] \\
\hline 8138 & SRC 1 Vc Harmonics & SRC 1 Vc Harm[23] \\
\hline 8139 & SRC 2 Va THD & SRC 2 Va THD \\
\hline 8140 & SRC 2 Va Harmonics & SRC 2 Va Harm[0] \\
\hline 8141 & SRC 2 Va Harmonics & SRC 2 Va Harm[1] \\
\hline 8142 & SRC 2 Va Harmonics & SRC 2 Va Harm[2] \\
\hline 8143 & SRC 2 Va Harmonics & SRC 2 Va Harm[3] \\
\hline 8144 & SRC 2 Va Harmonics & SRC 2 Va Harm[4] \\
\hline 8145 & SRC 2 Va Harmonics & SRC 2 Va Harm[5] \\
\hline 8146 & SRC 2 Va Harmonics & SRC 2 Va Harm[6] \\
\hline 8147 & SRC 2 Va Harmonics & SRC 2 Va Harm[7] \\
\hline 8148 & SRC 2 Va Harmonics & SRC 2 Va Harm[8] \\
\hline 8149 & SRC 2 Va Harmonics & SRC 2 Va Harm[9] \\
\hline 8150 & SRC 2 Va Harmonics & SRC 2 Va Harm[10] \\
\hline 8151 & SRC 2 Va Harmonics & SRC 2 Va Harm[11] \\
\hline 8152 & SRC 2 Va Harmonics & SRC 2 Va Harm[12] \\
\hline 8153 & SRC 2 Va Harmonics & SRC 2 Va Harm[13] \\
\hline 8154 & SRC 2 Va Harmonics & SRC 2 Va Harm[14] \\
\hline 8155 & SRC 2 Va Harmonics & SRC 2 Va Harm[15] \\
\hline 8156 & SRC 2 Va Harmonics & SRC 2 Va Harm[16] \\
\hline 8157 & SRC 2 Va Harmonics & SRC 2 Va Harm[17] \\
\hline 8158 & SRC 2 Va Harmonics & SRC 2 Va Harm[18] \\
\hline 8159 & SRC 2 Va Harmonics & SRC 2 Va Harm[19] \\
\hline 8160 & SRC 2 Va Harmonics & SRC 2 Va Harm[20] \\
\hline 8161 & SRC 2 Va Harmonics & SRC 2 Va Harm[21] \\
\hline 8162 & SRC 2 Va Harmonics & SRC 2 Va Harm[22] \\
\hline 8163 & SRC 2 Va Harmonics & SRC 2 Va Harm[23] \\
\hline 8164 & SRC 2 Vb THD & SRC 2 Vb THD \\
\hline 8165 & SRC 2 Vb Harmonics & SRC 2 Vb Harm[0] \\
\hline
\end{tabular}

Table A-1: FLEXANALOG DATA ITEMS (Sheet 6 of 13)
\begin{tabular}{|c|c|c|}
\hline ADDR & DATA ITEM & FLEXANALOG NAME \\
\hline 8166 & SRC 2 Vb Harmonics & SRC 2 Vb Harm[1] \\
\hline 8167 & SRC 2 Vb Harmonics & SRC 2 Vb Harm[2] \\
\hline 8168 & SRC 2 Vb Harmonics & SRC 2 Vb Harm[3] \\
\hline 8169 & SRC 2 Vb Harmonics & SRC 2 Vb Harm[4] \\
\hline 8170 & SRC 2 Vb Harmonics & SRC 2 Vb Harm[5] \\
\hline 8171 & SRC 2 Vb Harmonics & SRC 2 Vb Harm[6] \\
\hline 8172 & SRC 2 Vb Harmonics & SRC 2 Vb Harm[7] \\
\hline 8173 & SRC 2 Vb Harmonics & SRC 2 Vb Harm[8] \\
\hline 8174 & SRC 2 Vb Harmonics & SRC 2 Vb Harm[9] \\
\hline 8175 & SRC 2 Vb Harmonics & SRC 2 Vb Harm[10] \\
\hline 8176 & SRC 2 Vb Harmonics & SRC 2 Vb Harm[11] \\
\hline 8177 & SRC 2 Vb Harmonics & SRC 2 Vb Harm[12] \\
\hline 8178 & SRC 2 Vb Harmonics & SRC 2 Vb Harm[13] \\
\hline 8179 & SRC 2 Vb Harmonics & SRC 2 Vb Harm[14] \\
\hline 8180 & SRC 2 Vb Harmonics & SRC 2 Vb Harm[15] \\
\hline 8181 & SRC 2 Vb Harmonics & SRC 2 Vb Harm[16] \\
\hline 8182 & SRC 2 Vb Harmonics & SRC 2 Vb Harm[17] \\
\hline 8183 & SRC 2 Vb Harmonics & SRC 2 Vb Harm[18] \\
\hline 8184 & SRC 2 Vb Harmonics & SRC 2 Vb Harm[19] \\
\hline 8185 & SRC 2 Vb Harmonics & SRC 2 Vb Harm[20] \\
\hline 8186 & SRC 2 Vb Harmonics & SRC 2 Vb Harm[21] \\
\hline 8187 & SRC 2 Vb Harmonics & SRC 2 Vb Harm[22] \\
\hline 8188 & SRC 2 Vb Harmonics & SRC 2 Vb Harm[23] \\
\hline 8189 & SRC 2 Vc THD & SRC 2 Vc THD \\
\hline 8190 & SRC 2 Vc Harmonics & SRC 2 Vc Harm[0] \\
\hline 8191 & SRC 2 Vc Harmonics & SRC 2 Vc Harm[1] \\
\hline 8192 & SRC 2 Vc Harmonics & SRC 2 Vc Harm[2] \\
\hline 8193 & SRC 2 Vc Harmonics & SRC 2 Vc Harm[3] \\
\hline 8194 & SRC 2 Vc Harmonics & SRC 2 Vc Harm[4] \\
\hline 8195 & SRC 2 Vc Harmonics & SRC 2 Vc Harm[5] \\
\hline 8196 & SRC 2 Vc Harmonics & SRC 2 Vc Harm[6] \\
\hline 8197 & SRC 2 Vc Harmonics & SRC 2 Vc Harm[7] \\
\hline 8198 & SRC 2 Vc Harmonics & SRC 2 Vc Harm[8] \\
\hline 8199 & SRC 2 Vc Harmonics & SRC 2 Vc Harm[9] \\
\hline 8200 & SRC 2 Vc Harmonics & SRC 2 Vc Harm[10] \\
\hline 8201 & SRC 2 Vc Harmonics & SRC 2 Vc Harm[11] \\
\hline 8202 & SRC 2 Vc Harmonics & SRC 2 Vc Harm[12] \\
\hline 8203 & SRC 2 Vc Harmonics & SRC 2 Vc Harm[13] \\
\hline 8204 & SRC 2 Vc Harmonics & SRC 2 Vc Harm[14] \\
\hline 8205 & SRC 2 Vc Harmonics & SRC 2 Vc Harm[15] \\
\hline 8206 & SRC 2 Vc Harmonics & SRC 2 Vc Harm[16] \\
\hline 8207 & SRC 2 Vc Harmonics & SRC 2 Vc Harm[17] \\
\hline 8208 & SRC 2 Vc Harmonics & SRC 2 Vc Harm[18] \\
\hline 8209 & SRC 2 Vc Harmonics & SRC 2 Vc Harm[19] \\
\hline 8210 & SRC 2 Vc Harmonics & SRC 2 Vc Harm[20] \\
\hline 8211 & SRC 2 Vc Harmonics & SRC 2 Vc Harm[21] \\
\hline 8212 & SRC 2 Vc Harmonics & SRC 2 Vc Harm[22] \\
\hline 8213 & SRC 2 Vc Harmonics & SRC 2 Vc Harm[23] \\
\hline 8784 & Hi-Z Status & HIZ Status \\
\hline 8785 & Hi-Z Phase A Arc Confidence & HIZ Phase A Arc Conf \\
\hline 8786 & Hi-Z Phase B Arc Confidence & HIZ Phase B Arc Conf \\
\hline 8787 & Hi-Z Phase C Arc Confidence & HIZ Phase C Arc Conf \\
\hline
\end{tabular}

Table A-1: FLEXANALOG DATA ITEMS (Sheet 7 of 13)
\begin{tabular}{|c|c|c|}
\hline ADDR & DATA ITEM & FLEXANALOG NAME \\
\hline 8788 & Hi-Z Neutral Arc Confidence & HIZ Neutral Arc Conf \\
\hline 9024 & Fault 1 Prefault Ph A Current Mag. & Prefault la Mag [0] \\
\hline 9026 & Fault 1 Prefault Ph A Current Angle & Prefault la Ang [0] \\
\hline 9027 & Fault 1 Prefault Ph B Current Mag. & Prefault lb Mag [0] \\
\hline 9029 & Fault 1 Prefault Ph B Current Angle & Prefault lb Ang [0] \\
\hline 9030 & Fault 1 Prefault Ph C Current Mag. & Prefault Ic Mag [0] \\
\hline 9032 & Fault 1 Prefault Ph C Current Angle & Prefault lc Ang [0] \\
\hline 9033 & Fault 1 Prefault Ph A Voltage Mag. & Prefault Va Mag [0] \\
\hline 9035 & Fault 1 Prefault Ph A Voltage Angle & Prefault Va Ang [0] \\
\hline 9036 & Fault 1 Prefault Ph B Voltage Mag. & Prefault Vb Mag [0] \\
\hline 9038 & Fault 1 Prefault Ph B Voltage Angle & Prefault Vb Ang [0] \\
\hline 9039 & Fault 1 Prefault Ph C Voltage Mag. & Prefault Vc Mag [0] \\
\hline 9041 & Fault 1 Prefault Ph C Voltage Angle & Prefault Vc Ang [0] \\
\hline 9042 & Fault 1 Postfault Ph A Current Mag. & Postfault la Mag [0] \\
\hline 9044 & Fault 1 Postfault Ph A Current Angle & Postfault la Ang [0] \\
\hline 9045 & Fault 1 Postfault Ph B Current Mag. & Postfault lb Mag [0] \\
\hline 9047 & Fault 1 Postfault Ph B Current Angle & Postfault lb Ang [0] \\
\hline 9048 & Fault 1 Postfault Ph C Current Mag. & Postfault Ic Mag [0] \\
\hline 9050 & Fault 1 Postfault Ph C Current Angle & Postfault Ic Ang [0] \\
\hline 9051 & Fault 1 Postfault Ph A Voltage Mag. & Postfault Va Mag [0] \\
\hline 9053 & Fault 1 Postfault Ph A Voltage Angle & Postfault Va Ang [0] \\
\hline 9054 & Fault 1 Postfault Ph B Voltage Mag. & Postfault Vb Mag [0] \\
\hline 9056 & Fault 1 Postfault Ph B Voltage Angle & Postfault Vb Ang [0] \\
\hline 9057 & Fault 1 Postfault Ph C Voltage Mag. & Postfault Vc Mag [0] \\
\hline 9059 & Fault 1 Postfault Ph C Voltage Angle & Postfault Vc Ang [0] \\
\hline 9060 & Fault 1 Type & Fault Type [0] \\
\hline 9061 & Fault 1 Location & Fault Location [0] \\
\hline 9216 & Synchrocheck 1 Delta Voltage & Synchchk 1 Delta V \\
\hline 9218 & Synchrocheck 1 Delta Frequency & Synchchk 1 Delta F \\
\hline 9219 & Synchrocheck 1 Delta Phase & Synchchk 1 Delta Phs \\
\hline 9220 & Synchrocheck 2 Delta Voltage & Synchchk 2 Delta V \\
\hline 9222 & Synchrocheck 2 Delta Frequency & Synchchk 2 Delta F \\
\hline 9223 & Synchrocheck 2 Delta Phase & Synchchk 2 Delta Phs \\
\hline 10112 & SRC 1 la THD & SRC 1 la THD \\
\hline 10113 & SRC 1 lb THD & SRC 1 lb THD \\
\hline 10114 & SRC 1 Ic THD & SRC 1 Ic THD \\
\hline 10115 & SRC 1 In THD & SRC 1 In THD \\
\hline 10240 & SRC 1 la THD & SRC 1 la THD \\
\hline 10241 & SRC 1 la Harmonics & SRC 1 la Harm[0] \\
\hline 10242 & SRC 1 la Harmonics & SRC 1 la Harm[1] \\
\hline 10243 & SRC 1 la Harmonics & SRC 1 la Harm[2] \\
\hline 10244 & SRC 1 la Harmonics & SRC 1 la Harm[3] \\
\hline 10245 & SRC 1 la Harmonics & SRC 1 la Harm[4] \\
\hline 10246 & SRC 1 la Harmonics & SRC 1 la Harm[5] \\
\hline 10247 & SRC 1 la Harmonics & SRC 1 la Harm[6] \\
\hline 10248 & SRC 1 la Harmonics & SRC 1 la Harm[7] \\
\hline 10249 & SRC 1 la Harmonics & SRC 1 la Harm[8] \\
\hline 10250 & SRC 1 la Harmonics & SRC 1 la Harm[9] \\
\hline 10251 & SRC 1 la Harmonics & SRC 1 la Harm[10] \\
\hline 10252 & SRC 1 la Harmonics & SRC 1 la Harm[11] \\
\hline 10253 & SRC 1 la Harmonics & SRC 1 la Harm[12] \\
\hline 10254 & SRC 1 la Harmonics & SRC 1 la Harm[13] \\
\hline
\end{tabular}

Table A-1: FLEXANALOG DATA ITEMS (Sheet 8 of 13)
\begin{tabular}{|c|c|c|}
\hline ADDR & DATA ITEM & FLEXANALOG NAME \\
\hline 10255 & SRC 1 la Harmonics & SRC 1 la Harm[14] \\
\hline 10256 & SRC 1 la Harmonics & SRC 1 la Harm[15] \\
\hline 10257 & SRC 1 la Harmonics & SRC 1 la Harm[16] \\
\hline 10258 & SRC 1 la Harmonics & SRC 1 la Harm[17] \\
\hline 10259 & SRC 1 la Harmonics & SRC 1 la Harm[18] \\
\hline 10260 & SRC 1 la Harmonics & SRC 1 la Harm[19] \\
\hline 10261 & SRC 1 la Harmonics & SRC 1 la Harm[20] \\
\hline 10262 & SRC 1 la Harmonics & SRC 1 la Harm[21] \\
\hline 10263 & SRC 1 la Harmonics & SRC 1 la Harm[22] \\
\hline 10264 & SRC 1 la Harmonics & SRC 1 la Harm[23] \\
\hline 10273 & SRC 1 lb THD & SRC 1 lb THD \\
\hline 10274 & SRC 1 lb Harmonics & SRC 1 lb Harm[0] \\
\hline 10275 & SRC 1 lb Harmonics & SRC 1 lb Harm[1] \\
\hline 10276 & SRC 1 lb Harmonics & SRC 1 lb Harm[2] \\
\hline 10277 & SRC 1 lb Harmonics & SRC 1 lb Harm[3] \\
\hline 10278 & SRC 1 lb Harmonics & SRC 1 lb Harm[4] \\
\hline 10279 & SRC 1 lb Harmonics & SRC 1 lb Harm[5] \\
\hline 10280 & SRC 1 lb Harmonics & SRC 1 Ib Harm[6] \\
\hline 10281 & SRC 1 lb Harmonics & SRC 1 lb Harm[7] \\
\hline 10282 & SRC 1 lb Harmonics & SRC 1 lb Harm[8] \\
\hline 10283 & SRC 1 lb Harmonics & SRC 1 lb Harm[9] \\
\hline 10284 & SRC 1 lb Harmonics & SRC 1 lb Harm[10] \\
\hline 10285 & SRC 1 lb Harmonics & SRC 1 lb Harm[11] \\
\hline 10286 & SRC 1 lb Harmonics & SRC 1 Ib Harm[12] \\
\hline 10287 & SRC 1 lb Harmonics & SRC 1 Ib Harm[13] \\
\hline 10288 & SRC 1 lb Harmonics & SRC 1 Ib Harm[14] \\
\hline 10289 & SRC 1 lb Harmonics & SRC 1 Ib Harm[15] \\
\hline 10290 & SRC 1 lb Harmonics & SRC 1 lb Harm[16] \\
\hline 10291 & SRC 1 lb Harmonics & SRC 1 lb Harm[17] \\
\hline 10292 & SRC 1 lb Harmonics & SRC 1 lb Harm[18] \\
\hline 10293 & SRC 1 lb Harmonics & SRC 1 lb Harm[19] \\
\hline 10294 & SRC 1 lb Harmonics & SRC 1 lb Harm[20] \\
\hline 10295 & SRC 1 lb Harmonics & SRC 1 lb Harm[21] \\
\hline 10296 & SRC 1 lb Harmonics & SRC 1 Ib Harm[22] \\
\hline 10297 & SRC 1 lb Harmonics & SRC 1 Ib Harm[23] \\
\hline 10306 & SRC 1 Ic THD & SRC 1 Ic THD \\
\hline 10307 & SRC 1 Ic Harmonics & SRC 1 Ic Harm[0] \\
\hline 10308 & SRC 1 Ic Harmonics & SRC 1 Ic Harm[1] \\
\hline 10309 & SRC 1 Ic Harmonics & SRC 1 Ic Harm[2] \\
\hline 10310 & SRC 1 Ic Harmonics & SRC 1 Ic Harm[3] \\
\hline 10311 & SRC 1 Ic Harmonics & SRC 1 Ic Harm[4] \\
\hline 10312 & SRC 1 Ic Harmonics & SRC 1 Ic Harm[5] \\
\hline 10313 & SRC 1 Ic Harmonics & SRC 1 Ic Harm[6] \\
\hline 10314 & SRC 1 Ic Harmonics & SRC 1 Ic Harm[7] \\
\hline 10315 & SRC 1 Ic Harmonics & SRC 1 Ic Harm[8] \\
\hline 10316 & SRC 1 Ic Harmonics & SRC 1 Ic Harm[9] \\
\hline 10317 & SRC 1 Ic Harmonics & SRC 1 Ic Harm[10] \\
\hline 10318 & SRC 1 Ic Harmonics & SRC 1 Ic Harm[11] \\
\hline 10319 & SRC 1 Ic Harmonics & SRC 1 Ic Harm[12] \\
\hline 10320 & SRC 1 Ic Harmonics & SRC 1 Ic Harm[13] \\
\hline 10321 & SRC 1 Ic Harmonics & SRC 1 Ic Harm[14] \\
\hline 10322 & SRC 1 Ic Harmonics & SRC 1 Ic Harm[15] \\
\hline
\end{tabular}

Table A-1: FLEXANALOG DATA ITEMS (Sheet 9 of 13)
\begin{tabular}{|c|c|c|}
\hline ADDR & DATA ITEM & FLEXANALOG NAME \\
\hline 10323 & SRC 1 Ic Harmonics & SRC 1 Ic Harm[16] \\
\hline 10324 & SRC 1 Ic Harmonics & SRC 1 Ic Harm[17] \\
\hline 10325 & SRC 1 Ic Harmonics & SRC 1 Ic Harm[18] \\
\hline 10326 & SRC 1 Ic Harmonics & SRC 1 Ic Harm[19] \\
\hline 10327 & SRC 1 Ic Harmonics & SRC 1 Ic Harm[20] \\
\hline 10328 & SRC 1 Ic Harmonics & SRC 1 Ic Harm[21] \\
\hline 10329 & SRC 1 Ic Harmonics & SRC 1 Ic Harm[22] \\
\hline 10330 & SRC 1 Ic Harmonics & SRC 1 Ic Harm[23] \\
\hline 10339 & SRC 2 la THD & SRC 2 la THD \\
\hline 10340 & SRC 2 la Harmonics & SRC 2 la Harm[0] \\
\hline 10341 & SRC 2 la Harmonics & SRC 2 la Harm[1] \\
\hline 10342 & SRC 2 la Harmonics & SRC 2 la Harm[2] \\
\hline 10343 & SRC 2 la Harmonics & SRC 2 la Harm[3] \\
\hline 10344 & SRC 2 la Harmonics & SRC 2 la Harm[4] \\
\hline 10345 & SRC 2 la Harmonics & SRC 2 la Harm[5] \\
\hline 10346 & SRC 2 la Harmonics & SRC 2 la Harm[6] \\
\hline 10347 & SRC 2 la Harmonics & SRC 2 la Harm[7] \\
\hline 10348 & SRC 2 la Harmonics & SRC 2 la Harm[8] \\
\hline 10349 & SRC 2 la Harmonics & SRC 2 la Harm[9] \\
\hline 10350 & SRC 2 la Harmonics & SRC 2 la Harm[10] \\
\hline 10351 & SRC 2 la Harmonics & SRC 2 la Harm[11] \\
\hline 10352 & SRC 2 la Harmonics & SRC 2 la Harm[12] \\
\hline 10353 & SRC 2 la Harmonics & SRC 2 la Harm[13] \\
\hline 10354 & SRC 2 la Harmonics & SRC 2 la Harm[14] \\
\hline 10355 & SRC 2 la Harmonics & SRC 2 la Harm[15] \\
\hline 10356 & SRC 2 la Harmonics & SRC 2 la Harm[16] \\
\hline 10357 & SRC 2 la Harmonics & SRC 2 la Harm[17] \\
\hline 10358 & SRC 2 la Harmonics & SRC 2 la Harm[18] \\
\hline 10359 & SRC 2 la Harmonics & SRC 2 la Harm[19] \\
\hline 10360 & SRC 2 la Harmonics & SRC 2 la Harm[20] \\
\hline 10361 & SRC 2 la Harmonics & SRC 2 la Harm[21] \\
\hline 10362 & SRC 2 la Harmonics & SRC 2 la Harm[22] \\
\hline 10363 & SRC 2 la Harmonics & SRC 2 la Harm[23] \\
\hline 10372 & SRC 2 lb THD & SRC 2 lb THD \\
\hline 10373 & SRC 2 lb Harmonics & SRC 2 lb Harm[0] \\
\hline 10374 & SRC 2 Ib Harmonics & SRC 2 Ib Harm[1] \\
\hline 10375 & SRC 2 lb Harmonics & SRC 2 lb Harm[2] \\
\hline 10376 & SRC 2 lb Harmonics & SRC 2 lb Harm[3] \\
\hline 10377 & SRC 2 lb Harmonics & SRC 2 Ib Harm[4] \\
\hline 10378 & SRC 2 lb Harmonics & SRC 2 lb Harm[5] \\
\hline 10379 & SRC 2 lb Harmonics & SRC 2 lb Harm[6] \\
\hline 10380 & SRC 2 lb Harmonics & SRC 2 lb Harm[7] \\
\hline 10381 & SRC 2 lb Harmonics & SRC 2 Ib Harm[8] \\
\hline 10382 & SRC 2 lb Harmonics & SRC 2 Ib Harm[9] \\
\hline 10383 & SRC 2 lb Harmonics & SRC 2 lb Harm[10] \\
\hline 10384 & SRC 2 lb Harmonics & SRC 2 lb Harm[11] \\
\hline 10385 & SRC 2 lb Harmonics & SRC 2 lb Harm[12] \\
\hline 10386 & SRC 2 lb Harmonics & SRC 2 lb Harm[13] \\
\hline 10387 & SRC 2 lb Harmonics & SRC 2 lb Harm[14] \\
\hline 10388 & SRC 2 lb Harmonics & SRC 2 lb Harm[15] \\
\hline 10389 & SRC 2 lb Harmonics & SRC 2 lb Harm[16] \\
\hline 10390 & SRC 2 lb Harmonics & SRC 2 lb Harm[17] \\
\hline
\end{tabular}

Table A-1: FLEXANALOG DATA ITEMS (Sheet 10 of 13)
\begin{tabular}{|c|c|c|}
\hline ADDR & DATA ITEM & FLEXANALOG NAME \\
\hline 10391 & SRC 2 Ib Harmonics & SRC 2 lb Harm[18] \\
\hline 10392 & SRC 2 lb Harmonics & SRC 2 lb Harm[19] \\
\hline 10393 & SRC 2 lb Harmonics & SRC 2 lb Harm[20] \\
\hline 10394 & SRC 2 lb Harmonics & SRC 2 lb Harm[21] \\
\hline 10395 & SRC 2 lb Harmonics & SRC 2 lb Harm[22] \\
\hline 10396 & SRC 2 lb Harmonics & SRC 2 lb Harm[23] \\
\hline 10405 & SRC 2 Ic THD & SRC 2 Ic THD \\
\hline 10406 & SRC 2 Ic Harmonics & SRC 2 Ic Harm[0] \\
\hline 10407 & SRC 2 Ic Harmonics & SRC 2 Ic Harm[1] \\
\hline 10408 & SRC 2 Ic Harmonics & SRC 2 Ic Harm[2] \\
\hline 10409 & SRC 2 Ic Harmonics & SRC 2 Ic Harm[3] \\
\hline 10410 & SRC 2 Ic Harmonics & SRC 2 Ic Harm[4] \\
\hline 10411 & SRC 2 Ic Harmonics & SRC 2 Ic Harm[5] \\
\hline 10412 & SRC 2 Ic Harmonics & SRC 2 Ic Harm[6] \\
\hline 10413 & SRC 2 Ic Harmonics & SRC 2 Ic Harm[7] \\
\hline 10414 & SRC 2 Ic Harmonics & SRC 2 Ic Harm[8] \\
\hline 10415 & SRC 2 Ic Harmonics & SRC 2 Ic Harm[9] \\
\hline 10416 & SRC 2 Ic Harmonics & SRC 2 Ic Harm[10] \\
\hline 10417 & SRC 2 Ic Harmonics & SRC 2 Ic Harm[11] \\
\hline 10418 & SRC 2 Ic Harmonics & SRC 2 Ic Harm[12] \\
\hline 10419 & SRC 2 Ic Harmonics & SRC 2 Ic Harm[13] \\
\hline 10420 & SRC 2 Ic Harmonics & SRC 2 Ic Harm[14] \\
\hline 10421 & SRC 2 Ic Harmonics & SRC 2 Ic Harm[15] \\
\hline 10422 & SRC 2 Ic Harmonics & SRC 2 Ic Harm[16] \\
\hline 10423 & SRC 2 Ic Harmonics & SRC 2 Ic Harm[17] \\
\hline 10424 & SRC 2 Ic Harmonics & SRC 2 Ic Harm[18] \\
\hline 10425 & SRC 2 Ic Harmonics & SRC 2 Ic Harm[19] \\
\hline 10426 & SRC 2 Ic Harmonics & SRC 2 Ic Harm[20] \\
\hline 10427 & SRC 2 Ic Harmonics & SRC 2 Ic Harm[21] \\
\hline 10428 & SRC 2 Ic Harmonics & SRC 2 Ic Harm[22] \\
\hline 10429 & SRC 2 Ic Harmonics & SRC 2 Ic Harm[23] \\
\hline 13504 & DCMA Inputs 1 Value & DCMA Inputs 1 Value \\
\hline 13506 & DCMA Inputs 2 Value & DCMA Inputs 2 Value \\
\hline 13508 & DCMA Inputs 3 Value & DCMA Inputs 3 Value \\
\hline 13510 & DCMA Inputs 4 Value & DCMA Inputs 4 Value \\
\hline 13512 & DCMA Inputs 5 Value & DCMA Inputs 5 Value \\
\hline 13514 & DCMA Inputs 6 Value & DCMA Inputs 6 Value \\
\hline 13516 & DCMA Inputs 7 Value & DCMA Inputs 7 Value \\
\hline 13518 & DCMA Inputs 8 Value & DCMA Inputs 8 Value \\
\hline 13520 & DCMA Inputs 9 Value & DCMA Inputs 9 Value \\
\hline 13522 & DCMA Inputs 10 Value & DCMA Inputs 10 Value \\
\hline 13524 & DCMA Inputs 11 Value & DCMA Inputs 11 Value \\
\hline 13526 & DCMA Inputs 12 Value & DCMA Inputs 12 Value \\
\hline 13528 & DCMA Inputs 13 Value & DCMA Inputs 13 Value \\
\hline 13530 & DCMA Inputs 14 Value & DCMA Inputs 14 Value \\
\hline 13532 & DCMA Inputs 15 Value & DCMA Inputs 15 Value \\
\hline 13534 & DCMA Inputs 16 Value & DCMA Inputs 16 Value \\
\hline 13536 & DCMA Inputs 17 Value & DCMA Inputs 17 Value \\
\hline 13538 & DCMA Inputs 18 Value & DCMA Inputs 18 Value \\
\hline 13540 & DCMA Inputs 19 Value & DCMA Inputs 19 Value \\
\hline 13542 & DCMA Inputs 20 Value & DCMA Inputs 20 Value \\
\hline 13544 & DCMA Inputs 21 Value & DCMA Inputs 21 Value \\
\hline
\end{tabular}

Table A-1: FLEXANALOG DATA ITEMS (Sheet 11 of 13)
\begin{tabular}{|c|c|c|}
\hline ADDR & DATA ITEM & FLEXANALOG NAME \\
\hline 13546 & DCMA Inputs 22 Value & DCMA Inputs 22 Value \\
\hline 13548 & DCMA Inputs 23 Value & DCMA Inputs 23 Value \\
\hline 13550 & DCMA Inputs 24 Value & DCMA Inputs 24 Value \\
\hline 13552 & RTD Inputs 1 Value & RTD Inputs 1 Value \\
\hline 13553 & RTD Inputs 2 Value & RTD Inputs 2 Value \\
\hline 13554 & RTD Inputs 3 Value & RTD Inputs 3 Value \\
\hline 13555 & RTD Inputs 4 Value & RTD Inputs 4 Value \\
\hline 13556 & RTD Inputs 5 Value & RTD Inputs 5 Value \\
\hline 13557 & RTD Inputs 6 Value & RTD Inputs 6 Value \\
\hline 13558 & RTD Inputs 7 Value & RTD Inputs 7 Value \\
\hline 13559 & RTD Inputs 8 Value & RTD Inputs 8 Value \\
\hline 13560 & RTD Inputs 9 Value & RTD Inputs 9 Value \\
\hline 13561 & RTD Inputs 10 Value & RTD Inputs 10 Value \\
\hline 13562 & RTD Inputs 11 Value & RTD Inputs 11 Value \\
\hline 13563 & RTD Inputs 12 Value & RTD Inputs 12 Value \\
\hline 13564 & RTD Inputs 13 Value & RTD Inputs 13 Value \\
\hline 13565 & RTD Inputs 14 Value & RTD Inputs 14 Value \\
\hline 13566 & RTD Inputs 15 Value & RTD Inputs 15 Value \\
\hline 13567 & RTD Inputs 16 Value & RTD Inputs 16 Value \\
\hline 13568 & RTD Inputs 17 Value & RTD Inputs 17 Value \\
\hline 13569 & RTD Inputs 18 Value & RTD Inputs 18 Value \\
\hline 13570 & RTD Inputs 19 Value & RTD Inputs 19 Value \\
\hline 13571 & RTD Inputs 20 Value & RTD Inputs 20 Value \\
\hline 13572 & RTD Inputs 21 Value & RTD Inputs 21 Value \\
\hline 13573 & RTD Inputs 22 Value & RTD Inputs 22 Value \\
\hline 13574 & RTD Inputs 23 Value & RTD Inputs 23 Value \\
\hline 13575 & RTD Inputs 24 Value & RTD Inputs 24 Value \\
\hline 13576 & RTD Inputs 25 Value & RTD Inputs 25 Value \\
\hline 13577 & RTD Inputs 26 Value & RTD Inputs 26 Value \\
\hline 13578 & RTD Inputs 27 Value & RTD Inputs 27 Value \\
\hline 13579 & RTD Inputs 28 Value & RTD Inputs 28 Value \\
\hline 13580 & RTD Inputs 29 Value & RTD Inputs 29 Value \\
\hline 13581 & RTD Inputs 30 Value & RTD Inputs 30 Value \\
\hline 13582 & RTD Inputs 31 Value & RTD Inputs 31 Value \\
\hline 13583 & RTD Inputs 32 Value & RTD Inputs 32 Value \\
\hline 13584 & RTD Inputs 33 Value & RTD Inputs 33 Value \\
\hline 13585 & RTD Inputs 34 Value & RTD Inputs 34 Value \\
\hline 13586 & RTD Inputs 35 Value & RTD Inputs 35 Value \\
\hline 13587 & RTD Inputs 36 Value & RTD Inputs 36 Value \\
\hline 13588 & RTD Inputs 37 Value & RTD Inputs 37 Value \\
\hline 13589 & RTD Inputs 38 Value & RTD Inputs 38 Value \\
\hline 13590 & RTD Inputs 39 Value & RTD Inputs 39 Value \\
\hline 13591 & RTD Inputs 40 Value & RTD Inputs 40 Value \\
\hline 13592 & RTD Inputs 41 Value & RTD Inputs 41 Value \\
\hline 13593 & RTD Inputs 42 Value & RTD Inputs 42 Value \\
\hline 13594 & RTD Inputs 43 Value & RTD Inputs 43 Value \\
\hline 13595 & RTD Inputs 44 Value & RTD Inputs 44 Value \\
\hline 13596 & RTD Inputs 45 Value & RTD Inputs 45 Value \\
\hline 13597 & RTD Inputs 46 Value & RTD Inputs 46 Value \\
\hline 13598 & RTD Inputs 47 Value & RTD Inputs 47 Value \\
\hline 13599 & RTD Inputs 48 Value & RTD Inputs 48 Value \\
\hline 32768 & Tracking Frequency & Tracking Frequency \\
\hline
\end{tabular}

Table A-1: FLEXANALOG DATA ITEMS (Sheet 12 of 13)
\begin{tabular}{|c|c|c|}
\hline ADDR & DATA ITEM & FLEXANALOG NAME \\
\hline 39425 & FlexElement 1 Actual & FlexElement 1 Value \\
\hline 39427 & FlexElement 2 Actual & FlexElement 2 Value \\
\hline 39429 & FlexElement 3 Actual & FlexElement 3 Value \\
\hline 39431 & FlexElement 4 Actual & FlexElement 4 Value \\
\hline 39433 & FlexElement 5 Actual & FlexElement 5 Value \\
\hline 39435 & FlexElement 6 Actual & FlexElement 6 Value \\
\hline 39437 & FlexElement 7 Actual & FlexElement 7 Value \\
\hline 39439 & FlexElement 8 Actual & FlexElement 8 Value \\
\hline 40971 & Current Setting Group & Active Setting Group \\
\hline 63236 & Hi-Z la RMS Current & HZ la RMS \\
\hline 63238 & Hi-Z lb RMS Current & HZ lb RMS \\
\hline 63240 & Hi-Z Ic RMS Current & HZ Ic RMS \\
\hline 63242 & Hi-Z In RMS Current & HZ In RMS \\
\hline 63244 & Hi-Z la Odd Harmonics & HZ la Odd Harmonics \\
\hline 63246 & Hi-Z lb Odd Harmonics & HZ lb Odd Harmonics \\
\hline 63248 & Hi-Z Ic Odd Harmonics & HZ Ic Odd Harmonics \\
\hline 63250 & Hi-Z Ig Odd Harmonics & HZ Ig Odd Harmonics \\
\hline 63252 & Hi-Z la Even Harmonics & HZ la Even Harmonics \\
\hline 63254 & Hi-Z lb Even Harmonics & HZ lb Even Harmonics \\
\hline 63256 & Hi-Z Ic Even Harmonics & HZ Ic Even Harmonics \\
\hline 63258 & Hi-Z Ig Even Harmonics & HZ Ig Even Harmonics \\
\hline 63260 & Hi-Z la Non Harmonics & HZ la Non Harmonics \\
\hline 63262 & Hi-Z lb Non Harmonics & HZ lb Non Harmonics \\
\hline 63264 & \(\mathrm{Hi}-\mathrm{Z}\) Ic Non Harmonics & HZ Ic Non Harmonics \\
\hline 63266 & Hi-Z Ig Non Harmonics & HZ Ig Non Harmonics \\
\hline 63268 & Hi-Z Ig Harmonics & Ig Harmonics[1] \\
\hline 63269 & Hi-Z Ig Harmonics & Ig Harmonics[2] \\
\hline 63270 & Hi-Z Ig Harmonics & Ig Harmonics[3] \\
\hline 63271 & Hi-Z Ig Harmonics & Ig Harmonics[4] \\
\hline 63272 & Hi-Z Ig Harmonics & Ig Harmonics[5] \\
\hline 63273 & Hi-Z Ig Harmonics & Ig Harmonics[6] \\
\hline 63274 & Hi-Z Ig Harmonics & Ig Harmonics[7] \\
\hline 63275 & Hi-Z Ig Harmonics & Ig Harmonics[8] \\
\hline 63276 & Hi-Z Ig Harmonics & Ig Harmonics[9] \\
\hline 63277 & Hi-Z Ig Harmonics & Ig Harmonics[10] \\
\hline 63278 & Hi-Z Ig Harmonics & Ig Harmonics[11] \\
\hline 63279 & Hi-Z Ig Harmonics & Ig Harmonics[12] \\
\hline 63280 & Hi-Z Ig Harmonics & Ig Harmonics[13] \\
\hline 63281 & Hi-Z Ig Harmonics & Ig Harmonics[14] \\
\hline 63282 & Hi-Z Ig Harmonics & Ig Harmonics[15] \\
\hline 63283 & Hi-Z Ig Harmonics & Ig Harmonics[16] \\
\hline 63284 & Hi-Z Ig Harmonics & Ig Harmonics[17] \\
\hline 63285 & Hi-Z Ig Harmonics & Ig Harmonics[18] \\
\hline 63286 & Hi-Z Ig Harmonics & Ig Harmonics[19] \\
\hline 63287 & Hi-Z Ig Harmonics & Ig Harmonics[20] \\
\hline 63288 & Hi-Z Ig Harmonics & Ig Harmonics[21] \\
\hline 63289 & Hi-Z Ig Harmonics & Ig Harmonics[22] \\
\hline 63290 & Hi-Z Ig Harmonics & Ig Harmonics[23] \\
\hline 63291 & Hi-Z Ig Harmonics & Ig Harmonics[24] \\
\hline 63292 & Hi-Z Ig Harmonics & Ig Harmonics[25] \\
\hline 63293 & Hi-Z Ig Harmonics & Ig Harmonics[26] \\
\hline 63294 & Hi-Z Ig Harmonics & Ig Harmonics[27] \\
\hline
\end{tabular}

\section*{APPENDIX A}

Table A-1: FLEXANALOG DATA ITEMS (Sheet 13 of 13)
\begin{tabular}{|c|c|c|}
\hline ADDR & DATA ITEM & FLEXANALOG NAME \\
\hline 63295 & Hi-Z Ig Harmonics & Ig Harmonics[28] \\
\hline 63296 & Hi-Z Ig Harmonics & Ig Harmonics[29] \\
\hline 63297 & Hi-Z Ig Harmonics & Ig Harmonics[30] \\
\hline 63298 & Hi-Z Ig Harmonics & Ig Harmonics[31] \\
\hline 63299 & Hi-Z Ig Harmonics & Ig Harmonics[32] \\
\hline 63300 & Hi-Z Ig Harmonics & Ig Harmonics[33] \\
\hline 63301 & Hi-Z Ig Harmonics & Ig Harmonics[34] \\
\hline 63302 & Hi-Z Ig Harmonics & Ig Harmonics[35] \\
\hline 63303 & Hi-Z Ig Harmonics & Ig Harmonics[36] \\
\hline 63304 & Hi-Z Ig Harmonics & Ig Harmonics[37] \\
\hline 63305 & Hi-Z Ig Harmonics & Ig Harmonics[38] \\
\hline 63306 & Hi-Z Ig Harmonics & Ig Harmonics[39] \\
\hline 63307 & Hi-Z Ig Harmonics & Ig Harmonics[40] \\
\hline 63308 & Hi-Z Ig Harmonics & Ig Harmonics[41] \\
\hline 63309 & Hi-Z Ig Harmonics & Ig Harmonics[42] \\
\hline 63310 & Hi-Z Ig Harmonics & Ig Harmonics[43] \\
\hline 63311 & Hi-Z Ig Harmonics & Ig Harmonics[44] \\
\hline 63312 & Hi-Z Ig Harmonics & Ig Harmonics[45] \\
\hline 63313 & Hi-Z Ig Harmonics & Ig Harmonics[46] \\
\hline 63314 & Hi-Z Ig Harmonics & Ig Harmonics[47] \\
\hline 63315 & Hi-Z Ig Harmonics & Ig Harmonics[48] \\
\hline 63316 & Hi-Z Ig Harmonics & Ig Harmonics[49] \\
\hline 63317 & Hi-Z Ig Harmonics & Ig Harmonics[50] \\
\hline 63318 & Hi-Z Ig Harmonics & Ig Harmonics[51] \\
\hline 63319 & Hi-Z Ig Harmonics & Ig Harmonics[52] \\
\hline 63320 & Hi-Z Ig Harmonics & Ig Harmonics[53] \\
\hline 63321 & Hi-Z Ig Harmonics & Ig Harmonics[54] \\
\hline 63322 & Hi-Z Ig Harmonics & Ig Harmonics[55] \\
\hline 63323 & Hi-Z Ig Harmonics & Ig Harmonics[56] \\
\hline 63324 & Hi-Z Ig Harmonics & Ig Harmonics[57] \\
\hline 63325 & Hi-Z Ig Harmonics & Ig Harmonics[58] \\
\hline 63326 & Hi-Z Ig Harmonics & Ig Harmonics[59] \\
\hline 63327 & Hi-Z Ig Harmonics & Ig Harmonics[60] \\
\hline 63328 & Hi-Z Ig Harmonics & Ig Harmonics[61] \\
\hline 63329 & Hi-Z Ig Harmonics & Ig Harmonics[62] \\
\hline 63330 & Hi-Z Ig Harmonics & Ig Harmonics[63] \\
\hline 63331 & Hi-Z Ig Harmonics & Ig Harmonics[64] \\
\hline
\end{tabular}

The UR series relays support a number of communications protocols to allow connection to equipment such as personal computers, RTUs, SCADA masters, and programmable logic controllers. The Modicon Modbus RTU protocol is the most basic protocol supported by the UR. Modbus is available via RS232 or RS485 serial links or via ethernet (using the Modbus/TCP specification). The following description is intended primarily for users who wish to develop their own master communication drivers and applies to the serial Modbus RTU protocol. Note that:
- The UR always acts as a slave device, meaning that it never initiates communications; it only listens and responds to requests issued by a master computer.
- For Modbus \({ }^{\circledR}\), a subset of the Remote Terminal Unit (RTU) protocol format is supported that allows extensive monitoring, programming, and control functions using read and write register commands.
B.1.2 PHYSICAL LAYER

The Modbus \({ }^{\circledR}\) RTU protocol is hardware-independent so that the physical layer can be any of a variety of standard hardware configurations including RS232 and RS485. The relay includes a faceplate (front panel) RS232 port and two rear terminal communications ports that may be configured as RS485, fiber optic, 10BaseT, or 10BaseF. Data flow is half-duplex in all configurations. See Chapter 3 for details on wiring.
Each data byte is transmitted in an asynchronous format consisting of 1 start bit, 8 data bits, 1 stop bit, and possibly 1 parity bit. This produces a 10 or 11 bit data frame. This can be important for transmission through modems at high bit rates (11 bit data frames are not supported by many modems at baud rates greater than 300).

The baud rate and parity are independently programmable for each communications port. Baud rates of 300, 1200, 2400, \(4800,9600,14400,19200,28800,33600,38400,57600\), or 115200 bps are available. Even, odd, and no parity are available. Refer to the Communications section of Chapter 5 for further details.

The master device in any system must know the address of the slave device with which it is to communicate. The relay will not act on a request from a master if the address in the request does not match the relay's slave address (unless the address is the broadcast address - see below).

A single setting selects the slave address used for all ports, with the exception that for the faceplate port, the relay will accept any address when the Modbus \({ }^{\circledR}\) RTU protocol is used.
B.1.3 DATA LINK LAYER

Communications takes place in packets which are groups of asynchronously framed byte data. The master transmits a packet to the slave and the slave responds with a packet. The end of a packet is marked by 'dead-time' on the communications line. The following describes general format for both transmit and receive packets. For exact details on packet formatting, refer to subsequent sections describing each function code.

\section*{Table B-1: MODBUS PACKET FORMAT}
\begin{tabular}{|l|l|}
\hline DESCRIPTION & SIZE \\
\hline \hline SLAVE ADDRESS & 1 byte \\
\hline FUNCTION CODE & 1 byte \\
\hline DATA & N bytes \\
\hline CRC & 2 bytes \\
\hline DEAD TIME & 3.5 bytes transmission time \\
\hline
\end{tabular}
- SLAVE ADDRESS: This is the address of the slave device that is intended to receive the packet sent by the master and to perform the desired action. Each slave device on a communications bus must have a unique address to prevent bus contention. All of the relay's ports have the same address which is programmable from 1 to 254; see Chapter 5 for details. Only the addressed slave will respond to a packet that starts with its address. Note that the faceplate port is an exception to this rule; it will act on a message containing any slave address.
A master transmit packet with slave address 0 indicates a broadcast command. All slaves on the communication link take action based on the packet, but none respond to the master. Broadcast mode is only recognized when associated with Function Code 05 h . For any other function code, a packet with broadcast mode slave address 0 will be ignored.
- FUNCTION CODE: This is one of the supported functions codes of the unit which tells the slave what action to perform. See the Supported Function Codes section for complete details. An exception response from the slave is indicated by setting the high order bit of the function code in the response packet. See the Exception Responses section for further details.
- DATA: This will be a variable number of bytes depending on the function code. This may include actual values, settings, or addresses sent by the master to the slave or by the slave to the master.
- CRC: This is a two byte error checking code. The RTU version of Modbus \({ }^{\circledR}\) includes a 16 -bit cyclic redundancy check (CRC-16) with every packet which is an industry standard method used for error detection. If a Modbus slave device receives a packet in which an error is indicated by the CRC, the slave device will not act upon or respond to the packet thus preventing any erroneous operations. See the CRC-16 Algorithm section for details on calculating the CRC.
- DEAD TIME: A packet is terminated when no data is received for a period of 3.5 byte transmission times (about 15 ms at \(2400 \mathrm{bps}, 2 \mathrm{~ms}\) at 19200 bps , and \(300 \mu \mathrm{~s}\) at 115200 bps). Consequently, the transmitting device must not allow gaps between bytes longer than this interval. Once the dead time has expired without a new byte transmission, all slaves start listening for a new packet from the master except for the addressed slave.
B.1.4 CRC-16 ALGORITHM

The CRC-16 algorithm essentially treats the entire data stream (data bits only; start, stop and parity ignored) as one continuous binary number. This number is first shifted left 16 bits and then divided by a characteristic polynomial (11000000000000101B). The 16 bit remainder of the division is appended to the end of the packet, MSByte first. The resulting packet including CRC, when divided by the same polynomial at the receiver will give a zero remainder if no transmission errors have occurred. This algorithm requires the characteristic polynomial to be reverse bit ordered. The most significant bit of the characteristic polynomial is dropped, since it does not affect the value of the remainder.
A C programming language implementation of the CRC algorithm will be provided upon request.
Table B-2: CRC-16 ALGORITHM
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{11}{*}{SYMBOLS:} & --> & \multicolumn{2}{|l|}{data transfer} \\
\hline & A & \multicolumn{2}{|l|}{16 bit working register} \\
\hline & Alow & \multicolumn{2}{|l|}{low order byte of A} \\
\hline & Ahigh & \multicolumn{2}{|l|}{high order byte of \(A\)} \\
\hline & CRC & \multicolumn{2}{|l|}{16 bit CRC-16 result} \\
\hline & i,j & \multicolumn{2}{|l|}{loop counters} \\
\hline & (+) & \multicolumn{2}{|l|}{logical EXCLUSIVE-OR operator} \\
\hline & N & \multicolumn{2}{|l|}{total number of data bytes} \\
\hline & Di & \multicolumn{2}{|l|}{i-th data byte (\(\mathrm{i}=0\) to \(\mathrm{N}-1\))} \\
\hline & G & \multicolumn{2}{|l|}{16 bit characteristic polynomial = 1010000000000001 (binary) with MSbit dropped and bit order reversed} \\
\hline & shr (x) & \multicolumn{2}{|l|}{right shift operator (th LSbit of \(x\) is shifted into a carry flag, a ' 0 ' is shifted into the MSbit of \(x\), all other bits are shifted right one location)} \\
\hline \multirow[t]{11}{*}{ALGORITHM:} & 1. & \multicolumn{2}{|l|}{FFFF (hex) --> A} \\
\hline & 2. & \multicolumn{2}{|l|}{0 --> i} \\
\hline & 3. & \multicolumn{2}{|l|}{0 --> j} \\
\hline & 4. & \multicolumn{2}{|l|}{Di (+) Alow --> Alow} \\
\hline & 5. & \multicolumn{2}{|l|}{j + 1 --> j} \\
\hline & 6. & \multicolumn{2}{|l|}{shr (A)} \\
\hline & 7. & Is there a carry? & No: go to 8; Yes: G (+) A --> \\
\hline & 8. & Is \(\mathrm{j}=8\) ? & No: go to 5; Yes: continue \\
\hline & 9. & \multicolumn{2}{|l|}{i + 1 --> i} \\
\hline & 10. & Is \(\mathrm{i}=\mathrm{N}\) ? & No: go to 3; Yes: continue \\
\hline & 11. & \multicolumn{2}{|l|}{A --> CRC} \\
\hline
\end{tabular}

Modbus \({ }^{\circledR}\) officially defines function codes from 1 to 127 though only a small subset is generally needed. The relay supports some of these functions, as summarized in the following table. Subsequent sections describe each function code in detail.
\begin{tabular}{|c|c|l|l|}
\hline \multicolumn{2}{|c|}{ FUNCTION CODE } & \multirow{2}{*}{ MODBUS DEFINITION } & GE MULTILIN DEFINITION \\
\cline { 1 - 2 } HEX & DEC & & Read Actual Values or Settings \\
\hline \hline 03 & 3 & Read Holding Registers & Read Actual Values or Settings \\
\hline 04 & 4 & Read Holding Registers & Execute Operation \\
\hline 05 & 5 & Force Single Coil & Store Single Setting \\
\hline 06 & 6 & Preset Single Register & Store Multiple Settings \\
\hline 10 & 16 & Preset Multiple Registers & \\
\hline
\end{tabular}

This function code allows the master to read one or more consecutive data registers (actual values or settings) from a relay. Data registers are always 16 bit (two byte) values transmitted with high order byte first. The maximum number of registers that can be read in a single packet is 125 . See the Modbus Memory Map table for exact details on the data registers.
Since some PLC implementations of Modbus \({ }^{\circledR}\) only support one of function codes 03 h and 04 h , the relay interpretation allows either function code to be used for reading one or more consecutive data registers. The data starting address will determine the type of data being read. Function codes 03h and 04h are therefore identical.

The following table shows the format of the master and slave packets. The example shows a master device requesting 3 register values starting at address 4050h from slave device 11h (17 decimal); the slave device responds with the values 40, 300 , and 0 from registers \(4050 \mathrm{~h}, 4051 \mathrm{~h}\), and 4052 h , respectively.

Table B-3: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|l|}{ MASTER TRANSMISSION } \\
\hline PACKET FORMAT & EXAMPLE (HEX) \\
\hline \hline SLAVE ADDRESS & 11 \\
\hline FUNCTION CODE & 04 \\
\hline DATA STARTING ADDRESS - high & 40 \\
\hline DATA STARTING ADDRESS - low & 50 \\
\hline NUMBER OF REGISTERS - high & 00 \\
\hline NUMBER OF REGISTERS - low & 03 \\
\hline CRC - low & A7 \\
\hline CRC - high & 4 A \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|l|}{ SLAVE RESPONSE } \\
\hline PACKET FORMAT & EXAMPLE (HEX) \\
\hline \hline SLAVE ADDRESS & 11 \\
\hline FUNCTION CODE & 04 \\
\hline BYTE COUNT & 06 \\
\hline DATA \#1 - high & 00 \\
\hline DATA \#1 - low & 28 \\
\hline DATA \#2 - high & 01 \\
\hline DATA \#2 - low & \(2 C\) \\
\hline DATA \#3 - high & 00 \\
\hline DATA \#3 - low & 00 \\
\hline CRC - low & \(0 D\) \\
\hline CRC - high & 60 \\
\hline
\end{tabular}

This function code allows the master to perform various operations in the relay. Available operations are shown in the Summary of Operation Codes table below.

The following table shows the format of the master and slave packets. The example shows a master device requesting the slave device \(11 \mathrm{H}(17 \mathrm{dec})\) to perform a reset. The high and low Code Value bytes always have the values "FF" and " 00 " respectively and are a remnant of the original Modbus \({ }^{\circledR}\) definition of this function code.

Table B-4: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|l|}{ MASTER TRANSMISSION } \\
\hline PACKET FORMAT & EXAMPLE (HEX) \\
\hline \hline SLAVE ADDRESS & 11 \\
\hline FUNCTION CODE & 05 \\
\hline OPERATION CODE - high & 00 \\
\hline OPERATION CODE - low & 01 \\
\hline CODE VALUE - high & FF \\
\hline CODE VALUE - low & 00 \\
\hline CRC - low & DF \\
\hline CRC - high & \(6 A\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|l|}{ SLAVE RESPONSE } \\
\hline PACKET FORMAT & EXAMPLE (HEX) \\
\hline \hline SLAVE ADDRESS & 11 \\
\hline FUNCTION CODE & 05 \\
\hline OPERATION CODE - high & 00 \\
\hline OPERATION CODE - low & 01 \\
\hline CODE VALUE - high & FF \\
\hline CODE VALUE - low & 00 \\
\hline CRC - low & DF \\
\hline CRC - high & \(6 A\) \\
\hline
\end{tabular}

Table B-5: SUMMARY OF OPERATION CODES FOR FUNCTION 05H
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
OPERATION \\
CODE (HEX)
\end{tabular} & DEFINITION & DESCRIPTION \\
\hline \hline 0000 & NO OPERATION & Does not do anything. \\
\hline 0001 & RESET & Performs the same function as the faceplate RESET key. \\
\hline 0005 & CLEAR EVENT RECORDS & \begin{tabular}{l}
Performs the same function as the faceplate CLEAR EVENT RECORDS menu \\
command.
\end{tabular} \\
\hline 0006 & CLEAR OSCILLOGRAPHY & Clears all oscillography records. \\
\hline 1000 to 101F & VIRTUAL IN 1-32 ON/OFF & Sets the states of Virtual Inputs 1 to 32 either "ON" or "OFF". \\
\hline
\end{tabular}

\section*{B.2.4 STORE SINGLE SETTING (FUNCTION CODE 06H)}

This function code allows the master to modify the contents of a single setting register in an relay. Setting registers are always 16 bit (two byte) values transmitted high order byte first. The following table shows the format of the master and slave packets. The example shows a master device storing the value 200 at memory map address 4051 h to slave device 11h (17 dec).

Table B-6: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|l|}{ MASTER TRANSMISSION } \\
\hline PACKET FORMAT & EXAMPLE (HEX) \\
\hline \hline SLAVE ADDRESS & 11 \\
\hline FUNCTION CODE & 06 \\
\hline DATA STARTING ADDRESS - high & 40 \\
\hline DATA STARTING ADDRESS - low & 51 \\
\hline DATA - high & 00 \\
\hline DATA - low & C8 \\
\hline CRC - low & CE \\
\hline CRC - high & DD \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|l|}{ SLAVE RESPONSE } \\
\hline PACKET FORMAT & EXAMPLE (HEX) \\
\hline \hline SLAVE ADDRESS & 11 \\
\hline FUNCTION CODE & 06 \\
\hline DATA STARTING ADDRESS - high & 40 \\
\hline DATA STARTING ADDRESS - low & 51 \\
\hline DATA - high & 00 \\
\hline DATA - low & C8 \\
\hline CRC - low & CE \\
\hline CRC - high & DD \\
\hline
\end{tabular}

This function code allows the master to modify the contents of a one or more consecutive setting registers in a relay. Setting registers are 16-bit (two byte) values transmitted high order byte first. The maximum number of setting registers that can be stored in a single packet is 60 . The following table shows the format of the master and slave packets. The example shows a master device storing the value 200 at memory map address 4051 h , and the value 1 at memory map address 4052 h to slave device 11 h (17 decimal).

Table B-7: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|l|}{ MASTER TRANSMISSION } \\
\hline PACKET FORMAT & EXAMPLE (HEX) \\
\hline \hline SLAVE ADDRESS & 11 \\
\hline FUNCTION CODE & 10 \\
\hline DATA STARTING ADDRESS - hi & 40 \\
\hline DATA STARTING ADDRESS - lo & 51 \\
\hline NUMBER OF SETTINGS - hi & 00 \\
\hline NUMBER OF SETTINGS - lo & 02 \\
\hline BYTE COUNT & 04 \\
\hline DATA \#1 - high order byte & 00 \\
\hline DATA \#1 - low order byte & C8 \\
\hline DATA \#2 - high order byte & 00 \\
\hline DATA \#2 - low order byte & 01 \\
\hline CRC - low order byte & 12 \\
\hline CRC - high order byte & 62 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|l|}{ SLAVE RESPONSE } \\
\hline PACKET FORMAT & EXMAPLE (HEX) \\
\hline \hline SLAVE ADDRESS & 11 \\
\hline FUNCTION CODE & 10 \\
\hline DATA STARTING ADDRESS - hi & 40 \\
\hline DATA STARTING ADDRESS - lo & 51 \\
\hline NUMBER OF SETTINGS - hi & 00 \\
\hline NUMBER OF SETTINGS - lo & 02 \\
\hline CRC - lo & 07 \\
\hline CRC - hi & 64 \\
\hline
\end{tabular}

Programming or operation errors usually happen because of illegal data in a packet. These errors result in an exception response from the slave. The slave detecting one of these errors sends a response packet to the master with the high order bit of the function code set to 1 .

The following table shows the format of the master and slave packets. The example shows a master device sending the unsupported function code 39 h to slave device 11.

Table B-8: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|l|}{ MASTER TRANSMISSION } \\
\hline PACKET FORMAT & EXAMPLE (HEX) \\
\hline \hline SLAVE ADDRESS & 11 \\
\hline FUNCTION CODE & 39 \\
\hline CRC - low order byte & CD \\
\hline CRC - high order byte & F2 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|l|}{ SLAVE RESPONSE } \\
\hline PACKET FORMAT & EXAMPLE (HEX) \\
\hline \hline SLAVE ADDRESS & 11 \\
\hline FUNCTION CODE & B9 \\
\hline ERROR CODE & 01 \\
\hline CRC - low order byte & 93 \\
\hline CRC - high order byte & 95 \\
\hline
\end{tabular}

\section*{a) DESCRIPTION}

The UR relay has a generic file transfer facility, meaning that you use the same method to obtain all of the different types of files from the unit. The Modbus registers that implement file transfer are found in the "Modbus File Transfer (Read/Write)" and "Modbus File Transfer (Read Only)" modules, starting at address 3100 in the Modbus Memory Map. To read a file from the UR relay, use the following steps:
1. Write the filename to the "Name of file to read" register using a write multiple registers command. If the name is shorter than 80 characters, you may write only enough registers to include all the text of the filename. Filenames are not case sensitive.
2. Repeatedly read all the registers in "Modbus File Transfer (Read Only)" using a read multiple registers command. It is not necessary to read the entire data block, since the UR relay will remember which was the last register you read. The "position" register is initially zero and thereafter indicates how many bytes (2 times the number of registers) you have read so far. The "size of..." register indicates the number of bytes of data remaining to read, to a maximum of 244.
3. Keep reading until the "size of..." register is smaller than the number of bytes you are transferring. This condition indicates end of file. Discard any bytes you have read beyond the indicated block size.
4. If you need to re-try a block, read only the "size of.." and "block of data", without reading the position. The file pointer is only incremented when you read the position register, so the same data block will be returned as was read in the previous operation. On the next read, check to see if the position is where you expect it to be, and discard the previous block if it is not (this condition would indicate that the UR relay did not process your original read request).
The UR relay retains connection-specific file transfer information, so files may be read simultaneously on multiple Modbus connections.

\section*{b) OTHER PROTOCOLS}

All the files available via Modbus may also be retrieved using the standard file transfer mechanisms in other protocols (for example, TFTP or MMS).

\section*{c) COMTRADE, OSCILLOGRAPHY, AND DATA LOGGER FILES}

Oscillography and data logger files are formatted using the COMTRADE file format per IEEE PC37.111 Draft 7c (02 September 1997). The files may be obtained in either text or binary COMTRADE format.

\section*{d) READING OSCILLOGRAPHY FILES}

Familiarity with the oscillography feature is required to understand the following description. Refer to the Oscillography section in Chapter 5 for additional details.

The Oscillography Number of Triggers register is incremented by one every time a new oscillography file is triggered (captured) and cleared to zero when oscillography data is cleared. When a new trigger occurs, the associated oscillography file is assigned a file identifier number equal to the incremented value of this register; the newest file number is equal to the Oscillography_Number_of_Triggers register. This register can be used to determine if any new data has been captured by periodically reading it to see if the value has changed; if the number has increased then new data is available.
The Oscillography Number of Records register specifies the maximum number of files (and the number of cycles of data per file) that can be stored in memory of the relay. The Oscillography Available Records register specifies the actual number of files that are stored and still available to be read out of the relay.
Writing "Yes" (i.e. the value 1) to the Oscillography Clear Data register clears oscillography data files, clears both the Oscillography Number of Triggers and Oscillography Available Records registers to zero, and sets the Oscillography Last Cleared Date to the present date and time.
To read binary COMTRADE oscillography files, read the following filenames:
```

OSCnnnn.CFG and OSCnnn.DAT

```

Replace "nnn" with the desired oscillography trigger number. For ASCII format, use the following file names
```

OSCAnnnn.CFG and OSCAnnn.DAT

```

\section*{e) READING DATA LOGGER FILES}

Familiarity with the data logger feature is required to understand this description. Refer to the Data Logger section of Chapter 5 for details. To read the entire data logger in binary COMTRADE format, read the following files.
```

datalog.cfg and datalog.dat

```

To read the entire data logger in ASCII COMTRADE format, read the following files.
```

dataloga.cfg and dataloga.dat

```

To limit the range of records to be returned in the COMTRADE files, append the following to the filename before writing it:
- To read from a specific time to the end of the log: <space> startTime
- To read a specific range of records: <space> startTime <space> endTime
- Replace <startTime> and <endTime> with Julian dates (seconds since Jan. 1 1970) as numeric text.

\section*{f) READING EVENT RECORDER FILES}

To read the entire event recorder contents in ASCII format (the only available format), use the following filename:
EVT.TXT
To read from a specific record to the end of the log, use the following filename:
EVTnnn.TXT (replace nnn with the desired starting record number)
To read from a specific record to another specific record, use the following filename:
EVT.TXT xxxxx yyyyy (replace xxxxx with the starting record number and yyyyy with the ending record number)

\section*{g) READING FAULT REPORT FILES}

Fault report data has been available via the F60 file retrieval mechanism since UR firmware version 2.00 . The file name is faultReport\#\#\#\#\#.htm. The \#\#\#\#\# refers to the fault report record number. The fault report number is a counter that indicates how many fault reports have ever occurred. The counter rolls over at a value of 65535 . Only the last ten fault reports are available for retrieval; a request for a non-existent fault report file will yield a null file. The current value fault report counter is available in "Number of Fault Reports" Modbus register at location 0x3020.

For example, if 14 fault reports have occurred then the files faultReport5.htm, faultReport6.htm, up to faultReport14.htm are available to be read. The expected use of this feature has an external master periodically polling the "Number of Fault Reports' register. If the value changes, then the master reads all the new files.

The contents of the file is in standard HTML notation and can be viewed via any commercial browser.

\section*{B.3.2 MODBUS PASSWORD OPERATION}

The COMMAND password is set up at memory location 4000. Storing a value of "0" removes COMMAND password protection. When reading the password setting, the encrypted value (zero if no password is set) is returned. COMMAND security is required to change the COMMAND password. Similarly, the SETTING password is set up at memory location 4002. These are the same settings and encrypted values found in the SETTINGS \(\Rightarrow\) PRODUCT SETUP \(\Rightarrow \sqrt{ }\) PASSWORD SECURITY menu via the keypad. Enabling password security for the faceplate display will also enable it for Modbus, and vice-versa.
To gain COMMAND level security access, the COMMAND password must be entered at memory location 4008. To gain SETTING level security access, the SETTING password must be entered at memory location 400A. The entered SETTING password must match the current SETTING password setting, or must be zero, to change settings or download firmware.
COMMAND and SETTING passwords each have a 30-minute timer. Each timer starts when you enter the particular password, and is re-started whenever you "use" it. For example, writing a setting re-starts the SETTING password timer and writing a command register or forcing a coil re-starts the COMMAND password timer. The value read at memory location 4010 can be used to confirm whether a COMMAND password is enabled or disabled (0 for Disabled). The value read at memory location 4011 can be used to confirm whether a SETTING password is enabled or disabled.
COMMAND or SETTING password security access is restricted to the particular port or particular TCP/IP connection on which the entry was made. Passwords must be entered when accessing the relay through other ports or connections, and the passwords must be re-entered after disconnecting and re-connecting on TCP/IP.

Table B-9: MODBUS MEMORY MAP (Sheet 1 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline \multicolumn{7}{|l|}{Product Information (Read Only)} \\
\hline 0000 & UR Product Type & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 0002 & Product Version & 0 to 655.35 & --- & 0.01 & F001 & 1 \\
\hline \multicolumn{7}{|l|}{Product Information (Read Only -- Written by Factory)} \\
\hline 0010 & Serial Number & --- & --- & --- & F203 & "0" \\
\hline 0020 & Manufacturing Date & 0 to 4294967295 & --- & 1 & F050 & 0 \\
\hline 0022 & Modification Number & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 0040 & Order Code & --- & --- & --- & F204 & "Order Code x" \\
\hline 0090 & Ethernet MAC Address & --- & --- & --- & F072 & 0 \\
\hline 0093 & Reserved (13 items) & --- & --- & --- & F001 & 0 \\
\hline 00A0 & CPU Module Serial Number & --- & --- & --- & F203 & (none) \\
\hline 00B0 & CPU Supplier Serial Number & --- & --- & --- & F203 & (none) \\
\hline 00C0 & Ethernet Sub Module Serial Number (8 items) & --- & --- & --- & F203 & (none) \\
\hline \multicolumn{7}{|l|}{Self Test Targets (Read Only)} \\
\hline 0200 & Self Test States (2 items) & 0 to 4294967295 & 0 & 1 & F143 & 0 \\
\hline \multicolumn{7}{|l|}{Front Panel (Read Only)} \\
\hline 0204 & LED Column x State (10 items) & 0 to 65535 & --- & 1 & F501 & 0 \\
\hline 0220 & Display Message & --- & --- & --- & F204 & (none) \\
\hline 0248 & Last Key Pressed & 0 to 47 & --- & 1 & F530 & 0 (None) \\
\hline \multicolumn{7}{|l|}{Keypress Emulation (Read/Write)} \\
\hline 0280 & Simulated keypress -- write zero before each keystroke & 0 to 42 & --- & 1 & F190 & 0 (No key -- use between real keys) \\
\hline \multicolumn{7}{|l|}{Virtual Input Commands (Read/Write Command) (32 modules)} \\
\hline 0400 & Virtual Input 1 State & 0 to 1 & --- & 1 & F108 & 0 (Off) \\
\hline 0401 & ...Repeated for module number 2 & & & & & \\
\hline 0402 & ...Repeated for module number 3 & & & & & \\
\hline 0403 & ...Repeated for module number 4 & & & & & \\
\hline 0404 & ...Repeated for module number 5 & & & & & \\
\hline 0405 & ...Repeated for module number 6 & & & & & \\
\hline 0406 & ...Repeated for module number 7 & & & & & \\
\hline 0407 & ...Repeated for module number 8 & & & & & \\
\hline 0408 & ...Repeated for module number 9 & & & & & \\
\hline 0409 & ...Repeated for module number 10 & & & & & \\
\hline 040A & ...Repeated for module number 11 & & & & & \\
\hline 040B & ...Repeated for module number 12 & & & & & \\
\hline 040C & ...Repeated for module number 13 & & & & & \\
\hline 040D & ...Repeated for module number 14 & & & & & \\
\hline 040E & ...Repeated for module number 15 & & & & & \\
\hline 040F & ...Repeated for module number 16 & & & & & \\
\hline 0410 & ...Repeated for module number 17 & & & & & \\
\hline 0411 & ...Repeated for module number 18 & & & & & \\
\hline 0412 & ...Repeated for module number 19 & & & & & \\
\hline 0413 & ...Repeated for module number 20 & & & & & \\
\hline 0414 & ...Repeated for module number 21 & & & & & \\
\hline 0415 & ...Repeated for module number 22 & & & & & \\
\hline 0416 & ...Repeated for module number 23 & & & & & \\
\hline 0417 & ...Repeated for module number 24 & & & & & \\
\hline 0418 & ...Repeated for module number 25 & & & & & \\
\hline 0419 & ...Repeated for module number 26 & & & & & \\
\hline 041A & ...Repeated for module number 27 & & & & & \\
\hline 041B & ...Repeated for module number 28 & & & & & \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 2 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline 041C & ...Repeated for module number 29 & & & & & \\
\hline 041D & ...Repeated for module number 30 & & & & & \\
\hline 041E & ...Repeated for module number 31 & & & & & \\
\hline 041F & ...Repeated for module number 32 & & & & & \\
\hline \multicolumn{7}{|l|}{Digital Counter States (Read Only Non-Volatile) (8 modules)} \\
\hline 0800 & Digital Counter 1 Value & \[
\begin{gathered}
-2147483647 \text { to } \\
2147483647
\end{gathered}
\] & --- & 1 & F004 & 0 \\
\hline 0802 & Digital Counter 1 Frozen & \[
\begin{gathered}
-2147483647 \text { to } \\
2147483647
\end{gathered}
\] & --- & 1 & F004 & 0 \\
\hline 0804 & Digital Counter 1 Frozen Time Stamp & 0 to 4294967295 & --- & 1 & F050 & 0 \\
\hline 0806 & Digital Counter 1 Frozen Time Stamp us & 0 to 4294967295 & --- & 1 & F003 & 0 \\
\hline 0808 & ...Repeated for module number 2 & & & & & \\
\hline 0810 & ...Repeated for module number 3 & & & & & \\
\hline 0818 & ...Repeated for module number 4 & & & & & \\
\hline 0820 & ...Repeated for module number 5 & & & & & \\
\hline 0828 & ...Repeated for module number 6 & & & & & \\
\hline 0830 & ...Repeated for module number 7 & & & & & \\
\hline 0838 & ...Repeated for module number 8 & & & & & \\
\hline \multicolumn{7}{|l|}{FlexStates (Read Only)} \\
\hline 0900 & FlexState Bits (16 items) & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline \multicolumn{7}{|l|}{Element States (Read Only)} \\
\hline 1000 & Element Operate States (64 items) & 0 to 65535 & --- & 1 & F502 & 0 \\
\hline \multicolumn{7}{|l|}{User Displays Actuals (Read Only)} \\
\hline 1080 & Formatted user-definable displays (16 items) & --- & --- & --- & F200 & (none) \\
\hline \multicolumn{7}{|l|}{Modbus User Map Actuals (Read Only)} \\
\hline 1200 & User Map Values (256 items) & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline \multicolumn{7}{|l|}{Element Targets (Read Only)} \\
\hline 14C0 & Target Sequence & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 14C1 & Number of Targets & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline \multicolumn{7}{|l|}{Element Targets (Read/Write)} \\
\hline 14C2 & Target to Read & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline \multicolumn{7}{|l|}{Element Targets (Read Only)} \\
\hline 14C3 & Target Message & --- & --- & --- & F200 & "." \\
\hline \multicolumn{7}{|l|}{Digital I/O States (Read Only)} \\
\hline 1500 & Contact Input States (6 items) & 0 to 65535 & --- & 1 & F500 & 0 \\
\hline 1508 & Virtual Input States (2 items) & 0 to 65535 & --- & 1 & F500 & 0 \\
\hline 1510 & Contact Output States (4 items) & 0 to 65535 & --- & 1 & F500 & 0 \\
\hline 1518 & Contact Output Current States (4 items) & 0 to 65535 & --- & 1 & F500 & 0 \\
\hline 1520 & Contact Output Voltage States (4 items) & 0 to 65535 & --- & 1 & F500 & 0 \\
\hline 1528 & Virtual Output States (4 items) & 0 to 65535 & --- & 1 & F500 & 0 \\
\hline 1530 & Contact Output Detectors (4 items) & 0 to 65535 & --- & 1 & F500 & 0 \\
\hline \multicolumn{7}{|l|}{Remote Input/Output States (Read Only)} \\
\hline 1540 & Remote Device 1 States & 0 to 65535 & --- & 1 & F500 & 0 \\
\hline 1542 & Remote Input States (4 items) & 0 to 65535 & --- & 1 & F500 & 0 \\
\hline 1550 & Remote Devices Online & 0 to 1 & --- & 1 & F126 & 0 (No) \\
\hline \multicolumn{7}{|l|}{Remote Device Status (Read Only) (16 modules)} \\
\hline 1551 & Remote Device 1 StNum & 0 to 4294967295 & --- & 1 & F003 & 0 \\
\hline 1553 & Remote Device 1 SqNum & 0 to 4294967295 & --- & 1 & F003 & 0 \\
\hline 1555 & ...Repeated for module number 2 & & & & & \\
\hline 1559 & ...Repeated for module number 3 & & & & & \\
\hline 155D & ...Repeated for module number 4 & & & & & \\
\hline 1561 & ...Repeated for module number 5 & & & & & \\
\hline 1565 & ...Repeated for module number 6 & & & & & \\
\hline 1569 & ...Repeated for module number 7 & & & & & \\
\hline 156D & ...Repeated for module number 8 & & & & & \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 3 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline 1571 & ...Repeated for module number 9 & & & & & \\
\hline 1575 & ...Repeated for module number 10 & & & & & \\
\hline 1579 & ...Repeated for module number 11 & & & & & \\
\hline 157D & ...Repeated for module number 12 & & & & & \\
\hline 1581 & ...Repeated for module number 13 & & & & & \\
\hline 1585 & ...Repeated for module number 14 & & & & & \\
\hline 1589 & ...Repeated for module number 15 & & & & & \\
\hline 158D & ...Repeated for module number 16 & & & & & \\
\hline \multicolumn{7}{|l|}{Platform Direct Input/Output States (Read Only)} \\
\hline 15C0 & Direct Input States (6 items) & 0 to 65535 & --- & 1 & F500 & 0 \\
\hline 15C8 & Direct Outputs Average Message Return Time 1 & 0 to 65535 & ms & 1 & F001 & 0 \\
\hline 15C9 & Direct Outputs Average Message Return Time 2 & 0 to 65535 & ms & 1 & F001 & 0 \\
\hline 15CA & Direct Inputs/Outputs Unreturned Message Count - Ch. 1 & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 15CB & Direct Inputs/Outputs Unreturned Message Count - Ch. 2 & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 15D0 & Direct Device States & 0 to 65535 & --- & 1 & F500 & 0 \\
\hline 15D1 & Reserved & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 15D2 & Direct Inputs/Outputs CRC Fail Count 1 & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 15D3 & Direct Inputs/Outputs CRC Fail Count 2 & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline \multicolumn{7}{|l|}{Ethernet Fibre Channel Status (Read/Write)} \\
\hline 1610 & Ethernet Primary Fibre Channel Status & 0 to 2 & --- & 1 & F134 & 0 (Fail) \\
\hline 1611 & Ethernet Secondary Fibre Channel Status & 0 to 2 & --- & 1 & F134 & 0 (Fail) \\
\hline \multicolumn{7}{|l|}{Data Logger Actuals (Read Only)} \\
\hline 1618 & Data Logger Channel Count & 0 to 16 & CHNL & 1 & F001 & 0 \\
\hline 1619 & Time of oldest available samples & 0 to 4294967295 & seconds & 1 & F050 & 0 \\
\hline 161B & Time of newest available samples & 0 to 4294967295 & seconds & 1 & F050 & 0 \\
\hline 161D & Data Logger Duration & 0 to 999.9 & DAYS & 0.1 & F001 & 0 \\
\hline \multicolumn{7}{|l|}{Sensitive Directional Power Actuals (Read Only) (2 modules)} \\
\hline 1680 & Sensitive Directional Power 1 Power & \[
\begin{gathered}
-2147483647 \text { to } \\
2147483647
\end{gathered}
\] & W & 1 & F060 & 0 \\
\hline 1682 & ...Repeated for module number 2 & & & & & \\
\hline \multicolumn{7}{|l|}{Frequency Rate of Change Actuals (Read Only) (4 modules)} \\
\hline 16E0 & Frequency Rate of Change & -327.67 to 327.67 & Hz/s & 0.01 & F002 & 0 \\
\hline 16E1 & Rate of Change 1 reserved (3 items) & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 16E4 & ...Repeated for module number 2 & & & & & \\
\hline 16E8 & ...Repeated for module number 3 & & & & & \\
\hline 16EC & ...Repeated for module number 4 & & & & & \\
\hline \multicolumn{7}{|l|}{Source Current (Read Only) (6 modules)} \\
\hline 1800 & Phase A Current RMS & 0 to 999999.999 & A & 0.001 & F060 & 0 \\
\hline 1802 & Phase B Current RMS & 0 to 999999.999 & A & 0.001 & F060 & 0 \\
\hline 1804 & Phase C Current RMS & 0 to 999999.999 & A & 0.001 & F060 & 0 \\
\hline 1806 & Neutral Current RMS & 0 to 999999.999 & A & 0.001 & F060 & 0 \\
\hline 1808 & Phase A Current Magnitude & 0 to 999999.999 & A & 0.001 & F060 & 0 \\
\hline 180A & Phase A Current Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 180B & Phase B Current Magnitude & 0 to 999999.999 & A & 0.001 & F060 & 0 \\
\hline 180D & Phase B Current Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 180E & Phase C Current Magnitude & 0 to 999999.999 & A & 0.001 & F060 & 0 \\
\hline 1810 & Phase C Current Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 1811 & Neutral Current Magnitude & 0 to 999999.999 & A & 0.001 & F060 & 0 \\
\hline 1813 & Neutral Current Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 1814 & Ground Current RMS & 0 to 999999.999 & A & 0.001 & F060 & 0 \\
\hline 1816 & Ground Current Magnitude & 0 to 999999.999 & A & 0.001 & F060 & 0 \\
\hline 1818 & Ground Current Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 1819 & Zero Sequence Current Magnitude & 0 to 999999.999 & A & 0.001 & F060 & 0 \\
\hline 181B & Zero Sequence Current Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 4 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline 181C & Positive Sequence Current Magnitude & 0 to 999999.999 & A & 0.001 & F060 & 0 \\
\hline 181E & Positive Sequence Current Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 181F & Negative Sequence Current Magnitude & 0 to 999999.999 & A & 0.001 & F060 & 0 \\
\hline 1821 & Negative Sequence Current Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 1822 & Differential Ground Current Magnitude & 0 to 999999.999 & A & 0.001 & F060 & 0 \\
\hline 1824 & Differential Ground Current Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 1825 & Reserved (27 items) & --- & --- & --- & F001 & 0 \\
\hline 1840 & ...Repeated for module number 2 & & & & & \\
\hline 1880 & ...Repeated for module number 3 & & & & & \\
\hline 18C0 & ...Repeated for module number 4 & & & & & \\
\hline 1900 & ...Repeated for module number 5 & & & & & \\
\hline 1940 & ...Repeated for module number 6 & & & & & \\
\hline \multicolumn{7}{|l|}{Source Voltage (Read Only) (6 modules)} \\
\hline 1A00 & Phase AG Voltage RMS & 0 to 999999.999 & V & 0.001 & F060 & 0 \\
\hline 1A02 & Phase BG Voltage RMS & 0 to 999999.999 & V & 0.001 & F060 & 0 \\
\hline 1A04 & Phase CG Voltage RMS & 0 to 999999.999 & V & 0.001 & F060 & 0 \\
\hline 1A06 & Phase AG Voltage Magnitude & 0 to 999999.999 & V & 0.001 & F060 & 0 \\
\hline 1A08 & Phase AG Voltage Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 1A09 & Phase BG Voltage Magnitude & 0 to 999999.999 & V & 0.001 & F060 & 0 \\
\hline 1A0B & Phase BG Voltage Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 1A0C & Phase CG Voltage Magnitude & 0 to 999999.999 & V & 0.001 & F060 & 0 \\
\hline 1A0E & Phase CG Voltage Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 1A0F & Phase AB or AC Voltage RMS & 0 to 999999.999 & V & 0.001 & F060 & 0 \\
\hline 1A11 & Phase BC or BA Voltage RMS & 0 to 999999.999 & V & 0.001 & F060 & 0 \\
\hline 1A13 & Phase CA or CB Voltage RMS & 0 to 999999.999 & V & 0.001 & F060 & 0 \\
\hline 1A15 & Phase AB or AC Voltage Magnitude & 0 to 999999.999 & V & 0.001 & F060 & 0 \\
\hline 1A17 & Phase AB or AC Voltage Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 1A18 & Phase BC or BA Voltage Magnitude & 0 to 999999.999 & V & 0.001 & F060 & 0 \\
\hline 1A1A & Phase BC or BA Voltage Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 1A1B & Phase CA or CB Voltage Magnitude & 0 to 999999.999 & V & 0.001 & F060 & 0 \\
\hline 1A1D & Phase CA or CB Voltage Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 1A1E & Auxiliary Voltage RMS & 0 to 999999.999 & V & 0.001 & F060 & 0 \\
\hline 1A20 & Auxiliary Voltage Magnitude & 0 to 999999.999 & V & 0.001 & F060 & 0 \\
\hline 1A22 & Auxiliary Voltage Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 1A23 & Zero Sequence Voltage Magnitude & 0 to 999999.999 & V & 0.001 & F060 & 0 \\
\hline 1A25 & Zero Sequence Voltage Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 1A26 & Positive Sequence Voltage Magnitude & 0 to 999999.999 & V & 0.001 & F060 & 0 \\
\hline 1A28 & Positive Sequence Voltage Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 1A29 & Negative Sequence Voltage Magnitude & 0 to 999999.999 & V & 0.001 & F060 & 0 \\
\hline 1A2B & Negative Sequence Voltage Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 1A2C & Reserved (20 items) & --- & --- & --- & F001 & 0 \\
\hline 1A40 & ...Repeated for module number 2 & & & & & \\
\hline 1A80 & ...Repeated for module number 3 & & & & & \\
\hline 1AC0 & ...Repeated for module number 4 & & & & & \\
\hline 1B00 & ...Repeated for module number 5 & & & & & \\
\hline 1B40 & ...Repeated for module number 6 & & & & & \\
\hline \multicolumn{7}{|l|}{Source Power (Read Only) (6 modules)} \\
\hline 1C00 & Three Phase Real Power & \[
\begin{gathered}
-1000000000000 \text { to } \\
1000000000000
\end{gathered}
\] & W & 0.001 & F060 & 0 \\
\hline 1C02 & Phase A Real Power & \[
\begin{gathered}
-10000000000000 \text { to } \\
1000000000000
\end{gathered}
\] & W & 0.001 & F060 & 0 \\
\hline 1C04 & Phase B Real Power & \[
\begin{aligned}
& -1000000000000 \text { to } \\
& 1000000000000
\end{aligned}
\] & W & 0.001 & F060 & 0 \\
\hline 1C06 & Phase C Real Power & \[
\begin{aligned}
& -1000000000000 \text { to } \\
& 1000000000000
\end{aligned}
\] & W & 0.001 & F060 & 0 \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 5 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline 1C08 & Three Phase Reactive Power & \[
\begin{aligned}
& -1000000000000 \text { to } \\
& 10000000000000
\end{aligned}
\] & var & 0.001 & F060 & 0 \\
\hline 1C0A & Phase A Reactive Power & \[
\begin{aligned}
& -1000000000000 \text { to } \\
& 1000000000000
\end{aligned}
\] & var & 0.001 & F060 & 0 \\
\hline 1C0C & Phase B Reactive Power & \[
\begin{aligned}
& -1000000000000 \text { to } \\
& 1000000000000
\end{aligned}
\] & var & 0.001 & F060 & 0 \\
\hline 1C0E & Phase C Reactive Power & \[
\begin{aligned}
& -1000000000000 \text { to } \\
& 10000000000000
\end{aligned}
\] & var & 0.001 & F060 & 0 \\
\hline 1C10 & Three Phase Apparent Power & \[
\begin{gathered}
-10000000000000 \text { to } \\
1000000000000
\end{gathered}
\] & VA & 0.001 & F060 & 0 \\
\hline 1C12 & Phase A Apparent Power & \[
\begin{aligned}
& -1000000000000 \text { to } \\
& 1000000000000
\end{aligned}
\] & VA & 0.001 & F060 & 0 \\
\hline 1C14 & Phase B Apparent Power & \[
\begin{aligned}
& -1000000000000 \text { to } \\
& 10000000000000
\end{aligned}
\] & VA & 0.001 & F060 & 0 \\
\hline 1C16 & Phase C Apparent Power & \[
\begin{aligned}
& -1000000000000 \text { to } \\
& 10000000000000
\end{aligned}
\] & VA & 0.001 & F060 & 0 \\
\hline 1C18 & Three Phase Power Factor & -0.999 to 1 & --- & 0.001 & F013 & 0 \\
\hline 1C19 & Phase A Power Factor & -0.999 to 1 & --- & 0.001 & F013 & 0 \\
\hline 1C1A & Phase B Power Factor & -0.999 to 1 & --- & 0.001 & F013 & 0 \\
\hline 1C1B & Phase C Power Factor & -0.999 to 1 & --- & 0.001 & F013 & 0 \\
\hline 1C1C & Reserved (4 items) & --- & --- & --- & F001 & 0 \\
\hline 1C20 & ...Repeated for module number 2 & & & & & \\
\hline 1C40 & ...Repeated for module number 3 & & & & & \\
\hline \(1 \mathrm{C60}\) & ...Repeated for module number 4 & & & & & \\
\hline \(1 \mathrm{C80}\) & ...Repeated for module number 5 & & & & & \\
\hline 1CA0 & ...Repeated for module number 6 & & & & & \\
\hline \multicolumn{7}{|l|}{Source Energy (Read Only Non-Volatile) (6 modules)} \\
\hline 1D00 & Positive Watthour & 0 to 1000000000000 & Wh & 0.001 & F060 & 0 \\
\hline 1 D02 & Negative Watthour & 0 to 1000000000000 & Wh & 0.001 & F060 & 0 \\
\hline 1D04 & Positive Varhour & 0 to 1000000000000 & varh & 0.001 & F060 & 0 \\
\hline 1 106 & Negative Varhour & 0 to 1000000000000 & varh & 0.001 & F060 & 0 \\
\hline 1D08 & Reserved (8 items) & --- & --- & --- & F001 & 0 \\
\hline 1D10 & ...Repeated for module number 2 & & & & & \\
\hline 1D20 & ...Repeated for module number 3 & & & & & \\
\hline 1D30 & ...Repeated for module number 4 & & & & & \\
\hline 1D40 & ...Repeated for module number 5 & & & & & \\
\hline 1D50 & ...Repeated for module number 6 & & & & & \\
\hline \multicolumn{7}{|l|}{Energy Commands (Read/Write Command)} \\
\hline 1D60 & Energy Clear Command & 0 to 1 & --- & 1 & F126 & 0 (No) \\
\hline \multicolumn{7}{|l|}{Source Frequency (Read Only) (6 modules)} \\
\hline 1D80 & Frequency & 2 to 90 & Hz & 0.01 & F001 & 0 \\
\hline 1D81 & ...Repeated for module number 2 & & & & & \\
\hline 1D82 & ...Repeated for module number 3 & & & & & \\
\hline 1D83 & ...Repeated for module number 4 & & & & & \\
\hline 1D84 & ...Repeated for module number 5 & & & & & \\
\hline 1D85 & ...Repeated for module number 6 & & & & & \\
\hline \multicolumn{7}{|l|}{Source Demand (Read Only) (6 modules)} \\
\hline 1E00 & Demand la & 0 to 999999.999 & A & 0.001 & F060 & 0 \\
\hline 1E02 & Demand Ib & 0 to 999999.999 & A & 0.001 & F060 & 0 \\
\hline 1E04 & Demand Ic & 0 to 999999.999 & A & 0.001 & F060 & 0 \\
\hline 1E06 & Demand Watt & 0 to 999999.999 & W & 0.001 & F060 & 0 \\
\hline 1E08 & Demand Var & 0 to 999999.999 & var & 0.001 & F060 & 0 \\
\hline 1E0A & Demand Va & 0 to 999999.999 & VA & 0.001 & F060 & 0 \\
\hline 1E0C & Reserved (4 items) & --- & --- & --- & F001 & 0 \\
\hline 1E10 & ...Repeated for module number 2 & & & & & \\
\hline 1E20 & ...Repeated for module number 3 & & & & & \\
\hline 1E30 & ...Repeated for module number 4 & & & & & \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 6 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline 1E40 & ...Repeated for module number 5 & & & & & \\
\hline 1E50 & ...Repeated for module number 6 & & & & & \\
\hline \multicolumn{7}{|l|}{Source Demand Peaks (Read Only Non-Volatile) (6 modules)} \\
\hline 1 E80 & SRC 1 Demand la Max & 0 to 999999.999 & A & 0.001 & F060 & 0 \\
\hline 1E82 & SRC 1 Demand la Max Date & 0 to 4294967295 & --- & 1 & F050 & 0 \\
\hline 1E84 & SRC 1 Demand Ib Max & 0 to 999999.999 & A & 0.001 & F060 & 0 \\
\hline 1E86 & SRC 1 Demand Ib Max Date & 0 to 4294967295 & --- & 1 & F050 & 0 \\
\hline 1 E 88 & SRC 1 Demand Ic Max & 0 to 999999.999 & A & 0.001 & F060 & 0 \\
\hline 1E8A & SRC 1 Demand Ic Max Date & 0 to 4294967295 & --- & 1 & F050 & 0 \\
\hline 1E8C & SRC 1 Demand Watt Max & 0 to 999999.999 & W & 0.001 & F060 & 0 \\
\hline 1E8E & SRC 1 Demand Watt Max Date & 0 to 4294967295 & --- & 1 & F050 & 0 \\
\hline 1E90 & SRC 1 Demand Var & 0 to 999999.999 & var & 0.001 & F060 & 0 \\
\hline 1E92 & SRC 1 Demand Var Max Date & 0 to 4294967295 & --- & 1 & F050 & 0 \\
\hline 1E94 & SRC 1 Demand Va Max & 0 to 999999.999 & VA & 0.001 & F060 & 0 \\
\hline 1E96 & SRC 1 Demand Va Max Date & 0 to 4294967295 & --- & 1 & F050 & 0 \\
\hline 1E98 & Reserved (8 items) & --- & --- & --- & F001 & 0 \\
\hline 1EA0 & ...Repeated for module number 2 & & & & & \\
\hline 1EC0 & ...Repeated for module number 3 & & & & & \\
\hline 1EE0 & ...Repeated for module number 4 & & & & & \\
\hline 1F00 & ...Repeated for module number 5 & & & & & \\
\hline 1F20 & ...Repeated for module number 6 & & & & & \\
\hline \multicolumn{7}{|l|}{Source Voltage THD And Harmonics (Read Only) (6 modules)} \\
\hline 1F80 & Va THD & 0 to 99.9 & --- & 0.1 & F001 & 0 \\
\hline 1F81 & Va Harmonics - 2nd to 25th (24 items) & 0 to 99.9 & --- & 0.1 & F001 & 0 \\
\hline 1F99 & Vb THD & 0 to 99.9 & --- & 0.1 & F001 & 0 \\
\hline 1F9A & Vb Harmonics - 2nd to 25th (24 items) & 0 to 99.9 & --- & 0.1 & F001 & 0 \\
\hline 1FB2 & Vc THD & 0 to 99.9 & --- & 0.1 & F001 & 0 \\
\hline 1FB3 & Vc Harmonics - 2nd to 25th (24 items) & 0 to 99.9 & --- & 0.1 & F001 & 0 \\
\hline 1FCB & ...Repeated for module number 2 & & & & & \\
\hline 2016 & ...Repeated for module number 3 & & & & & \\
\hline 2061 & ...Repeated for module number 4 & & & & & \\
\hline 20AC & ...Repeated for module number 5 & & & & & \\
\hline 20F7 & ...Repeated for module number 6 & & & & & \\
\hline \multicolumn{7}{|l|}{Breaker Arcing Current Actuals (Read Only Non-Volatile) (2 modules)} \\
\hline 2200 & Breaker 1 Arcing Amp Phase A & 0 to 99999999 & kA \({ }^{2}\)-cyc & 1 & F060 & 0 \\
\hline 2202 & Breaker 1 Arcing Amp Phase B & 0 to 99999999 & kA \({ }^{2}\)-cyc & 1 & F060 & 0 \\
\hline 2204 & Breaker 1 Arcing Amp Phase C & 0 to 99999999 & kA \({ }^{2}\)-cyc & 1 & F060 & 0 \\
\hline 2206 & ...Repeated for module number 2 & & & & & \\
\hline \multicolumn{7}{|l|}{Breaker Arcing Current Commands (Read/Write Command) (2 modules)} \\
\hline 220C & Breaker x Arcing Clear Command & 0 to 1 & --- & 1 & F126 & 0 (No) \\
\hline 220D & ...Repeated for module number 2 & & & & & \\
\hline \multicolumn{7}{|l|}{Passwords Unauthorized Access (Read/Write Command)} \\
\hline 2230 & Reset Unauthorized Access & 0 to 1 & --- & 1 & F126 & 0 (No) \\
\hline \multicolumn{7}{|l|}{HIZ Commands (Read/Write Command)} \\
\hline 2240 & HIZ Clear Oscillography & 0 to 1 & --- & 1 & F126 & 0 (No) \\
\hline 2241 & HIZ Oscillography Force Trigger & 0 to 1 & --- & 1 & F126 & 0 (No) \\
\hline 2242 & HIZ Oscillography Force Algorithm Capture & 0 to 1 & --- & 1 & F126 & 0 (No) \\
\hline 2243 & HIZ Reset Sigma Values & 0 to 1 & --- & 1 & F126 & 0 (No) \\
\hline \multicolumn{7}{|l|}{HIZ Status (Read Only)} \\
\hline 2250 & HIZ Status & 0 to 9 & --- & 1 & F187 & 0 (NORMAL) \\
\hline 2251 & HIZ Phase A Arc Confidence & 0 to 100 & & 1 & F001 & 0 \\
\hline 2252 & HIZ Phase B Arc Confidence & 0 to 100 & & 1 & F001 & 0 \\
\hline 2253 & HIZ Phase C Arc Confidence & 0 to 100 & & 1 & F001 & 0 \\
\hline 2254 & HIZ Neutral Arc Confidence & 0 to 100 & --- & 1 & F001 & 0 \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 7 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline \multicolumn{7}{|l|}{HIZ Records (Read Only) (4 modules)} \\
\hline 2260 & HIZ Capture Trigger Type & 0 to 6 & --- & 1 & F188 & 0 (NONE) \\
\hline 2261 & HIZ Capture Time & 0 to 1 & --- & 1 & F050 & 0 \\
\hline 2263 & ...Repeated for module number 2 & & & & & \\
\hline 2266 & ...Repeated for module number 3 & & & & & \\
\hline 2269 & ...Repeated for module number 4 & & & & & \\
\hline \multicolumn{7}{|l|}{HIZ RMS Records (Read Only) (4 modules)} \\
\hline 2270 & HIZ RMS Capture Trigger Type & 0 to 6 & --- & 1 & F188 & 0 (NONE) \\
\hline 2271 & HIZ RMS Capture Time & 0 to 1 & --- & 1 & F050 & 0 \\
\hline 2273 & ...Repeated for module number 2 & & & & & \\
\hline 2276 & ...Repeated for module number 3 & & & & & \\
\hline 2279 & ...Repeated for module number 4 & & & & & \\
\hline \multicolumn{7}{|l|}{Fault Location (Read Only) (5 modules)} \\
\hline 2340 & Prefault Phase A Current Magnitude & 0 to 999999.999 & A & 0.001 & F060 & 0 \\
\hline 2342 & Prefault Phase A Current Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 2343 & Prefault Phase B Current Magnitude & 0 to 999999.999 & A & 0.001 & F060 & 0 \\
\hline 2345 & Prefault Phase B Current Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 2346 & Prefault Phase C Current Magnitude & 0 to 999999.999 & A & 0.001 & F060 & 0 \\
\hline 2348 & Prefault Phase C Current Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 2349 & Prefault Phase A Voltage Magnitude & 0 to 999999.999 & V & 0.001 & F060 & 0 \\
\hline 234B & Prefault Phase A Voltage Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 234C & Prefault Phase B Voltage Magnitude & 0 to 999999.999 & V & 0.001 & F060 & 0 \\
\hline 234E & Prefault Phase B Voltage Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 234F & Prefault Phase C Voltage Magnitude & 0 to 999999.999 & V & 0.001 & F060 & 0 \\
\hline 2351 & Prefault Phase C Voltage Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 2352 & Postfault Phase A Current Magnitude & 0 to 999999.999 & A & 0.001 & F060 & 0 \\
\hline 2354 & Postfault Phase A Current Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 2355 & Postfault Phase B Current Magnitude & 0 to 999999.999 & A & 0.001 & F060 & 0 \\
\hline 2357 & Postfault Phase B Current Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 2358 & Postfault Phase C Current Magnitude & 0 to 999999.999 & A & 0.001 & F060 & 0 \\
\hline 235A & Postfault Phase C Current Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 235B & Postfault Phase A Voltage Magnitude & 0 to 999999.999 & V & 0.001 & F060 & 0 \\
\hline 235D & Postfault Phase A Voltage Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 235E & Postfault Phase B Voltage Magnitude & 0 to 999999.999 & V & 0.001 & F060 & 0 \\
\hline 2360 & Postfault Phase B Voltage Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 2361 & Postfault Phase C Voltage Magnitude & 0 to 999999.999 & V & 0.001 & F060 & 0 \\
\hline 2363 & Postfault Phase C Voltage Angle & -359.9 to 0 & degrees & 0.1 & F002 & 0 \\
\hline 2364 & Fault Type & 0 to 11 & --- & 1 & F148 & 0 (NA) \\
\hline 2365 & Fault Location based on Line length units (km or miles) & -3276.7 to 3276.7 & --- & 0.1 & F002 & 0 \\
\hline 2366 & ...Repeated for module number 2 & & & & & \\
\hline 238C & ...Repeated for module number 3 & & & & & \\
\hline 23B2 & ...Repeated for module number 4 & & & & & \\
\hline 23D8 & ...Repeated for module number 5 & & & & & \\
\hline \multicolumn{7}{|l|}{Synchrocheck Actuals (Read Only) (2 modules)} \\
\hline 2400 & Synchrocheck 1 Delta Voltage & \[
\begin{gathered}
-1000000000000 \text { to } \\
1000000000000
\end{gathered}
\] & V & 1 & F060 & 0 \\
\hline 2402 & Synchrocheck 1 Delta Frequency & 0 to 655.35 & Hz & 0.01 & F001 & 0 \\
\hline 2403 & Synchrocheck 1 Delta Phase & 0 to 359.9 & degrees & 0.1 & F001 & 0 \\
\hline 2404 & ...Repeated for module number 2 & & & & & \\
\hline \multicolumn{7}{|l|}{Autoreclose Status (Read Only) (6 modules)} \\
\hline 2410 & Autoreclose Count & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 2411 & ...Repeated for module number 2 & & & & & \\
\hline 2412 & ...Repeated for module number 3 & & & & & \\
\hline 2413 & ...Repeated for module number 4 & & & & & \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 8 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline 2414 & ...Repeated for module number 5 & & & & & \\
\hline 2415 & ...Repeated for module number 6 & & & & & \\
\hline \multicolumn{7}{|l|}{Source Current THD And Harmonics (Read Only) (6 modules)} \\
\hline 2800 & la THD & 0 to 99.9 & --- & 0.1 & F001 & 0 \\
\hline 2801 & la Harmonics - 2nd to 25th (24 items) & 0 to 99.9 & --- & 0.1 & F001 & 0 \\
\hline 2821 & lb THD & 0 to 99.9 & --- & 0.1 & F001 & 0 \\
\hline 2822 & Ib Harmonics - 2nd to 25th (24 items) & 0 to 99.9 & --- & 0.1 & F001 & 0 \\
\hline 283A & Reserved (8 items) & 0 to 0.1 & --- & 0.1 & F001 & 0 \\
\hline 2842 & Ic THD & 0 to 99.9 & --- & 0.1 & F001 & 0 \\
\hline 2843 & Ic Harmonics - 2nd to 25th (24 items) & 0 to 99.9 & --- & 0.1 & F001 & 0 \\
\hline 285B & Reserved (8 items) & 0 to 0.1 & --- & 0.1 & F001 & 0 \\
\hline 2863 & ...Repeated for module number 2 & & & & & \\
\hline 28C6 & ...Repeated for module number 3 & & & & & \\
\hline 2929 & ...Repeated for module number 4 & & & & & \\
\hline 298C & ...Repeated for module number 5 & & & & & \\
\hline 29EF & ...Repeated for module number 6 & & & & & \\
\hline \multicolumn{7}{|l|}{Expanded FlexStates (Read Only)} \\
\hline 2B00 & FlexStates, one per register (256 items) & 0 to 1 & --- & 1 & F108 & 0 (Off) \\
\hline \multicolumn{7}{|l|}{Expanded Digital I/O states (Read Only)} \\
\hline 2D00 & Contact Input States, one per register (96 items) & 0 to 1 & --- & 1 & F108 & 0 (Off) \\
\hline 2D80 & Contact Output States, one per register (64 items) & 0 to 1 & --- & 1 & F108 & 0 (Off) \\
\hline 2E00 & Virtual Output States, one per register (64 items) & 0 to 1 & --- & 1 & F108 & 0 (Off) \\
\hline \multicolumn{7}{|l|}{Expanded Remote I/O Status (Read Only)} \\
\hline 2F00 & Remote Device States, one per register (16 items) & 0 to 1 & --- & 1 & F155 & 0 (Offline) \\
\hline 2F80 & Remote Input States, one per register (64 items) & 0 to 1 & --- & 1 & F108 & 0 (Off) \\
\hline \multicolumn{7}{|l|}{Oscillography Values (Read Only)} \\
\hline 3000 & Oscillography Number of Triggers & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 3001 & Oscillography Available Records & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 3002 & Oscillography Last Cleared Date & 0 to 400000000 & --- & 1 & F050 & 0 \\
\hline 3004 & Oscillography Number Of Cycles Per Record & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline \multicolumn{7}{|l|}{Oscillography Commands (Read/Write Command)} \\
\hline 3005 & Oscillography Force Trigger & 0 to 1 & --- & 1 & F126 & 0 (No) \\
\hline 3011 & Oscillography Clear Data & 0 to 1 & --- & 1 & F126 & 0 (No) \\
\hline \multicolumn{7}{|l|}{Fault Report Indexing (Read Only Non-Volatile)} \\
\hline 3020 & Number Of Fault Reports & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline \multicolumn{7}{|l|}{Fault Report Actuals (Read Only Non-Volatile) (15 modules)} \\
\hline 3030 & Fault Time & 0 to 4294967295 & --- & 1 & F050 & 0 \\
\hline 3032 & ...Repeated for module number 2 & & & & & \\
\hline 3034 & ...Repeated for module number 3 & & & & & \\
\hline 3036 & ...Repeated for module number 4 & & & & & \\
\hline 3038 & ...Repeated for module number 5 & & & & & \\
\hline 303A & ...Repeated for module number 6 & & & & & \\
\hline 303C & ...Repeated for module number 7 & & & & & \\
\hline 303E & ...Repeated for module number 8 & & & & & \\
\hline 3040 & ...Repeated for module number 9 & & & & & \\
\hline 3042 & ...Repeated for module number 10 & & & & & \\
\hline 3044 & ...Repeated for module number 11 & & & & & \\
\hline 3046 & ...Repeated for module number 12 & & & & & \\
\hline 3048 & ...Repeated for module number 13 & & & & & \\
\hline 304A & ...Repeated for module number 14 & & & & & \\
\hline 304C & ...Repeated for module number 15 & & & & & \\
\hline \multicolumn{7}{|l|}{Modbus File Transfer (Read/Write)} \\
\hline 3100 & Name of file to read & --- & --- & --- & F204 & (none) \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 9 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline \multicolumn{7}{|l|}{Modbus File Transfer (Read Only)} \\
\hline 3200 & Character position of current block within file & 0 to 4294967295 & --- & 1 & F003 & 0 \\
\hline 3202 & Size of currently-available data block & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 3203 & Block of data from requested file (122 items) & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline \multicolumn{7}{|l|}{Event Recorder (Read Only)} \\
\hline 3400 & Events Since Last Clear & 0 to 4294967295 & --- & 1 & F003 & 0 \\
\hline 3402 & Number of Available Events & 0 to 4294967295 & --- & 1 & F003 & 0 \\
\hline 3404 & Event Recorder Last Cleared Date & 0 to 4294967295 & --- & 1 & F050 & 0 \\
\hline \multicolumn{7}{|l|}{Event Recorder (Read/Write Command)} \\
\hline 3406 & Event Recorder Clear Command & 0 to 1 & --- & 1 & F126 & 0 (No) \\
\hline \multicolumn{7}{|l|}{DCMA Input Values (Read Only) (24 modules)} \\
\hline 34C0 & DCMA Inputs 1 Value & -9999.999 to 9999.999 & --- & 0.001 & F004 & 0 \\
\hline 34C2 & ...Repeated for module number 2 & & & & & \\
\hline 34C4 & ...Repeated for module number 3 & & & & & \\
\hline 34C6 & ...Repeated for module number 4 & & & & & \\
\hline 34C8 & ...Repeated for module number 5 & & & & & \\
\hline 34CA & ...Repeated for module number 6 & & & & & \\
\hline 34CC & ...Repeated for module number 7 & & & & & \\
\hline 34CE & ...Repeated for module number 8 & & & & & \\
\hline 34D0 & ...Repeated for module number 9 & & & & & \\
\hline 34D2 & ...Repeated for module number 10 & & & & & \\
\hline 34D4 & ...Repeated for module number 11 & & & & & \\
\hline 34D6 & ...Repeated for module number 12 & & & & & \\
\hline 34D8 & ...Repeated for module number 13 & & & & & \\
\hline 34DA & ...Repeated for module number 14 & & & & & \\
\hline 34DC & ...Repeated for module number 15 & & & & & \\
\hline 34DE & ...Repeated for module number 16 & & & & & \\
\hline 34E0 & ...Repeated for module number 17 & & & & & \\
\hline 34E2 & ...Repeated for module number 18 & & & & & \\
\hline 34E4 & ...Repeated for module number 19 & & & & & \\
\hline 34E6 & ...Repeated for module number 20 & & & & & \\
\hline 34E8 & ...Repeated for module number 21 & & & & & \\
\hline 34EA & ...Repeated for module number 22 & & & & & \\
\hline 34EC & ...Repeated for module number 23 & & & & & \\
\hline 34EE & ...Repeated for module number 24 & & & & & \\
\hline \multicolumn{7}{|l|}{RTD Input Values (Read Only) (48 modules)} \\
\hline 34F0 & RTD Inputs 1 Value & -32768 to 32767 & \({ }^{\circ} \mathrm{C}\) & 1 & F002 & 0 \\
\hline 34F1 & ...Repeated for module number 2 & & & & & \\
\hline 34F2 & ...Repeated for module number 3 & & & & & \\
\hline 34F3 & ...Repeated for module number 4 & & & & & \\
\hline 34F4 & ...Repeated for module number 5 & & & & & \\
\hline 34F5 & ...Repeated for module number 6 & & & & & \\
\hline 34F6 & ...Repeated for module number 7 & & & & & \\
\hline 34F7 & ...Repeated for module number 8 & & & & & \\
\hline 34F8 & ...Repeated for module number 9 & & & & & \\
\hline 34F9 & ...Repeated for module number 10 & & & & & \\
\hline 34FA & ...Repeated for module number 11 & & & & & \\
\hline 34FB & ...Repeated for module number 12 & & & & & \\
\hline 34FC & ...Repeated for module number 13 & & & & & \\
\hline 34FD & ...Repeated for module number 14 & & & & & \\
\hline 34FE & ...Repeated for module number 15 & & & & & \\
\hline 34FF & ...Repeated for module number 16 & & & & & \\
\hline 3500 & ...Repeated for module number 17 & & & & & \\
\hline 3501 & ...Repeated for module number 18 & & & & & \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 10 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline 3502 & ...Repeated for module number 19 & & & & & \\
\hline 3503 & ...Repeated for module number 20 & & & & & \\
\hline 3504 & ...Repeated for module number 21 & & & & & \\
\hline 3505 & ...Repeated for module number 22 & & & & & \\
\hline 3506 & ...Repeated for module number 23 & & & & & \\
\hline 3507 & ...Repeated for module number 24 & & & & & \\
\hline 3508 & ...Repeated for module number 25 & & & & & \\
\hline 3509 & ...Repeated for module number 26 & & & & & \\
\hline 350A & ...Repeated for module number 27 & & & & & \\
\hline 350B & ...Repeated for module number 28 & & & & & \\
\hline 350C & ...Repeated for module number 29 & & & & & \\
\hline 350D & ...Repeated for module number 30 & & & & & \\
\hline 350E & ...Repeated for module number 31 & & & & & \\
\hline 350F & ...Repeated for module number 32 & & & & & \\
\hline 3510 & ...Repeated for module number 33 & & & & & \\
\hline 3511 & ...Repeated for module number 34 & & & & & \\
\hline 3512 & ...Repeated for module number 35 & & & & & \\
\hline 3513 & ...Repeated for module number 36 & & & & & \\
\hline 3514 & ...Repeated for module number 37 & & & & & \\
\hline 3515 & ...Repeated for module number 38 & & & & & \\
\hline 3516 & ...Repeated for module number 39 & & & & & \\
\hline 3517 & ...Repeated for module number 40 & & & & & \\
\hline 3518 & ...Repeated for module number 41 & & & & & \\
\hline 3519 & ...Repeated for module number 42 & & & & & \\
\hline 351A & ...Repeated for module number 43 & & & & & \\
\hline 351B & ...Repeated for module number 44 & & & & & \\
\hline 351C & ...Repeated for module number 45 & & & & & \\
\hline 351D & ...Repeated for module number 46 & & & & & \\
\hline 351E & ...Repeated for module number 47 & & & & & \\
\hline 351F & ...Repeated for module number 48 & & & & & \\
\hline \multicolumn{7}{|l|}{Expanded Direct Input/Ouput Status (Read Only)} \\
\hline 3560 & Direct Device States, one per register (8 items) & 0 to 1 & --- & 1 & F155 & 0 (Offline) \\
\hline 3570 & Direct Input States, one per register (96 items) & 0 to 1 & --- & 1 & F108 & 0 (Off) \\
\hline \multicolumn{7}{|l|}{Passwords (Read/Write Command)} \\
\hline 4000 & Command Password Setting & 0 to 4294967295 & --- & 1 & F003 & 0 \\
\hline \multicolumn{7}{|l|}{Passwords (Read/Write Setting)} \\
\hline 4002 & Setting Password Setting & 0 to 4294967295 & --- & 1 & F003 & 0 \\
\hline \multicolumn{7}{|l|}{Passwords (Read/Write)} \\
\hline 4008 & Command Password Entry & 0 to 4294967295 & --- & 1 & F003 & 0 \\
\hline 400A & Setting Password Entry & 0 to 4294967295 & --- & 1 & F003 & 0 \\
\hline \multicolumn{7}{|l|}{Passwords (Read Only)} \\
\hline 4010 & Command Password Status & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 4011 & Setting Password Status & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline \multicolumn{7}{|l|}{User Display Invoke (Read/Write Setting)} \\
\hline 4040 & Invoke and Scroll Through User Display Menu Operand & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline \multicolumn{7}{|l|}{LED Test (Read/Write Setting)} \\
\hline 4048 & LED Test Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 4049 & LED Test Control & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline \multicolumn{7}{|l|}{Preferences (Read/Write Setting)} \\
\hline 4050 & Flash Message Time & 0.5 to 10 & s & 0.1 & F001 & 10 \\
\hline 4051 & Default Message Timeout & 10 to 900 & s & 1 & F001 & 300 \\
\hline 4052 & Default Message Intensity & 0 to 3 & --- & 1 & F101 & 0 (25\%) \\
\hline 4053 & Screen Saver Feature & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 4054 & Screen Saver Wait Time & 1 to 65535 & min & 1 & F001 & 30 \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 11 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline 4055 & Current Cutoff Level & 0.002 to 0.02 & pu & 0.001 & F001 & 20 \\
\hline 4056 & Voltage Cutoff Level & 0.1 to 1 & V & 0.1 & F001 & 10 \\
\hline \multicolumn{7}{|l|}{Communications (Read/Write Setting)} \\
\hline 407E & COM1 minimum response time & 0 to 1000 & ms & 10 & F001 & 0 \\
\hline 407F & COM2 minimum response time & 0 to 1000 & ms & 10 & F001 & 0 \\
\hline 4080 & Modbus Slave Address & 1 to 254 & --- & 1 & F001 & 254 \\
\hline 4083 & RS485 Com1 Baud Rate & 0 to 11 & --- & 1 & F112 & 8 (115200) \\
\hline 4084 & RS485 Com1 Parity & 0 to 2 & --- & 1 & F113 & 0 (None) \\
\hline 4085 & RS485 Com2 Baud Rate & 0 to 11 & --- & 1 & F112 & 8 (115200) \\
\hline 4086 & RS485 Com2 Parity & 0 to 2 & --- & 1 & F113 & 0 (None) \\
\hline 4087 & IP Address & 0 to 4294967295 & --- & 1 & F003 & 56554706 \\
\hline 4089 & IP Subnet Mask & 0 to 4294967295 & --- & 1 & F003 & 4294966272 \\
\hline 408B & Gateway IP Address & 0 to 4294967295 & --- & 1 & F003 & 56554497 \\
\hline 408D & Network Address NSAP & --- & --- & --- & F074 & 0 \\
\hline 4097 & Default GOOSE Update Time & 1 to 60 & S & 1 & F001 & 60 \\
\hline 409A & DNP Port & 0 to 4 & --- & 1 & F177 & 0 (NONE) \\
\hline 409B & DNP Address & 0 to 65519 & --- & 1 & F001 & 1 \\
\hline 409C & DNP Client Addresses (2 items) & 0 to 4294967295 & --- & 1 & F003 & 0 \\
\hline 40A0 & TCP Port Number for the Modbus protocol & 1 to 65535 & --- & 1 & F001 & 502 \\
\hline 40A1 & TCP/UDP Port Number for the DNP Protocol & 1 to 65535 & --- & 1 & F001 & 20000 \\
\hline 40A2 & TCP Port Number for the UCA/MMS Protocol & 1 to 65535 & --- & 1 & F001 & 102 \\
\hline 40A3 & TCP Port Number for the HTTP (Web Server) Protocol & 1 to 65535 & --- & 1 & F001 & 80 \\
\hline 40A4 & Main UDP Port Number for the TFTP Protocol & 1 to 65535 & --- & 1 & F001 & 69 \\
\hline 40A5 & Data Transfer UDP Port Numbers for the TFTP Protocol (zero means "automatic") (2 items) & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 40A7 & DNP Unsolicited Responses Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 40A8 & DNP Unsolicited Responses Timeout & 0 to 60 & s & 1 & F001 & 5 \\
\hline 40A9 & DNP Unsolicited Responses Max Retries & 1 to 255 & --- & 1 & F001 & 10 \\
\hline 40AA & DNP Unsolicited Responses Destination Address & 0 to 65519 & --- & 1 & F001 & 1 \\
\hline 40AB & Ethernet Operation Mode & 0 to 1 & --- & 1 & F192 & 0 (Half-Duplex) \\
\hline 40AC & DNP User Map Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 40AD & DNP Number of Sources used in Analog points list & 1 to 6 & --- & 1 & F001 & 1 \\
\hline 40AE & DNP Current Scale Factor & 0 to 8 & --- & 1 & F194 & 2 (1) \\
\hline 40AF & DNP Voltage Scale Factor & 0 to 8 & --- & 1 & F194 & 2 (1) \\
\hline 40B0 & DNP Power Scale Factor & 0 to 8 & --- & 1 & F194 & 2 (1) \\
\hline 40B1 & DNP Energy Scale Factor & 0 to 8 & --- & 1 & F194 & 2 (1) \\
\hline 40B2 & DNP Other Scale Factor & 0 to 8 & --- & 1 & F194 & 2 (1) \\
\hline 40B3 & DNP Current Default Deadband & 0 to 65535 & --- & 1 & F001 & 30000 \\
\hline 40B4 & DNP Voltage Default Deadband & 0 to 65535 & --- & 1 & F001 & 30000 \\
\hline 40B5 & DNP Power Default Deadband & 0 to 65535 & --- & 1 & F001 & 30000 \\
\hline 40B6 & DNP Energy Default Deadband & 0 to 65535 & --- & 1 & F001 & 30000 \\
\hline 40B7 & DNP Other Default Deadband & 0 to 65535 & --- & 1 & F001 & 30000 \\
\hline 40B8 & DNP IIN Time Sync Bit Period & 1 to 10080 & min & 1 & F001 & 1440 \\
\hline 40B9 & DNP Message Fragment Size & 30 to 2048 & -- & 1 & F001 & 240 \\
\hline 40BA & DNP Client Address 3 & 0 to 4294967295 & --- & 1 & F003 & 0 \\
\hline 40BC & DNP Client Address 4 & 0 to 4294967295 & --- & 1 & F003 & 0 \\
\hline 40BE & DNP Client Address 5 & 0 to 4294967295 & --- & 1 & F003 & 0 \\
\hline 40C0 & DNP Communications Reserved (8 items) & 0 to 1 & -- & 1 & F001 & 0 \\
\hline 40C8 & UCA Logical Device Name & --- & --- & --- & F203 & "UCADevice" \\
\hline 40D0 & GOOSE Function & 0 to 1 & --- & 1 & F102 & 1 (Enabled) \\
\hline 40D1 & UCA GLOBE.ST.LocRemDS Flexlogic Operand & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 40D2 & UCA Communications Reserved (14 items) & 0 to 1 & --- & 1 & F001 & 0 \\
\hline 40E0 & TCP Port Number for the IEC 60870-5-104 Protocol & 1 to 65535 & --- & 1 & F001 & 2404 \\
\hline 40E1 & IEC 60870-5-104 Protocol Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 12 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline 40E2 & IEC 60870-5-104 Protocol Common Address of ASDU & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 40E3 & IEC 60870-5-104 Protocol Cyclic Data Trans. Period & 1 to 65535 & s & 1 & F001 & 60 \\
\hline 40E4 & IEC Number of Sources used in M_ME_NC_1 point list & 1 to 6 & --- & 1 & F001 & 1 \\
\hline 40E5 & IEC Current Default Threshold & 0 to 65535 & --- & 1 & F001 & 30000 \\
\hline 40E6 & IEC Voltage Default Threshold & 0 to 65535 & --- & 1 & F001 & 30000 \\
\hline 40E7 & IEC Power Default Threshold & 0 to 65535 & --- & 1 & F001 & 30000 \\
\hline 40E8 & IEC Energy Default Threshold & 0 to 65535 & --- & 1 & F001 & 30000 \\
\hline 40E9 & IEC Other Default Threshold & 0 to 65535 & --- & 1 & F001 & 30000 \\
\hline 40EA & IEC Client Address (5 items) & 0 to 4294967295 & --- & 1 & F003 & 0 \\
\hline 40FE & IEC Communications Reserved (2 items) & 0 to 1 & --- & 1 & F001 & 0 \\
\hline 4100 & DNP Binary Input Block of 16 Points (58 items) & 0 to 58 & --- & 1 & F197 & 0 (Not Used) \\
\hline \multicolumn{7}{|l|}{Simple Network Time Protocol (Read/Write Setting)} \\
\hline 4168 & Simple Network Time Protocol (SNTP) Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 4169 & Simple Network Time Protocol (SNTP) Server IP Address & 0 to 4294967295 & --- & 1 & F003 & 0 \\
\hline 416B & Simple Network Time Protocol (SNTP) UDP Port Number & 1 to 65535 & --- & 1 & F001 & 123 \\
\hline \multicolumn{7}{|l|}{Data Logger Commands (Read/Write Command)} \\
\hline 4170 & Data Logger Clear & 0 to 1 & --- & 1 & F126 & 0 (No) \\
\hline \multicolumn{7}{|l|}{Data Logger (Read/Write Setting)} \\
\hline 4180 & Data Logger Rate & 0 to 7 & --- & 1 & F178 & 1 (1 min) \\
\hline 4181 & Data Logger Channel Settings (16 items) & --- & --- & --- & F600 & 0 \\
\hline \multicolumn{7}{|l|}{Clock (Read/Write Command)} \\
\hline 41A0 & Real Time Clock Set Time & 0 to 235959 & --- & 1 & F050 & 0 \\
\hline \multicolumn{7}{|l|}{Clock (Read/Write Setting)} \\
\hline 41A2 & SR Date Format & 0 to 4294967295 & --- & 1 & F051 & 0 \\
\hline 41A4 & SR Time Format & 0 to 4294967295 & --- & 1 & F052 & 0 \\
\hline 41A6 & IRIG-B Signal Type & 0 to 2 & --- & 1 & F114 & 0 (None) \\
\hline 41A7 & Clock Events Enable / Disable & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline \multicolumn{7}{|l|}{Fault Report Commands (Read/Write Command)} \\
\hline 41B2 & Fault Reports Clear Data Command & 0 to 1 & --- & 1 & F126 & 0 (No) \\
\hline \multicolumn{7}{|l|}{Oscillography (Read/Write Setting)} \\
\hline 41C0 & Oscillography Number of Records & 1 to 64 & --- & 1 & F001 & 15 \\
\hline 41C1 & Oscillography Trigger Mode & 0 to 1 & --- & 1 & F118 & 0 (Auto. Overwrite) \\
\hline 41C2 & Oscillography Trigger Position & 0 to 100 & \% & 1 & F001 & 50 \\
\hline 41C3 & Oscillography Trigger Source & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 41C4 & Oscillography AC Input Waveforms & 0 to 4 & --- & 1 & F183 & 2 (16 samples/cycle) \\
\hline 41D0 & Oscillography Analog Channel X (16 items) & 0 to 65535 & --- & 1 & F600 & 0 \\
\hline 4200 & Oscillography Digital Channel X (63 items) & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline \multicolumn{7}{|l|}{Trip and Alarm LEDs (Read/Write Setting)} \\
\hline 4260 & Trip LED Input FlexLogic Operand & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 4261 & Alarm LED Input FlexLogic Operand & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline \multicolumn{7}{|l|}{User Programmable LEDs (Read/Write Setting) (48 modules)} \\
\hline 4280 & FlexLogic Operand to Activate LED & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 4281 & User LED type (latched or self-resetting) & 0 to 1 & --- & 1 & F127 & 1 (Self-Reset) \\
\hline 4282 & ...Repeated for module number 2 & & & & & \\
\hline 4284 & ...Repeated for module number 3 & & & & & \\
\hline 4286 & ...Repeated for module number 4 & & & & & \\
\hline 4288 & ...Repeated for module number 5 & & & & & \\
\hline 428A & ...Repeated for module number 6 & & & & & \\
\hline 428C & ...Repeated for module number 7 & & & & & \\
\hline 428 E & ...Repeated for module number 8 & & & & & \\
\hline 4290 & ...Repeated for module number 9 & & & & & \\
\hline 4292 & ...Repeated for module number 10 & & & & & \\
\hline 4294 & ...Repeated for module number 11 & & & & & \\
\hline 4296 & ...Repeated for module number 12 & & & & & \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 13 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline 4298 & ...Repeated for module number 13 & & & & & \\
\hline 429A & ...Repeated for module number 14 & & & & & \\
\hline 429C & ...Repeated for module number 15 & & & & & \\
\hline 429E & ...Repeated for module number 16 & & & & & \\
\hline 42A0 & ...Repeated for module number 17 & & & & & \\
\hline 42A2 & ...Repeated for module number 18 & & & & & \\
\hline 42A4 & ...Repeated for module number 19 & & & & & \\
\hline 42A6 & ...Repeated for module number 20 & & & & & \\
\hline 42A8 & ...Repeated for module number 21 & & & & & \\
\hline 42AA & ...Repeated for module number 22 & & & & & \\
\hline 42AC & ...Repeated for module number 23 & & & & & \\
\hline 42AE & ...Repeated for module number 24 & & & & & \\
\hline 42B0 & ...Repeated for module number 25 & & & & & \\
\hline 42B2 & ...Repeated for module number 26 & & & & & \\
\hline 42B4 & ...Repeated for module number 27 & & & & & \\
\hline 42B6 & ...Repeated for module number 28 & & & & & \\
\hline 42B8 & ...Repeated for module number 29 & & & & & \\
\hline 42BA & ...Repeated for module number 30 & & & & & \\
\hline 42BC & ...Repeated for module number 31 & & & & & \\
\hline 42BE & ...Repeated for module number 32 & & & & & \\
\hline 42C0 & ...Repeated for module number 33 & & & & & \\
\hline 42C2 & ...Repeated for module number 34 & & & & & \\
\hline 42C4 & ...Repeated for module number 35 & & & & & \\
\hline 42C6 & ...Repeated for module number 36 & & & & & \\
\hline 42C8 & ...Repeated for module number 37 & & & & & \\
\hline 42CA & ...Repeated for module number 38 & & & & & \\
\hline 42CC & ...Repeated for module number 39 & & & & & \\
\hline 42CE & ...Repeated for module number 40 & & & & & \\
\hline 42D0 & ...Repeated for module number 41 & & & & & \\
\hline 42D2 & ...Repeated for module number 42 & & & & & \\
\hline 42D4 & ...Repeated for module number 43 & & & & & \\
\hline 42D6 & ...Repeated for module number 44 & & & & & \\
\hline 42D8 & ...Repeated for module number 45 & & & & & \\
\hline 42DA & ...Repeated for module number 46 & & & & & \\
\hline 42DC & ...Repeated for module number 47 & & & & & \\
\hline 42DE & ...Repeated for module number 48 & & & & & \\
\hline \multicolumn{7}{|l|}{Installation (Read/Write Setting)} \\
\hline 43E0 & Relay Programmed State & 0 to 1 & --- & 1 & F133 & 0 (Not Programmed) \\
\hline 43E1 & Relay Name & --- & --- & --- & F202 & "Relay-1" \\
\hline \multicolumn{7}{|l|}{User Programmable Self Tests (Read/Write Setting)} \\
\hline 4441 & User Programmable Detect Ring Break Function & 0 to 1 & --- & 1 & F102 & 1 (Enabled) \\
\hline 4442 & User Programmable Direct Device Off Function & 0 to 1 & --- & 1 & F102 & 1 (Enabled) \\
\hline 4443 & User Programmable Remote Device Off Function & 0 to 1 & --- & 1 & F102 & 1 (Enabled) \\
\hline 4444 & User Programmable Primary Ethernet Fail Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 4445 & User Programmable Secondary Ethernet Fail Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 4446 & User Programmable Battery Fail Function & 0 to 1 & --- & 1 & F102 & 1 (Enabled) \\
\hline 4447 & User Programmable SNTP Fail Function & 0 to 1 & --- & 1 & F102 & 1 (Enabled) \\
\hline 4448 & User Programmable IRIG-B Fail Function & 0 to 1 & --- & 1 & F102 & 1 (Enabled) \\
\hline \multicolumn{7}{|l|}{CT Settings (Read/Write Setting) (6 modules)} \\
\hline 4480 & Phase CT Primary & 1 to 65000 & A & 1 & F001 & 1 \\
\hline 4481 & Phase CT Secondary & 0 to 1 & --- & 1 & F123 & 0 (1 A) \\
\hline 4482 & Ground CT Primary & 1 to 65000 & A & 1 & F001 & 1 \\
\hline 4483 & Ground CT Secondary & 0 to 1 & --- & 1 & F123 & 0 (1 A) \\
\hline 4484 & ...Repeated for module number 2 & & & & & \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 14 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline 4488 & ...Repeated for module number 3 & & & & & \\
\hline 448C & ...Repeated for module number 4 & & & & & \\
\hline 4490 & ...Repeated for module number 5 & & & & & \\
\hline 4494 & ...Repeated for module number 6 & & & & & \\
\hline \multicolumn{7}{|l|}{VT Settings (Read/Write Setting) (3 modules)} \\
\hline 4500 & Phase VT Connection & 0 to 1 & --- & 1 & F100 & 0 (Wye) \\
\hline 4501 & Phase VT Secondary & 50 to 240 & V & 0.1 & F001 & 664 \\
\hline 4502 & Phase VT Ratio & 1 to 24000 & :1 & 1 & F060 & 1 \\
\hline 4504 & Auxiliary VT Connection & 0 to 6 & --- & 1 & F166 & 1 (Vag) \\
\hline 4505 & Auxiliary VT Secondary & 50 to 240 & V & 0.1 & F001 & 664 \\
\hline 4506 & Auxiliary VT Ratio & 1 to 24000 & :1 & 1 & F060 & 1 \\
\hline 4508 & ...Repeated for module number 2 & & & & & \\
\hline 4510 & ...Repeated for module number 3 & & & & & \\
\hline \multicolumn{7}{|l|}{Source Settings (Read/Write Setting) (6 modules)} \\
\hline 4580 & Source Name & --- & --- & --- & F206 & "SRC 1" \\
\hline 4583 & Source Phase CT & 0 to 63 & --- & 1 & F400 & 0 \\
\hline 4584 & Source Ground CT & 0 to 63 & --- & 1 & F400 & 0 \\
\hline 4585 & Source Phase VT & 0 to 63 & --- & 1 & F400 & 0 \\
\hline 4586 & Source Auxiliary VT & 0 to 63 & --- & 1 & F400 & 0 \\
\hline 4587 & ...Repeated for module number 2 & & & & & \\
\hline 458E & ...Repeated for module number 3 & & & & & \\
\hline 4595 & ...Repeated for module number 4 & & & & & \\
\hline 459C & ...Repeated for module number 5 & & & & & \\
\hline 45A3 & ...Repeated for module number 6 & & & & & \\
\hline \multicolumn{7}{|l|}{Power System (Read/Write Setting)} \\
\hline 4600 & Nominal Frequency & 25 to 60 & Hz & 1 & F001 & 60 \\
\hline 4601 & Phase Rotation & 0 to 1 & --- & 1 & F106 & 0 (ABC) \\
\hline 4602 & Frequency And Phase Reference & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline 4603 & Frequency Tracking Function & 0 to 1 & --- & 1 & F102 & 1 (Enabled) \\
\hline \multicolumn{7}{|l|}{Breaker Control Global Settings (Read/Write Setting)} \\
\hline 46F0 & UCA XCBR 1 SelTimOut & 1 to 60 & s & 1 & F001 & 30 \\
\hline \multicolumn{7}{|l|}{Breaker Control (Read/Write Setting) (2 modules)} \\
\hline 4700 & Breaker 1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 4701 & Breaker 1 Name & --- & --- & --- & F206 & "Bkr 1" \\
\hline 4704 & Breaker 1 Mode & 0 to 1 & --- & 1 & F157 & 0 (3-Pole) \\
\hline 4705 & Breaker 1 Open & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 4706 & Breaker 1 Close & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 4707 & Breaker 1 Phase A 3 Pole & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 4708 & Breaker 1 Phase B & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 4709 & Breaker 1 Phase C & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 470A & Breaker 1 External Alarm & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 470B & Breaker 1 Alarm Delay & 0 to 1000000 & s & 0.001 & F003 & 0 \\
\hline 470D & Breaker 1 Push Button Control & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 470E & Breaker 1 Manual Close Recall Time & 0 to 1000000 & s & 0.001 & F003 & 0 \\
\hline 4710 & Breaker 1 UCA XCBR 1 SBOClass & 1 to 2 & --- & 1 & F001 & 1 \\
\hline 4711 & Breaker 1 UCA XCBR 1 SBOEna & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 4712 & Breaker 1 Out Of Service & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 4713 & UCA XCBR PwrSupSt Bit 0 Operand & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 4714 & UCA XCBR 1 PresSt Operand & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 4715 & UCA XCBR 1 TrpCoil Operand & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 4716 & Reserved (2 items) & 0 to 65535 & s & 1 & F001 & 0 \\
\hline 4718 & ...Repeated for module number 2 & & & & & \\
\hline \multicolumn{7}{|l|}{Synchrocheck (Read/Write Setting) (2 modules)} \\
\hline 4780 & Synchrocheck 1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 15 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline 4781 & Synchrocheck 1 V1 Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline 4782 & Synchrocheck 1 V2 Source & 0 to 5 & --- & 1 & F167 & 1 (SRC 2) \\
\hline 4783 & Synchrocheck 1 Maximum Voltage Difference & 0 to 100000 & V & 1 & F060 & 10000 \\
\hline 4785 & Synchrocheck 1 Maximum Angle Difference & 0 to 100 & degrees & 1 & F001 & 30 \\
\hline 4786 & Synchrocheck 1 Maximum Frequency Difference & 0 to 2 & Hz & 0.01 & F001 & 100 \\
\hline 4787 & Synchrocheck 1 Dead Source Select & 0 to 5 & --- & 1 & F176 & 1 (LV1 and DV2) \\
\hline 4788 & Synchrocheck 1 Dead V1 Maximum Voltage & 0 to 1.25 & pu & 0.01 & F001 & 30 \\
\hline 4789 & Synchrocheck 1 Dead V2 Maximum Voltage & 0 to 1.25 & pu & 0.01 & F001 & 30 \\
\hline 478A & Synchrocheck 1 Live V1 Minimum Voltage & 0 to 1.25 & pu & 0.01 & F001 & 70 \\
\hline 478B & Synchrocheck 1 Live V2 Minimum Voltage & 0 to 1.25 & pu & 0.01 & F001 & 70 \\
\hline 478C & Synchrocheck 1 Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline 478D & Synchrocheck 1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 478E & Synchrocheck 1 Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 478F & Synchrocheck 1 Frequency Hysteresis & 0 to 0.1 & Hz & 0.01 & F001 & 6 \\
\hline 4790 & ...Repeated for module number 2 & & & & & \\
\hline \multicolumn{7}{|l|}{Demand (Read/Write Setting)} \\
\hline 47D0 & Demand Current Method & 0 to 2 & --- & 1 & F139 & 0 (Thrm. Exponential) \\
\hline 47D1 & Demand Power Method & 0 to 2 & --- & 1 & F139 & 0 (Thrm. Exponential) \\
\hline 47D2 & Demand Interval & 0 to 5 & --- & 1 & F132 & 2 (15 MIN) \\
\hline 47D3 & Demand Input & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline \multicolumn{7}{|l|}{Demand (Read/Write Command)} \\
\hline 47D4 & Demand Clear Record & 0 to 1 & --- & 1 & F126 & 0 (No) \\
\hline \multicolumn{7}{|l|}{Flexcurves A and B (Read/Write Settings)} \\
\hline 4800 & FlexCurve A (120 items) & 0 to 65535 & ms & 1 & F011 & 0 \\
\hline 48F0 & FlexCurve B (120 items) & 0 to 65535 & ms & 1 & F011 & 0 \\
\hline \multicolumn{7}{|l|}{Modbus User Map (Read/Write Setting)} \\
\hline 4A00 & Modbus Address Settings for User Map (256 items) & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline \multicolumn{7}{|l|}{User Displays Settings (Read/Write Setting) (16 modules)} \\
\hline 4C00 & User display 1 top line text & --- & --- & --- & F202 & " " \\
\hline 4C0A & User display 1 bottom line text & --- & --- & --- & F202 & " \({ }^{\text {c }}\) \\
\hline 4C14 & Modbus addresses of displayed items (5 items) & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 4C19 & Reserved (7 items) & --- & --- & --- & F001 & 0 \\
\hline 4C20 & ...Repeated for module number 2 & & & & & \\
\hline 4C40 & ...Repeated for module number 3 & & & & & \\
\hline 4C60 & ...Repeated for module number 4 & & & & & \\
\hline 4C80 & ...Repeated for module number 5 & & & & & \\
\hline 4CA0 & ...Repeated for module number 6 & & & & & \\
\hline 4CC0 & ...Repeated for module number 7 & & & & & \\
\hline 4CE0 & ...Repeated for module number 8 & & & & & \\
\hline 4D00 & ...Repeated for module number 9 & & & & & \\
\hline 4D20 & ...Repeated for module number 10 & & & & & \\
\hline 4D40 & ...Repeated for module number 11 & & & & & \\
\hline 4D60 & ...Repeated for module number 12 & & & & & \\
\hline 4D80 & ...Repeated for module number 13 & & & & & \\
\hline 4DA0 & ...Repeated for module number 14 & & & & & \\
\hline 4DC0 & ...Repeated for module number 15 & & & & & \\
\hline 4DE0 & ...Repeated for module number 16 & & & & & \\
\hline \multicolumn{7}{|l|}{User Programmable Pushbuttons (Read/Write Setting) (12 modules)} \\
\hline 4E00 & User Programmable Pushbutton 1 Function & 0 to 2 & --- & 1 & F109 & 2 (Disabled) \\
\hline 4E01 & User Programmable Pushbutton 1 Top Line & --- & --- & --- & F202 & (none) \\
\hline 4E0B & User Programmable Pushbutton 1 On Text & --- & --- & --- & F202 & (none) \\
\hline 4E15 & User Programmable Pushbutton 1 Off Text & --- & --- & --- & F202 & (none) \\
\hline 4E1F & User Programmable Pushbutton 1 Drop-Out Time & 0 to 60 & s & 0.05 & F001 & 0 \\
\hline 4E20 & User Programmable Pushbutton 1 Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 16 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline 4E21 & User Programmable Pushbutton 1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 4E22 & User Programmable Pushbutton 1 Reserved (2 items) & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 4E24 & ...Repeated for module number 2 & & & & & \\
\hline 4E48 & ...Repeated for module number 3 & & & & & \\
\hline 4E6C & ...Repeated for module number 4 & & & & & \\
\hline 4E90 & ...Repeated for module number 5 & & & & & \\
\hline 4EB4 & ...Repeated for module number 6 & & & & & \\
\hline 4ED8 & ...Repeated for module number 7 & & & & & \\
\hline 4EFC & ...Repeated for module number 8 & & & & & \\
\hline 4F20 & ...Repeated for module number 9 & & & & & \\
\hline 4F44 & ...Repeated for module number 10 & & & & & \\
\hline 4F68 & ...Repeated for module number 11 & & & & & \\
\hline 4F8C & ...Repeated for module number 12 & & & & & \\
\hline \multicolumn{7}{|l|}{Flexlogic (Read/Write Setting)} \\
\hline 5000 & FlexLogic Entry (512 items) & 0 to 65535 & --- & 1 & F300 & 16384 \\
\hline \multicolumn{7}{|l|}{Flexlogic Timers (Read/Write Setting) (32 modules)} \\
\hline 5800 & Timer 1 Type & 0 to 2 & --- & 1 & F129 & 0 (millisecond) \\
\hline 5801 & Timer 1 Pickup Delay & 0 to 60000 & --- & 1 & F001 & 0 \\
\hline 5802 & Timer 1 Dropout Delay & 0 to 60000 & --- & 1 & F001 & 0 \\
\hline 5803 & Timer 1 Reserved (5 items) & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 5808 & ...Repeated for module number 2 & & & & & \\
\hline 5810 & ...Repeated for module number 3 & & & & & \\
\hline 5818 & ...Repeated for module number 4 & & & & & \\
\hline 5820 & ...Repeated for module number 5 & & & & & \\
\hline 5828 & ...Repeated for module number 6 & & & & & \\
\hline 5830 & ...Repeated for module number 7 & & & & & \\
\hline 5838 & ...Repeated for module number 8 & & & & & \\
\hline 5840 & ...Repeated for module number 9 & & & & & \\
\hline 5848 & ...Repeated for module number 10 & & & & & \\
\hline 5850 & ...Repeated for module number 11 & & & & & \\
\hline 5858 & ...Repeated for module number 12 & & & & & \\
\hline 5860 & ...Repeated for module number 13 & & & & & \\
\hline 5868 & ...Repeated for module number 14 & & & & & \\
\hline 5870 & ...Repeated for module number 15 & & & & & \\
\hline 5878 & ...Repeated for module number 16 & & & & & \\
\hline 5880 & ...Repeated for module number 17 & & & & & \\
\hline 5888 & ...Repeated for module number 18 & & & & & \\
\hline 5890 & ...Repeated for module number 19 & & & & & \\
\hline 5898 & ...Repeated for module number 20 & & & & & \\
\hline 58A0 & ...Repeated for module number 21 & & & & & \\
\hline 58A8 & ...Repeated for module number 22 & & & & & \\
\hline 58B0 & ...Repeated for module number 23 & & & & & \\
\hline 58B8 & ...Repeated for module number 24 & & & & & \\
\hline 58C0 & ...Repeated for module number 25 & & & & & \\
\hline 58C8 & ...Repeated for module number 26 & & & & & \\
\hline 58D0 & ...Repeated for module number 27 & & & & & \\
\hline 58D8 & ...Repeated for module number 28 & & & & & \\
\hline 58 E 0 & ...Repeated for module number 29 & & & & & \\
\hline 58E8 & ...Repeated for module number 30 & & & & & \\
\hline 58F0 & ...Repeated for module number 31 & & & & & \\
\hline 58F8 & ...Repeated for module number 32 & & & & & \\
\hline \multicolumn{7}{|l|}{Phase TOC (Read/Write Grouped Setting) (6 modules)} \\
\hline 5900 & Phase TOC 1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 5901 & Phase TOC 1 Signal Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 17 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline 5902 & Phase TOC 1 Input & 0 to 1 & --- & 1 & F122 & 0 (Phasor) \\
\hline 5903 & Phase TOC 1 Pickup & 0 to 30 & pu & 0.001 & F001 & 1000 \\
\hline 5904 & Phase TOC 1 Curve & 0 to 16 & --- & 1 & F103 & 0 (IEEE Mod Inv) \\
\hline 5905 & Phase TOC 1 Multiplier & 0 to 600 & --- & 0.01 & F001 & 100 \\
\hline 5906 & Phase TOC 1 Reset & 0 to 1 & --- & 1 & F104 & 0 (Instantaneous) \\
\hline 5907 & Phase TOC 1 Voltage Restraint & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 5908 & Phase TOC 1 Block For Each Phase (3 items) & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 590B & Phase TOC 1 Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline 590C & Phase TOC 1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 590D & Reserved (3 items) & 0 to 1 & --- & 1 & F001 & 0 \\
\hline 5910 & ...Repeated for module number 2 & & & & & \\
\hline 5920 & ...Repeated for module number 3 & & & & & \\
\hline 5930 & ...Repeated for module number 4 & & & & & \\
\hline 5940 & ...Repeated for module number 5 & & & & & \\
\hline 5950 & ...Repeated for module number 6 & & & & & \\
\hline \multicolumn{7}{|l|}{Phase IOC (Read/Write Grouped Setting) (12 modules)} \\
\hline 5A00 & Phase IOC1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 5A01 & Phase IOC1 Signal Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline 5A02 & Phase IOC1 Pickup & 0 to 30 & pu & 0.001 & F001 & 1000 \\
\hline 5A03 & Phase IOC1 Delay & 0 to 600 & s & 0.01 & F001 & 0 \\
\hline 5A04 & Phase IOC1 Reset Delay & 0 to 600 & s & 0.01 & F001 & 0 \\
\hline 5A05 & Phase IOC1 Block For Each Phase (3 items) & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 5A08 & Phase IOC1 Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline 5A09 & Phase IOC1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 5A0A & Reserved (6 items) & 0 to 1 & --- & 1 & F001 & 0 \\
\hline 5A10 & ...Repeated for module number 2 & & & & & \\
\hline 5A20 & ...Repeated for module number 3 & & & & & \\
\hline 5A30 & ...Repeated for module number 4 & & & & & \\
\hline 5A40 & ...Repeated for module number 5 & & & & & \\
\hline 5A50 & ...Repeated for module number 6 & & & & & \\
\hline 5A60 & ...Repeated for module number 7 & & & & & \\
\hline 5A70 & ...Repeated for module number 8 & & & & & \\
\hline 5A80 & ...Repeated for module number 9 & & & & & \\
\hline 5A90 & ...Repeated for module number 10 & & & & & \\
\hline 5AA0 & ...Repeated for module number 11 & & & & & \\
\hline 5AB0 & ...Repeated for module number 12 & & & & & \\
\hline \multicolumn{7}{|l|}{Neutral TOC (Read/Write Grouped Setting) (6 modules)} \\
\hline 5B00 & Neutral TOC1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 5B01 & Neutral TOC1 Signal Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline 5B02 & Neutral TOC1 Input & 0 to 1 & --- & 1 & F122 & 0 (Phasor) \\
\hline 5B03 & Neutral TOC1 Pickup & 0 to 30 & pu & 0.001 & F001 & 1000 \\
\hline 5B04 & Neutral TOC1 Curve & 0 to 16 & --- & 1 & F103 & 0 (IEEE Mod Inv) \\
\hline 5B05 & Neutral TOC1 Multiplier & 0 to 600 & --- & 0.01 & F001 & 100 \\
\hline 5B06 & Neutral TOC1 Reset & 0 to 1 & --- & 1 & F104 & 0 (Instantaneous) \\
\hline 5B07 & Neutral TOC1 Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 5B08 & Neutral TOC1 Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline 5B09 & Neutral TOC1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 5B0A & Reserved (6 items) & 0 to 1 & --- & 1 & F001 & 0 \\
\hline 5B10 & ...Repeated for module number 2 & & & & & \\
\hline 5B20 & ...Repeated for module number 3 & & & & & \\
\hline 5B30 & ...Repeated for module number 4 & & & & & \\
\hline 5B40 & ...Repeated for module number 5 & & & & & \\
\hline 5B50 & ...Repeated for module number 6 & & & & & \\
\hline \multicolumn{7}{|l|}{Neutral IOC (Read/Write Grouped Setting) (12 modules)} \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 18 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline 5C00 & Neutral IOC1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 5C01 & Neutral IOC1 Signal Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline 5C02 & Neutral IOC1 Pickup & 0 to 30 & pu & 0.001 & F001 & 1000 \\
\hline 5 C 03 & Neutral IOC1 Delay & 0 to 600 & s & 0.01 & F001 & 0 \\
\hline 5 C 04 & Neutral IOC1 Reset Delay & 0 to 600 & s & 0.01 & F001 & 0 \\
\hline 5C05 & Neutral IOC1 Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 5C06 & Neutral IOC1 Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline 5C07 & Neutral IOC1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 5C08 & Reserved (8 items) & 0 to 1 & --- & 1 & F001 & 0 \\
\hline 5C10 & ...Repeated for module number 2 & & & & & \\
\hline 5C20 & ...Repeated for module number 3 & & & & & \\
\hline 5C30 & ...Repeated for module number 4 & & & & & \\
\hline 5C40 & ...Repeated for module number 5 & & & & & \\
\hline 5C50 & ...Repeated for module number 6 & & & & & \\
\hline 5C60 & ...Repeated for module number 7 & & & & & \\
\hline 5C70 & ...Repeated for module number 8 & & & & & \\
\hline 5C80 & ...Repeated for module number 9 & & & & & \\
\hline 5C90 & ...Repeated for module number 10 & & & & & \\
\hline 5CA0 & ...Repeated for module number 11 & & & & & \\
\hline 5CB0 & ...Repeated for module number 12 & & & & & \\
\hline \multicolumn{7}{|l|}{Ground TOC (Read/Write Grouped Setting) (6 modules)} \\
\hline 5D00 & Ground TOC1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 5D01 & Ground TOC1 Signal Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline 5D02 & Ground TOC1 Input & 0 to 1 & --- & 1 & F122 & 0 (Phasor) \\
\hline 5D03 & Ground TOC1 Pickup & 0 to 30 & pu & 0.001 & F001 & 1000 \\
\hline 5D04 & Ground TOC1 Curve & 0 to 16 & --- & 1 & F103 & 0 (IEEE Mod Inv) \\
\hline 5D05 & Ground TOC1 Multiplier & 0 to 600 & --- & 0.01 & F001 & 100 \\
\hline 5D06 & Ground TOC1 Reset & 0 to 1 & --- & 1 & F104 & 0 (Instantaneous) \\
\hline 5D07 & Ground TOC1 Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 5D08 & Ground TOC1 Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline 5D09 & Ground TOC1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 5D0A & Reserved (6 items) & 0 to 1 & --- & 1 & F001 & 0 \\
\hline 5D10 & ...Repeated for module number 2 & & & & & \\
\hline 5D20 & ...Repeated for module number 3 & & & & & \\
\hline 5D30 & ...Repeated for module number 4 & & & & & \\
\hline 5D40 & ...Repeated for module number 5 & & & & & \\
\hline 5D50 & ...Repeated for module number 6 & & & & & \\
\hline \multicolumn{7}{|l|}{Ground IOC (Read/Write Grouped Setting) (12 modules)} \\
\hline 5E00 & Ground IOC1 Signal Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline 5E01 & Ground IOC1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 5E02 & Ground IOC1 Pickup & 0 to 30 & pu & 0.001 & F001 & 1000 \\
\hline 5E03 & Ground IOC1 Delay & 0 to 600 & s & 0.01 & F001 & 0 \\
\hline 5E04 & Ground IOC1 Reset Delay & 0 to 600 & s & 0.01 & F001 & 0 \\
\hline 5E05 & Ground IOC1 Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 5E06 & Ground IOC1 Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline 5E07 & Ground IOC1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 5E08 & Reserved (8 items) & 0 to 1 & --- & 1 & F001 & 0 \\
\hline 5E10 & ...Repeated for module number 2 & & & & & \\
\hline 5E20 & ...Repeated for module number 3 & & & & & \\
\hline 5E30 & ...Repeated for module number 4 & & & & & \\
\hline 5E40 & ...Repeated for module number 5 & & & & & \\
\hline 5E50 & ...Repeated for module number 6 & & & & & \\
\hline 5E60 & ...Repeated for module number 7 & & & & & \\
\hline 5E70 & ...Repeated for module number 8 & & & & & \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 19 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline 5E80 & ...Repeated for module number 9 & & & & & \\
\hline 5E90 & ...Repeated for module number 10 & & & & & \\
\hline 5EA0 & ...Repeated for module number 11 & & & & & \\
\hline 5EB0 & ...Repeated for module number 12 & & & & & \\
\hline \multicolumn{7}{|l|}{Autoreclose (Read/Write Setting) (6 modules)} \\
\hline 6240 & Autoreclose 1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 6241 & Autoreclose 1 Initiate & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 6242 & Autoreclose 1 Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 6243 & Autoreclose 1 Max Number of Shots & 1 to 4 & --- & 1 & F001 & 1 \\
\hline 6244 & Autoreclose 1 Manual Close & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 6245 & Autoreclose 1 Manual Reset from LO & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 6246 & Autoreclose 1 Reset Lockout if Breaker Closed & 0 to 1 & --- & 1 & F108 & 0 (Off) \\
\hline 6247 & Autoreclose 1 Reset Lockout On Manual Close & 0 to 1 & --- & 1 & F108 & 0 (Off) \\
\hline 6248 & Autoreclose 1 Breaker Closed & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 6249 & Autoreclose 1 Breaker Open & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 624A & Autoreclose 1 Block Time Upon Manual Close & 0 to 655.35 & s & 0.01 & F001 & 1000 \\
\hline 624B & Autoreclose 1 Dead Time Shot 1 & 0 to 655.35 & s & 0.01 & F001 & 100 \\
\hline 624C & Autoreclose 1 Dead Time Shot 2 & 0 to 655.35 & s & 0.01 & F001 & 200 \\
\hline 624D & Autoreclose 1 Dead Time Shot 3 & 0 to 655.35 & s & 0.01 & F001 & 300 \\
\hline 624E & Autoreclose 1 Dead Time Shot 4 & 0 to 655.35 & s & 0.01 & F001 & 400 \\
\hline 624F & Autoreclose 1 Reset Lockout Delay & 0 to 655.35 & s & 0.01 & F001 & 6000 \\
\hline 6250 & Autoreclose 1 Reset Time & 0 to 655.35 & s & 0.01 & F001 & 6000 \\
\hline 6251 & Autoreclose 1 Incomplete Sequence Time & 0 to 655.35 & s & 0.01 & F001 & 500 \\
\hline 6252 & Autoreclose 1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 6253 & Autoreclose 1 Reduce Max 1 & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 6254 & Autoreclose 1 Reduce Max 2 & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 6255 & Autoreclose 1 Reduce Max 3 & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 6256 & Autoreclose 1 Add Delay 1 & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 6257 & Autoreclose 1 Delay 1 & 0 to 655.35 & s & 0.01 & F001 & 0 \\
\hline 6258 & Autoreclose 1 Add Delay 2 & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 6259 & Autoreclose 1 Delay 2 & 0 to 655.35 & s & 0.01 & F001 & 0 \\
\hline 625A & Autoreclose 1 Reserved (4 items) & 0 to 0.001 & --- & 0.001 & F001 & 0 \\
\hline 625E & ...Repeated for module number 2 & & & & & \\
\hline 627C & ...Repeated for module number 3 & & & & & \\
\hline 629A & ...Repeated for module number 4 & & & & & \\
\hline 62B8 & ...Repeated for module number 5 & & & & & \\
\hline 62D6 & ...Repeated for module number 6 & & & & & \\
\hline \multicolumn{7}{|l|}{Negative Sequence TOC (Read/Write Grouped Setting) (2 modules)} \\
\hline 6300 & Negative Sequence TOC1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 6301 & Negative Sequence TOC1 Signal Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline 6302 & Negative Sequence TOC1 Pickup & 0 to 30 & pu & 0.001 & F001 & 1000 \\
\hline 6303 & Negative Sequence TOC1 Curve & 0 to 16 & --- & 1 & F103 & 0 (IEEE Mod Inv) \\
\hline 6304 & Negative Sequence TOC1 Multiplier & 0 to 600 & --- & 0.01 & F001 & 100 \\
\hline 6305 & Negative Sequence TOC1 Reset & 0 to 1 & --- & 1 & F104 & 0 (Instantaneous) \\
\hline 6306 & Negative Sequence TOC1 Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 6307 & Negative Sequence TOC1 Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline 6308 & Negative Sequence TOC1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 6309 & Reserved (7 items) & 0 to 1 & --- & 1 & F001 & 0 \\
\hline 6310 & ...Repeated for module number 2 & & & & & \\
\hline \multicolumn{7}{|l|}{Negative Sequence IOC (Read/Write Grouped Setting) (2 modules)} \\
\hline 6400 & Negative Sequence IOC1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 6401 & Negative Sequence IOC1 Signal Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline 6402 & Negative Sequence IOC1 Pickup & 0 to 30 & pu & 0.001 & F001 & 1000 \\
\hline 6403 & Negative Sequence IOC1 Delay & 0 to 600 & s & 0.01 & F001 & 0 \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 20 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline 6404 & Negative Sequence IOC1 Reset Delay & 0 to 600 & s & 0.01 & F001 & 0 \\
\hline 6405 & Negative Sequence IOC1 Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 6406 & Negative Sequence IOC1 Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline 6407 & Negative Sequence IOC1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 6408 & Reserved (8 items) & 0 to 1 & --- & 1 & F001 & 0 \\
\hline 6410 & ...Repeated for module number 2 & & & & & \\
\hline \multicolumn{7}{|l|}{Negative Sequence Overvoltage (Read/Write Grouped Setting)} \\
\hline 64A0 & Negative Sequence Overvoltage Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 64A1 & Negative Sequence Overvoltage Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline 64A2 & Negative Sequence Overvoltage Pickup & 0 to 1.25 & pu & 0.001 & F001 & 300 \\
\hline 64A3 & Negative Sequence Overvoltage Pickup Delay & 0 to 600 & s & 0.01 & F001 & 50 \\
\hline 64A4 & Negative Sequence Overvoltage Reset Delay & 0 to 600 & S & 0.01 & F001 & 50 \\
\hline 64A5 & Negative Sequence Overvoltage Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 64A6 & Negative Sequence Overvoltage Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline 64A7 & Negative Sequence Overvoltage Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline \multicolumn{7}{|l|}{Overfrequency (Read/Write Setting) (4 modules)} \\
\hline 64D0 & Overfrequency 1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 64D1 & Overfrequency 1 Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 64D2 & Overfrequency 1 Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline 64D3 & Overfrequency 1 Pickup & 20 to 65 & Hz & 0.01 & F001 & 6050 \\
\hline 64D4 & Overfrequency 1 Pickup Delay & 0 to 65.535 & S & 0.001 & F001 & 500 \\
\hline 64D5 & Overfrequency 1 Reset Delay & 0 to 65.535 & s & 0.001 & F001 & 500 \\
\hline 64D6 & Overfrequency 1 Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline 64D7 & Overfrequency 1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 64D8 & Reserved (4 items) & 0 to 1 & --- & 1 & F001 & 0 \\
\hline 64DC & ...Repeated for module number 2 & & & & & \\
\hline 64E8 & ...Repeated for module number 3 & & & & & \\
\hline 64F4 & ...Repeated for module number 4 & & & & & \\
\hline \multicolumn{7}{|l|}{Sensitive Directional Power (Read/Write Grouped Setting) (2 modules)} \\
\hline 66A0 & Sensitive Directional Power 1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 66A1 & Sensitive Directional Power 1 Signal Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline 66A2 & Sensitive Directional Power 1 RCA & 0 to 359 & degrees & 1 & F001 & 0 \\
\hline 66A3 & Sensitive Directional Power 1 Calibration & 0 to 0.95 & degrees & 0.05 & F001 & 0 \\
\hline 66A4 & Sensitive Directional Power 1 STG1 SMIN & -1.2 to 1.2 & pu & 0.001 & F002 & 100 \\
\hline 66A5 & Sensitive Directional Power 1 STG1 Delay & 0 to 600 & s & 0.01 & F001 & 50 \\
\hline 66A6 & Sensitive Directional Power 1 STG2 SMIN & -1.2 to 1.2 & pu & 0.001 & F002 & 100 \\
\hline 66A7 & Sensitive Directional Power 1 STG2 Delay & 0 to 600 & s & 0.01 & F001 & 2000 \\
\hline 66A8 & Sensitive Directional Power 1 Block & --- & --- & --- & F001 & 0 \\
\hline 66A9 & Sensitive Directional Power 1 Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline 66AA & Sensitive Directional Power 1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 66AB & Sensitive Directional Power 1 Reserved (5 items) & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 66B0 & ...Repeated for module number 2 & & & & & \\
\hline \multicolumn{7}{|l|}{Load Encroachment (Read/Write Grouped Setting)} \\
\hline 6700 & Load Encroachment Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 6701 & Load Encroachment Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline 6702 & Load Encroachment Minimum Voltage & 0 to 3 & pu & 0.001 & F001 & 250 \\
\hline 6703 & Load Encroachment Reach & 0.02 to 250 & ohms & 0.01 & F001 & 100 \\
\hline 6704 & Load Encroachment Angle & 5 to 50 & degrees & 1 & F001 & 30 \\
\hline 6705 & Load Encroachment Pickup Delay & 0 to 65.535 & s & 0.001 & F001 & 0 \\
\hline 6706 & Load Encroachment Reset Delay & 0 to 65.535 & s & 0.001 & F001 & 0 \\
\hline 6707 & Load Encroachment Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 6708 & Load Encroachment Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline 6709 & Load Encroachment Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 670A & Load Encroachment Reserved (6 items) & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 21 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline \multicolumn{7}{|l|}{Phase Undervoltage (Read/Write Grouped Setting) (2 modules)} \\
\hline 7000 & Phase UV1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 7001 & Phase UV1 Signal Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline 7002 & Phase UV1 Pickup & 0 to 3 & pu & 0.001 & F001 & 1000 \\
\hline 7003 & Phase UV1 Curve & 0 to 1 & --- & 1 & F111 & 0 (Definite Time) \\
\hline 7004 & Phase UV1 Delay & 0 to 600 & s & 0.01 & F001 & 100 \\
\hline 7005 & Phase UV1 Minimum Voltage & 0 to 3 & pu & 0.001 & F001 & 100 \\
\hline 7006 & Phase UV1 Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 7007 & Phase UV1 Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline 7008 & Phase UV1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 7009 & Phase UV Measurement Mode & 0 to 1 & --- & 1 & F186 & 0 (Phase to Ground) \\
\hline 700A & Reserved (6 items) & 0 to 1 & --- & 1 & F001 & 0 \\
\hline 7013 & ...Repeated for module number 2 & & & & & \\
\hline \multicolumn{7}{|l|}{Phase Overvoltage (Read/Write Grouped Setting)} \\
\hline 7040 & Phase OV1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 7041 & Phase OV1 Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline 7042 & Phase OV1 Pickup & 0 to 3 & pu & 0.001 & F001 & 1000 \\
\hline 7043 & Phase OV1 Delay & 0 to 600 & s & 0.01 & F001 & 100 \\
\hline 7044 & Phase OV1 Reset Delay & 0 to 600 & s & 0.01 & F001 & 100 \\
\hline 7045 & Phase OV1 Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 7046 & Phase OV1 Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline 7047 & Phase OV1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 7048 & Reserved (8 items) & 0 to 1 & --- & 1 & F001 & 0 \\
\hline \multicolumn{7}{|l|}{Breaker Failure (Read/Write Grouped Setting) (2 modules)} \\
\hline 7200 & Breaker Failure 1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 7201 & Breaker Failure 1 Mode & 0 to 1 & --- & 1 & F157 & 0 (3-Pole) \\
\hline 7208 & Breaker Failure 1 Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline 7209 & Breaker Failure 1 Amp Supervision & 0 to 1 & --- & 1 & F126 & 1 (Yes) \\
\hline 720A & Breaker Failure 1 Use Seal-In & 0 to 1 & --- & 1 & F126 & 1 (Yes) \\
\hline 720B & Breaker Failure 1 Three Pole Initiate & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 720C & Breaker Failure 1 Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 720D & Breaker Failure 1 Phase Amp Supv Pickup & 0.001 to 30 & pu & 0.001 & F001 & 1050 \\
\hline 720E & Breaker Failure 1 Neutral Amp Supv Pickup & 0.001 to 30 & pu & 0.001 & F001 & 1050 \\
\hline 720F & Breaker Failure 1 Use Timer 1 & 0 to 1 & --- & 1 & F126 & 1 (Yes) \\
\hline 7210 & Breaker Failure 1 Timer 1 Pickup & 0 to 65.535 & s & 0.001 & F001 & 0 \\
\hline 7211 & Breaker Failure 1 Use Timer 2 & 0 to 1 & --- & 1 & F126 & 1 (Yes) \\
\hline 7212 & Breaker Failure 1 Timer 2 Pickup & 0 to 65.535 & s & 0.001 & F001 & 0 \\
\hline 7213 & Breaker Failure 1 Use Timer 3 & 0 to 1 & --- & 1 & F126 & 1 (Yes) \\
\hline 7214 & Breaker Failure 1 Timer 3 Pickup & 0 to 65.535 & s & 0.001 & F001 & 0 \\
\hline 7215 & Breaker Failure 1 Breaker Status 1 Phase A/3P & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 7216 & Breaker Failure 1 Breaker Status 2 Phase A/3P & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 7217 & Breaker Failure 1 Breaker Test On & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 7218 & Breaker Failure 1 Phase Amp Hiset Pickup & 0.001 to 30 & pu & 0.001 & F001 & 1050 \\
\hline 7219 & Breaker Failure 1 Neutral Amp Hiset Pickup & 0.001 to 30 & pu & 0.001 & F001 & 1050 \\
\hline 721A & Breaker Failure 1 Phase Amp Loset Pickup & 0.001 to 30 & pu & 0.001 & F001 & 1050 \\
\hline 721B & Breaker Failure 1 Neutral Amp Loset Pickup & 0.001 to 30 & pu & 0.001 & F001 & 1050 \\
\hline 721C & Breaker Failure 1 Loset Time & 0 to 65.535 & s & 0.001 & F001 & 0 \\
\hline 721D & Breaker Failure 1 Trip Dropout Delay & 0 to 65.535 & s & 0.001 & F001 & 0 \\
\hline 721E & Breaker Failure 1 Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline 721F & Breaker Failure 1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 7220 & Breaker Failure 1 Phase A Initiate & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 7221 & Breaker Failure 1 Phase B Initiate & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 7222 & Breaker Failure 1 Phase C Initiate & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 7223 & Breaker Failure 1 Breaker Status 1 Phase B & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 22 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline 7224 & Breaker Failure 1 Breaker Status 1 Phase C & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 7225 & Breaker Failure 1 Breaker Status 2 Phase B & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 7226 & Breaker Failure 1 Breaker Status 2 Phase C & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 7227 & ...Repeated for module number 2 & & & & & \\
\hline \multicolumn{7}{|l|}{Phase Directional (Read/Write Grouped Setting) (2 modules)} \\
\hline 7260 & Phase Directional Overcurrent 1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 7261 & Phase Directional Overcurrent 1 Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline 7262 & Phase Directional Overcurrent 1 Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 7263 & Phase Directional Overcurrent 1 ECA & 0 to 359 & --- & 1 & F001 & 30 \\
\hline 7264 & Phase Directional Overcurrent 1 Pol V Threshold & 0 to 3 & pu & 0.001 & F001 & 700 \\
\hline 7265 & Phase Directional Overcurrent 1 Block Overcurrent & 0 to 1 & --- & 1 & F126 & 0 (No) \\
\hline 7266 & Phase Directional Overcurrent 1 Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline 7267 & Phase Directional Overcurrent 1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 7268 & Reserved (8 items) & 0 to 1 & --- & 1 & F001 & 0 \\
\hline 7270 & ...Repeated for module number 2 & & & & & \\
\hline \multicolumn{7}{|l|}{Neutral Directional OC (Read/Write Grouped Setting) (2 modules)} \\
\hline 7280 & Neutral Directional Overcurrent 1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 7281 & Neutral Directional Overcurrent 1 Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline 7282 & Neutral Directional Overcurrent 1 Polarizing & 0 to 2 & --- & 1 & F230 & 0 (Voltage) \\
\hline 7283 & Neutral Directional Overcurrent 1 Forward ECA & -90 to 90 & \({ }^{\circ}\) Lag & 1 & F002 & 75 \\
\hline 7284 & Neutral Directional Overcurrent 1 Forward Limit Angle & 40 to 90 & degrees & 1 & F001 & 90 \\
\hline 7285 & Neutral Directional Overcurrent 1 Forward Pickup & 0.002 to 30 & pu & 0.001 & F001 & 50 \\
\hline 7286 & Neutral Directional Overcurrent 1 Reverse Limit Angle & 40 to 90 & degrees & 1 & F001 & 90 \\
\hline 7287 & Neutral Directional Overcurrent 1 Reverse Pickup & 0.002 to 30 & pu & 0.001 & F001 & 50 \\
\hline 7288 & Neutral Directional Overcurrent 1 Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline 7289 & Neutral Directional Overcurrent 1 Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 728A & Neutral Directional Overcurrent 1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 728B & Neutral Directional Overcurrent 1 Polarizing Voltage & 0 to 1 & --- & 1 & F231 & 0 (Calculated V0) \\
\hline 728C & Neutral Directional Overcurrent 1 Op Current & 0 to 1 & --- & 1 & F196 & 0 (Calculated 310) \\
\hline 728D & Neutral Directional Overcurrent 1 Offset & 0 to 250 & ohms & 0.01 & F001 & 0 \\
\hline 728E & Neutral Directional Overcurrent 1 Pos Seq Restraint & 0 to 0.5 & --- & 0.001 & F001 & 63 \\
\hline 728F & Reserved & 0 to 1 & --- & 1 & F001 & 0 \\
\hline 7290 & ...Repeated for module number 2 & & & & & \\
\hline \multicolumn{7}{|l|}{Negative Sequence Directional OC (Read/Write Grouped Setting) (2 modules)} \\
\hline 72A0 & Negative Sequence Directional Overcurrent 1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 72A1 & Negative Sequence Directional Overcurrent 1 Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline 72A2 & Negative Sequence Directional Overcurrent 1 Type & 0 to 1 & --- & 1 & F179 & 0 (Neg Sequence) \\
\hline 72A3 & Neg Sequence Directional Overcurrent 1 Forward ECA & 0 to 90 & \({ }^{\circ}\) Lag & 1 & F002 & 75 \\
\hline 72A4 & Neg Seq Directional Overcurrent 1 Forward Limit Angle & 40 to 90 & degrees & 1 & F001 & 90 \\
\hline 72A5 & Neg Sequence Directional Overcurrent 1 Forward Pickup & 0.05 to 30 & pu & 0.01 & F001 & 5 \\
\hline 72A6 & Neg Seq Directional Overcurrent 1 Reverse Limit Angle & 40 to 90 & degrees & 1 & F001 & 90 \\
\hline 72A7 & Neg Sequence Directional Overcurrent 1 Reverse Pickup & 0.05 to 30 & pu & 0.01 & F001 & 5 \\
\hline 72A8 & Negative Sequence Directional Overcurrent 1 Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline 72A9 & Negative Sequence Directional Overcurrent 1 Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 72AA & Negative Sequence Directional Overcurrent 1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 72AB & Negative Sequence Directional Overcurrent 1 Offset & 0 to 250 & ohms & 0.01 & F001 & 0 \\
\hline 72AC & Neg Seq Directional Overcurrent 1 Pos Seq Restraint & 0 to 0.5 & --- & 0.001 & F001 & 63 \\
\hline 72AD & Reserved (3 items) & 0 to 1 & --- & 1 & F001 & 0 \\
\hline 72B0 & ...Repeated for module number 2 & & & & & \\
\hline \multicolumn{7}{|l|}{Breaker Arcing Current Settings (Read/Write Setting) (2 modules)} \\
\hline 72C0 & Breaker 1 Arcing Amp Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 72C1 & Breaker 1 Arcing Amp Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline 72C2 & Breaker 1 Arcing Amp Initiate & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 72C3 & Breaker 1 Arcing Amp Delay & 0 to 65.535 & s & 0.001 & F001 & 0 \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 23 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline 72C4 & Breaker 1 Arcing Amp Limit & 0 to 50000 & kA \({ }^{2}\)-cyc & 1 & F001 & 1000 \\
\hline 72C5 & Breaker 1 Arcing Amp Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 72C6 & Breaker 1 Arcing Amp Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline 72C7 & Breaker 1 Arcing Amp Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 72C8 & ...Repeated for module number 2 & & & & & \\
\hline \multicolumn{7}{|l|}{DCMA Inputs (Read/Write Setting) (24 modules)} \\
\hline 7300 & DCMA Inputs 1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 7301 & DCMA Inputs 1 ID & --- & --- & --- & F205 & "DCMA I 1" \\
\hline 7307 & DCMA Inputs 1 Reserved 1 (4 items) & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 730B & DCMA Inputs 1 Units & --- & --- & --- & F206 & "mA" \\
\hline 730E & DCMA Inputs 1 Range & 0 to 6 & --- & 1 & F173 & 6 (4 to 20 mA) \\
\hline 730F & DCMA Inputs 1 Minimum Value & -9999.999 to 9999.999 & --- & 0.001 & F004 & 4000 \\
\hline 7311 & DCMA Inputs 1 Maximum Value & -9999.999 to 9999.999 & --- & 0.001 & F004 & 20000 \\
\hline 7313 & DCMA Inputs 1 Reserved (5 items) & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 7318 & ...Repeated for module number 2 & & & & & \\
\hline 7330 & ...Repeated for module number 3 & & & & & \\
\hline 7348 & ...Repeated for module number 4 & & & & & \\
\hline 7360 & ...Repeated for module number 5 & & & & & \\
\hline 7378 & ...Repeated for module number 6 & & & & & \\
\hline 7390 & ...Repeated for module number 7 & & & & & \\
\hline 73A8 & ...Repeated for module number 8 & & & & & \\
\hline 73C0 & ...Repeated for module number 9 & & & & & \\
\hline 73D8 & ...Repeated for module number 10 & & & & & \\
\hline 73F0 & ...Repeated for module number 11 & & & & & \\
\hline 7408 & ...Repeated for module number 12 & & & & & \\
\hline 7420 & ...Repeated for module number 13 & & & & & \\
\hline 7438 & ...Repeated for module number 14 & & & & & \\
\hline 7450 & ...Repeated for module number 15 & & & & & \\
\hline 7468 & ...Repeated for module number 16 & & & & & \\
\hline 7480 & ...Repeated for module number 17 & & & & & \\
\hline 7498 & ...Repeated for module number 18 & & & & & \\
\hline 74B0 & ...Repeated for module number 19 & & & & & \\
\hline 74C8 & ...Repeated for module number 20 & & & & & \\
\hline 74E0 & ...Repeated for module number 21 & & & & & \\
\hline 74F8 & ...Repeated for module number 22 & & & & & \\
\hline 7510 & ...Repeated for module number 23 & & & & & \\
\hline 7528 & ...Repeated for module number 24 & & & & & \\
\hline \multicolumn{7}{|l|}{RTD Inputs (Read/Write Setting) (48 modules)} \\
\hline 7540 & RTD Inputs 1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 7541 & RTD Inputs 1 ID & --- & --- & --- & F205 & "RTD Ip 1" \\
\hline 7547 & RTD Inputs 1 Reserved 1 (4 items) & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 754B & RTD Inputs 1 Type & 0 to 3 & --- & 1 & F174 & 0 (100 Ohm Platinum) \\
\hline 754C & RTD Inputs 1 Reserved 2 (4 items) & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 7550 & ...Repeated for module number 2 & & & & & \\
\hline 7560 & ...Repeated for module number 3 & & & & & \\
\hline 7570 & ...Repeated for module number 4 & & & & & \\
\hline 7580 & ...Repeated for module number 5 & & & & & \\
\hline 7590 & ...Repeated for module number 6 & & & & & \\
\hline 75A0 & ...Repeated for module number 7 & & & & & \\
\hline 75B0 & ...Repeated for module number 8 & & & & & \\
\hline 75C0 & ...Repeated for module number 9 & & & & & \\
\hline 75D0 & ...Repeated for module number 10 & & & & & \\
\hline 75E0 & ...Repeated for module number 11 & & & & & \\
\hline 75F0 & ...Repeated for module number 12 & & & & & \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 24 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline 7600 & ...Repeated for module number 13 & & & & & \\
\hline 7610 & ...Repeated for module number 14 & & & & & \\
\hline 7620 & ...Repeated for module number 15 & & & & & \\
\hline 7630 & ...Repeated for module number 16 & & & & & \\
\hline 7640 & ...Repeated for module number 17 & & & & & \\
\hline 7650 & ...Repeated for module number 18 & & & & & \\
\hline 7660 & ...Repeated for module number 19 & & & & & \\
\hline 7670 & ...Repeated for module number 20 & & & & & \\
\hline 7680 & ...Repeated for module number 21 & & & & & \\
\hline 7690 & ...Repeated for module number 22 & & & & & \\
\hline 76A0 & ...Repeated for module number 23 & & & & & \\
\hline 76B0 & ...Repeated for module number 24 & & & & & \\
\hline 76C0 & ...Repeated for module number 25 & & & & & \\
\hline 76D0 & ...Repeated for module number 26 & & & & & \\
\hline 76E0 & ...Repeated for module number 27 & & & & & \\
\hline 76F0 & ...Repeated for module number 28 & & & & & \\
\hline 7700 & ...Repeated for module number 29 & & & & & \\
\hline 7710 & ...Repeated for module number 30 & & & & & \\
\hline 7720 & ...Repeated for module number 31 & & & & & \\
\hline 7730 & ...Repeated for module number 32 & & & & & \\
\hline 7740 & ...Repeated for module number 33 & & & & & \\
\hline 7750 & ...Repeated for module number 34 & & & & & \\
\hline 7760 & ...Repeated for module number 35 & & & & & \\
\hline 7770 & ...Repeated for module number 36 & & & & & \\
\hline 7780 & ...Repeated for module number 37 & & & & & \\
\hline 7790 & ...Repeated for module number 38 & & & & & \\
\hline 77A0 & ...Repeated for module number 39 & & & & & \\
\hline 77B0 & ...Repeated for module number 40 & & & & & \\
\hline 77C0 & ...Repeated for module number 41 & & & & & \\
\hline 77D0 & ...Repeated for module number 42 & & & & & \\
\hline 77E0 & ...Repeated for module number 43 & & & & & \\
\hline 77F0 & ...Repeated for module number 44 & & & & & \\
\hline 7800 & ...Repeated for module number 45 & & & & & \\
\hline 7810 & ...Repeated for module number 46 & & & & & \\
\hline 7820 & ...Repeated for module number 47 & & & & & \\
\hline 7830 & ...Repeated for module number 48 & & & & & \\
\hline \multicolumn{7}{|l|}{Hi-Z Settings (Read/Write Setting)} \\
\hline 7A00 & Hi-Z Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 7A01 & Hi-Z Signal Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline 7A03 & Hi-Z Arcing Sensitivity & 1 to 10 & --- & 1 & F001 & 5 \\
\hline 7A04 & Hi-Z Phase Event Count & 10 to 250 & --- & 1 & F001 & 30 \\
\hline 7A05 & Hi-Z Ground Event Count & 10 to 500 & --- & 1 & F001 & 30 \\
\hline 7A06 & Hi-Z Event Count Time & 5 to 180 & min & 1 & F001 & 15 \\
\hline 7A07 & Hi-Z Overcurrent Protection Coordination Timeout & 10 to 200 & s & 1 & F001 & 15 \\
\hline 7A08 & Hi-Z Phase Overcurrent Minimum Pickup & 0.01 to 10 & pu & 0.01 & F001 & 150 \\
\hline 7A09 & Hi-Z Neutral Overcurrent Minimum Pickup & 0.01 to 10 & pu & 0.01 & F001 & 100 \\
\hline 7A0A & Hi-Z Phase Rate of Change & 1 to 999 & A/2cycle & 1 & F001 & 150 \\
\hline 7A0B & Hi-Z Neutral Rate of Change & 1 to 999 & A/2cycle & 1 & F001 & 150 \\
\hline 7A0C & Hi-Z Loss of Load Threshold & 5 to 100 & \% & 1 & F001 & 15 \\
\hline 7A0D & Hi-Z 3-Phase Event Threshold & 1 to 1000 & A & 1 & F001 & 25 \\
\hline 7A0E & Hi-Z Voltage Supervision Threshold & 0 to 100 & \% & 1 & F001 & 5 \\
\hline 7A0F & Hi-Z Voltage Supervision Delay & 0 to 300 & cycles & 2 & F001 & 60 \\
\hline 7A10 & HIZ Even Harmonic Restraint & 0 to 100 & \% & 1 & F001 & 20 \\
\hline 7A11 & Hi-Z Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 25 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline 7A12 & Hi-Z Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline \multicolumn{7}{|l|}{Underfrequency (Read/Write Setting) (6 modules)} \\
\hline 7E00 & Underfrequency Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 7E01 & Underfrequency 1 Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 7E02 & Underfrequency 1 Minimum Current & 0.1 to 1.25 & pu & 0.01 & F001 & 10 \\
\hline 7E03 & Underfrequency 1 Pickup & 20 to 65 & Hz & 0.01 & F001 & 5950 \\
\hline 7E04 & Underfrequency 1 Pickup Delay & 0 to 65.535 & s & 0.001 & F001 & 2000 \\
\hline 7E05 & Underfrequency 1 Reset Delay & 0 to 65.535 & s & 0.001 & F001 & 2000 \\
\hline 7E06 & Underfrequency 1 Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline 7E07 & Underfrequency 1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 7E08 & Underfrequency 1 Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline 7E09 & Underfrequency 1 Reserved (8 items) & 0 to 1 & --- & 1 & F001 & 0 \\
\hline 7E11 & ...Repeated for module number 2 & & & & & \\
\hline 7E22 & ...Repeated for module number 3 & & & & & \\
\hline 7E33 & ...Repeated for module number 4 & & & & & \\
\hline 7E44 & ...Repeated for module number 5 & & & & & \\
\hline 7E55 & ...Repeated for module number 6 & & & & & \\
\hline \multicolumn{7}{|l|}{Neutral Overvoltage (Read/Write Grouped Setting) (3 modules)} \\
\hline 7F00 & Neutral Overvoltage 1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 7F01 & Neutral Overvoltage 1 Signal Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline 7F02 & Neutral Overvoltage 1 Pickup & 0 to 1.25 & pu & 0.001 & F001 & 300 \\
\hline 7F03 & Neutral Overvoltage 1 Pickup Delay & 0 to 600 & s & 0.01 & F001 & 100 \\
\hline 7F04 & Neutral Overvoltage 1 Reset Delay & 0 to 600 & s & 0.01 & F001 & 100 \\
\hline 7F05 & Neutral Overvoltage 1 Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 7F06 & Neutral Overvoltage 1 Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline 7F07 & Neutral Overvoltage 1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 7F08 & Neutral Overvoltage 1 Reserved (8 items) & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 7F10 & ...Repeated for module number 2 & & & & & \\
\hline 7F20 & ...Repeated for module number 3 & & & & & \\
\hline \multicolumn{7}{|l|}{Auxiliary Overvoltage (Read/Write Grouped Setting) (3 modules)} \\
\hline 7F30 & Auxiliary Overvoltage 1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 7F31 & Auxiliary Overvoltage 1 Signal Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline 7F32 & Auxiliary Overvoltage 1 Pickup & 0 to 3 & pu & 0.001 & F001 & 300 \\
\hline 7F33 & Auxiliary Overvoltage 1 Pickup Delay & 0 to 600 & s & 0.01 & F001 & 100 \\
\hline 7F34 & Auxiliary Overvoltage 1 Reset Delay & 0 to 600 & s & 0.01 & F001 & 100 \\
\hline 7F35 & Auxiliary Overvoltage 1 Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 7F36 & Auxiliary Overvoltage 1 Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline 7F37 & Auxiliary Overvoltage 1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 7F38 & Auxiliary Overvoltage 1 Reserved (8 items) & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 7F40 & ...Repeated for module number 2 & & & & & \\
\hline 7F50 & ...Repeated for module number 3 & & & & & \\
\hline \multicolumn{7}{|l|}{Auxiliary Undervoltage (Read/Write Grouped Setting) (3 modules)} \\
\hline 7F60 & Auxiliary Undervoltage 1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 7F61 & Auxiliary Undervoltage 1 Signal Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline 7F62 & Auxiliary Undervoltage 1 Pickup & 0 to 3 & pu & 0.001 & F001 & 700 \\
\hline 7F63 & Auxiliary Undervoltage 1 Delay & 0 to 600 & s & 0.01 & F001 & 100 \\
\hline 7F64 & Auxiliary Undervoltage 1 Curve & 0 to 1 & --- & 1 & F111 & 0 (Definite Time) \\
\hline 7F65 & Auxiliary Undervoltage 1 Minimum Voltage & 0 to 3 & pu & 0.001 & F001 & 100 \\
\hline 7F66 & Auxiliary Undervoltage 1 Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 7F67 & Auxiliary Undervoltage 1 Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline 7F68 & Auxiliary Undervoltage 1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 7F69 & Auxiliary Undervoltage 1 Reserved (7 items) & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 7F70 & ...Repeated for module number 2 & & & & & \\
\hline 7F80 & ...Repeated for module number 3 & & & & & \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 26 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline \multicolumn{7}{|l|}{Frequency (Read Only)} \\
\hline 8000 & Tracking Frequency & 2 to 90 & Hz & 0.01 & F001 & 0 \\
\hline \multicolumn{7}{|l|}{EGD Fast Production Status (Read Only)} \\
\hline 83E0 & EGD Fast Producer Exchange 1 Signature & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 83E1 & EGD Fast Producer Exchange 1 Configuration Time & 0 to 4294967295 & --- & --- & F003 & 0 \\
\hline 83E3 & EGD Fast Producer Exchange 1 Size & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline \multicolumn{7}{|l|}{EGD Slow Production Status (Read Only) (2 modules)} \\
\hline 83F0 & EGD Slow Producer Exchange 1 Signature & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 83F1 & EGD Slow Producer Exchange 1 Configuration Time & 0 to 4294967295 & --- & --- & F003 & 0 \\
\hline 83F3 & EGD Slow Producer Exchange 1 Size & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 83F4 & ...Repeated for module number 2 & & & & & \\
\hline \multicolumn{7}{|l|}{EGD Fast Production (Read/Write Setting)} \\
\hline 8400 & EGD Fast Producer Exchange 1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 8401 & EGD Fast Producer Exchange 1 Destination & 0 to 4294967295 & --- & 1 & F003 & 0 \\
\hline 8403 & EGD Fast Producer Exchange 1 Data Rate & 50 to 1000 & ms & 50 & F001 & 1000 \\
\hline 8404 & EGD Fast Producer Exchange 1 Data Item 1 (20 items) & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 8418 & Reserved (80 items) & --- & --- & --- & F001 & 0 \\
\hline \multicolumn{7}{|l|}{EGD Slow Production (Read/Write Setting) (2 modules)} \\
\hline 8500 & EGD Slow Producer Exchange 1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 8501 & EGD Fast Producer Exchange 1 Destination & 0 to 4294967295 & --- & 1 & F003 & 0 \\
\hline 8503 & EGD Slow Producer Exchange 1 Data Rate & 500 to 1000 & ms & 50 & F001 & 1000 \\
\hline 8504 & EGD Slow Producer Exchange 1 Data Item 1 (50 items) & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline 8536 & Reserved (50 items) & --- & --- & --- & F001 & 0 \\
\hline 8568 & ...Repeated for module number 2 & & & & & \\
\hline \multicolumn{7}{|l|}{FlexState Settings (Read/Write Setting)} \\
\hline 8800 & FlexState Parameters (256 items) & --- & --- & --- & F300 & 0 \\
\hline \multicolumn{7}{|l|}{FlexElement (Read/Write Setting) (16 modules)} \\
\hline 9000 & FlexElement 1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 9001 & FlexElement 1 Name & --- & --- & -- & F206 & "FxE 1" \\
\hline 9004 & FlexElement 1 InputP & 0 to 65535 & --- & 1 & F600 & 0 \\
\hline 9005 & FlexElement 1 InputM & 0 to 65535 & --- & 1 & F600 & 0 \\
\hline 9006 & FlexElement 1 Compare & 0 to 1 & --- & 1 & F516 & 0 (LEVEL) \\
\hline 9007 & FlexElement 1 Input & 0 to 1 & --- & 1 & F515 & 0 (SIGNED) \\
\hline 9008 & FlexElement 1 Direction & 0 to 1 & --- & 1 & F517 & 0 (OVER) \\
\hline 9009 & FlexElement 1 Hysteresis & 0.1 to 50 & \% & 0.1 & F001 & 30 \\
\hline 900A & FlexElement 1 Pickup & -90 to 90 & pu & 0.001 & F004 & 1000 \\
\hline 900C & FlexElement 1 DeltaT Units & 0 to 2 & --- & 1 & F518 & 0 (Milliseconds) \\
\hline 900D & FlexElement 1 DeltaT & 20 to 86400 & --- & 1 & F003 & 20 \\
\hline 900F & FlexElement 1 Pickup Delay & 0 to 65.535 & s & 0.001 & F001 & 0 \\
\hline 9010 & FlexElement 1 Reset Delay & 0 to 65.535 & s & 0.001 & F001 & 0 \\
\hline 9011 & FlexElement 1 Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 9012 & FlexElement 1 Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline 9013 & FlexElement 1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline 9014 & ...Repeated for module number 2 & & & & & \\
\hline 9028 & ...Repeated for module number 3 & & & & & \\
\hline 903C & ...Repeated for module number 4 & & & & & \\
\hline 9050 & ...Repeated for module number 5 & & & & & \\
\hline 9064 & ...Repeated for module number 6 & & & & & \\
\hline 9078 & ...Repeated for module number 7 & & & & & \\
\hline 908C & ...Repeated for module number 8 & & & & & \\
\hline 90A0 & ...Repeated for module number 9 & & & & & \\
\hline 90B4 & ...Repeated for module number 10 & & & & & \\
\hline 90C8 & ...Repeated for module number 11 & & & & & \\
\hline 90DC & ...Repeated for module number 12 & & & & & \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 27 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline 90F0 & ...Repeated for module number 13 & & & & & \\
\hline 9104 & ...Repeated for module number 14 & & & & & \\
\hline 9118 & ...Repeated for module number 15 & & & & & \\
\hline 912C & ...Repeated for module number 16 & & & & & \\
\hline \multicolumn{7}{|l|}{Fault Report Settings (Read/Write Setting) (5 modules)} \\
\hline 9200 & Fault Report 1 Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline 9201 & Fault Report 1 Trigger & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline 9202 & Fault Report 1 Z1 Magnitude & 0.01 to 250 & ohms & 0.01 & F001 & 300 \\
\hline 9203 & Fault Report 1 Z1 Angle & 25 to 90 & degrees & 1 & F001 & 75 \\
\hline 9204 & Fault Report 1 Z0 Magnitude & 0.01 to 650 & ohms & 0.01 & F001 & 900 \\
\hline 9205 & Fault Report 1 Z0 Angle & 25 to 90 & degrees & 1 & F001 & 75 \\
\hline 9206 & Fault Report 1 Line Length Units & 0 to 1 & --- & 1 & F147 & 0 (km) \\
\hline 9207 & Fault Report 1 Line Length & 0 to 2000 & & 0.1 & F001 & 1000 \\
\hline 9208 & ...Repeated for module number 2 & & & & & \\
\hline 9210 & ...Repeated for module number 3 & & & & & \\
\hline 9218 & ...Repeated for module number 4 & & & & & \\
\hline 9220 & ...Repeated for module number 5 & & & & & \\
\hline \multicolumn{7}{|l|}{DCMA Outputs (Read/Write Setting) (24 modules)} \\
\hline 9300 & DCMA Outputs 1 Source & 0 to 65535 & --- & 1 & F600 & 0 \\
\hline 9301 & DCMA Outputs 1 Range & 0 to 2 & --- & 1 & F522 & 0 (-1 to 1 mA) \\
\hline 9302 & DCMA Output 1 Minimum & -90 to 90 & pu & 0.001 & F004 & 0 \\
\hline 9304 & DCMA Outputs 1 Maximum & -90 to 90 & pu & 0.001 & F004 & 1000 \\
\hline 9306 & ...Repeated for module number 2 & & & & & \\
\hline 930C & ...Repeated for module number 3 & & & & & \\
\hline 9312 & ...Repeated for module number 4 & & & & & \\
\hline 9318 & ...Repeated for module number 5 & & & & & \\
\hline 931E & ...Repeated for module number 6 & & & & & \\
\hline 9324 & ...Repeated for module number 7 & & & & & \\
\hline 932A & ...Repeated for module number 8 & & & & & \\
\hline 9330 & ...Repeated for module number 9 & & & & & \\
\hline 9336 & ...Repeated for module number 10 & & & & & \\
\hline 933C & ...Repeated for module number 11 & & & & & \\
\hline 9342 & ...Repeated for module number 12 & & & & & \\
\hline 9348 & ...Repeated for module number 13 & & & & & \\
\hline 934E & ...Repeated for module number 14 & & & & & \\
\hline 9354 & ...Repeated for module number 15 & & & & & \\
\hline 935A & ...Repeated for module number 16 & & & & & \\
\hline 9360 & ...Repeated for module number 17 & & & & & \\
\hline 9366 & ...Repeated for module number 18 & & & & & \\
\hline 936C & ...Repeated for module number 19 & & & & & \\
\hline 9372 & ...Repeated for module number 20 & & & & & \\
\hline 9378 & ...Repeated for module number 21 & & & & & \\
\hline 937E & ...Repeated for module number 22 & & & & & \\
\hline 9384 & ...Repeated for module number 23 & & & & & \\
\hline 938A & ...Repeated for module number 24 & & & & & \\
\hline \multicolumn{7}{|l|}{FlexElement Actuals (Read Only) (16 modules)} \\
\hline 9A01 & FlexElement Actual & \[
\begin{gathered}
-2147483.647 \text { to } \\
2147483.647
\end{gathered}
\] & --- & 0.001 & F004 & 0 \\
\hline 9A03 & ...Repeated for module number 2 & & & & & \\
\hline 9A05 & ...Repeated for module number 3 & & & & & \\
\hline 9 A 07 & ...Repeated for module number 4 & & & & & \\
\hline 9A09 & ...Repeated for module number 5 & & & & & \\
\hline 9A0B & ...Repeated for module number 6 & & & & & \\
\hline 9A0D & ...Repeated for module number 7 & & & & & \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 28 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline 9A0F & ...Repeated for module number 8 & & & & & \\
\hline 9A11 & ...Repeated for module number 9 & & & & & \\
\hline 9A13 & ...Repeated for module number 10 & & & & & \\
\hline 9A15 & ...Repeated for module number 11 & & & & & \\
\hline 9A17 & ...Repeated for module number 12 & & & & & \\
\hline 9A19 & ...Repeated for module number 13 & & & & & \\
\hline 9A1B & ...Repeated for module number 14 & & & & & \\
\hline 9A1D & ...Repeated for module number 15 & & & & & \\
\hline 9A1F & ...Repeated for module number 16 & & & & & \\
\hline \multicolumn{7}{|l|}{Setting Groups (Read/Write Setting)} \\
\hline A000 & Setting Group for Modbus Comms (0 means group 1) & 0 to 5 & --- & 1 & F001 & 0 \\
\hline A001 & Setting Groups Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline A002 & FlexLogic to Activate Groups 2 through 8 (5 items) & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline A009 & Setting Group Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline A00A & Setting Group Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline \multicolumn{7}{|l|}{Setting Groups (Read Only)} \\
\hline A00B & Current Setting Group & 0 to 5 & --- & 1 & F001 & 0 \\
\hline \multicolumn{7}{|l|}{Cold Load Pickup (Read/Write Setting) (2 modules)} \\
\hline A010 & Cold Load Pickup 1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline A011 & Cold Load Pickup 1 Initiate & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline A012 & Cold Load Pickup 1 Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline A013 & Outage Time Before Cold Load Pickup 1 & 0 to 1000 & s & 1 & F001 & 1000 \\
\hline A014 & On Load Time Before Reset 1 & 0 to 1000000 & s & 0.001 & F003 & 100000 \\
\hline A016 & Cold Load Pickup 1 Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline A017 & Cold Load Pickup 1 Reserved & 0 to 65535 & --- & 1 & F001 & 0 \\
\hline A018 & ...Repeated for module number 2 & & & & & \\
\hline \multicolumn{7}{|l|}{VT Fuse Failure (Read/Write Setting) (6 modules)} \\
\hline A040 & VT Fuse Failure Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline A041 & ...Repeated for module number 2 & & & & & \\
\hline A042 & ...Repeated for module number 3 & & & & & \\
\hline A043 & ...Repeated for module number 4 & & & & & \\
\hline A044 & ...Repeated for module number 5 & & & & & \\
\hline A045 & ...Repeated for module number 6 & & & & & \\
\hline \multicolumn{7}{|l|}{Selector Switch Actuals (Read Only)} \\
\hline A400 & Selector 1 Position & 1 to 7 & --- & 1 & F001 & 0 \\
\hline A401 & Selector 2 Position & 1 to 7 & --- & 1 & F001 & 1 \\
\hline \multicolumn{7}{|l|}{Selector Switch (Read/Write Setting) (2 modules)} \\
\hline A410 & Selector 1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline A411 & Selector 1 Range & 1 to 7 & --- & 1 & F001 & 7 \\
\hline A412 & Selector 1 Timeout & 3 to 60 & s & 0.1 & F001 & 50 \\
\hline A413 & Selector 1 Step Up & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline A414 & Selector 1 Step Mode & 0 to 1 & --- & 1 & F083 & 0 (Time-out) \\
\hline A415 & Selector 1 Acknowledge & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline A416 & Selector 1 Bit0 & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline A417 & Selector 1 Bit1 & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline A418 & Selector 1 Bit2 & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline A419 & Selector 1 Bit Mode & 0 to 1 & --- & 1 & F083 & 0 (Time-out) \\
\hline A41A & Selector 1 Bit Acknowledge & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline A41B & Selector 1 Power Up Mode & 0 to 2 & --- & 1 & F084 & 0 (Restore) \\
\hline A41C & Selector 1 Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline A41D & Selector 1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline A41E & Selector 1 Reserved (10 items) & --- & --- & 1 & F001 & 0 \\
\hline A428 & ...Repeated for module number 2 & & & & & \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 29 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline \multicolumn{7}{|l|}{Flexcurves C and D (Read/Write Setting)} \\
\hline AC00 & FlexCurve C (120 items) & 0 to 65535 & ms & 1 & F011 & 0 \\
\hline AC78 & FlexCurve D (120 items) & 0 to 65535 & ms & 1 & F011 & 0 \\
\hline \multicolumn{7}{|l|}{Non Volatile Latches (Read/Write Setting) (16 modules)} \\
\hline AD00 & Latch 1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline AD01 & Latch 1 Type & 0 to 1 & --- & 1 & F519 & 0 (Reset Dominant) \\
\hline AD02 & Latch 1 Set & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline AD03 & Latch 1 Reset & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline AD04 & Latch 1 Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline AD05 & Latch 1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline AD06 & Latch 1 Reserved (4 items) & --- & --- & --- & F001 & 0 \\
\hline AD0A & ...Repeated for module number 2 & & & & & \\
\hline AD14 & ...Repeated for module number 3 & & & & & \\
\hline AD1E & ...Repeated for module number 4 & & & & & \\
\hline AD28 & ...Repeated for module number 5 & & & & & \\
\hline AD32 & ...Repeated for module number 6 & & & & & \\
\hline AD3C & ...Repeated for module number 7 & & & & & \\
\hline AD46 & ...Repeated for module number 8 & & & & & \\
\hline AD50 & ...Repeated for module number 9 & & & & & \\
\hline AD5A & ...Repeated for module number 10 & & & & & \\
\hline AD64 & ...Repeated for module number 11 & & & & & \\
\hline AD6E & ...Repeated for module number 12 & & & & & \\
\hline AD78 & ...Repeated for module number 13 & & & & & \\
\hline AD82 & ...Repeated for module number 14 & & & & & \\
\hline AD8C & ...Repeated for module number 15 & & & & & \\
\hline AD96 & ...Repeated for module number 16 & & & & & \\
\hline \multicolumn{7}{|l|}{Digital Elements (Read/Write Setting) (16 modules)} \\
\hline B000 & Digital Element 1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline B001 & Digital Element 1 Name & --- & --- & --- & F203 & "Dig Element 1 " \\
\hline B015 & Digital Element 1 Input & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline B016 & Digital Element 1 Pickup Delay & 0 to 999999.999 & s & 0.001 & F003 & 0 \\
\hline B018 & Digital Element 1 Reset Delay & 0 to 999999.999 & s & 0.001 & F003 & 0 \\
\hline B01A & Digital Element 1 Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline B01B & Digital Element 1 Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline B01C & Digital Element 1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline B01D & Digital Element 1 Reserved (3 items) & --- & --- & --- & F001 & 0 \\
\hline B020 & ...Repeated for module number 2 & & & & & \\
\hline B040 & ...Repeated for module number 3 & & & & & \\
\hline B060 & ...Repeated for module number 4 & & & & & \\
\hline B080 & ...Repeated for module number 5 & & & & & \\
\hline B0A0 & ...Repeated for module number 6 & & & & & \\
\hline B0C0 & ...Repeated for module number 7 & & & & & \\
\hline B0E0 & ...Repeated for module number 8 & & & & & \\
\hline B100 & ...Repeated for module number 9 & & & & & \\
\hline B120 & ...Repeated for module number 10 & & & & & \\
\hline B140 & ...Repeated for module number 11 & & & & & \\
\hline B160 & ...Repeated for module number 12 & & & & & \\
\hline B180 & ...Repeated for module number 13 & & & & & \\
\hline B1A0 & ...Repeated for module number 14 & & & & & \\
\hline B1C0 & ...Repeated for module number 15 & & & & & \\
\hline B1E0 & ...Repeated for module number 16 & & & & & \\
\hline \multicolumn{7}{|l|}{Digital Counter (Read/Write Setting) (8 modules)} \\
\hline B300 & Digital Counter 1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline B301 & Digital Counter 1 Name & --- & -- & --- & F205 & "Counter 1" \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 30 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline B307 & Digital Counter 1 Units & --- & --- & --- & F206 & (none) \\
\hline B30A & Digital Counter 1 Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline B30B & Digital Counter 1 Up & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline B30C & Digital Counter 1 Down & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline B30D & Digital Counter 1 Preset & \[
\begin{gathered}
-2147483647 \text { to } \\
2147483647
\end{gathered}
\] & --- & 1 & F004 & 0 \\
\hline B30F & Digital Counter 1 Compare & \[
\begin{gathered}
-2147483647 \text { to } \\
2147483647
\end{gathered}
\] & --- & 1 & F004 & 0 \\
\hline B311 & Digital Counter 1 Reset & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline B312 & Digital Counter 1 Freeze/Reset & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline B313 & Digital Counter 1 Freeze/Count & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline B314 & Digital Counter 1 Set To Preset & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline B315 & Digital Counter 1 Reserved (11 items) & --- & --- & --- & F001 & 0 \\
\hline B320 & ...Repeated for module number 2 & & & & & \\
\hline B340 & ...Repeated for module number 3 & & & & & \\
\hline B360 & ...Repeated for module number 4 & & & & & \\
\hline B380 & ...Repeated for module number 5 & & & & & \\
\hline B3A0 & ...Repeated for module number 6 & & & & & \\
\hline B3C0 & ...Repeated for module number 7 & & & & & \\
\hline B3E0 & ...Repeated for module number 8 & & & & & \\
\hline \multicolumn{7}{|l|}{Frequency Rate of Change (Read/Write Setting) (4 modules)} \\
\hline B500 & Frequency Rate of Change 1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline B501 & Frequency Rate of Change 1 OC Supervision & 0 to 30 & pu & 0.001 & F001 & 200 \\
\hline B502 & Frequency Rate of Change 1 Min & 20 to 80 & Hz & 0.01 & F001 & 4500 \\
\hline B503 & Frequency Rate of Change 1 Max & 20 to 80 & Hz & 0.01 & F001 & 6500 \\
\hline B504 & Frequency Rate of Change 1 Pickup Delay & 0 to 65.535 & s & 0.001 & F001 & 0 \\
\hline B505 & Frequency Rate of Change 1 Reset Delay & 0 to 65.535 & s & 0.001 & F001 & 0 \\
\hline B506 & Frequency Rate of Change 1 Block & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline B507 & Frequency Rate of Change 1 Target & 0 to 2 & --- & 1 & F109 & 0 (Self-reset) \\
\hline B508 & Frequency Rate of Change 1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline B509 & Frequency Rate of Change 1 Source & 0 to 5 & --- & 1 & F167 & 0 (SRC 1) \\
\hline B50A & Frequency Rate of Change 1 Trend & 0 to 2 & --- & 1 & F224 & 0 (Increasing) \\
\hline B50B & Frequency Rate of Change 1 Pickup & 0.1 to 15 & Hz/s & 0.01 & F001 & 50 \\
\hline B50C & Frequency Rate of Change 1 OV Supervision & 0.1 to 3 & pu & 0.001 & F001 & 700 \\
\hline B50D & Frequency Rate of Change 1 Reserved (3 items) & 0 to 1 & --- & 1 & F001 & 0 \\
\hline B510 & ...Repeated for module number 2 & & & & & \\
\hline B520 & ...Repeated for module number 3 & & & & & \\
\hline B530 & ...Repeated for module number 4 & & & & & \\
\hline \multicolumn{7}{|l|}{Contact Inputs (Read/Write Setting) (96 modules)} \\
\hline C000 & Contact Input 1 Name & --- & --- & --- & F205 & "Cont Ip 1" \\
\hline C006 & Contact Input 1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline C007 & Contact Input 1 Debounce Time & 0 to 16 & ms & 0.5 & F001 & 20 \\
\hline C008 & ...Repeated for module number 2 & & & & & \\
\hline C010 & ...Repeated for module number 3 & & & & & \\
\hline C018 & ...Repeated for module number 4 & & & & & \\
\hline C020 & ...Repeated for module number 5 & & & & & \\
\hline C028 & ...Repeated for module number 6 & & & & & \\
\hline C030 & ...Repeated for module number 7 & & & & & \\
\hline C038 & ...Repeated for module number 8 & & & & & \\
\hline C040 & ...Repeated for module number 9 & & & & & \\
\hline C048 & ...Repeated for module number 10 & & & & & \\
\hline C050 & ...Repeated for module number 11 & & & & & \\
\hline C058 & ...Repeated for module number 12 & & & & & \\
\hline C060 & ...Repeated for module number 13 & & & & & \\
\hline C068 & ...Repeated for module number 14 & & & & & \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 31 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline C070 & ...Repeated for module number 15 & & & & & \\
\hline C078 & ...Repeated for module number 16 & & & & & \\
\hline C080 & ...Repeated for module number 17 & & & & & \\
\hline C088 & ...Repeated for module number 18 & & & & & \\
\hline C090 & ...Repeated for module number 19 & & & & & \\
\hline C098 & ...Repeated for module number 20 & & & & & \\
\hline C0A0 & ...Repeated for module number 21 & & & & & \\
\hline C0A8 & ...Repeated for module number 22 & & & & & \\
\hline COB0 & ...Repeated for module number 23 & & & & & \\
\hline C0B8 & ...Repeated for module number 24 & & & & & \\
\hline C0C0 & ...Repeated for module number 25 & & & & & \\
\hline C0C8 & ...Repeated for module number 26 & & & & & \\
\hline C0D0 & ...Repeated for module number 27 & & & & & \\
\hline C0D8 & ...Repeated for module number 28 & & & & & \\
\hline COEO & ...Repeated for module number 29 & & & & & \\
\hline C0E8 & ...Repeated for module number 30 & & & & & \\
\hline C0F0 & ...Repeated for module number 31 & & & & & \\
\hline C0F8 & ...Repeated for module number 32 & & & & & \\
\hline C100 & ...Repeated for module number 33 & & & & & \\
\hline C108 & ...Repeated for module number 34 & & & & & \\
\hline C110 & ...Repeated for module number 35 & & & & & \\
\hline C118 & ...Repeated for module number 36 & & & & & \\
\hline C120 & ...Repeated for module number 37 & & & & & \\
\hline C128 & ...Repeated for module number 38 & & & & & \\
\hline C130 & ...Repeated for module number 39 & & & & & \\
\hline C138 & ...Repeated for module number 40 & & & & & \\
\hline C140 & ...Repeated for module number 41 & & & & & \\
\hline C148 & ...Repeated for module number 42 & & & & & \\
\hline C150 & ...Repeated for module number 43 & & & & & \\
\hline C158 & ...Repeated for module number 44 & & & & & \\
\hline C160 & ...Repeated for module number 45 & & & & & \\
\hline C168 & ...Repeated for module number 46 & & & & & \\
\hline C170 & ...Repeated for module number 47 & & & & & \\
\hline C178 & ...Repeated for module number 48 & & & & & \\
\hline C180 & ...Repeated for module number 49 & & & & & \\
\hline C188 & ...Repeated for module number 50 & & & & & \\
\hline C190 & ...Repeated for module number 51 & & & & & \\
\hline C198 & ...Repeated for module number 52 & & & & & \\
\hline C1A0 & ...Repeated for module number 53 & & & & & \\
\hline C1A8 & ...Repeated for module number 54 & & & & & \\
\hline C1B0 & ...Repeated for module number 55 & & & & & \\
\hline C1B8 & ...Repeated for module number 56 & & & & & \\
\hline C1C0 & ...Repeated for module number 57 & & & & & \\
\hline C1C8 & ...Repeated for module number 58 & & & & & \\
\hline C1D0 & ...Repeated for module number 59 & & & & & \\
\hline C1D8 & ...Repeated for module number 60 & & & & & \\
\hline C1E0 & ...Repeated for module number 61 & & & & & \\
\hline C1E8 & ...Repeated for module number 62 & & & & & \\
\hline C1F0 & ...Repeated for module number 63 & & & & & \\
\hline C1F8 & ...Repeated for module number 64 & & & & & \\
\hline C200 & ...Repeated for module number 65 & & & & & \\
\hline C208 & ...Repeated for module number 66 & & & & & \\
\hline C210 & ...Repeated for module number 67 & & & & & \\
\hline C218 & ...Repeated for module number 68 & & & & & \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 32 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline C220 & ...Repeated for module number 69 & & & & & \\
\hline C228 & ...Repeated for module number 70 & & & & & \\
\hline C230 & ...Repeated for module number 71 & & & & & \\
\hline C238 & ...Repeated for module number 72 & & & & & \\
\hline C240 & ...Repeated for module number 73 & & & & & \\
\hline C248 & ...Repeated for module number 74 & & & & & \\
\hline C250 & ...Repeated for module number 75 & & & & & \\
\hline C258 & ...Repeated for module number 76 & & & & & \\
\hline C260 & ...Repeated for module number 77 & & & & & \\
\hline C268 & ...Repeated for module number 78 & & & & & \\
\hline C270 & ...Repeated for module number 79 & & & & & \\
\hline C278 & ...Repeated for module number 80 & & & & & \\
\hline C280 & ...Repeated for module number 81 & & & & & \\
\hline C288 & ...Repeated for module number 82 & & & & & \\
\hline C290 & ...Repeated for module number 83 & & & & & \\
\hline C298 & ...Repeated for module number 84 & & & & & \\
\hline C2A0 & ...Repeated for module number 85 & & & & & \\
\hline C2A8 & ...Repeated for module number 86 & & & & & \\
\hline C2B0 & ...Repeated for module number 87 & & & & & \\
\hline C2B8 & ...Repeated for module number 88 & & & & & \\
\hline C2C0 & ...Repeated for module number 89 & & & & & \\
\hline C2C8 & ...Repeated for module number 90 & & & & & \\
\hline C2D0 & ...Repeated for module number 91 & & & & & \\
\hline C2D8 & ...Repeated for module number 92 & & & & & \\
\hline C2E0 & ...Repeated for module number 93 & & & & & \\
\hline C2E8 & ...Repeated for module number 94 & & & & & \\
\hline C2F0 & ...Repeated for module number 95 & & & & & \\
\hline C2F8 & ...Repeated for module number 96 & & & & & \\
\hline \multicolumn{7}{|l|}{Contact Input Thresholds (Read/Write Setting)} \\
\hline C600 & Contact Input x Threshold (24 items) & 0 to 3 & --- & 1 & F128 & 1 (33 Vdc) \\
\hline \multicolumn{7}{|l|}{Virtual Inputs Global Settings (Read/Write Setting)} \\
\hline C680 & Virtual Inputs SBO Timeout & 1 to 60 & s & 1 & F001 & 30 \\
\hline \multicolumn{7}{|l|}{Virtual Inputs (Read/Write Setting) (32 modules)} \\
\hline C690 & Virtual Input 1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline C691 & Virtual Input 1 Name & --- & --- & --- & F205 & "Virt Ip 1 " \\
\hline C69B & Virtual Input 1 Programmed Type & 0 to 1 & --- & 1 & F127 & 0 (Latched) \\
\hline C69C & Virtual Input 1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline C69D & Virtual Input 1 UCA SBOClass & 1 to 2 & --- & 1 & F001 & 1 \\
\hline C69E & Virtual Input 1 UCA SBOEna & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline C69F & Virtual Input 1 Reserved & --- & --- & --- & F001 & 0 \\
\hline C6A0 & ...Repeated for module number 2 & & & & & \\
\hline C6B0 & ...Repeated for module number 3 & & & & & \\
\hline C6C0 & ...Repeated for module number 4 & & & & & \\
\hline C6D0 & ...Repeated for module number 5 & & & & & \\
\hline C6E0 & ...Repeated for module number 6 & & & & & \\
\hline C6F0 & ...Repeated for module number 7 & & & & & \\
\hline C700 & ...Repeated for module number 8 & & & & & \\
\hline C710 & ...Repeated for module number 9 & & & & & \\
\hline C720 & ...Repeated for module number 10 & & & & & \\
\hline C730 & ...Repeated for module number 11 & & & & & \\
\hline C740 & ...Repeated for module number 12 & & & & & \\
\hline C750 & ...Repeated for module number 13 & & & & & \\
\hline C760 & ...Repeated for module number 14 & & & & & \\
\hline C770 & ...Repeated for module number 15 & & & & & \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 33 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline C780 & ...Repeated for module number 16 & & & & & \\
\hline C790 & ...Repeated for module number 17 & & & & & \\
\hline C7A0 & ...Repeated for module number 18 & & & & & \\
\hline C7B0 & ...Repeated for module number 19 & & & & & \\
\hline C7C0 & ...Repeated for module number 20 & & & & & \\
\hline C7D0 & ...Repeated for module number 21 & & & & & \\
\hline C7E0 & ...Repeated for module number 22 & & & & & \\
\hline C7F0 & ...Repeated for module number 23 & & & & & \\
\hline C800 & ...Repeated for module number 24 & & & & & \\
\hline C810 & ...Repeated for module number 25 & & & & & \\
\hline C820 & ...Repeated for module number 26 & & & & & \\
\hline C830 & ...Repeated for module number 27 & & & & & \\
\hline C840 & ...Repeated for module number 28 & & & & & \\
\hline C850 & ...Repeated for module number 29 & & & & & \\
\hline C860 & ...Repeated for module number 30 & & & & & \\
\hline C870 & ...Repeated for module number 31 & & & & & \\
\hline C880 & ...Repeated for module number 32 & & & & & \\
\hline \multicolumn{7}{|l|}{Virtual Outputs (Read/Write Setting) (64 modules)} \\
\hline CC90 & Virtual Output 1 Name & --- & --- & --- & F205 & "Virt Op 1" \\
\hline CC9A & Virtual Output 1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline CC9B & Virtual Output 1 Reserved (5 items) & --- & --- & --- & F001 & 0 \\
\hline CCAO & ...Repeated for module number 2 & & & & & \\
\hline CCB0 & ...Repeated for module number 3 & & & & & \\
\hline CCCO & ...Repeated for module number 4 & & & & & \\
\hline CCD0 & ...Repeated for module number 5 & & & & & \\
\hline CCEO & ...Repeated for module number 6 & & & & & \\
\hline CCFO & ...Repeated for module number 7 & & & & & \\
\hline CD00 & ...Repeated for module number 8 & & & & & \\
\hline CD10 & ...Repeated for module number 9 & & & & & \\
\hline CD20 & ...Repeated for module number 10 & & & & & \\
\hline CD30 & ...Repeated for module number 11 & & & & & \\
\hline CD40 & ...Repeated for module number 12 & & & & & \\
\hline CD50 & ...Repeated for module number 13 & & & & & \\
\hline CD60 & ...Repeated for module number 14 & & & & & \\
\hline CD70 & ...Repeated for module number 15 & & & & & \\
\hline CD80 & ...Repeated for module number 16 & & & & & \\
\hline CD90 & ...Repeated for module number 17 & & & & & \\
\hline CDAO & ...Repeated for module number 18 & & & & & \\
\hline CDB0 & ...Repeated for module number 19 & & & & & \\
\hline CDC0 & ...Repeated for module number 20 & & & & & \\
\hline CDD0 & ...Repeated for module number 21 & & & & & \\
\hline CDE0 & ...Repeated for module number 22 & & & & & \\
\hline CDF0 & ...Repeated for module number 23 & & & & & \\
\hline CE00 & ...Repeated for module number 24 & & & & & \\
\hline CE10 & ...Repeated for module number 25 & & & & & \\
\hline CE20 & ...Repeated for module number 26 & & & & & \\
\hline CE30 & ...Repeated for module number 27 & & & & & \\
\hline CE40 & ...Repeated for module number 28 & & & & & \\
\hline CE50 & ...Repeated for module number 29 & & & & & \\
\hline CE60 & ...Repeated for module number 30 & & & & & \\
\hline CE70 & ...Repeated for module number 31 & & & & & \\
\hline CE80 & ...Repeated for module number 32 & & & & & \\
\hline CE90 & ...Repeated for module number 33 & & & & & \\
\hline CEAO & ...Repeated for module number 34 & & & & & \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 34 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline CEB0 & ...Repeated for module number 35 & & & & & \\
\hline CEC0 & ...Repeated for module number 36 & & & & & \\
\hline CED0 & ...Repeated for module number 37 & & & & & \\
\hline CEEO & ...Repeated for module number 38 & & & & & \\
\hline CEF0 & ...Repeated for module number 39 & & & & & \\
\hline CF00 & ...Repeated for module number 40 & & & & & \\
\hline CF10 & ...Repeated for module number 41 & & & & & \\
\hline CF20 & ...Repeated for module number 42 & & & & & \\
\hline CF30 & ...Repeated for module number 43 & & & & & \\
\hline CF40 & ...Repeated for module number 44 & & & & & \\
\hline CF50 & ...Repeated for module number 45 & & & & & \\
\hline CF60 & ...Repeated for module number 46 & & & & & \\
\hline CF70 & ...Repeated for module number 47 & & & & & \\
\hline CF80 & ...Repeated for module number 48 & & & & & \\
\hline CF90 & ...Repeated for module number 49 & & & & & \\
\hline CFAO & ...Repeated for module number 50 & & & & & \\
\hline CFB0 & ...Repeated for module number 51 & & & & & \\
\hline CFC0 & ...Repeated for module number 52 & & & & & \\
\hline CFD0 & ...Repeated for module number 53 & & & & & \\
\hline CFEO & ...Repeated for module number 54 & & & & & \\
\hline CFF0 & ...Repeated for module number 55 & & & & & \\
\hline D000 & ...Repeated for module number 56 & & & & & \\
\hline D010 & ...Repeated for module number 57 & & & & & \\
\hline D020 & ...Repeated for module number 58 & & & & & \\
\hline D030 & ...Repeated for module number 59 & & & & & \\
\hline D040 & ...Repeated for module number 60 & & & & & \\
\hline D050 & ...Repeated for module number 61 & & & & & \\
\hline D060 & ...Repeated for module number 62 & & & & & \\
\hline D070 & ...Repeated for module number 63 & & & & & \\
\hline D080 & ...Repeated for module number 64 & & & & & \\
\hline \multicolumn{7}{|l|}{Mandatory (Read/Write Setting)} \\
\hline D280 & Test Mode Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline \multicolumn{7}{|l|}{Mandatory (Read/Write)} \\
\hline D281 & Force VFD and LED & 0 to 1 & --- & 1 & F126 & 0 (No) \\
\hline \multicolumn{7}{|l|}{Mandatory (Read/Write Setting)} \\
\hline D282 & Test Mode Initiate & 0 to 65535 & --- & 1 & F300 & 1 \\
\hline \multicolumn{7}{|l|}{Mandatory (Read/Write Command)} \\
\hline D283 & Clear All Relay Records Command & 0 to 1 & --- & 1 & F126 & 0 (No) \\
\hline \multicolumn{7}{|l|}{Contact Outputs (Read/Write Setting) (64 modules)} \\
\hline D290 & Contact Output 1 Name & --- & --- & --- & F205 & "Cont Op 1" \\
\hline D29A & Contact Output 1 Operation & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline D29B & Contact Output 1 Seal In & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline D29C & Latching Output 1 Reset & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline D29D & Contact Output 1 Events & 0 to 1 & --- & 1 & F102 & 1 (Enabled) \\
\hline D29E & Latching Output 1 Type & 0 to 1 & --- & 1 & F090 & 0 (Operate-dominant) \\
\hline D29F & Reserved & --- & --- & --- & F001 & 0 \\
\hline D2A0 & ...Repeated for module number 2 & & & & & \\
\hline D2B0 & ...Repeated for module number 3 & & & & & \\
\hline D2C0 & ...Repeated for module number 4 & & & & & \\
\hline D2D0 & ...Repeated for module number 5 & & & & & \\
\hline D2E0 & ...Repeated for module number 6 & & & & & \\
\hline D2F0 & ...Repeated for module number 7 & & & & & \\
\hline D300 & ...Repeated for module number 8 & & & & & \\
\hline D310 & ...Repeated for module number 9 & & & & & \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 35 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline D320 & ...Repeated for module number 10 & & & & & \\
\hline D330 & ...Repeated for module number 11 & & & & & \\
\hline D340 & ...Repeated for module number 12 & & & & & \\
\hline D350 & ...Repeated for module number 13 & & & & & \\
\hline D360 & ...Repeated for module number 14 & & & & & \\
\hline D370 & ...Repeated for module number 15 & & & & & \\
\hline D380 & ...Repeated for module number 16 & & & & & \\
\hline D390 & ...Repeated for module number 17 & & & & & \\
\hline D3A0 & ...Repeated for module number 18 & & & & & \\
\hline D3B0 & ...Repeated for module number 19 & & & & & \\
\hline D3C0 & ...Repeated for module number 20 & & & & & \\
\hline D3D0 & ...Repeated for module number 21 & & & & & \\
\hline D3E0 & ...Repeated for module number 22 & & & & & \\
\hline D3F0 & ...Repeated for module number 23 & & & & & \\
\hline D400 & ...Repeated for module number 24 & & & & & \\
\hline D410 & ...Repeated for module number 25 & & & & & \\
\hline D420 & ...Repeated for module number 26 & & & & & \\
\hline D430 & ...Repeated for module number 27 & & & & & \\
\hline D440 & ...Repeated for module number 28 & & & & & \\
\hline D450 & ...Repeated for module number 29 & & & & & \\
\hline D460 & ...Repeated for module number 30 & & & & & \\
\hline D470 & ...Repeated for module number 31 & & & & & \\
\hline D480 & ...Repeated for module number 32 & & & & & \\
\hline D490 & ...Repeated for module number 33 & & & & & \\
\hline D4A0 & ...Repeated for module number 34 & & & & & \\
\hline D4B0 & ...Repeated for module number 35 & & & & & \\
\hline D4C0 & ...Repeated for module number 36 & & & & & \\
\hline D4D0 & ...Repeated for module number 37 & & & & & \\
\hline D4E0 & ...Repeated for module number 38 & & & & & \\
\hline D4F0 & ...Repeated for module number 39 & & & & & \\
\hline D500 & ...Repeated for module number 40 & & & & & \\
\hline D510 & ...Repeated for module number 41 & & & & & \\
\hline D520 & ...Repeated for module number 42 & & & & & \\
\hline D530 & ...Repeated for module number 43 & & & & & \\
\hline D540 & ...Repeated for module number 44 & & & & & \\
\hline D550 & ...Repeated for module number 45 & & & & & \\
\hline D560 & ...Repeated for module number 46 & & & & & \\
\hline D570 & ...Repeated for module number 47 & & & & & \\
\hline D580 & ...Repeated for module number 48 & & & & & \\
\hline D590 & ...Repeated for module number 49 & & & & & \\
\hline D5A0 & ...Repeated for module number 50 & & & & & \\
\hline D5B0 & ...Repeated for module number 51 & & & & & \\
\hline D5C0 & ...Repeated for module number 52 & & & & & \\
\hline D5D0 & ...Repeated for module number 53 & & & & & \\
\hline D5E0 & ...Repeated for module number 54 & & & & & \\
\hline D5F0 & ...Repeated for module number 55 & & & & & \\
\hline D600 & ...Repeated for module number 56 & & & & & \\
\hline D610 & ...Repeated for module number 57 & & & & & \\
\hline D620 & ...Repeated for module number 58 & & & & & \\
\hline D630 & ...Repeated for module number 59 & & & & & \\
\hline D640 & ...Repeated for module number 60 & & & & & \\
\hline D650 & ...Repeated for module number 61 & & & & & \\
\hline D660 & ...Repeated for module number 62 & & & & & \\
\hline D670 & ...Repeated for module number 63 & & & & & \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 36 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline D680 & ...Repeated for module number 64 & & & & & \\
\hline \multicolumn{7}{|l|}{Reset (Read/Write Setting)} \\
\hline D800 & FlexLogic operand which initiates a reset & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline \multicolumn{7}{|l|}{Control Pushbuttons (Read/Write Setting) (7 modules)} \\
\hline D810 & Control Pushbuttons 1 Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline D811 & Control Pushbuttons 1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline D812 & ...Repeated for module number 2 & & & & & \\
\hline D814 & ...Repeated for module number 3 & & & & & \\
\hline D816 & ...Repeated for module number 4 & & & & & \\
\hline D818 & ...Repeated for module number 5 & & & & & \\
\hline D81A & ...Repeated for module number 6 & & & & & \\
\hline D81C & ...Repeated for module number 7 & & & & & \\
\hline \multicolumn{7}{|l|}{Clear Records (Read/Write Setting)} \\
\hline D820 & Clear Fault Reports Operand & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline D822 & Clear Event Records Operand & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline D823 & Clear Oscillography Operand & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline D824 & Clear Data Logger Operand & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline D825 & Clear Breaker 1 Arcing Amps Operand & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline D826 & Clear Breaker 2 Arcing Amps & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline D827 & Clear Demand Operand & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline D829 & Clear Energy Operand & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline D82A & Clear Hi-Z Records Operand & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline D82B & Clear Unauthorized Access Operand & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline D82D & Clear Platform Direct Input/Output Statistics Operand & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline D82E & Clear Relay Records Reserved (18 items) & --- & --- & --- & F001 & 0 \\
\hline \multicolumn{7}{|l|}{Force Contact Inputs (Read/Write Setting)} \\
\hline D8B0 & Force Contact Input x State (96 items) & 0 to 2 & --- & 1 & F144 & 0 (Disabled) \\
\hline \multicolumn{7}{|l|}{Force Contact Outputs (Read/Write Setting)} \\
\hline D910 & Force Contact Output x State (64 items) & 0 to 3 & --- & 1 & F131 & 0 (Disabled) \\
\hline \multicolumn{7}{|l|}{Direct Inputs/Outputs (Read/Write Setting)} \\
\hline DB40 & Direct Device ID & 1 to 16 & --- & 1 & F001 & 1 \\
\hline DB41 & Direct I/O Channel 1 Ring Configuration Function & 0 to 1 & --- & 1 & F126 & 0 (No) \\
\hline DB42 & Platform Direct I/O Data Rate & 64 to 128 & kbps & 64 & F001 & 64 \\
\hline DB43 & Direct I/O Channel 2 Ring Configuration Function & 0 to 1 & --- & 1 & F126 & 0 (No) \\
\hline DB44 & Platform Direct I/O Crossover Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline \multicolumn{7}{|l|}{Platform Direct I/O Commands (Read/Write Command)} \\
\hline DB48 & Platform Direct I/O Clear Counters Command & 0 to 1 & --- & 1 & F126 & 0 (No) \\
\hline \multicolumn{7}{|l|}{Platform Direct Inputs (Read/Write Setting) (96 modules)} \\
\hline DB50 & Direct Input 1 Device Number & 0 to 16 & --- & 1 & F001 & 0 \\
\hline DB51 & Direct Input 1 Number & 0 to 96 & --- & 1 & F001 & 0 \\
\hline DB52 & Direct Input 1 Default State & 0 to 3 & --- & 1 & F086 & 0 (Off) \\
\hline DB53 & Direct Input 1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline DB54 & ...Repeated for module number 2 & & & & & \\
\hline DB58 & ...Repeated for module number 3 & & & & & \\
\hline DB5C & ...Repeated for module number 4 & & & & & \\
\hline DB60 & ...Repeated for module number 5 & & & & & \\
\hline DB64 & ...Repeated for module number 6 & & & & & \\
\hline DB68 & ...Repeated for module number 7 & & & & & \\
\hline DB6C & ...Repeated for module number 8 & & & & & \\
\hline DB70 & ...Repeated for module number 9 & & & & & \\
\hline DB74 & ...Repeated for module number 10 & & & & & \\
\hline DB78 & ...Repeated for module number 11 & & & & & \\
\hline DB7C & ...Repeated for module number 12 & & & & & \\
\hline DB80 & ...Repeated for module number 13 & & & & & \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 37 of 41)

Table B-9: MODBUS MEMORY MAP (Sheet 38 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline \multicolumn{7}{|l|}{Direct I/O Alarms (Read/Write Setting)} \\
\hline DE00 & Direct I/O Channel 1 CRC Alarm Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline DE01 & Direct I/O Channel 1 CRC Alarm Message Count & 100 to 10000 & --- & 1 & F001 & 600 \\
\hline DE02 & Direct I/O Channel 1 CRC Alarm Threshold & 1 to 1000 & --- & 1 & F001 & 10 \\
\hline DE03 & Direct I/O Channel 1 CRC Alarm Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline DE04 & Reserved (4 items) & 1 to 1000 & --- & 1 & F001 & 10 \\
\hline DE08 & Direct I/O Channel 2 CRC Alarm Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline DE09 & Direct I/O Channel 2 CRC Alarm Message Count & 100 to 10000 & --- & 1 & F001 & 600 \\
\hline DE0A & Direct I/O Channel 2 CRC Alarm Threshold & 1 to 1000 & --- & 1 & F001 & 10 \\
\hline DE0B & Direct I/O Channel 2 CRC Alarm Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline DE0C & Reserved (4 items) & 1 to 1000 & --- & 1 & F001 & 10 \\
\hline DE10 & Direct I/O Ch 1 Unreturned Messages Alarm Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline DE11 & Direct I/O Ch 1 Unreturned Messages Alarm Msg Count & 100 to 10000 & --- & 1 & F001 & 600 \\
\hline DE12 & Direct I/O Ch 1 Unreturned Messages Alarm Threshold & 1 to 1000 & --- & 1 & F001 & 10 \\
\hline DE13 & Direct I/O Ch 1 Unreturned Messages Alarm Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline DE14 & Reserved (4 items) & 1 to 1000 & --- & 1 & F001 & 10 \\
\hline DE18 & Direct IO Ch 2 Unreturned Messages Alarm Function & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline DE19 & Direct I/O Ch 2 Unreturned Messages Alarm Msg Count & 100 to 10000 & --- & 1 & F001 & 600 \\
\hline DE1A & Direct I/O Ch 2 Unreturned Messages Alarm Threshold & 1 to 1000 & --- & 1 & F001 & 10 \\
\hline DE1B & Direct I/O Channel 2 Unreturned Messages Alarm Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline DE1C & Reserved (4 items) & 1 to 1000 & --- & 1 & F001 & 10 \\
\hline \multicolumn{7}{|l|}{Remote Devices (Read/Write Setting) (16 modules)} \\
\hline E000 & Remote Device 1 ID & --- & --- & --- & F202 & "Remote Device 1" \\
\hline E00A & ...Repeated for module number 2 & & & & & \\
\hline E014 & ...Repeated for module number 3 & & & & & \\
\hline E01E & ...Repeated for module number 4 & & & & & \\
\hline E028 & ...Repeated for module number 5 & & & & & \\
\hline E032 & ...Repeated for module number 6 & & & & & \\
\hline E03C & ...Repeated for module number 7 & & & & & \\
\hline E046 & ...Repeated for module number 8 & & & & & \\
\hline E050 & ...Repeated for module number 9 & & & & & \\
\hline E05A & ...Repeated for module number 10 & & & & & \\
\hline E064 & ...Repeated for module number 11 & & & & & \\
\hline E06E & ...Repeated for module number 12 & & & & & \\
\hline E078 & ...Repeated for module number 13 & & & & & \\
\hline E082 & ...Repeated for module number 14 & & & & & \\
\hline E08C & ...Repeated for module number 15 & & & & & \\
\hline E096 & ...Repeated for module number 16 & & & & & \\
\hline \multicolumn{7}{|l|}{Remote Inputs (Read/Write Setting) (64 modules)} \\
\hline E100 & Remote Input 1 Device & 1 to 16 & --- & 1 & F001 & 1 \\
\hline E101 & Remote Input 1 Bit Pair & 0 to 64 & --- & 1 & F156 & 0 (None) \\
\hline E102 & Remote Input 1 Default State & 0 to 3 & --- & 1 & F086 & 0 (Off) \\
\hline E103 & Remote Input 1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline E104 & ...Repeated for module number 2 & & & & & \\
\hline E108 & ...Repeated for module number 3 & & & & & \\
\hline E10C & ...Repeated for module number 4 & & & & & \\
\hline E110 & ...Repeated for module number 5 & & & & & \\
\hline E114 & ...Repeated for module number 6 & & & & & \\
\hline E118 & ...Repeated for module number 7 & & & & & \\
\hline E11C & ...Repeated for module number 8 & & & & & \\
\hline E120 & ...Repeated for module number 9 & & & & & \\
\hline E124 & ...Repeated for module number 10 & & & & & \\
\hline E128 & ...Repeated for module number 11 & & & & & \\
\hline E12C & ...Repeated for module number 12 & & & & & \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 39 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline E130 & ...Repeated for module number 13 & & & & & \\
\hline E134 & ...Repeated for module number 14 & & & & & \\
\hline E138 & ...Repeated for module number 15 & & & & & \\
\hline E13C & ...Repeated for module number 16 & & & & & \\
\hline E140 & ...Repeated for module number 17 & & & & & \\
\hline E144 & ...Repeated for module number 18 & & & & & \\
\hline E148 & ...Repeated for module number 19 & & & & & \\
\hline E14C & ...Repeated for module number 20 & & & & & \\
\hline E150 & ...Repeated for module number 21 & & & & & \\
\hline E154 & ...Repeated for module number 22 & & & & & \\
\hline E158 & ...Repeated for module number 23 & & & & & \\
\hline E15C & ...Repeated for module number 24 & & & & & \\
\hline E160 & ...Repeated for module number 25 & & & & & \\
\hline E164 & ...Repeated for module number 26 & & & & & \\
\hline E168 & ...Repeated for module number 27 & & & & & \\
\hline E16C & ...Repeated for module number 28 & & & & & \\
\hline E170 & ...Repeated for module number 29 & & & & & \\
\hline E174 & ...Repeated for module number 30 & & & & & \\
\hline E178 & ...Repeated for module number 31 & & & & & \\
\hline E17C & ...Repeated for module number 32 & & & & & \\
\hline E180 & ...Repeated for module number 33 & & & & & \\
\hline E184 & ...Repeated for module number 34 & & & & & \\
\hline E188 & ...Repeated for module number 35 & & & & & \\
\hline E18C & ...Repeated for module number 36 & & & & & \\
\hline E190 & ...Repeated for module number 37 & & & & & \\
\hline E194 & ...Repeated for module number 38 & & & & & \\
\hline E198 & ...Repeated for module number 39 & & & & & \\
\hline E19C & ...Repeated for module number 40 & & & & & \\
\hline E1A0 & ...Repeated for module number 41 & & & & & \\
\hline E1A4 & ...Repeated for module number 42 & & & & & \\
\hline E1A8 & ...Repeated for module number 43 & & & & & \\
\hline E1AC & ...Repeated for module number 44 & & & & & \\
\hline E1B0 & ...Repeated for module number 45 & & & & & \\
\hline E1B4 & ...Repeated for module number 46 & & & & & \\
\hline E1B8 & ...Repeated for module number 47 & & & & & \\
\hline E1BC & ...Repeated for module number 48 & & & & & \\
\hline E1C0 & ...Repeated for module number 49 & & & & & \\
\hline E1C4 & ...Repeated for module number 50 & & & & & \\
\hline E1C8 & ...Repeated for module number 51 & & & & & \\
\hline E1CC & ...Repeated for module number 52 & & & & & \\
\hline E1D0 & ...Repeated for module number 53 & & & & & \\
\hline E1D4 & ...Repeated for module number 54 & & & & & \\
\hline E1D8 & ...Repeated for module number 55 & & & & & \\
\hline E1DC & ...Repeated for module number 56 & & & & & \\
\hline E1E0 & ...Repeated for module number 57 & & & & & \\
\hline E1E4 & ...Repeated for module number 58 & & & & & \\
\hline E1E8 & ...Repeated for module number 59 & & & & & \\
\hline E1EC & ...Repeated for module number 60 & & & & & \\
\hline E1F0 & ...Repeated for module number 61 & & & & & \\
\hline E1F4 & ...Repeated for module number 62 & & & & & \\
\hline E1F8 & ...Repeated for module number 63 & & & & & \\
\hline E1FC & ...Repeated for module number 64 & & & & & \\
\hline \multicolumn{7}{|l|}{Remote Output DNA Pairs (Read/Write Setting) (32 modules)} \\
\hline E600 & Remote Output DNA 1 Operand & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 40 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline E601 & Remote Output DNA 1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline E602 & Remote Output DNA 1 Reserved (2 items) & 0 to 1 & --- & 1 & F001 & 0 \\
\hline E604 & ...Repeated for module number 2 & & & & & \\
\hline E608 & ...Repeated for module number 3 & & & & & \\
\hline E60C & ...Repeated for module number 4 & & & & & \\
\hline E610 & ...Repeated for module number 5 & & & & & \\
\hline E614 & ...Repeated for module number 6 & & & & & \\
\hline E618 & ...Repeated for module number 7 & & & & & \\
\hline E61C & ...Repeated for module number 8 & & & & & \\
\hline E620 & ...Repeated for module number 9 & & & & & \\
\hline E624 & ...Repeated for module number 10 & & & & & \\
\hline E628 & ...Repeated for module number 11 & & & & & \\
\hline E62C & ...Repeated for module number 12 & & & & & \\
\hline E630 & ...Repeated for module number 13 & & & & & \\
\hline E634 & ...Repeated for module number 14 & & & & & \\
\hline E638 & ...Repeated for module number 15 & & & & & \\
\hline E63C & ...Repeated for module number 16 & & & & & \\
\hline E640 & ...Repeated for module number 17 & & & & & \\
\hline E644 & ...Repeated for module number 18 & & & & & \\
\hline E648 & ...Repeated for module number 19 & & & & & \\
\hline E64C & ...Repeated for module number 20 & & & & & \\
\hline E650 & ...Repeated for module number 21 & & & & & \\
\hline E654 & ...Repeated for module number 22 & & & & & \\
\hline E658 & ...Repeated for module number 23 & & & & & \\
\hline E65C & ...Repeated for module number 24 & & & & & \\
\hline E660 & ...Repeated for module number 25 & & & & & \\
\hline E664 & ...Repeated for module number 26 & & & & & \\
\hline E668 & ...Repeated for module number 27 & & & & & \\
\hline E66C & ...Repeated for module number 28 & & & & & \\
\hline E670 & ...Repeated for module number 29 & & & & & \\
\hline E674 & ...Repeated for module number 30 & & & & & \\
\hline E678 & ...Repeated for module number 31 & & & & & \\
\hline E67C & ...Repeated for module number 32 & & & & & \\
\hline \multicolumn{7}{|l|}{Remote Output UserSt Pairs (Read/Write Setting) (32 modules)} \\
\hline E680 & Remote Output UserSt 1 Operand & 0 to 65535 & --- & 1 & F300 & 0 \\
\hline E681 & Remote Output UserSt 1 Events & 0 to 1 & --- & 1 & F102 & 0 (Disabled) \\
\hline E682 & Remote Output UserSt 1 Reserved (2 items) & 0 to 1 & --- & 1 & F001 & 0 \\
\hline E684 & ...Repeated for module number 2 & & & & & \\
\hline E688 & ...Repeated for module number 3 & & & & & \\
\hline E68C & ...Repeated for module number 4 & & & & & \\
\hline E690 & ...Repeated for module number 5 & & & & & \\
\hline E694 & ...Repeated for module number 6 & & & & & \\
\hline E698 & ...Repeated for module number 7 & & & & & \\
\hline E69C & ...Repeated for module number 8 & & & & & \\
\hline E6A0 & ...Repeated for module number 9 & & & & & \\
\hline E6A4 & ...Repeated for module number 10 & & & & & \\
\hline E6A8 & ...Repeated for module number 11 & & & & & \\
\hline E6AC & ...Repeated for module number 12 & & & & & \\
\hline E6B0 & ...Repeated for module number 13 & & & & & \\
\hline E6B4 & ...Repeated for module number 14 & & & & & \\
\hline E6B8 & ...Repeated for module number 15 & & & & & \\
\hline E6BC & ...Repeated for module number 16 & & & & & \\
\hline E6C0 & ...Repeated for module number 17 & & & & & \\
\hline E6C4 & ...Repeated for module number 18 & & & & & \\
\hline
\end{tabular}

Table B-9: MODBUS MEMORY MAP (Sheet 41 of 41)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADDR & REGISTER NAME & RANGE & UNITS & STEP & FORMAT & DEFAULT \\
\hline E6C8 & ...Repeated for module number 19 & & & & & \\
\hline E6CC & ...Repeated for module number 20 & & & & & \\
\hline E6D0 & ...Repeated for module number 21 & & & & & \\
\hline E6D4 & ...Repeated for module number 22 & & & & & \\
\hline E6D8 & ...Repeated for module number 23 & & & & & \\
\hline E6DC & ...Repeated for module number 24 & & & & & \\
\hline E6E0 & ...Repeated for module number 25 & & & & & \\
\hline E6E4 & ...Repeated for module number 26 & & & & & \\
\hline E6E8 & ...Repeated for module number 27 & & & & & \\
\hline E6EC & ...Repeated for module number 28 & & & & & \\
\hline E6F0 & ...Repeated for module number 29 & & & & & \\
\hline E6F4 & ...Repeated for module number 30 & & & & & \\
\hline E6F8 & ...Repeated for module number 31 & & & & & \\
\hline E6FC & ...Repeated for module number 32 & & & & & \\
\hline
\end{tabular}
B.4.2 DATA FORMATS

\section*{F001}

UR_UINT16 UNSIGNED 16 BIT INTEGER

\section*{F002}

UR_SINT16 SIGNED 16 BIT INTEGER

\section*{F003}

UR_UINT32 UNSIGNED 32 BIT INTEGER (2 registers)
High order word is stored in the first register.
Low order word is stored in the second register.

\section*{F004}

UR_SINT32 SIGNED 32 BIT INTEGER (2 registers)
High order word is stored in the first register/
Low order word is stored in the second register.

\section*{F005 \\ UR_UINT8 UNSIGNED 8 BIT INTEGER}

\section*{F006}

UR_SINT8 SIGNED 8 BIT INTEGER

\section*{F011}

UR_UINT16 FLEXCURVE DATA (120 points)
A FlexCurve is an array of 120 consecutive data points (\(x, y\)) which are interpolated to generate a smooth curve. The \(y\)-axis is the user defined trip or operation time setting; the x -axis is the pickup ratio and is pre-defined. Refer to format F119 for a listing of the pickup
ratios; the enumeration value for the pickup ratio indicates the offset into the FlexCurve base address where the corresponding time value is stored.

\section*{F012 \\ DISPLAY_SCALE DISPLAY SCALING (unsigned 16-bit integer)}

MSB indicates the SI units as a power of ten. LSB indicates the number of decimal points to display.
Example: Current values are stored as 32 bit numbers with three decimal places and base units in Amps. If the retrieved value is 12345.678 A and the display scale equals \(0 \times 0302\) then the displayed value on the unit is 12.35 kA .

\section*{F013 \\ POWER_FACTOR PWR FACTOR (SIGNED 16 BIT INTEGER)}

Positive values indicate lagging power factor; negative values indicate leading.

\section*{F040}

UR_UINT48 48-BIT UNSIGNED INTEGER

\section*{F050}

UR_UINT32 TIME and DATE (UNSIGNED 32 BIT INTEGER)
Gives the current time in seconds elapsed since 00:00:00 January 1, 1970.

\section*{F051}

UR_UINT32 DATE in SR format (alternate format for F050)
First 16 bits are Month/Day (MM/DD/xxxx). Month: 1=January, 2=February,...,12=December; Day: 1 to 31 in steps of 1 Last 16 bits are Year (\(x x / x x / Y Y Y Y\)): 1970 to 2106 in steps of 1

\section*{F052}

UR_UINT32 TIME in SR format (alternate format for F050)
First 16 bits are Hours/Minutes (HH:MM:xx.xxx).
Hours: \(0=12 \mathrm{am}, 1=1 \mathrm{am}, \ldots, 12=12 \mathrm{pm}, \ldots 23=11 \mathrm{pm}\);
Minutes: 0 to 59 in steps of 1
Last 16 bits are Seconds (xx:xx:.SS.SSS): \(0=00.000 \mathrm{~s}\), \(1=00.001, \ldots, 59999=59.999 \mathrm{~s}\))
```

F060
FLOATING_POINT IEEE FLOATING POINT (32 bits)

```
```

F070
HEX2 2 BYTES - 4 ASCII DIGITS

```
F071
HEX4 4 BYTES - 8 ASCII DIGITS

\section*{F072}

HEX6 6 BYTES - 12 ASCII DIGITS

\section*{F073}

HEX8 8 BYTES - 16 ASCII DIGITS

\section*{F074}

HEX20 20 BYTES - 40 ASCII DIGITS

\section*{F080 \\ ENUMERATION: AUTORECLOSE MODE}
\(0=1 \& 3\) Pole, \(1=1\) Pole, \(2=3\) Pole-A, \(3=3\) Pole-B

\section*{F083 \\ ENUMERATION: SELECTOR MODES}

0 = Time-Out, 1 = Acknowledge

\section*{F084}

ENUMERATION: SELECTOR POWER UP
0 = Restore, 1 = Synchronize, 2 = Sync/Restore

\section*{F086}

ENUMERATION: DIGITAL INPUT DEFAULT STATE
\(0=\) Off, \(1=\) On, \(2=\) Latest/Off, \(3=\) Latest/On

\section*{F090}

ENUMERATION: LATCHING OUTPUT TYPE
0 = Operate-dominant, 1 = Reset-dominant

F100
ENUMERATION: VT CONNECTION TYPE
0 = Wye; 1 = Delta

F101
ENUMERATION: MESSAGE DISPLAY INTENSITY
\(0=25 \%, 1=50 \%, 2=75 \%, 3=100 \%\)

F102
ENUMERATION: DISABLED/ENABLED
0 = Disabled; 1 = Enabled

F103
ENUMERATION: CURVE SHAPES
\begin{tabular}{|c|c|c|c|}
\hline bitmask & curve shape & bitmask & curve shape \\
\hline 0 & IEEE Mod Inv & 9 & IAC Inverse \\
\hline 1 & IEEE Very Inv & 10 & IAC Short Inv \\
\hline 2 & IEEE Ext Inv & 11 & 12t \\
\hline 3 & IEC Curve A & 12 & Definite Time \\
\hline 4 & IEC Curve B & 13 & FlexCurve \({ }^{\text {TM }} \mathrm{A}\) \\
\hline 5 & IEC Curve C & 14 & FlexCurve \({ }^{\text {TM }} \mathrm{B}\) \\
\hline 6 & IEC Short Inv & 15 & FlexCurve \({ }^{\text {TM }} \mathrm{C}\) \\
\hline 7 & IAC Ext Inv & 16 & FlexCurve \({ }^{\text {TM }} \mathrm{D}\) \\
\hline 8 & IAC Very Inv & & \\
\hline
\end{tabular}

F104
ENUMERATION: RESET TYPE
\(0=\) Instantaneous, \(1=\) Timed, \(2=\) Linear

F105
ENUMERATION: LOGIC INPUT
0 = Disabled, \(1=\) Input 1, \(2=\operatorname{lnput} 2\)

F106
ENUMERATION: PHASE ROTATION
0 = ABC, 1 = ACB

F108
ENUMERATION: OFF/ON
\(0=0\) ff, 1 = On

F109
ENUMERATION: CONTACT OUTPUT OPERATION
0 = Self-reset, 1 = Latched, 2 = Disabled

\section*{F110}

ENUMERATION: CONTACT OUTPUT LED CONTROL
\(0=\) Trip, 1 = Alarm, 2 = None

\section*{F111}

ENUMERATION: UNDERVOLTAGE CURVE SHAPES
\(0=\) Definite Time, \(1=\) Inverse Time

\section*{F112}

ENUMERATION: RS485 BAUD RATES
\begin{tabular}{|c|l|}
\hline bitmask & value \\
\hline 0 & 300 \\
\hline 1 & 1200 \\
\hline 2 & 2400 \\
\hline 3 & 4800 \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{|c|l|l|l|}
\hline bitmask & value \\
\hline 4 & 9600 \\
\hline 5 & 19200 \\
\hline 6 & 38400 \\
\hline 7 & 57600 \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{|c|c|c|}
\hline bitmask & value \\
\hline 8 & 115200 \\
\hline 9 & 14400 \\
\hline 10 & 28800 \\
\hline 11 & 33600 \\
\hline
\end{tabular}

F113
ENUMERATION: PARITY
0 = None, 1 = Odd, 2 = Even

\section*{F114}

ENUMERATION: IRIG-B SIGNAL TYPE
\(0=\) None, 1 = DC Shift, \(2=\) Amplitude Modulated

F115
ENUMERATION: BREAKER STATUS
\(0=\) Auxiliary A, \(1=\) Auxiliary B

F117
ENUMERATION: NUMBER OF OSCILLOGRAPHY RECORDS
\(0=1 \times 72\) cycles, \(1=3 \times 36\) cycles, \(2=7 \times 18\) cycles, \(3=15 \times 9\) cycles

\section*{F118}

ENUMERATION: OSCILLOGRAPHY MODE
\(0=\) Automatic Overwrite, \(1=\) Protected

F119
ENUMERATION: FLEXCURVE \({ }^{\text {TM }}\) PICKUP RATIOS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline mask & value & mask & value & mask & value & mask & value \\
\hline 0 & 0.00 & 30 & 0.88 & 60 & 2.90 & 90 & 5.90 \\
\hline 1 & 0.05 & 31 & 0.90 & 61 & 3.00 & 91 & 6.00 \\
\hline 2 & 0.10 & 32 & 0.91 & 62 & 3.10 & 92 & 6.50 \\
\hline 3 & 0.15 & 33 & 0.92 & 63 & 3.20 & 93 & 7.00 \\
\hline 4 & 0.20 & 34 & 0.93 & 64 & 3.30 & 94 & 7.50 \\
\hline 5 & 0.25 & 35 & 0.94 & 65 & 3.40 & 95 & 8.00 \\
\hline 6 & 0.30 & 36 & 0.95 & 66 & 3.50 & 96 & 8.50 \\
\hline 7 & 0.35 & 37 & 0.96 & 67 & 3.60 & 97 & 9.00 \\
\hline 8 & 0.40 & 38 & 0.97 & 68 & 3.70 & 98 & 9.50 \\
\hline 9 & 0.45 & 39 & 0.98 & 69 & 3.80 & 99 & 10.00 \\
\hline 10 & 0.48 & 40 & 1.03 & 70 & 3.90 & 100 & 10.50 \\
\hline 11 & 0.50 & 41 & 1.05 & 71 & 4.00 & 101 & 11.00 \\
\hline 12 & 0.52 & 42 & 1.10 & 72 & 4.10 & 102 & 11.50 \\
\hline 13 & 0.54 & 43 & 1.20 & 73 & 4.20 & 103 & 12.00 \\
\hline 14 & 0.56 & 44 & 1.30 & 74 & 4.30 & 104 & 12.50 \\
\hline 15 & 0.58 & 45 & 1.40 & 75 & 4.40 & 105 & 13.00 \\
\hline 16 & 0.60 & 46 & 1.50 & 76 & 4.50 & 106 & 13.50 \\
\hline 17 & 0.62 & 47 & 1.60 & 77 & 4.60 & 107 & 14.00 \\
\hline 18 & 0.64 & 48 & 1.70 & 78 & 4.70 & 108 & 14.50 \\
\hline 19 & 0.66 & 49 & 1.80 & 79 & 4.80 & 109 & 15.00 \\
\hline 20 & 0.68 & 50 & 1.90 & 80 & 4.90 & 110 & 15.50 \\
\hline 21 & 0.70 & 51 & 2.00 & 81 & 5.00 & 111 & 16.00 \\
\hline 22 & 0.72 & 52 & 2.10 & 82 & 5.10 & 112 & 16.50 \\
\hline 23 & 0.74 & 53 & 2.20 & 83 & 5.20 & 113 & 17.00 \\
\hline 24 & 0.76 & 54 & 2.30 & 84 & 5.30 & 114 & 17.50 \\
\hline 25 & 0.78 & 55 & 2.40 & 85 & 5.40 & 115 & 18.00 \\
\hline 26 & 0.80 & 56 & 2.50 & 86 & 5.50 & 116 & 18.50 \\
\hline 27 & 0.82 & 57 & 2.60 & 87 & 5.60 & 117 & 19.00 \\
\hline 28 & 0.84 & 58 & 2.70 & 88 & 5.70 & 118 & 19.50 \\
\hline 29 & 0.86 & 59 & 2.80 & 89 & 5.80 & 119 & 20.00 \\
\hline
\end{tabular}

\section*{F122}

ENUMERATION: ELEMENT INPUT SIGNAL TYPE
\(0=\) Phasor, \(1=\) RMS

\section*{F123}

ENUMERATION: CT SECONDARY
\(0=1 \mathrm{~A}, 1=5 \mathrm{~A}\)

\section*{F124}

ENUMERATION: LIST OF ELEMENTS
\begin{tabular}{|c|l|}
\hline bitmask & element \\
\hline \hline 0 & Phase Instantaneous Overcurrent 1 \\
\hline 1 & Phase Instantaneous Overcurrent 2 \\
\hline 2 & Phase Instantaneous Overcurrent 3 \\
\hline 3 & Phase Instantaneous Overcurrent 4 \\
\hline 4 & Phase Instantaneous Overcurrent 5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bitmask & element \\
\hline 5 & Phase Instantaneous Overcurrent 6 \\
\hline 6 & Phase Instantaneous Overcurrent 7 \\
\hline 7 & Phase Instantaneous Overcurrent 8 \\
\hline 8 & Phase Instantaneous Overcurrent 9 \\
\hline 9 & Phase Instantaneous Overcurrent 10 \\
\hline 10 & Phase Instantaneous Overcurrent 11 \\
\hline 11 & Phase Instantaneous Overcurrent 12 \\
\hline 16 & Phase Time Overcurrent 1 \\
\hline 17 & Phase Time Overcurrent 2 \\
\hline 18 & Phase Time Overcurrent 3 \\
\hline 19 & Phase Time Overcurrent 4 \\
\hline 20 & Phase Time Overcurrent 5 \\
\hline 21 & Phase Time Overcurrent 6 \\
\hline 24 & Phase Directional Overcurrent 1 \\
\hline 25 & Phase Directional Overcurrent 2 \\
\hline 32 & Neutral Instantaneous Overcurrent 1 \\
\hline 33 & Neutral Instantaneous Overcurrent 2 \\
\hline 34 & Neutral Instantaneous Overcurrent 3 \\
\hline 35 & Neutral Instantaneous Overcurrent 4 \\
\hline 36 & Neutral Instantaneous Overcurrent 5 \\
\hline 37 & Neutral Instantaneous Overcurrent 6 \\
\hline 38 & Neutral Instantaneous Overcurrent 7 \\
\hline 39 & Neutral Instantaneous Overcurrent 8 \\
\hline 40 & Neutral Instantaneous Overcurrent 9 \\
\hline 41 & Neutral Instantaneous Overcurrent 10 \\
\hline 42 & Neutral Instantaneous Overcurrent 11 \\
\hline 43 & Neutral Instantaneous Overcurrent 12 \\
\hline 48 & Neutral Time Overcurrent 1 \\
\hline 49 & Neutral Time Overcurrent 2 \\
\hline 50 & Neutral Time Overcurrent 3 \\
\hline 51 & Neutral Time Overcurrent 4 \\
\hline 52 & Neutral Time Overcurrent 5 \\
\hline 53 & Neutral Time Overcurrent 6 \\
\hline 56 & Neutral Directional Overcurrent 1 \\
\hline 57 & Neutral Directional Overcurrent 2 \\
\hline 60 & Negative Sequence Directional Overcurrent 1 \\
\hline 61 & Negative Sequence Directional Overcurrent 2 \\
\hline 64 & Ground Instantaneous Overcurrent 1 \\
\hline 65 & Ground Instantaneous Overcurrent 2 \\
\hline 66 & Ground Instantaneous Overcurrent 3 \\
\hline 67 & Ground Instantaneous Overcurrent 4 \\
\hline 68 & Ground Instantaneous Overcurrent 5 \\
\hline 69 & Ground Instantaneous Overcurrent 6 \\
\hline 70 & Ground Instantaneous Overcurrent 7 \\
\hline 71 & Ground Instantaneous Overcurrent 8 \\
\hline 72 & Ground Instantaneous Overcurrent 9 \\
\hline 73 & Ground Instantaneous Overcurrent 10 \\
\hline 74 & Ground Instantaneous Overcurrent 11 \\
\hline 75 & Ground Instantaneous Overcurrent 12 \\
\hline 80 & Ground Time Overcurrent 1 \\
\hline 81 & Ground Time Overcurrent 2 \\
\hline 82 & Ground Time Overcurrent 3 \\
\hline 83 & Ground Time Overcurrent 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bitmask & element \\
\hline 84 & Ground Time Overcurrent 5 \\
\hline 85 & Ground Time Overcurrent 6 \\
\hline 96 & Negative Sequence Instantaneous Overcurrent 1 \\
\hline 97 & Negative Sequence Instantaneous Overcurrent 2 \\
\hline 112 & Negative Sequence Time Overcurrent 1 \\
\hline 113 & Negative Sequence Time Overcurrent 2 \\
\hline 120 & Negative Sequence Overvoltage \\
\hline 128 & High Impedance Fault Detection (Hi-Z) \\
\hline 140 & Auxiliary Undervoltage 1 \\
\hline 144 & Phase Undervoltage 1 \\
\hline 145 & Phase Undervoltage 2 \\
\hline 148 & Auxiliary Overvoltage 1 \\
\hline 152 & Phase Overvoltage 1 \\
\hline 156 & Neutral Overvoltage 1 \\
\hline 180 & Load Enchroachment \\
\hline 190 & Power Swing Detect \\
\hline 214 & Sensitive Directional Power 1 \\
\hline 215 & Sensitive Directional Power 2 \\
\hline 224 & SRC1 VT Fuse Failure \\
\hline 225 & SRC2 VT Fuse Failure \\
\hline 226 & SRC3 VT Fuse Failure \\
\hline 227 & SRC4 VT Fuse Failure \\
\hline 228 & SRC5 VT Fuse Failure \\
\hline 229 & SRC6 VT Fuse Failure \\
\hline 232 & SRC1 50DD (Disturbance Detection) \\
\hline 233 & SRC2 50DD (Disturbance Detection) \\
\hline 234 & SRC3 50DD (Disturbance Detection) \\
\hline 235 & SRC4 50DD (Disturbance Detection) \\
\hline 236 & SRC5 50DD (Disturbance Detection) \\
\hline 237 & SRC6 50DD (Disturbance Detection) \\
\hline 272 & Breaker 1 \\
\hline 273 & Breaker 2 \\
\hline 280 & Breaker Failure 1 \\
\hline 281 & Breaker Failure 2 \\
\hline 288 & Breaker Arcing Current 1 \\
\hline 289 & Breaker Arcing Current 2 \\
\hline 304 & Autoreclose 1 \\
\hline 305 & Autoreclose 2 \\
\hline 306 & Autoreclose 3 \\
\hline 307 & Autoreclose 4 \\
\hline 308 & Autoreclose 5 \\
\hline 309 & Autoreclose 6 \\
\hline 312 & Synchrocheck 1 \\
\hline 313 & Synchrocheck 2 \\
\hline 320 & Cold Load Pickup 1 \\
\hline 321 & Cold Load Pickup 2 \\
\hline 336 & Setting Group \\
\hline 337 & Reset \\
\hline 344 & Overfrequency 1 \\
\hline 345 & Overfrequency 2 \\
\hline 346 & Overfrequency 3 \\
\hline 347 & Overfrequency 4 \\
\hline 352 & Underfrequency 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bitmask & element \\
\hline 353 & Underfrequency 2 \\
\hline 354 & Underfrequency 3 \\
\hline 355 & Underfrequency 4 \\
\hline 356 & Underfrequency 5 \\
\hline 357 & Underfrequency 6 \\
\hline 385 & Selector 1 \\
\hline 386 & Selector 2 \\
\hline 390 & Control Pushbutton 1 \\
\hline 391 & Control Pushbutton 2 \\
\hline 392 & Control Pushbutton 3 \\
\hline 393 & Control Pushbutton 4 \\
\hline 394 & Control Pushbutton 5 \\
\hline 395 & Control Pushbutton 6 \\
\hline 396 & Control Pushbutton 7 \\
\hline 400 & FlexElement \({ }^{\text {TM }} 1\) \\
\hline 401 & FlexElement \({ }^{\text {TM }} 2\) \\
\hline 402 & FlexElement \({ }^{\text {TM }} 3\) \\
\hline 403 & FlexElement \({ }^{\text {TM }} 4\) \\
\hline 404 & FlexElement \({ }^{\text {TM }} 5\) \\
\hline 405 & FlexElement \({ }^{\text {TM }} 6\) \\
\hline 406 & FlexElement \({ }^{\text {TM }} 7\) \\
\hline 407 & FlexElement \({ }^{\text {TM }} 8\) \\
\hline 420 & Non-volatile Latch 1 \\
\hline 421 & Non-volatile Latch 2 \\
\hline 422 & Non-volatile Latch 3 \\
\hline 423 & Non-volatile Latch 4 \\
\hline 424 & Non-volatile Latch 5 \\
\hline 425 & Non-volatile Latch 6 \\
\hline 426 & Non-volatile Latch 7 \\
\hline 427 & Non-volatile Latch 8 \\
\hline 428 & Non-volatile Latch 9 \\
\hline 429 & Non-volatile Latch 10 \\
\hline 430 & Non-volatile Latch 11 \\
\hline 431 & Non-volatile Latch 12 \\
\hline 432 & Non-volatile Latch 13 \\
\hline 433 & Non-volatile Latch 14 \\
\hline 434 & Non-volatile Latch 15 \\
\hline 435 & Non-volatile Latch 16 \\
\hline 512 & DIGITAL ELEMENT 1 \\
\hline 513 & Digital Element 2 \\
\hline 514 & Digital Element 3 \\
\hline 515 & Digital Element 4 \\
\hline 516 & Digital Element 5 \\
\hline 517 & Digital Element 6 \\
\hline 518 & Digital Element 7 \\
\hline 519 & Digital Element 8 \\
\hline 520 & Digital Element 9 \\
\hline 521 & Digital Element 10 \\
\hline 522 & Digital Element 11 \\
\hline 523 & Digital Element 12 \\
\hline 524 & Digital Element 13 \\
\hline 525 & Digital Element 14 \\
\hline 526 & Digital Element 15 \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline bitmask & element \\
\hline \hline 527 & Digital Element 16 \\
\hline 530 & Frequency Rate of Change 1 \\
\hline 531 & Frequency Rate of Change 2 \\
\hline 532 & Frequency Rate of Change 3 \\
\hline 533 & Frequency Rate of Change 4 \\
\hline 544 & Digital Counter 1 \\
\hline 545 & Digital Counter 2 \\
\hline 546 & Digital Counter 3 \\
\hline 547 & Digital Counter 4 \\
\hline 548 & Digital Counter 5 \\
\hline 549 & Digital Counter 6 \\
\hline 550 & Digital Counter 7 \\
\hline 551 & Digital Counter 8 \\
\hline 680 & User-Programmable Pushbutton 1 \\
\hline 681 & User-Programmable Pushbutton 2 \\
\hline 682 & User-Programmable Pushbutton 3 \\
\hline 683 & User-Programmable Pushbutton 4 \\
\hline 684 & User-Programmable Pushbutton 5 \\
\hline 685 & User-Programmable Pushbutton 6 \\
\hline 686 & User-Programmable Pushbutton 7 \\
\hline 687 & User-Programmable Pushbutton 8 \\
\hline 688 & User-Programmable Pushbutton 9 \\
\hline 689 & User-Programmable Pushbutton 10 \\
\hline 690 & User-Programmable Pushbutton 11 \\
\hline 691 & User-Programmable Pushbutton 12 \\
\hline & \\
\hline & \\
\hline 5 \\
\hline
\end{tabular}

F125
ENUMERATION: ACCESS LEVEL
\(0=\) Restricted; 1 = Command, 2 = Setting, 3 = Factory Service

F126
ENUMERATION: NO/YES CHOICE
\(0=\) No, \(1=\) Yes

\section*{F127}

ENUMERATION: LATCHED OR SELF-RESETTING
0 = Latched, 1 = Self-Reset

F128
ENUMERATION: CONTACT INPUT THRESHOLD
\(0=17 \mathrm{VCC}, 1=33 \vee \mathrm{DC}, 2=84 \mathrm{~V} \mathrm{DC}, 3=166 \mathrm{~V} \mathrm{C}\)

\section*{F129}

ENUMERATION: FLEXLOGIC TIMER TYPE
0 = millisecond, 1 = second, 2 = minute

\section*{F130}

ENUMERATION: SIMULATION MODE
\(0=\) Off. 1 = Pre-Fault, \(2=\) Fault, \(3=\) Post-Fault

F131
ENUMERATION: FORCED CONTACT OUTPUT STATE
0 = Disabled, 1 = Energized, 2 = De-energized, 3 = Freeze

\section*{F132}

ENUMERATION: DEMAND INTERVAL
\[
\begin{aligned}
& 0=5 \mathrm{~min}, 1=10 \mathrm{~min}, 2=15 \mathrm{~min}, 3=20 \mathrm{~min}, 4=30 \mathrm{~min}, \\
& 5=60 \mathrm{~min}
\end{aligned}
\]

\section*{F133 \\ ENUMERATION: PROGRAM STATE}
\(0=\) Not Programmed, 1 = Programmed

F134
ENUMERATION: PASS/FAIL
\(0=\) Fail, \(1=\mathrm{OK}, 2=\mathrm{n} / \mathrm{a}\)

\section*{F135}

ENUMERATION: GAIN CALIBRATION
\(0=0 \times 1,1=1 \times 16\)

\section*{F136}

ENUMERATION: NUMBER OF OSCILLOGRAPHY RECORDS
\(0=31 \times 8\) cycles, \(1=15 \times 16\) cycles, \(2=7 \times 32\) cycles
\(3=3 \times 64\) cycles, \(4=1 \times 128\) cycles

F138
ENUMERATION: OSCILLOGRAPHY FILE TYPE
0 = Data File, 1 = Configuration File, 2 = Header File

\section*{F139}

ENUMERATION: DEMAND CALCULATIONS
\(0=\) Thermal Exponential, 1 = Block Interval, 2 = Rolling Demand

\section*{F140}

ENUMERATION: CURRENT, SENS CURRENT, VOLTAGE, DISABLED
\(0=\) Disabled, \(1=\) Current \(46 \mathrm{~A}, 2=\) Voltage \(280 \mathrm{~V}, 3=\) Current 4.6 A, \(4=\) Current 2 A, \(5=\) Notched 4.6 A, \(6=\) Notched 2 A

\section*{F141}

ENUMERATION: SELF TEST ERROR
\begin{tabular}{|c|l|}
\hline bitmask & error \\
\hline \hline 0 & Any Self Tests \\
\hline 1 & IRIG-B Failure \\
\hline 2 & DSP Error \\
\hline 4 & No DSP Interrupts \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline bitmask & error \\
\hline \hline 5 & Unit Not Calibrated \\
\hline 9 & Prototype Firmware \\
\hline 10 & Flexlogic Error Token \\
\hline 11 & Equipment Mismatch \\
\hline 13 & Unit Not Programmed \\
\hline 14 & System Exception \\
\hline 15 & Latching Out Error \\
\hline 18 & SNTP Failure \\
\hline 19 & Battery Failure \\
\hline 20 & Primary Ethernet Failure \\
\hline 21 & Secondary Ethernet Failure \\
\hline 22 & EEPROM Data Error \\
\hline 23 & SRAM Data Error \\
\hline 24 & Program Memory \\
\hline 25 & Watchdog Error \\
\hline 26 & Low On Memory \\
\hline 27 & Remote Device Off \\
\hline 28 & Direct Device Off \\
\hline 29 & Direct Ring Break \\
\hline 30 & Any Minor Error \\
\hline 31 & Any Major Error \\
\hline & \\
\hline
\end{tabular}

\section*{F142}

ENUMERATION: EVENT RECORDER ACCESS FILE TYPE
\(0=\) All Record Data, \(1=\) Headers Only, \(2=\) Numeric Event Cause

F143
UR_UINT32: 32 BIT ERROR CODE (F141 specifies bit number) A bit value of \(0=\) no error, \(1=\) error

\section*{F144}

ENUMERATION: FORCED CONTACT INPUT STATE
0 = Disabled, 1 = Open, 2 = Closed

\section*{F145}

ENUMERATION: ALPHABET LETTER
\begin{tabular}{|c|c|}
\hline bitmask & type \\
\hline \hline 0 & null \\
\hline 1 & A \\
\hline 2 & B \\
\hline 3 & C \\
\hline 4 & D \\
\hline 5 & E \\
\hline 6 & F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bitmask & type \\
\hline \hline 7 & G \\
\hline 8 & H \\
\hline 9 & I \\
\hline 10 & J \\
\hline 11 & K \\
\hline 12 & L \\
\hline 13 & M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bitmask & type \\
\hline \hline 14 & N \\
\hline 15 & O \\
\hline 16 & P \\
\hline 17 & Q \\
\hline 18 & R \\
\hline 19 & S \\
\hline 20 & T \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bitmask & type \\
\hline \hline 21 & U \\
\hline 22 & V \\
\hline 23 & W \\
\hline 24 & X \\
\hline 25 & Y \\
\hline 26 & Z \\
\hline
\end{tabular}

F146
ENUMERATION: MISC. EVENT CAUSES
\begin{tabular}{|c|l|}
\hline bitmask & definition \\
\hline \hline 0 & Events Cleared \\
\hline 1 & Oscillography Triggered \\
\hline 2 & Date/time Changed \\
\hline 3 & Default Settings Loaded \\
\hline 4 & Test Mode On \\
\hline 5 & Test Mode Off \\
\hline 6 & Power On \\
\hline 7 & Power Off \\
\hline 8 & Relay In Service \\
\hline 9 & Relay Out Of Service \\
\hline 10 & Watchdog Reset \\
\hline 11 & Oscillography Clear \\
\hline 12 & Reboot Command \\
\hline 13 & Led Test Initiated \\
\hline 14 & Flash Programming \\
\hline 15 & Fault Report Trigger \\
\hline 16 & User Programmable Fault Report Trigger \\
\hline
\end{tabular}

\section*{F147}

ENUMERATION: LINE LENGTH UNITS
\(0=\mathrm{km}, 1=\) miles

\section*{F148}

ENUMERATION: FAULT TYPE
\begin{tabular}{|c|c|}
\hline bitmask & fault type \\
\hline \hline 0 & NA \\
\hline 1 & AG \\
\hline 2 & BG \\
\hline 3 & CG \\
\hline 4 & AB \\
\hline 5 & BC \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bitmask & fault type \\
\hline \hline 6 & AC \\
\hline 7 & ABG \\
\hline 8 & BCG \\
\hline 9 & ACG \\
\hline 10 & ABC \\
\hline 11 & ABCG \\
\hline
\end{tabular}

F151
ENUMERATION: RTD SELECTION
\begin{tabular}{|c|c|c|c|c|c|}
\hline bitmask & RTD\# & bitmask & RTD\# & bitmask & RTD\# \\
\hline 0 & NONE & 17 & RTD 17 & 33 & RTD 33 \\
\hline 1 & RTD 1 & 18 & RTD 18 & 34 & RTD 34 \\
\hline 2 & RTD 2 & 19 & RTD 19 & 35 & RTD 35 \\
\hline 3 & RTD 3 & 20 & RTD 20 & 36 & RTD 36 \\
\hline 4 & RTD 4 & 21 & RTD 21 & 37 & RTD 37 \\
\hline 5 & RTD 5 & 22 & RTD 22 & 38 & RTD 38 \\
\hline 6 & RTD 6 & 23 & RTD 23 & 39 & RTD 39 \\
\hline 7 & RTD 7 & 24 & RTD 24 & 40 & RTD 40 \\
\hline 8 & RTD 8 & 25 & RTD 25 & 41 & RTD 41 \\
\hline 9 & RTD 9 & 26 & RTD 26 & 42 & RTD 42 \\
\hline 10 & RTD 10 & 27 & RTD 27 & 43 & RTD 43 \\
\hline 11 & RTD 11 & 28 & RTD 28 & 44 & RTD 44 \\
\hline 12 & RTD 12 & 29 & RTD 29 & 45 & RTD 45 \\
\hline 13 & RTD 13 & 30 & RTD 30 & 46 & RTD 46 \\
\hline 14 & RTD 14 & 31 & RTD 31 & 47 & RTD 47 \\
\hline 15 & RTD 15 & 32 & RTD 32 & 48 & RTD 48 \\
\hline 16 & RTD 16 & & & & \\
\hline
\end{tabular}

\section*{F152}

ENUMERATION: SETTING GROUP
\(0=\) Active Group, \(1=\) Group 1, \(2=\) Group 2, \(3=\) Group 3
\(4=\) Group 4, \(5=\) Group 5, \(6=\) Group 6

F155
ENUMERATION: REMOTE DEVICE STATE
0 = Offline, 1 = Online

F156
ENUMERATION: REMOTE INPUT BIT PAIRS
\begin{tabular}{|c|c|c|c|c|c|}
\hline bitmask & RTD\# & bitmask & RTD\# & bitmask & RTD\# \\
\hline 0 & NONE & 22 & DNA-22 & 44 & UserSt-12 \\
\hline 1 & DNA-1 & 23 & DNA-23 & 45 & UserSt-13 \\
\hline 2 & DNA-2 & 24 & DNA-24 & 46 & UserSt-14 \\
\hline 3 & DNA-3 & 25 & DNA-25 & 47 & UserSt-15 \\
\hline 4 & DNA-4 & 26 & DNA-26 & 48 & UserSt-16 \\
\hline 5 & DNA-5 & 27 & DNA-27 & 49 & UserSt-17 \\
\hline 6 & DNA-6 & 28 & DNA-28 & 50 & UserSt-18 \\
\hline 7 & DNA-7 & 29 & DNA-29 & 51 & UserSt-19 \\
\hline 8 & DNA-8 & 30 & DNA-30 & 52 & UserSt-20 \\
\hline 9 & DNA-9 & 31 & DNA-31 & 53 & UserSt-21 \\
\hline 10 & DNA-10 & 32 & DNA-32 & 54 & UserSt-22 \\
\hline 11 & DNA-11 & 33 & UserSt-1 & 55 & UserSt-23 \\
\hline 12 & DNA-12 & 34 & UserSt-2 & 56 & UserSt-24 \\
\hline 13 & DNA-13 & 35 & UserSt-3 & 57 & UserSt-25 \\
\hline 14 & DNA-14 & 36 & UserSt-4 & 58 & UserSt-26 \\
\hline 15 & DNA-15 & 37 & UserSt-5 & 59 & UserSt-27 \\
\hline 16 & DNA-16 & 38 & UserSt-6 & 60 & UserSt-28 \\
\hline 17 & DNA-17 & 39 & UserSt-7 & 61 & UserSt-29 \\
\hline 18 & DNA-18 & 40 & UserSt-8 & 62 & UserSt-30 \\
\hline 19 & DNA-19 & 41 & UserSt-9 & 63 & UserSt-31 \\
\hline 20 & DNA-20 & 42 & UserSt-10 & 64 & UserSt-32 \\
\hline 21 & DNA-21 & 43 & UserSt-11 & & \\
\hline
\end{tabular}

\section*{F157 \\ ENUMERATION: BREAKER MODE}
\(0=3\)-Pole, 1 = 1-Pole

\section*{F159}

ENUMERATION: BREAKER AUX CONTACT KEYING
\(0=52 \mathrm{a}, 1=52 \mathrm{~b}, 2=\) None

\section*{F166}

ENUMERATION: AUXILIARY VT CONNECTION TYPE
\(0=\mathrm{Vn}, 1=\mathrm{Vag}, 2=\mathrm{Vbg}, 3=\mathrm{Vcg}, 4=\mathrm{Vab}, 5=\mathrm{Vbc}, 6=\mathrm{Vca}\)

\section*{F167}

ENUMERATION: SIGNAL SOURCE
\[
\begin{aligned}
& 0=\operatorname{SRC} 1,1=\operatorname{SRC} 2,2=\operatorname{SRC} 3,3=\operatorname{SRC} 4, \\
& 4=\operatorname{SRC} 5,5=\operatorname{SRC} 6
\end{aligned}
\]

F168
ENUMERATION: INRUSH INHIBIT FUNCTION
0 = Disabled, 1 = Adapt. 2nd, 2 = Trad. 2nd

F169
ENUMERATION: OVEREXCITATION INHIBIT FUNCTION
\(0=\) Disabled, \(1=5\) th
\(\qquad\)
F170
ENUMERATION: LOW/HIGH OFFSET \& GAIN TRANSDUCER I/O SELECTION

0 = LOW, 1 = HIGH

F171
ENUMERATION: TRANSDUCER CHANNEL INPUT TYPE
\(0=\) dcmA \(\operatorname{IN}, 1=O H M S \operatorname{IN}, 2=\) RTD \(\operatorname{IN}, 3=\) dcmA OUT

F172
ENUMERATION: SLOT LETTERS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline bitmask & slot & bitmask & slot & bitmask & slot & bitmask & slot \\
\hline 0 & F & 4 & K & 8 & P & 12 & U \\
\hline 1 & G & 5 & L & 9 & R & 13 & V \\
\hline 2 & H & 6 & M & 10 & S & 14 & W \\
\hline 3 & J & 7 & N & 11 & T & 15 & X \\
\hline
\end{tabular}

F173
ENUMERATION: TRANSDUCER DCMA I/O RANGE
\begin{tabular}{|c|c|}
\hline bitmask & dcmA I/O range \\
\hline \hline 0 & 0 to -1 mA \\
\hline 1 & 0 to 1 mA \\
\hline 2 & -1 to 1 mA \\
\hline 3 & 0 to 5 mA \\
\hline 4 & 0 to 10 mA \\
\hline 5 & 0 to 20 mA \\
\hline 6 & 4 to 20 mA \\
\hline
\end{tabular}

\section*{F174}

ENUMERATION: TRANSDUCER RTD INPUT TYPE
\(0=100\) Ohm Platinum, \(1=120\) Ohm Nickel,
\(2=100 \mathrm{Ohm}\) Nickel, \(3=10 \mathrm{Ohm}\) Copper

F175
ENUMERATION: PHASE LETTERS
\(0=\mathrm{A}, 1=\mathrm{B}, 2=\mathrm{C}\)

\section*{F176}

ENUMERATION: SYNCHROCHECK DEAD SOURCE SELECT
\begin{tabular}{|c|l|}
\hline bitmask & synchrocheck dead source \\
\hline \hline 0 & None \\
\hline 1 & LV1 and DV2 \\
\hline 2 & DV1 and LV2 \\
\hline 3 & DV1 or DV2 \\
\hline 4 & DV1 Xor DV2 \\
\hline 5 & DV1 and DV2 \\
\hline
\end{tabular}

\section*{F177}

ENUMERATION: COMMUNICATION PORT
\(0=\) NONE, 1 = COM1-RS485, 2 = COM2-RS485,
3 = FRONT PANEL-RS232, \(4=\) NETWORK

\section*{F178}

\section*{ENUMERATION: DATA LOGGER RATES}
\(0=1 \mathrm{sec}, 1=1 \mathrm{~min}, 2=5 \mathrm{~min}, 3=10 \mathrm{~min}, 4=15 \mathrm{~min}\),
\(5=20 \mathrm{~min}, 6=30 \mathrm{~min}, 7=60 \mathrm{~min}\)

\section*{F179}

ENUMERATION: NEGATIVE SEQUENCE DIR OC TYPE
0 = Neg Sequence, 1 = Zero Sequence

F180
ENUMERATION: PHASE/GROUND
\(0=\) PHASE, 1 = GROUND

\section*{F181}

ENUMERATION: ODD/EVEN/NONE
\(0=\mathrm{ODD}, 1=\mathrm{EVEN}, 2=\mathrm{NONE}\)

\section*{F182}

ENUMERATION: LOSS OF LOAD/ARCING SUSPECTED / ARCING / OVERCURRENT DOWNED CONDUCTOR / EXTERNAL
\begin{tabular}{|c|l|}
\hline bitmask & definition \\
\hline \hline 0 & LOSS OF LOAD \\
\hline 1 & ARCING SUSPECTED \\
\hline 2 & ARCING \\
\hline 3 & OVERCURRENT \\
\hline 4 & DOWNED CONDUCTOR \\
\hline 5 & EXTERNAL \\
\hline
\end{tabular}

F183
ENUMERATION: AC INPUT WAVEFORMS
\begin{tabular}{|c|l|}
\hline bitmask & definition \\
\hline \hline 0 & Off \\
\hline 1 & 8 samples/cycle \\
\hline 2 & 16 samples/cycle \\
\hline 3 & 32 samples/cycle \\
\hline 4 & 64 samples/cycle \\
\hline
\end{tabular}

F185
ENUMERATION: PHASE A,B,C, GROUND SELECTOR
\(0=\mathrm{A}, 1=\mathrm{B}, 2=\mathrm{C}, 3=\mathrm{G}\)

F186
ENUMERATION: MEASUREMENT MODE
\(0=\) Phase to Ground, \(1=\) Phase to Phase
\(\qquad\)
F187
ENUMERATION: HI-Z STATES
\begin{tabular}{|c|l|}
\hline bitmask & HI-Z State \\
\hline \hline 0 & NORMAL \\
\hline 1 & COORDINAT ION TIMEOUT \\
\hline 2 & ARMED \\
\hline 5 & ARCING \\
\hline 9 & DOWNED CONDUCTOR \\
\hline
\end{tabular}

F188
ENUMERATION: HI-Z CAPTURE TRIGGER TYPES
\begin{tabular}{|c|l|}
\hline bitmask & trigger type \\
\hline \hline 0 & None \\
\hline 1 & Loss Of Load \\
\hline 2 & Arc Suspected \\
\hline 3 & Arcing \\
\hline 4 & Overcurrent \\
\hline 5 & Down Conductor \\
\hline 6 & External \\
\hline
\end{tabular}

F190
ENUMERATION: SIMULATED KEYPRESS
\begin{tabular}{|c|l|}
\hline bitmsk & keypress \\
\hline \hline 0 & \begin{tabular}{l}
use between real keys \\
\hline 1
\end{tabular} \\
\hline 2 & 2 \\
\hline 3 & 3 \\
\hline 4 & 4 \\
\hline 5 & 5 \\
\hline 6 & 6 \\
\hline 7 & 7 \\
\hline 8 & 8 \\
\hline 9 & 9 \\
\hline 10 & 0 \\
\hline 11 & Decimal Pt \\
\hline 12 & Plus/Minus \\
\hline 13 & Value Up \\
\hline 14 & Value Down \\
\hline 15 & Message Up \\
\hline 16 & Message Down \\
\hline 17 & Message Left \\
\hline 18 & Message Right \\
\hline 19 & Menu \\
\hline 20 & Help \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline bitmsk & keypress \\
\hline \hline 21 & Escape \\
\hline 22 & Enter \\
\hline 23 & Reset \\
\hline 24 & User 1 \\
\hline 25 & User 2 \\
\hline 26 & User 3 \\
\hline 27 & User-programmable key 1 \\
\hline 28 & User-programmable key 2 \\
\hline 29 & User-programmable key 3 \\
\hline 30 & User-programmable key 4 \\
\hline 31 & User-programmable key 5 \\
\hline 32 & User-programmable key 6 \\
\hline 33 & User-programmable key 7 \\
\hline 34 & User-programmable key 8 \\
\hline 35 & User-programmable key 9 \\
\hline 36 & User-programmable key 10 \\
\hline 37 & User-programmable key 11 \\
\hline 38 & User-programmable key 12 \\
\hline 39 & User 4 (control pushbutton) \\
\hline 40 & User 5 (control pushbutton) \\
\hline 41 & User 6 (control pushbutton) \\
\hline 42 & User 7 (control pushbutton) \\
\hline
\end{tabular}

F191
ENUMERATION: HI-Z ENERGY/RANDOM STATE
\begin{tabular}{|c|l|}
\hline bitmask & HI-Z Energy/Random State \\
\hline \hline 0 & REINSTATE \\
\hline 1 & INITSTATE \\
\hline 2 & NORMALSTATE \\
\hline 3 & EVENTSTATE \\
\hline 4 & SERIOUSSTATE \\
\hline
\end{tabular}

\section*{F192 \\ ENUMERATION: ETHERNET OPERATION MODE}

0 = Half-Duplex, 1 = Full-Duplex

\section*{F194}

ENUMERATION: DNP SCALE
A bitmask of \(0=0.01,1=0.1,2=1,3=10,4=100,5=1000\), \(6=10000,7=100000,8=0.001\)

\section*{F196 \\ ENUMERATION: NEUTRAL DIR OC OPERATE CURRENT}
\(0=\) Calculated 3I0, \(1=\) Measured IG

F197
ENUMERATION: DNP BINARY INPUT POINT BLOCK
\begin{tabular}{|c|c|}
\hline bitmask & Input Point Block \\
\hline 0 & Not Used \\
\hline 1 & Virtual Inputs 1 to 16 \\
\hline 2 & Virtual Inputs 17 to 32 \\
\hline 3 & Virtual Outputs 1 to 16 \\
\hline 4 & Virtual Outputs 17 to 32 \\
\hline 5 & Virtual Outputs 33 to 48 \\
\hline 6 & Virtual Outputs 49 to 64 \\
\hline 7 & Contact Inputs 1 to 16 \\
\hline 8 & Contact Inputs 17 to 32 \\
\hline 9 & Contact Inputs 33 to 48 \\
\hline 10 & Contact Inputs 49 to 64 \\
\hline 11 & Contact Inputs 65 to 80 \\
\hline 12 & Contact Inputs 81 to 96 \\
\hline 13 & Contact Outputs 1 to 16 \\
\hline 14 & Contact Outputs 17 to 32 \\
\hline 15 & Contact Outputs 33 to 48 \\
\hline 16 & Contact Outputs 49 to 64 \\
\hline 17 & Remote Inputs 1 to 16 \\
\hline 18 & Remote Inputs 17 to 32 \\
\hline 19 & Remote Devs 1 to 16 \\
\hline 20 & Elements 1 to 16 \\
\hline 21 & Elements 17 to 32 \\
\hline 22 & Elements 33 to 48 \\
\hline 23 & Elements 49 to 64 \\
\hline 24 & Elements 65 to 80 \\
\hline 25 & Elements 81 to 96 \\
\hline 26 & Elements 97 to 112 \\
\hline 27 & Elements 113 to 128 \\
\hline 28 & Elements 129 to 144 \\
\hline 29 & Elements 145 to 160 \\
\hline 30 & Elements 161 to 176 \\
\hline 31 & Elements 177 to 192 \\
\hline 32 & Elements 193 to 208 \\
\hline 33 & Elements 209 to 224 \\
\hline 34 & Elements 225 to 240 \\
\hline 35 & Elements 241 to 256 \\
\hline 36 & Elements 257 to 272 \\
\hline 37 & Elements 273 to 288 \\
\hline 38 & Elements 289 to 304 \\
\hline 39 & Elements 305 to 320 \\
\hline 40 & Elements 321 to 336 \\
\hline 41 & Elements 337 to 352 \\
\hline 42 & Elements 353 to 368 \\
\hline 43 & Elements 369 to 384 \\
\hline 44 & Elements 385 to 400 \\
\hline 45 & Elements 401 to 406 \\
\hline 46 & Elements 417 to 432 \\
\hline 47 & Elements 433 to 448 \\
\hline 48 & Elements 449 to 464 \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline bitmask & Input Point Block \\
\hline \hline 49 & Elements 465 to 480 \\
\hline 50 & Elements 481 to 496 \\
\hline 51 & Elements 497 to 512 \\
\hline 52 & Elements 513 to 528 \\
\hline 53 & Elements 529 to 544 \\
\hline 54 & Elements 545 to 560 \\
\hline 55 & LED States 1 to 16 \\
\hline 56 & LED States 17 to 32 \\
\hline 57 & Self Tests 1 to 16 \\
\hline 58 & Self Tests 17 to 32 \\
\hline
\end{tabular}

\section*{F200}

TEXT40: 40-CHARACTER ASCII TEXT
20 registers, 16 Bits: 1st Char MSB, 2nd Char. LSB

\section*{F201}

TEXT8: 8-CHARACTER ASCII PASSCODE
4 registers, 16 Bits: 1st Char MSB, 2nd Char. LSB

\section*{F202 \\ TEXT20: 20-CHARACTER ASCII TEXT}

10 registers, 16 Bits: 1st Char MSB, 2nd Char. LSB

\section*{F203}

TEXT16: 16-CHARACTER ASCII TEXT

\section*{F204}

TEXT80: 80-CHARACTER ASCII TEXT

\section*{F205}

TEXT12: 12-CHARACTER ASCII TEXT

\section*{F206 \\ TEXT6: 6-CHARACTER ASCII TEXT}

\section*{F207}

TEXT4: 4-CHARACTER ASCII TEXT

\section*{F208 \\ TEXT2: 2-CHARACTER ASCII TEXT}

\section*{F222}

ENUMERATION: TEST ENUMERATION
\(0=\) Test Enumeration \(0,1=\) Test Enumeration 1

\section*{F224}

ENUMERATION: RATE TREND FOR FREQ RATE OF CHANGE
\(0=\) Increasing, \(1=\) Decreasing, \(2=\) Bidirectional

\section*{F300 \\ UR_UINT16: FLEXLOGIC \({ }^{\text {TM }}\) BASE TYPE (6-bit type)}

The FlexLogic \({ }^{\text {TM }}\) BASE type is 6 bits and is combined with a 9 bit descriptor and 1 bit for protection element to form a 16 bit value. The combined bits are of the form: PTTTTTTDDDDDDDDD, where \(P\) bit if set, indicates that the FlexLogic \({ }^{T M}\) type is associated with a protection element state and T represents bits for the BASE type, and \(D\) represents bits for the descriptor.
The values in square brackets indicate the base type with P prefix [PTTTTTT] and the values in round brackets indicate the descriptor range.
[0] Off(0) this is boolean FALSE value
[0] On (1)This is boolean TRUE value
[2] CONTACT INPUTS (1-96)
[3] CONTACT INPUTS OFF (1-96)
[4] VIRTUAL INPUTS (1-64)
[6] VIRTUAL OUTPUTS (1-64)
[10] CONTACT OUTPUTS VOLTAGE DETECTED (1-64)
[11] CONTACT OUTPUTS VOLTAGE OFF DETECTED (1-64)
[12] CONTACT OUTPUTS CURRENT DETECTED (1-64)
[13] CONTACT OUTPUTS CURRENT OFF DETECTED (1-64)
[14] REMOTE INPUTS (1-32)
[28] INSERT (Via Keypad only)
[32] END
[34] NOT (1 INPUT)
[36] 2 INPUT XOR (0)
[38] LATCH SET/RESET (2 inputs)
[40] OR (2 to 16 inputs)
[42] AND (2 to 16 inputs)
[44] NOR (2 to 16 inputs)
[46] NAND (2 to 16 inputs)
[48] TIMER (1 to 32)
[50] ASSIGN VIRTUAL OUTPUT (1 to 64)
[52] SELF-TEST ERROR (see F141 for range)
[56] ACTIVE SETTING GROUP (1 to 6)
[62] MISCELLANEOUS EVENTS (see F146 for range)
[64 to 127] ELEMENT STATES

F400
UR_UINT16: CT/VT BANK SELECTION
\begin{tabular}{|c|l|}
\hline bitmask & bank selection \\
\hline \hline 0 & Card 1 Contact 1 to 4 \\
\hline 1 & Card 1 Contact 5 to 8 \\
\hline 2 & Card 2 Contact 1 to 4 \\
\hline 3 & Card 2 Contact 5 to 8 \\
\hline 4 & Card 3 Contact 1 to 4 \\
\hline 5 & Card 3 Contact 5 to 8 \\
\hline
\end{tabular}

\section*{F500}

\section*{UR_UINT16: PACKED BITFIELD}

First register indicates I/O state with bits \(0(\mathrm{MSB})\)-15(LSB) corresponding to \(I / O\) state \(1-16\). The second register indicates I/O state with bits \(0-15\) corresponding to \(I / 0\) state \(17-32\) (if required) The third register indicates I/O state with bits \(0-15\) corresponding to I/O state 33-48 (if required). The fourth register indicates I/O state with bits \(0-15\) corresponding to \(1 / 0\) state 49-64 (if required).
The number of registers required is determined by the specific data item. A bit value of \(0=\) Off, \(1=O n\)

F501
UR_UINT16: LED STATUS
Low byte of register indicates LED status with bit 0 representing the top LED and bit 7 the bottom LED. A bit value of 1 indicates the LED is on, 0 indicates the LED is off.

\section*{F502}

BITFIELD: ELEMENT OPERATE STATES
Each bit contains the operate state for an element. See the F124 format code for a list of element IDs. The operate bit for element ID \(X\) is bit [\(X\) mod 16] in register [\(\mathrm{X} / 16\)].

\section*{F504}

BITFIELD: 3-PHASE ELEMENT STATE
\begin{tabular}{|c|l|}
\hline bitmask & element state \\
\hline \hline 0 & Pickup \\
\hline 1 & Operate \\
\hline 2 & Pickup Phase A \\
\hline 3 & Pickup Phase B \\
\hline 4 & Pickup Phase C \\
\hline 5 & Operate Phase A \\
\hline 6 & Operate Phase B \\
\hline 7 & Operate Phase C \\
\hline
\end{tabular}

\section*{F505 \\ BITFIELD: CONTACT OUTPUT STATE}
\(0=\) Contact State, 1 = Voltage Detected, 2 = Current Detected

\section*{F506| \\ BITFIELD: 1 PHASE ELEMENT STATE}

0 = Pickup, 1 = Operate

\section*{F507}

BITFIELD: COUNTER ELEMENT STATE
\(0=\) Count Greater Than, \(1=\) Count Equal To, \(2=\) Count Less Than

\section*{F509}

BITFIELD: SIMPLE ELEMENT STATE
0 = Operate

\section*{F511}

\section*{BITFIELD: 3-PHASE SIMPLE ELEMENT STATE}
\(0=\) Operate, \(1=\) Operate \(\mathrm{A}, 2=\) Operate \(\mathrm{B}, 3=\) Operate C

F512
ENUMERATION: HARMONIC NUMBER
\begin{tabular}{|c|c|c|c|}
\hline bitmask & harmonic & bitmask & harmonic \\
\hline 0 & 2ND & 12 & 14TH \\
\hline 1 & 3RD & 13 & 15TH \\
\hline 2 & 4TH & 14 & 16TH \\
\hline 3 & 5TH & 15 & 17TH \\
\hline 4 & 6TH & 16 & 18TH \\
\hline 5 & 7TH & 17 & 19TH \\
\hline 6 & 8TH & 18 & 20TH \\
\hline 7 & 9TH & 19 & 21ST \\
\hline 8 & 10TH & 20 & 22ND \\
\hline 9 & 11TH & 21 & 23RD \\
\hline 10 & 12TH & 22 & 24TH \\
\hline 11 & 13TH & 23 & 25TH \\
\hline
\end{tabular}

F515
ENUMERATION ELEMENT INPUT MODE
\(0=\) SIGNED, 1 = ABSOLUTE

F516
ENUMERATION ELEMENT COMPARE MODE
0 = LEVEL, 1 = DELTA

F517
ENUMERATION: ELEMENT DIRECTION OPERATION
0 = OVER, 1 = UNDER

\section*{F518}

ENUMERATION: FLEXELEMENTTM UNITS
\(0=\) Milliseconds, \(1=\) Seconds, \(2=\) Minutes

\section*{F519}

ENUMERATION: NON-VOLATILE LATCH
0 = Reset-Dominant, 1 = Set-Dominant

F522
ENUMERATION: TRANSDUCER DCMA OUTPUT RANGE
\(0=-1\) to \(1 \mathrm{~mA} ; 1=0\) to \(1 \mathrm{~mA} ; 2=4\) to 20 mA

\section*{F530}

ENUMERATION: FRONT PANEL INTERFACE KEYPRESS
\begin{tabular}{|c|c|}
\hline bitmask & keypress \\
\hline \hline 0 & None \\
\hline 1 & Menu \\
\hline 2 & Message Up \\
\hline 3 & 7 \\
\hline 4 & 8 \\
\hline 5 & 9 \\
\hline 6 & Help \\
\hline 7 & Message Left \\
\hline 8 & 4 \\
\hline 9 & 5 \\
\hline 10 & 6 \\
\hline 11 & Escape \\
\hline 12 & Message Right \\
\hline 13 & 1 \\
\hline 14 & 2 \\
\hline 15 & 3 \\
\hline 16 & Enter \\
\hline 17 & Message Down \\
\hline 18 & 0 \\
\hline 19 & Decimal \\
\hline 20 & \(+/-\) \\
\hline 21 & Value Up \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bitmask & keypress \\
\hline \hline 22 & Value Down \\
\hline 23 & Reset \\
\hline 24 & User 1 \\
\hline 25 & User 2 \\
\hline 26 & User 3 \\
\hline 31 & User PB 1 \\
\hline 32 & User PB 2 \\
\hline 33 & User PB 3 \\
\hline 34 & User PB 4 \\
\hline 35 & User PB 5 \\
\hline 36 & User PB 6 \\
\hline 37 & User PB 7 \\
\hline 38 & User PB 8 \\
\hline 39 & User PB 9 \\
\hline 40 & User PB 10 \\
\hline 41 & User PB 11 \\
\hline 42 & User PB 12 \\
\hline 44 & User 4 \\
\hline 45 & User 5 \\
\hline 46 & User 6 \\
\hline 47 & User 7 \\
\hline
\end{tabular}

\section*{F600 \\ UR_UINT16: FLEXANALOG PARAMETER}

Corresponds to the modbus address of the value used when this parameter is selected. Only certain values may be used as FlexAnalogs (basically all metering quantities used in protection)

MMI_FLASH ENUMERATION
Flash message definitions for Front-panel MMI
\begin{tabular}{|c|l|}
\hline bitmask & Flash Message \\
\hline \hline 1 & ADJUSTED VALUE HAS BEEN STORED \\
\hline 2 & ENTERED PASSCODE IS INVALID \\
\hline 3 & COMMAND EXECUTED \\
\hline 4 & DEFAULT MESSAGE HAS BEEN ADDED \\
\hline 5 & DEFAULT MESSAGE HAS BEEN REMOVED \\
\hline 6 & INPUT FUNCTION IS ALREADY ASSIGNED \\
\hline 7 & PRESS [ENTER] TO ADD AS DEFAULT \\
\hline 8 & PRESS [ENTER] TO REMOVE MESSAGE \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline bitmask & Flash Message \\
\hline \hline 9 & PRESS [ENTER] TO BEGIN TEXT EDIT \\
\hline 10 & ENTRY MISMATCH - CODE NOT STORED \\
\hline 11 & PRESSED KEY IS INVALID HERE \\
\hline 12 & INVALID KEY: MUST BE IN LOCAL MODE \\
\hline 13 & NEW PASSWORD HAS BEEN STORED \\
\hline 14 & PLEASE ENTER A NON-ZERO PASSCODE \\
\hline 15 & NO ACTIVE TARGETS (TESTING LEDS) \\
\hline 16 & OUT OF RANGE - VALUE NOT STORED \\
\hline 17 & RESETTING LATCHED CONDITIONS \\
\hline 18 & SETPOINT ACCESS IS NOW ALLOWED \\
\hline 19 & SETPOINT ACCESS DENIED (PASSCODE) \\
\hline 20 & SETPOINT ACCESS IS NOW RESTRICTED \\
\hline 21 & NEW SETTING HAS BEEN STORED \\
\hline 22 & SETPOINT ACCESS DENIED (SWITCH) \\
\hline 23 & DATA NOT ACCEPTED \\
\hline 24 & NOT ALL CONDITIONS HAVE BEEN RESET \\
\hline 25 & DATE NOT ACCEPTED IRIGB IS ENABLED \\
\hline 26 & NOT EXECUTED \\
\hline 27 & DISPLAY ADDED TO USER DISPLAY LIST \\
\hline 28 & DISPLAY NOT ADDED TO USER DISPLAY LIST \\
\hline 29 & DISPLAY REMOVED FROM USER DISPLAY LIST \\
\hline
\end{tabular}

MMI_PASSWORD_TYPE ENUMERATION Password types for display in password prompts
\begin{tabular}{|c|l|}
\hline bitmask & password type \\
\hline \hline 0 & No \\
\hline 1 & MASTER \\
\hline 2 & SETTING \\
\hline 3 & COMMAND \\
\hline 4 & FACTORY \\
\hline
\end{tabular}

MMI_SETTING_TYPE ENUMERATION Setting types for display in web pages
\begin{tabular}{|c|l|}
\hline bitmask & Setting Type \\
\hline \hline 0 & Unrestricted Setting \\
\hline 1 & Master-accessed Setting \\
\hline 2 & Setting \\
\hline 3 & Command \\
\hline 4 & Factory Setting \\
\hline
\end{tabular}

The Utility Communications Architecture (UCA) Version 2 represents an attempt by utilities and vendors of electronic equipment to produce standardized communications systems. There is a set of reference documents available from the Electric Power Research Institute (EPRI) and vendors of UCA/MMS software libraries that describe the complete capabilities of the UCA. Following, is a description of the subset of UCA/MMS features that are supported by the UR relay. The reference document set includes:
- Introduction to UCA version 2
- Generic Object Models for Substation and Feeder Equipment (GOMSFE)
- Common Application Service Models (CASM) and Mapping to MMS
- UCA Version 2 Profiles

These documents can be obtained from the UCA User's Group at http://www.ucausersgroup.org. It is strongly recommended that all those involved with any UCA implementation obtain this document set.

\section*{COMMUNICATION PROFILES:}

The UCA specifies a number of possibilities for communicating with electronic devices based on the OSI Reference Model. The UR relay uses the seven layer OSI stack (TP4/CLNP and TCP/IP profiles). Refer to the "UCA Version 2 Profiles" reference document for details.

The TP4/CLNP profile requires the UR relay to have a network address or Network Service Access Point (NSAP) in order to establish a communication link. The TCP/IP profile requires the UR relay to have an IP address in order to establish a communication link. These addresses are set in the SETTINGS \(\Rightarrow\) PRODUCT SETUP \(\Rightarrow 』\) COMMUNICATIONS \(\Rightarrow \sqrt{ } \Rightarrow\) NETWORK menu. Note that the UR relay supports UCA operation over the TP4/CLNP or the TCP/IP stacks and also supports operation over both stacks simultaneously. It is possible to have up to two simultaneous connections. This is in addition to DNP and Modbus/TCP (non-UCA) connections.
C.1.2 MMS

\section*{a) DESCRIPTION}

The UCA specifies the use of the Manufacturing Message Specification (MMS) at the upper (Application) layer for transfer of real-time data. This protocol has been in existence for a number of years and provides a set of services suitable for the transfer of data within a substation LAN environment. Data can be grouped to form objects and be mapped to MMS services. Refer to the "GOMSFE" and "CASM" reference documents for details.

\section*{SUPPORTED OBJECTS:}

The "GOMSFE" document describes a number of communication objects. Within these objects are items, some of which are mandatory and some of which are optional, depending on the implementation. The UR relay supports the following GOMSFE objects:

\begin{tabular}{|ll|}
\hline\(\cdot\) & PHIZ (high impedance ground detector) \\
\hline\(\cdot\) & PIOC (instantaneous overcurrent relay) \\
\hline\(\cdot\) & POVR (overvoltage relay) \\
\hline\(\cdot\) & PTOC (time overcurrent relay) \\
\hline\(\cdot\) & PUVR (under voltage relay) \\
\hline\(\cdot\) & PVPH (volts per hertz relay) \\
\hline- & ctRATO (CT ratio information) \\
\hline- & vtRATO (VT ratio information) \\
\hline- & RREC (reclosing relay) \\
\hline- & RSYN (synchronizing or synchronism-check relay) \\
\hline- & XCBR (circuit breaker) \\
\hline
\end{tabular}

UCA data can be accessed through the "UCADevice" MMS domain.

\section*{PEER-TO-PEER COMMUNICATION:}

Peer-to-peer communication of digital state information, using the UCA GOOSE data object, is supported via the use of the UR Remote Inputs/Outputs feature. This feature allows digital points to be transferred between any UCA conforming devices.

\section*{FILE SERVICES:}

MMS file services are supported to allow transfer of Oscillography, Event Record, or other files from a UR relay.

\section*{COMMUNICATION SOFTWARE UTILITIES:}

The exact structure and values of the implemented objects can be seen by connecting to a UR relay with an MMS browser, such as the "MMS Object Explorer and AXS4-MMS DDE/OPC" server from Sisco Inc.

\section*{NON-UCA DATA:}

The UR relay makes available a number of non-UCA data items. These data items can be accessed through the "UR" MMS domain. UCA data can be accessed through the "UCADevice" MMS domain.
b) PROTOCOL IMPLEMENTATION AND CONFORMANCE STATEMENT (PICS)

The F60 relay functions as a server only; a UR relay cannot be configured as a client. Thus, the following list of supported services is for server operation only:

The MMS supported services are as follows:

\section*{CONNECTION MANAGEMENT SERVICES:}
- Initiate
- Conclude
- Cancel
- Abort
- Reject

\section*{VMD SUPPORT SERVICES:}
- Status
- GetNameList
- Identify

\section*{VARIABLE ACCESS SERVICES:}
- Read
- Write
- InformationReport
- GetVariableAccessAttributes
- GetNamedVariableListAttributes

\section*{OPERATOR COMMUNICATION SERVICES:}
(none)

\section*{SEMAPHORE MANAGEMENT SERVICES:}
(none)
DOMAIN MANAGEMENT SERVICES:
- GetDomainAttributes

\section*{PROGRAM INVOCATION MANAGEMENT SERVICES:}
(none)
EVENT MANAGEMENT SERVICES:
(none)

\section*{APPENDIX C}

\section*{JOURNAL MANAGEMENT SERVICES:}
(none)

\section*{FILE MANAGEMENT SERVICES:}
- ObtainFile
- FileOpen
- FileRead
- FileClose
- FileDirectory

The following MMS parameters are supported:
- STR1 (Arrays)
- STR2 (Structures)
- NEST (Nesting Levels of STR1 and STR2) - 1
- VNAM (Named Variables)
- VADR (Unnamed Variables)
- VALT (Alternate Access Variables)
- VLIS (Named Variable Lists)
- REAL (ASN. 1 REAL Type)
c) MODEL IMPLEMENTATION CONFORMANCE (MIC)

This section provides details of the UCA object models supported by the UR series relays. Note that not all of the protective device functions are applicable to all the UR series relays.
Table C-1: DEVICE IDENTITY - DI
\begin{tabular}{|l|c|c|}
\hline NAME & M/O & RWEC \\
\hline \hline Name & m & rw \\
\hline Class & o & rw \\
\hline d & o & rw \\
\hline Own & o & rw \\
\hline Loc & o & rw \\
\hline VndID & m & r \\
\hline
\end{tabular}

Table C-2: GENERIC CONTROL - GCTL
\begin{tabular}{|l|c|c|c|l|}
\hline FC & NAME & CLASS & RWECS & DESCRIPTION \\
\hline \hline ST & \(\mathrm{BO}<\mathrm{n}>\) & SI & rw & Generic Single Point Indication \\
\hline CO & \(\mathrm{BO}<\mathrm{n}>\) & SI & rw & Generic Binary Output \\
\hline CF & \(\mathrm{BO}<\mathrm{n}>\) & SBOCF & rw & SBO Configuration \\
\hline \multirow{2}{*}{ DC } & LN & d & rw & Description for brick \\
\cline { 2 - 5 } & \(\mathrm{BO}<\mathrm{n}>\) & d & rw & Description for each point \\
\hline
\end{tabular}

Actual instantiation of GCTL objects is as follows:
GCTL1 = Virtual Inputs (32 total points - SI1 to SI32); includes SBO functionality.

Table C-3: GENERIC INDICATORS - GIND 1 TO 6
\begin{tabular}{|l|l|l|l|l|}
\hline FC & NAME & CLASS & RWECS & DESCRIPTION \\
\hline \hline ST & SIG<n> & SIG & r & Generic Indication (block of 16) \\
\hline DC & LN & d & rw & Description for brick \\
\hline RP & BrcbST & BasRCB & rw & Controls reporting of STATUS \\
\hline
\end{tabular}

Table C-4: GENERIC INDICATOR - GIND7
\begin{tabular}{|l|l|l|l|l|}
\hline FC & \begin{tabular}{l}
OBJECT \\
NAME
\end{tabular} & CLASS & RWECS & DESCRIPTION \\
\hline \hline ST & SI<n> & SI & r & Generic single point indication \\
\hline \multirow{2}{*}{ DC } & LN & d & rw & Description for brick \\
\cline { 2 - 5 } & SI<n> & d & rw & Description for all included SI \\
\hline RP & BrcbST & BasRCB & rw & Controls reporting of STATUS \\
\hline
\end{tabular}

Actual instantiation of GIND objects is as follows:
GIND1 = Contact Inputs (96 total points - SIG1 to SIG6)
GIND2 \(=\) Contact Outputs (64 total points - SIG1 to SIG4)
GIND3 = Virtual Inputs (32 total points - SIG1 to SIG2)
GIND4 = Virtual Outputs (64 total points - SIG1 to SIG4)
GIND5 = Remote Inputs (32 total points - SIG1 to SIG2)
GIND6 \(=\) Flex States (16 total points - SIG1 representing Flex States 1 to 16)
GIND7 \(=\) Flex States (16 total points - SI1 to SI16 representing Flex States 1 to 16)
Table C-5: GLOBAL DATA - GLOBE
\begin{tabular}{|l|l|c|c|l|}
\hline FC & OBJECT NAME & CLASS & RWECS & DESCRIPTION \\
\hline \hline \multirow{4}{*}{ ST } & ModeDS & SIT & r & Device is: in test, off-line, available, or unhealthy \\
\cline { 2 - 5 } & LocRemDS & SIT & r & The mode of control, local or remote (DevST) \\
\cline { 2 - 5 } & ActSG & INT8U & r & Active Settings Group \\
\cline { 2 - 5 } & EditSG & INT8u & r & Settings Group selected for read/write operation \\
\hline \multirow{3}{*}{ CO } & CopySG & INT8U & w & Selects Settings Group for read/write operation \\
\cline { 2 - 5 } & IndRs & BOOL & w & Resets ALL targets \\
\hline CF & ClockTOD & BTIME & rw & Date and time \\
\hline RP & GOOSE & PACT & rw & Reports IED Inputs and Outputs \\
\hline
\end{tabular}

Table C-6: MEASUREMENT UNIT (POLYPHASE) - MMXU
\begin{tabular}{|c|c|c|c|c|}
\hline FC & OBJECT NAME & CLASS & RWECS & DESCRIPTION \\
\hline \multirow[t]{12}{*}{MX} & V & WYE & rw & Voltage on phase A, B, C to G \\
\hline & PPV & DELTA & rw & Voltage on \(\mathrm{AB}, \mathrm{BC}, \mathrm{CA}\) \\
\hline & A & WYE & rw & Current in phase \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and N \\
\hline & W & WYE & rw & Watts in phase A, B, C \\
\hline & TotW & AI & rw & Total watts in all three phases \\
\hline & Var & WYE & rw & Vars in phase A, B, C \\
\hline & TotVar & AI & rw & Total vars in all three phases \\
\hline & VA & WYE & rw & VA in phase A, B, C \\
\hline & TotVA & AI & rw & Total VA in all 3 phases \\
\hline & PF & WYE & rw & Power Factor for phase A, B, C \\
\hline & AvgPF & AI & rw & Average Power Factor for all three phases \\
\hline & Hz & AI & rw & Power system frequency \\
\hline CF & All MMXU.MX & ACF & rw & Configuration of ALL included MMXU.MX \\
\hline \multirow[t]{2}{*}{DC} & LN & d & rw & Description for brick \\
\hline & All MMXU.MX & d & rw & Description of ALL included MMXU.MX \\
\hline RP & BrcbMX & BasRCB & rw & Controls reporting of measurements \\
\hline
\end{tabular}

Actual instantiation of MMXU objects is as follows:
1 MMXU per Source (as determined from the 'product order code')

Table C-7: PROTECTIVE ELEMENTS
\begin{tabular}{|l|l|c|c|l|}
\hline FC & OBJECT NAME & CLASS & RWECS & DESCRIPTION \\
\hline \hline \multirow{5}{*}{ ST } & Out & BOOL & r & 1 = Element operated, 0 = Element not operated \\
\cline { 2 - 5 } & Tar & PhsTar & r & Targets since last reset \\
\cline { 2 - 5 } & FctDS & SIT & r & Function is enabled/disabled \\
\cline { 2 - 5 } & PuGrp & INT8U & r & Settings group selected for use \\
\hline \multirow{4}{*}{ CO } & EnaDisFct & DCO & w & 1 = Element function enabled, 0 = disabled \\
\cline { 2 - 5 } & RsTar & BO & w & Reset ALL Elements/Targets \\
\cline { 2 - 5 } & RsLat & BO & w & Reset ALL Elements/Targets \\
\hline \multirow{3}{*}{ DC } & LN & d & rw & Description for brick \\
\cline { 2 - 5 } & ElementSt & d & r & Element state string \\
\hline
\end{tabular}

The following GOMSFE objects are defined by the object model described via the above table:
- PBRO (basic relay object)
- PDIF (differential relay)
- PDIS (distance)
- PDOC (directional overcurrent)
- PDPR (directional power relay)
- PFRQ (frequency relay)
- PHIZ (high impedance ground detector)
- PIOC (instantaneous overcurrent relay)
- POVR (over voltage relay)
- PTOC (time overcurrent relay)
- PUVR (under voltage relay)
- RSYN (synchronizing or synchronism-check relay)
- POVR (overvoltage)
- PVPH (volts per hertz relay)
- PBRL (phase balance current relay)

Actual instantiation of these objects is determined by the number of the corresponding elements present in the UR as per the 'product order code'.

Table C-8: CT RATIO INFORMATION - ctRATO
\begin{tabular}{|l|c|c|l|}
\hline OBJECT NAME & CLASS & RWECS & DESCRIPTION \\
\hline \hline PhsARat & RATIO & rw & Primary/secondary winding ratio \\
\hline NeutARat & RATIO & rw & Primary/secondary winding ratio \\
\hline LN & d & rw & Description for brick (current bank ID) \\
\hline
\end{tabular}

Table C-9: VT RATIO INFORMATION - vtRATO
\begin{tabular}{|l|c|c|l|}
\hline OBJECT NAME & CLASS & RWECS & DESCRIPTION \\
\hline \hline PhsVRat & RATIO & rw & Primary/secondary winding ratio \\
\hline LN & d & rw & Description for brick (current bank ID) \\
\hline
\end{tabular}

Actual instantiation of ctRATO and vtRATO objects is as follows:
1 ctRATO per Source (as determined from the product order code).
1 vtRATO per Source (as determined from the product order code).

Table C-10: RECLOSING RELAY - RREC
\begin{tabular}{|l|l|c|c|l|}
\hline FC & OBJECT NAME & CLASS & RWECS & DESCRIPTION \\
\hline \hline \multirow{4}{*}{ ST } & Out & BOOL & r & 1 = Element operated, 0 = Element not operated \\
\cline { 2 - 5 } & FctDS & SIT & r & Function is enabled/disabled \\
\cline { 2 - 5 } & PuGrp & INT8U & r & Settings group selected for use \\
\hline SG & ReclSeq & SHOTS & rw & Reclosing Sequence \\
\hline \multirow{4}{*}{ CO } & EnaDisFct & DCO & w & 1 = Element function enabled, \(0=\) disabled \\
\cline { 2 - 5 } & RsTar & BO & w & Reset ALL Elements/Targets \\
\cline { 2 - 5 } & RsLat & BO & w & Reset ALL Elements/Targets \\
\hline CF & ReclSeq & ACF & rw & Configuration for RREC.SG \\
\hline \multirow{3}{*}{ DC } & LN & d & rw & Description for brick \\
\cline { 2 - 5 } & ElementSt & d & r & Element state string \\
\hline
\end{tabular}

Actual instantiation of RREC objects is determined by the number of autoreclose elements present in the UR as per the product order code.

Also note that the Shots class data (i.e. Tmr1, Tmr2, Tmr3, Tmr4, RsTmr) is specified to be of type INT16S (16 bit signed integer); this data type is not large enough to properly display the full range of these settings from the UR. Numbers larger than 32768 will be displayed incorrectly.

Table C-11: CIRCUIT BREAKER - XCBR
\begin{tabular}{|l|l|l|l|l|}
\hline FC & OBJECT NAME & CLASS & RWECS & DESCRIPTION \\
\hline \hline ST & SwDS & SIT & rw & Switch Device Status \\
\cline { 2 - 5 } & SwPoleDS & BSTR8 & rw & Switch Pole Device Status \\
\cline { 2 - 5 } & PwrSupSt & SIG & rw & Health of the power supply \\
\cline { 2 - 5 } & PresSt & SIT & rw & The condition of the insulating medium pressure \\
\cline { 2 - 5 } & PoleDiscSt & SI & rw & All CB poles did not operate within time interval \\
\cline { 2 - 5 } & TrpCoil & SI & rw & Trip coil supervision \\
\hline CO & ODSw & DCO & rw & The command to open/close the switch \\
\hline CF & ODSwSBO & SBOCF & rw & Configuration for all included XCBR.CO \\
\hline DC & LN & d & rw & Description for brick \\
\hline RP & brcbST & BasRCB & rw & Controls reporting of Status Points \\
\hline
\end{tabular}

7
Actual instantiation of XCBR objects is determined by the number of breaker control elements present in the UR as per the product order code.
C.1.3 UCA REPORTING

A built-in TCP/IP connection timeout of two minutes is employed by the UR to detect "dead" connections. If there is no data traffic on a TCP connection for greater than two minutes, the connection will be aborted by the UR. This frees up the connection to be used by other clients. Therefore, when using UCA reporting, clients should configure BasRCB objects such that an integrity report will be issued at least every 2 minutes (120000 ms). This ensures that the UR will not abort the connection. If other MMS data is being polled on the same connection at least once every 2 minutes, this timeout will not apply.

This document is adapted from the IEC 60870-5-104 standard. For ths section the boxes indicate the following: used in standard direction; \(\square\) - not used; \(\square\) - cannot be selected in IEC 60870-5-104 standard.
1. SYSTEM OR DEVICE:System Definition
\(\square\) Controlling Station Definition (Master)
Controlled Station Definition (Slave)
2. NETWORK CONFIGURATION:
\(\square\) Point-to-Point
Aultiple Point to-Point
Multipoint
Multipoint Star
3. PHYSICAL LAYER

Transmission Speed (control direction):
\begin{tabular}{|c|c|c|}
\hline Unbalanced Interchange Circuit V.24/V. 28 Standard: & Unbalanced Interchange Circuit V.24/V. 28 Recommended if \(>1200 \mathrm{bits} / \mathrm{s}\) : & Balanced Interchange Circuit X.24/X.27: \\
\hline \begin{tabular}{l}
100 bits/sec. \\
200 bits/sec. \\
300 bits/sec. \\
600 bits/sec. \\
1200 bits/sec.
\end{tabular} & - 2400 bits/sec.
4800 bits/sec.
9600 bits/sec. & 2400 bits/sec.
4800 -bits/sec.
9600 bits/sec.
19200 bitslsec.
38400 bits/sec.
56000 bits/sec.
64000 bitstsec. \\
\hline
\end{tabular}

Transmission Speed (monitor direction):
\begin{tabular}{|c|c|c|}
\hline Unbalanced Interchange Circuit V.24/V. 28 Standard: & Unbalanced Interchange Circuit V.24/V. 28 Recommended if \(\mathbf{> 1 2 0 0}\) bits/s: & Balanced Interchange Circuit X.24/X.27: \\
\hline 100 bits/sec.
200 bits/seg.
300 bits/sec.
600 bits/sec.
1200 bits/sec. & 2400 bits/sec.
4800 bits/sec.
9600 bits/sec. & \(\square 2400\) bits/sec.
4800 bits/sec.
9600 bits/sec.
49200 bits/sec.
38400 bits \(/ s e c\).
56000 bits \(/ s e c\).
64000 bits \(/ s e c\). \\
\hline
\end{tabular}
4. LINK LAYER
\begin{tabular}{|l|l|}
\hline Link Transmission Procedure: & Address Field of the Link: \\
\hline\(\square\) Batanced Transmision & Not Present (Batanced Transmission Only) \\
Unbatanced Transmission & One-Octet \\
& \\
& Structured \\
& Unstructured \\
\hline \multicolumn{2}{l|}{ Frame Length (maximum length, number of octets): Not selectable in companion IEC 60870-5-104 standard } \\
\hline
\end{tabular}

When using an unbalanced link layer, the following ADSU types are returned in class 2 messages (low priority) with the indicated causes of transmission:

The-standard assignment of ADSUs to class 2 messages is used as follows:

A special assignment of \(A D S U\) s to class 2 messages is used as follows:

\section*{5. APPLICATION LAYER}

\section*{Transmission Mode for Application Data:}

Mode 1 (least significant octet first), as defined in Clause 4.10 of IEC 60870-5-4, is used exclusively in this companion stanadard.

\section*{Common Address of ADSU:}
- One-Octet

T Two Octets
Information Object Address:
- One-Octet
\(\square\) Two-Octets
X Three Octets

\section*{Cause of Transmission:}

\section*{One-Octet}

Two Octets (with originator address). Originator address is set to zero if not used.
Maximum Length of APDU: 253 (the maximum length may be reduced by the system.

\section*{Selection of standard ASDUs:}

For the following lists, the boxes indicate the following: - used in standard direction; \(\square\) - not used; \(\square\) - cannot be selected in IEC 60870-5-104 standard.

Process information in monitor direction
\begin{tabular}{|c|c|}
\hline <1> := Single-point information & M_SP_NA_1 \\
\hline <2>: S Single-point information with time tag & M_SP_TA_1 \\
\hline \(\square<3>\) : = Double-point information & M_DP_NA_1 \\
\hline - \(<4>\) :- Double point information with time tag & M_DP_TA_4 \\
\hline \(\square<5>\) : Step position information & M_ST_NA_1 \\
\hline - -68 :- Step position information with time tag & M_ST_TA_1 \\
\hline \(\square<7>\) := Bitstring of 32 bits & M_BO_NA_1 \\
\hline -88> :- Bitctring of 32 bitc with time tag & A_BO_TA_4 \\
\hline \(\square<9>\) := Measured value, normalized value & M_ME_NA_1 \\
\hline - 10\(\rangle\) : = Measured value, normalized value with time tag & A_NE_TA_4 \\
\hline \(\square<11>\) := Measured value, scaled value & M_ME_NB_1 \\
\hline -<12> : = Measured value, scaled value with time tag & M_NE_TB_1 \\
\hline \ll13> := Measured value, short floating point value & M_ME_NC_1 \\
\hline - \(<\)-44>:- Measured value, short floating point value with time tag & M_NE_TC_1 \\
\hline (<15> : Integrated totals & M_IT_NA_1 \\
\hline - \(<16>\) :- Integrated totals with time tag & M_IT_TA_4 \\
\hline - -17\(\rangle\) :- Event of protection equipment with time tag & M_EP_TA_4 \\
\hline 1-18>:- Pack start ovent of protection equipment with time tag & A_EEP_TB_4 \\
\hline - - 19\% :- Packed output cireuit information of protection equipment with time tag & M_EP_TC_ 1 \\
\hline \(\square<20>\) := Packed single-point information with status change detection & M_SP_NA_1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(\square<21>\) := Measured value, normalized value without quantity descriptor & M_ME_ND_1 \\
\hline <30> := Single-point information with time tag CP56Time2a & M_SP_TB_1 \\
\hline \(\square<31>\) : = Double-point information wiht time tag CP56Time2a & M_DP_TB_1 \\
\hline \(\square<32>\) := Step position information with time tag CP56Time2a & M_ST_TB_1 \\
\hline \(\square<33>\) := Bitstring of 32 bits with time tag CP56Time2a & M_BO_TB_1 \\
\hline \(\square<34>\) := Measured value, normalized value with time tag CP56Time2a & M_ME_TD_1 \\
\hline \(\square<35>\) := Measured value, scaled value with time tag CP56Time2a & M_ME_TE_1 \\
\hline \(\square<36>\) := Measured value, short floating point value with time tag CP56Time2a & M_ME_TF_1 \\
\hline <37> := Integrated totals with time tag CP56Time2a & M_IT_TB_1 \\
\hline \(\square<38>\) := Event of protection equipment with time tag CP56Time2a & M_EP_TD_1 \\
\hline \(\square<39>\) := Packed start events of protection equipment with time tag CP56Time2a & M_EP_TE_1 \\
\hline \(\square<40>\) := Packed output circuit information of protection equipment with time tag CP56Time2a & M_EP_TF_1 \\
\hline
\end{tabular}

Either the ASDUs of the set <2>, <4>, <6>, <8>, <10>, <12>, <14>, <16>, <17>, <18>, and <19> or of the set \(<30>\) to \(<40>\) are used.

\section*{Process information in control direction}
\begin{tabular}{|c|c|}
\hline \ll45> := Single command & C_SC_NA_1 \\
\hline \(\square<46>\) := Double command & C_DC_NA_1 \\
\hline \(\square<47>\) := Regulating step command & C_RC_NA_1 \\
\hline \(\square<48>\) : = Set point command, normalized value & C_SE_NA_1 \\
\hline \(\square<49>\) := Set point command, scaled value & C_SE_NB_1 \\
\hline \(\square<50>\) := Set point command, short floating point value & C_SE_NC_1 \\
\hline \(\square<51>\) := Bitstring of 32 bits & C_BO_NA_1 \\
\hline X < 58> := Single command with time tag CP56Time2a & C_SC_TA_1 \\
\hline \(\square<59>\) := Double command with time tag CP56Time2a & C_DC_TA_1 \\
\hline \(\square<60>\) := Regulating step command with time tag CP56Time2a & C_RC_TA_1 \\
\hline \(\square<61>\) := Set point command, normalized value with time tag CP56Time2a & C_SE_TA_1 \\
\hline \(\square<62>\) : = Set point command, scaled value with time tag CP56Time2a & C_SE_TB_1 \\
\hline \(\square<63>\) := Set point command, short floating point value with time tag CP56Time2a & C_SE_TC_1 \\
\hline \(\square<64>\) := Bitstring of 32 bits with time tag CP56Time2a & C_BO_TA_1 \\
\hline
\end{tabular}

Either the ASDUs of the set \(<45>\) to \(<51>\) or of the set \(<58>\) to \(<64>\) are used.

\section*{System information in monitor direction}
< \(<70>\) := End of initialization
System information in control direction
< 100> := Interrogation command
C_IC_NA_1
<101> := Counter interrogation command
<102> := Read command
< \(<103>\) := Clock synchronization command (see Clause 7.6 in standard)
- <104>: Test command
<105> := Reset process command
< 106> := Delay acquisition command
< \(<107>\) := Test command with time tag CP56Time2a

Parameter in control direction
\(\square<110>\) := Parameter of measured value, normalized value
\(\square<111>\) := Parameter of measured value, scaled value
\(<112>\) := Parameter of measured value, short floating point value
\(\square<113>\) := Parameter activation

PE_ME_NA_1
PE_ME_NB_1
PE_ME_NC_1
PE_AC_NA_1

File transfer
\begin{tabular}{ll}
\(\square<120>\) & := File Ready \\
\(\square<121>\) & F_FR_NA_1 \\
\(\square<122>\) & \(:=\) Call directory, select file, call file, call section
\end{tabular} F_SR_NA_1

Type identifier and cause of transmission assignments
(station-specific parameters)
In the following table:
- Shaded boxes are not required.
- Black boxes are not permitted in this companion standard.
- Blank boxes indicate functions or ASDU not used.
- ' \(\mathbf{X}\) ' if only used in the standard direction
\begin{tabular}{|c|}
\hline \multicolumn{2}{|l|}{TYPE IDENTIFICATION} & \multicolumn{19}{|c|}{CAUSE OF TRANSMISSION} \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline NO. & MNEMONIC & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & \[
\begin{aligned}
& \hline 20 \\
& \text { to } \\
& 36
\end{aligned}
\] & \[
\begin{aligned}
& 37 \\
& \text { to } \\
& 41
\end{aligned}
\] & 44 & 45 & 46 & 47 \\
\hline <1> & M_SP_NA_1 & & & X & & X & & & & & & X & X & & X & & & & & \\
\hline <2> & M_SP_TA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <3> & M_DP_NA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <4> & M_DP_TA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <5> & M_ST_NA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <6> & M_ST_TA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <7> & M_BO_NA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <8> & M_BO_TA_1 & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multicolumn{2}{|l|}{TYPE IDENTIFICATION} & \multicolumn{19}{|c|}{CAUSE OF TRANSMISSION} \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline NO. & MNEMONIC & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & \[
\begin{array}{l|}
\hline 20 \\
\text { to } \\
36
\end{array}
\] & \[
\begin{aligned}
& \hline 37 \\
& \text { to } \\
& 41
\end{aligned}
\] & 44 & 45 & 46 & 47 \\
\hline <9> & M_ME_NA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <10> & M_ME_TA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <11> & M_ME_NB_1 & & & & & & & & & & & & & & & & & & & \\
\hline <12> & M_ME_TB_1 & & & & & & & & & & & & & & & & & & & \\
\hline <13> & M_ME_NC_1 & X & & X & & X & & & & & & & & & X & & & & & \\
\hline <14> & M_ME_TC_1 & & & & & & & & & & & & & & & & & & & \\
\hline <15> & M_IT_NA_1 & & & X & & & & & & & & & & & & X & & & & \\
\hline <16> & M_IT_TA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <17> & M_EP_TA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <18> & M_EP_TB_1 & & & & & & & & & & & & & & & & & & & \\
\hline <19> & M_EP_TC_1 & & & & & & & & & & & & & & & & & & & \\
\hline <20> & M_PS_NA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <21> & M_ME_ND_1 & & & & & & & & & & & & & & & & & & & \\
\hline <30> & M_SP_TB_1 & & & X & & & & & & & & X & X & & & & & & & \\
\hline <31> & M_DP_TB_1 & & & & & & & & & & & & & & & & & & & \\
\hline <32> & M_ST_TB_1 & & & & & & & & & & & & & & & & & & & \\
\hline <33> & M_BO_TB_1 & & & & & & & & & & & & & & & & & & & \\
\hline <34> & M_ME_TD_1 & & & & & & & & & & & & & & & & & & & \\
\hline <35> & M_ME_TE_1 & & & & & & & & & & & & & & & & & & & \\
\hline <36> & M_ME_TF_1 & & & & & & & & & & & & & & & & & & & \\
\hline <37> & M_IT_TB_1 & & & X & & & & & & & & & & & & X & & & & \\
\hline <38> & M_EP_TD_1 & & & & & & & & & & & & & & & & & & & \\
\hline <39> & M_EP_TE_1 & & & & & & & & & & & & & & & & & & & \\
\hline <40> & M_EP_TF_1 & & & & & & & & & & & & & & & & & & & \\
\hline <45> & C_SC_NA_1 & & & & & & X & X & X & X & X & & & & & & & & & \\
\hline <46> & C_DC_NA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <47> & C_RC_NA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <48> & C_SE_NA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <49> & C_SE_NB_1 & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multicolumn{2}{|l|}{TYPE IDENTIFICATION} & \multicolumn{19}{|c|}{CAUSE OF TRANSMISSION} \\
\hline & & & & & & & & & & & & & & INTERROGATED BY GROUP <NUMBER> & & & UNKNOWN CAUSE OF TRANSMISSION & & & \\
\hline NO. & MNEMONIC & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & \[
\begin{aligned}
& \hline 20 \\
& \text { to } \\
& 36
\end{aligned}
\] & \[
\begin{aligned}
& 37 \\
& \text { to } \\
& 41
\end{aligned}
\] & 44 & 45 & 46 & 47 \\
\hline <50> & C_SE_NC_1 & & & & & & & & & & & & & & & & & & & \\
\hline <51> & C_BO_NA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <58> & C_SC_TA_1 & & & & & & X & X & X & X & X & & & & & & & & & \\
\hline <59> & C_DC_TA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <60> & C_RC_TA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <61> & C_SE_TA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <62> & C_SE_TB_1 & & & & & & & & & & & & & & & & & & & \\
\hline <63> & C_SE_TC_1 & & & & & & & & & & & & & & & & & & & \\
\hline <64> & C_BO_TA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <70> & M_EI_NA_1*) & & & & X & & & & & & & & & & & & & & & \\
\hline <100> & C_IC_NA_1 & & & & & & X & X & X & X & X & & & & & & & & & \\
\hline <101> & C_Cl_NA_1 & & & & & & X & X & & & X & & & & & & & & & \\
\hline <102> & C_RD_NA_1 & & & & & X & & & & & & & & & & & & & & \\
\hline <103> & C_CS_NA_1 & & & X & & & X & X & & & & & & & & & & & & \\
\hline <104> & C_TS_NA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <105> & C_RP_NA_1 & & & & & & X & X & & & & & & & & & & & & \\
\hline <106> & C_CD_NA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <107> & C_TS_TA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <110> & P_ME_NA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <111> & P_ME_NB_1 & & & & & & & & & & & & & & & & & & & \\
\hline <112> & P_ME_NC_1 & & & & & & X & X & & & & & & & X & & & & & \\
\hline <113> & P_AC_NA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <120> & F_FR_NA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <121> & F_SR_NA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <122> & F_SC_NA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <123> & F_LS_NA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <124> & F_AF_NA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <125> & F_SG_NA_1 & & & & & & & & & & & & & & & & & & & \\
\hline <126> & F_DR_TA_1*) & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{6. BASIC APPLICATION FUNCTIONS}

\section*{Station Initialization:}

Remote initialization
Cyclic Data Transmission:
Cyclic data transmission
Read Procedure:
Read procedure
Spontaneous Transmission:
Spontaneous transmission
Double transmission of information objects with cause of transmission spontaneous:
The following type identifications may be transmitted in succession caused by a single status change of an information object. The particular information object addresses for which double transmission is enabled are defined in a projectspecific list.
\(\square\) Single point information: M_SP_NA_1, M_SP_TA_1, M_SP_TB_1, and M_PS_NA_1
\(\square\) Double point information: M_DP_NA_1, M_DP_TA_1, and M_DP_TB_1
\(\square\) Step position information: M_ST_NA_1, M_ST_TA_1, and M_ST_TB_1
\(\square\) Bitstring of 32 bits: \(M _B O _N A _1, M_{-} B O_{-} T A _1\), and \(M_{-} B O_{-}\)TB_1 (if defined for a specific project)
\(\square\) Measured value, normalized value: M_ME_NA_1, M_ME_TA_1, M_ME_ND_1, and M_ME_TD_1
\(\square\) Measured value, scaled value: M_ME_NB_1, M_ME_TB_1, and M_ME_TE_1
〕 Measured value, short floating point number: M_ME_NC_1, M_ME_TC_1, and M_ME_TF_1
Station interrogation:
Global
\begin{tabular}{llll}
Group 1 & Group 5 & Group 9 & Group 13 \\
Group 2 & Group 6 & Group 10 & Group 7 15 \\
Group 4 & Group 8 & Group 12 & Group 16
\end{tabular}

Clock synchronization:
X Clock synchronization (optional, see Clause 7.6)
Command transmission:
Direct command transmission
\(\square\) Direct setpoint command transmission
Select and execute command
\(\square\) Select and execute setpoint command
X C_SE ACTTERM used
No additional definition
Short pulse duration (duration determined by a system parameter in the outstation)
Long pulse duration (duration determined by a system parameter in the outstation)
Persistent output

X Supervision of maximum delay in command direction of commands and setpoint commands
Maximum allowable delay of commands and setpoint commands: \(\mathbf{1 0} \mathbf{s}\)

\section*{Transmission of integrated totals:}

X Mode A: Local freeze with spontaneous transmission
Mode B: Local freeze with counter interrogation
Mode C: Freeze and transmit by counter-interrogation commands
Mode D: Freeze by counter-interrogation command, frozen values reported simultaneously

X Counter read
Counter freeze without reset
X Counter freeze with reset
Counter reset

General request counter
Request counter group 1
Request counter group 2
Request counter group 3
Request counter group 4
Parameter loading:
Threshold value
\(\square\) Smoothing factorLow limit for transmission of measured valuesHigh limit for transmission of measured values
Parameter activation:
Activation/deactivation of persistent cyclic or periodic transmission of the addressed object
Test procedure:
\(\square\) Test procedure
File transfer:
File transfer in monitor direction:Transparent fileTransmission of disturbance data of protection equipmentTransmission of sequences of eventsTransmission of sequences of recorded analog values
File transfer in control direction:Transparent file
Background scan:
\(\square\) Background scan
Acquisition of transmission delay:
- Acquisition of transmission delay

\section*{Definition of time outs:}
\begin{tabular}{|c|c|l|c|}
\hline PARAMETER & \begin{tabular}{c}
DEFAULT \\
VALUE
\end{tabular} & REMARKS & \begin{tabular}{c}
SELECTED \\
VALUE
\end{tabular} \\
\hline \hline\(t_{0}\) & 30 s & Timeout of connection establishment & 120 s \\
\hline\(t_{1}\) & 15 s & Timeout of send or test APDUs & 15 s \\
\hline\(t_{2}\) & 10 s & Timeout for acknowlegements in case of no data messages \(t_{2}<t_{1}\) & 10 s \\
\hline\(t_{3}\) & 20 s & Timeout for sending test frames in case of a long idle state & 20 s \\
\hline
\end{tabular}

Maximum range of values for all time outs: 1 to 255 s , accuracy 1 s

\section*{Maximum number of outstanding l-format APDUs \(k\) and latest acknowledge APDUs (w):}
\begin{tabular}{|c|c|l|c|}
\hline PARAMETER & \begin{tabular}{c}
DEFAULT \\
VALUE
\end{tabular} & REMARKS & \begin{tabular}{c}
SELECTED \\
VALUE
\end{tabular} \\
\hline \hline\(k\) & 12 APDUs & Maximum difference receive sequence number to send state variable & 12 APDUs \\
\hline\(w\) & 8 APDUs & Latest acknowledge after receiving \(w\) l-format APDUs & 8 APDUs \\
\hline
\end{tabular}
\begin{tabular}{ll}
Maximum range of values \(k:\) & 1 to \(32767\left(2^{15}-1\right)\) APDUs, accuracy 1 APDU \\
Maximum range of values \(w: \quad 1\) to 32767 APDUs, accuracy 1 APDU \\
& Recommendation: \(w\) should not exceed two-thirds of \(k\).
\end{tabular}

\section*{Portnumber:}
\begin{tabular}{|c|c|l|}
\hline PARAMETER & VALUE & REMARKS \\
\hline \hline Portnumber & 2404 & In all cases \\
\hline
\end{tabular}

\section*{RFC 2200 suite:}

RFC 2200 is an official Internet Standard which describes the state of standardization of protocols used in the Internet as determined by the Internet Architecture Board (IAB). It offers a broad spectrum of actual standards used in the Internet. The suitable selection of documents from RFC 2200 defined in this standard for given projects has to be chosen by the user of this standard.

Ethernet 802.3
\(\square\) Serial X. 21 interface
\(\square\) Other selection(s) from RFC 2200 (list below if selected)

Only Source 1 data points are shown in the following table. If the NUMBER OF SOURCES IN MMENC1 LIST setting is increased, data points for subsequent sources will be added to the list immediately following the Source 1 data points.

Table D-1: IEC 60870-5-104 POINTS (Sheet 1 of 7)
\begin{tabular}{|c|c|}
\hline POINT & DESCRIPTION \\
\hline \multicolumn{2}{|l|}{M_ME_NC_1 Points} \\
\hline 2000 & SRC 1 Phase A Current RMS \\
\hline 2001 & SRC 1 Phase B Current RMS \\
\hline 2002 & SRC 1 Phase C Current RMS \\
\hline 2003 & SRC 1 Neutral Current RMS \\
\hline 2004 & SRC 1 Phase A Current Magnitude \\
\hline 2005 & SRC 1 Phase A Current Angle \\
\hline 2006 & SRC 1 Phase B Current Magnitude \\
\hline 2007 & SRC 1 Phase B Current Angle \\
\hline 2008 & SRC 1 Phase C Current Magnitude \\
\hline 2009 & SRC 1 Phase C Current Angle \\
\hline 2010 & SRC 1 Neutral Current Magnitude \\
\hline 2011 & SRC 1 Neutral Current Angle \\
\hline 2012 & SRC 1 Ground Current RMS \\
\hline 2013 & SRC 1 Ground Current Magnitude \\
\hline 2014 & SRC 1 Ground Current Angle \\
\hline 2015 & SRC 1 Zero Sequence Current Magnitude \\
\hline 2016 & SRC 1 Zero Sequence Current Angle \\
\hline 2017 & SRC 1 Positive Sequence Current Magnitude \\
\hline 2018 & SRC 1 Positive Sequence Current Angle \\
\hline 2019 & SRC 1 Negative Sequence Current Magnitude \\
\hline 2020 & SRC 1 Negative Sequence Current Angle \\
\hline 2021 & SRC 1 Differential Ground Current Magnitude \\
\hline 2022 & SRC 1 Differential Ground Current Angle \\
\hline 2023 & SRC 1 Phase AG Voltage RMS \\
\hline 2024 & SRC 1 Phase BG Voltage RMS \\
\hline 2025 & SRC 1 Phase CG Voltage RMS \\
\hline 2026 & SRC 1 Phase AG Voltage Magnitude \\
\hline 2027 & SRC 1 Phase AG Voltage Angle \\
\hline 2028 & SRC 1 Phase BG Voltage Magnitude \\
\hline 2029 & SRC 1 Phase BG Voltage Angle \\
\hline 2030 & SRC 1 Phase CG Voltage Magnitude \\
\hline 2031 & SRC 1 Phase CG Voltage Angle \\
\hline 2032 & SRC 1 Phase AB Voltage RMS \\
\hline 2033 & SRC 1 Phase BC Voltage RMS \\
\hline 2034 & SRC 1 Phase CA Voltage RMS \\
\hline 2035 & SRC 1 Phase AB Voltage Magnitude \\
\hline 2036 & SRC 1 Phase AB Voltage Angle \\
\hline 2037 & SRC 1 Phase BC Voltage Magnitude \\
\hline 2038 & SRC 1 Phase BC Voltage Angle \\
\hline 2039 & SRC 1 Phase CA Voltage Magnitude \\
\hline 2040 & SRC 1 Phase CA Voltage Angle \\
\hline 2041 & SRC 1 Auxiliary Voltage RMS \\
\hline 2042 & SRC 1 Auxiliary Voltage Magnitude \\
\hline 2043 & SRC 1 Auxiliary Voltage Angle \\
\hline 2044 & SRC 1 Zero Sequence Voltage Magnitude \\
\hline
\end{tabular}

Table D-1: IEC 60870-5-104 POINTS (Sheet 2 of 7)
\begin{tabular}{|c|c|}
\hline POINT & DESCRIPTION \\
\hline 2045 & SRC 1 Zero Sequence Voltage Angle \\
\hline 2046 & SRC 1 Positive Sequence Voltage Magnitude \\
\hline 2047 & SRC 1 Positive Sequence Voltage Angle \\
\hline 2048 & SRC 1 Negative Sequence Voltage Magnitude \\
\hline 2049 & SRC 1 Negative Sequence Voltage Angle \\
\hline 2050 & SRC 1 Three Phase Real Power \\
\hline 2051 & SRC 1 Phase A Real Power \\
\hline 2052 & SRC 1 Phase B Real Power \\
\hline 2053 & SRC 1 Phase C Real Power \\
\hline 2054 & SRC 1 Three Phase Reactive Power \\
\hline 2055 & SRC 1 Phase A Reactive Power \\
\hline 2056 & SRC 1 Phase B Reactive Power \\
\hline 2057 & SRC 1 Phase C Reactive Power \\
\hline 2058 & SRC 1 Three Phase Apparent Power \\
\hline 2059 & SRC 1 Phase A Apparent Power \\
\hline 2060 & SRC 1 Phase B Apparent Power \\
\hline 2061 & SRC 1 Phase C Apparent Power \\
\hline 2062 & SRC 1 Three Phase Power Factor \\
\hline 2063 & SRC 1 Phase A Power Factor \\
\hline 2064 & SRC 1 Phase B Power Factor \\
\hline 2065 & SRC 1 Phase C Power Factor \\
\hline 2066 & SRC 1 Positive Watthour \\
\hline 2067 & SRC 1 Negative Watthour \\
\hline 2068 & SRC 1 Positive Varhour \\
\hline 2069 & SRC 1 Negative Varhour \\
\hline 2070 & SRC 1 Frequency \\
\hline 2071 & SRC 1 Demand la \\
\hline 2072 & SRC 1 Demand lb \\
\hline 2073 & SRC 1 Demand Ic \\
\hline 2074 & SRC 1 Demand Watt \\
\hline 2075 & SRC 1 Demand Var \\
\hline 2076 & SRC 1 Demand Va \\
\hline 2077 & SRC 1 Va THD \\
\hline 2078 & SRC 1 Va Harmonics[0] \\
\hline 2079 & SRC 1 Va Harmonics[1] \\
\hline 2080 & SRC 1 Va Harmonics[2] \\
\hline 2081 & SRC 1 Va Harmonics[3] \\
\hline 2082 & SRC 1 Va Harmonics[4] \\
\hline 2083 & SRC 1 Va Harmonics[5] \\
\hline 2084 & SRC 1 Va Harmonics[6] \\
\hline 2085 & SRC 1 Va Harmonics[7] \\
\hline 2086 & SRC 1 Va Harmonics[8] \\
\hline 2087 & SRC 1 Va Harmonics[9] \\
\hline 2088 & SRC 1 Va Harmonics[10] \\
\hline 2089 & SRC 1 Va Harmonics[11] \\
\hline 2090 & SRC 1 Va Harmonics[12] \\
\hline
\end{tabular}

Table D-1: IEC 60870-5-104 POINTS (Sheet 3 of 7)
\begin{tabular}{|c|c|}
\hline POINT & DESCRIPTION \\
\hline 2091 & SRC 1 Va Harmonics[13] \\
\hline 2092 & SRC 1 Va Harmonics[14] \\
\hline 2093 & SRC 1 Va Harmonics[15] \\
\hline 2094 & SRC 1 Va Harmonics[16] \\
\hline 2095 & SRC 1 Va Harmonics[17] \\
\hline 2096 & SRC 1 Va Harmonics[18] \\
\hline 2097 & SRC 1 Va Harmonics[19] \\
\hline 2098 & SRC 1 Va Harmonics[20] \\
\hline 2099 & SRC 1 Va Harmonics[21] \\
\hline 2100 & SRC 1 Va Harmonics[22] \\
\hline 2101 & SRC 1 Va Harmonics[23] \\
\hline 2102 & SRC 1 Vb THD \\
\hline 2103 & SRC 1 Vb Harmonics[0] \\
\hline 2104 & SRC 1 Vb Harmonics[1] \\
\hline 2105 & SRC 1 Vb Harmonics[2] \\
\hline 2106 & SRC 1 Vb Harmonics[3] \\
\hline 2107 & SRC 1 Vb Harmonics[4] \\
\hline 2108 & SRC 1 Vb Harmonics[5] \\
\hline 2109 & SRC 1 Vb Harmonics[6] \\
\hline 2110 & SRC 1 Vb Harmonics[7] \\
\hline 2111 & SRC 1 Vb Harmonics[8] \\
\hline 2112 & SRC 1 Vb Harmonics[9] \\
\hline 2113 & SRC 1 Vb Harmonics[10] \\
\hline 2114 & SRC 1 Vb Harmonics[11] \\
\hline 2115 & SRC 1 Vb Harmonics[12] \\
\hline 2116 & SRC 1 Vb Harmonics[13] \\
\hline 2117 & SRC 1 Vb Harmonics[14] \\
\hline 2118 & SRC 1 Vb Harmonics[15] \\
\hline 2119 & SRC 1 Vb Harmonics[16] \\
\hline 2120 & SRC 1 Vb Harmonics[17] \\
\hline 2121 & SRC 1 Vb Harmonics[18] \\
\hline 2122 & SRC 1 Vb Harmonics[19] \\
\hline 2123 & SRC 1 Vb Harmonics[20] \\
\hline 2124 & SRC 1 Vb Harmonics[21] \\
\hline 2125 & SRC 1 Vb Harmonics[22] \\
\hline 2126 & SRC 1 Vb Harmonics[23] \\
\hline 2127 & SRC 1 Vc THD \\
\hline 2128 & SRC 1 Vc Harmonics[0] \\
\hline 2129 & SRC 1 Vc Harmonics[1] \\
\hline 2130 & SRC 1 Vc Harmonics[2] \\
\hline 2131 & SRC 1 Vc Harmonics[3] \\
\hline 2132 & SRC 1 Vc Harmonics[4] \\
\hline 2133 & SRC 1 Vc Harmonics[5] \\
\hline 2134 & SRC 1 Vc Harmonics[6] \\
\hline 2135 & SRC 1 Vc Harmonics[7] \\
\hline 2136 & SRC 1 Vc Harmonics[8] \\
\hline 2137 & SRC 1 Vc Harmonics[9] \\
\hline 2138 & SRC 1 Vc Harmonics[10] \\
\hline 2139 & SRC 1 Vc Harmonics[11] \\
\hline 2140 & SRC 1 Vc Harmonics[12] \\
\hline 2141 & SRC 1 Vc Harmonics[13] \\
\hline
\end{tabular}

Table D-1: IEC 60870-5-104 POINTS (Sheet 4 of 7)
\begin{tabular}{|c|c|}
\hline POINT & DESCRIPTION \\
\hline 2142 & SRC 1 Vc Harmonics[14] \\
\hline 2143 & SRC 1 Vc Harmonics[15] \\
\hline 2144 & SRC 1 Vc Harmonics[16] \\
\hline 2145 & SRC 1 Vc Harmonics[17] \\
\hline 2146 & SRC 1 Vc Harmonics[18] \\
\hline 2147 & SRC 1 Vc Harmonics[19] \\
\hline 2148 & SRC 1 Vc Harmonics[20] \\
\hline 2149 & SRC 1 Vc Harmonics[21] \\
\hline 2150 & SRC 1 Vc Harmonics[22] \\
\hline 2151 & SRC 1 Vc Harmonics[23] \\
\hline 2152 & SRC 1 la THD \\
\hline 2153 & SRC 1 la Harmonics[0] \\
\hline 2154 & SRC 1 la Harmonics[1] \\
\hline 2155 & SRC 1 la Harmonics[2] \\
\hline 2156 & SRC 1 la Harmonics[3] \\
\hline 2157 & SRC 1 la Harmonics[4] \\
\hline 2158 & SRC 1 la Harmonics[5] \\
\hline 2159 & SRC 1 la Harmonics[6] \\
\hline 2160 & SRC 1 la Harmonics[7] \\
\hline 2161 & SRC 1 la Harmonics[8] \\
\hline 2162 & SRC 1 la Harmonics[9] \\
\hline 2163 & SRC 1 la Harmonics[10] \\
\hline 2164 & SRC 1 la Harmonics[11] \\
\hline 2165 & SRC 1 la Harmonics[12] \\
\hline 2166 & SRC 1 la Harmonics[13] \\
\hline 2167 & SRC 1 la Harmonics[14] \\
\hline 2168 & SRC 1 la Harmonics[15] \\
\hline 2169 & SRC 1 la Harmonics[16] \\
\hline 2170 & SRC 1 la Harmonics[17] \\
\hline 2171 & SRC 1 la Harmonics[18] \\
\hline 2172 & SRC 1 la Harmonics[19] \\
\hline 2173 & SRC 1 la Harmonics[20] \\
\hline 2174 & SRC 1 la Harmonics[21] \\
\hline 2175 & SRC 1 la Harmonics[22] \\
\hline 2176 & SRC 1 la Harmonics[23] \\
\hline 2177 & SRC 1 lb THD \\
\hline 2178 & SRC 1 lb Harmonics[0] \\
\hline 2179 & SRC 1 lb Harmonics[1] \\
\hline 2180 & SRC 1 lb Harmonics[2] \\
\hline 2181 & SRC 1 lb Harmonics[3] \\
\hline 2182 & SRC 1 lb Harmonics[4] \\
\hline 2183 & SRC 1 lb Harmonics[5] \\
\hline 2184 & SRC 1 lb Harmonics[6] \\
\hline 2185 & SRC 1 lb Harmonics[7] \\
\hline 2186 & SRC 1 lb Harmonics[8] \\
\hline 2187 & SRC 1 lb Harmonics[9] \\
\hline 2188 & SRC 1 lb Harmonics[10] \\
\hline 2189 & SRC 1 lb Harmonics[11] \\
\hline 2190 & SRC 1 lb Harmonics[12] \\
\hline 2191 & SRC 1 lb Harmonics[13] \\
\hline 2192 & SRC 1 lb Harmonics[14] \\
\hline
\end{tabular}

Table D-1: IEC 60870-5-104 POINTS (Sheet 5 of 7)
\begin{tabular}{|c|c|}
\hline POINT & DESCRIPTION \\
\hline 2193 & SRC 1 lb Harmonics[15] \\
\hline 2194 & SRC 1 lb Harmonics[16] \\
\hline 2195 & SRC 1 lb Harmonics[17] \\
\hline 2196 & SRC 1 lb Harmonics[18] \\
\hline 2197 & SRC 1 lb Harmonics[19] \\
\hline 2198 & SRC 1 lb Harmonics[20] \\
\hline 2199 & SRC 1 lb Harmonics[21] \\
\hline 2200 & SRC 1 lb Harmonics[22] \\
\hline 2201 & SRC 1 lb Harmonics[23] \\
\hline 2202 & SRC 1 Ic THD \\
\hline 2203 & SRC 1 Ic Harmonics[0] \\
\hline 2204 & SRC 1 Ic Harmonics[1] \\
\hline 2205 & SRC 1 Ic Harmonics[2] \\
\hline 2206 & SRC 1 Ic Harmonics[3] \\
\hline 2207 & SRC 1 Ic Harmonics[4] \\
\hline 2208 & SRC 1 Ic Harmonics[5] \\
\hline 2209 & SRC 1 Ic Harmonics[6] \\
\hline 2210 & SRC 1 Ic Harmonics[7] \\
\hline 2211 & SRC 1 Ic Harmonics[8] \\
\hline 2212 & SRC 1 Ic Harmonics[9] \\
\hline 2213 & SRC 1 Ic Harmonics[10] \\
\hline 2214 & SRC 1 Ic Harmonics[11] \\
\hline 2215 & SRC 1 Ic Harmonics[12] \\
\hline 2216 & SRC 1 Ic Harmonics[13] \\
\hline 2217 & SRC 1 Ic Harmonics[14] \\
\hline 2218 & SRC 1 Ic Harmonics[15] \\
\hline 2219 & SRC 1 Ic Harmonics[16] \\
\hline 2220 & SRC 1 Ic Harmonics[17] \\
\hline 2221 & SRC 1 Ic Harmonics[18] \\
\hline 2222 & SRC 1 Ic Harmonics[19] \\
\hline 2223 & SRC 1 Ic Harmonics[20] \\
\hline 2224 & SRC 1 Ic Harmonics[21] \\
\hline 2225 & SRC 1 Ic Harmonics[22] \\
\hline 2226 & SRC 1 Ic Harmonics[23] \\
\hline 2227 & Sens Dir Power 1 Actual \\
\hline 2228 & Sens Dir Power 2 Actual \\
\hline 2229 & Rate of Change 1 Actual \\
\hline 2230 & Rate of Change 2 Actual \\
\hline 2231 & Rate of Change 3 Actual \\
\hline 2232 & Rate of Change 4 Actual \\
\hline 2233 & Breaker 1 Arcing Amp Phase A \\
\hline 2234 & Breaker 1 Arcing Amp Phase B \\
\hline 2235 & Breaker 1 Arcing Amp Phase C \\
\hline 2236 & Breaker 2 Arcing Amp Phase A \\
\hline 2237 & Breaker 2 Arcing Amp Phase B \\
\hline 2238 & Breaker 2 Arcing Amp Phase C \\
\hline 2239 & Fault 1 Prefault Phase A Current Magnitude \\
\hline 2240 & Fault 1 Prefault Phase A Current Angle \\
\hline 2241 & Fault 1 Prefault Phase B Current Magnitude \\
\hline 2242 & Fault 1 Prefault Phase B Current Angle \\
\hline 2243 & Fault 1 Prefault Phase C Current Magnitude \\
\hline
\end{tabular}

Table D-1: IEC 60870-5-104 POINTS (Sheet 6 of 7)
\begin{tabular}{|c|c|}
\hline POINT & DESCRIPTION \\
\hline 2244 & Fault 1 Prefault Phase C Current Angle \\
\hline 2245 & Fault 1 Prefault Phase A Voltage Magnitude \\
\hline 2246 & Fault 1 Prefault Phase A Voltage Angle \\
\hline 2247 & Fault 1 Prefault Phase B Voltage Magnitude \\
\hline 2248 & Fault 1 Prefault Phase B Voltage Angle \\
\hline 2249 & Fault 1 Prefault Phase C Voltage Magnitude \\
\hline 2250 & Fault 1 Prefault Phase C Voltage Angle \\
\hline 2251 & Fault 1 Postfault Phase A Current Magnitude \\
\hline 2252 & Fault 1 Postfault Phase A Current Angle \\
\hline 2253 & Fault 1 Postfault Phase B Current Magnitude \\
\hline 2254 & Fault 1 Postfault Phase B Current Angle \\
\hline 2255 & Fault 1 Postfault Phase C Current Magnitude \\
\hline 2256 & Fault 1 Postfault Phase C Current Angle \\
\hline 2257 & Fault 1 Postfault Phase A Voltage Magnitude \\
\hline 2258 & Fault 1 Postfault Phase A Voltage Angle \\
\hline 2259 & Fault 1 Postfault Phase B Voltage Magnitude \\
\hline 2260 & Fault 1 Postfault Phase B Voltage Angle \\
\hline 2261 & Fault 1 Postfault Phase C Voltage Magnitude \\
\hline 2262 & Fault 1 Postfault Phase C Voltage Angle \\
\hline 2263 & Fault 1 Type \\
\hline 2264 & Fault 1 Location \\
\hline 2265 & Synchrocheck 1 Delta Voltage \\
\hline 2266 & Synchrocheck 1 Delta Frequency \\
\hline 2267 & Synchrocheck 1 Delta Phase \\
\hline 2268 & Synchrocheck 2 Delta Voltage \\
\hline 2269 & Synchrocheck 2 Delta Frequency \\
\hline 2270 & Synchrocheck 2 Delta Phase \\
\hline 2271 & Tracking Frequency \\
\hline 2272 & FlexElement 1 Actual \\
\hline 2273 & FlexElement 2 Actual \\
\hline 2274 & FlexElement 3 Actual \\
\hline 2275 & FlexElement 4 Actual \\
\hline 2276 & FlexElement 5 Actual \\
\hline 2277 & FlexElement 6 Actual \\
\hline 2278 & FlexElement 7 Actual \\
\hline 2279 & FlexElement 8 Actual \\
\hline 2280 & Current Setting Group \\
\hline \multicolumn{2}{|l|}{P_ME_NC_1 Points} \\
\hline \[
\begin{aligned}
& 5000- \\
& 5262
\end{aligned}
\] & Threshold values for M_ME_NC_1 points \\
\hline \multicolumn{2}{|l|}{M_SP_NA_1 Points} \\
\hline 100-115 & Virtual Input States[0] \\
\hline 116-131 & Virtual Input States[1] \\
\hline 132-147 & Virtual Output States[0] \\
\hline 148-163 & Virtual Output States[1] \\
\hline 164-179 & Virtual Output States[2] \\
\hline 180-195 & Virtual Output States[3] \\
\hline 196-211 & Contact Input States[0] \\
\hline 212-227 & Contact Input States[1] \\
\hline 228-243 & Contact Input States[2] \\
\hline 244-259 & Contact Input States[3] \\
\hline 260-275 & Contact Input States[4] \\
\hline
\end{tabular}

\section*{APPENDIX D}

Table D-1: IEC 60870-5-104 POINTS (Sheet 7 of 7)
\begin{tabular}{|l|l|}
\hline POINT & DESCRIPTION \\
\hline \(276-291\) & Contact Input States[5] \\
\hline \(292-307\) & Contact Output States[0] \\
\hline \(308-323\) & Contact Output States[1] \\
\hline \(324-339\) & Contact Output States[2] \\
\hline \(340-355\) & Contact Output States[3] \\
\hline \(356-371\) & Remote Input x States[0] \\
\hline \(372-387\) & Remote Input x States[1] \\
\hline \(388-403\) & Remote Device \(\times\) States \\
\hline \(404-419\) & LED Column x State[0] \\
\hline \(420-435\) & LED Column x State[1] \\
\hline C_SC_NA_1 Points \\
\hline \(1100-1115\) & Virtual Input States[0] - No Select Required \\
\hline \(1116-1131\) & Virtual Input States[1] - Select Required \\
\hline M_IT_NA_1 Points \\
\hline 4000 & Digital Counter 1 Value \\
\hline 4001 & Digital Counter 2 Value \\
\hline 4002 & Digital Counter 3 Value \\
\hline 4003 & Digital Counter 4 Value \\
\hline 4004 & Digital Counter 5 Value \\
\hline 4005 & Digital Counter 6 Value \\
\hline 4006 & Digital Counter 7 Value \\
\hline 4007 & Digital Counter 8 Value \\
\hline
\end{tabular}

The following table provides a 'Device Profile Document' in the standard format defined in the DNP 3.0 Subset Definitions Document.

Table E-1: DNP V3.00 DEVICE PROFILE (Sheet 1 of 3)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{(Also see the IMPLEMENTATION TABLE in the following section)} \\
\hline \multicolumn{2}{|l|}{Vendor Name: General Electric Multilin} \\
\hline \multicolumn{2}{|l|}{Device Name: UR Series Relay} \\
\hline \begin{tabular}{l}
Highest DNP Level Supported: \\
For Requests: Level 2 \\
For Responses: Level 2
\end{tabular} & Device Function:
Master Slave \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Notable objects, functions, and/or qualifiers supported in addition to the Highest DNP Levels Supported (the complete list is described in the attached table): \\
Binary Inputs (Object 1) \\
Binary Input Changes (Object 2) \\
Binary Outputs (Object 10) \\
Binary Counters (Object 20) \\
Frozen Counters (Object 21) \\
Counter Change Event (Object 22) \\
Frozen Counter Event (Object 23) \\
Analog Inputs (Object 30) \\
Analog Input Changes (Object 32) \\
Analog Deadbands (Object 34)
\end{tabular}} \\
\hline \begin{tabular}{l}
Maximum Data Link Frame Size (octets): \\
Transmitted: 292 \\
Received: 292
\end{tabular} & \begin{tabular}{l}
Maximum Application Fragment Size (octets): \\
Transmitted: \(\mathbf{2 4 0}\) \\
Received: 2048
\end{tabular} \\
\hline Maximum Data Link Re-tries:
None
Fixed at 2
Configurable & \begin{tabular}{l}
Maximum Application Layer Re-tries: \\
None \\
Configurable
\end{tabular} \\
\hline Requires Data Link Layer Confirmation:
Never
Always
Sometimes
Configurable & \\
\hline
\end{tabular}

Table E－1：DNP V3．00 DEVICE PROFILE（Sheet 2 of 3）
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Requires Application Layer Confirmation：} & & & \\
\hline \multicolumn{6}{|l|}{Timeouts while waiting for：} \\
\hline \begin{tabular}{l}
Data Link Con \\
Complete App \\
Application Co \\
Complete App
\end{tabular} & \begin{tabular}{l}
irm： \\
Fragment： \\
firm： \\
Response：
\end{tabular} & \(\square\) None
\(\square\) None
\(\square\) None & \begin{tabular}{l}
Fixed at 3 s \\
Fixed at \(\qquad\)
Fixed at 4 s
Fixed at \(\qquad\)
\end{tabular} & \begin{tabular}{l}
\(\square\) Variable \\
\(\square\) Variable \\
\(\square\) Variable \\
\(\square\) Variable
\end{tabular} & Configurable
Configurable
Configurable
\(\square\) Configurable \\
\hline \multicolumn{6}{|l|}{Others：} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{3}{|l|}{No intentional delay} \\
\hline & & Inter－character Timeout： & \multicolumn{3}{|l|}{50 ms} \\
\hline \multicolumn{3}{|l|}{Need Time Delay：} & \multicolumn{3}{|l|}{Configurable（default＝ \(\mathbf{2 4}\) hrs．）} \\
\hline \multicolumn{3}{|l|}{Select／Operate Arm Timeout：} & \multicolumn{3}{|l|}{10 s} \\
\hline \multicolumn{3}{|l|}{Binary input change scanning period：} & \multicolumn{3}{|l|}{8 times per power system cycle} \\
\hline \multicolumn{3}{|l|}{Packed binary change process period：} & \multicolumn{3}{|l|}{1 s} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Analog input change scanning period：
Counter change scanning period：}} & \multicolumn{3}{|l|}{500 ms} \\
\hline & & & \multicolumn{3}{|l|}{500 ms} \\
\hline \multicolumn{3}{|l|}{Frozen counter event scanning period：} & \multicolumn{3}{|l|}{500 ms} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Unsolicited response notification delay：
Unsolicited response retry delay}} & \multicolumn{3}{|l|}{500 ms} \\
\hline & & & configurable 0 to & 0 sec ． & \\
\hline \multicolumn{6}{|l|}{Sends／Executes Control Operations：} \\
\hline \multicolumn{2}{|l|}{WRITE Binary Outputs} & ＊Never & \(\square\) Always & \(\square\) Sometimes & \(\square\) Configurable \\
\hline \multicolumn{2}{|l|}{SELECT／OPERATE} & \(\square\) Never & 入 Always & \(\square\) Sometimes & \(\square\) Configurable \\
\hline \multicolumn{2}{|l|}{DIRECT OPERATE} & \(\square\) Never & 入 Always & \(\square\) Sometimes & \(\square\) Configurable \\
\hline \multicolumn{3}{|l|}{DIRECT OPERATE－NO ACK \(\square\) Never} & 入 Alway & \(\square\) Sometimes & \(\square\) Configurable \\
\hline Count＞ 1 & （ Never & \(\square\) Always & \(\square\) Sometimes & \(\square\) Config & \\
\hline Pulse On & \(\square\) Never & \(\square\) Always & 入 Sometimes & \(\square\) Config & \\
\hline Pulse Off & \(\square\) Never & \(\square\) Alway & 入 Sometimes & \(\square\) Config & \\
\hline Latch On & \(\square\) Never & \(\square\) Always & （ Sometimes & \(\square\) Config & \\
\hline Latch Off & \(\square\) Never & \(\square\) Always & X Sometimes & \(\square\) Config & \\
\hline Queue & N Never & \(\square\) Alway & \(\square\) Sometimes & \(\square\) Config & \\
\hline Clear Queue & （ Never & \(\square\) Always & \(\square\) Sometimes & \(\square\) Config & \\
\hline \multicolumn{6}{|l|}{Explanation of＇Sometimes＇：Object 12 points are mapped to UR Virtual Inputs．The persistence of Virtual Inputs is determined by the VIRTUAL INPUT X TYPE settings．Both＂Pulse On＂and＂Latch On＂operations perform the same func－ tion in the UR；that is，the appropriate Virtual Input is put into the＂On＂state．If the Virtual Input is set to＂Self－Reset＂， it will reset after one pass of FlexLogic \({ }^{\text {TM }}\) ．The On／Off times and Count value are ignored．＂Pulse Off＂and＂Latch Off＂ operations put the appropriate Virtual Input into the＂Off＂state．＂Trip＂and＂Close＂operations both put the appropriate Virtual Input into the＂On＂state．} \\
\hline
\end{tabular}

Table E-1: DNP V3.00 DEVICE PROFILE (Sheet 3 of 3)
\begin{tabular}{|c|c|}
\hline Reports Binary Input Change Events when no specific variation requested:
Never
Only time-tagged
Only non-time-tagged
Configurable & Reports time-tagged Binary Input Change Events when no specific variation requested:
Never
Binary Input Change With Time
Binary Input Change With Relative Time
Configurable (attach explanation) \\
\hline Sends Unsolicited Responses: & \begin{tabular}{l}
Sends Static Data in Unsolicited Responses:
Never
When Device Restarts
When Status Flags Change \\
No other options are permitted.
\end{tabular} \\
\hline \begin{tabular}{l}
Default Counter Object/Variation:
No Counters Reported
Configurable (attach explanation)
Default Object: 20 \\
Default Variation: 1
Point-by-point list attached
\end{tabular} & Counters Roll Over at:
No Counters Reported
Configurable (attach explanation)
16 Bits (Counter 8)
32 Bits (Counters 0 to 7, 9)
Other Value: \(\qquad\)
Point-by-point list attached \\
\hline Sends Multi-Fragment Responses:
Yes
No & \\
\hline
\end{tabular}

The following table identifies the variations, function codes, and qualifiers supported by the UR in both request messages and in response messages. For static (non-change-event) objects, requests sent with qualifiers 00, 01, 06, 07, or 08, will be responded with qualifiers 00 or 01 . Static object requests sent with qualifiers 17 or 28 will be responded with qualifiers 17 or 28. For change-event objects, qualifiers 17 or 28 are always responded.

Table E-2: IMPLEMENTATION TABLE (Sheet 1 of 4)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{OBJECT} & \multicolumn{2}{|l|}{REQUEST} & \multicolumn{2}{|l|}{RESPONSE} \\
\hline \[
\begin{aligned}
& \text { OBJECT } \\
& \text { NO. }
\end{aligned}
\] & VARIATION NO. & DESCRIPTION & \[
\begin{aligned}
& \text { FUNCTION } \\
& \text { CODES (DEC) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { QUALIFIER } \\
& \text { CODES (HEX) } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FUNCTION } \\
& \text { CODES (DEC) } \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l}
\hline \text { QUALIFIER } \\
\text { CODES (HEX) } \\
\hline
\end{array}
\] \\
\hline \multirow[t]{3}{*}{1} & 0 & Binary Input (Variation 0 is used to request default variation) & \[
\begin{aligned}
& \hline 1 \text { (read) } \\
& 22 \text { (assign class) }
\end{aligned}
\] & \begin{tabular}{l}
00, 01 (start-stop) \\
06 (no range, or all) \\
07, 08 (limited quantity) \\
17, 28 (index)
\end{tabular} & & \\
\hline & 1 & Binary Input & \[
\begin{aligned}
& 1 \text { (read) } \\
& 22 \text { (assign class) }
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 00,01 \text { (start-stop) } \\
06 \text { (no range, or all) } \\
07,08 \text { (limited quantity) } \\
17,28 \text { (index) }
\end{array}
\] & 129 (response) & \[
\begin{aligned}
& \hline 00,01 \text { (start-stop) } \\
& 17,28 \text { (index) } \\
& \text { (see Note 2) }
\end{aligned}
\] \\
\hline & 2 & Binary Input with Status (default - see Note 1) & \[
\begin{aligned}
& 1 \text { (read) } \\
& 22 \text { (assign class) }
\end{aligned}
\] & 00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index) & 129 (response) & \[
\begin{gathered}
\text { 00, } 01 \text { (start-stop) } \\
\text { 17, } 28 \text { (index) } \\
\text { (see Note 2) }
\end{gathered}
\] \\
\hline \multirow[t]{4}{*}{2} & 0 & Binary Input Change (Variation 0 is used to request default variation) & 1 (read) & 06 (no range, or all) 07, 08 (limited quantity) & & \\
\hline & 1 & Binary Input Change without Time & 1 (read) & 06 (no range, or all) 07, 08 (limited quantity) & \[
\begin{aligned}
& 129 \text { (response) } \\
& 130 \text { (unsol. resp.) }
\end{aligned}
\] & 17, 28 (index) \\
\hline & 2 & Binary Input Change with Time (default - see Note 1) & 1 (read) & 06 (no range, or all) 07, 08 (limited quantity) & \[
\begin{aligned}
& \hline 129 \text { (response } \\
& 130 \text { (unsol. resp.) }
\end{aligned}
\] & 17, 28 (index) \\
\hline & 3
(parse only) & Binary Input Change with Relative Time & 1 (read) & 06 (no range, or all) 07, 08 (limited quantity) & & \\
\hline \multirow[t]{2}{*}{10} & 0 & Binary Output Status (Variation 0 is used to request default variation) & 1 (read) & \[
\begin{array}{|l|}
\hline 00,01 \text { (start-stop) } \\
06 \text { (no range, or all) } \\
07,08 \text { (limited quantity) } \\
17,28 \text { (index) } \\
\hline
\end{array}
\] & & \\
\hline & 2 & Binary Output Status (default - see Note 1) & 1 (read) & 00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index) & 129 (response) & \[
\begin{gathered}
\text { 00, } 01 \text { (start-stop) } \\
\text { 17, } 28 \text { (index) } \\
\text { (see Note 2) }
\end{gathered}
\] \\
\hline 12 & 1 & Control Relay Output Block & 3 (select)
4 (operate)
5 (direct op)
6 (dir. op, noack) & \[
\begin{aligned}
& \hline 00,01 \text { (start-stop) } \\
& 07,08 \text { (limited quantity) } \\
& 17,28 \text { (index) }
\end{aligned}
\] & 129 (response) & echo of request \\
\hline \multirow[t]{2}{*}{20} & 0 & Binary Counter (Variation 0 is used to request default variation) & \[
\begin{array}{|l|}
\hline 1 \text { (read) } \\
7 \text { (freeze) } \\
8 \text { (freeze noack) } \\
9 \text { (freeze clear) } \\
10 \text { (frz. cl. noack) } \\
22 \text { (assign class) }
\end{array}
\] & 00, 01 (start-stop) 06(no range, or all) 07, 08 (limited quantity) 17, 28 (index) & & \\
\hline & 1 & 32-Bit Binary Counter (default - see Note 1) & 1 (read)
7 (freeze)
8 (freeze noack)
9 (freeze clear)
10 (frz. cl. noack)
22 (assign class) & \[
\begin{array}{|l|}
\hline 00,01 \text { (start-stop) } \\
06 \text { (no range, or all) } \\
07,08 \text { (limited quantity) } \\
17,28 \text { (index) }
\end{array}
\] & 129 (response) & \[
\begin{gathered}
\text { 00, } 01 \text { (start-stop) } \\
\text { 17, } 28 \text { (index) } \\
\text { (see Note 2) }
\end{gathered}
\] \\
\hline
\end{tabular}

Note 1: A Default variation refers to the variation responded when variation 0 is requested and/or in class 0,1 , 2, or 3 scans. Type 30 (Analog Input) data is limited to data that is actually possible to be used in the UR, based on the product order code. For example, Signal Source data from source numbers that cannot be used is not included. This optimizes the class 0 poll data size.
Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28 , respectively. Otherwise, static object requests sent with qualifiers \(00,01,06,07\), or 08 , will be responded with qualifiers 00 or 01 (for changeevent objects, qualifiers 17 or 28 are always responded.)
Note 3: Cold restarts are implemented the same as warm restarts - the F60 is not restarted, but the DNP process is restarted.

Table E-2: IMPLEMENTATION TABLE (Sheet 2 of 4)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{OBJECT} & \multicolumn{2}{|l|}{REQUEST} & \multicolumn{2}{|l|}{RESPONSE} \\
\hline \[
\begin{array}{|c}
\hline \text { OBJECT } \\
\text { NO. }
\end{array}
\] & \[
\begin{aligned}
& \text { VARIATION } \\
& \text { NO. }
\end{aligned}
\] & DESCRIPTION & \[
\begin{aligned}
& \hline \text { FUNCTION } \\
& \text { CODES (DEC) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { QUALIFIER } \\
& \text { CODES (HEX) }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { FUNCTION } \\
& \text { CODES (DEC) }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { QUALIFIER } \\
& \text { CODES (HEX) }
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
20 \\
\text { cont'd }
\end{gathered}
\]} & 2 & 16-Bit Binary Counter & \begin{tabular}{|l}
1 (read) \\
7 (freeze) \\
8 (freeze noack) \\
9 (freeze clear) \\
10 (frz. cl. noack) \\
22 (assign class)
\end{tabular} & \begin{tabular}{l}
00, 01 (start-stop) \\
06 (no range, or all) \\
07, 08 (limited quantity) \\
17, 28 (index)
\end{tabular} & 129 (response) & \[
\begin{gathered}
\text { 00, } 01 \text { (start-stop) } \\
\text { 17, } 28 \text { (index) } \\
\text { (see Note 2) }
\end{gathered}
\] \\
\hline & 5 & 32-Bit Binary Counter without Flag & \begin{tabular}{|l}
1 (read) \\
7 (freeze) \\
8 (freeze noack) \\
9 (freeze clear) \\
10 (frz. cl. noack) \\
22 (assign class)
\end{tabular} & \[
\begin{array}{|l|}
\hline 00,01 \text { (start-stop) } \\
06 \text { (no range, or all) } \\
07,08 \text { (limited quantity) } \\
17,28 \text { (index) }
\end{array}
\] & 129 (response) & \[
\begin{gathered}
\hline 00,01 \text { (start-stop) } \\
\text { 17, } 28 \text { (index) } \\
\text { (see Note 2) }
\end{gathered}
\] \\
\hline & 6 & 16-Bit Binary Counter without Flag & \begin{tabular}{|l}
1 (read) \\
7 (freeze) \\
8 (freeze noack) \\
9 (freeze clear) \\
10 (frz. cl. noack) \\
22 (assign class)
\end{tabular} & \[
\begin{array}{|l|}
\hline 00,01 \text { (start-stop) } \\
06 \text { (no range, or all) } \\
07,08 \text { (limited quantity) } \\
17,28 \text { (index) }
\end{array}
\] & 129 (response) & \[
\begin{gathered}
\hline 00,01 \text { (start-stop) } \\
\text { 17, } 28 \text { (index) } \\
\text { (see Note 2) }
\end{gathered}
\] \\
\hline \multirow[t]{5}{*}{21} & 0 & Frozen Counter (Variation 0 is used to request default variation) & 1 (read)
22 (assign class) & 00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index) & & \\
\hline & 1 & 32-Bit Frozen Counter (default - see Note 1) & 1 (read)
22 (assign class) & 00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index) & 129 (response) & 00, 01 (start-stop)
17, 28 (index)
(see Note 2) \\
\hline & 2 & 16-Bit Frozen Counter & 1 (read)
22 (assign class) & \[
\begin{array}{|l|}
\hline 00,01 \text { (start-stop) } \\
06 \text { (no range, or all) } \\
07,08 \text { (limited quantity) } \\
17,28 \text { (index) }
\end{array}
\] & 129 (response) & 00, 01 (start-stop) 17, 28 (index) (see Note 2) \\
\hline & 9 & 32-Bit Frozen Counter without Flag & \[
\begin{aligned}
& \hline 1 \text { (read) } \\
& 22 \text { (assign class) }
\end{aligned}
\] & 00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index) & 129 (response) & \[
\begin{gathered}
\text { 00, } 01 \text { (start-stop) } \\
\text { 17, } 28 \text { (index) } \\
\text { (see Note 2) }
\end{gathered}
\] \\
\hline & 10 & 16-Bit Frozen Counter without Flag & \[
\begin{aligned}
& 1 \text { (read) } \\
& 22 \text { (assign class) }
\end{aligned}
\] & 00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index) & 129 (response) & \[
\begin{array}{|c}
\hline 00,01 \text { (start-stop) } \\
\text { 17, } 28 \text { (index) } \\
\text { (see Note 2) }
\end{array}
\] \\
\hline \multirow[t]{5}{*}{22} & 0 & Counter Change Event (Variation 0 is used to request default variation) & 1 (read) & 06 (no range, or all) 07, 08 (limited quantity) & & \\
\hline & 1 & 32-Bit Counter Change Event (default - see Note 1) & 1 (read) & 06 (no range, or all) 07, 08 (limited quantity) & 129 (response)
130 (unsol. resp.) & 17, 28 (index) \\
\hline & 2 & 16-Bit Counter Change Event & 1 (read) & 06 (no range, or all) 07, 08 (limited quantity) & 129 (response)
130 (unsol. resp.) & 17, 28 (index) \\
\hline & 5 & 32-Bit Counter Change Event with Time & 1 (read) & 06 (no range, or all) 07, 08 (limited quantity) & \[
\begin{aligned}
& 129 \text { (response) } \\
& 130 \text { (unsol. resp.) }
\end{aligned}
\] & 17, 28 (index) \\
\hline & 6 & 16-Bit Counter Change Event with Time & 1 (read) & 06 (no range, or all) 07, 08 (limited quantity) & 129 (response)
130 (unsol. resp.) & 17, 28 (index) \\
\hline \multirow[t]{3}{*}{23} & 0 & Frozen Counter Event (Variation 0 is used to request default variation) & 1 (read) & 06 (no range, or all) 07, 08 (limited quantity) & & \\
\hline & 1 & 32-Bit Frozen Counter Event (default - see Note 1) & 1 (read) & 06 (no range, or all) 07, 08 (limited quantity) & 129 (response)
130 (unsol. resp.) & 17, 28 (index) \\
\hline & 2 & 16-Bit Frozen Counter Event & 1 (read) & 06 (no range, or all) 07, 08 (limited quantity) & \[
\begin{aligned}
& 129 \text { (response) } \\
& 130 \text { (unsol. resp.) }
\end{aligned}
\] & 17, 28 (index) \\
\hline
\end{tabular}

Note 1: A Default variation refers to the variation responded when variation 0 is requested and/or in class \(0,1,2\), or 3 scans. Type 30 (Analog Input) data is limited to data that is actually possible to be used in the UR, based on the product order code. For example, Signal Source data from source numbers that cannot be used is not included. This optimizes the class 0 poll data size.
Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28 , respectively. Otherwise, static object requests sent with qualifiers \(00,01,06,07\), or 08 , will be responded with qualifiers 00 or 01 (for changeevent objects, qualifiers 17 or 28 are always responded.)
Note 3: Cold restarts are implemented the same as warm restarts - the F60 is not restarted, but the DNP process is restarted.

Table E-2: IMPLEMENTATION TABLE (Sheet 3 of 4)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{OBJECT} & \multicolumn{2}{|l|}{REQUEST} & \multicolumn{2}{|l|}{RESPONSE} \\
\hline \[
\begin{aligned}
& \text { OBJECT } \\
& \text { NO. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { VARIATION } \\
& \text { NO. }
\end{aligned}
\] & DESCRIPTION & \[
\begin{aligned}
& \hline \text { FUNCTION } \\
& \text { CODES (DEC) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { QUALIFIER } \\
& \text { CODES (HEX) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FUNCTION } \\
& \text { CODES (DEC) }
\end{aligned}
\] & QUALIFIER
CODES (HEX) \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
23 \\
\text { cont'd }
\end{gathered}
\]} & 5 & 32-Bit Frozen Counter Event with Time & 1 (read) & 06 (no range, or all) 07, 08 (limited quantity) & 129 (response)
130 (unsol. resp.) & 17, 28 (index) \\
\hline & 6 & 16-Bit Frozen Counter Event with Time & 1 (read) & 06 (no range, or all) 07, 08 (limited quantity) & \[
\begin{aligned}
& 129 \text { (response) } \\
& 130 \text { (unsol. resp.) }
\end{aligned}
\] & 17, 28 (index) \\
\hline \multirow[t]{6}{*}{30} & 0 & Analog Input (Variation 0 is used to request default variation) & \[
\begin{aligned}
& \hline 1 \text { (read) } \\
& 22 \text { (assign class) }
\end{aligned}
\] & \begin{tabular}{l}
00, 01 (start-stop) \\
06 (no range, or all) \\
07, 08 (limited quantity) \\
17, 28 (index)
\end{tabular} & & \\
\hline & 1 & 32-Bit Analog Input (default - see Note 1) & \[
\begin{aligned}
& \hline 1 \text { (read) } \\
& 22 \text { (assign class) }
\end{aligned}
\] & 00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index) & 129 (response) & \[
\begin{gathered}
\text { 00, } 01 \text { (start-stop) } \\
17,28 \text { (index) } \\
\text { (see Note 2) }
\end{gathered}
\] \\
\hline & 2 & 16-Bit Analog Input & \[
\begin{array}{|l|}
\hline 1 \text { (read) } \\
22 \text { (assign class) }
\end{array}
\] & 00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index) & 129 (response) & \[
\begin{gathered}
\text { 00, } 01 \text { (start-stop) } \\
17,28 \text { (index) } \\
\text { (see Note 2) }
\end{gathered}
\] \\
\hline & 3 & 32-Bit Analog Input without Flag & \[
\begin{array}{|l|}
\hline 1 \text { (read) } \\
22 \text { (assign class) }
\end{array}
\] & 00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index) & 129 (response) & \[
\begin{gathered}
\hline 00,01 \text { (start-stop) } \\
\text { 17, } 28 \text { (index) } \\
\text { (see Note 2) }
\end{gathered}
\] \\
\hline & 4 & 16-Bit Analog Input without Flag & \[
\begin{array}{|l|}
\hline 1 \text { (read) } \\
22 \text { (assign class) }
\end{array}
\] & 00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index) & 129 (response) & \[
\begin{gathered}
\text { 00, } 01 \text { (start-stop) } \\
\text { 17, } 28 \text { (index) } \\
\text { (see Note 2) }
\end{gathered}
\] \\
\hline & 5 & short floating point & \[
\begin{array}{|l|}
\hline 1 \text { (read) } \\
22 \text { (assign class) }
\end{array}
\] & 00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28(index) & 129 (response) & \[
\begin{gathered}
\text { 00, } 01 \text { (start-stop) } \\
17,28 \text { (index) } \\
\text { (see Note 2) }
\end{gathered}
\] \\
\hline \multirow[t]{7}{*}{32} & 0 & Analog Change Event (Variation 0 is used to request default variation) & 1 (read) & 06 (no range, or all) 07, 08 (limited quantity) & & \\
\hline & 1 & 32-Bit Analog Change Event without Time (default - see Note 1) & 1 (read) & 06 (no range, or all) 07, 08 (limited quantity) & 129 (response) 130 (unsol. resp.) & 17, 28 (index) \\
\hline & 2 & 16-Bit Analog Change Event without Time & 1 (read) & 06 (no range, or all) 07, 08 (limited quantity) & 129 (response) 130 (unsol. resp.) & 17, 28 (index) \\
\hline & 3 & 32-Bit Analog Change Event with Time & 1 (read) & 06 (no range, or all) 07, 08 (limited quantity) & \begin{tabular}{l}
129 (response) \\
130 (unsol. resp.)
\end{tabular} & 17, 28 (index) \\
\hline & 4 & 16-Bit Analog Change Event with Time & 1 (read) & 06 (no range, or all) 07, 08 (limited quantity) & 129 (response) 130 (unsol. resp.) & 17, 28 (index) \\
\hline & 5 & short floating point Analog Change Event without Time & 1 (read) & 06 (no range, or all) 07, 08 (limited quantity) & 129 (response) 130 (unsol. resp.) & 17, 28 (index) \\
\hline & 7 & short floating point Analog Change Event with Time & 1 (read) & 06 (no range, or all) 07, 08 (limited quantity) & \[
\begin{aligned}
& 129 \text { (response) } \\
& 130 \text { (unsol. resp.) }
\end{aligned}
\] & 17, 28 (index) \\
\hline \multirow[t]{3}{*}{34} & 0 & Analog Input Reporting Deadband (Variation 0 is used to request default variation) & 1 (read) & \begin{tabular}{l}
00, 01 (start-stop) \\
06 (no range, or all) \\
07, 08 (limited quantity) \\
17, 28 (index)
\end{tabular} & & \\
\hline & 1 & 16-bit Analog Input Reporting Deadband (default - see Note 1) & 1 (read) & 00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index) & 129 (response) & \[
\begin{gathered}
\text { 00, } 01 \text { (start-stop) } \\
\text { 17, } 28 \text { (index) } \\
\text { (see Note 2) }
\end{gathered}
\] \\
\hline & & & 2 (write) & \[
\begin{array}{|l|}
\hline 00,01 \text { (start-stop) } \\
07,08 \text { (limited quantity) } \\
17,28 \text { (index) } \\
\hline
\end{array}
\] & & \\
\hline
\end{tabular}

Note 1: A Default variation refers to the variation responded when variation 0 is requested and/or in class 0, 1, 2, or 3 scans. Type 30 (Analog Input) data is limited to data that is actually possible to be used in the UR, based on the product order code. For example, Signal Source data from source numbers that cannot be used is not included. This optimizes the class 0 poll data size.
Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28 , respectively. Otherwise, static object requests sent with qualifiers \(00,01,06,07\), or 08 , will be responded with qualifiers 00 or 01 (for changeevent objects, qualifiers 17 or 28 are always responded.)
Note 3: Cold restarts are implemented the same as warm restarts - the F60 is not restarted, but the DNP process is restarted.

Table E-2: IMPLEMENTATION TABLE (Sheet 4 of 4)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{OBJECT} & \multicolumn{2}{|l|}{REQUEST} & \multicolumn{2}{|l|}{RESPONSE} \\
\hline \[
\begin{gathered}
\text { OBJECT } \\
\text { NO. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { VARIATION } \\
& \text { NO. }
\end{aligned}
\] & DESCRIPTION & \[
\begin{aligned}
& \hline \text { FUNCTION } \\
& \text { CODES (DEC) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { QUALIFIER } \\
& \text { CODES (HEX) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FUNCTION } \\
& \text { CODES (DEC) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { QUALIFIER } \\
& \text { CODES (HEX) }
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
34 \\
\text { cont'd }
\end{gathered}
\]} & \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{32-bit Analog Input Reporting Deadband} & 1 (read) & 00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index) & 129 (response) & \[
\begin{gathered}
00,01 \text { (start-stop) } \\
17,28 \text { (index) } \\
\text { (see Note 2) }
\end{gathered}
\] \\
\hline & & & 2 (write) & \[
\begin{array}{|l|}
\hline 00,01 \text { (start-stop) } \\
\text { 07, } 08 \text { (limited quantity) } \\
17,28 \text { (index) } \\
\hline
\end{array}
\] & & \\
\hline & 3 & Short floating point Analog Input Reporting Deadband & 1 (read) & 00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index) & 129 (response) & 00, 01 (start-stop)
17,28 (index)
(see Note 2) \\
\hline \multirow[t]{2}{*}{50} & 0 & Time and Date & 1 (read) & 00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index) & 129 (response) & 00, 01 (start-stop)
17,28 (index)
(see Note 2) \\
\hline & 1 & Time and Date (default - see Note 1) & \[
\begin{aligned}
& 1 \text { (read) } \\
& 2 \text { (write) }
\end{aligned}
\] & \[
\begin{aligned}
& \hline 00,01 \text { (start-stop) } \\
& 06 \text { (no range, or all) } \\
& 07 \text { (limited qty=1) } \\
& 08 \text { (limited quantity) } \\
& 17,28 \text { (index) }
\end{aligned}
\] & 129 (response) & 00, 01 (start-stop)
17,28 (index)
(see Note 2) \\
\hline 52 & 2 & Time Delay Fine & & & 129 (response) & \[
\begin{array}{|l|}
\hline 07 \text { (limited quantity) } \\
\text { (quantity }=1 \text {) } \\
\hline
\end{array}
\] \\
\hline \multirow[t]{5}{*}{60} & 0 & Class 0, 1, 2, and 3 Data & 1 (read)
20 (enable unsol)
21 (disable unsol)
22 (assign class) & 06 (no range, or all) & & \\
\hline & 1 & Class 0 Data & 1 (read)
22 (assign class) & 06 (no range, or all) & & \\
\hline & 2 & Class 1 Data & 1 (read)
20 (enable unsol)
21 (disable unsol)
22 (assign class) & 06 (no range, or all) 07, 08 (limited quantity) & & \\
\hline & 3 & Class 2 Data & 1 (read)
20 (enable unsol)
21 (disable unsol)
22 (assign class) & 06 (no range, or all) 07, 08 (limited quantity) & & \\
\hline & 4 & Class 3 Data & 1 (read)
20 (enable unsol)
21 (disable unsol)
22 (assign class) & 06 (no range, or all) 07, 08 (limited quantity) & & \\
\hline 80 & 1 & Internal Indications & 2 (write) & \[
\begin{aligned}
& 00 \text { (start-stop) } \\
& \text { (index must }=7 \text {) }
\end{aligned}
\] & & \\
\hline --- & & No Object (function code only) see Note 3 & 13 (cold restart) & & & \\
\hline --- & & No Object (function code only) & 14 (warm restart) & & & \\
\hline --- & & No Object (function code only) & 23 (delay meas.) & & & \\
\hline
\end{tabular}

Note 1: A Default variation refers to the variation responded when variation 0 is requested and/or in class 0, 1, 2, or 3 scans. Type 30 (Analog Input) data is limited to data that is actually possible to be used in the UR, based on the product order code. For example, Signal Source data from source numbers that cannot be used is not included. This optimizes the class 0 poll data size.
Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28 , respectively. Otherwise, static object requests sent with qualifiers \(00,01,06,07\), or 08 , will be responded with qualifiers 00 or 01 (for changeevent objects, qualifiers 17 or 28 are always responded.)
Note 3: Cold restarts are implemented the same as warm restarts - the F60 is not restarted, but the DNP process is restarted.

The following table lists both Binary Counters (Object 20) and Frozen Counters (Object 21). When a freeze function is performed on a Binary Counter point, the frozen value is available in the corresponding Frozen Counter point.

\section*{BINARY INPUT POINTS}

Static (Steady-State) Object Number: 1
Change Event Object Number: 2
Request Function Codes supported: 1 (read), 22 (assign class)
Static Variation reported when variation 0 requested: 2 (Binary Input with status)
Change Event Variation reported when variation 0 requested: 2 (Binary Input Change with Time)
Change Event Scan Rate: 8 times per power system cycle
Change Event Buffer Size: 1000

Table E-3: BINARY INPUTS (Sheet 1 of 10)
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \text { POINT } \\
& \text { INDEX }
\end{aligned}
\] & NAME/DESCRIPTION & CHANGE EVENT CLASS (1/2/3/NONE) \\
\hline 0 & Virtual Input 1 & 2 \\
\hline 1 & Virtual Input 2 & 2 \\
\hline 2 & Virtual Input 3 & 2 \\
\hline 3 & Virtual Input 4 & 2 \\
\hline 4 & Virtual Input 5 & 2 \\
\hline 5 & Virtual Input 6 & 2 \\
\hline 6 & Virtual Input 7 & 2 \\
\hline 7 & Virtual Input 8 & 2 \\
\hline 8 & Virtual Input 9 & 2 \\
\hline 9 & Virtual Input 10 & 2 \\
\hline 10 & Virtual Input 11 & 2 \\
\hline 11 & Virtual Input 12 & 2 \\
\hline 12 & Virtual Input 13 & 2 \\
\hline 13 & Virtual Input 14 & 2 \\
\hline 14 & Virtual Input 15 & 2 \\
\hline 15 & Virtual Input 16 & 2 \\
\hline 16 & Virtual Input 17 & 2 \\
\hline 17 & Virtual Input 18 & 2 \\
\hline 18 & Virtual Input 19 & 2 \\
\hline 19 & Virtual Input 20 & 2 \\
\hline 20 & Virtual Input 21 & 2 \\
\hline 21 & Virtual Input 22 & 2 \\
\hline 22 & Virtual Input 23 & 2 \\
\hline 23 & Virtual Input 24 & 2 \\
\hline 24 & Virtual Input 25 & 2 \\
\hline 25 & Virtual Input 26 & 2 \\
\hline 26 & Virtual Input 27 & 2 \\
\hline 27 & Virtual Input 28 & 2 \\
\hline 28 & Virtual Input 29 & 2 \\
\hline 29 & Virtual Input 30 & 2 \\
\hline 30 & Virtual Input 31 & 2 \\
\hline 31 & Virtual Input 32 & 2 \\
\hline
\end{tabular}

Table E-3: BINARY INPUTS (Sheet 2 of 10)
\begin{tabular}{|c|c|c|}
\hline POINT
INDEX & NAME/DESCRIPTION & CHANGE EVENT CLASS (1/2/3/NONE) \\
\hline 32 & Virtual Output 1 & 2 \\
\hline 33 & Virtual Output 2 & 2 \\
\hline 34 & Virtual Output 3 & 2 \\
\hline 35 & Virtual Output 4 & 2 \\
\hline 36 & Virtual Output 5 & 2 \\
\hline 37 & Virtual Output 6 & 2 \\
\hline 38 & Virtual Output 7 & 2 \\
\hline 39 & Virtual Output 8 & 2 \\
\hline 40 & Virtual Output 9 & 2 \\
\hline 41 & Virtual Output 10 & 2 \\
\hline 42 & Virtual Output 11 & 2 \\
\hline 43 & Virtual Output 12 & 2 \\
\hline 44 & Virtual Output 13 & 2 \\
\hline 45 & Virtual Output 14 & 2 \\
\hline 46 & Virtual Output 15 & 2 \\
\hline 47 & Virtual Output 16 & 2 \\
\hline 48 & Virtual Output 17 & 2 \\
\hline 49 & Virtual Output 18 & 2 \\
\hline 50 & Virtual Output 19 & 2 \\
\hline 51 & Virtual Output 20 & 2 \\
\hline 52 & Virtual Output 21 & 2 \\
\hline 53 & Virtual Output 22 & 2 \\
\hline 54 & Virtual Output 23 & 2 \\
\hline 55 & Virtual Output 24 & 2 \\
\hline 56 & Virtual Output 25 & 2 \\
\hline 57 & Virtual Output 26 & 2 \\
\hline 58 & Virtual Output 27 & 2 \\
\hline 59 & Virtual Output 28 & 2 \\
\hline 60 & Virtual Output 29 & 2 \\
\hline 61 & Virtual Output 30 & 2 \\
\hline 62 & Virtual Output 31 & 2 \\
\hline 63 & Virtual Output 32 & 2 \\
\hline
\end{tabular}

Table E-3: BINARY INPUTS (Sheet 3 of 10)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
POINT \\
INDEX
\end{tabular} & NAME/DESCRIPTION & \[
\begin{aligned}
& \text { CHANGE EVENT } \\
& \text { CLASS (1/2/3/NONE) }
\end{aligned}
\] & POINT INDEX & NAME/DESCRIPTION & \[
\begin{aligned}
& \text { CHANGE EVENT } \\
& \text { CLASS (1/2/3/NONE) }
\end{aligned}
\] \\
\hline 64 & Virtual Output 33 & 2 & 113 & Contact Input 18 & 1 \\
\hline 65 & Virtual Output 34 & 2 & 114 & Contact Input 19 & 1 \\
\hline 66 & Virtual Output 35 & 2 & 115 & Contact Input 20 & 1 \\
\hline 67 & Virtual Output 36 & 2 & 116 & Contact Input 21 & 1 \\
\hline 68 & Virtual Output 37 & 2 & 117 & Contact Input 22 & 1 \\
\hline 69 & Virtual Output 38 & 2 & 118 & Contact Input 23 & 1 \\
\hline 70 & Virtual Output 39 & 2 & 119 & Contact Input 24 & 1 \\
\hline 71 & Virtual Output 40 & 2 & 120 & Contact Input 25 & 1 \\
\hline 72 & Virtual Output 41 & 2 & 121 & Contact Input 26 & 1 \\
\hline 73 & Virtual Output 42 & 2 & 122 & Contact Input 27 & 1 \\
\hline 74 & Virtual Output 43 & 2 & 123 & Contact Input 28 & 1 \\
\hline 75 & Virtual Output 44 & 2 & 124 & Contact Input 29 & 1 \\
\hline 76 & Virtual Output 45 & 2 & 125 & Contact Input 30 & 1 \\
\hline 77 & Virtual Output 46 & 2 & 126 & Contact Input 31 & 1 \\
\hline 78 & Virtual Output 47 & 2 & 127 & Contact Input 32 & 1 \\
\hline 79 & Virtual Output 48 & 2 & 128 & Contact Input 33 & 1 \\
\hline 80 & Virtual Output 49 & 2 & 129 & Contact Input 34 & 1 \\
\hline 81 & Virtual Output 50 & 2 & 130 & Contact Input 35 & 1 \\
\hline 82 & Virtual Output 51 & 2 & 131 & Contact Input 36 & 1 \\
\hline 83 & Virtual Output 52 & 2 & 132 & Contact Input 37 & 1 \\
\hline 84 & Virtual Output 53 & 2 & 133 & Contact Input 38 & 1 \\
\hline 85 & Virtual Output 54 & 2 & 134 & Contact Input 39 & 1 \\
\hline 86 & Virtual Output 55 & 2 & 135 & Contact Input 40 & 1 \\
\hline 87 & Virtual Output 56 & 2 & 136 & Contact Input 41 & 1 \\
\hline 88 & Virtual Output 57 & 2 & 137 & Contact Input 42 & 1 \\
\hline 89 & Virtual Output 58 & 2 & 138 & Contact Input 43 & 1 \\
\hline 90 & Virtual Output 59 & 2 & 139 & Contact Input 44 & 1 \\
\hline 91 & Virtual Output 60 & 2 & 140 & Contact Input 45 & 1 \\
\hline 92 & Virtual Output 61 & 2 & 141 & Contact Input 46 & 1 \\
\hline 93 & Virtual Output 62 & 2 & 142 & Contact Input 47 & 1 \\
\hline 94 & Virtual Output 63 & 2 & 143 & Contact Input 48 & 1 \\
\hline 95 & Virtual Output 64 & 2 & 144 & Contact Input 49 & 1 \\
\hline 96 & Contact Input 1 & 1 & 145 & Contact Input 50 & 1 \\
\hline 97 & Contact Input 2 & 1 & 146 & Contact Input 51 & 1 \\
\hline 98 & Contact Input 3 & 1 & 147 & Contact Input 52 & 1 \\
\hline 99 & Contact Input 4 & 1 & 148 & Contact Input 53 & 1 \\
\hline 100 & Contact Input 5 & 1 & 149 & Contact Input 54 & 1 \\
\hline 101 & Contact Input 6 & 1 & 150 & Contact Input 55 & 1 \\
\hline 102 & Contact Input 7 & 1 & 151 & Contact Input 56 & 1 \\
\hline 103 & Contact Input 8 & 1 & 152 & Contact Input 57 & 1 \\
\hline 104 & Contact Input 9 & 1 & 153 & Contact Input 58 & 1 \\
\hline 105 & Contact Input 10 & 1 & 154 & Contact Input 59 & 1 \\
\hline 106 & Contact Input 11 & 1 & 155 & Contact Input 60 & 1 \\
\hline 107 & Contact Input 12 & 1 & 156 & Contact Input 61 & 1 \\
\hline 108 & Contact Input 13 & 1 & 157 & Contact Input 62 & 1 \\
\hline 109 & Contact Input 14 & 1 & 158 & Contact Input 63 & 1 \\
\hline 110 & Contact Input 15 & 1 & 159 & Contact Input 64 & 1 \\
\hline 111 & Contact Input 16 & 1 & 160 & Contact Input 65 & 1 \\
\hline 112 & Contact Input 17 & 1 & 161 & Contact Input 66 & 1 \\
\hline
\end{tabular}

Table E-3: BINARY INPUTS (Sheet 5 of 10)
\begin{tabular}{|c|c|c|}
\hline POINT INDEX & NAME/DESCRIPTION & CHANGE EVENT CLASS (1/2/3/NONE) \\
\hline 162 & Contact Input 67 & 1 \\
\hline 163 & Contact Input 68 & 1 \\
\hline 164 & Contact Input 69 & 1 \\
\hline 165 & Contact Input 70 & 1 \\
\hline 166 & Contact Input 71 & 1 \\
\hline 167 & Contact Input 72 & 1 \\
\hline 168 & Contact Input 73 & 1 \\
\hline 169 & Contact Input 74 & 1 \\
\hline 170 & Contact Input 75 & 1 \\
\hline 171 & Contact Input 76 & 1 \\
\hline 172 & Contact Input 77 & 1 \\
\hline 173 & Contact Input 78 & 1 \\
\hline 174 & Contact Input 79 & 1 \\
\hline 175 & Contact Input 80 & 1 \\
\hline 176 & Contact Input 81 & 1 \\
\hline 177 & Contact Input 82 & 1 \\
\hline 178 & Contact Input 83 & 1 \\
\hline 179 & Contact Input 84 & 1 \\
\hline 180 & Contact Input 85 & 1 \\
\hline 181 & Contact Input 86 & 1 \\
\hline 182 & Contact Input 87 & 1 \\
\hline 183 & Contact Input 88 & 1 \\
\hline 184 & Contact Input 89 & 1 \\
\hline 185 & Contact Input 90 & 1 \\
\hline 186 & Contact Input 91 & 1 \\
\hline 187 & Contact Input 92 & 1 \\
\hline 188 & Contact Input 93 & 1 \\
\hline 189 & Contact Input 94 & 1 \\
\hline 190 & Contact Input 95 & 1 \\
\hline 191 & Contact Input 96 & 1 \\
\hline 192 & Contact Output 1 & 1 \\
\hline 193 & Contact Output 2 & 1 \\
\hline 194 & Contact Output 3 & 1 \\
\hline 195 & Contact Output 4 & 1 \\
\hline 196 & Contact Output 5 & 1 \\
\hline 197 & Contact Output 6 & 1 \\
\hline 198 & Contact Output 7 & 1 \\
\hline 199 & Contact Output 8 & 1 \\
\hline 200 & Contact Output 9 & 1 \\
\hline 201 & Contact Output 10 & 1 \\
\hline 202 & Contact Output 11 & 1 \\
\hline 203 & Contact Output 12 & 1 \\
\hline 204 & Contact Output 13 & 1 \\
\hline 205 & Contact Output 14 & 1 \\
\hline 206 & Contact Output 15 & 1 \\
\hline 207 & Contact Output 16 & 1 \\
\hline 208 & Contact Output 17 & 1 \\
\hline 209 & Contact Output 18 & 1 \\
\hline 210 & Contact Output 19 & 1 \\
\hline
\end{tabular}

Table E-3: BINARY INPUTS (Sheet 6 of 10)
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
POINT \\
INDEX
\end{tabular} & NAME/DESCRIPTION & CHANGE EVENT CLASS (1/2/3/NONE) \\
\hline 211 & Contact Output 20 & 1 \\
\hline 212 & Contact Output 21 & 1 \\
\hline 213 & Contact Output 22 & 1 \\
\hline 214 & Contact Output 23 & 1 \\
\hline 215 & Contact Output 24 & 1 \\
\hline 216 & Contact Output 25 & 1 \\
\hline 217 & Contact Output 26 & 1 \\
\hline 218 & Contact Output 27 & 1 \\
\hline 219 & Contact Output 28 & 1 \\
\hline 220 & Contact Output 29 & 1 \\
\hline 221 & Contact Output 30 & 1 \\
\hline 222 & Contact Output 31 & 1 \\
\hline 223 & Contact Output 32 & 1 \\
\hline 224 & Contact Output 33 & 1 \\
\hline 225 & Contact Output 34 & 1 \\
\hline 226 & Contact Output 35 & 1 \\
\hline 227 & Contact Output 36 & 1 \\
\hline 228 & Contact Output 37 & 1 \\
\hline 229 & Contact Output 38 & 1 \\
\hline 230 & Contact Output 39 & 1 \\
\hline 231 & Contact Output 40 & 1 \\
\hline 232 & Contact Output 41 & 1 \\
\hline 233 & Contact Output 42 & 1 \\
\hline 234 & Contact Output 43 & 1 \\
\hline 235 & Contact Output 44 & 1 \\
\hline 236 & Contact Output 45 & 1 \\
\hline 237 & Contact Output 46 & 1 \\
\hline 238 & Contact Output 47 & 1 \\
\hline 239 & Contact Output 48 & 1 \\
\hline 240 & Contact Output 49 & 1 \\
\hline 241 & Contact Output 50 & 1 \\
\hline 242 & Contact Output 51 & 1 \\
\hline 243 & Contact Output 52 & 1 \\
\hline 244 & Contact Output 53 & 1 \\
\hline 245 & Contact Output 54 & 1 \\
\hline 246 & Contact Output 55 & 1 \\
\hline 247 & Contact Output 56 & 1 \\
\hline 248 & Contact Output 57 & 1 \\
\hline 249 & Contact Output 58 & 1 \\
\hline 250 & Contact Output 59 & 1 \\
\hline 251 & Contact Output 60 & 1 \\
\hline 252 & Contact Output 61 & 1 \\
\hline 253 & Contact Output 62 & 1 \\
\hline 254 & Contact Output 63 & 1 \\
\hline 255 & Contact Output 64 & 1 \\
\hline 256 & Remote Input 1 & 1 \\
\hline 257 & Remote Input 2 & 1 \\
\hline 258 & Remote Input 3 & 1 \\
\hline 259 & Remote Input 4 & 1 \\
\hline
\end{tabular}

Table E-3: BINARY INPUTS (Sheet 7 of 10)
\begin{tabular}{|c|c|c|}
\hline POINT INDEX & NAME/DESCRIPTION & CHANGE EVENT CLASS (1/2/3/NONE) \\
\hline 260 & Remote Input 5 & 1 \\
\hline 261 & Remote Input 6 & 1 \\
\hline 262 & Remote Input 7 & 1 \\
\hline 263 & Remote Input 8 & 1 \\
\hline 264 & Remote Input 9 & 1 \\
\hline 265 & Remote Input 10 & 1 \\
\hline 266 & Remote Input 11 & 1 \\
\hline 267 & Remote Input 12 & 1 \\
\hline 268 & Remote Input 13 & 1 \\
\hline 269 & Remote Input 14 & 1 \\
\hline 270 & Remote Input 15 & 1 \\
\hline 271 & Remote Input 16 & 1 \\
\hline 272 & Remote Input 17 & 1 \\
\hline 273 & Remote Input 18 & 1 \\
\hline 274 & Remote Input 19 & 1 \\
\hline 275 & Remote Input 20 & 1 \\
\hline 276 & Remote Input 21 & 1 \\
\hline 277 & Remote Input 22 & 1 \\
\hline 278 & Remote Input 23 & 1 \\
\hline 279 & Remote Input 24 & 1 \\
\hline 280 & Remote Input 25 & 1 \\
\hline 281 & Remote Input 26 & 1 \\
\hline 282 & Remote Input 27 & 1 \\
\hline 283 & Remote Input 28 & 1 \\
\hline 284 & Remote Input 29 & 1 \\
\hline 285 & Remote Input 30 & 1 \\
\hline 286 & Remote Input 31 & 1 \\
\hline 287 & Remote Input 32 & 1 \\
\hline 288 & Remote Device 1 & 1 \\
\hline 289 & Remote Device 2 & 1 \\
\hline 290 & Remote Device 3 & 1 \\
\hline 291 & Remote Device 4 & 1 \\
\hline 292 & Remote Device 5 & 1 \\
\hline 293 & Remote Device 6 & 1 \\
\hline 294 & Remote Device 7 & 1 \\
\hline 295 & Remote Device 8 & 1 \\
\hline 296 & Remote Device 9 & 1 \\
\hline 297 & Remote Device 10 & 1 \\
\hline 298 & Remote Device 11 & 1 \\
\hline 299 & Remote Device 12 & 1 \\
\hline 300 & Remote Device 13 & 1 \\
\hline 301 & Remote Device 14 & 1 \\
\hline 302 & Remote Device 15 & 1 \\
\hline 303 & Remote Device 16 & 1 \\
\hline 304 & PHASE IOC1 Element OP & 1 \\
\hline 305 & PHASE IOC2 Element OP & 1 \\
\hline 320 & PHASE TOC1 Element OP & 1 \\
\hline 321 & PHASE TOC2 Element OP & 1 \\
\hline 328 & PH DIR1 Element OP & 1 \\
\hline
\end{tabular}

Table E-3: BINARY INPUTS (Sheet 8 of 10)
\begin{tabular}{|c|c|c|}
\hline POINT INDEX & NAME/DESCRIPTION & CHANGE EVENT CLASS (1/2/3/NONE) \\
\hline 329 & PH DIR2 Element OP & 1 \\
\hline 336 & NEUTRAL IOC1 Element OP & 1 \\
\hline 337 & NEUTRAL IOC2 Element OP & 1 \\
\hline 352 & NEUTRAL TOC1 Element OP & 1 \\
\hline 353 & NEUTRAL TOC2 Element OP & 1 \\
\hline 360 & NTRL DIR OC1 Element OP & 1 \\
\hline 361 & NTRL DIR OC2 Element OP & 1 \\
\hline 364 & NEG SEQ DIR OC1 Elem. OP & 1 \\
\hline 365 & NEG SEQ DIR OC2 Elem OP & 1 \\
\hline 368 & GROUND IOC1 Element OP & 1 \\
\hline 369 & GROUND IOC2 Element OP & 1 \\
\hline 384 & GROUND TOC1 Element OP & 1 \\
\hline 385 & GROUND TOC2 Element OP & 1 \\
\hline 400 & NEG SEQ IOC1 Element OP & 1 \\
\hline 401 & NEG SEQ IOC2 Element OP & 1 \\
\hline 416 & NEG SEQ TOC1 Element OP & 1 \\
\hline 417 & NEG SEQ TOC2 Element OP & 1 \\
\hline 424 & NEG SEQ OV Element OP & 1 \\
\hline 432 & HI-Z Element OP & 1 \\
\hline 444 & AUX UV1 Element OP & 1 \\
\hline 448 & PHASE UV1 Element OP & 1 \\
\hline 449 & PHASE UV2 Element OP & 1 \\
\hline 452 & AUX OV1 Element OP & 1 \\
\hline 456 & PHASE OV1 Element OP & 1 \\
\hline 460 & NEUTRAL OV1 Element OP & 1 \\
\hline 484 & LOAD ENCHR Element OP & 1 \\
\hline 518 & DIR POWER1 Element OP & 1 \\
\hline 519 & DIR POWER2 Element OP & 1 \\
\hline 528 & SRC1 VT FUSE FAIL Elem OP & 1 \\
\hline 529 & SRC2 VT FUSE FAIL Elem OP & 1 \\
\hline 530 & SRC3 VT FUSE FAIL Elem OP & 1 \\
\hline 531 & SRC4 VT FUSE FAIL Elem OP & 1 \\
\hline 532 & SRC5 VT FUSE FAIL Elem OP & 1 \\
\hline 533 & SRC6 VT FUSE FAIL Elem OP & 1 \\
\hline 536 & SRC1 50DD Element OP & 1 \\
\hline 537 & SRC2 50DD Element OP & 1 \\
\hline 538 & SRC3 50DD Element OP & 1 \\
\hline 539 & SRC4 50DD Element OP & 1 \\
\hline 540 & SRC5 50DD Element OP & 1 \\
\hline 541 & SRC6 50DD Element OP & 1 \\
\hline 576 & BREAKER 1 Element OP & 1 \\
\hline 577 & BREAKER 2 Element OP & 1 \\
\hline 584 & BKR FAIL 1 Element OP & 1 \\
\hline 585 & BKR FAIL 2 Element OP & 1 \\
\hline 592 & BKR ARC 1 Element OP & 1 \\
\hline 593 & BKR ARC 2 Element OP & 1 \\
\hline 608 & AR 1 Element OP & 1 \\
\hline 609 & AR 2 Element OP & 1 \\
\hline 610 & AR 3 Element OP & 1 \\
\hline
\end{tabular}

Table E-3: BINARY INPUTS (Sheet 9 of 10)
\begin{tabular}{|c|c|c|}
\hline POINT INDEX & NAME/DESCRIPTION & CHANGE EVENT CLASS (1/2/3/NONE) \\
\hline 611 & AR 4 Element OP & 1 \\
\hline 612 & AR 5 Element OP & 1 \\
\hline 613 & AR 6 Element OP & 1 \\
\hline 616 & SYNC 1 Element OP & 1 \\
\hline 617 & SYNC 2 Element OP & 1 \\
\hline 624 & COLD LOAD 1 Element OP & 1 \\
\hline 625 & COLD LOAD 2 Element OP & 1 \\
\hline 640 & SETTING GROUP Element OP & 1 \\
\hline 641 & RESET Element OP & 1 \\
\hline 648 & OVERFREQ1 Element OP & 1 \\
\hline 649 & OVERFREQ2 Element OP & 1 \\
\hline 650 & OVERFREQ3 Element OP & 1 \\
\hline 651 & OVERFREQ4 Element OP & 1 \\
\hline 655 & OVERFREQ Element OP & 1 \\
\hline 656 & UNDERFREQ 1 Element OP & 1 \\
\hline 657 & UNDERFREQ 2 Element OP & 1 \\
\hline 658 & UNDERFREQ 3 Element OP & 1 \\
\hline 659 & UNDERFREQ 4 Element OP & 1 \\
\hline 660 & UNDERFREQ 5 Element OP & 1 \\
\hline 661 & UNDERFREQ 6 Element OP & 1 \\
\hline 704 & FLEXELEMENT 1 Element OP & 1 \\
\hline 705 & FLEXELEMENT 2 Element OP & 1 \\
\hline 706 & FLEXELEMENT 3 Element OP & 1 \\
\hline 707 & FLEXELEMENT 4 Element OP & 1 \\
\hline 708 & FLEXELEMENT 5 Element OP & 1 \\
\hline 709 & FLEXELEMENT 6 Element OP & 1 \\
\hline 710 & FLEXELEMENT 7 Element OP & 1 \\
\hline 711 & FLEXELEMENT 8 Element OP & 1 \\
\hline 816 & DIG ELEM 1 Element OP & 1 \\
\hline 817 & DIG ELEM 2 Element OP & 1 \\
\hline 818 & DIG ELEM 3 Element OP & 1 \\
\hline 819 & DIG ELEM 4 Element OP & 1 \\
\hline 820 & DIG ELEM 5 Element OP & 1 \\
\hline 821 & DIG ELEM 6 Element OP & 1 \\
\hline 822 & DIG ELEM 7 Element OP & 1 \\
\hline 823 & DIG ELEM 8 Element OP & 1 \\
\hline 824 & DIG ELEM 9 Element OP & 1 \\
\hline 825 & DIG ELEM 10 Element OP & 1 \\
\hline 826 & DIG ELEM 11 Element OP & 1 \\
\hline 827 & DIG ELEM 12 Element OP & 1 \\
\hline 828 & DIG ELEM 13 Element OP & 1 \\
\hline 829 & DIG ELEM 14 Element OP & 1 \\
\hline 830 & DIG ELEM 15 Element OP & 1 \\
\hline 831 & DIG ELEM 16 Element OP & 1 \\
\hline 848 & COUNTER 1 Element OP & 1 \\
\hline 849 & COUNTER 2 Element OP & 1 \\
\hline 850 & COUNTER 3 Element OP & 1 \\
\hline 851 & COUNTER 4 Element OP & 1 \\
\hline 852 & COUNTER 5 Element OP & 1 \\
\hline
\end{tabular}

Table E-3: BINARY INPUTS (Sheet 10 of 10)
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
POINT \\
INDEX
\end{tabular} & NAME/DESCRIPTION & CHANGE EVENT CLASS (1/2/3/NONE) \\
\hline 853 & COUNTER 6 Element OP & 1 \\
\hline 854 & COUNTER 7 Element OP & 1 \\
\hline 855 & COUNTER 8 Element OP & 1 \\
\hline 864 & LED State 1 (IN SERVICE) & 1 \\
\hline 865 & LED State 2 (TROUBLE) & 1 \\
\hline 866 & LED State 3 (TEST MODE) & 1 \\
\hline 867 & LED State 4 (TRIP) & 1 \\
\hline 868 & LED State 5 (ALARM) & 1 \\
\hline 869 & LED State 6(PICKUP) & 1 \\
\hline 880 & LED State 9 (VOLTAGE) & 1 \\
\hline 881 & LED State 10 (CURRENT) & 1 \\
\hline 882 & LED State 11 (FREQUENCY) & 1 \\
\hline 883 & LED State 12 (OTHER) & 1 \\
\hline 884 & LED State 13 (PHASE A) & 1 \\
\hline 885 & LED State 14 (PHASE B) & 1 \\
\hline 886 & LED State 15 (PHASE C) & 1 \\
\hline 887 & LED State 16 (NTL/GROUND) & 1 \\
\hline 898 & SNTP FAILURE & 1 \\
\hline 899 & BATTERY FAIL & 1 \\
\hline 900 & PRI ETHERNET FAIL & 1 \\
\hline 901 & SEC ETHERNET FAIL & 1 \\
\hline 902 & EEPROM DATA ERROR & 1 \\
\hline 903 & SRAM DATA ERROR & 1 \\
\hline 904 & PROGRAM MEMORY & 1 \\
\hline 905 & WATCHDOG ERROR & 1 \\
\hline 906 & LOW ON MEMORY & 1 \\
\hline 907 & REMOTE DEVICE OFF & 1 \\
\hline 908 & DIRECT DEVICE OFF & \\
\hline 909 & DIRECT RING BREAK & \\
\hline 910 & ANY MINOR ERROR & 1 \\
\hline 911 & ANY MAJOR ERROR & 1 \\
\hline 912 & ANY SELF-TESTS & 1 \\
\hline 913 & IRIG-B FAILURE & 1 \\
\hline 914 & DSP ERROR & 1 \\
\hline 916 & NO DSP INTERUPTS & 1 \\
\hline 917 & UNIT NOT CALIBRATED & 1 \\
\hline 921 & PROTOTYPE FIRMWARE & 1 \\
\hline 922 & FLEXLOGIC ERR TOKEN & 1 \\
\hline 923 & EQUIPMENT MISMATCH & 1 \\
\hline 925 & UNIT NOT PROGRAMMED & 1 \\
\hline 926 & SYSTEM EXCEPTION & 1 \\
\hline 927 & LATCHING OUT ERROR & 1 \\
\hline
\end{tabular}

Supported Control Relay Output Block fields: Pulse On, Pulse Off, Latch On, Latch Off, Paired Trip, Paired Close.

\section*{BINARY OUTPUT STATUS POINTS}

Object Number: 10
Request Function Codes supported: 1 (read)
Default Variation reported when Variation 0 requested: 2 (Binary Output Status)
CONTROL RELAY OUTPUT BLOCKS
Object Number: 12
Request Function Codes supported: \(\mathbf{3}\) (select), 4 (operate), 5 (direct operate), 6 (direct operate, noack)

Table E-4: BINARY/CONTROL OUTPUTS
\begin{tabular}{|c|l|}
\hline POINT & NAME/DESCRIPTION \\
\hline \hline 0 & Virtual Input 1 \\
\hline 1 & Virtual Input 2 \\
\hline 2 & Virtual Input 3 \\
\hline 3 & Virtual Input 4 \\
\hline 4 & Virtual Input 5 \\
\hline 5 & Virtual Input 6 \\
\hline 6 & Virtual Input 7 \\
\hline 7 & Virtual Input 8 \\
\hline 8 & Virtual Input 9 \\
\hline 9 & Virtual Input 10 \\
\hline 10 & Virtual Input 11 \\
\hline 11 & Virtual Input 12 \\
\hline 12 & Virtual Input 13 \\
\hline 13 & Virtual Input 14 \\
\hline 14 & Virtual Input 15 \\
\hline 15 & Virtual Input 16 \\
\hline 16 & Virtual Input 17 \\
\hline 17 & Virtual Input 18 \\
\hline 18 & Virtual Input 19 \\
\hline 19 & Virtual Input 20 \\
\hline 20 & Virtual Input 21 \\
\hline 21 & Virtual Input 22 \\
\hline 22 & Virtual Input 23 \\
\hline 23 & Virtual Input 24 \\
\hline 24 & Virtual Input 25 \\
\hline 25 & Virtual Input 26 \\
\hline 26 & Virtual Input 27 \\
\hline 27 & Virtual Input 28 \\
\hline 28 & Virtual Input 29 \\
\hline 29 & Virtual Input 30 \\
\hline 30 & Virtual Input 31 \\
\hline 31 & Virtual Input 32 \\
\hline & \\
\hline \\
\hline
\end{tabular}

The following table lists both Binary Counters (Object 20) and Frozen Counters (Object 21). When a freeze function is performed on a Binary Counter point, the frozen value is available in the corresponding Frozen Counter point.

\section*{BINARY COUNTERS}

Static (Steady-State) Object Number: 20
Change Event Object Number: 22
Request Function Codes supported: 1 (read), 7 (freeze), 8 (freeze noack), 9 (freeze and clear), 10 (freeze and clear, noack), 22 (assign class)

Static Variation reported when variation 0 requested: 1 (32-Bit Binary Counter with Flag)
Change Event Variation reported when variation 0 requested: \(\mathbf{1}\) (32-Bit Counter Change Event without time)
Change Event Buffer Size: 10
Default Class for all points: 2

\section*{FROZEN COUNTERS}

Static (Steady-State) Object Number: 21
Change Event Object Number: 23
Request Function Codes supported: 1 (read)
Static Variation reported when variation 0 requested: 1 (32-Bit Frozen Counter with Flag)
Change Event Variation reported when variation 0 requested: 1 (32-Bit Frozen Counter Event without time)
Change Event Buffer Size: 10
Default Class for all points: 2

Table E-5: BINARY AND FROZEN COUNTERS
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
POINT \\
INDEX
\end{tabular} & NAME/DESCRIPTION \\
\hline \hline 0 & Digital Counter 1 \\
\hline 1 & Digital Counter 2 \\
\hline 2 & Digital Counter 3 \\
\hline 3 & Digital Counter 4 \\
\hline 4 & Digital Counter 5 \\
\hline 5 & Digital Counter 6 \\
\hline 6 & Digital Counter 7 \\
\hline 7 & Digital Counter 8 \\
\hline 8 & Oscillography Trigger Count \\
\hline 9 & Events Since Last Clear \\
\hline
\end{tabular}

A counter freeze command has no meaning for counters 8 and 9. F60 Digital Counter values are represented as 32 -bit integers. The DNP 3.0 protocol defines counters to be unsigned integers. Care should be taken when interpreting negative counter values.

The following table lists Analog Inputs (Object 30). It is important to note that 16-bit and 32-bit variations of analog inputs are transmitted through DNP as signed numbers. Even for analog input points that are not valid as negative values, the maximum positive representation is 32767 for 16 -bit values and 2147483647 for 32 -bit values. This is a DNP requirement.
The deadbands for all Analog Input points are in the same units as the Analog Input quantity. For example, an Analog Input quantity measured in volts has a corresponding deadband in units of volts. This is in conformance with DNP Technical Bulletin 9809-001 Analog Input Reporting Deadband. Relay settings are available to set default deadband values according to data type. Deadbands for individual Analog Input Points can be set using DNP Object 34.
When using the F60 in DNP systems with limited memory, the Analog Input Points below may be replaced with a userdefinable list. This user-definable list uses the same settings as the Modbus User Map and can be configured with the Modbus User Map settings. When used with DNP, each entry in the Modbus User Map represents the starting Modbus address of a data item available as a DNP Analog Input point. To enable use of the Modbus User Map for DNP Analog Input points, set the USER MAP FOR DNP ANALOGS setting to Enabled (this setting is in the PRODUCT SETUP \(\Rightarrow \sqrt{ }\) COMMUNICATIONS \(\Rightarrow \sqrt{ }\) DNP PROTOCOL menu). The new DNP Analog points list can be checked via the "DNP Analog Input Points List" webpage, accessible from the "Device Information menu" webpage.

After changing the USER MAP FOR DNP ANALOGS setting, the relay must be powered off and then back on for the setting to take effect.

Only Source 1 data points are shown in the following table. If the NUMBER OF SOURCES IN ANALOG LIST setting is increased, data points for subsequent sources will be added to the list immediately following the Source 1 data points.

Units for Analog Input points are as follows:

\footnotetext{
Static (Steady-State) Object Number: 30
Change Event Object Number: 32
Request Function Codes supported: 1 (read), 2 (write, deadbands only), 22 (assign class)
Static Variation reported when variation 0 requested: 1 (32-Bit Analog Input)
Change Event Variation reported when variation 0 requested: 1 (Analog Change Event without Time)
Change Event Scan Rate: defaults to \(\mathbf{5 0 0} \mathbf{~ m s}\)
Change Event Buffer Size: \(\mathbf{8 0 0}\)
Default Class for all Points: 1
}

Table E-6: ANALOG INPUT POINTS (Sheet 1 of 6)
\begin{tabular}{|c|c|}
\hline POINT & DESCRIPTION \\
\hline 0 & SRC 1 Phase A Current RMS \\
\hline 1 & SRC 1 Phase B Current RMS \\
\hline 2 & SRC 1 Phase C Current RMS \\
\hline 3 & SRC 1 Neutral Current RMS \\
\hline 4 & SRC 1 Phase A Current Magnitude \\
\hline 5 & SRC 1 Phase A Current Angle \\
\hline 6 & SRC 1 Phase B Current Magnitude \\
\hline 7 & SRC 1 Phase B Current Angle \\
\hline 8 & SRC 1 Phase C Current Magnitude \\
\hline 9 & SRC 1 Phase C Current Angle \\
\hline 10 & SRC 1 Neutral Current Magnitude \\
\hline 11 & SRC 1 Neutral Current Angle \\
\hline 12 & SRC 1 Ground Current RMS \\
\hline 13 & SRC 1 Ground Current Magnitude \\
\hline 14 & SRC 1 Ground Current Angle \\
\hline 15 & SRC 1 Zero Sequence Current Magnitude \\
\hline 16 & SRC 1 Zero Sequence Current Angle \\
\hline 17 & SRC 1 Positive Sequence Current Magnitude \\
\hline 18 & SRC 1 Positive Sequence Current Angle \\
\hline 19 & SRC 1 Negative Sequence Current Magnitude \\
\hline 20 & SRC 1 Negative Sequence Current Angle \\
\hline 21 & SRC 1 Differential Ground Current Magnitude \\
\hline 22 & SRC 1 Differential Ground Current Angle \\
\hline 23 & SRC 1 Phase AG Voltage RMS \\
\hline 24 & SRC 1 Phase BG Voltage RMS \\
\hline 25 & SRC 1 Phase CG Voltage RMS \\
\hline 26 & SRC 1 Phase AG Voltage Magnitude \\
\hline 27 & SRC 1 Phase AG Voltage Angle \\
\hline 28 & SRC 1 Phase BG Voltage Magnitude \\
\hline 29 & SRC 1 Phase BG Voltage Angle \\
\hline 30 & SRC 1 Phase CG Voltage Magnitude \\
\hline 31 & SRC 1 Phase CG Voltage Angle \\
\hline 32 & SRC 1 Phase AB Voltage RMS \\
\hline 33 & SRC 1 Phase BC Voltage RMS \\
\hline 34 & SRC 1 Phase CA Voltage RMS \\
\hline 35 & SRC 1 Phase AB Voltage Magnitude \\
\hline 36 & SRC 1 Phase AB Voltage Angle \\
\hline 37 & SRC 1 Phase BC Voltage Magnitude \\
\hline 38 & SRC 1 Phase BC Voltage Angle \\
\hline 39 & SRC 1 Phase CA Voltage Magnitude \\
\hline 40 & SRC 1 Phase CA Voltage Angle \\
\hline 41 & SRC 1 Auxiliary Voltage RMS \\
\hline 42 & SRC 1 Auxiliary Voltage Magnitude \\
\hline 43 & SRC 1 Auxiliary Voltage Angle \\
\hline 44 & SRC 1 Zero Sequence Voltage Magnitude \\
\hline 45 & SRC 1 Zero Sequence Voltage Angle \\
\hline 46 & SRC 1 Positive Sequence Voltage Magnitude \\
\hline 47 & SRC 1 Positive Sequence Voltage Angle \\
\hline 48 & SRC 1 Negative Sequence Voltage Magnitude \\
\hline 49 & SRC 1 Negative Sequence Voltage Angle \\
\hline 50 & SRC 1 Three Phase Real Power \\
\hline 51 & SRC 1 Phase A Real Power \\
\hline
\end{tabular}

Table E-6: ANALOG INPUT POINTS (Sheet 2 of 6)
\begin{tabular}{|c|c|}
\hline POINT & DESCRIPTION \\
\hline 52 & SRC 1 Phase B Real Power \\
\hline 53 & SRC 1 Phase C Real Power \\
\hline 54 & SRC 1 Three Phase Reactive Power \\
\hline 55 & SRC 1 Phase A Reactive Power \\
\hline 56 & SRC 1 Phase B Reactive Power \\
\hline 57 & SRC 1 Phase C Reactive Power \\
\hline 58 & SRC 1 Three Phase Apparent Power \\
\hline 59 & SRC 1 Phase A Apparent Power \\
\hline 60 & SRC 1 Phase B Apparent Power \\
\hline 61 & SRC 1 Phase C Apparent Power \\
\hline 62 & SRC 1 Three Phase Power Factor \\
\hline 63 & SRC 1 Phase A Power Factor \\
\hline 64 & SRC 1 Phase B Power Factor \\
\hline 65 & SRC 1 Phase C Power Factor \\
\hline 66 & SRC 1 Positive Watthour \\
\hline 67 & SRC 1 Negative Watthour \\
\hline 68 & SRC 1 Positive Varhour \\
\hline 69 & SRC 1 Negative Varhour \\
\hline 70 & SRC 1 Frequency \\
\hline 71 & SRC 1 Demand la \\
\hline 72 & SRC 1 Demand Ib \\
\hline 73 & SRC 1 Demand Ic \\
\hline 74 & SRC 1 Demand Watt \\
\hline 75 & SRC 1 Demand Var \\
\hline 76 & SRC 1 Demand Va \\
\hline 77 & SRC 1 Va THD \\
\hline 78 & SRC 1 Va Harmonics[0] \\
\hline 79 & SRC 1 Va Harmonics[1] \\
\hline 80 & SRC 1 Va Harmonics[2] \\
\hline 81 & SRC 1 Va Harmonics[3] \\
\hline 82 & SRC 1 Va Harmonics[4] \\
\hline 83 & SRC 1 Va Harmonics[5] \\
\hline 84 & SRC 1 Va Harmonics[6] \\
\hline 85 & SRC 1 Va Harmonics[7] \\
\hline 86 & SRC 1 Va Harmonics[8] \\
\hline 87 & SRC 1 Va Harmonics[9] \\
\hline 88 & SRC 1 Va Harmonics[10] \\
\hline 89 & SRC 1 Va Harmonics[11] \\
\hline 90 & SRC 1 Va Harmonics[12] \\
\hline 91 & SRC 1 Va Harmonics[13] \\
\hline 92 & SRC 1 Va Harmonics[14] \\
\hline 93 & SRC 1 Va Harmonics[15] \\
\hline 94 & SRC 1 Va Harmonics[16] \\
\hline 95 & SRC 1 Va Harmonics[17] \\
\hline 96 & SRC 1 Va Harmonics[18] \\
\hline 97 & SRC 1 Va Harmonics[19] \\
\hline 98 & SRC 1 Va Harmonics[20] \\
\hline 99 & SRC 1 Va Harmonics[21] \\
\hline 100 & SRC 1 Va Harmonics[22] \\
\hline 101 & SRC 1 Va Harmonics[23] \\
\hline 102 & SRC 1 Vb THD \\
\hline 103 & SRC 1 Vb Harmonics[0] \\
\hline
\end{tabular}

Table E-6: ANALOG INPUT POINTS (Sheet 3 of 6)
\begin{tabular}{|c|c|}
\hline POINT & DESCRIPTION \\
\hline 104 & SRC 1 Vb Harmonics[1] \\
\hline 105 & SRC 1 Vb Harmonics[2] \\
\hline 106 & SRC 1 Vb Harmonics[3] \\
\hline 107 & SRC 1 Vb Harmonics[4] \\
\hline 108 & SRC 1 Vb Harmonics[5] \\
\hline 109 & SRC 1 Vb Harmonics[6] \\
\hline 110 & SRC 1 Vb Harmonics[7] \\
\hline 111 & SRC 1 Vb Harmonics[8] \\
\hline 112 & SRC 1 Vb Harmonics[9] \\
\hline 113 & SRC 1 Vb Harmonics[10] \\
\hline 114 & SRC 1 Vb Harmonics[11] \\
\hline 115 & SRC 1 Vb Harmonics[12] \\
\hline 116 & SRC 1 Vb Harmonics[13] \\
\hline 117 & SRC 1 Vb Harmonics[14] \\
\hline 118 & SRC 1 Vb Harmonics[15] \\
\hline 119 & SRC 1 Vb Harmonics[16] \\
\hline 120 & SRC 1 Vb Harmonics[17] \\
\hline 121 & SRC 1 Vb Harmonics[18] \\
\hline 122 & SRC 1 Vb Harmonics[19] \\
\hline 123 & SRC 1 Vb Harmonics[20] \\
\hline 124 & SRC 1 Vb Harmonics[21] \\
\hline 125 & SRC 1 Vb Harmonics[22] \\
\hline 126 & SRC 1 Vb Harmonics[23] \\
\hline 127 & SRC 1 Vc THD \\
\hline 128 & SRC 1 Vc Harmonics[0] \\
\hline 129 & SRC 1 Vc Harmonics[1] \\
\hline 130 & SRC 1 Vc Harmonics[2] \\
\hline 131 & SRC 1 Vc Harmonics[3] \\
\hline 132 & SRC 1 Vc Harmonics[4] \\
\hline 133 & SRC 1 Vc Harmonics[5] \\
\hline 134 & SRC 1 Vc Harmonics[6] \\
\hline 135 & SRC 1 Vc Harmonics[7] \\
\hline 136 & SRC 1 Vc Harmonics[8] \\
\hline 137 & SRC 1 Vc Harmonics[9] \\
\hline 138 & SRC 1 Vc Harmonics[10] \\
\hline 139 & SRC 1 Vc Harmonics[11] \\
\hline 140 & SRC 1 Vc Harmonics[12] \\
\hline 141 & SRC 1 Vc Harmonics[13] \\
\hline 142 & SRC 1 Vc Harmonics[14] \\
\hline 143 & SRC 1 Vc Harmonics[15] \\
\hline 144 & SRC 1 Vc Harmonics[16] \\
\hline 145 & SRC 1 Vc Harmonics[17] \\
\hline 146 & SRC 1 Vc Harmonics[18] \\
\hline 147 & SRC 1 Vc Harmonics[19] \\
\hline 148 & SRC 1 Vc Harmonics[20] \\
\hline 149 & SRC 1 Vc Harmonics[21] \\
\hline 150 & SRC 1 Vc Harmonics[22] \\
\hline 151 & SRC 1 Vc Harmonics[23] \\
\hline 152 & SRC 1 la THD \\
\hline 153 & SRC 1 la Harmonics[0] \\
\hline 154 & SRC 1 la Harmonics[1] \\
\hline 155 & SRC 1 la Harmonics[2] \\
\hline
\end{tabular}

Table E-6: ANALOG INPUT POINTS (Sheet 4 of 6)
\begin{tabular}{|c|c|}
\hline POINT & DESCRIPTION \\
\hline 156 & SRC 1 la Harmonics[3] \\
\hline 157 & SRC 1 la Harmonics[4] \\
\hline 158 & SRC 1 la Harmonics[5] \\
\hline 159 & SRC 1 la Harmonics[6] \\
\hline 160 & SRC 1 la Harmonics[7] \\
\hline 161 & SRC 1 la Harmonics[8] \\
\hline 162 & SRC 1 la Harmonics[9] \\
\hline 163 & SRC 1 la Harmonics[10] \\
\hline 164 & SRC 1 la Harmonics[11] \\
\hline 165 & SRC 1 la Harmonics[12] \\
\hline 166 & SRC 1 la Harmonics[13] \\
\hline 167 & SRC 1 la Harmonics[14] \\
\hline 168 & SRC 1 la Harmonics[15] \\
\hline 169 & SRC 1 la Harmonics[16] \\
\hline 170 & SRC 1 la Harmonics[17] \\
\hline 171 & SRC 1 la Harmonics[18] \\
\hline 172 & SRC 1 la Harmonics[19] \\
\hline 173 & SRC 1 la Harmonics[20] \\
\hline 174 & SRC 1 la Harmonics[21] \\
\hline 175 & SRC 1 la Harmonics[22] \\
\hline 176 & SRC 1 la Harmonics[23] \\
\hline 177 & SRC 1 lb THD \\
\hline 178 & SRC 1 lb Harmonics[0] \\
\hline 179 & SRC 1 Ib Harmonics[1] \\
\hline 180 & SRC 1 Ib Harmonics[2] \\
\hline 181 & SRC 1 Ib Harmonics[3] \\
\hline 182 & SRC 1 lb Harmonics[4] \\
\hline 183 & SRC 1 lb Harmonics[5] \\
\hline 184 & SRC 1 lb Harmonics[6] \\
\hline 185 & SRC 1 lb Harmonics[7] \\
\hline 186 & SRC 1 lb Harmonics[8] \\
\hline 187 & SRC 1 lb Harmonics[9] \\
\hline 188 & SRC 1 Ib Harmonics[10] \\
\hline 189 & SRC 1 lb Harmonics[11] \\
\hline 190 & SRC 1 lb Harmonics[12] \\
\hline 191 & SRC 1 lb Harmonics[13] \\
\hline 192 & SRC 1 lb Harmonics[14] \\
\hline 193 & SRC 1 lb Harmonics[15] \\
\hline 194 & SRC 1 lb Harmonics[16] \\
\hline 195 & SRC 1 lb Harmonics[17] \\
\hline 196 & SRC 1 lb Harmonics[18] \\
\hline 197 & SRC 1 lb Harmonics[19] \\
\hline 198 & SRC 1 lb Harmonics[20] \\
\hline 199 & SRC 1 Ib Harmonics[21] \\
\hline 200 & SRC 1 Ib Harmonics[22] \\
\hline 201 & SRC 1 lb Harmonics[23] \\
\hline 202 & SRC 1 Ic THD \\
\hline 203 & SRC 1 Ic Harmonics[0] \\
\hline 204 & SRC 1 Ic Harmonics[1] \\
\hline 205 & SRC 1 Ic Harmonics[2] \\
\hline 206 & SRC 1 Ic Harmonics[3] \\
\hline 207 & SRC 1 Ic Harmonics[4] \\
\hline
\end{tabular}

Table E-6: ANALOG INPUT POINTS (Sheet 5 of 6)
\begin{tabular}{|c|c|}
\hline POINT & DESCRIPTION \\
\hline 208 & SRC 1 Ic Harmonics[5] \\
\hline 209 & SRC 1 Ic Harmonics[6] \\
\hline 210 & SRC 1 Ic Harmonics[7] \\
\hline 211 & SRC 1 Ic Harmonics[8] \\
\hline 212 & SRC 1 Ic Harmonics[9] \\
\hline 213 & SRC 1 Ic Harmonics[10] \\
\hline 214 & SRC 1 Ic Harmonics[11] \\
\hline 215 & SRC 1 Ic Harmonics[12] \\
\hline 216 & SRC 1 Ic Harmonics[13] \\
\hline 217 & SRC 1 Ic Harmonics[14] \\
\hline 218 & SRC 1 Ic Harmonics[15] \\
\hline 219 & SRC 1 Ic Harmonics[16] \\
\hline 220 & SRC 1 Ic Harmonics[17] \\
\hline 221 & SRC 1 Ic Harmonics[18] \\
\hline 222 & SRC 1 Ic Harmonics[19] \\
\hline 223 & SRC 1 Ic Harmonics[20] \\
\hline 224 & SRC 1 Ic Harmonics[21] \\
\hline 225 & SRC 1 Ic Harmonics[22] \\
\hline 226 & SRC 1 Ic Harmonics[23] \\
\hline 227 & Sens Dir Power 1 Actual \\
\hline 228 & Sens Dir Power 2 Actual \\
\hline 229 & Rate of Change 1 Actual \\
\hline 230 & Rate of Change 2 Actual \\
\hline 231 & Rate of Change 3 Actual \\
\hline 232 & Rate of Change 4 Actual \\
\hline 233 & Breaker 1 Arcing Amp Phase A \\
\hline 234 & Breaker 1 Arcing Amp Phase B \\
\hline 235 & Breaker 1 Arcing Amp Phase C \\
\hline 236 & Breaker 2 Arcing Amp Phase A \\
\hline 237 & Breaker 2 Arcing Amp Phase B \\
\hline 238 & Breaker 2 Arcing Amp Phase C \\
\hline 239 & Fault 1 Prefault Phase A Current Magnitude \\
\hline 240 & Fault 1 Prefault Phase A Current Angle \\
\hline 241 & Fault 1 Prefault Phase B Current Magnitude \\
\hline 242 & Fault 1 Prefault Phase B Current Angle \\
\hline 243 & Fault 1 Prefault Phase C Current Magnitude \\
\hline 244 & Fault 1 Prefault Phase C Current Angle \\
\hline 245 & Fault 1 Prefault Phase A Voltage Magnitude \\
\hline 246 & Fault 1 Prefault Phase A Voltage Angle \\
\hline 247 & Fault 1 Prefault Phase B Voltage Magnitude \\
\hline 248 & Fault 1 Prefault Phase B Voltage Angle \\
\hline 249 & Fault 1 Prefault Phase C Voltage Magnitude \\
\hline 250 & Fault 1 Prefault Phase C Voltage Angle \\
\hline 251 & Fault 1 Postfault Phase A Current Magnitude \\
\hline 252 & Fault 1 Postfault Phase A Current Angle \\
\hline 253 & Fault 1 Postfault Phase B Current Magnitude \\
\hline 254 & Fault 1 Postfault Phase B Current Angle \\
\hline 255 & Fault 1 Postfault Phase C Current Magnitude \\
\hline 256 & Fault 1 Postfault Phase C Current Angle \\
\hline 257 & Fault 1 Postfault Phase A Voltage Magnitude \\
\hline 258 & Fault 1 Postfault Phase A Voltage Angle \\
\hline 259 & Fault 1 Postfault Phase B Voltage Magnitude \\
\hline
\end{tabular}

Table E-6: ANALOG INPUT POINTS (Sheet 6 of 6)
\begin{tabular}{|l|l|}
\hline POINT & DESCRIPTION \\
\hline 260 & Fault 1 Postfault Phase B Voltage Angle \\
\hline 261 & Fault 1 Postfault Phase C Voltage Magnitude \\
\hline 262 & Fault 1 Postfault Phase C Voltage Angle \\
\hline 263 & Fault 1 Type \\
\hline 264 & Fault 1 Location \\
\hline 265 & Synchrocheck 1 Delta Voltage \\
\hline 266 & Synchrocheck 1 Delta Frequency \\
\hline 267 & Synchrocheck 1 Delta Phase \\
\hline 268 & Synchrocheck 2 Delta Voltage \\
\hline 269 & Synchrocheck 2 Delta Frequency \\
\hline 270 & Synchrocheck 2 Delta Phase \\
\hline 271 & Tracking Frequency \\
\hline 272 & FlexElement 1 Actual \\
\hline 273 & FlexElement 2 Actual \\
\hline 274 & FlexElement 3 Actual \\
\hline 275 & FlexElement 4 Actual \\
\hline 276 & FlexElement 5 Actual \\
\hline 277 & FlexElement 6 Actual \\
\hline 278 & FlexElement 7 Actual \\
\hline 279 & FlexElement 8 Actual \\
\hline 280 & Current Setting Group \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline MANUAL P/N & F60 REVISION & RELEASE DATE & ECO \\
\hline 1601-0093-A1 & 1.5x & 23 March 1999 & N/A \\
\hline 1601-0093-A2 & 1.6x & 10 August 1999 & URF-012 \\
\hline 1601-0093-A3 & \(1.8 x\) & 29 October 1999 & URF-014 \\
\hline 1601-0093-A4 & 1.8x & 15 November 1999 & URF-015 \\
\hline 1601-0093-A5 & 2.0x & 17 December 1999 & URF-016 \\
\hline 1601-0093-A6 & 2.2x & 12 May 2000 & URF-017 \\
\hline 1601-0093-A7 & 2.2x & 14 June 2000 & URF-020 \\
\hline 1601-0093-A7a & 2.2x & 28 June 2000 & URF-020a \\
\hline 1601-0093-B1 & 2.4x & 08 September 2000 & URF-022 \\
\hline 1601-0093-B2 & 2.4x & 03 November 2000 & URF-024 \\
\hline 1601-0093-B3 & 2.6 x & 09 March 2001 & URF-025 \\
\hline 1601-0093-B4 & 2.8x & 28 September 2001 & URF-027 \\
\hline 1601-0093-B5 & 2.9x & 03 December 2001 & URF-030 \\
\hline 1601-0093-B6 & 2.6x & 27 February 2004 & URX-120 \\
\hline 1601-0093-C1 & 3.0x & 02 July 2002 & URF-032 \\
\hline 1601-0093-C2 & 3.1 x & 30 August 2002 & URF-034 \\
\hline 1601-0093-C3 & 3.0x & 18 November 2002 & URF-036 \\
\hline 1601-0093-C4 & 3.1x & 18 November 2002 & URF-038 \\
\hline 1601-0093-C5 & 3.0x & 11 February 2003 & URF-040 \\
\hline 1601-0093-C6 & 3.1x & 11 February 2003 & URF-042 \\
\hline 1601-0093-D1 & 3.2x & 11 February 2003 & URF-044 \\
\hline 1601-0093-D2 & 3.2x & 02 June 2003 & URX-084 \\
\hline 1601-0093-E1 & 3.3 x & 01 May 2003 & URX-080 \\
\hline 1601-0093-E2 & 3.3 x & 29 May 2003 & URX-083 \\
\hline 1601-0093-F1 & 3.4x & 10 December 2003 & URX-111 \\
\hline 1601-0093-F2 & 3.4x & 09 February 2004 & URX-115 \\
\hline 1601-0093-G1 & 4.0x & 23 March 2004 & URX-123 \\
\hline 1601-0093-G2 & 4.0x & 17 May 2004 & URX-136 \\
\hline
\end{tabular}
F.1.2 CHANGES TO THE F60 MANUAL

Table F-1: MAJOR UPDATES FOR F60 MANUAL REVISION G2
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
PAGE \\
(G1)
\end{tabular} & \begin{tabular}{l}
PAGE \\
(G2)
\end{tabular} & CHANGE & DESCRIPTION \\
\hline \hline Title & Title & Update & Manual part number to 1601-0093-G2. \\
\hline \(3-6\) & \(3-6\) & Update & Updated TYPICAL WIRING DIAGRAM to 832769A2. \\
\hline \(3-7\) & \(3-7\) & Update & Updated TYPICAL WIRING DIAGRAM WITH HI-Z to 832770A2. \\
\hline
\end{tabular}

Table F-2: MAJOR UPDATES FOR F60 MANUAL REVISION G1
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { PAGE } \\
& \text { (F2) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { PAGE } \\
& \text { (G1) }
\end{aligned}
\] & CHANGE & DESCRIPTION \\
\hline Title & Title & Update & Manual part number to 1601-0093-G1. \\
\hline 2-3 & 2-3 & Update & Updated F60 ORDER CODES table \\
\hline 2-4 & 2-4 & Update & Updated ORDER CODES FOR REPLACEMENT MODULES table \\
\hline 2-9 & 2-9 & Update & Updated MONITORING ELEMENTS section to indicate Hi-Z feature \\
\hline 2-11 & 2-11 & Add & Added dcmA outputs specifications to OUTPUTS section \\
\hline 2-11 & 2-11 & Add & Added IRIG-B outputs specifications to OUTPUTS section \\
\hline 3-4 & 3-4 & Update & Updated MODULE WITHDRAWAL AND INSERTION section to reflect new hardware \\
\hline 3-5 & 3-5 & Update & Updated TYPICAL WIRING DIAGRAM to 832710B8 to indicate new hardware \\
\hline 3-5 & 3-6 & Add & Added TYPICAL WIRING WITH HI-Z section \\
\hline 3-7 & 3-8 & Update & Updated DIELECTRIC STRENGTH section \\
\hline 3-9 & 3-10 & Update & Updated CT/VT MODULES section for new hardware \\
\hline 3-17 & 3-18 & Update & Updated drawings and description in TRANSDUCER INPUTS/OUTPUTS section \\
\hline 3-18 & 3-20 & Update & Updated drawings and description in CPU COMMUNICATIONS PORTS section \\
\hline 3-20 & 3-22 & Update & Updated IRIG-B section to indicate updated functionality \\
\hline 5-18 & 5-17 & Add & Added EGD PROTOCOL sub-section for Ethernet Global Data protocol \\
\hline 5-18 & 5-19 & Update & Updated REAL TIME CLOCK section \\
\hline 5-19 & 5-20 & Update & Updated FAULT REPORTS section to indicate settings moved from deleted LINE section \\
\hline 5-43 & --- & Remove & Removed LINE section. These settings are now part of the FAULT REPORTS section \\
\hline 5-56 & 5-56 & Update & Updated FLEXLOGIC \({ }^{\text {™ }}\) OPERANDS table \\
\hline 5-69 & 5-69 & Update & Updated FLEXELEMENT \({ }^{\text {TM }}\) SCHEME LOGIC diagram to 842004A3 \\
\hline 5-70 & 5-70 & Update & Updated FLEXELEMENT \({ }^{\text {TM }}\) INPUT MODE SETTING diagram to 842706A2 \\
\hline 5-89 & 5-89 & Update & Updated NEUTRAL DIRECTIONAL OVERCURRENT sub-section \\
\hline 5-145 & 5-146 & Add & Added HI-Z (high impedance fault detection) sub-section \\
\hline 5-164 & 5-171 & Add & Added DCMA OUTPUTS section \\
\hline 6-6 & 6-6 & Add & Added HI-Z STATUS (high impedance fault detection status) section \\
\hline 6-7 & 6-7 & Add & Added EGD PROTOCOL STATUS section \\
\hline 6-18 & 6-18 & Update & Updated FAULT REPORTS section \\
\hline 6-21 & 6-22 & Add & Added HI-Z RECORDS section \\
\hline 8- & 8- & Add & Added Chapter 8: THEORY OF OPERATION for the Hi-Z algorithm \\
\hline B-8 & B-8 & Update & Updated MODBUS MEMORY MAP for firmware release 4.0x \\
\hline
\end{tabular}

Table F-3: MAJOR UPDATES FOR F60 MANUAL REVISION F2 (Sheet 1 of 2)
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
PAGE \\
(F1)
\end{tabular} & \begin{tabular}{l}
PAGE \\
(F2)
\end{tabular} & CHANGE & DESCRIPTION \\
\hline \hline Title & Title & Update & Manual part number to 1601-0093-F2. \\
\hline \(2-3\) & \(2-3\) & Update & Updated F60 ORDER CODES table to remove the 8Z module. \\
\hline \(2-9\) & \(2-9\) & Update & Updated MONITORING ELEMENTS section to indicate Hi-Z feature removal. \\
\hline \(3-7\) & --- & Remove & Removed TYPICAL WIRING WITH HI-Z section. \\
\hline \(3-10\) & \(3-9\) & Update & Updated CT/VT MODULES section. \\
\hline \(3-18\) & \(3-17\) & Update & Updated TRANSDUCER I/O MODULE WIRING diagram to 827831A9-X1. \\
\hline \(5-9\) & \(5-9\) & Update & Updated DISPLAY PROPERTIES section \\
\hline \(5-45\) & \(5-46\) & Update & Updated DUAL BREAKER CONTROL SCHEME LOGIC diagram to 827061AM. \\
\hline
\end{tabular}

Table F-3: MAJOR UPDATES FOR F60 MANUAL REVISION F2 (Sheet 2 of 2)
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
PAGE \\
(F1)
\end{tabular} & \begin{tabular}{l}
PAGE \\
(F2)
\end{tabular} & CHANGE & DESCRIPTION \\
\hline \hline \(5-55\) & \(5-56\) & Update & Updated FLEXLOGIC \({ }^{\text {TM }}\) OPERANDS table. \\
\hline \(5-81\) & \(5-82\) & Update & Updated PHASE TOC1 SCHEME LOGIC diagram to 827072A4. \\
\hline \(5-82\) & \(5-83\) & Update & Updated PHASE IOC1 SCHEME LOGIC diagram to 827033A6. \\
\hline \(5-110\) & \(5-111\) & Update & Updated PHASE UNDERVOLTAGE1 SCHEME LOGIC diagram to 827039AB. \\
\hline \(5-111\) & \(5-112\) & Update & Updated PHASE OVERVOLTAGE1 SCHEME LOGIC diagram to 827066A5. \\
\hline \(5-144\) & --- & Remove & Removed HI-Z (high impedance fault detection) sub-section. It will be restored in a future release. \\
\hline \(6-5\) & \(6-5\) & Update & Removed HI-Z (high impedance fault detection) section. It will be restored in a future release. \\
\hline \(6-21\) & \(6-21\) & Remove & Removed HI-Z RECORDS section. It will be restored in a future release. \\
\hline \(8-\) & --- & Remove & \begin{tabular}{l}
Removed Chapter 8: THEORY OF OPERATION that dealt exclusively with the Hi-Z algorithm. \\
This chapter will be restored when Hi-Z is re-introduced in a future firmware release.
\end{tabular} \\
\hline B-8 & B-8 & Update & Updated MODBUS MEMORY MAP. \\
\hline
\end{tabular}

Table F-4: MAJOR UPDATES FOR F60 MANUAL REVISION F1
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
PAGE \\
(E2)
\end{tabular} & \begin{tabular}{l}
PAGE \\
(F1)
\end{tabular} & CHANGE & DESCRIPTION \\
\hline \hline Title & Title & Update & Manual part number to 1601-0093-F1. \\
\hline \(1-5\) & \(1-5\) & Update & Updated software installation procedure. \\
\hline \(2-3\) & \(2-3\) & Update & Updated ORDER CODES table to add the 67 Digital I/O option. \\
\hline \(2-4\) & \(2-4\) & Update & Updated ORDER CODES FOR REPLACEMENT MODULES table to add the 67 Module option. \\
\hline \(3-13\) & \(3-13\) & Update & Updated DIGITAL I/O MODULE ASSIGNMENTS table to add the 67 module. \\
\hline \(3-15\) & \(3-15\) & Update & Updated the DIGITAL I/O MODULE WIRING diagram to show the 67 module. \\
\hline \(5-150\) & \(5-152\) & Update & Updated VT FUSE FAIL SCHEME LOGIC diagram to 827093AF \\
\hline B-8 & B-8 & Update & Updated MODBUS MEMORY MAP to reflect new firmware 3.4x \\
\hline
\end{tabular}

Table F-5: MAJOR UPDATES FOR F60 MANUAL REVISION E2
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
PAGE \\
(E1)
\end{tabular} & \begin{tabular}{l}
PAGE \\
(E2)
\end{tabular} & CHANGE & DESCRIPTION \\
\hline \hline Title & Title & Update & Manual part number to 1601-0093-E2. \\
\hline \(4-4\) & \(4-4\) & Update & \begin{tabular}{l}
Updated UR VERTICAL FACEPLATE PANELS figure to remove incorrect reference to User- \\
Programmable Pushbuttons.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{A................... Ampere} \\
\hline \multicolumn{2}{|l|}{AC Alternating Current} \\
\hline A/D & Analog to Digital \\
\hline \multicolumn{2}{|l|}{AE Accidental Energization, Application Entity} \\
\hline \multicolumn{2}{|l|}{AMP Ampere} \\
\hline \multicolumn{2}{|l|}{ANG Angle} \\
\hline ANSI.. & American National Standards Institute \\
\hline \multicolumn{2}{|l|}{AR Automatic Reclosure} \\
\hline \multicolumn{2}{|l|}{ASDU Application-layer Service Data Unit} \\
\hline ASYM.. & Asymmetry \\
\hline \multicolumn{2}{|l|}{AUTO Automatic} \\
\hline \multicolumn{2}{|l|}{AUX Auxiliary} \\
\hline \multicolumn{2}{|l|}{AVG............... Average} \\
\hline \multicolumn{2}{|l|}{BER............... Bit Error Rate} \\
\hline \multicolumn{2}{|l|}{BF................. Breaker Fail} \\
\hline \multicolumn{2}{|l|}{BFI................ Breaker Failure Initiate} \\
\hline \multicolumn{2}{|l|}{BKR Breaker} \\
\hline \multicolumn{2}{|l|}{BLK Block} \\
\hline \multicolumn{2}{|l|}{BLKG............. Blocking} \\
\hline \multicolumn{2}{|l|}{BPNT............. Breakpoint of a characteristic} \\
\hline \multicolumn{2}{|l|}{BRKR Breaker} \\
\hline \multicolumn{2}{|l|}{CAP Capacitor} \\
\hline \multicolumn{2}{|l|}{CC Coupling Capacitor} \\
\hline \multicolumn{2}{|l|}{CCVT Coupling Capacitor Voltage Transformer} \\
\hline \multicolumn{2}{|l|}{CFG............... Configure / Configurable} \\
\hline \multicolumn{2}{|l|}{.CFG.............. Filename extension for oscillography files} \\
\hline \multicolumn{2}{|l|}{CHK............... Check} \\
\hline \multicolumn{2}{|l|}{CHNL Channel} \\
\hline \multicolumn{2}{|l|}{CLS Close} \\
\hline \multicolumn{2}{|l|}{CLSD............. Closed} \\
\hline \multicolumn{2}{|l|}{CMND Command} \\
\hline \multicolumn{2}{|l|}{CMPRSN....... Comparison} \\
\hline \multicolumn{2}{|l|}{CO................ Contact Output} \\
\hline \multicolumn{2}{|l|}{COM Communication} \\
\hline \multicolumn{2}{|l|}{COMM Communications} \\
\hline \multicolumn{2}{|l|}{COMP Compensated, Comparison} \\
\hline \multicolumn{2}{|l|}{CONN............ Connection} \\
\hline \multicolumn{2}{|l|}{CONT Continuous, Contact} \\
\hline \multicolumn{2}{|l|}{CO-ORD........ Coordination} \\
\hline \multicolumn{2}{|l|}{CPU............... Central Processing Unit} \\
\hline \multicolumn{2}{|l|}{CRC Cyclic Redundancy Code} \\
\hline \multicolumn{2}{|l|}{CRT, CRNT Current} \\
\hline \multicolumn{2}{|l|}{CSA.............. Canadian Standards Association} \\
\hline \multicolumn{2}{|l|}{CT Current Transformer} \\
\hline \multicolumn{2}{|l|}{CVT Capacitive Voltage Transformer} \\
\hline \multicolumn{2}{|l|}{D/A Digital to Analog} \\
\hline \multicolumn{2}{|l|}{DC (dc).......... Direct Current} \\
\hline \multicolumn{2}{|l|}{DD Disturbance Detector} \\
\hline \multicolumn{2}{|l|}{DFLT Default} \\
\hline \multicolumn{2}{|l|}{DGNST.......... Diagnostics} \\
\hline \multicolumn{2}{|l|}{DI.................. Digital Input} \\
\hline \multicolumn{2}{|l|}{DIFF Differential} \\
\hline \multicolumn{2}{|l|}{DIR Directional} \\
\hline \multicolumn{2}{|l|}{DISCREP Discrepancy} \\
\hline \multicolumn{2}{|l|}{DIST Distance} \\
\hline \multicolumn{2}{|l|}{DMD Demand} \\
\hline \multicolumn{2}{|l|}{DNP............... Distributed Network Protocol} \\
\hline \multicolumn{2}{|l|}{DPO Dropout} \\
\hline \multicolumn{2}{|l|}{DSP Digital Signal Processor} \\
\hline \multicolumn{2}{|l|}{dt Rate of Change} \\
\hline \multicolumn{2}{|l|}{DTT Direct Transfer Trip} \\
\hline \multicolumn{2}{|l|}{DUTT............. Direct Under-reaching Transfer Trip} \\
\hline \multicolumn{2}{|l|}{ENCRMNT Encroachment} \\
\hline \multicolumn{2}{|l|}{EPRI.............. Electric Power Research Institute} \\
\hline \multicolumn{2}{|l|}{.EVT Filename extension for event recorder files} \\
\hline \multicolumn{2}{|l|}{EXT Extension, External} \\
\hline \multicolumn{2}{|l|}{F Field} \\
\hline \multicolumn{2}{|l|}{FAIL Failure} \\
\hline \multicolumn{2}{|l|}{FD Fault Detector} \\
\hline \multicolumn{2}{|l|}{DH............... Fault Detector high-set} \\
\hline \multicolumn{2}{|l|}{DL Fault Detector low-set} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{FLA................ Full Load Current
FO Fiber Optic}} \\
\hline & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{MVAR MegaVar (total 3-phase)} \\
\hline MVAR_A. & MegaVar (phase A) \\
\hline MVAR-B. & MegaVar (phase B) \\
\hline MVAR C & MegaVar (phase C) \\
\hline MVARH & MegaVar-Hour \\
\hline MW..... & MegaWatt (total 3-phase) \\
\hline MW_A & MegaWatt (phase A) \\
\hline MW-B & MegaWatt (phase B) \\
\hline MW-C. & MegaWatt (phase C) \\
\hline MWH & MegaWatt-Hour \\
\hline \multicolumn{2}{|l|}{N................... Neutral} \\
\hline \multicolumn{2}{|l|}{N/A, n/a Not Applicable} \\
\hline NEG .. & Negative \\
\hline \multicolumn{2}{|l|}{NMPLT Nameplate} \\
\hline NOM.. & Nominal \\
\hline \multicolumn{2}{|l|}{NSAP Network Service Access Protocol} \\
\hline \multicolumn{2}{|l|}{NTR................ Neutral} \\
\hline \multicolumn{2}{|l|}{O Over} \\
\hline \multicolumn{2}{|l|}{OC, O/C Overcurrent} \\
\hline \multicolumn{2}{|l|}{O/P, Op.......... Output} \\
\hline \multicolumn{2}{|l|}{OP Operate} \\
\hline \multicolumn{2}{|l|}{OPER Operate} \\
\hline \multicolumn{2}{|l|}{OPERATG...... Operating} \\
\hline O/S........ & Operating System \\
\hline \multicolumn{2}{|l|}{OSI Open Systems Interconnect} \\
\hline \multicolumn{2}{|l|}{OSB............... Out-of-Step Blocking} \\
\hline \multicolumn{2}{|l|}{OUT............... Output} \\
\hline \multicolumn{2}{|l|}{OV Overvoltage} \\
\hline \multicolumn{2}{|l|}{OVERFREQ... Overfrequency} \\
\hline \multicolumn{2}{|l|}{OVLD Overload} \\
\hline \multicolumn{2}{|l|}{P................... Phase} \\
\hline \multicolumn{2}{|l|}{PC Phase Comparison, Personal Computer} \\
\hline \multicolumn{2}{|l|}{PCNT Percent} \\
\hline \multicolumn{2}{|l|}{PF................. Power Factor (total 3-phase)} \\
\hline \multicolumn{2}{|l|}{PF A Power Factor (phase A)} \\
\hline \multicolumn{2}{|l|}{PF-B Power Factor (phase B)} \\
\hline \multicolumn{2}{|l|}{PF-C............ Power Factor (phase C)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{PFLL............. Phase and Frequency Lock Loop}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{PICS............... Protocol Implementation \& Conformance} \\
\hline PKP & Pickup \\
\hline \multicolumn{2}{|l|}{PLC Power Line Carrier} \\
\hline \multicolumn{2}{|l|}{POS.............. Positive} \\
\hline \multicolumn{2}{|l|}{POTT............. Permissive Over-reaching Transfer Trip} \\
\hline \multicolumn{2}{|l|}{PRESS.......... Pressure} \\
\hline \multicolumn{2}{|l|}{PRI Primary} \\
\hline \multicolumn{2}{|l|}{PROT Protection} \\
\hline \multicolumn{2}{|l|}{PSEL Presentation Selector} \\
\hline \multicolumn{2}{|l|}{pu Per Unit} \\
\hline \multicolumn{2}{|l|}{PUIB.............. Pickup Current Block} \\
\hline \multicolumn{2}{|l|}{PUIT.............. Pickup Current Trip} \\
\hline \multicolumn{2}{|l|}{PUSHBTN Pushbutton} \\
\hline \multicolumn{2}{|l|}{PUTT............. Permissive Under-reaching Transfer Trip} \\
\hline \multicolumn{2}{|l|}{PWM Pulse Width Modulated} \\
\hline \multicolumn{2}{|l|}{PWR.............. Power} \\
\hline \multicolumn{2}{|l|}{QUAD........... Quadrilateral} \\
\hline \multicolumn{2}{|l|}{R.................. Rate, Reverse} \\
\hline \multicolumn{2}{|l|}{RCA.............. Reach Characteristic Angle} \\
\hline \multicolumn{2}{|l|}{REF Reference} \\
\hline \multicolumn{2}{|l|}{REM Remote} \\
\hline \multicolumn{2}{|l|}{REV Reverse} \\
\hline \multicolumn{2}{|l|}{RI.................. Reclose Initiate} \\
\hline \multicolumn{2}{|l|}{RIP Reclose In Progress} \\
\hline \multicolumn{2}{|l|}{RGT BLD Right Blinder} \\
\hline \multicolumn{2}{|l|}{ROD Remote Open Detector} \\
\hline \multicolumn{2}{|l|}{RST............... Reset} \\
\hline \multicolumn{2}{|l|}{RSTR Restrained} \\
\hline \multicolumn{2}{|l|}{RTD............... Resistance Temperature Detector} \\
\hline \multicolumn{2}{|l|}{RTU............... Remote Terminal Unit} \\
\hline \multicolumn{2}{|l|}{RX (Rx) Receive, Receiver} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{S....................... second
S................. Sensitive}} \\
\hline & \\
\hline
\end{tabular}

\section*{GE MULTILIN RELAY WARRANTY}

General Electric Multilin Inc. (GE Multilin) warrants each relay it manufactures to be free from defects in material and workmanship under normal use and service for a period of 24 months from date of shipment from factory.

In the event of a failure covered by warranty, GE Multilin will undertake to repair or replace the relay providing the warrantor determined that it is defective and it is returned with all transportation charges prepaid to an authorized service centre or the factory. Repairs or replacement under warranty will be made without charge.

Warranty shall not apply to any relay which has been subject to misuse, negligence, accident, incorrect installation or use not in accordance with instructions nor any unit that has been altered outside a GE Multilin authorized factory outlet.

GE Multilin is not liable for special, indirect or consequential damages or for loss of profit or for expenses sustained as a result of a relay malfunction, incorrect application or adjustment.

For complete text of Warranty (including limitations and disclaimers), refer to GE Multilin Standard Conditions of Sale.

\section*{Numerics}
10BASE-F
communications options 3-20
description 3-21
interface 3-31
redundant option 3-20
settings 5-13
specifications 2-12
A
ABBREVIATIONS F-4
AC CURRENT INPUTS 2-10, 3-10, 5-41
AC VOLTAGE INPUTS 2-10, 3-10
ACTIVATING THE RELAY 1-13, 4-12
ACTIVE SETTING GROUP 5-74
ACTUAL VALUES
maintenance 6-21
metering 6-8
product information 6-22
records 6-18
status 6-3
ALARM LEDs 5-28
ALTITUDE 2-13
ANSI DEVICE NUMBERS 2-1
APPARENT POWER 2-9, 6-13
APPLICATION EXAMPLES breaker trip circuit integrity 5-144
contact inputs 5-159
sensitive directional power 5-120
APPROVALS 2-13
ARsee entry for AUTORECLOSE
ARC BURST PATTERN ANALYSIS ALGORITHM 8-3
ARC DETECTION ALGORITHM 8-2
ARCHITECTURE 5-55
ARCING CURRENT 5-153
ARCING SUSPECTED ALGORITHM 8-3
AUTORECLOSE
actual values ... 6-4
FlexLogic \({ }^{\text {TM }}\) operands 5-57
logic. 5-139, 5-140
Modbus registers B-14, B-26
settings 5-136, 5-138
single shot sequence 5-141
specifications 2-7
AUXILIARY OVERVOLTAGE
FlexLogic \({ }^{\text {TM }}\) operands 5-57
logic 5-118
Modbus registers B-32
settings 5-118
specifications 2-6
AUXILIARY UNDERVOLTAGE
FlexLogic \({ }^{\text {TM }}\) operands 5-57
logic 5-117
Modbus registers B-32
settings 5-117
specifications 2-6
AUXILIARY VOLTAGE CHANNEL 3-10
AUXILIARY VOLTAGE METERING 6-12
B
BANKS \(5-6,5-41,5-42\)
BATTERY FAIL 7-4
BINARY INPUT POINTS E-8
BINARY OUTPUT POINTS E-13
BLOCK DIAGRAM 1-3
BLOCK SETTING 5-4
BREAKER ARCING
FlexLogic \({ }^{\text {TM }}\) operands 5-57
BREAKER ARCING CURRENT
clearing 5-11, 7-2
logic 5-154
measurement 5-154
Modbus registers B-13, B-29
settings 5-153
BREAKER CONTROL
actual values 6-21
control of 2 breakers 4-8
description 4-8
dual breaker logic 5-47
FlexLogic \({ }^{\text {TM }}\) operands 5-57
Modbus registers B-21
settings 5-45
BREAKER FAILURE
description 5-104
determination 5-105
FlexLogic \({ }^{\text {TM }}\) operands 5-57
logic 11
main path sequence 5-105
Modbus registers B-28
settings 5-103, 5-106
specifications 2-7
BREAKER-AND-A-HALF SCHEME 5-6
BRIGHTNESS 5-9
C
C37.94 COMMUNICATIONS 3-32, 3-33
CE APPROVALS 2-13
HANGES TO F60 MANUAL F-1
CHANGES TO MANUAL F-1, F-2, F-3
CHANNEL COMMUNICATION3-24 CHANNELS
banks ... 5-41, 5-42
CIRCUIT MONITORING APPLICATIONS 5-142
CLEANING 2-13
CLEAR RELAY RECORDS
Modbus registers B-43 CLOCK
etting date and time 7-2
settings 5-20
characteristic 5-156
Flexlogic \({ }^{\text {TM }}\) operands 5-57
logic 5-157
settings 5-156
COMMANDS MENU 7-1
10BASE-F 3-20, 3-21, 5-13
connecting to the UR..1-8, 1-9 3-24
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{CRC-16 error checking..
dnp}} \\
\hline & \\
\hline EGD & 5-18 \\
\hline G. 703 & 3-27 \\
\hline half duplex. & B-1 \\
\hline HTTP & 5-16 \\
\hline IEC 60870-5-104 protocol & 5-17 \\
\hline inter-relay communication & 2-12 \\
\hline \multicolumn{2}{|l|}{Modbus ..5-13, 5-20, B-1, B-3} \\
\hline Modbus registers & B-18 \\
\hline network & 5-13 \\
\hline \multicolumn{2}{|l|}{overview ... 1-11} \\
\hline RS232 & . 3-19 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
RS485 .. 5-1, 3-21, 5-12 \\
settings \\
\hline
\end{tabular}}} \\
\hline & \\
\hline specifications. & . 2-12 \\
\hline \multicolumn{2}{|l|}{UCA/MMS5-16, 5-45, 5-160, 5-164, 5-165, 5-166, C-1} \\
\hline web server.. & 5-16 \\
\hline COMTRADE & B-6, B-7 \\
\hline CONDUCTED RFI & 2-13 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{CONTACT INFORMATION..1-1 CONTACT INPUTS}} \\
\hline & \\
\hline actual values . & \\
\hline dry connections & 3-17 \\
\hline \multicolumn{2}{|l|}{FlexLogic \({ }^{\text {TM }}\) operands ..5-61} \\
\hline \multicolumn{2}{|l|}{Modbus registers B-9, B-15, B-37, B-39} \\
\hline \multicolumn{2}{|l|}{module assignments ..3-13} \\
\hline \multicolumn{2}{|l|}{settings .. 5-158} \\
\hline specifications & 2-10 \\
\hline \multicolumn{2}{|l|}{thresholds ... 5-158} \\
\hline \multicolumn{2}{|l|}{wet connections ..3-17} \\
\hline wiring & 3-15 \\
\hline \multicolumn{2}{|l|}{CONTACT OUTPUTS} \\
\hline actual values. & 6-4 \\
\hline FlexLogic \({ }^{\text {TM }}\) operands & 5-61 \\
\hline \multicolumn{2}{|l|}{Modbus registers B-9, B-15, B-41} \\
\hline \multicolumn{2}{|l|}{module assignments ..3-13} \\
\hline \multicolumn{2}{|l|}{settings .. 5-161} \\
\hline \multicolumn{2}{|l|}{wiring ...3-15} \\
\hline \multicolumn{2}{|l|}{CONTROL ELEMENTS ... 5-122} \\
\hline \multicolumn{2}{|l|}{CONTROL POWER} \\
\hline \multicolumn{2}{|l|}{description...3-9} \\
\hline specifications.. & 2-11 \\
\hline \multicolumn{2}{|l|}{CONTROL PUSHBUTTONS} \\
\hline \multicolumn{2}{|l|}{FlexLogic \({ }^{\text {TM }}\) operands ... 5-57} \\
\hline \multicolumn{2}{|l|}{Modbus registers ..B-43} \\
\hline \multicolumn{2}{|l|}{settings ..5-29} \\
\hline \multicolumn{2}{|l|}{specifications...2-8} \\
\hline \multicolumn{2}{|l|}{COUNTERS} \\
\hline actual values & ..6-5 \\
\hline settings & 5-145 \\
\hline \multicolumn{2}{|l|}{CRC ALARM .. 5-39} \\
\hline \multicolumn{2}{|l|}{CRC-16 ALGORITHM .. B-2} \\
\hline \multicolumn{2}{|l|}{CRITICAL FAILURE RELAY................................... 2-11, 3-9} \\
\hline CSA APPROVAL & 2-13 \\
\hline \multicolumn{2}{|l|}{CT BANKS} \\
\hline settings & 5-41 \\
\hline \multicolumn{2}{|l|}{CT INPUTS .. 3-10, 5-6, 5-41} \\
\hline \multicolumn{2}{|l|}{CT WIRING ..3-11} \\
\hline \multicolumn{2}{|l|}{CURRENT BANK .. 5-41} \\
\hline \multicolumn{2}{|l|}{CURRENT DEMAND .. 5-24} \\
\hline \multicolumn{2}{|l|}{CURRENT HARMONICS 2-9, 6-14} \\
\hline \multicolumn{2}{|l|}{CURRENT METERING} \\
\hline \multicolumn{2}{|l|}{actual values ..6-11} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Modbus registers ..
specifications.......}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{CURVES} \\
\hline definite time & ... 5-81, 5-112 \\
\hline
\end{tabular}
FlexCurves \({ }^{\text {TM }}\) 5-48, 5-81
2T 5-81
IAC 5-80
IEC 5-79
IEEE 5-78
inverse time undervoltage 5-112
types 5-77
D
DATA FORMATS, MODBUS B-48
DATA LOGGER
clearing 5-11, 7-1
B-6, B-7
Modbus registers
Modtings registers. B-10, B-19
settings 5-24
specifications 2-9
DATE 7-2
DCMA INPUTS 6-17
Modbus registers B-16, B-30
settings. 5-171
specifications 2-10
DCMA OUTPUTS
description 3-18
Modbus registers B-34
settings 5-172
specifications 2-11
DEFINITE TIME CURVE 5-81, 5-112
DEMAND
Modbus registers. B-12, B-13, B-22
DEMAND METERING
actual values 6-13
settings 5-24
specifications 2-10
DEMAND RECORDS
clearing 5-11, 7-2
DESIGN 1-3
DEVICE ID 5-164
DEVICE PROFILE DOCUMENT E-1
DIELECTRIC STRENGTH 2-13, 3-8
DIGITAL COUNTER
FlexLogic \({ }^{\text {TM }}\) operands 5-58
DIGITAL COUNTERS
actual values 6-5
logic 5-146
Modbus registers B-9, B-36
settings 5-145
DIGITAL ELEMENT
FlexLogic \({ }^{\text {TM }}\) operands 5-58
DIGITAL ELEMENTS
application example 5-143
logic 5-142
Modbus registers B-36
settings. 5-142
DIGITAL INPUTSsee entry for CONTACT INPUTSDIGITAL OUTPUTSsee entry for CONTACT OUTPUTSDIMENSIONS ..DIRCECT INPUTS
Modbus registers3-1
DIRECT DEVICES
actual values 6-7
Modbus registers B-17
DIRECT I/O
see also DIRECT INPUTS and DIRECT OUTPUTS
application example 5-168, 5-169
configuration examples \(5-26,5-35,5-39,5-40\)settings5-26, 5-35, 5-39, 5-40, 5-167DIRECT INPUTSactual values ... 6-6
application example 5-168, 5-169
clearing counters 7-2
Modbus registers B-10, B-17, B-43, B-45
settings 5-167
specifications 2-10
DIRECT OUTPUTS
application example 5-168, 5-169
clearing counters 7-2
Modbus registers B-10, B-43, B-44, B-45
settings 5-168
DIRECTIONAL OVERCURRENT
see PHASE, GROUND, and NEUTRAL DIRECTIONAL entries
DIRECTIONAL POLARIZATION
DIRECTIONAL POLARIZATION 5-86 5-86
DIRECTIONAL POWER
see entry for SENSITIVE DIRECTIONAL POWER
DISPLAY \(1-11,4-8,5-9\)
DISTURBANCE DETECTOR
FlexLogic \({ }^{\text {TM }}\) operands 5-60
internal 5-44
DNA-1 BIT PAIR 5-166
DNP COMMUNICATIONS
binary counters E-14
binary input points E-8
binary output points E-13
control relay output blocks E-13
device profile document E-1
frozen counters E-14
implementation table E-4
settings. 5-14
user map 5-15
DNP PROTOCOL
Modbus registers B-18
DOWNED CONDUCTOR 2-9, 6-6
DOWNED CONDUCTOR SeeHI-Z
DUPLEX, HALF B-1
E
EGD COMMUNICATIONS
settings 5-18
EGD PROTOCOL
actual values 6-7
Modbus registers B-33
ELECTROSTATIC DISCHARGE 2-13
ELEMENTS 5-4
ENERGY ALOGRITHM FOR HI-Z 8-1
ENERGY METERING
actual values 6-13
Modbus registers B-12
specifications 2-9
ENERGY METERING, CLEARING 5-11, 7-2
EQUATIONS
definite time curve 5-81, 5-112
FlexCurve \({ }^{\text {TM }}\) 5-81
\(I^{2} t\) curves. 5-81
IAC curves 5-80
IEC curves 5-79
IEEE curves 5-78
ETHERNET
actual values 6-6
configuration 1-8
Modbus registers B-10
settings 5-13
specifications 2-12
EVENT CAUSE INDICATORS 4-5
EVENT RECORDER
actual values 6-20
clearing 5-11, 7-1
Modbus B-7
Modbus registers B-16
specifications 2-9
with URPC 4-2
EVENTS SETTING 5-5
EXCEPTION RESPONSES B-5
EXPERT ARC DETECTOR ALGORITHM 8-2
F
F485 1-11
FACEPLATE 3-1
FACEPLATE PANELS 4-4, 4-7
FAST FORM-C RELAY 2-11
FAST TRANSIENT TESTING 2-13
FAULT LOCATOR
logic 6-19
Modbus registers B-14
operation 6-18
specifications 2-9
FAULT REPORT
actual values 6-18
clearing 5-11, 7-1
Modbus B-7
Modbus registers B-15, B-19
settings 5-21
FAULT REPORTS
Modbus registers B-34
FAULT TYPE 6-18
FAX NUMBERS 1-1
FEATURES 2-1
FIRMWARE REVISION 6-22
FIRMWARE UPGRADES 4-2
FLASH MESSAGES 5-9
FLEX STATE PARAMETERS
actual values 6-5, 6-16
settings 5-32
specifications 2-8
FLEXANALOG PARAMETER LIST A-1
FLEXCURVES \({ }^{\text {™ }}\)
Modbus registers B-22, B-36
equation
equation 5-81 5-81
settings 5-48
specifications 2-8
table 5-48
LEXELEMENTS \({ }^{\text {™ }}\)
actual values 6-17
direction 5-71
FlexLogic \({ }^{\text {TM }}\) operands 5-58
hysteresis 5-71
Modbus registers B-33, B-34
pickup 5-71
scheme logic 5-70
settings
2-8
specifications
4-1
editing with URPC
5-68
equation editor5-63
example 5-55, 5-64
example equation 5-122
gate characteristics 5-62
Modbus registers B-23
operands 5-56, 5-57
operators 5-63
rules 5-63
specifications 2-8
timers 5-68
worksheet 5-65
FLEXLOGIC \({ }^{\text {TM }}\) EQUATION EDITOR 5-68
FLEXLOGIC \({ }^{\text {TM }}\) TIMERS 5-68
Modbus registers B-23
FLEXSTATES
Modbus registers B-15, B-33
FORCE CONTACT INPUTS 5-176
FORCE CONTACT OUTPUTS 5-177
FORCE TRIGGER 6-20
FORM-A RELAY
high impedance circuits 3-13
outputs 3-12, 3-13, 3-17
specifications 2-11
FORM-C RELAY
outputs 3-12, 3-17
specifications 2-11
FREQUENCY
actual values 6-15
settings 5-43
FREQUENCY METERING
Modbus registers B-12
specifications 2-10
values 6-14
FREQUENCY RATE OF CHANGE
Modbus registers B-10, B-37
settings 5-130
FREQUENCY TRACKING 5-43
FREQUENCY, NOMINAL 5-42
FUNCTION SETTING 5-4
FUSE 2-11
FUSE FAILURE
see VT FUSE FAILURE
G
G. 703 3-26, 3-27, 3-28, 3-31
GE TYPE IAC CURVES 5-80
GOMSFE C-1
GOOSE B-18
GROUND CURRENT METERING 6-11
GROUND IOC
FlexLogic \({ }^{\text {TM }}\) operands 5-58
logic 5-96
Modbus registers B-25
settings 5-96
GROUND TIME OVERCURRENTsee entry for GROUND TOC
GROUND TOC
FlexLogic \({ }^{\text {TM }}\) operands 5-58
logic 5-95
Modbus registers B-25
settings 5-95
specifications 2-5
GROUPED ELEMENTS 5-74HALF-DUPLEXB-1
HARMONIC CONTENT 6-14
HARMONICS
actual values 6-15
HARMONICS METERING specifications 2-9
HI-Z
actual values 6-6, 6-21
arc burst pattern analysis 8-3
arcing suspected algorithm 8-3
CT/VT module 3-11
data collection 5-148
energy algorithm 8-1
even harmonic restraint 8-3
expert arc detection algorithm 8-2
load analysis algorithm 8-3
load event detector algorithm 8-2
logic 5-152
Modbus registers -31
overcurrent disturbance monitoring 8-3
randomness algorithm 8-2
settings 151
specifications 2-9
spectral analysis algorithm 8-2
theory of operation 8-1
voltage supervision algorithm 8-4
wiring diagram 3-7
HTTP PROTOCOL 5-16
HUMIDITY 2-13
I
I2T CURVES 5-81
IAC CURVES 5-80
IEC 60870-5-104 PROTOCOL
interoperability document. D-1
Modbus registers B-18
settings 5-17
EC CURVES 5-79
IED 1-2
IED SETUP 1-5
IEEE C37.94 COMMUNICATIONS 3-32, 3-33
IEEE CURVES 5-78
MPORTANT CONCEPTS 1-4
N SERVICE INDICATOR 1-13, 7-3
NPUTS
AC curren 2-10, 5-41
AC voltage 2-10, 5-42
contact inputs 5-176
dcmA inputs 2-10, 3-18
direct inputs 2-10
IRIG-B 2-10, 3-22
remote inputs -10, 5-164, 5-165
RTD inputs 2-10, 3-18
virtual 5-160
NSPECTION CHECKLIST 1-1
NSTALLATION
communications 3-20
contact inputs/outputs 3-16
CT inputs 3-10
RS485 3-21
settings. 5-40
VT inputs 3-10
NSTANTANEOUS OVERCURRENT see PHASE, GROUND, and NEUTRAL IOC entries INSULATION RESISTANCE 2-13
NTELLIGENT ELECTRONIC DEVICE 1-2
INTER-RELAY COMMUNICATIONS 2-12
INTRODUCTION 1-2
INVERSE TIME UNDERVOLTAGE 5-112
IOC
see PHASE, GROUND, and NEUTRAL IOC entriesIP ADDRESS5-13
IRIG-B
connection 3-22
settings 5-20
specifications 2-10, 2-11
ISO-9000 REGISTRATION 2-13
K
KEYPAD 1-12, 4-8
L
LAMPTEST 7-2
LASER MODULE 3-25
LATCHING OUTPUTS
application example 5-162, 5-163
settings 5-161
specifications 2-11
LED INDICATORS 4-5, 4-6, 4-7, 5-28
LED TEST
FlexLogic \({ }^{\text {TM }}\) operand 5-61
settings 5-26
specifications 2-8
LINK POWER BUDGET 2-12
LOAD ANALYSIS ALGORITHM 8-3
LOAD ENCROACHMENT
FlexLogic \({ }^{\text {TM }}\) operands 5-59
Modbus registers B-27
settings 5-75, 5-76
specifications 2-7
LOAD EVENT DETECTOR ALGORITHM 8-2
LOGIC GATES 5-63
LOST PASSWORD 5-8
M
MAINTENANCE COMMANDS 7-2
MANUFACTURING DATE 6-22
MEMORY MAP DATA FORMATS B-48
MENU HEIRARCHY 1-12, 4-10
MENU NAVIGATION 1-12, 4-9, 4-10
METERING
conventions 6-8, 6-9
current 2-9
demand 2-10
frequency 2-10
harmonics 2-9
power 2-9
THD 2-9
voltage 2-9
metering conventions 6-9
MIC C-3
MMS
see entry for UCA/MMSMODBUS
data logger B-6, B-7
event recorder B-7
exception responses B-5
execute operation B-4
fault report B-7
flex state parameters 5-32
function code 03/04h B-3
function code 05h B-4
function code 06h B-4
function code 10 h B-5
introduction B-1
memory map data formats B-48
obtaining files B-6
oscillography B-6
passwords B-7
read/write settings/actual values B-3
settings 5-13, 5-20
store multiple settings B-5
store single setting B-4
supported function codes B-3
user map 5-20, B-9, B-22
MODEL INFORMATION 6-22
MODIFICATION FILE NUMBER 6-22
MODULES
communications 3-20
contact inputs/outputs 3-13, 3-15, 3-16
CT 3-11
CT/VT 3-10, 5-6
direct inputs/outputs 3-25
Hi-Z 3-11
insertion 3-4
order codes 2-4
ordering 2-4
power supply 3-9
transducer I/O 3-18
VT. 3-11
withdrawal 3-4
MONITORING ELEMENTS 5-147
MOUNTING 3-1
N
NAMEPLATE..1-1 NEGATIVE SEQUENCE DIRECTIONAL OC Modbus registers B-29
NEGATIVE SEQUENCE DIRECTIONAL OVERCURRENT
characteristics 5-101
logic 5-102
settings 5-100, 5-102
specifications 2-6
FlexLogic \({ }^{\text {TM }}\) operands 5-59
logic 5-99
Modbus registers B-26
settings 5-99
specifications 2-5
FlexLogic \({ }^{\text {TM }}\) operands 5-59
logic 5-116
Modbus registers B-27
specifications -116
NEGATIVE SEQUENCE TOC
FlexLogic \({ }^{\text {TM }}\) operands 5-59
logic 5-98
Modbus registers B-26
settings 5-98
NEUTRAL DIRECTIONAL OC
Modbus registers B-29
NEUTRAL DIRECTIONAL OVERCURRENT
FlexLogic \({ }^{\text {TM }}\) operands 5-59
logic 5-94
polarization 5-92
settings 5-90
specifications 2-6
NEUTRAL INSTANTANEOUS OVERCURRENT see entry for NEUTRAL IOC
NEUTRAL IOC 5-59
FlexLogic \({ }^{\text {TM }}\) operands
FlexLogic \({ }^{\text {TM }}\) operands
logic 5-89
Modbus registers B-24
settings 5-89
specifications 2-5
NEUTRAL OVERVOLTAGE
FlexLogic \({ }^{\text {TM }}\) operands 5-59
logic 5-115
Modbus registers B-32
settings 5-115
specifications 2-6
NEUTRAL TIME OVERCURRENT
see entry for NEUTRAL TOC
NEUTRAL TOC
FlexLogic \({ }^{\text {TM }}\) operands 5-59
logic 5-88
Modbus registers B-24
settings 5-88
specifications 2-5
NON-VOLATILE LATCHES
FlexLogic \({ }^{\text {TM }}\) operands 5-58
Modbus registers B-36
settings 5-73
specifications 2-8

\section*{0}
ONE SHOTS 5-63
OPERATING TEMPERATURE 2-13
OPERATING TIMES 2-5
ORDER CODES 2-3, 6-22, 7-2
ORDER CODES, UPDATING 7-2
ORDERING 2-2, 2-3, 2-4
OSCILLATORY TRANSIENT TESTING 2-13
OSCILLOGRAPHY actual values 6-20
clearing 5-11, 7-1
Modbus B-6
Modbus registers B-15, B-19
settings 5-22
specifications 2-9
with URPC 4-2
OUTPUTS
contact outputs 3-13, 3-15, 5-161
control power 2-11
critical failure relay 2-11
Fast Form-C relay. 2-11
Form-A relay 2-11, 3-12, 3-13, 3-17
Form-C relay ..2-11, 3-12, 3-17
IRIG-B ..2-11
latching outputs 2-11, 5-161
remote outputs 5-166, 5-167
virtual outputs 5-163
OVERCURRENT CURVE TYPES 5-77
OVERCURRENT CURVES
definite time 5-81
FlexCurves \({ }^{\text {TM }}\) 5-81
I2T 5-81
IAC 5-80
IEC 5-79
IEEE 5-78
OVERCURRENT DISTURBANCE MONITORING 8-3
OVERFREQUENCY
FlexLogic \({ }^{\text {TM }}\) operands 5-59
logic 5-129
settings 5-129
specifications 2-7
OVERFRQUENCY
Modbus registers B-27
OVERVOLTAGE
auxiliary 2-6, 5-118
negative sequence 5-116
negative-sequence 2-6
neutral 2-6, 5-115
phase 2-6, 5-114
P
PANEL CUTOUT 3-1
PASSWORD SECURITY 5-8
PASSWORDS
changing 4-13
lost password 4-13, 5-8
Modbus. B-7
Modbus registers B-13, B-17
overview 1-13
security 5-8
settings 5-8
PC SOFTWARE
see entry for URPC
PERMISSIVE FUNCTIONS -112
PER-UNIT QUANTITY 5-4
PHASE ANGLE METERING 6-9
PHASE CURRENT METERING 6-11
PHASE DIRECTIONAL OC
Modbus registers B-29
PHASE DIRECTIONAL OVERCURRENT
FlexLogic \({ }^{\text {TM }}\) operands 5-59
logic 5-87
phase A polarization 5-85
settings 5-85, 5-86
specifications 2-5
PHASE INSTANTANEOUS OVERCURRENT
see entry for PHASE IOCPHASE IOC
FlexLogic \({ }^{\text {TM }}\) operands 5-59
logic 5-84
Modbus registers B-24
specifications 2-5
PHASE OVERVOLTAGE
FlexLogic \({ }^{\text {TM }}\) operands. 5-60
logic 5-114
Modbus registers B-28
settings 5-114
specifications 2-6
PHASE ROTATION 5-43
PHASE TIME OVERCURRENTsee entry for PHASE TOC
PHASE TOC
FlexLogic \({ }^{\text {TM }}\) operands 5-60
logic 5-83
Modbus registers B-23
settings. 5-82
specifications 2-5
PHASE UNDERVOLTAGE
FlexLogic \({ }^{\text {TM }}\) operands 5-60
logic 5-113
Modbus registers B-28
settings 5-113
specifications 2-6
PHONE NUMBERS 1-1
PICS C-2
POWER METERING
Modbus registers B-11
specifications 2-9
values 6-12
POWER SUPPLY
description 3-9
low range 2-10
specifications 2-10
POWER SYSTEM
Modbus registers B-21
PREFERENCES
Modbus registers B-17
PRODUCT INFORMATION 6-22, B-8
PRODUCT SETUP 5-8
PRODUCTION TESTS 2-13
PROTECTION ELEMENTS 5-4
PU QUANTITY 5-4
PUSHBUTTONS, USER-PROGRAMMABLEsee USER-PROGRAMMBLE PUSHBUTTONS
R
RANDOMNESS ALGORITHM FOR HI-Z 8-2
REACTIVE POWER 2-9, 6-12
REAL POWER 2-9, 6-12
REAL TIME CLOCK 5-20
Modbus registers B-19
REAR TERMINAL ASSIGNMENTS 3-5
RECLOSER CURVES 5-51, 5-81
REDUNDANT 10BASE-F 3-20
RELAY ACTIVATION 4-12
RELAY ARCHITECTURE 5-55
RELAY MAINTENANCE \(7-2\)
RELAY NAME 5-40
RELAY NOT PROGRAMMED 1-13
REMOTE DEVICES
actual values 6-4
device ID 5-164
FlexLogic \({ }^{\text {TM }}\) operands 5-61
Modbus registers B-9, B-15, B-45
settings 5-164
statistics 6-5
REMOTE INPUTS
actual values 6-3
FlexLogic \({ }^{\text {TM }}\) operands 5-61
Modbus registers B-9, B-15, B-45
settings 5-165
specifications 2-10
REMOTE OUTPUTS
DNA-1 bit pair 5-166
Modbus registers B-46, B-47
UserSt-1 bit pair 5-167, 5-168
REPLACEMENT MODULES 2-4
RESETTING 5-61, 5-167
REVISION HISTORY F-1
RFI SUSCEPTIBILITY 2-13
RFI, CONDUCTED 2-13
RMS CURRENT 2-9
RMS VOLTAGE 2-9
ROLLING DEMAND 5-25

RS232
configuration 1-8
specifications 2-12
wiring 3-19configuration...3-283-28
timing 3-30
two-channel application 3-29
with fiber interface 3-31
RS485
communications 3-20
description 3-21
specifications 2-12
RTD INPUTS
actual values 6-17
Modbus registers B-16, B-30
settings 5-172
specifications 2-10
S
SALES OFFICE 1-1
SCAN OPERATION 1-4
SELECTOR SWITCH
actual values 6-5
application example 5-127
FlexLogic \({ }^{\text {TM }}\) operands 5-60
logic 5-127
Modbus registers B-35
settings 5-123
specifications 2-8
timing \(5-125,5-126\)SELF-TESTS
description. 7-3
error messages 7-4
FlexLogic \({ }^{\text {TM }}\) operands 5-62
Modbus registers B-8
SENSITIVE DIRECTIONAL POWER
actual values 6-15
FlexLogic \({ }^{\text {TM }}\) operands 5-58
logic 5-121
Modbus registers B-10, B-27
settings 5-119, 5-121
specifications 2-6
SENSTIVE DIRECTIONAL POWER
characteristic 5-120
SERIAL NUMBER 6-22
SERIAL PORTS 5-12
Modbus registers B-18
SETTING GROUPS \(.5-60,5-74,5-122\), B-35
SETTINGS, CHANGING 4-11
SIGNAL SOURCES
description 5-5
metering 6-11
settings 5-44
SIGNAL TYPES 1-3
SINGLE LINE DIAGRAM 2-1, 2-2
SITE LIST, CREATING 4-1
SNTP PROTOCOL B-19
settings 5-18
installation 1-5
see entry for URPC
SOFTWARE ARCHITECTURE 1-4
SOFTWARE, PC
see entry for URPC
SOURCE TRANSFER SCHEMES 5-112
SOURCES
SOURCES
description 5-5
metering 6-11
Modbus registers B-21
settings 5-43, 5-44
SPECIFICATIONS 2-5
SPECTRAL ANALYSIS ALGORITHM FOR HI-Z 8-2
ST TYPE CONNECTORS 3-21
STANDARD ABBREVIATIONS F-4
STATUS INDICATORS 4-5
SURGE IMMUNITY 2-13
SYMMETRICAL COMPONENTS METERING 6-9
SYNCHROCHECK
actual values 6-16
FlexLogic \({ }^{\text {TM }}\) operands 5-61
logic 5-135
Modbus registers B-14, B-21
settings 5-132, 5-133
specifications 2-7
SYSTEM FREQUENCY 5-42
SYSTEM SETUP 5-41
T
TARGET MESSAGES 7-3
TARGET SETTING 5-4
TARGETS MENU 7-3
TCP PORT NUMBER 5-16
TEMPERATURE, OPERATING 2-13
TERMINALS 3-5
TESTING
force contact inputs 5-176
force contact outputs 5-177
lamp test 7-2
self-test error messages 7-3
THD
Modbus registers B-13, B-15
THD METERING 2-9, 6-14
analog channel correspondence 5-23
THEORY OF OPERATION 8-1
THERMAL DEMAND CHARACTERISTIC 5-25
TIME 7-2
TIME OVERCURRENT
see PHASE, NEUTRAL, and GROUND TOC entriesTIMERS5-68
TOC
ground 5-95
neutral 5-88
phase 5-82
specifications 2-5
TRACKING FREQUENCY 6-16, B-33
TRANSDUCER I/O
actual values 6-17
settings 5-171, 5-172
specifications 2-10
wiring 3-18
TRIP LEDs 5-28
TROUBLE INDICATOR 1-13, 7-3
TYPE TESTS 2-13
TYPICAL WIRING DIAGRAM 3-6, 3-7
for breaker control...
for virtual inputs 5-160
UCA/MMS
device ID ..5-164
DNA2 assignments ..5-166
MIC .. C-3
overview .. C-1
PICS... C-2
remote device settings..5-164
remote inputs ..5-165
reporting ... C-6
SBO timeout ... 5-45, 5-160
settings...5-16
UserSt-1 bit pair...5-167, 5-168
UCA/MMS PROTOCOL
Modbus registers.. B-18
UL APPROVAL ..2-13
UNAUTHORIZED ACCESS
UNDERFREQUENCY
FlexLogic \({ }^{\text {TM }}\) operands
logic ...5-128
Modbus registers... B-32
settings..5-128
specifications .. 2-7
UNDERVOLTAGE
auxiliary ... 2-6
phase ..2-6, 5-113
UNDERVOLTAGE CHARACTERISTICS5-112
UNIT NOT PROGRAMMED ..5-40
UNPACKING THE RELAY .. 1-1
UNRETURNED MESSAGES ALARM5-40
UPDATING ORDER CODE .. 7-2
URPC
creating a site list... 4-1
event recorder.. 4-2
firmware upgrades.. 4-2
introduction... 4-1
oscillography.. 4-2
overview ... 4-1
requirements .. 1-5
USER-DEFINABLE DISPLAYS
example ...5-34
invoking and scrolling ..5-33
Modbus registers.. B-17, B-22
settings...5-33, 5-34
specifications .. 2-8
USER-PROGRAMMABLE LEDS
Modbus registers.. B-19
USER-PROGRAMMABLE LEDs
custom labeling .. 4-7
defaults... 4-6
description ... 4-6
settings... 5-28
specifications ... 2-8
USER-PROGRAMMABLE PUSHBUTTONS
FlexLogic \({ }^{\text {TM }}\) operands ..5-62
Modbus registers... B-22
settings...5-31
specifications ... 2-8
USER-PROGRAMMABLE SELF TESTS
Modbus registers... B-20
settings..5-29
USERST-1 BIT PAIR.. 5-167, 5-168

\section*{INDEX}
V
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
VAR-HOURS
\[
2-9,6-13
\] \\
VIBRATION TESTING
\end{tabular}}} \\
\hline & \\
\hline
\end{tabular}
VIBRATION TESTING .. 2-13
VIRTUAL INPUTS
 actual values ... 6-3
 commands .. 7-1
 FlexLogic \({ }^{\text {TM }}\) operands .. 5-61
 logic... 5-160
 Modbus registers .. B- B, B-39
 settings .. 5-160
VIRTUAL OUTPUTS
 actual values ... 6-4
 FlexLogic \({ }^{\text {TM }}\) operands .. 5-61
 Modbus registers ... B-40
 settings .. 5-163
VOLTAGE BANKS .. 5-42
VOLTAGE DEVIATIONS .. 2-13
VOLTAGE ELEMENTS .. 5-112
VOLTAGE HARMONICS... 6-14
VOLTAGE METERING
 Modbus registers ...B-11
 specifications .. 2-9
 values .. 6-11
VOLTAGE RESTRAINT CHARACTERISTIC. 5-82
VT FUSE FAILURE
logic 5-155
Modbus registers B-35
settings 5-155
VT INPUTS 3-10, 5-6, 5-42
VT WIRING 3-11
VTFF
FlexLogic \({ }^{\text {TM }}\) operands. 5-60
see VT FUSE FAILURE
W
WARRANTY F-6
WATT-HOURS 2-9, 6-13
WEB SERVER PROTOCOL 5-16
WEBSITE 1-1
WIRING DIAGRAM 3-6, 3-7
Z
ZERO SEQUENCE CORE BALANCE 3-10```

