D30 Line Distance Relay
 UR Series Instruction Manual

D30 revision: 3.4x

Manual P/N: 1601-0116-F3 (GEK-106439B)
Copyright © 2008 GE Multilin

GE Multilin

215 Anderson Avenue, Markham, Ontario
Canada L6E 1B3

GE Multilin's Quality Management System is registered to ISO9001:2000

ADDENDUM

This Addendum contains information that relates to the D30 Line Distance Relay relay, version 3.4 x . This addendum lists a number of information items that appear in the instruction manual GEK-106439B (revision F3) but are not included in the current D30 operations.
The following functions/items are not yet available with the current version of the D30 relay:

- Signal Sources SRC 3 to SRC 6

The UCA2 specifications are not yet finalized. There will be changes to the object models described in Appendix C: UCA/MMS Protocol.

GE Multilin

215 Anderson Avenue, Markham, Ontario
Canada L6E 1B3
Tel: (905) 294-6222 Fax: (905) 201-2098
Internet: http://www.GEindustrial.com/multilin

1. GETTING STARTED

2. PRODUCT DESCRIPTION

2.1 INTRODUCTION

2.1.1 OVERVIEW.. 2-1
2.1.2 ORDERING..2-3
2.2 SPECIFICATIONS
2.2.1 PROTECTION ELEMENTS .. 2-5
2.2.2 USER PROGRAMMABLE ELEMENTS .. 2-9
2.2.3 MONITORING ...2-10
2.2.4 METERING ... 2-10
2.2.5 INPUTS...2-11
2.2.6 POWER SUPPLY ... 2-11
2.2.7 OUTPUTS.. 2-12
2.2.8 COMMUNICATIONS..2-12
2.2.9 INTER-RELAY COMMUNICATIONS ... 2-13
2.2.10 ENVIRONMENTAL ... 2-13
2.2.11 TYPE TESTS ... 2-14
2.2.12 PRODUCTION TESTS .. 2-14
2.2.13 APPROVALS .. 2-14
2.2.14 MAINTENANCE .. 2-14

3. HARDWARE

3.1 DESCRIPTION

3.1.1 PANEL CUTOUT ... 3-1
3.1.2 MODULE WITHDRAWAL AND INSERTION .. 3-4
3.1.3 REAR TERMINAL LAYOUT... 3-5
3.2 WIRING
3.2.1 TYPICAL WIRING .. 3-6
3.2.2 DIELECTRIC STRENGTH .. 3-7
3.2.3 CONTROL POWER .. 3-7
3.2.4 CT/VT MODULES .. 3-8
3.2.5 CONTACT INPUTS/OUTPUTS ... 3-9
3.2.6 TRANSDUCER INPUTS/OUTPUTS ... 3-15
3.2.7 RS232 FACEPLATE PORT ...3-16
3.2.8 CPU COMMUNICATION PORTS ... 3-16
3.2.9 IRIG-B ... 3-18

4. HUMAN INTERFACES

5. SETTINGS

4.1 ENERVISTA UR SETUP SOFTWARE INTERFACE

4.1.1 INTRODUCTION 4-1
4.1.2 CREATING A SITE LIST 4-1
4.1.3 ENERVISTA UR SETUP SOFTWARE OVERVIEW 4-1
4.1.4 ENERVISTA UR SETUP SOFTWARE MAIN WINDOW 4-3
4.2 FACEPLATE INTERFACE
4.2.1 FACEPLATE 4-4
4.2.2 LED INDICATORS 4-5
4.2.3 DISPLAY 4-8
4.2.4 KEYPAD 4-8
4.2.5 BREAKER CONTRO 4-8
4.2.6 MENUS 4-9
4.2.7 CHANGING SETTINGS 4-11
3.3.1 DESCRIPTION 3-19
3.3.2 FIBER: LED AND ELED TRANSMITTERS 3-21
3.3.3 FIBER-LASER TRANSMITTERS 3-21
3.3.4 G.703 INTERFACE 3-22
3.3.5 RS422 INTERFACE 3-25
RS422 AND FIBER INTERFACE 3-27
3.3.7 G.703 AND FIBER INTERFACE 3-27
3.3.8 IEEE C37.94 INTERFACE 3-28

5.1 OVERVIEW

5.1.1 SETTINGS MAIN MENU ...5-1
5.1.2 INTRODUCTION TO ELEMENTS...5-3
5.1.3 INTRODUCTION TO AC SOURCES... 5-4

5.2 PRODUCT SETUP

5.2.1 PASSWORD SECURITY.. 5-7
5.2.2 DISPLAY PROPERTIES ...5-8
5.2.3 CLEAR RELAY RECORDS .. 5-10
5.2.4 COMMUNICATIONS ... 5-11
5.2.5 MODBUS USER MAP ...5-17
5.2.6 REAL TIME CLOCK ... 5-17
5.2.7 FAULT REPORT .. 5-18
5.2.8 OSCILLOGRAPHY ...5-19
5.2.9 USER-PROGRAMMABLE LEDS ..5-21
5.2.10 USER-PROGRAMMABLE SELF TESTS ...5-24
5.2.11 CONTROL PUSHBUTTONS ... 5-24
5.2.12 USER-PROGRAMMABLE PUSHBUTTONS...5-25
5.2.13 FLEX STATE PARAMETERS ...5-27
5.2.14 USER-DEFINABLE DISPLAYS ...5-27
5.2.15 DIRECT I/O..5-29
5.2.16 INSTALLATION ... 5-35
5.3 SYSTEM SETUP
5.3.1 AC INPUTS 5-36
5.3.2 ON A 14.4 KV SYSTEM WITH A DELTA CONNECTION AND A VT PRIMARY TO SECONDARY TURNS RATIO OF 14400:120, THE VOLTAGE VALUE ENTERED WOULD BE 120, I.E. 14400 / 120.POWER SYSTEM5-37
5.3.3 SIGNAL SOURCES...5-38
5.3.4 LINE...5-40
5.3.5 BREAKERS .. 5-41

5.4 FLEXLOGIC ${ }^{\text {M }}$

5.4.2 FLEXLOGIC ${ }^{\text {M }}$ RULES .. 5-59
5.4.3 FLEXLOGIC ${ }^{\text {TM }}$ EVALUATION ...5-59
5.4.4 FLEXLOGIC ${ }^{\text {¹ }}$ EXAMPLE ...5-60
5.4.5 FLEXLOGIC™ EQUATION EDITOR..5-64
5.4.6 FLEXLOGICTM TIMERS 5-64
5.4.7 FLEXELEMENTSTM 5-65
5.4.8 NON-VOLATILE LATCHES 5-69
5.5 GROUPED ELEMENTS
5.5.1 OVERVIEW. 5-70
5.5.2 SETTING GROUP 5-70
5.5.3 LINE PICKUP 5-71
5.5.4 DISTANCE 5-73
5.5.5 POWER SWING DETECT 5-85
5.5.6 LOAD ENCROACHMENT 5-93
5.5.7 PHASE CURRENT 5-95
5.5.8 NEUTRAL CURRENT 5-105
5.5.9 GROUND CURRENT 5-112
5.5.10 NEGATIVE SEQUENCE CURRENT 5-114
5.5.11 VOLTAGE ELEMENTS 5-120
5.6 CONTROL ELEMENTS
5.6.1 OVERVIEW 5-127
5.6.2 SETTING GROUPS 5-127
5.6.3 SELECTOR SWITCH 5-128
5.6.4 SYNCHROCHECK 5-134
5.6.5 AUTORECLOSE 5-138
5.6.6 DIGITAL ELEMENTS 5-144
5.6.7 DIGITAL COUNTERS 5-147
5.6.8 MONITORING ELEMENTS 5-149
5.7 INPUTS/OUTPUTS
5.7.1 CONTACT INPUTS 5-152
5.7.2 VIRTUAL INPUTS 5-154
5.7.3 CONTACT OUTPUTS 5-155
5.7.4 VIRTUAL OUTPUTS 5-157
5.7.5 REMOTE DEVICES 5-158
5.7.6 REMOTE INPUTS 5-159
5.7.7 REMOTE OUTPUTS 5-160
5.7.8 RESETTING 5-161
5.7.9 DIRECT INPUTS/OUTPUTS 5-161
5.8 TRANSDUCER I/O
5.8.1 DCMA INPUTS 5-165
5.8.2 RTD INPUTS 5-166
5.9 TESTING
5.9.1 TEST MODE 5-167
5.9.2 FORCE CONTACT INPUTS 5-167
5.9.3 FORCE CONTACT OUTPUTS 5-168
6.1 OVERVIEW
6.1.1 ACTUAL VALUES MAIN MENU 6-1
6.2 STATUS
6.2.1 CONTACT INPUTS 6-3
6.2.2 VIRTUAL INPUTS 6-3
6.2.3 REMOTE INPUTS 6-3
6.2.4 CONTACT OUTPUTS 6-4
6.2.5 VIRTUAL OUTPUTS 6-4
6.2.6 AUTORECLOSE 6-4
6.2.7 REMOTE DEVICES 6-4
6.2.8 DIGITAL COUNTERS 6-5
6.2.9 SELECTOR SWITCHES 6-5
6.2.10 FLEX STATES 6-5
6.2.11 ETHERNET 6-6
6.2.12 DIRECT INPUTS 6-6
6.2.13 DIRECT DEVICES STATUS 6-7
6.3 METERING
6.3.1 METERING CONVENTIONS 6-8
6.3.2 SOURCES 6-11

6. ACTUAL VALUES

6.3.3 SYNCHROCHECK 6-12
6.3.4 TRACKING FREQUENCY 6-13
6.3.5 FLEXELEMENTS ${ }^{\text {M }}$ 6-13
6.3.6 TRANSDUCER I/O 6-13
6.4 RECORDS
6.4.1 FAULT REPORTS 6-14
6.4.2 EVENT RECORDS 6-16
6.4.3 OSCILLOGRAPHY 6-16
6.4.4 BREAKER MAINTENANCE 6-16
6.5 PRODUCT INFORMATION
6.5.1 MODEL INFORMATION 6-17
6.5.2 FIRMWARE REVISIONS 6-17

7. COMMANDS AND TARGETS

7.1 COMMANDS
7.1.1 COMMANDS MENU ..7-1
7.1.2 VIRTUAL INPUTS ..7-1
7.1.3 CLEAR RECORDS..7-2
7.1.4 SET DATE AND TIME ... 7-2
7.1.5 RELAY MAINTENANCE...7-2
7.2 TARGETS
7.2.1 TARGETS MENU ... $7-3$
7.2.2 TARGET MESSAGES .. 7-3
7.2.3 RELAY SELF-TESTS .. $7-3$
8. THEORY OF OPERATION
8.1 DISTANCE ELEMENTS
8.1.1 INTRODUCTION ..8-1
8.1.2 PHASOR ESTIMATION... 8-1
8.1.3 DISTANCE CHARACTERISTICS... 8 -
8.1.4 MEMORY POLARIZATION ...8-5
8.1.5 DISTANCE ELEMENTS ANALYSIS...8-6
8.2 PHASE DISTANCE APPLIED TO POWER TRANSFORMERS
8.2.1 DESCRIPTION ...
8.2.2 EXAMPLE.. 8-13
8.3 GROUND DIRECTIONAL OVERCURRENT
8.3.1 DESCRIPTION ...-....--15
8.3.1 DESCRIPTION ..
8.4 SERIES COMPENSATED LINES
8.4.1 DESCRIPTION ...8-16
9. APPLICATION OF SETTINGS

9.1 APPLICATION GUIDELINES

9.1.1 INTRODUCTION ..9-1
9.1.2 IMPACT OF MEMORY POLARIZATION..9-1
9.1.3 HIGH SET OVERCURRENT ELEMENTS..9-1
9.2 DISTANCE ELEMENTS (STEPPED DISTANCE SCHEME)
9.2.1 PHASE DISTANCE9-2
9.2.2 GROUND DISTANCE 9-3
9.3 SERIES COMPENSATED LINES
9.3.1 INTRODUCTION 9-4
9.3.2 DISTANCE 9-4
9.3.3 GROUND DIRECTIONAL OVERCURRENT 9-5
9.3.4 HIGH-SET PHASE OVERCURRENT 9-5
9.4 PHASE DISTANCE THROUGH POWER TRANSFORMERS
9.4.1 PHASE DISTANCE PROTECTION 9-6
9.4.2 EXAMPLE 9-8

A. FLEXANALOG
 PARAMETERS

A. 1 FLEXANALOG PARAMETER LIST

A. MODBUS

COMMUNICATIONS

B. UCA/MMS COMMUNICATIONS

A. 1 MODBUS RTU PROTOCOL
A.1.1 INTRODUCTION. B-1
A.1.2 PHYSICAL LAYER. B-1
A.1.3 DATA LINK LAYER B-1
A.1.4 CRC-16 ALGORITHM B-2
A. 2 MODBUS FUNCTION CODES
A.2.1 SUPPORTED FUNCTION CODES B-3
A.2.2 READ ACTUAL VALUES OR SETTINGS (FUNCTION CODE 03/04H) B-3
A.2.3 EXECUTE OPERATION (FUNCTION CODE 05H) B-4
A.2.4 STORE SINGLE SETTING (FUNCTION CODE 06H) B-4
A.2.5 STORE MULTIPLE SETTINGS (FUNCTION CODE 10H) B-5
A.2.6 EXCEPTION RESPONSES B-5
A. 3 FILE TRANSFERS
A.3.1 OBTAINING RELAY FILES VIA MODBUS B-6
A.3.2 MODBUS PASSWORD OPERATION B-7
A. 4 MEMORY MAPPING
A.4.1 MODBUS MEMORY MAP B-8
A.4.2 DATA FORMATS B-43
B. 1 UCA/MMS OVERVIEW
B.1.1 UCA C-1
B.1.2 MMS C-1
B.1.3 UCA REPORTING C-6
C. 1 IEC 60870-5-104 PROTOCOL
C.1.1 INTEROPERABILITY...D-1
C.1.2 POINT LIST..D-10
D. 1 DNP PROTOCOL
D.1.1 DEVICE PROFILE DOCUMENT E-1
D.1.2 DNP IMPLEMENTATION E-4
D. 2 DNP POINT LISTS
D.2.1 BINARY INPUTS E-8
D.2.2 BINARY AND CONTROL RELAY OUTPUTS E-12
D.2.3 COUNTERS E-13
D.2.4 ANALOG INPUTS E-14
E. MISCELLANEOUS
E. 1 CHANGE NOTES
E.1.1 REVISION HISTORY F-1
E.1.2 CHANGES TO THE MANUAL F-1
E. 2 ABBREVIATIONS
E.2.1 STANDARD ABBREVIATIONS F-4
E. 3 WARRANTY
E.3.1 GE MULTILIN WARRANTY F-6

Please read this chapter to help guide you through the initial setup of your new relay.

Before attempting to install or use the relay, it is imperative that all WARNINGS and CAUTIONS in this manual are reviewed to help prevent personal injury, equipment damage, and/ or downtime.

- Open the relay packaging and inspect the unit for physical damage.
- View the rear nameplate and verify that the correct model has been ordered.

Figure 1-1: REAR NAMEPLATE (EXAMPLE)

- Ensure that the following items are included:
- Instruction Manual
- GE enerVista CD (includes the EnerVista UR Setup software and manuals in PDF format)
- mounting screws
- registration card (attached as the last page of the manual)
- Fill out the registration form and return to GE Multilin (include the serial number located on the rear nameplate).
- For product information, instruction manual updates, and the latest software updates, please visit the GE Multilin website at http://www.GEindustrial.com/multilin.

If there is any noticeable physical damage, or any of the contents listed are missing, please contact GE Multilin immediately.

GE MULTILIN CONTACT INFORMATION AND CALL CENTER FOR PRODUCT SUPPORT:

GE Multilin
215 Anderson Avenue
Markham, Ontario
Canada L6E 1B3
TELEPHONE: (905) 294-6222, 1-800-547-8629 (North America only)
FAX: (905) 201-2098
E-MAIL: gemultilin@indsys.ge.com
HOME PAGE: http://www.GEindustrial.com/multilin

Historically, substation protection, control, and metering functions were performed with electromechanical equipment. This first generation of equipment was gradually replaced by analog electronic equipment, most of which emulated the singlefunction approach of their electromechanical precursors. Both of these technologies required expensive cabling and auxiliary equipment to produce functioning systems.
Recently, digital electronic equipment has begun to provide protection, control, and metering functions. Initially, this equipment was either single function or had very limited multi-function capability, and did not significantly reduce the cabling and auxiliary equipment required. However, recent digital relays have become quite multi-functional, reducing cabling and auxiliaries significantly. These devices also transfer data to central control facilities and Human Machine Interfaces using electronic communications. The functions performed by these products have become so broad that many users now prefer the term IED (Intelligent Electronic Device).
It is obvious to station designers that the amount of cabling and auxiliary equipment installed in stations can be even further reduced, to 20% to 70% of the levels common in 1990, to achieve large cost reductions. This requires placing even more functions within the IEDs.

Users of power equipment are also interested in reducing cost by improving power quality and personnel productivity, and as always, in increasing system reliability and efficiency. These objectives are realized through software which is used to perform functions at both the station and supervisory levels. The use of these systems is growing rapidly.

High speed communications are required to meet the data transfer rates required by modern automatic control and monitoring systems. In the near future, very high speed communications will be required to perform protection signaling with a performance target response time for a command signal between two IEDs, from transmission to reception, of less than 5 milliseconds. This has been established by the Electric Power Research Institute, a collective body of many American and Canadian power utilities, in their Utilities Communications Architecture 2 (MMS/UCA2) project. In late 1998, some European utilities began to show an interest in this ongoing initiative.
IEDs with the capabilities outlined above will also provide significantly more power system data than is presently available, enhance operations and maintenance, and permit the use of adaptive system configuration for protection and control systems. This new generation of equipment must also be easily incorporated into automation systems, at both the station and enterprise levels. The GE Multilin Universal Relay (UR) has been developed to meet these goals.

a) UR BASIC DESIGN

The UR is a digital-based device containing a central processing unit (CPU) that handles multiple types of input and output signals. The UR can communicate over a local area network (LAN) with an operator interface, a programming device, or another UR device.

Figure 1-2: UR CONCEPT BLOCK DIAGRAM
The CPU module contains firmware that provides protection elements in the form of logic algorithms, as well as programmable logic gates, timers, and latches for control features.
Input elements accept a variety of analog or digital signals from the field. The UR isolates and converts these signals into logic signals used by the relay.
Output elements convert and isolate the logic signals generated by the relay into digital or analog signals that can be used to control field devices.
b) UR SIGNAL TYPES

The contact inputs and outputs are digital signals associated with connections to hard-wired contacts. Both 'wet' and 'dry' contacts are supported.
The virtual inputs and outputs are digital signals associated with UR-series internal logic signals. Virtual inputs include signals generated by the local user interface. The virtual outputs are outputs of FlexLogic ${ }^{\top M}$ equations used to customize the device. Virtual outputs can also serve as virtual inputs to FlexLogic ${ }^{\text {TM }}$ equations.
The analog inputs and outputs are signals that are associated with transducers, such as Resistance Temperature Detectors (RTDs).

The CT and VT inputs refer to analog current transformer and voltage transformer signals used to monitor AC power lines. The UR-series relays support 1 A and 5 A CTs.
The remote inputs and outputs provide a means of sharing digital point state information between remote UR-series devices. The remote outputs interface to the remote inputs of other UR-series devices. Remote outputs are FlexLogic ${ }^{\text {TM }}$ operands inserted into UCA2 GOOSE messages and are of two assignment types: DNA standard functions and userdefined (UserSt) functions.
The direct inputs and outputs provide a means of sharing digital point states between a number of UR-series IEDs over a dedicated fiber (single or multimode), RS422, or G. 703 interface. No switching equipment is required as the IEDs are connected directly in a ring or redundant (dual) ring configuration. This feature is optimized for speed and intended for pilotaided schemes, distributed logic applications, or the extension of the input/output capabilities of a single relay chassis.

c) UR SCAN OPERATION

The UR-series devices operate in a cyclic scan fashion. The device reads the inputs into an input status table, solves the logic program (FlexLogic ${ }^{\text {TM }}$ equation), and then sets each output to the appropriate state in an output status table. Any resulting task execution is priority interrupt-driven.

Figure 1-3: UR-SERIES SCAN OPERATION
1.2.3 SOFTWARE ARCHITECTURE

The firmware (software embedded in the relay) is designed in functional modules which can be installed in any relay as required. This is achieved with Object-Oriented Design and Programming (OOD/OOP) techniques.
Object-Oriented techniques involve the use of 'objects' and 'classes'. An 'object' is defined as "a logical entity that contains both data and code that manipulates that data". A 'class' is the generalized form of similar objects. By using this concept, one can create a Protection Class with the Protection Elements as objects of the class such as Time Overcurrent, Instantaneous Overcurrent, Current Differential, Undervoltage, Overvoltage, Underfrequency, and Distance. These objects represent completely self-contained software modules. The same object-class concept can be used for Metering, I/O Control, HMI, Communications, or any functional entity in the system.

Employing OOD/OOP in the software architecture of the Universal Relay achieves the same features as the hardware architecture: modularity, scalability, and flexibility. The application software for any Universal Relay (e.g. Feeder Protection, Transformer Protection, Distance Protection) is constructed by combining objects from the various functionality classes. This results in a 'common look and feel' across the entire family of UR-series platform-based applications.

As described above, the architecture of the UR-series relays differ from previous devices. To achieve a general understanding of this device, some sections of Chapter 5 are quite helpful. The most important functions of the relay are contained in "elements". A description of the UR-series elements can be found in the Introduction to Elements section in Chapter 5. An example of a simple element, and some of the organization of this manual, can be found in the Digital Elements section. A description of how digital signals are used and routed within the relay is contained in the Introduction to FlexLogic ${ }^{\text {TM }}$ section in Chapter 5.

The faceplate keypad and display or the EnerVista UR Setup software interface can be used to communicate with the relay. The EnerVista UR Setup software interface is the preferred method to edit settings and view actual values because the PC monitor can display more information in a simple comprehensible format.
The following minimum requirements must be met for the EnerVista UR Setup software to properly operate on a PC.

- Pentium class or higher processor (Pentium II 300 MHz or higher recommended)
- Windows 95, 98, 98SE, ME, NT 4.0 (Service Pack 4 or higher), 2000, XP
- 64 MB of RAM (256 MB recommended) and 50 MB of available hard drive space (200 MB recommended)
- Video capable of displaying 800×600 or higher in High Color mode (16-bit color)
- RS232 and/or Ethernet port for communications to the relay

After ensuring the minimum requirements for using EnerVista UR Setup are met (see previous section), use the following procedure to install the EnerVista UR Setup from the enclosed GE enerVista CD.

1. Insert the GE enerVista CD into your CD-ROM drive.
2. Click the Install Now button and follow the installation instructions to install the no-charge enerVista software.
3. When installation is complete, start the enerVista Launchpad application.
4. Click the IED Setup section of the Launch Pad window.

5. In the enerVista Launch Pad window, click the Install Software button and select the "D30 Line Distance Relay" from the Install Software window as shown below. Select the "Web" option to ensure the most recent software release, or select "CD" if you do not have a web connection, then click the Check Now button to list software items for the D30.

6. Select the D30 software program and release notes (if desired) from the list and click the Download Now button to obtain the installation program.

7. enerVista Launchpad will obtain the installation program from the Web or CD. Once the download is complete, doubleclick the installation program to install the EnerVista UR Setup software.
8. Select the complete path, including the new directory name, where the EnerVista UR Setup will be installed.
9. Click on Next to begin the installation. The files will be installed in the directory indicated and the installation program will automatically create icons and add EnerVista UR Setup to the Windows start menu.
10. Click Finish to end the installation. The D30 device will be added to the list of installed IEDs in the enerVista Launchpad window, as shown below.

This section is intended as a quick start guide to using the EnerVista UR Setup software. Please refer to the EnerVista UR Setup Help File and Chapter 4 of this manual for more information.

a) CONFIGURING AN ETHERNET CONNECTION

Before starting, verify that the Ethernet network cable is properly connected to the Ethernet port on the back of the relay. To setup the relay for Ethernet communications, it will be necessary to define a Site, then add the relay as a Device at that site.

1. Install and start the latest version of the EnerVista UR Setup software (available from the GE enerVista CD or online from http://www.GEindustrial.com/multilin (see previous section for installation instructions).
2. Select the "UR" device from the enerVista Launchpad to start EnerVista UR Setup.
3. Click the Device Setup button to open the Device Setup window, then click the Add Site button to define a new site.
4. Enter the desired site name in the "Site Name" field. If desired, a short description of site can also be entered along with the display order of devices defined for the site. Click the OK button when complete.
5. The new site will appear in the upper-left list in the EnerVista UR Setup window. Click on the new site name and then click the Device Setup button to re-open the Device Setup window.
6. Click the Add Device button to define the new device.
7. Enter the desired name in the "Device Name" field and a description (optional) of the site.
8. Select "Ethernet" from the Interface drop-down list. This will display a number of interface parameters that must be entered for proper Ethernet functionality.

- Enter the relay IP address (from SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt[\Omega]{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ NETWORK \Rightarrow IP ADDRESS) in the "IP Address" field.
- Enter the relay Modbus address (from the PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ MODBUS PROTOCOL \Rightarrow MODbus SLAVE ADDRESS setting) in the "Slave Address" field.
- Enter the Modbus port address (from the PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ MODBUS PROTOCOL $\Rightarrow \sqrt{ }$ MODBUS TCP PORT NUMBER setting) in the "Modbus Port" field.

9. Click the Read Order Code button to connect to the D30 device and upload the order code. If an communications error occurs, ensure that the three EnerVista UR Setup values entered in the previous step correspond to the relay setting values.
10. Click OK when the relay order code has been received. The new device will be added to the Site List window (or Online window) located in the top left corner of the main EnerVista UR Setup window.
The Site Device has now been configured for Ethernet communications. Proceed to Section c) below to begin communications.

b) CONFIGURING AN RS232 CONNECTION

Before starting, verify that the RS232 serial cable is properly connected to the RS232 port on the front panel of the relay.

1. Install and start the latest version of the EnerVista UR Setup software (available from the GE enerVista CD or online from http://www. GEindustrial.com/multilin.
2. Select the Device Setup button to open the Device Setup window and click the Add Site button to define a new site.
3. Enter the desired site name in the "Site Name" field. If desired, a short description of site can also be entered along with the display order of devices defined for the site. Click the OK button when complete.
4. The new site will appear in the upper-left list in the EnerVista UR Setup window. Click on the new site name and then click the Device Setup button to re-open the Device Setup window.
5. Click the Add Device button to define the new device.
6. Enter the desired name in the "Device Name" field and a description (optional) of the site.
7. Select "Serial" from the Interface drop-down list. This will display a number of interface parameters that must be entered for proper serial communications.

- Enter the relay slave address and COM port values (from the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ SERIAL PORTS menu) in the "Slave Address" and "COM Port" fields.
- Enter the physical communications parameters (baud rate and parity settings) in their respective fields.

8. Click the Read Order Code button to connect to the D30 device and upload the order code. If an communications error occurs, ensure that the EnerVista UR Setup serial communications values entered in the previous step correspond to the relay setting values.
9. Click "OK" when the relay order code has been received. The new device will be added to the Site List window (or Online window) located in the top left corner of the main EnerVista UR Setup window.

The Site Device has now been configured for RS232 communications. Proceed to Section c) Connecting to the Relay below to begin communications.
c) CONNECTING TO THE RELAY

1. Open the Display Properties window through the Site List tree as shown below:

2. The Display Properties window will open with a flashing status indicator on the lower left of the EnerVista UR Setup window.
3. If the status indicator is red, verify that the Ethernet network cable is properly connected to the Ethernet port on the back of the relay and that the relay has been properly setup for communications (steps A and B earlier).
4. The Display Properties settings can now be edited, printed, or changed according to user specifications.

Refer to Chapter 4 in this manual and the EnerVista UR Setup Help File for more information about the using the EnerVista UR Setup software interface.

Please refer to Chapter 3: Hardware for detailed mounting and wiring instructions. Review all WARNINGS and CAUTIONS carefully.

The EnerVista UR Setup software communicates to the relay via the faceplate RS232 port or the rear panel RS485 / Ethernet ports. To communicate via the faceplate RS232 port, a standard "straight-through" serial cable is used. The DB-9 male end is connected to the relay and the DB-9 or DB-25 female end is connected to the PC COM1 or COM2 port as described in the CPU Communications Ports section of Chapter 3.

Figure 1-4: RELAY COMMUNICATIONS OPTIONS
To communicate through the D30 rear RS485 port from a PC RS232 port, the GE Multilin RS232/RS485 converter box is required. This device (catalog number F485) connects to the computer using a "straight-through" serial cable. A shielded twisted-pair (20, 22, or 24 AWG) connects the F485 converter to the D30 rear communications port. The converter terminals (,+- , GND) are connected to the D30 communication module (,,+- COM) terminals. Refer to the CPU Communications Ports section in Chapter 3 for option details. The line should be terminated with an R-C network (i.e. $120 \Omega, 1 \mathrm{nF}$) as described in the Chapter 3.

All messages are displayed on a 2×20 character vacuum fluorescent display to make them visible under poor lighting conditions. An optional liquid crystal display (LCD) is also available. Messages are displayed in English and do not require the aid of an instruction manual for deciphering. While the keypad and display are not actively being used, the display will default to defined messages. Any high priority event driven message will automatically override the default message and appear on the display.

Display messages are organized into 'pages' under the following headings: Actual Values, Settings, Commands, and Targets. The MENU key navigates through these pages. Each heading page is broken down further into logical subgroups.
The Δ MESSAGE ∇ keys navigate through the subgroups. The Θ VALUE \oslash keys scroll increment or decrement numerical setting values when in programming mode. These keys also scroll through alphanumeric values in the text edit mode. Alternatively, values may also be entered with the numeric keypad.

The \square key initiates and advance to the next character in text edit mode or enters a decimal point. The help key may be pressed at any time for context sensitive help messages. The ENTER key stores altered setting values.
1.5.2 MENU NAVIGATION

Press the MENU key to select the desired header display page (top-level menu). The header title appears momentarily followed by a header display page menu item. Each press of the MENU key advances through the main heading pages as illustrated below.

1.5.3 MENU HIERARCHY

The setting and actual value messages are arranged hierarchically. The header display pages are indicated by double scroll bar characters (■■), while sub-header pages are indicated by single scroll bar characters ($\boldsymbol{\square}$). The header display pages represent the highest level of the hierarchy and the sub-header display pages fall below this level. The MESSAGE Δ and ∇ keys move within a group of headers, sub-headers, setting values, or actual values. Continually pressing the MESSAGE key from a header display displays specific information for the header category. Conversely, continually pressing the MESSAGE key from a setting value or actual value display returns to the header display.

HIGHEST LEVEL

The relay is defaulted to the "Not Programmed" state when it leaves the factory. This safeguards against the installation of a relay whose settings have not been entered. When powered up successfully, the Trouble LED will be on and the In Service LED off. The relay in the "Not Programmed" state will block signaling of any output relay. These conditions will remain until the relay is explicitly put in the "Programmed" state.
Select the menu message SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ INSTALLATION \Rightarrow RELAY SETTINGS

> | RELAY SETTINGS: |
| :--- |
| Not Programmed |

To put the relay in the "Programmed" state, press either of the VALUE θ keys once and then press Enter. The faceplate Trouble LED will turn off and the In Service LED will turn on. The settings for the relay can be programmed manually (refer to Chapter 5) via the faceplate keypad or remotely (refer to the EnerVista UR Setup Help file) via the EnerVista UR Setup software interface.

It is recommended that passwords be set up for each security level and assigned to specific personnel. There are two user password security access levels, COMMAND and SETTING:

1. COMMAND

The COMMAND access level restricts the user from making any settings changes, but allows the user to perform the following operations:

- change state of virtual inputs
- clear event records
- clear oscillography records
- operate user-programmable pushbuttons

2. SETTING

The SETTING access level allows the user to make any changes to any of the setting values.

1.5.6 FLEXLOGIC $^{\text {TM }}$ CUSTOMIZATION

FlexLogic ${ }^{\text {TM }}$ equation editing is required for setting up user-defined logic for customizing the relay operations. See the FlexLogic ${ }^{\text {TM }}$ section in Chapter 5 for additional details.
1.5.7 COMMISSIONING

Templated tables for charting all the required settings before entering them via the keypad are available from the GE Multilin website at http://www.GEindustrial.com/multilin.

The D30 Line Distance Relay is a microprocessor-based relay intended for use on transmission lines of any voltage level, without, with, and in the vicinity of series compensation, in three-pole tripping applications. The primary function of the relay consists of three phase and ground distance zones of protection, either mho or quadrilateral as per user selection. The distance elements are optimized to provide good measurement accuracy with a fast operating time, even when used with Capacitive Voltage Transformers, and can be supervised by detection of power swings. The relay also provides directional ground overcurrent elements, which are commonly used as part of an overall line protection system.
D30 phase distance zones can be configured to work with voltages and currents fed from VTs and CTs located independently from one another on either side of a three-phase power transformer. The relay compensates accordingly to preserve reach and correct target information regardless of the location and type of fault. This feature allows backup protection applications for generators and power transformers.
A Close-Into-Fault, or Switch-On-To-Fault, function is performed by the Line Pickup element. Out-of-step tripping, threepole autoreclosing, synchrocheck, fault location, and many other functions are also available. In addition, overcurrent and undervoltage protection, fault diagnostics, power metering, and RTU functions are provided. The D30 provides phase, neutral, and ground time overcurrent protection. The time overcurrent functions can be programmed with multiple curve shapes or FlexCurve ${ }^{\text {TM }}$ for optimum coordination.

Current parameters are available as total waveform RMS magnitude, or as fundamental frequency only RMS magnitude and angle (phasor).
Diagnostic features include an Event Recorder capable of storing 1024 time-tagged events, oscillography capable of storing up to 64 records with programmable trigger, content and sampling rate. The internal clock used for time-tagging can be synchronized with an IRIG-B signal or via the SNTP protocol over the Ethernet port. This precise time stamping allows the sequence of events to be determined throughout the system. Events can also be programmed (via FlexLogic ${ }^{\text {TM }}$ equations) to trigger oscillography data capture which may be set to record the measured parameters before and after the event for viewing on a personal computer (PC). These tools significantly reduce troubleshooting time and simplify report generation in the event of a system fault.

A faceplate RS232 port may be used to connect to a PC for the programming of settings and the monitoring of actual values. A variety of communications modules are available. Two rear RS485 ports allow independent access by operating and engineering staff. All serial ports use the Modbus ${ }^{\circledR}$ RTU protocol. The RS485 ports may be connected to system computers with baud rates up to 115.2 kbps . The RS232 port has a fixed baud rate of 19.2 kbps . Optional communications modules include a 10BaseF Ethernet interface which can be used to provide fast, reliable communications in noisy environments. Another option provides two 10BaseF fiber optic ports for redundancy. The Ethernet port supports MMS/UCA2, Modbus ${ }^{\circledR} /$ TCP, and TFTP protocols, and allows access to the relay via any standard web browser (UR web pages). The IEC 60870-5-104 protocol is supported on the Ethernet port. DNP 3.0 and IEC 60870-5-104 cannot be enabled at the same time.

The D30 IEDs use flash memory technology which allows field upgrading as new features are added. The following Single Line Diagram illustrates the relay functionality using ANSI (American National Standards Institute) device numbers.

Table 2-1: DEVICE NUMBERS AND FUNCTIONS

DEVICE NUMBER	FUNCTION
$21 G$	Ground Distance
$21 P$	Phase Distance
25	Synchrocheck
$27 P$	Phase Undervoltage
$27 X$	Auxiliary Undervoltage
50DD	Current Disturbance Detector
50G	Ground Instantaneous Overcurrent
50N	Neutral Instantaneous Overcurrent
50P	Phase Instantaneous Overcurrent
50_2	Negative Sequence Instantaneous Overcurrent
51G	Ground Time Overcurrent
51N	Neutral Time Overcurrent
$51 P$	Phase Time Overcurrent

DEVICE NUMBER	FUNCTION
$51 _2$	Negative Sequence Time Overcurrent
52	AC Circuit Breaker
59 N	Neutral Overvoltage
$59 P$	Phase Overvoltage
$59 X$	Auxiliary Overvoltage
$59 _2$	Negative Sequence Overvoltage
67 N	Neutral Directional Overcurrent
$67 P$	Phase Directional Overcurrent
$67 _2$	Negative Sequence Directional Overcurrent
68	Power Swing Blocking
78	Out-of-Step Tripping
79	Automatic Recloser

Figure 2-1: SINGLE LINE DIAGRAM
Table 2-2: OTHER DEVICE FUNCTIONS

FUNCTION
Breaker Arcing Current $\left(\mathrm{I}^{2} \mathrm{t}\right)$
Breaker Control
Contact Inputs (up to 96)
Contact Outputs (up to 64)
Control Pushbuttons
Digital Counters (8)
Digital Elements (16)
Direct Inputs/Outputs (32)
DNP 3.0 or IEC 60870-5-104 Communications
Event Recorder
Fault Detector and Fault Report
Fault Locator
FlexElements ${ }^{\text {™ }}$ (16)
FlexLogic™ Equations
Line Pickup
Metering: Current, Voltage, Power, Pwr Factor, Frequency
MMS/UCA Communications

FUNCTION
MMS/UCA Remote Input/Output ("GOOSE")
Modbus Communications
Modbus User Map
Non-Volatile Latches
Non-Volatile Selector Switch
Oscillography
Setting Groups (6)
Time Synchronization over SNTP
Transducer I/O
User Definable Displays
User Programmable LEDs
User Programmable Pushbuttons
User Programmable Self-Tests
Virtual Inputs (32)
Virtual Outputs (64)
VT Fuse Failure

The relay is available as a 19 -inch rack horizontal mount unit or as a reduced size ($3 / 4$) vertical mount unit, and consists of the following module functions: power supply, CPU, CT/VT DSP, digital input/output, transducer input/output. Each of these modules can be supplied in a number of configurations which must be specified at the time of ordering. The information required to completely specify the relay is provided in the following table (full details of available relay modules are contained in Chapter 3: Hardware).

Table 2-3: D30 ORDER CODES

The order codes for replacement modules to be ordered separately are shown in the following table. When ordering a replacement CPU module or Faceplate, please provide the serial number of your existing unit.

Table 2-4: ORDER CODES FOR REPLACEMENT MODULES

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE

The operating times below include the activation time of a trip rated Form-A output contact unless otherwise indicated. FlexLogic ${ }^{T M}$ operands of a given element are 4 ms faster. This should be taken into account when using FlexLogic ${ }^{T M}$ to interconnect with other protection or control elements of the relay, building FlexLogic ${ }^{\text {TM }}$ equations, or interfacing with other IEDs or power system devices via communications or different output contacts.

PHASE DISTANCE

Characteristic:	Dynamic (100\% memory-polarized) MHO or QUAD, selectable individually per zone
Number of Zones:	3

Left Blinder (Quad only):

Reach:	0.02 to 500Ω in steps of 0.01
Characteristic angle:	60 to 90° in steps of 1
Time delay:	0.000 to 65.535 s in steps of 0.001
Timing accuracy:	$\pm 3 \%$ or 4 ms , whichever is greater
Current supervision:	
Level:	line-to-line current
Pickup:	0.050 to 30.000 pu in steps of 0.001
Dropout:	97 to 98%
Memory duration:	5 to 25 cycles in steps of 1
VT location:	all delta-wye and wye-delta transformers
CT location:	all delta-wye and wye-delta transformers
Voltage supervision pickup (series compensation applications):	
	0 to 5.000 pu in steps of 0.001

PHASE DISTANCE OPERATING TIME CURVES

The operating times are response times of a microprocessor part of the relay. See output contacts specifications for estimation of the total response time for a particular application. The operating times are average times including variables such as fault inception angle or type of a voltage source (magnetic VTs and CVTs).

GROUND DISTANCE

Characteristic:	Dynamic (100\% memory-polarized) MHO, or QUAD, selectable individually per zone	Right blinder (Quad only): Reach: Characteristic angle:	0.02 to 500Ω in steps of 0.01 60 to 90° in steps of 1
Number of zones:	3	Left blinder (Quad only):	
Directionality:	All zones reversible	Reach: Characteristic angle:	0.02 to 500Ω in steps of 0.01
Reach (secondary Ω):	0.02 to 250.00Ω in steps of 0.01		60 to 90° in steps of 1
Distance characteristic	ngle: 30 to 90° in steps of 1	Time delay:	0.000 to 65.535 s in steps of 0.001
Distance comparator lim	angle: 30 to 90° in steps of 1	Timing accuracy:	$\pm 3 \%$ or 4 ms , whichever is greater
Directional supervision:		Current supervision:	
Characteristic angle:	30 to 90° in steps of 1	Level:	neutral current (3I_0)
Limit angle:	30 to 90° in steps of 1	Pickup:	0.050 to 30.000 pu in steps of 0.001
Zero-sequence compe		Dropout:	97 to 98\%
Z0/Z1 magnitude:	0.50 to 7.00 in steps of 0.01	Memory duration:	5 to 25 cycles in steps of 1
Z0/Z1 angle:	-90 to 90° in steps of 1	Voltage supervision picku	up (series compensation applications):
Zero-sequence mutual	ompensation		0 to 5.000 pu in steps of 0.001
Z0M/Z1 magnitude:	0.00 to 7.00 in steps of 0.01	Operation time:	1 to 1.5 cycles (typical)
Z0M/Z1 angle:	-90 to 90° in steps of 1	Reset time:	1 power cycle (typical)

GROUND DISTANCE OPERATING TIME CURVES

The operating times are response times of a microprocessor part of the relay. See output contacts specifications for estimation of the total response time for a particular application. The operating times are average times including variables such as fault inception angle or type of a voltage source (magnetic VTs and CVTs).

LINE PICKUP

Phase IOC:	0.000 to 30.000 pu
Undervoltage pickup:	0.000 to 3.000 pu
Overvoltage delay:	0.000 to 65.535 s
PHASE/NEUTRAL/GROUND TOC	
Current:	Phasor or RMS
Pickup level:	0.000 to 30.000 pu in steps of 0.001
Dropout level:	97\% to 98\% of Pickup
Level accuracy: for 0.1 to $2.0 \times \mathrm{CT}$:	$\pm 0.5 \%$ of reading or $\pm 1 \%$ of rated (whichever is greater)
for $>2.0 \times$ CT:	$\pm 1.5 \%$ of reading $>2.0 \times$ CT rating
Curve shapes:	IEEE Moderately/Very/Extremely Inverse; IEC (and BS) A/B/C and Shor Inverse; GE IAC Inverse, Short/Very/ Extremely Inverse; I^{2} t; FlexCurves ${ }^{\text {TM }}$ (programmable); Definite Time (0.01 s base curve)
Curve multiplier:	Time Dial $=0.00$ to 600.00 in steps of 0.01
Reset type:	Instantaneous/Timed (per IEEE)
Timing accuracy:	Operate at $>1.03 \times$ actual Pickup $\pm 3.5 \%$ of operate time or $\pm 1 / 2$ cycle (whichever is greater)
PHASE/NEUTRAL/GROUND IOC	
Pickup level:	0.000 to 30.000 pu in steps of 0.001
Dropout level:	97 to 98\% of pickup
Level accuracy:	
0.1 to $2.0 \times$ CT rating:	$\pm 0.5 \%$ of reading or $\pm 1 \%$ of rated (whichever is greater)
$>2.0 \times \mathrm{CT}$ rating	$\pm 1.5 \%$ of reading
Overreach:	<2\%
Pickup delay:	0.00 to 600.00 s in steps of 0.01
Reset delay:	0.00 to 600.00 s in steps of 0.01
Operate time:	$<20 \mathrm{~ms}$ at $3 \times$ Pickup at 60 Hz
Timing accuracy:	Operate at $1.5 \times$ Pickup $\pm 3 \%$ or $\pm 4 \mathrm{~ms}$ (whichever is greater)

NEGATIVE SEQUENCE TOC

Pickup level: $\quad 0.000$ to 30.000 pu in steps of 0.001
Dropout level:
Level accuracy:

Curve shapes:
$\pm 0.5 \%$ of reading or $\pm 1 \%$ of rated (whichever is greater)
from 0.1 to $2.0 \times$ CT rating $\pm 1.5 \%$ of reading $>2.0 \times$ CT rating
EEE Moderately/Very/Extremely Inverse; IEC (and BS) A/B/C and Short Inverse; GE IAC Inverse, Short/Very/ Extremely Inverse; $\mathrm{I}^{2} \mathrm{t}$; FlexCurves ${ }^{\mathrm{TM}}$ (programmable); Definite Time (0.01 s base curve)

Curve multiplier (Time dial): 0.00 to 600.00 in steps of 0.01
Reset type: Instantaneous/Timed (per IEEE) and Linear
Timing accuracy: Operate at $>1.03 \times$ Actual Pickup $\pm 3.5 \%$ of operate time or $\pm 1 / 2$ cycle (whichever is greater)

NEGATIVE SEQUENCE IOC

Pickup level:	0.000 to 30.000 pu in steps of 0.001
Dropout level:	97 to 98% of Pickup
Level accuracy:	
0.1 to $2.0 \times \mathrm{CT}$ rating: $\pm 0.5 \%$ of reading or $\pm 1 \%$ of rated (whichever is greater) $>2.0 \times$ CT rating: $\pm 1.5 \%$ of reading Overreach: $<2 \%$ Pickup delay: 0.00 to 600.00 s in steps of 0.01 Reset delay: 0.00 to 600.00 s in steps of 0.01 Operate time: <20 ms at $3 \times$ Pickup at 60 Hz Timing accuracy: Operate at $1.5 \times$ Pickup $\pm 3 \%$ or $\pm 4 \mathrm{~ms}$ (whichever is greater)	

PHASE DIRECTIONAL OVERCURRENT

Relay connection: $\quad 90^{\circ}$ (quadrature)
Quadrature voltage:
ABC phase seq.: phase $A\left(V_{B C}\right)$, phase $B\left(V_{C A}\right)$, phase $C\left(V_{A B}\right)$ ACB phase seq.: phase $A\left(V_{C B}\right)$, phase $B\left(V_{A C}\right)$, phase $C\left(V_{B A}\right)$
Polarizing voltage threshold: 0.000 to 3.000 pu in steps of 0.001
Current sensitivity threshold: 0.05 pu
Characteristic angle: 0 to 359° in steps of 1
Angle accuracy: $\pm 2^{\circ}$
Operation time (FlexLogic ${ }^{\text {TM }}$ operands):
Tripping (reverse load, forward fault): $<12 \mathrm{~ms}$, typically Blocking (forward load, reverse fault):<8 ms, typically

NEUTRAL DIRECTIONAL OVERCURRENT

Directionality:
Polarizing:
Polarizing voltage:
Polarizing current:
Operating current:
Level sensing:
Characteristic angle:
Limit angle:

Angle accuracy:
Offset impedance:
Pickup level:
Dropout level:
Operation time: $<16 \mathrm{~ms}$ at $3 \times$ Pickup at 60 Hz

NEGATIVE SEQUENCE DIRECTIONAL OC

Directionality:	Co-existing forward and reverse				
Polarizing:	Voltage				
Polarizing voltage:	V_2				
Operating current:	I_2				
Level sensing:					
Zero-sequence:	\|I_0	- K x		_1	, $K=0.0625$
Negative-sequence:	$\left\|1 _2\right\|-K \times\left\|1 _1\right\|, K=0.125$				
Characteristic angle:	0 to 90° in steps of 1				
Limit angle:	40 to 90° in steps of 1 , independent for forward and reverse				
Angle accuracy:	$\pm 2^{\circ}$				
Offset impedance:	0.00 to 250.00Ω in steps of 0.01				
Pickup level:	0.05 to 30.00 pu in steps of 0.01				
Dropout level:	97 to 98\%				
Operation time:	$<16 \mathrm{~ms}$ at $3 \times$ Pickup at 60 Hz				

PHASE UNDERVOLTAGE

Pickup level:	0.000 to 3.000 pu in steps of 0.001
Dropout level:	102 to 103% of Pickup
Level accuracy:	$\pm 0.5 \%$ of reading from 10 to 208 V
Curve shapes:	GE IAV Inverse; Definite Time $(0.1 \mathrm{~s}$ base curve) Curve multiplier: Time Dial $=0.00$ to 600.00 in steps of Timing accuracy:0.01 Operate at $<0.90 \times$ Pickup $\pm 3.5 \%$ of operate time or $\pm 4 \mathrm{~ms}$ (which- ever is greater)

AUXILIARY UNDERVOLTAGE

Pickup level:
Dropout level:
Level accuracy:
Curve shapes:
Curve multiplier:
Timing accuracy:
0.000 to 3.000 pu in steps of 0.001 102 to 103% of pickup $\pm 0.5 \%$ of reading from 10 to 208 V GE IAV Inverse, Definite Time Time Dial $=0$ to 600.00 in steps of 0.01 $\pm 3 \%$ of operate time or $\pm 4 \mathrm{~ms}$ (whichever is greater)

PHASE OVERVOLTAGE

Pickup level:
Dropout level: Level accuracy:
Pickup delay:
Operate time:
Timing accuracy:
0.000 to 3.000 pu in steps of 0.001 97 to 98% of Pickup
$\pm 0.5 \%$ of reading from 10 to 208 V 0.00 to 600.00 in steps of 0.01 s $<30 \mathrm{~ms}$ at $1.10 \times$ Pickup at 60 Hz $\pm 3 \%$ or $\pm 4 \mathrm{~ms}$ (whichever is greater)

NEUTRAL OVERVOLTAGE

Pickup level: $\quad 0.000$ to 1.250 pu in steps of 0.001
Dropout level:
Level accuracy:
Pickup delay:
Reset delay:
Timing accuracy:
Operate time:
$\pm 0.5 \%$ of reading from 10 to 208 V
0.00 to 600.00 s in steps of 0.01 0.00 to 600.00 s in steps of 0.01 $\pm 3 \%$ or $\pm 4 \mathrm{~ms}$ (whichever is greater) $<30 \mathrm{~ms}$ at $1.10 \times$ Pickup at 60 Hz

AUXILIARY OVERVOLTAGE

Pickup level: $\quad 0.000$ to 3.000 pu in steps of 0.001
Dropout level:
Level accuracy:
Pickup delay:
Reset delay:
Timing accuracy:
Operate time:

97 to 98% of Pickup $\pm 0.5 \%$ of reading from 10 to 208 V 0 to 600.00 s in steps of 0.01 0 to 600.00 s in steps of 0.01 $\pm 3 \%$ of operate time or $\pm 4 \mathrm{~ms}$ (whichever is greater)
$<30 \mathrm{~ms}$ at $1.10 \times$ pickup at 60 Hz

NEGATIVE SEQUENCE OVERVOLTAGE

Pickup level:
Dropout level:
Level accuracy:
Pickup delay:
Reset delay:
Time accuracy:
Operate time:

SYNCHROCHECK

Max voltage difference: 0 to 100000 V in steps of 1
Max angle difference: 0 to 100° in steps of 1
Max freq. difference: $\quad 0.00$ to 2.00 Hz in steps of 0.01
Hysteresis for max. freq. diff.: 0.00 to 0.10 Hz in steps of 0.01
Dead source function: None, LV1 \& DV2, DV1 \& LV2, DV1 or DV2, DV1 xor DV2, DV1 \& DV2
($\mathrm{L}=$ Live, $\mathrm{D}=$ Dead)

AUTORECLOSURE

Single breaker applications, 3-pole tripping schemes
Up to 4 reclose attempts before lockout
Independent dead time setting before each shot
Possibility of changing protection settings after each shot with FlexLogic ${ }^{\text {TM }}$

POWER SWING DETECT

Functions:
Power swing block, Out-of-step trip
Characteristic: Mho or Quad
Measured impedance: Positive-sequence
Blocking / tripping modes: 2-step or 3-step
Tripping mode: Early or Delayed
Current supervision:
Pickup level:
0.050 to 30.000 pu in steps of 0.001 Dropout level: $\quad 97$ to 98% of Pickup
Fwd / reverse reach (sec. Ω): 0.10 to 500.00Ω in steps of 0.01
Left and right blinders (sec. Ω): 0.10 to 500.00Ω in steps of 0.01
Impedance accuracy: $\pm 5 \%$
Fwd / reverse angle impedances: 40 to 90° in steps of 1
Angle accuracy: $\pm 2^{\circ}$
Characteristic limit angles: 40 to 140° in steps of 1
Timers: $\quad 0.000$ to 65.535 s in steps of 0.001
Timing accuracy: $\quad \pm 3 \%$ or 4 ms , whichever is greater

LOAD ENCROACHMENT

Responds to:
Minimum voltage:
Reach (sec. Ω):
Impedance accuracy:
Angle:
Angle accuracy:
Pickup delay:
Reset delay:
Time accuracy:
Operate time:

Positive-sequence quantities
0.000 to 3.000 pu in steps of 0.001
0.02 to 250.00Ω in steps of 0.01
$\pm 5 \%$
5 to 50° in steps of 1
$\pm 2^{\circ}$
0 to 65.535 s in steps of 0.001
0 to 65.535 s in steps of 0.001
$\pm 3 \%$ or $\pm 4 \mathrm{~ms}$, whichever is greater
$<30 \mathrm{~ms}$ at 60 Hz

FLEXLOGIC $^{\text {M }}$

Programming language: Reverse Polish Notation with graphical visualization (keypad programmable)
Lines of code: 512
Internal variables: 64
Supported operations: NOT, XOR, OR (2 to 16 inputs), AND (2 to 16 inputs), NOR (2 to 16 inputs), NAND (2 to 16 inputs), Latch (Reset dominant), Edge Detectors, Timers
Inputs: any logical variable, contact, or virtual input
Number of timers: 32
Pickup delay: 0 to 60000 (ms, sec., min.) in steps of 1
Dropout delay: 0 to 60000 (ms, sec., min.) in steps of 1

FLEXCURVES ${ }^{\text {m }}$

Number:
Reset points: Operate points: Time delay:

FLEX STATES

Number:

Programmability:

FLEXELEMENTS ${ }^{\text {™ }}$

Number of elements: 16

Operating signal:
Operating signal mode: Operating mode:
Comparator direction:
Pickup Level:
Hysteresis:
Delta dt:
Pickup \& dropout delay: 0.000 to 65.535 s in steps of 0.001

NON-VOLATILE LATCHES

Type:
Number:
Output:
Execution sequence:

Set-dominant or Reset-dominant
16 (individually programmed)
Stored in non-volatile memory
As input prior to protection, control, and FlexLogic ${ }^{\text {™ }}$

USER-PROGRAMMABLE LEDs

Number:	48 plus Trip and Alarm from any logical variable, contact, or vir- tual input
Reset mode:	Self-reset or Latched
LED TEST	
Initiation:	from any digital input or user-program- mable condition
Number of tests:	3, interruptible at any time
Duration of full test:	approximately 3 minutes Test sequence 1:
all LEDs on	
Test sequence 2:	all LEDs off, one LED at a time on for 1 s Test sequence 3:

USER-DEFINABLE DISPLAYS
Number of displays: 16
Lines of display: $\quad 2 \times 20$ alphanumeric characters
Parameters:
Invoking and scrolling: keypad, or any user-programmable condition, including pushbuttons

CONTROL PUSHBUTTONS

Number of pushbuttons: 7
Operation: drive FlexLogic ${ }^{\text {™ }}$ operands

USER-PROGRAMMABLE PUSHBUTTONS (OPTIONAL)

Number of pushbuttons: 12
Mode: Self-Reset, Latched
Display message: 2 lines of 20 characters each

SELECTOR SWITCH

Number of elements: 2
Upper position limit: 1 to 7 in steps of 1
Selecting mode:
Time-out timer:
Control inputs:
Power-up mode:

OSCILLOGRAPHY

Maximum records:	64
Sampling rate:	64 samples per power cycle
Triggers:	Any element pickup, dropout or operate Digital input change of state Digital output change of state FlexLogic $^{\text {TM }}$ equation
	AC input channels Element state
	Digital input state Data:
	Digital output state In non-volatile memory

EVENT RECORDER

Capacity:	1024 events
Time-tag:	to 1 microsecond
Triggers:	Any element pickup, dropout or operate Digital input change of state Digital output change of state Self-test events
Data storage:	In non-volatile memory
FAULT LOCATOR	
Method:	Single-ended
Maximum accuracy if:	Fault resistance is zero or fault currents from all line terminals are in phase
Relay accuracy:	$\pm 1.5 \%$ ($\mathrm{V}>10 \mathrm{~V}, \mathrm{l}>0.1 \mathrm{pu}$)
Worst-case accuracy:	
$\mathrm{VT}_{\text {\%error }}{ }^{+}$	(user data)
CT \%error ${ }^{+}$	(user data)
$\mathrm{Z}_{\text {Line\%error }}{ }^{+}$	(user data)
METHOD\%er	+ (Chapter 6)
RELAY ACCU	RACY\%error ${ }^{+}$(1.5\%)

RMS CURRENT: PHASE, NEUTRAL, AND GROUND
Accuracy at
0.1 to $2.0 \times$ CT rating: $\pm 0.25 \%$ of reading or $\pm 0.1 \%$ of rated (whichever is greater)
$>2.0 \times \mathrm{CT}$ rating:
RMS VOLTAGE
Accuracy:
$\pm 0.5 \%$ of reading from 10 to 208 V
REAL POWER (WATTS)
Accuracy:
$\pm 1.0 \%$ of reading at $-0.8<\mathrm{PF} \leq-1.0$ and $0.8<\mathrm{PF} \leq 1.0$

REACTIVE POWER (VARS)
Accuracy: $\quad \pm 1.0 \%$ of reading at $-0.2 \leq \mathrm{PF} \leq 0.2$

APPARENT POWER (VA)
 Accuracy: $\pm 1.0 \%$ of reading

WATT-HOURS (POSITIVE AND NEGATIVE)
Accuracy:
Range:
Parameters:
Update rate:
$\pm 2.0 \%$ of reading
± 0 to $2 \times 10^{9} \mathrm{MWh}$
3-phase only
50 ms

VAR-HOURS (POSITIVE AND NEGATIVE)

Accuracy:
Range:
Parameters:
Update rate:

FREQUENCY

Accuracy at

$$
\begin{array}{ll}
\mathrm{V}=0.8 \text { to } 1.2 \mathrm{pu}: & \begin{array}{l}
\pm 0.01 \mathrm{~Hz} \text { (when voltage signal is used } \\
\text { for frequency measurement) }
\end{array} \\
\mathrm{I}=0.1 \text { to } 0.25 \mathrm{pu}: & \pm 0.05 \mathrm{~Hz} \\
\mathrm{I}>0.25 \mathrm{pu}: & \begin{array}{l}
\pm 0.02 \mathrm{~Hz} \text { (when current signal is used for } \\
\\
\\
\text { frequency measurement) }
\end{array}
\end{array}
$$

DEMAND

Measurements:

Phases A, B, and C present and maximum measured currents 3-Phase Power (P, Q, and S) present and maximum measured currents $\pm 2.0 \%$

AC CURRENT	
CT rated primary:	1 to 50000 A
CT rated secondary:	1 A or 5 A by connection
Nominal frequency:	20 to 65 Hz
Relay burden:	<0.2 VA at rated secondary
Conversion range:	
Standard CT:	0.02 to $46 \times$ CT rating RMS symmetrical
Sensitive Ground module:	
0.002 to $4.6 \times$ CT rating RMS symmetrical	
Current withstand:	20 ms at 250 times rated
	1 sec . at 100 times rated continuous at 3 times rated
AC VOLTAGE	
VT rated secondary:	50.0 to 240.0 V
VT ratio:	1.00 to 24000.00
Nominal frequency:	20 to 65 Hz
Relay burden:	< 0.25 VA at 120 V
Conversion range:	1 to 275 V
Voltage withstand:	continuous at 260 V to neutral
	$1 \mathrm{~min} . / \mathrm{hr}$ at 420 V to neutral
CONTACT INPUTS	
Dry contacts:	1000Ω maximum
Wet contacts:	300 V DC maximum
Selectable thresholds:	$17 \mathrm{~V}, 33 \mathrm{~V}, 84 \mathrm{~V}, 166 \mathrm{~V}$
Recognition time:	$<1 \mathrm{~ms}$
Debounce timer:	0.0 to 16.0 ms in steps of 0.5
DCMA INPUTS	
Current input (mA DC):	0 to $-1,0$ to $+1,-1$ to $+1,0$ to 5,0 to 10 0 to 20,4 to 20 (programmable)
Input impedance:	379 地10\%
Conversion range:	-1 to +20 mA DC
Accuracy:	$\pm 0.2 \%$ of full scale
Type:	Passive

RTD INPUTS

Types (3-wire): $\quad 100 \Omega$ Platinum, $100 \& 120 \Omega$ Nickel, 10 Ω Copper
Sensing current:
Range:
Accuracy:
5 mA

Isolation:
-50 to $+250^{\circ} \mathrm{C}$
$\pm 2^{\circ} \mathrm{C}$

IRIG-B INPUT
Amplitude modulation: 1 to 10 V pk-pk
DC shift: TTL
Input impedance: $22 \mathrm{k} \Omega$

REMOTE INPUTS (MMS GOOSE)

Number of input points: 32, configured from 64 incoming bit pairs
Number of remote devices:16
Default states on loss of comms.: On, Off, Latest/Off, Latest/On

DIRECT INPUTS

Number of input points: 32
No. of remote devices: 16
Default states on loss of comms.: On, Off, Latest/Off, Latest/On
Ring configuration: Yes, No
Data rate: $\quad 64$ or 128 kbps
CRC: 32-bit
CRC alarm:
Responding to: Rate of messages failing the CRC
Monitoring message count: 10 to 10000 in steps of 1
Alarm threshold: 1 to 1000 in steps of 1
Unreturned message alarm:
Responding to: Rate of unreturned messages in the ring configuration
Monitoring message count: 10 to 10000 in steps of 1
Alarm threshold: $\quad 1$ to 1000 in steps of 1

LOW RANGE

Nominal DC voltage: 24 to 48 V at 3 A
Min/max DC voltage: $20 / 60 \mathrm{~V}$
NOTE: Low range is DC only.
HIGH RANGE
Nominal DC voltage: 125 to 250 V at 0.7 A
Min/max DC voltage: $88 / 300$ V
Nominal AC voltage: 100 to 240 V at $50 / 60 \mathrm{~Hz}, 0.7 \mathrm{~A}$
Min/max AC voltage: $\quad 88 / 265 \mathrm{~V}$ at 48 to 62 Hz

ALL RANGES

Volt withstand: $2 \times$ Highest Nominal Voltage for 10 ms
Voltage loss hold-up: 50 ms duration at nominal
Power consumption: \quad Typical $=35 \mathrm{VA} ;$ Max. $=75 \mathrm{VA}$

INTERNAL FUSE

RATINGS

Low range power supply: 7.5 A / 600 V
High range power supply: $5 \mathrm{~A} / 600 \mathrm{~V}$
INTERRUPTING CAPACITY
AC: $\quad 100000$ A RMS symmetrical
DC: $\quad 10000 \mathrm{~A}$

FORM-A RELAY

Make and carry for 0.2 s : 30 A as per ANSI C37.90
Carry continuous: $\quad 6 \mathrm{~A}$

Break at L/R of 40 ms : 0.25 A DC max. at 48 V 0.10 A DC max. at 125 V

Operate time: $<4 \mathrm{~ms}$
Contact material: Silver alloy
LATCHING RELAY
Make and carry for 0.2 s : 30 A as per ANSI C37.90
Carry continuous: 6 A
Break at L/R of $40 \mathrm{~ms}: \quad 0.25$ A DC max.
Operate time: $<4 \mathrm{~ms}$
Contact material: Silver alloy
Control:
Control mode: operate-dominant or reset-dominant
FORM-A VOLTAGE MONITOR
Applicable voltage: approx. 15 to 250 V DC
Trickle current: approx. 1 to 2.5 mA
FORM-A CURRENT MONITOR
Threshold current: approx. 80 to 100 mA
FORM-C AND CRITICAL FAILURE RELAY
Make and carry for 0.2 s : 10 A
Carry continuous: 6 A
Break at L/R of 40 ms : 0.25 A DC max. at 48 V 0.10 A DC max. at 125 V

Operate time: $<8 \mathrm{~ms}$
Contact material: Silver alloy

FAST FORM-C RELAY
Make and carry: $\quad 0.1$ A max. (resistive load)
Minimum load impedance:

INPUT VOLTAGE	IMPEDANCE	
	2 W RESISTOR	1 W RESISTOR
250 V DC	$20 \mathrm{~K} \Omega$	$50 \mathrm{~K} \Omega$
120 V DC	$5 \mathrm{~K} \Omega$	$2 \mathrm{~K} \Omega$
48 V DC	$2 \mathrm{~K} \Omega$	$2 \mathrm{~K} \Omega$
24 V DC	$2 \mathrm{~K} \Omega$	$2 \mathrm{~K} \Omega$

Note: values for 24 V and 48 V are the same due to a required 95% voltage drop across the load impedance.

Operate time:	$<0.6 \mathrm{~ms}$
INTERNAL LIMITING	RESISTOR:
Power:	2 watts
Resistance:	100 ohms

CONTROL POWER EXTERNAL OUTPUT
(FOR DRY CONTACT INPUT)
Capacity: $\quad 100 \mathrm{~mA} \mathrm{DC} \mathrm{at} 48 \mathrm{~V}$ DC
Isolation:

REMOTE OUTPUTS (MMS GOOSE)
Standard output points: 32
User output points: 32
DIRECT OUTPUTS
Output points: 32

RS232

Front port:
19.2 kbps, Modbus ${ }^{\circledR}$ RTU

RS485

1 or 2 rear ports: $\quad \quad$ Up to 115 kbps, Modbus $^{\circledR}$ RTU, isolated together at 36 Vpk
Typical distance: 1200 m

ETHERNET PORT

10Base-F:

Redundant 10Base-F:
10Base-T: RJ45 connector
Power budget: $\quad 10 \mathrm{db}$
Max optical Ip power: $\quad-7.6 \mathrm{dBm}$
Typical distance: $\quad 1.65 \mathrm{~km}$
SNTP clock synchronization error: <10 ms (typical)

SHIELDED TWISTED-PAIR INTERFACE OPTIONS

INTERFACE TYPE	TYPICAL DISTANCE
RS422	1200 m
G.703	100 m

RS422 distance is based on transmitter power and does not take into consideration the clock source provided by the user.

LINK POWER BUDGET

EMITTER, FIBER TYPE	TRANSMIT POWER	RECEIVED SENSITIVITY	POWER BUDGET
820 nm LED, Multimode	-20 dBm	-30 dBm	10 dB
1300 nm LED, Multimode	-21 dBm	-30 dBm	9 dB
1300 nm ELED, Singlemode	-21 dBm	-30 dBm	9 dB
1300 nm Laser, Singlemode	-1 dBm	-30 dBm	29 dB
1550 nm Laser, Singlemode	+5 dBm	-30 dBm	35 dB

These Power Budgets are calculated from the manufacturer's worst-case transmitter power and worst case receiver sensitivity.

MAXIMUM OPTICAL INPUT POWER

EMITTER, FIBER TYPE	MAX. OPTICAL INPUT POWER
820 nm LED, Multimode	-7.6 dBm
1300 nm LED, Multimode	-11 dBm
1300 nm ELED, Singlemode	-14 dBm
1300 nm Laser, Singlemode	-14 dBm
1550 nm Laser, Singlemode	-14 dBm

TYPICAL LINK DISTANCE

EMITTER TYPE	FIBER TYPE	CONNECTOR TYPE	TYPICAL DISTANCE
820 nm LED	Multimode	ST	1.65 km
1300 nm LED	Multimode	ST	3.8 km
1300 nm ELED	Singlemode	ST	11.4 km
1300 nm Laser	Singlemode	ST	64 km
1550 nm Laser	Singlemode	ST	105 km

둔

Typical distances listed are based on the following assumptions for system loss. As actual losses will vary from one installation to another, the distance covered by your system may vary.

CONNECTOR LOSSES (TOTAL OF BOTH ENDS)
 ST connector 2 dB

FIBER LOSSES
820 nm multimode

1300 nm singlemode $\quad 0.35 \mathrm{~dB} / \mathrm{km}$
1550 nm singlemode $\quad 0.25 \mathrm{~dB} / \mathrm{km}$
Splice losses: One splice every 2 km , at 0.05 dB loss per splice.

SYSTEM MARGIN

3 dB additional loss added to calculations to compensate for all other losses.

Compensated difference in transmitting and receiving (channel asymmetry) channel delays using GPS satellite clock: 10 ms

OPERATING TEMPERATURES

Cold:
IEC 60068-2-1, 16 h at $-40^{\circ} \mathrm{C}$
Dry Heat:
IEC 60068-2-2, 16 h at $+85^{\circ} \mathrm{C}$

OTHER

Humidity (noncondensing): IEC 60068-2-30, 95\%, Variant 1, 6 days
Altitude: \quad Up to 2000 m
Installation Category: II

Electrical fast transient:	ANSI/IEEE C37.90.1	Conducted RFI: IEC 61000-4-6
	IEC 61000-4-4	Voltage dips/interruptions/variations:
	IEC 60255-22-4	IEC 61000-4-11
Oscillatory transient:	ANSI/IEEE C37.90.1	IEC 60255-11
	IEC 61000-4-12	Power frequency magnetic field immunity:
Insulation resistance:	IEC 60255-5	IEC 61000-4-8
Dielectric strength:	IEC 60255-6	Vibration test (sinusoidal): IEC 60255-21-1
	ANSI/IEEE C37.90	Shock and bump: IEC 60255-21-2
Electrostatic discharge:	EN 61000-4-2	Type test report available upon reques
Surge immunity:	EN 61000-4-5	
RFI susceptibility:	ANSI/IEEE C37.90.2	note
	IEC 61000-4-3	
	IEC 60255-22-3	
	Ontario Hydro C-5047-77	

THERMAL

Products go through an environmental test based upon an Accepted Quality Level (AQL) sampling process.
2.2.13 APPROVALS

APPROVALS

CE:
LVD 73/23/EEC:
EMC 81/336/EEC:

IEC 1010-1
EN 50081-2, EN 50082-2
2.2.14 MAINTENANCE

MOUNTING

Attach mounting brackets using 20 inch-pounds (± 2 inch-pounds) of torque.

CLEANING

Normally, cleaning is not required; but for situations where dust has accumulated on the faceplate display, a dry cloth can be used.

The relay is available as a 19-inch rack horizontal mount unit or as a reduced size ($3 / 4$) vertical mount unit, with a removable faceplate. The modular design allows the relay to be easily upgraded or repaired by a qualified service person. The faceplate is hinged to allow easy access to the removable modules, and is itself removable to allow mounting on doors with limited rear depth. There is also a removable dust cover that fits over the faceplate, which must be removed when attempting to access the keypad or RS232 communications port.

The vertical and horizontal case dimensions are shown below, along with panel cutout details for panel mounting. When planning the location of your panel cutout, ensure that provision is made for the faceplate to swing open without interference to or from adjacent equipment.

The relay must be mounted such that the faceplate sits semi-flush with the panel or switchgear door, allowing the operator access to the keypad and the RS232 communications port. The relay is secured to the panel with the use of four screws supplied with the relay.

Figure 3-1: D30 VERTICAL MOUNTING AND DIMENSIONS

Figure 3-2: D30 VERTICAL SIDE MOUNTING INSTALLATION

Figure 3-3: D30 VERTICAL SIDE MOUNTING REAR DIMENSIONS

Figure 3-4: D30 HORIZONTAL MOUNTING AND DIMENSIONS

Module withdrawal and insertion may only be performed when control power has been removed from the unit. Inserting an incorrect module type into a slot may result in personal injury, damage to the unit or connected equipment, or undesired operation!
Proper electrostatic discharge protection (i.e. a static strap) must be used when coming in contact with modules while the relay is energized!
WARNING
The relay, being modular in design, allows for the withdrawal and insertion of modules. Modules must only be replaced with like modules in their original factory configured slots.

The faceplate can be opened to the left, once the sliding latch on the right side has been pushed up, as shown below. This allows for easy accessibility of the modules for withdrawal.

Figure 3-5: UR MODULE WITHDRAWALIINSERTION
WITHDRAWAL: The ejector/inserter clips, located at the top and bottom of each module, must be pulled simultaneously to release the module for removal. Before performing this action, control power must be removed from the relay. Record the original location of the module to ensure that the same or replacement module is inserted into the correct slot. Modules with current input provide automatic shorting of external CT circuits.

INSERTION: Ensure that the correct module type is inserted into the correct slot position. The ejector/inserter clips located at the top and at the bottom of each module must be in the disengaged position as the module is smoothly inserted into the slot. Once the clips have cleared the raised edge of the chassis, engage the clips simultaneously. When the clips have locked into position, the module will be fully inserted.

Type 9C and 9D CPU modules are equipped with 10Base-T and 10Base-F Ethernet connectors for communications. These connectors must be individually disconnected from the module before it can be removed from the chassis.

Figure 3-6: D30 REAR TERMINAL VIEW

Do not touch any rear terminals while the relay is energized!

The relay follows a convention with respect to terminal number assignments which are three characters long assigned in order by module slot position, row number, and column letter. Two-slot wide modules take their slot designation from the first slot position (nearest to CPU module) which is indicated by an arrow marker on the terminal block. See the following figure for an example of rear terminal assignments.

Figure 3-7: EXAMPLE OF MODULES IN F \& H SLOTS

Figure 3-8: TYPICAL WIRING DIAGRAM

The dielectric strength of UR module hardware is shown in the following table:
Table 3-1: DIELECTRIC STRENGTH OF UR MODULE HARDWARE

MODULE TYPE	MODULE FUNCTION	TERMINALS		DIELECTRIC STRENGTH (AC)
		FROM	TO	
1	Power Supply	High (+); Low (+); (-)	Chassis	2000 V AC for 1 minute ${ }^{1}$
1	Power Supply	48 V DC (+) and (-)	Chassis	2000 V AC for 1 minute ${ }^{1}$
1	Power Supply	Relay Terminals	Chassis	2000 V AC for 1 minute ${ }^{1}$
2	Reserved for Future	N/A	N/A	N/A
3	Reserved for Future	N/A	N/A	N/A
4	Reserved for Future	N/A	N/A	N/A
5	Analog I/O	All except 8b	Chassis	< 50 V DC
6	Digital I/O	All (See Precaution 2)	Chassis	2000 V AC for 1 minute
8	CT/VT	All	Chassis	2000 V AC for 1 minute
9	CPU	All except 7b	Chassis	< 50 VDC

${ }^{1}$ See TEST PRECAUTION 1 below.
Filter networks and transient protection clamps are used in module hardware to prevent damage caused by high peak voltage transients, radio frequency interference (RFI) and electromagnetic interference (EMI). These protective components can be damaged by application of the ANSI/IEEE C37.90 specified test voltage for a period longer than the specified one minute. For testing of dielectric strength where the test interval may exceed one minute, always observe the following precautions:

1. The connection from ground to the Filter Ground (Terminal 8b) and Surge Ground (Terminal 8a) must be removed before testing.
2. Some versions of the digital I/O module have a Surge Ground connection on Terminal 8b. On these module types, this connection must be removed before testing.

3.2.3 CONTROL POWER

CONTROL POWER SUPPLIED TO THE RELAY MUST BE CONNECTED TO THE MATCHING POWER SUPPLY RANGE OF THE RELAY. IF THE VOLTAGE IS APPLIED TO THE WRONG TERMINALS, DAMAGE MAY OCCUR!

The D30 relay, like almost all electronic relays, contains electrolytic capacitors. These capacitors are well known to be subject to deterioration over time if voltage is not applied periodically. Deterioration can be avoided by powering the relays up once a year.
The power supply module can be ordered with either of two possible voltage ranges. Each range has a dedicated input connection for proper operation. The ranges are as shown below (see the Technical Specifications section for details):

- LO range: 24 to 48 V (DC only) nominal
- HI range: 125 to 250 V nominal

The power supply module provides power to the relay and supplies power for dry contact input connections.
The power supply module provides 48 V DC power for dry contact input connections and a critical failure relay (see the Typical Wiring Diagram earlier). The critical failure relay is a Form-C that will be energized once control power is applied and the relay has successfully booted up with no critical self-test failures. If on-going self-test diagnostic checks detect a critical failure (see the Self-Test Errors Table in Chapter 7) or control power is lost, the relay will de-energize.

Figure 3-9: CONTROL POWER CONNECTION
3.2.4 CT/VT MODULES

A CT/VT module may have voltage inputs on Channels 1 through 4 inclusive, or Channels 5 through 8 inclusive. Channels 1 and 5 are intended for connection to Phase A, and are labeled as such in the relay. Channels 2 and 6 are intended for connection to Phase B, and are labeled as such in the relay. Channels 3 and 7 are intended for connection to Phase C and are labeled as such in the relay. Channels 4 and 8 are intended for connection to a single phase source. If voltage, this channel is labelled the auxiliary voltage (VX). If current, this channel is intended for connection to a CT between a system neutral and ground, and is labelled the ground current (IG).
a) CT INPUTS

VERIFY THAT THE CONNECTION MADE TO THE RELAY NOMINAL CURRENT OF 1 A OR 5 A MATCHES THE SECONDARY RATING OF THE CONNECTED CTs. UNMATCHED CTs MAY RESULT IN EQUIPMENT DAMAGE OR INADEQUATE PROTECTION.

The CT/VT module may be ordered with a standard ground current input that is the same as the phase current inputs (Type 8A) or with a sensitive ground input (Type 8B) which is 10 times more sensitive (see the Technical Specifications section for more details). Each AC current input has an isolating transformer and an automatic shorting mechanism that shorts the input when the module is withdrawn from the chassis. There are no internal ground connections on the current inputs. Current transformers with 1 to 50000 A primaries and 1 A or 5 A secondaries may be used.
CT connections for both $A B C$ and $A C B$ phase rotations are identical as shown in the Typical Wiring Diagram.

b) VT INPUTS

The phase voltage channels are used for most metering and protection purposes. The auxiliary voltage channel is used as input for the Synchrocheck and Volts/Hertz features.

Substitute the tilde " \sim " symbol with the slot position of the module in the following figures.

827831A9-X5.CDR
Figure 3-10: CT/VT MODULE WIRING

Every digital input/output module has 24 terminal connections. They are arranged as 3 terminals per row, with 8 rows in total. A given row of three terminals may be used for the outputs of one relay. For example, for Form-C relay outputs, the terminals connect to the normally open (NO), normally closed (NC), and common contacts of the relay. For a Form-A output, there are options of using current or voltage detection for feature supervision, depending on the module ordered. The terminal configuration for contact inputs is different for the two applications. When a digital input/output module is ordered with contact inputs, they are arranged in groups of four and use two rows of three terminals. Ideally, each input would be totally isolated from any other input. However, this would require that every input have two dedicated terminals and limit the available number of contacts based on the available number of terminals. So, although each input is individually optically isolated, each group of four inputs uses a single common as a reasonable compromise. This allows each group of four outputs to be supplied by wet contacts from different voltage sources (if required) or a mix of wet and dry contacts.

The tables and diagrams on the following pages illustrate the module types (6 A , etc.) and contact arrangements that may be ordered for the relay. Since an entire row is used for a single contact output, the name is assigned using the module slot position and row number. However, since there are two contact inputs per row, these names are assigned by module slot position, row number, and column position.

UR-SERIES FORM-A I SOLID STATE (SSR) OUTPUT CONTACTS:

Some Form-A/SSR outputs include circuits to monitor the DC voltage across the output contact when it is open, and the DC current through the output contact when it is closed. Each of the monitors contains a level detector whose output is set to logic "On = 1 " when the current in the circuit is above the threshold setting. The voltage monitor is set to "On = 1" when the current is above about 1 to 2.5 mA , and the current monitor is set to "On = 1 " when the current exceeds about 80 to 100 mA . The voltage monitor is intended to check the health of the overall trip circuit, and the current monitor can be used to seal-in the output contact until an external contact has interrupted current flow. The block diagrams of the circuits are below above for the Form-A outputs with:
a) optional voltage monitor
b) optional current monitor
c) with no monitoring

827821A5.CDR

Figure 3-11: FORM-A ISOLID STATE CONTACT FUNCTIONS

The operation of voltage and current monitors is reflected with the corresponding FlexLogic ${ }^{\text {TM }}$ operands (Cont Op \# Von, Cont Op \# Voff, Cont Op \# lon, and Cont Op \# loff) which can be used in protection, control and alarm logic. The typical application of the voltage monitor is breaker trip circuit integrity monitoring; a typical application of the current monitor is seal-in of the control command. Refer to the Digital Elements section of Chapter 5 for an example of how Form-A/SSR contacts can be applied for breaker trip circuit integrity monitoring.

Relay contacts must be considered unsafe to touch when the unit is energized! If the relay contacts need to be used for low voltage accessible applications, it is the customer's responsibility to ensure proper insulation levels!

USE OF FORM-A/SSR OUTPUTS IN HIGH IMPEDANCE CIRCUITS

For Form-A/SSR output contacts internally equipped with a voltage measuring clrcuit across the contact, the circuit has an impedance that can cause a problem when used in conjunction with external high input impedance monitoring equipment such as modern relay test set trigger circuits. These monitoring circuits may continue to read the Form-A contact as being closed after it has closed and subsequently opened, when measured as an impedance.
The solution to this problem is to use the voltage measuring trigger input of the relay test set, and connect the Form-A contact through a voltage-dropping resistor to a DC voltage source. If the 48 V DC output of the power supply is used as a source, a $500 \Omega, 10 \mathrm{~W}$ resistor is appropriate. In this configuration, the voltage across either the Form-A contact or the resistor can be used to monitor the state of the output.
Wherever a tilde "~" symbol appears, substitute with the Slot Position of the module; wherever a number sign "\#" appears, substitute the contact number

When current monitoring is used to seal-in the Form-A/SSR contact outputs, the FlexLogic ${ }^{\text {TM }}$ operand driving the contact output should be given a reset delay of 10 ms to prevent damage of the output contact (in situations when the element initiating the contact output is bouncing, at values in the region of the pickup value).

Table 3-2: DIGITAL INPUT/OUTPUT MODULE ASSIGNMENTS

$\sim 6 \mathrm{~A}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-C
~ 4	Form-C
$\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$	2 Inputs
$\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$	2 Inputs
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{~B}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-C
~ 4	Form-C
~ 5	Form-C
~ 6	Form-C
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{C}$ I/O MODULE	
TERMINAL	OUTPUT
ASSIGNMENT	
~ 1	Form-C
~ 2	Form-C
~ 3	Form-C
~ 4	Form-C
~ 5	Form-C
~ 6	Form-C
~ 7	Form-C
~ 8	Form-C

$\sim 6 \mathrm{CD}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT
$\sim 1 \mathrm{a}, \sim 1 \mathrm{c}$	2 Inputs
$\sim 2 \mathrm{a}, \sim 2 \mathrm{c}$	2 Inputs
$\sim 3 \mathrm{a}, \sim 3 \mathrm{c}$	2 Inputs
$\sim 4 \mathrm{a}, \sim 4 \mathrm{c}$	2 Inputs
$\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$	2 Inputs
$\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$	2 Inputs
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{E}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-C
~ 2	Form-C
~ 3	Form-C
~ 4	Form-C
$\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$	2 Inputs
$\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$	2 Inputs
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{~F}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT
~ 1	Fast Form-C
~ 2	Fast Form-C
~ 3	Fast Form-C
~ 4	Fast Form-C
~ 5	Fast Form-C
~ 6	Fast Form-C
~ 7	Fast Form-C
~ 8	Fast Form-C

$\sim 6 \mathrm{G}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-A
~ 4	Form-A
$\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$	2 Inputs
$\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$	2 Inputs
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{H}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-A
~ 4	Form-A
~ 5	Form-A
~ 6	Form-A
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{~K}$ I/O MODULE	
TERMINAL	OUTPUT
ASSIGNMENT	
~ 1	Form-C
~ 2	Form-C
~ 3	Form-C
~ 4	Form-C
~ 5	Fast Form-C
~ 6	Fast Form-C
~ 7	Fast Form-C
~ 8	Fast Form-C

$\sim 6 \mathrm{~L}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-C
~ 4	Form-C
$\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$	2 Inputs
$\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$	2 Inputs
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{M}$ I/O MODULE	
TERMINAL	
ASSIGNMENT	

INPUT\end{array}\right]\)| ~ 1 | Form-A |
| :---: | :---: |
| ~ 2 | Form-A |
| ~ 3 | Form-C |
| ~ 4 | Form-C |
| ~ 5 | Form-C |
| ~ 6 | Form-C |
| $\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$ | 2 Inputs |
| $\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$ | 2 Inputs |

$\sim 6 \mathrm{~N}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-A
~ 4	Form-A
$\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$	2 Inputs
$\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$	2 Inputs
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{P}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-A
~ 4	Form-A
~ 5	Form-A
~ 6	Form-A
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{R}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-C
~ 4	Form-C
$\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$	2 Inputs
$\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$	2 Inputs
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{~S}$ I/O MODULE	
TERMINAL	
ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-C
~ 4	Form-C
~ 5	Form-C
~ 6	Form-C
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

~ 6 T I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-A
~ 4	Form-A
$\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$	2 Inputs
$\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$	2 Inputs
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{GU}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-A
~ 4	Form-A
~ 5	Form-A
~ 6	Form-A
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

~ 67 I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-A
~ 4	Form-A
~ 5	Form-A
~ 6	Form-A
~ 7	Form-A
~ 8	Form-A

\sim 4A I/O MODULE	
TERMINAL	OUTPUT
ASSIGNMENT	
~ 1	Not Used
~ 2	Solid-State
~ 3	Not Used
~ 4	Solid-State
~ 5	Not Used
~ 6	Solid-State
~ 7	Not Used
~ 8	Solid-State

\sim 4B I/O MODULE	
TERMINAL	OUTPUT
ASSIGNMENT	
~ 1	Not Used
~ 2	Solid-State
~ 3	Not Used
~ 4	Solid-State
~ 5	Not Used
~ 6	Solid-State
~ 7	Not Used
~ 8	Solid-State

\sim 4C I/O MODULE	
TERMINAL	OUTPUT
ASSIGNMENT	
~ 1	Not Used
~ 2	Solid-State
~ 3	Not Used
~ 4	Solid-State
~ 5	Not Used
~ 6	Solid-State
~ 7	Not Used
~ 8	Solid-State

$\sim 4 \mathrm{~L}$ I/O MODULE	
TERMINAL	OUTPUT
ASSIGNMENT	
~ 1	2 Outputs
~ 2	2 Outputs
~ 3	2 Outputs
~ 4	2 Outputs
~ 5	2 Outputs
~ 6	2 Outputs
~ 7	2 Outputs
~ 8	Not Used

Figure 3-12: DIGITAL INPUT/OUTPUT MODULE WIRING (1 of 2)

Figure 3-13: DIGITAL INPUT/OUTPUT MODULE WIRING (2 of 2)

CORRECT POLARITY MUST BE OBSERVED FOR ALL CONTACT INPUT AND SOLID STATE OUTPUT CONNECTIONS FOR PROPER FUNCTIONALITY.

A dry contact has one side connected to Terminal B3b. This is the positive 48 V DC voltage rail supplied by the power supply module. The other side of the dry contact is connected to the required contact input terminal. Each contact input group has its own common (negative) terminal which must be connected to the DC negative terminal (B3a) of the power supply module. When a dry contact closes, a current of 1 to 3 mA will flow through the associated circuit.

A wet contact has one side connected to the positive terminal of an external DC power supply. The other side of this contact is connected to the required contact input terminal. If a wet contact is used, then the negative side of the external source must be connected to the relay common (negative) terminal of each contact group. The maximum external source voltage for this arrangement is 300 V DC.

The voltage threshold at which each group of four contact inputs will detect a closed contact input is programmable as 17 V DC for 24 V sources, 33 V DC for 48 V sources, 84 V DC for 110 to 125 V sources, and 166 V DC for 250 V sources.

Figure 3-14: DRY AND WET CONTACT INPUT CONNECTIONS
Wherever a tilde "~" symbol appears, substitute with the Slot Position of the module.

Contact outputs may be ordered as Form-A or Form-C. The Form A contacts may be connected for external circuit supervision. These contacts are provided with voltage and current monitoring circuits used to detect the loss of DC voltage in the circuit, and the presence of DC current flowing through the contacts when the Form-A contact closes. If enabled, the current monitoring can be used as a seal-in signal to ensure that the Form-A contact does not attempt to break the energized inductive coil circuit and weld the output contacts.

There is no provision in the relay to detect a DC ground fault on 48 V DC control power external output. We recommend using an external DC supply.

Transducer input/output modules can receive input signals from external dcmA output transducers (dcmA In) or resistance temperature detectors (RTD). Hardware and software is provided to receive signals from these external transducers and convert these signals into a digital format for use as required.
Every transducer input/output module has a total of 24 terminal connections. These connections are arranged as three terminals per row with a total of eight rows. A given row may be used for either inputs or outputs, with terminals in column "a" having positive polarity and terminals in column "c" having negative polarity. Since an entire row is used for a single input/ output channel, the name of the channel is assigned using the module slot position and row number.
Each module also requires that a connection from an external ground bus be made to Terminal 8b. The figure below illustrates the transducer module types (5C, 5E, and 5F) and channel arrangements that may be ordered for the relay.

$\sim 1 \mathrm{a}$	+	dcmA In	~ 1	殅
$\sim 1 \mathrm{c}$	-	dcma in		
$\sim 2 \mathrm{a}$	+	dcmA In	~ 2	
$\sim 2 \mathrm{c}$	-	dcmA in	~ 2	
$\sim 3 \mathrm{a}$	+	dcmA In	~ 3	
$\sim 3 \mathrm{c}$	-	dcmA in	~3	
$\sim 4 \mathrm{a}$	$+$	dcmA In	~ 4	
$\sim 4 \mathrm{c}$	-	dcmA in		
$\sim 5 \mathrm{a}$	+	d		
$\sim 5 \mathrm{c}$	-	domA in	~ 5	
$\sim 6 \mathrm{a}$	+			
$\sim 6 \mathrm{c}$	-	dcmA ln	~ 6	
$\sim 7 \mathrm{a}$	+	dcmA In	~ 7	
$\sim 7 \mathrm{c}$	-	dcmA in		\bigcirc
$\sim 8 \mathrm{a}$	$+$	dcmA In	~8	-
$\sim 8 \mathrm{c}$	-	dcmA in	~8	-
$\sim 8 \mathrm{~b}$	$\frac{1}{=}$	SURGE		¢

827831A9-X1.CDR

Figure 3-15: TRANSDUCER I/O MODULE WIRING

A 9-pin RS232C serial port is located on the relay's faceplate for programming with a portable (personal) computer. All that is required to use this interface is a personal computer running the EnerVista UR Setup software provided with the relay. Cabling for the RS232 port is shown in the following figure for both 9 pin and 25 pin connectors.
Note that the baud rate for this port is fixed at 19200 bps.

Figure 3-16: RS232 FACEPLATE PORT CONNECTION
3.2.8 CPU COMMUNICATION PORTS

a) OPTIONS

In addition to the RS232 port on the faceplate, the relay provides the user with two additional communication port(s) depending on the CPU module installed.

CPU TYPE	COM1	COM2
9A	RS485	RS485
9C	10Base-F and 10Base-T	RS485
9D	Redundant 10Base-F	RS485

D2a	+	$\begin{aligned} & \text { RS485 } \\ & \text { COM } 1 \end{aligned}$	あ	${ }^{(T x)}{ }_{(R x)} 10 \mathrm{BaseF}$		NORMAL	COM	O	
D3a	-								
D4a	COM			■10	BaseT	NORMAL			
D3b	+	$\begin{aligned} & \text { RS485 } \\ & \text { COM } 2 \end{aligned}$?	D3b	+	RS485$\text { COM } 2$			
D4b	-			D4b	-				
D5b	COM			D5b	COM				
D5a	+	IRIG-B		D5a	+	IRIG-B			
D6a	-			D6a	-				
D7b	$\stackrel{1}{ \pm}$	SURGE		D7b	$\frac{1}{=}$	SURGE			

		NORMAL	COM	응	
${ }^{(T \times 2)_{(x \times 2}} 10 \mathrm{BaseF}$		ALTERNATE			
ษ10	BaseT	NORMAL			
D3b	+	$\begin{aligned} & \text { RS485 } \\ & \text { COM } 2 \end{aligned}$		0	
D4b	-				
D5b	COM				
D5a	+	IRIG-B			
D6a	-				
D7b	$\underline{1}$	SURGE GR	OUND		

Figure 3-17: CPU MODULE COMMUNICATIONS WIRING

b) RS485 PORTS

RS485 data transmission and reception are accomplished over a single twisted pair with transmit and receive data alternating over the same two wires. Through the use of these port(s), continuous monitoring and control from a remote computer, SCADA system or PLC is possible.

To minimize errors from noise, the use of shielded twisted pair wire is recommended. Correct polarity must also be observed. For instance, the relays must be connected with all RS485 " + " terminals connected together, and all RS485 "-" terminals connected together. The COM terminal should be connected to the common wire inside the shield, when provided. To avoid loop currents, the shield should be grounded at one point only. Each relay should also be daisy chained to the next one in the link. A maximum of 32 relays can be connected in this manner without exceeding driver capability. For larger systems, additional serial channels must be added. It is also possible to use commercially available repeaters to increase the number of relays on a single channel to more than 32. Star or stub connections should be avoided entirely.
Lightning strikes and ground surge currents can cause large momentary voltage differences between remote ends of the communication link. For this reason, surge protection devices are internally provided at both communication ports. An isolated power supply with an optocoupled data interface also acts to reduce noise coupling. To ensure maximum reliability, all equipment should have similar transient protection devices installed.

Both ends of the RS485 circuit should also be terminated with an impedance as shown below.

Figure 3-18: RS485 SERIAL CONNECTION

c) 10BASE-F FIBER OPTIC PORT

A
 ENSURE THE DUST COVERS ARE INSTALLED WHEN THE FIBER IS NOT IN USE. DIRTY OR SCRATCHED CONNECTORS CAN LEAD TO HIGH LOSSES ON A FIBER LINK.
 OBSERVING ANY FIBER TRANSMITTER OUTPUT MAY CAUSE INJURY TO THE EYE.

The fiber optic communication ports allow for fast and efficient communications between relays at 10 Mbps . Optical fiber may be connected to the relay supporting a wavelength of 820 nanometers in multimode. Optical fiber is only available for CPU types 9C and 9D. The 9D CPU has a 10BaseF transmitter and receiver for optical fiber communications and a second pair of identical optical fiber transmitter and receiver for redundancy.
The optical fiber sizes supported include 50/125 $\mu \mathrm{m}, 62.5 / 125 \mu \mathrm{~m}$ and $100 / 140 \mu \mathrm{~m}$. The fiber optic port is designed such that the response times will not vary for any core that is $100 \mu \mathrm{~m}$ or less in diameter. For optical power budgeting, splices are required every 1 km for the transmitter/receiver pair (the ST type connector contributes for a connector loss of 0.2 dB). When splicing optical fibers, the diameter and numerical aperture of each fiber must be the same. In order to engage or disengage the ST type connector, only a quarter turn of the coupling is required.

Figure 3-19: IRIG-B CONNECTION
IRIG-B is a standard time code format that allows stamping of events to be synchronized among connected devices within 1 millisecond. The IRIG time code formats are serial, width-modulated codes which can be either DC level shifted or amplitude modulated (AM). Third party equipment is available for generating the IRIG-B signal; this equipment may use a GPS satellite system to obtain the time reference so that devices at different geographic locations can also be synchronized.

The D30 direct inputs/outputs feature makes use of the Type 7 series of communications modules. These modules are also used by the L90 Line Differential Relay for inter-relay communications. The Direct I/O feature uses the communications channel(s) provided by these modules to exchange digital state information between relays. This feature is available on all UR-series relay models except for the L90 Line Differential relay.
The communications channels are normally connected in a ring configuration as shown below. The transmitter of one module is connected to the receiver of the next module. The transmitter of this second module is then connected to the receiver of the next module in the ring. This is continued to form a communications ring. The figure below illustrates a ring of four UR-series relays with the following connections: UR1-Tx to UR2-Rx, UR2-Tx to UR3-Rx, UR3-Tx to UR4-Rx, and UR4-Tx to UR1-Rx. A maximum of sixteen (16) UR-series relays can be connected in a single ring

The following diagram shows the interconnection for dual-channel Type 7 communications modules. Two channel modules allow for a redundant ring configuration. That is, two rings can be created to provide an additional independent data path. The required connections are as follows: UR1-Tx1 to UR2-Rx1, UR2-Tx1 to UR3-Rx1, UR3-Tx1 to UR4-Rx1, and UR4-Tx1 to UR1-Rx1 for the first ring; and UR1-Tx2 to UR2-Rx2, UR2-Tx2 to UR3-Rx2, UR3-Tx2 to UR4-Rx2, and UR4-Tx2 to UR1$R \times 2$ for the second ring.

Figure 3-21: DIRECT I/O DUAL CHANNEL CONNECTION

The following diagram shows the interconnection for three UR-series relays using two independent communication channels. UR1 and UR3 have single Type 7 communication modules; UR2 has a dual-channel module. The two communication channels can be of different types, depending on the Type 7 modules used. To allow the Direct I/O data to 'cross-over' from Channel 1 to Channel 2 on UR2, the DIRECT I/O CHANNEL CROSSOVER setting should be "Enabled" on UR2. This forces UR2 to forward messages received on Rx1 out Tx2, and messages received on Rx2 out Tx1.

Figure 3-22: DIRECT I/O SINGLE/DUAL CHANNEL COMBINATION CONNECTION
The interconnection requirements are described in further detail in this section for each specific variation of Type 7 communications module. These modules are listed in the following table. All fiber modules use ST type connectors.

Table 3-3: CHANNEL COMMUNICATION OPTIONS

MODULE TYPE	SPECIFICATION
7A	820 nm, multi-mode, LED, 1 Channel
7B	1300 nm, multi-mode, LED, 1 Channel
7C	1300 nm, single-mode, ELED, 1 Channel
7D	1300 nm , single-mode, LASER, 1 Channel
7H	820 nm , multi-mode, LED, 2 Channels
71	1300 nm , multi-mode, LED, 2 Channels
7J	1300 nm , single-mode, ELED, 2 Channels
7K	1300 nm , single-mode, LASER, 2 Channels
7L	Channel 1: RS422, Channel: 820 nm , multi-mode, LED
7M	Channel 1: RS422, Channel 2: 1300 nm , multi-mode, LED
7N	Channel 1: RS422, Channel 2: 1300 nm , single-mode, ELED
7P	Channel 1: RS422, Channel 2: 1300 nm , single-mode, LASER
7R	G.703, 1 Channel
7S	G.703, 2 Channels
7T	RS422, 1 Channel
7W	RS422, 2 Channels
72	1550 nm, single-mode, LASER, 1 Channel
73	1550 nm , single-mode, LASER, 2 Channel
74	Channel 1 - RS422; Channel 2-1550 nm, single-mode, LASER
76	IEEE C37.94, 820 nm , multi-mode, LED, 1 Channel
77	IEEE C37.94, 820 nm , multi-mode, LED, 2 Channels

OBSERVING ANY FIBER TRANSMITTER OUTPUT MAY CAUSE INJURY TO THE EYE.

3 HARDWARE

The following figure shows the configuration for the $7 \mathrm{~A}, 7 \mathrm{~B}, 7 \mathrm{C}, 7 \mathrm{H}, 7 \mathrm{I}$, and 7 J fiber-only modules.

Figure 3-23: LED AND ELED FIBER MODULES

The following figure shows the configuration for the 72, 73, 7D, and 7K fiber-laser module.

Figure 3-24: LASER FIBER MODULES
When using a LASER Interface, attenuators may be necessary to ensure that you do not exceed Maximum Optical Input Power to the receiver.

a) DESCRIPTION

The following figure shows the 64K ITU G. 703 co-directional interface configuration.
AWG 22 twisted shielded pair is recommended for external connections, with the shield grounded only at one end. Connecting the shield to Pin X1a or X6a grounds the shield since these pins are internally connected to ground. Thus, if Pin X1a or X6a is used, do not ground at the other end. This interface module is protected by surge suppression devices.

Figure 3-25: G. 703 INTERFACE CONFIGURATION
The following figure shows the typical pin interconnection between two G. 703 interfaces. For the actual physical arrangement of these pins, see the Rear Terminal Assignments section earlier in this chapter. All pin interconnections are to be maintained for a connection to a multiplexer.

∞	$\begin{gathered} \text { G. } 703 \\ \text { CHANNEL } 1 \end{gathered}$	Shld.	X1a	X1a	Shld.	$\begin{gathered} \text { G. } 703 \\ \text { CHANNEL } 1 \end{gathered}$	1
		Tx -	X1b	X1b	Tx -		
		Rx -	X2a	X2a	Rx-		
		Tx +	X2b	X2b	Tx +		
		Rx +	X3a	X3a	Rx+		
	SURGE	$\underline{1}$	X3b	X3b	$\stackrel{1}{=}$	SURGE	
	$\begin{array}{\|c\|} \text { G. } 703 \\ \text { CHANNEL } 2 \end{array}$	Shld.	X6a	X6a	Shld.	$\begin{gathered} \text { G. } 703 \\ \text { CHANNEL } 2 \end{gathered}$	
		Tx -	X6b	X6b	Tx -		
		Rx -	X7a	X7a	Rx -		
		Tx +	X7b	X7b	Tx +		
		Rx+	X8a	X8a	Rx+		
	SURGE	$\stackrel{1}{\underline{1}}$	X8b	X8b	$\frac{1}{=}$	SURGE	

Figure 3-26: TYPICAL PIN INTERCONNECTION BETWEEN TWO G. 703 INTERFACES

Pin nomenclature may differ from one manufacturer to another. Therefore, it is not uncommon to see pinouts numbered TxA, TxB, RxA and RxB. In such cases, it can be assumed that " A " is equivalent to " + " and " B " is equivalent to "-".

b) G. 703 SELECTION SWITCH PROCEDURES

1. Remove the G .703 module (7 R or 7 S):

The ejector/inserter clips located at the top and at the bottom of each module, must be pulled simultaneously in order to release the module for removal. Before performing this action, control power must be removed from the relay. The original location of the module should be recorded to help ensure that the same or replacement module is inserted into the correct slot.
2. Remove the module cover screw.
3. Remove the top cover by sliding it towards the rear and then lift it upwards.
4. Set the Timing Selection Switches (Channel 1, Channel 2) to the desired timing modes.
5. Replace the top cover and the cover screw.
6. Re-insert the G. 703 module Take care to ensure that the correct module type is inserted into the correct slot position. The ejector/inserter clips located at the top and at the bottom of each module must be in the disengaged position as

3 HARDWARE

the module is smoothly inserted into the slot. Once the clips have cleared the raised edge of the chassis, engage the clips simultaneously. When the clips have locked into position, the module will be fully inserted.

Table 3-4: G. 703 TIMING SELECTIONS

SWITCHES	FUNCTION
S1	OFF \rightarrow Octet Timing Disabled ON \rightarrow Octet Timing 8 kHz
S5 and S6	S5 $=$ OFF and S6 $=$ OFF \rightarrow Loop Timing Mode S5 $=$ ON and S6 $=$ OFF \rightarrow Internal Timing Mode
	S5 = OFF and S6 = ON \rightarrow Minimum Remote Loopback Mode
S5 $=$ ON and S6 $=$ ON \rightarrow Dual Loopback Mode	

c) OCTET TIMING (SWITCH S1)

If Octet Timing is enabled (ON), this 8 kHz signal will be asserted during the violation of Bit 8 (LSB) necessary for connecting to higher order systems. When D30s are connected back to back, Octet Timing should be disabled (OFF).
d) TIMING MODES (SWITCHES S5 AND S6)

- Internal Timing Mode: The system clock generated internally. Therefore, the G .703 timing selection should be in the Internal Timing Mode for back-to-back (UR-to-UR) connections. For Back to Back Connections, set for Octet Timing (S1 = OFF) and Timing Mode = Internal Timing (S5 = ON and S6 = OFF).
- Loop Timing Mode: The system clock is derived from the received line signal. Therefore, the G. 703 timing selection should be in Loop Timing Mode for connections to higher order systems. For connection to a higher order system (UR-to-multiplexer, factory defaults), set to Octet Timing ($\mathrm{S} 1=\mathrm{ON}$) and set Timing Mode = Loop Timing (S5 = OFF and S6 $=$ OFF).

e) TEST MODES (SWITCHES S5 AND S6)

MINIMUM REMOTE LOOPBACK MODE:

In Minimum Remote Loopback mode, the multiplexer is enabled to return the data from the external interface without any processing to assist in diagnosing G. 703 Line Side problems irrespective of clock rate. Data enters from the G. 703 inputs, passes through the data stabilization latch which also restores the proper signal polarity, passes through the multiplexer and then returns to the transmitter. The Differential Received Data is processed and passed to the G. 703 Transmitter module after which point the data is discarded. The G. 703 Receiver module is fully functional and continues to process data and passes it to the Differential Manchester Transmitter module. Since timing is returned as it is received, the timing source is expected to be from the G .703 line side of the interface.

DUAL LOOPBACK MODE:

In Dual Loopback Mode, the multiplexers are active and the functions of the circuit are divided into two with each Receiver/ Transmitter pair linked together to deconstruct and then reconstruct their respective signals. Differential Manchester data enters the Differential Manchester Receiver module and then is returned to the Differential Manchester Transmitter module. Likewise, G. 703 data enters the G. 703 Receiver module and is passed through to the G. 703 Transmitter module to be returned as G .703 data. Because of the complete split in the communications path and because, in each case, the clocks are extracted and reconstructed with the outgoing data, in this mode there must be two independent sources of timing. One source lies on the G. 703 line side of the interface while the other lies on the Differential Manchester side of the interface.

a) DESCRIPTION

The following figure shows the RS422 2-Terminal interface configuration at 64K baud. AWG 22 twisted shielded pair is recommended for external connections. This interface module is protected by surge suppression devices which optically isolated.

SHIELD TERMINATION

The shield pins (6 a and 7 b) are internally connected to the ground pin (8a). Proper shield termination is as follows:
Site 1: Terminate shield to pins 6 a and/or 7b; Site 2: Terminate shield to 'COM' pin 2b.
The clock terminating impedance should match the impedance of the line.

W3b	Tx -	RS422 CHANNEL 1	
W3a	Rx-		
W2a	Tx +		
W4b	Rx+		
W6a	Shld.		
W5b	Tx-	RS422 CHANNEL 2	
W5a	Rx-		
W4a	Tx +		
W6b	Rx+		
W7b	Shld.		
W7a	+	CLOCK	
W8b	-		
W2b	com		
W8a	$\stackrel{1}{\square}$	SURGE	

RS422.CDR
p/o 827831A6.CDR
Figure 3-28: RS422 INTERFACE CONFIGURATION
The following figure shows the typical pin interconnection between two RS422 interfaces. All pin interconnections are to be maintained for a connection to a multiplexer.

Figure 3-29: TYPICAL PIN INTERCONNECTION BETWEEN TWO RS422 INTERFACES

b) TWO CHANNEL APPLICATIONS VIA MULTIPLEXERS

The RS422 Interface may be used for ' 1 channel' or ' 2 channel' applications over SONET/SDH and/or Multiplexed systems. When used in 1 channel applications, the RS422 interface links to higher order systems in a typical fashion observing Tx, Rx, and Send Timing connections. However, when used in 2 channel applications, certain criteria have to be followed due to the fact that there is 1 clock input for the two RS422 channels. The system will function correctly if the following connections are observed and your Data Module has a feature called Terminal Timing. Terminal Timing is a common feature to most Synchronous Data Units that allows the module to accept timing from an external source. Using the Terminal Timing feature, 2 channel applications can be achieved if these connections are followed: The Send Timing outputs from the Multiplexer - Data Module 1, will connect to the Clock inputs of the UR-RS422 interface in the usual fashion. In addition, the Send Timing outputs of Data Module 1 will also be paralleled to the Terminal Timing inputs of Data Module 2. By using this configuration the timing for both Data Modules and both UR-RS422 channels will be derived from a single clock source. As a result, data sampling for both of the UR-RS422 channels will be synchronized via the Send Timing leads on Data Module 1 as shown in the following figure. If the Terminal Timing feature is not available or this type of connection is not desired, the G. 703 interface is a viable option that does not impose timing restrictions.

831022A2.CDR
Figure 3-30: TIMING CONFIGURATION FOR RS422 TWO-CHANNEL, 3-TERMINAL APPLICATION
Data Module 1 provides timing to the D30 RS422 interface via the $\mathrm{ST}(\mathrm{A})$ and $\mathrm{ST}(\mathrm{B})$ outputs. Data Module 1 also provides timing to Data Module $2 \mathrm{TT}(A)$ and $\mathrm{TT}(B)$ inputs via the $\mathrm{ST}(A)$ and $A T(B)$ outputs. The Data Module pin numbers have been omitted in the figure above since they may vary depending on the manufacturer.

c) TRANSIT TIMING

The RS422 Interface accepts one clock input for Transmit Timing. It is important that the rising edge of the 64 kHz Transmit Timing clock of the Multiplexer Interface is sampling the data in the center of the Transmit Data window. Therefore, it is important to confirm Clock and Data Transitions to ensure Proper System Operation. For example, the following figure shows the positive edge of the Tx Clock in the center of the Tx Data bit.

Figure 3-31: CLOCK AND DATA TRANSITIONS

d) RECEIVE TIMING

The RS422 Interface utilizes NRZI-MARK Modulation Code and; therefore, does not rely on an Rx Clock to recapture data. NRZI-MARK is an edge-type, invertible, self-clocking code.

To recover the Rx Clock from the data-stream, an integrated DPLL (Digital Phase Lock Loop) circuit is utilized. The DPLL is driven by an internal clock, which is over-sampled 16X, and uses this clock along with the data-stream to generate a data clock that can be used as the SCC (Serial Communication Controller) receive clock.
3.3.6 RS422 AND FIBER INTERFACE

The following figure shows the combined RS422 plus Fiber interface configuration at 64 K baud. The $7 \mathrm{~L}, 7 \mathrm{M}, 7 \mathrm{~N}, 7 \mathrm{P}$, and 74 modules are used in 2-terminal with a redundant channel or 3-terminal configurations where Channel 1 is employed via the RS422 interface (possibly with a multiplexer) and Channel 2 via direct fiber.
AWG 22 twisted shielded pair is recommended for external RS422 connections and the shield should be grounded only at one end. For the direct fiber channel, power budget issues should be addressed properly.

L907LMNP.CDR
P/O 827831A6.CDR
Figure 3-32: RS422 AND FIBER INTERFACE CONNECTION
Connections shown above are for multiplexers configured as DCE (Data Communications Equipment) units.
3.3.7 G.703 AND FIBER INTERFACE

The figure below shows the combined G. 703 plus Fiber interface configuration at 64 K baud. The $7 \mathrm{E}, 7 \mathrm{~F}, 7 \mathrm{G}, 7 \mathrm{Q}$, and 75 modules are used in configurations where Channel 1 is employed via the G. 703 interface (possibly with a multiplexer) and Channel 2 via direct fiber. AWG 22 twisted shielded pair is recommended for external G. 703 connections connecting the shield to Pin 1A at one end only. For the direct fiber channel, power budget issues should be addressed properly. See previous sections for more details on the G. 703 and Fiber interfaces.

When using a LASER Interface, attenuators may be necessary to ensure that you do not exceed Maximum Optical Input Power to the receiver.

Figure 3-33: G. 703 AND FIBER INTERFACE CONNECTION

The UR-series IEEE C37.94 communication modules (76 and 77) are designed to interface with IEEE C37.94 compliant digital multiplexers and/or an IEEE C37.94 compliant interface converter for use with direct input/output applications for firmware revisions 3.30 and higher. The IEEE C37.94 standard defines a point-to-point optical link for synchronous data between a multiplexer and a teleprotection device. This data is typically 64 kbps , but the standard provides for speeds up to $64 n \mathrm{kbps}$, where $n=1,2, \ldots, 12$. The UR-series C37.94 communication module is 64 kbps only with n fixed at 1 . The frame is a valid International Telecommunications Union (ITU-T) recommended G. 704 pattern from the standpoint of framing and data rate. The frame is 256 bits and is repeated at a frame rate of 8000 Hz , with a resultant bit rate of 2048 kbps .
The specifications for the module are as follows:
IEEE standard: C37.94 for $1 \times 64 \mathrm{kbps}$ optical fiber interface
Fiber optic cable type: 50 mm or 62.5 mm core diameter optical fiber
Fiber optic mode: multi-mode
Fiber optic cable length: up to 2 km
Fiber optic connector: type ST
Wavelength: $830 \pm 40 \mathrm{~nm}$
Connection: as per all fiber optic connections, a Tx to Rx connection is required.
The UR-series C37.94 communication module can be connected directly to any compliant digital multiplexer that supports the IEEE C37.94 standard as shown below.

The UR-series C37.94 communication module can be connected to the electrical interface (G.703, RS422, or X.21) of a non-compliant digital multiplexer via an optical-to-electrical interface converter that supports the IEEE C37.94 standard, as shown below.

The UR-series C37.94 communication module has six (6) switches that are used to set the clock configuration. The functions of these control switches is shown below.

Internal Timing Mode

Loop Timed

Switch	Internal	Loop Timed
$\mathbf{1}$	ON	OFF
$\mathbf{2}$	ON	OFF
$\mathbf{3}$	OFF	OFF
$\mathbf{4}$	OFF	OFF
$\mathbf{5}$	OFF	OFF
$\mathbf{6}$	OFF	OFF

For the Internal Timing Mode, the system clock is generated internally. Therefore, the timing switch selection should be Internal Timing for Relay 1 and Loop Timed for Relay 2. There must be only one timing source configured.
For the Looped Timing Mode, the system clock is derived from the received line signal. Therefore, the timing selection should be in Loop Timing Mode for connections to higher order systems.

The C37.94 communications module cover removal procedure is as follows:

1. Remove the C 37.94 module (76 or 77):

The ejector/inserter clips located at the top and at the bottom of each module, must be pulled simultaneously in order to release the module for removal. Before performing this action, control power must be removed from the relay. The original location of the module should be recorded to help ensure that the same or replacement module is inserted into the correct slot.
2. Remove the module cover screw.
3. Remove the top cover by sliding it towards the rear and then lift it upwards.
4. Set the Timing Selection Switches (Channel 1, Channel 2) to the desired timing modes (see description above).
5. Replace the top cover and the cover screw.
6. Re-insert the C37.94 module Take care to ensure that the correct module type is inserted into the correct slot position. The ejector/inserter clips located at the top and at the bottom of each module must be in the disengaged position as the module is smoothly inserted into the slot. Once the clips have cleared the raised edge of the chassis, engage the clips simultaneously. When the clips have locked into position, the module will be fully inserted.

Figure 3-34: C37.94 TIMING SELECTION SWITCH SETTING

The EnerVista UR Setup software provides a graphical user interface (GUI) as one of two human interfaces to a UR device. The alternate human interface is implemented via the device's faceplate keypad and display (see Faceplate Interface section in this chapter).
The EnerVista UR Setup software provides a single facility to configure, monitor, maintain, and trouble-shoot the operation of relay functions, connected over local or wide area communication networks. It can be used while disconnected (i.e. offline) or connected (i.e. on-line) to a UR device. In off-line mode, settings files can be created for eventual downloading to the device. In on-line mode, you can communicate with the device in real-time.
The EnerVista UR Setup software, provided with every D30 relay, can be run from any computer supporting Microsoft Windows ${ }^{\circledR} 95,98, N T, 2000, M E$, and XP. This chapter provides a summary of the basic EnerVista UR Setup software interface features. The EnerVista UR Setup Help File provides details for getting started and using the EnerVista UR Setup software interface.
4.1.2 CREATING A SITE LIST

To start using the EnerVista UR Setup software, a site definition and device definition must first be created. See the EnerVista UR Setup Help File or refer to the Connecting EnerVista UR Setup with the D30 section in Chapter 1 for details.
4.1.3 ENERVISTA UR SETUP SOFTWARE OVERVIEW

a) ENGAGING A DEVICE

The EnerVista UR Setup software may be used in on-line mode (relay connected) to directly communicate with a UR relay. Communicating relays are organized and grouped by communication interfaces and into sites. Sites may contain any number of relays selected from the UR product series.

b) USING SETTINGS FILES

The EnerVista UR Setup software interface supports three ways of handling changes to relay settings:

- In off-line mode (relay disconnected) to create or edit relay settings files for later download to communicating relays.
- While connected to a communicating relay to directly modify any relay settings via relay data view windows, and then save the settings to the relay.
- You can create/edit settings files and then write them to the relay while the interface is connected to the relay.

Settings files are organized on the basis of file names assigned by the user. A settings file contains data pertaining to the following types of relay settings:

- Device Definition
- Product Setup
- System Setup
- FlexLogic ${ }^{\text {TM }}$
- Grouped Elements
- Control Elements
- Inputs/Outputs
- Testing

Factory default values are supplied and can be restored after any changes.
c) CREATING AND EDITION FLEXLOGIC ${ }^{\text {TM }}$ EQUATIONS

You can create or edit a FlexLogic ${ }^{\text {TM }}$ equation in order to customize the relay. You can subsequently view the automatically generated logic diagram.

d) VIEWING ACTUAL VALUES

You can view real-time relay data such as input/output status and measured parameters.

e) VIEWING TRIGGERED EVENTS

While the interface is in either on-line or off-line mode, you can view and analyze data generated by triggered specified parameters, via one of the following:

- Event Recorder facility: The event recorder captures contextual data associated with the last 1024 events, listed in chronological order from most recent to oldest.
- Oscillography facility: The oscillography waveform traces and digital states are used to provide a visual display of power system and relay operation data captured during specific triggered events.

f) FILE SUPPORT

- Execution: Any EnerVista UR Setup file which is double clicked or opened will launch the application, or provide focus to the already opened application. If the file was a settings file (has a URS extension) which had been removed from the Settings List tree menu, it will be added back to the Settings List tree menu.
- Drag and Drop: The Site List and Settings List control bar windows are each mutually a drag source and a drop target for device-order-code-compatible files or individual menu items. Also, the Settings List control bar window and any Windows Explorer directory folder are each mutually a file drag source and drop target.
New files which are dropped into the Settings List window are added to the tree which is automatically sorted alphabetically with respect to settings file names. Files or individual menu items which are dropped in the selected device menu in the Site List window will automatically be sent to the on-line communicating device.

g) FIRMWARE UPGRADES

The firmware of a D30 device can be upgraded, locally or remotely, via the EnerVista UR Setup software. The corresponding instructions are provided by the EnerVista UR Setup Help file under the topic "Upgrading Firmware".

Modbus addresses assigned to firmware modules, features, settings, and corresponding data items (i.e. default values, min/max values, data type, and item size) may change slightly from version to version of firmware. The addresses are rearranged when new features are added or existing features are enhanced or modified. The "EEPROM DATA ERROR" message displayed after upgrading/downgrading the firmware is a resettable, self-test message intended to inform users that the Modbus addresses have changed with the upgraded firmware. This message does not signal any problems when appearing after firmware upgrades.

The EnerVista UR Setup software main window supports the following primary display components:
a. Title bar which shows the pathname of the active data view
b. Main window menu bar
c. Main window tool bar
d. Site List control bar window
e. Settings List control bar window
f. Device data view window(s), with common tool bar
g. Settings File data view window(s), with common tool bar
h. Workspace area with data view tabs
i. Status bar

Figure 4-1: ENERVISTA UR SETUP SOFTWARE MAIN WINDOW

The keypad/display/LED interface is one of two alternate human interfaces supported. The other alternate human interface is implemented via the EnerVista UR Setup software. The faceplate interface is available in two configurations: horizontal or vertical. The faceplate interface consists of several functional panels.
The faceplate is hinged to allow easy access to the removable modules. There is also a removable dust cover that fits over the faceplate which must be removed in order to access the keypad panel. The following two figures show the horizontal and vertical arrangement of faceplate panels.

Figure 4-2: UR-SERIES HORIZONTAL FACEPLATE PANELS

Figure 4-3: UR-SERIES VERTICAL FACEPLATE PANELS

a) LED PANEL 1

This panel provides several LED indicators, several keys, and a communications port. The RESET key is used to reset any latched LED indicator or target message, once the condition has been cleared (these latched conditions can also be reset via the SETTINGS $\Rightarrow \sqrt{ }$ INPUT/OUTPUTS $\Rightarrow \sqrt{ }$ RESETTING menu). The USER keys are used by the Breaker Control feature. The RS232 port is intended for connection to a portable PC.

Figure 4-4: LED PANEL 1

STATUS INDICATORS:

- IN SERVICE: Indicates that control power is applied; all monitored inputs/outputs and internal systems are OK; the relay has been programmed.
- TROUBLE: Indicates that the relay has detected an internal problem.
- TEST MODE: Indicates that the relay is in test mode.
- TRIP: Indicates that the selected FlexLogic ${ }^{\text {TM }}$ operand serving as a Trip switch has operated. This indicator always latches; the RESET command must be initiated to allow the latch to be reset.
- ALARM: Indicates that the selected FlexLogic ${ }^{\top M}$ operand serving as an Alarm switch has operated. This indicator is never latched.
- PICKUP: Indicates that an element is picked up. This indicator is never latched.

EVENT CAUSE INDICATORS:

These indicate the input type that was involved in a condition detected by an element that is operated or has a latched flag waiting to be reset.

- VOLTAGE: Indicates voltage was involved.
- CURRENT: Indicates current was involved.
- FREQUENCY: Indicates frequency was involved.
- OTHER: Indicates a composite function was involved.
- PHASE A: Indicates Phase A was involved.
- PHASE B: Indicates Phase B was involved.
- PHASE C: Indicates Phase C was involved.
- NEUTRAL/GROUND: Indicates neutral or ground was involved.

b) LED PANELS 2 AND 3

These panels provide 48 amber LED indicators whose operation is controlled by the user. Support for applying a customized label beside every LED is provided.

User customization of LED operation is of maximum benefit in installations where languages other than English are used to communicate with operators. Refer to the User-Programmable LEDs section in Chapter 5 for the settings used to program the operation of the LEDs on these panels.

USER-PROGRAMMABLE LEDS		
- (1)	- (9)	- (17)
■ (2)	- (10)	- (18)
- (3)	- (11)	- (19)
■ (4)	- (12)	■ (20)
■ (5)	■ (13)	■ (21)
■ (6)	- (14)	- (22)
- (7)	- (15)	- (23)
- (8)	- (16)	- (24)

USER	LE LEDS	
- (25)	■ (33)	■ (41)
- (26)	- (34)	■ (42)
- (27)	- (35)	- (43)
- (28)	- (36)	- (44)
- (29)	- (37)	- (45)
- (30)	- (38)	- (46)
■ (31)	- (39)	- (47)
- (32)	- (40)	- (48)

Figure 4-5: LED PANELS 2 AND 3 (INDEX TEMPLATE)
c) DEFAULT LABELS FOR LED PANEL 2

The default labels are intended to represent:

- GROUP 1...8: The illuminated GROUP is the active settings group.
- BREAKER n OPEN: The breaker is open.
- BREAKER n CLOSED: The breaker is closed.
- BREAKER \mathbf{n} TROUBLE: A problem related to the breaker has been detected.
- SYNCHROCHECK NO \mathbf{n} IN-SYNCH: Voltages have satisfied the synchrocheck element.
- RECLOSE ENABLED: The recloser is operational.
- RECLOSE DISABLED: The recloser is not operational.
- RECLOSE IN PROGRESS: A reclose operation is in progress.
- RECLOSE LOCKED OUT: The recloser is not operational and requires a reset.

Firmware revisions 2.9x and earlier support eight user setting groups; revisions 3.0x and higher support six setting groups. For convenience of users using earlier firmware revisions, the relay panel shows eight setting groups. Please note that the LEDs, despite their default labels, are fully user-programmable.

The relay is shipped with the default label for the LED panel 2 . The LEDs, however, are not pre-programmed. To match the pre-printed label, the LED settings must be entered as shown in the User-Programmable LEDs section of Chapter 5. The LEDs are fully user-programmable. The default labels can be replaced by user-printed labels for both LED panels 2 and 3 as explained in the next section.

SETTINGS IN USE	BREAKER 1	SYNCHROCHECK
\square GROUP 1	OPEN	NO1 IN-SYNCH
\square GROUP 2	CLOSED	NO2 IN-SYNCH
\square GROUP 3	TROUBLE	
\square GROUP 4		RECLOSE
\square GROUP 5	BREAKER 2	\square ENABLED
\square GROUP 6	\square OPEN	\square DISABLED
\square GROUP 7	CLOSED	\square IN PROGRESS
\square GROUP 8	\square TROUBLE	\square LOCKED OUT

Figure 4-6: LED PANEL 2 (DEFAULT LABELS)

d) CUSTOM LABELING OF LEDS

Custom labeling of an LED-only panel is facilitated through a Microsoft Word file available from the following URL:
http://www.GEindustrial.com/multilin/support/ur/
This file provides templates and instructions for creating appropriate labeling for the LED panel. The following procedures are contained in the downloadable file. The panel templates provide relative LED locations and located example text (x) edit boxes. The following procedure demonstrates how to install/uninstall the custom panel labeling.

1. Remove the clear Lexan Front Cover (GE Multilin Part Number: 1501-0014).

2. Pop out the LED Module and/or the Blank Module with a screwdriver as shown below. Be careful not to damage the plastic.

3. Place the left side of the customized module back to the front panel frame, then snap back the right side.
4. Put the clear Lexan Front Cover back into place.
e) CUSTOMIZING THE DISPLAY MODULE

The following items are required to customize the UR display module:

- Black and white or color printer (color preferred)
- Microsoft Word 97 or later software
- 1 each of: $8.5^{\prime \prime} \times 11^{\prime \prime}$ white paper, exacto knife, ruler, custom display module (GE Multilin Part Number: 1516-0069), and a custom module cover (GE Multilin Part Number: 1502-0015)

1. Open the LED panel customization template with Microsoft Word. Add text in places of the LED \mathbf{x} text placeholders on the template(s). Delete unused place holders as required.
2. When complete, save the Word file to your local PC for future use.
3. Print the template(s) to a local printer.
4. From the printout, cut-out the Background Template from the three windows, using the cropmarks as a guide.
5. Put the Background Template on top of the custom display module (GE Multilin Part Number: 1513-0069) and snap the clear custom module cover (GE Multilin Part Number: 1502-0015) over it and the templates.

All messages are displayed on a 2×20 character vacuum fluorescent display to make them visible under poor lighting conditions. An optional liquid crystal display (LCD) is also available. Messages are displayed in English and do not require the aid of an instruction manual for deciphering. While the keypad and display are not actively being used, the display will default to defined messages. Any high priority event driven message will automatically override the default message and appear on the display.
4.2.4 KEYPAD

Display messages are organized into 'pages' under the following headings: Actual Values, Settings, Commands, and Targets. The MENU key navigates through these pages. Each heading page is broken down further into logical subgroups.
The $\triangle \varangle$ MESSAGE ∇ keys navigate through the subgroups. The Θ VALUE \odot keys scroll increment or decrement numerical setting values when in programming mode. These keys also scroll through alphanumeric values in the text edit mode. Alternatively, values may also be entered with the numeric keypad.
The - key initiates and advance to the next character in text edit mode or enters a decimal point. The HELP key may be pressed at any time for context sensitive help messages. The ENTER key stores altered setting values.

4.2.5 BREAKER CONTROL

a) DESCRIPTION

The D30 can interface with associated circuit breakers. In many cases the application monitors the state of the breaker, which can be presented on faceplate LEDs, along with a breaker trouble indication. Breaker operations can be manually initiated from faceplate keypad or automatically initiated from a FlexLogic ${ }^{\top M}$ operand. A setting is provided to assign names to each breaker; this user-assigned name is used for the display of related flash messages. These features are provided for two breakers; the user may use only those portions of the design relevant to a single breaker, which must be breaker No. 1.
For the following discussion it is assumed the SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ BREAKERS \Rightarrow BREAKER $\mathbf{n} \Rightarrow$ BREAKER FUNCTION setting is "Enabled" for each breaker.

b) CONTROL MODE SELECTION AND MONITORING

Installations may require that a breaker is operated in the three-pole only mode (3-Pole), or in the one and three-pole (1Pole) mode, selected by setting. If the mode is selected as 3-pole, a single input tracks the breaker open or closed position. If the mode is selected as 1-Pole, all three breaker pole states must be input to the relay. These inputs must be in agreement to indicate the position of the breaker.

For the following discussion it is assumed the SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ BREAKERS \Rightarrow BREAKER $n \Rightarrow \sqrt{ } \Rightarrow$ BREAKER PUSH BUTTON CONTROL setting is "Enabled" for each breaker. The D30 has features required for single-pole operation. Inputs that trip individual breaker poles and cause a breaker reclose are passed directly to this element.

c) FACEPLATE PUSHBUTTON (USER KEY) CONTROL

After the 30 minute interval during which command functions are permitted after a correct command password, the user cannot open or close a breaker via the keypad. The following discussions begin from the not-permitted state.

d) CONTROL OF TWO BREAKERS

For the following example setup, the symbol (Name) represents the user-programmed variable name.
For this application (setup shown below), the relay is connected and programmed for both breaker No. 1 and breaker No. 2. The USER 1 key performs the selection of which breaker is to be operated by the USER 2 and USER 3 keys. The USER 2 key is used to manually close the breaker and the USER 3 key is used to manually open the breaker.

ENTER COMMAND	This message appears when the USER 1, USER 2, or USER 3 key is pressed and a
CASSWORD	COMMAND PASSWORD is required; i.e. if COMMAND PASSWORD is enabled and no com-

mands have been issued within the last 30 minutes.

This message appears if the correct password is entered or if none is required. This message will be maintained for 30 seconds or until the USER 1 key is pressed again.

This message is displayed after the USER 1 key is pressed for the second time. Three possible actions can be performed from this state within 30 seconds as per items (1), (2) and (3) below:
(1)

USER 2 OFF/ON To Close BKR1-(Name)

If the USER 2 key is pressed, this message appears for 20 seconds. If the USER 2 key is pressed again within that time, a signal is created that can be programmed to operate an output relay to close breaker No. 1.
(2)

USER 3 OFF/ON
To Open BKR1-(Name)

If the USER 3 key is pressed, this message appears for 20 seconds. If the USER 3 key is pressed again within that time, a signal is created that can be programmed to operate an output relay to open breaker No. 1.
(3)

BKR2-(Name) SELECTED USER 2=CLS/USER 3=OP

If the USER 1 key is pressed at this step, this message appears showing that a different breaker is selected. Three possible actions can be performed from this state as per (1), (2) and (3). Repeatedly pressing the USER 1 key alternates between available breakers. Pressing keys other than USER 1, 2 or 3 at any time aborts the breaker control function.

e) CONTROL OF ONE BREAKER

For this application the relay is connected and programmed for breaker No. 1 only. Operation for this application is identical to that described for two breakers.
4.2.6 MENUS

a) NAVIGATION

Press the MENU key to select the desired header display page (top-level menu). The header title appears momentarily followed by a header display page menu item. Each press of the MENU key advances through the main heading pages as illustrated below.

b) HIERARCHY

The setting and actual value messages are arranged hierarchically. The header display pages are indicated by double scroll bar characters ($\square \square$), while sub-header pages are indicated by single scroll bar characters (\square). The header display pages represent the highest level of the hierarchy and the sub-header display pages fall below this level. The MESSAGE Δ and ∇ keys move within a group of headers, sub-headers, setting values, or actual values. Continually pressing the MESSAGE key from a header display displays specific information for the header category. Conversely, continually pressing the MESSAGE key from a setting value or actual value display returns to the header display.

HIGHEST LEVEL

c) EXAMPLE MENU NAVIGATION

- ${ }^{\text {E }}$ ACTUAL VALUES	Press the MENU key until the header for the first Actual Values page appears. This
$\square \square$ Status	page contains system and relay status information. Repeatedly press the Δ d
	ESSAGE \square keys to display the other actual value headers.

』

■■	SETTINGS
$\square \square$	SYSTEM SETUP

Press the MESSAGE ∇ key to move to the next Settings page. This page contains settings for System Setup. Repeatedly press the \triangle MESSAGE ∇ keys to display the other setting headers and then back to the first Settings page header.

Press the MESSAGE \square key once more and this will display the first setting for Password Security. Pressing the MESSAGE ∇ key repeatedly will display the remaining setting messages for this sub-header.

\square PASSWORD $■$ SECURITY

Press the MESSAGE 《 key once to move back to the first sub-header message.

Pressing the MESSAGE ∇ key will display the second setting sub-header associated with the Product Setup header.

Press the MESSAGE \square key once more and this will display the first setting for Display Properties.

To view the remaining settings associated with the Display Properties subheader, repeatedly press the MESSAGE ∇ key. The last message appears as shown.

a) ENTERING NUMERICAL DATA

Each numerical setting has its own minimum, maximum, and increment value associated with it. These parameters define what values are acceptable for a setting.

Two methods of editing and storing a numerical setting value are available.

- 0 to 9 and (decimal point): The relay numeric keypad works the same as that of any electronic calculator. A number is entered one digit at a time. The leftmost digit is entered first and the rightmost digit is entered last. Pressing the MESSAGE (key or pressing the ESCAPE key, returns the original value to the display.
- value $\boldsymbol{\nabla}$: The value key increments the displayed value by the step value, up to the maximum value allowed. While at the maximum value, pressing the VALUE key again will allow the setting selection to continue upward from the minimum value. The VALUE σ key decrements the displayed value by the step value, down to the minimum value. While at the minimum value, pressing the VALUE \varnothing key again will allow the setting selection to continue downward from the maximum value.

FLASH MESSAGE TIME: 2.5 s	As an example, set the flash message time setting to 2.5 seconds. Press the appropriate numeric keys in the sequence " 2.5 ". The display message will change as the digits are being entered.
\checkmark	
NEW SETTINGHAS BEEN STORED	Until ENTER is pressed, editing changes are not registered by the relay. Therefore, press
	ENTER to store the new value in memory. This flash message will momentarily appear as
	confirmation of the storing process. Numerical values which contain decimal places will
	be rounded-off if more decimal place digits are entered than specified by the step value.

b) ENTERING ENUMERATION DATA

Enumeration settings have data values which are part of a set, whose members are explicitly defined by a name. A set is comprised of two or more members.

ACCESS LEVEL:	For example, the selections available for ACCESS LEVEL are "Restricted", "Command", Restricted

Enumeration type values are changed using the VALUE keys. The VALUE key displays the next selection while the VALUE ∇ key displays the previous selection.

ACCESS LEVEL: Setting	If the Access level needs to be "Setting", press the VALUE keys until the proper selection is displayed. Press \square at any time for the context sensitive help messages.
\checkmark	
NEW SETTING HAS BEEN STORED	Changes are not registered by the relay until the \square key is pressed. Pressing \square stores the new value in memory. This flash message momentarily appears as confirmation of the storing process.

c) ENTERING ALPHANUMERIC TEXT

Text settings have data values which are fixed in length, but user-defined in character. They may be comprised of upper case letters, lower case letters, numerals, and a selection of special characters.

There are several places where text messages may be programmed to allow the relay to be customized for specific applications. One example is the Message Scratchpad. Use the following procedure to enter alphanumeric text messages.
For example: to enter the text, "Breaker \#1"

1. Press \square to enter text edit mode.
2. Press the VALUE keys until the character 'B' appears; press $\quad \cdot$ to advance the cursor to the next position.
3. Repeat step 2 for the remaining characters: r,e,a,k,e,r, ,\#,1.
4. Press ENTER to store the text.
5. If you have any problem, press HELP to view context sensitive help. Flash messages will sequentially appear for several seconds each. For the case of a text setting message, pressing HeLp displays how to edit and store new values.
d) ACTIVATING THE RELAY

RELAY SETTINGS: When the relay is powered up, the Trouble LED will be on, the In Service LED off, and Not Programmed this message displayed, indicating the relay is in the "Not Programmed" state and is safeguarding (output relays blocked) against the installation of a relay whose settings have not been entered. This message remains until the relay is explicitly put in the "Programmed" state.

To change the reLAY SETtings: "Not Programmed" mode to "Programmed", proceed as follows:

1. Press the menu key until the settings header flashes momentarily and the settings product setup message appears on the display.
2. Press the MESSAGE \square key until the PASSWORD SECURITY message appears on the display.
3. Press the MESSAGE ∇ key until the installation message appears on the display.
4. Press the MESSAGE key until the reLAY SETtings: Not Programmed message is displayed.

5. After the relay settings: Not Programmed message appears on the display, press the VALUE keys change the selection to "Programmed".
6. Press the Enter key.

RELAY SETTINGS: Not Programmed	$\otimes \vee$RELAY SETTINGS: Programmed	ENTER

7. When the "NEW SETTING HAS BEEN STORED" message appears, the relay will be in "Programmed" state and the In Service LED will turn on.
e) ENTERING INITIAL PASSWORDS

To enter the initial Setting (or Command) Password, proceed as follows:

1. Press the MENU key until the 'SETTINGS' header flashes momentarily and the 'SETTINGS PRODUCT SETUP' message appears on the display.
2. Press the MESSAGE \square key until the 'ACCESS LEVEL:' message appears on the display.
3. Press the MESSAGE ∇ key until the 'CHANGE SETTING (or COMMAND) PASSWORD:' message appears on the display.

4. After the 'CHANGE...PASSWORD' message appears on the display, press the VALUE \otimes key or the VALUE \odot key to change the selection to Yes.
5. Press the ENTER key and the display will prompt you to 'ENTER NEW PASSWORD'.
6. Type in a numerical password (up to 10 characters) and press the ENTER key.
7. When the 'VERIFY NEW PASSWORD' is displayed, re-type in the same password and press ENTER.

8. When the 'NEW PASSWORD HAS BEEN STORED' message appears, your new Setting (or Command) Password will be active.

f) CHANGING EXISTING PASSWORD

To change an existing password, follow the instructions in the previous section with the following exception. A message will prompt you to type in the existing password (for each security level) before a new password can be entered.
In the event that a password has been lost (forgotten), submit the corresponding Encrypted Password from the PASsword sECURITY menu to the Factory for decoding.

∇
∇

(1)

-

∇

∇

5.1.2 INTRODUCTION TO ELEMENTS

In the design of UR relays, the term "element" is used to describe a feature that is based around a comparator. The comparator is provided with an input (or set of inputs) that is tested against a programmed setting (or group of settings) to determine if the input is within the defined range that will set the output to logic 1, also referred to as "setting the flag". A single comparator may make multiple tests and provide multiple outputs; for example, the time overcurrent comparator sets a Pickup flag when the current input is above the setting and sets an Operate flag when the input current has been at a level above the pickup setting for the time specified by the time-current curve settings. All comparators, except the Digital Element which uses a logic state as the input, use analog parameter actual values as the input.
Elements are arranged into two classes, GROUPED and CONTROL. Each element classed as a GROUPED element is provided with six alternate sets of settings, in setting groups numbered 1 through 6 . The performance of a GROUPED element is defined by the setting group that is active at a given time. The performance of a CONTROL element is independent of the selected active setting group.
The main characteristics of an element are shown on the element logic diagram. This includes the input(s), settings, fixed logic, and the output operands generated (abbreviations used on scheme logic diagrams are defined in Appendix F).

Some settings for current and voltage elements are specified in per-unit (pu) calculated quantities:
pu quantity = (actual quantity) $/$ (base quantity)

- For current elements, the 'base quantity' is the nominal secondary or primary current of the CT. Where the current source is the sum of two CTs with different ratios, the 'base quantity' will be the common secondary or primary current
to which the sum is scaled (i.e. normalized to the larger of the 2 rated CT inputs). For example, if CT1 = 300/5 A and $C T 2=100 / 5 \mathrm{~A}$, then in order to sum these, CT2 is scaled to the CT1 ratio. In this case, the 'base quantity' will be 5 A secondary or 300 A primary.
- For voltage elements the 'base quantity' is the nominal primary voltage of the protected system which corresponds (based on VT ratio and connection) to secondary VT voltage applied to the relay. For example, on a system with a 13.8 kV nominal primary voltage and with $14400: 120 \mathrm{~V}$ Delta-connected VTs, the secondary nominal voltage (1 pu) would be:

$$
\begin{equation*}
\frac{13800}{14400} \times 120=115 \mathrm{~V} \tag{EQ5.1}
\end{equation*}
$$

For Wye-connected VTs, the secondary nominal voltage (1 pu) would be:

$$
\begin{equation*}
\frac{13800}{14400} \times \frac{120}{\sqrt{3}}=66.4 \mathrm{~V} \tag{EQ5.2}
\end{equation*}
$$

Many settings are common to most elements and are discussed below:

- FUNCTION setting: This setting programs the element to be operational when selected as "Enabled". The factory default is "Disabled". Once programmed to "Enabled", any element associated with the Function becomes active and all options become available.
- NAME setting: This setting is used to uniquely identify the element.
- SOURCE setting: This setting is used to select the parameter or set of parameters to be monitored.
- PICKUP setting: For simple elements, this setting is used to program the level of the measured parameter above or below which the pickup state is established. In more complex elements, a set of settings may be provided to define the range of the measured parameters which will cause the element to pickup.
- PICKUP DELAY setting: This setting sets a time-delay-on-pickup, or on-delay, for the duration between the Pickup and Operate output states.
- RESET DELAY setting: This setting is used to set a time-delay-on-dropout, or off-delay, for the duration between the Operate output state and the return to logic 0 after the input transits outside the defined pickup range.
- BLOCK setting: The default output operand state of all comparators is a logic 0 or "flag not set". The comparator remains in this default state until a logic 1 is asserted at the RUN input, allowing the test to be performed. If the RUN input changes to logic 0 at any time, the comparator returns to the default state. The RUN input is used to supervise the comparator. The BLOCK input is used as one of the inputs to RUN control.
- TARGET setting: This setting is used to define the operation of an element target message. When set to Disabled, no target message or illumination of a faceplate LED indicator is issued upon operation of the element. When set to SelfReset, the target message and LED indication follow the Operate state of the element, and self-resets once the operate element condition clears. When set to Latched, the target message and LED indication will remain visible after the element output returns to logic $0-$ until a RESET command is received by the relay.
- EVENTS setting: This setting is used to control whether the Pickup, Dropout or Operate states are recorded by the event recorder. When set to Disabled, element pickup, dropout or operate are not recorded as events. When set to Enabled, events are created for:

```
(Element) PKP (pickup)
(Element) DPO (dropout)
(Element) OP (operate)
```

The DPO event is created when the measure and decide comparator output transits from the pickup state (logic 1) to the dropout state (logic 0). This could happen when the element is in the operate state if the reset delay time is not ' 0 '.
5.1.3 INTRODUCTION TO AC SOURCES

a) BACKGROUND

The D30 may be used on systems with breaker-and-a-half or ring bus configurations. In these applications, each of the two three-phase sets of individual phase currents (one associated with each breaker) can be used as an input to a breaker failure element. The sum of both breaker phase currents and $31 _0$ residual currents may be required for the circuit relaying and metering functions. For a three-winding transformer application, it may be required to calculate watts and vars for each
of three windings, using voltage from different sets of VTs. These requirements can be satisfied with a single UR, equipped with sufficient CT and VT input channels, by selecting the parameter to measure. A mechanism is provided to specify the AC parameter (or group of parameters) used as the input to protection/control comparators and some metering elements.
Selection of the parameter(s) to measure is partially performed by the design of a measuring element or protection/control comparator by identifying the type of parameter (fundamental frequency phasor, harmonic phasor, symmetrical component, total waveform RMS magnitude, phase-phase or phase-ground voltage, etc.) to measure. The user completes the process by selecting the instrument transformer input channels to use and some of the parameters calculated from these channels. The input parameters available include the summation of currents from multiple input channels. For the summed currents of phase, 3I_0, and ground current, current from CTs with different ratios are adjusted to a single ratio before summation.
A mechanism called a "Source" configures the routing of CT and VT input channels to measurement sub-systems. Sources, in the context of UR series relays, refer to the logical grouping of current and voltage signals such that one source contains all the signals required to measure the load or fault in a particular power apparatus. A given source may contain all or some of the following signals: three-phase currents, single-phase ground current, three-phase voltages and an auxiliary voltage from a single VT for checking for synchronism.
To illustrate the concept of Sources, as applied to current inputs only, consider the breaker-and-a-half scheme below. In this application, the current flows as shown by the arrows. Some current flows through the upper bus bar to some other location or power equipment, and some current flows into transformer Winding 1. The current into Winding 1 is the phasor sum (or difference) of the currents in CT1 and CT2 (whether the sum or difference is used depends on the relative polarity of the CT connections). The same considerations apply to transformer Winding 2. The protection elements require access to the net current for transformer protection, but some elements may need access to the individual currents from CT1 and CT2.

In conventional analog or electronic relays, the sum of the currents is obtained from an appropriate external connection of all CTs through which any portion of the current for the element being protected could flow. Auxiliary CTs are required to perform ratio matching if the ratios of the primary CTs to be summed are not identical. In the UR series of relays, provisions have been included for all the current signals to be brought to the UR device where grouping, ratio correction and summation are applied internally via configuration settings.
A major advantage of using internal summation is that the individual currents are available to the protection device; for example, as additional information to calculate a restraint current, or to allow the provision of additional protection features that operate on the individual currents such as breaker failure.
Given the flexibility of this approach, it becomes necessary to add configuration settings to the platform to allow the user to select which sets of CT inputs will be added to form the net current into the protected device.
The internal grouping of current and voltage signals forms an internal source. This source can be given a specific name through the settings, and becomes available to protection and metering elements in the UR platform. Individual names can be given to each source to help identify them more clearly for later use. For example, in the scheme shown in the above diagram, the configures one Source to be the sum of CT1 and CT2 and can name this Source as "Wdg 1 Current".
Once the sources have been configured, the user has them available as selections for the choice of input signal for the protection elements and as metered quantities.

b) CT/VT MODULE CONFIGURATION

CT and VT input channels are contained in CT/VT modules. The type of input channel can be phase/neutral/other voltage, phase/ground current, or sensitive ground current. The CT/VT modules calculate total waveform RMS levels, fundamental frequency phasors, symmetrical components and harmonics for voltage or current, as allowed by the hardware in each channel. These modules may calculate other parameters as directed by the CPU module.
A CT/VT module contains up to eight input channels, numbered 1 through 8 . The channel numbering corresponds to the module terminal numbering 1 through 8 and is arranged as follows: Channels $1,2,3$ and 4 are always provided as a group, hereafter called a "bank," and all four are either current or voltage, as are Channels 5, 6, 7 and 8 . Channels 1, 2, 3 and 5, 6, 7 are arranged as phase A, B and C respectively. Channels 4 and 8 are either another current or voltage.
Banks are ordered sequentially from the block of lower-numbered channels to the block of higher-numbered channels, and from the CT/VT module with the lowest slot position letter to the module with the highest slot position letter, as follows:

The UR platform allows for a maximum of three sets of three-phase voltages and six sets of three-phase currents. The result of these restrictions leads to the maximum number of CT/VT modules in a chassis to three. The maximum number of Sources is six. A summary of CT/VT module configurations is shown below.

ITEM	MAXIMUM NUMBER
CT/VT Module	3
CT Bank (3 phase channels, 1 ground channel)	6
VT Bank (3 phase channels, 1 auxiliary channel)	3

c) CT/VT INPUT CHANNEL CONFIGURATION

Upon relay startup, configuration settings for every bank of current or voltage input channels in the relay are automatically generated from the order code. Within each bank, a channel identification label is automatically assigned to each bank of channels in a given product. The 'bank' naming convention is based on the physical location of the channels, required by the user to know how to connect the relay to external circuits. Bank identification consists of the letter designation of the slot in which the CT/VT module is mounted as the first character, followed by numbers indicating the channel, either 1 or 5 .

For three-phase channel sets, the number of the lowest numbered channel identifies the set. For example, F1 represents the three-phase channel set of F1/F2/F3, where F is the slot letter and 1 is the first channel of the set of three channels.
Upon startup, the CPU configures the settings required to characterize the current and voltage inputs, and will display them in the appropriate section in the sequence of the banks (as described above) as follows for a maximum configuration: F1, F5, M1, M5, U1, and U5.
The above section explains how the input channels are identified and configured to the specific application instrument transformers and the connections of these transformers. The specific parameters to be used by each measuring element and comparator, and some actual values are controlled by selecting a specific source. The source is a group of current and voltage input channels selected by the user to facilitate this selection. With this mechanism, a user does not have to make multiple selections of voltage and current for those elements that need both parameters, such as a distance element or a watt calculation. It also gathers associated parameters for display purposes.

The basic idea of arranging a source is to select a point on the power system where information is of interest. An application example of the grouping of parameters in a Source is a transformer winding, on which a three phase voltage is measured, and the sum of the currents from CTs on each of two breakers is required to measure the winding current flow.

PATH: SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow PASSWORD SECURITY

\squarePASSWORD \square SECURITY		(1)	ACCESS LEVEL: Restricted	Range: Restricted, Command, Setting, Factory Service (for factory use only) Range: No, Yes Range: No, Yes Range: O to 9999999999 Note: \qquad indicates no password Range: O to 9999999999 Note: \qquad indicates no password	
	MESSAGE	-	CHANGE COMMAND PASSWORD: No		
	MESSAGE	Q	CHANGE SETTING PASSWORD: No		
	MESSAGE	\square	ENCRYPTED COMMAND PASSWORD:		
	MESSAGE	(2)	ENCRYPTED SETTING PASSWORD: ------.-.-.		

Two levels of password security are provided: Command and Setting. Operations under password supervision are:

- COMMAND: operating the breakers via faceplate keypad, changing the state of virtual inputs, clearing the event records, clearing the oscillography records, clearing fault reports, changing the date and time, clearing the breaker arcing amps, clearing the data logger, user-programmable pushbuttons
- SETTING: changing any setting, test mode operation

The Command and Setting passwords are defaulted to "Null" when the relay is shipped from the factory. When a password is set to "Null", the password security feature is disabled.
Programming a password code is required to enable each access level. A password consists of 1 to 10 numerical characters. When a CHANGE ... PASSWORD setting is set to "Yes", the following message sequence is invoked:

1. ENTER NEW PASSWORD: \qquad
2. VERIFY NEW PASSWORD: \qquad

3. NEW PASSWORD HAS BEEN STORED

To gain write access to a "Restricted" setting, set ACCESS LEVEL to "Setting" and then change the setting, or attempt to change the setting and follow the prompt to enter the programmed password. If the password is correctly entered, access will be allowed. If no keys are pressed for longer than 30 minutes or control power is cycled, accessibility will automatically revert to the "Restricted" level.

If an entered password is lost (or forgotten), consult the factory with the corresponding ENCRYPTED PASSWORD.
The D30 provides a means to raise an alarm upon failed password entry. Should password verification fail while accessing a password-protected level of the relay (either settings or commands), the UNAUTHORIZED ACCESS FlexLogic ${ }^{\text {™ }}$ operand is asserted. The operand can be programmed to raise an alarm via contact outputs or communications. This feature can be used to protect against both unauthorized and accidental access attempts.
The UNAUTHORISED ACCESS operand is reset with the COMMANDS $\Rightarrow \sqrt{ }$ CLEAR RECORDS $\Rightarrow \sqrt{ } \Rightarrow$ RESET UNAUTHORISED ALARMS command. Therefore, to apply this feature with security, the command level should be password-protected.

The operand does not generate events or targets. If these are required, the operand can be assigned to a digital element programmed with event logs and/or targets enabled.

If the Setting and command passwords are identical, this one password allows access to both commands and settings.
When EnerVista UR Setup is used to access a particular level, the user will continue to have access to that level as long as there are open windows in EnerVista UR Setup. To re-establish the Password Security feature, all URPC windows must be closed for at least 30 minutes.

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{3}$ DISPLAY PROPERTIES

\square DISPLAY		(1)	FLASH MESSAGE TIME: 1.0 s	Range:	0.5 to 10.0 s in steps of 0.1
	MESSAGE	\square	DEFAULT MESSAGE TIMEOUT: 300 s	Range:	10 to 900 s in steps of 1
	MESSAGE	∇	DEFAULT MESSAGE INTENSITY: 25%	Range:	$25 \%, 50 \%, 75 \%, 100 \%$ Visible only if a VFD is installed
	MESSAGE	-	SCREEN SAVER FEATURE: Disabled	Range:	Disabled, Enabled Visible only if an LCD is installed
	MESSAGE	\square	SCREEN SAVER WAIT TIME: 30 min	Range:	1 to 65535 min. in steps of 1 Visible only if an LCD is installed
	MESSAGE	-	CURRENT CUT-0FF LEVEL: 0.020 pu	Range:	0.002 to 0.020 pu in steps of 0.001
	MESSAGE	(4)	VOLTAGE CUT-OFF LEVEL: 1.0 V	Range:	0.1 to 1.0 V secondary in steps of 0.1

Some relay messaging characteristics can be modified to suit different situations using the display properties settings.

- FLASH MESSAGE TIME: Flash messages are status, warning, error, or information messages displayed for several seconds in response to certain key presses during setting programming. These messages override any normal messages. The duration of a flash message on the display can be changed to accommodate different reading rates.
- DEFAULT MESSAGE TIMEOUT: If the keypad is inactive for a period of time, the relay automatically reverts to a default message. The inactivity time is modified via this setting to ensure messages remain on the screen long enough during programming or reading of actual values.
- DEFAULT MESSAGE INTENSITY: To extend phosphor life in the vacuum fluorescent display, the brightness can be attenuated during default message display. During keypad interrogation, the display always operates at full brightness.
- SCREEN SAVER FEATURE and SCREEN SAVER WAIT TIME: These settings are only visible if the D30 has a liquid crystal display (LCD) and control its backlighting. When the SCREEN SAVER FEATURE is "Enabled", the LCD backlighting is turned off after the DEFAULT MESSAGE TIMEOUT followed by the SCREEN SAVER WAIT TIME, providing that no keys have been pressed and no target messages are active. When a keypress occurs or a target becomes active, the LCD backlighting is turned on.
- CURRENT CUT-OFF LEVEL: This setting modifies the current cut-off threshold. Very low currents (1 to 2% of the rated value) are very susceptible to noise. Some customers prefer very low currents to display as zero, while others prefer the current be displayed even when the value reflects noise rather than the actual signal. The D30 applies a cutoff value to the magnitudes and angles of the measured currents. If the magnitude is below the cut-off level, it is substituted with zero. This applies to phase and ground current phasors as well as true RMS values and symmetrical components. The cut-off operation applies to quantities used for metering, protection, and control, as well as those used by communications protocols. Note that the cut-off level for the sensitive ground input is 10 times lower that the CURRENT CUT-OFF LEVEL setting value. Raw current samples available via oscillography are not subject to cut-off.
- VOLTAGE CUT-OFF LEVEL: This setting modifies the voltage cut-off threshold. Very low secondary voltage measurements (at the fractional volt level) can be affected by noise. Some customers prefer these low voltages to be displayed as zero, while others prefer the voltage to be displayed even when the value reflects noise rather than the actual signal. The D30 applies a cut-off value to the magnitudes and angles of the measured voltages. If the magnitude is below the cut-off level, it is substituted with zero. This operation applies to phase and auxiliary voltages, and symmetrical components. The cut-off operation applies to quantities used for metering, protection, and control, as well as those used by communications protocols. Raw samples of the voltages available via oscillography are not subject cut-off. This setting relates to the actual measured voltage at the VT secondary inputs. It can be converted to per-unit values (pu) by dividing by the Phase vt secondary setting value. For example, a Phase vt secondary setting of " 66.4 V " and a voltage cut-off Level setting of " 1.0 V " gives a cut-off value of $1.0 \mathrm{~V} / 66.4 \mathrm{~V}=0.015 \mathrm{pu}$.

5 SETTINGS

The current cut-off level and the voltage cut-off level are used to determine the metered power cut-off levels. The power cut-off level is calculated as shown below. For Delta connections:

$$
\begin{equation*}
\text { 3-phase power cut-off }=\frac{\sqrt{3} \times \text { CURRENT CUT-OFF LEVEL } \times \text { VOLTAGE CUT-OFF LEVEL } \times \text { VT primary } \times \text { CT primary }}{\text { VT secondary }} \tag{EQ5.3}
\end{equation*}
$$

For Wye connections:

$$
\text { 3-phase power cut-off }=\frac{3 \times \text { CURRENT CUT-OFF LEVEL } \times \text { VOLTAGE CUT-OFF LEVEL } \times \text { VT primary } \times \text { CT primary }}{\text { VT secondary }} \quad \text { (EQ 5.4) }
$$

$$
\text { per-phase power cut-off }=\frac{\text { CURRENT CUT-OFF LEVEL } \times \text { VOLTAGE CUT-OFF LEVEL } \times \text { VT primary } \times \text { CT primary }}{\text { VT secondary }} \quad \text { (EQ 5.5) }
$$

where VT primary $=$ VT secondary \times VT ratio and CT primary $=$ CT secondary \times CT ratio.
For example, given the following settings:
CURRENT CUT-OFF LEVEL: "0.02 pu"
voltage cut-off level: "1.0 V"
PHASE CT PRIMARY: "100 A"
PHASE VT SECONDARY: " 66.4 V "
PhASE VT RATIO: "208.00: 1"
PHASE VT CONNECTION: "Delta".
We have:
CT primary = "100 A", and
VT primary $=$ PHASE VT SECONDARY \times PHASE VT RATIO $=66.4 \mathrm{~V} \times 208=13811.2 \mathrm{~V}$
The power cut-off is therefore:
power cut-off $=($ CURRENT CUT-OFF LEVEL \times VOLTAGE CUT-OFF LEVEL \times CT primary \times VT primary $) / \mathrm{VT}$ secondary

$$
\begin{aligned}
& =(\sqrt{3} \times 0.02 \mathrm{pu} \times 1.0 \mathrm{~V} \times 100 \mathrm{~A} \times 13811.2 \mathrm{~V}) / 66.4 \mathrm{~V} \\
& =720.5 \text { watts }
\end{aligned}
$$

Any calculated power value below this cut-off will not be displayed. As well, the three-phase energy data will not accumulate if the total power from all three phases does not exceed the power cut-off.

Lower the voltage cut-off level and current cut-off level with care as the relay accepts lower signals as valid measurements. Unless dictated otherwise by a specific application, the default settings of " 0.02 pu" for CURRENT CUT-OFF LEVEL and "1.0 V" for VOLTAGE CUT-OFF LEVEL are recommended.

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{2}$ CLEAR RELAY RECORDS

\squareCLEAR RELAY \square RECORDS		(1)	CLEAR FAULT REPORTS: Off	Range:	FlexLogic ${ }^{\text {TM }}$ operand
	MESSAGE	-	CLEAR EVENT RECORDS: Off	Range:	FlexLogic ${ }^{\text {TM }}$ operand
	MESSAGE	-	CLEAR OSCILLOGRAPHY? No	Range:	FlexLogic ${ }^{\text {™ }}$ operand
	MESSAGE	-	CLEAR ARC AMPS 1: Off	Range:	FlexLogic ${ }^{\text {TM }}$ operand
	MESSAGE	-	CLEAR ARC AMPS 2: Off	Range:	FlexLogic ${ }^{\text {TM }}$ operand
	MESSAGE	-	RESET UNAUTH ACCESS: Off	Range:	FlexLogic ${ }^{\text {TM }}$ operand
	MESSAGE	(2)	CLEAR DIR I/O STATS: Off	Range:	FlexLogic ${ }^{\text {™ }}$ operand. Valid only for units with Direct I/O module.

Selected records can be cleared from user-programmable conditions with FlexLogic ${ }^{\text {TM }}$ operands. Assigning user-programmable pushbuttons to clear specific records are typical applications for these commands. Since D30 responds to rising edges of the configured FlexLogic ${ }^{\text {TM }}$ operands, they must be asserted for at least 50 ms to take effect.

Clearing records with user-programmable operands is not protected by the command password. However, user-programmable pushbuttons are protected by the command password. Thus, if they are used to clear records, the user-programmable pushbuttons can provide extra security if required.

For example, to assign User-Programmable Pushbutton 1 to clear demand records, the following settings should be applied.

1. Assign the clear demand function to Pushbutton 1 by making the following change in the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ CLEAR RELAY RECORDS menu:

CLEAR DEMAND: "PUSHBUTTON 1 ON"
2. Set the properties for User-Programmable Pushbutton 1 by making the following changes in the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow 』$ USER-PROGRAMMABLE PUSHBUTTONS \Rightarrow USER PUSHBUTTON 1 menu:

[^0]a) MAIN MENU

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS

b) SERIAL PORTS

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow 』$ COMMUNICATIONS \Rightarrow SERIAL PORTS

\square SERIAL PORTS		(1)	$\begin{aligned} & \text { RS485 COM1 BAUD } \\ & \text { RATE: } 19200 \end{aligned}$	Range: 300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 33600, 38400, 57600, 115200. Only active if CPU 9A is ordered.	
	MESSAGE	\square	RS485 COM1 PARITY: None	Range:	None, Odd, Even Only active if CPU Type 9A is ordered
	MESSAGE	-	RS485 COM1 RESPONSE MIN TIME: $\quad 0 \mathrm{~ms}$	Range:	0 to 1000 ms in steps of 10 Only active if CPU Type 9A is ordered
	MESSAGE	-	RS485 COM2 BAUD RATE: 19200	Range:	300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 33600, 38400, 57600, 115200
	MESSAGE	-	RS485 COM2 PARITY: None	Range:	None, Odd, Even
	MESSAGE	(4)	RS485 COM2 RESPONSE MIN TIME: $\quad 0 \mathrm{~ms}$	Range:	0 to 1000 ms in steps of 10

The D30 is equipped with up to 3 independent serial communication ports. The faceplate RS232 port is intended for local use and is fixed at 19200 baud and no parity. The rear COM1 port type will depend on the CPU ordered: it may be either an Ethernet or an RS485 port. The rear COM2 port is RS485. The RS485 ports have settings for baud rate and parity. It is important that these parameters agree with the settings used on the computer or other equipment that is connected to these ports. Any of these ports may be connected to a personal computer running EnerVista UR Setup. This software is used for downloading or uploading setting files, viewing measured parameters, and upgrading the relay firmware to the latest version. A maximum of 32 relays can be daisy-chained and connected to a DCS, PLC or PC using the RS485 ports.

For each RS485 port, the minimum time before the port will transmit after receiving data from a host can be set. This feature allows operation with hosts which hold the RS485 transmitter active for some time after each transmission.

c) NETWORK

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$. COMMUNICATIONS $\Rightarrow \sqrt{ }$ NETWORK

\square NETWORK		(1)	IP ADDRESS: 0.0.0.0	Range: Range:	Standard IP address format Only active if CPU Type 9C or 9D is ordered. Standard IP address format Only active if CPU Type 9C or 9D is ordered.
	MESSAGE	8	$\begin{aligned} & \text { SUBNET IP MASK: } \\ & \text { 0.0.0.0 } \end{aligned}$		
	MESSAGE	-	GATEWAY IP ADDRESS: \|0.0.0.0	Range:	Standard IP address format Only active if CPU Type 9C or 9D is ordered.
	MESSAGE	-	\square OSI NETWORK \square ADDRESS (NSAP)	Range:	Press the MESSAGE \Rightarrow key to enter the OSI NETWORK ADDRESS. Only active if CPU Type 9C or 9D is ordered.
	MESSAGE	(2)	ETHERNET OPERATION MODE: Half-Duplex	Range:	Half-Duplex, Full-Duplex Only active if CPU Type 9C or 9D is ordered.

These messages appear only if the D30 is ordered with an Ethernet card.
The IP addresses are used with DNP/Network, Modbus/TCP, MMS/UCA2, IEC 60870-5-104, TFTP, and HTTP protocols. The NSAP address is used with the MMS/UCA2 protocol over the OSI (CLNP/TP4) stack only. Each network protocol has a setting for the TCPIUDP PORT NUMBER. These settings are used only in advanced network configurations and should normally be left at their default values, but may be changed if required (for example, to allow access to multiple URs behind a router). By setting a different TCP/UDP PORT NUMBER for a given protocol on each UR, the router can map the URs to the same external IP address. The client software (URPC, for example) must be configured to use the correct port number if these settings are used.

When the NSAP address, any TCP/UDP Port Number, or any User Map setting (when used with DNP) is changed, it will not become active until power to the relay has been cycled (OFF/ON). Do not set more than one protocol to use the same TCPIUDP PORT NUMBER, as this will result in unreliable operation of those protocols.

d) MODBUS PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ MODBUS PROTOCOL

The serial communication ports utilize the Modbus protocol, unless configured for DNP operation (see the DNP Protocol description below). This allows the EnerVista UR Setup software to be used. The UR operates as a Modbus slave device only. When using Modbus protocol on the RS232 port, the D30 will respond regardless of the MODBUS SLAVE ADDRESS programmed. For the RS485 ports each D30 must have a unique address from 1 to 254 . Address 0 is the broadcast address which all Modbus slave devices listen to. Addresses do not have to be sequential, but no two devices can have the same address or conflicts resulting in errors will occur. Generally, each device added to the link should use the next higher address starting at 1. Refer to Appendix B for more information on the Modbus protocol.
e) DNP PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ DNP PROTOCOL

| DNP TCP/UDP PORT |
| :--- | :--- | :--- | :--- |
| NUMBER: 20000 | Range: 1 to 65535 in steps of 1

The D30 supports the Distributed Network Protocol (DNP) version 3.0. The D30 can be used as a DNP slave device connected to a single DNP master (usually an RTU or a SCADA master station). Since the D30 maintains one set of DNP data change buffers and connection information, only one DNP master should actively communicate with the D30 at one time. The DNP PORT setting selects the communications port assigned to the DNP protocol; only a single port can be assigned. Once DNP is assigned to a serial port, the Modbus protocol is disabled on that port. Note that COM1 can be used only in non-ethernet UR relays. When this setting is set to "Network", the DNP protocol can be used over either TCP/IP or UDP/IP.

Refer to Appendix E for more information on the DNP protocol. The DNP ADDREss setting is the DNP slave address. This number identifies the D30 on a DNP communications link. Each DNP slave should be assigned a unique address. The DNP NETWORK CLIENT ADDRESS setting can force the D30 to respond to a maximum of five specific DNP masters.
The DNP UNSOL RESPONSE FUNCTION should be "Disabled" for RS485 applications since there is no collision avoidance mechanism. The DNP UNSOL RESPONSE TIMEOUT sets the time the D30 waits for a DNP master to confirm an unsolicited response. The DNP UNSOL RESPONSE MAX RETRIES setting determines the number of times the D30 retransmits an unsolicited response without receiving confirmation from the master; a value of " 255 " allows infinite re-tries. The DNP UNSOL RESPONSE DEST ADDRESS is the DNP address to which all unsolicited responses are sent. The IP address to which unsolicited responses are sent is determined by the D30 from the current TCP connection or the most recent UDP message.

The USER MAP FOR DNP ANALOGS setting allows the large pre-defined Analog Inputs points list to be replaced by the much smaller Modbus User Map. This can be useful for users wishing to read only selected Analog Input points from the D30. See Appendix E for more information.

The NUMBER OF SOURCES IN ANALOG LIST setting allows the selection of the number of current/voltage source values that are included in the Analog Inputs points list. This allows the list to be customized to contain data for only the sources that are configured. This setting is relevant only when the User Map is not used.

The DNP SCALE FACTOR settings are numbers used to scale Analog Input point values. These settings group the D30 Analog Input data into types: current, voltage, power, energy, and other. Each setting represents the scale factor for all Analog Input points of that type. For example, if the DNP voltage scale factor setting is set to a value of 1000, all DNP Analog Input points that are voltages will be returned with values 1000 times smaller (e.g. a value of 72000 V on the D30 will be returned as 72). These settings are useful when Analog Input values must be adjusted to fit within certain ranges in DNP masters. Note that a scale factor of 0.1 is equivalent to a multiplier of 10 (i.e. the value will be 10 times larger).
The dNP DEFAULT DEADBAND settings determine when to trigger unsolicited responses containing Analog Input data. These settings group the D30 Analog Input data into types: current, voltage, power, energy, and other. Each setting represents the default deadband value for all Analog Input points of that type. For example, to trigger unsolicited responses from the D30 when any current values change by 15 A , the DNP CURRENT DEFAULT DEADBAND setting should be set to " 15 ". Note that these settings are the deadband default values. DNP Object 34 points can be used to change deadband values, from the default, for each individual DNP Analog Input point. Whenever power is removed and re-applied to the D30, the default deadbands will be in effect.
The DNP TIME SYNC IIN PERIOD setting determines how often the Need Time Internal Indication (IIN) bit is set by the D30. Changing this time allows the DNP master to send time synchronization commands more or less often, as required.

The DNP MESSAGE FRAGMENT SIZE setting determines the size, in bytes, at which message fragmentation occurs. Large fragment sizes allow for more efficient throughput; smaller fragment sizes cause more application layer confirmations to be necessary which can provide for more robust data transfer over noisy communication channels.

The DNP BINARY INPUTS USER MAP setting allows for the creation of a custom DNP Binary Inputs points list. The default DNP Binary Inputs list on the D30 contains 928 points representing various binary states (contact inputs and outputs, virtual inputs and outputs, protection element states, etc.). If not all of these points are required in the DNP master, a custom Binary Inputs points list can be created by selecting up to 58 blocks of 16 points. Each block represents 16 Binary Input points. Block 1 represents Binary Input points 0 to 15, block 2 represents Binary Input points 16 to 31, block 3 represents Binary Input points 32 to 47 , etc. The minimum number of Binary Input points that can be selected is 16 (1 block). If all of the BIN INPUT BLOCK x settings are set to "Not Used", the standard list of 928 points will be in effect. The D30 will form the Binary Inputs points list from the BIN INPUT BLOCK X settings up to the first occurrence of a setting value of "Not Used".

When using the User Maps for DNP data points (Analog Inputs and/or Binary Inputs) for relays with ethernet installed, check the "DNP Points Lists" D30 web page to ensure the desired points lists are created. This web page can be viewed using a web browser by entering the D30 IP address to access the D30 "Main Menu", then by selecting the "Device Information Menu" > "DNP Points Lists" menu item.

f) UCA/MMS PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ 万 COMMUNICATIONS $\Rightarrow \sqrt{ }$ UCA/MMS PROTOCOL

\square UCA/MMS		(1)	DEFAULT GOOSE UPDATE TIME: 60 s	Range	1 to 60 s in steps of 1. See UserSt Bit Pairs in the Remote Outputs section of this Chapter.
	MESSAGE	\otimes	UCA LOGICAL DEVICE: UCADevice	Range	Up to 16 alphanumeric characters representing the name of the UCA logical device.
	MESSAGE	-	UCA/MMS TCP PORT NUMBER: 102	Range	1 to 65535 in steps of 1
	MESSAGE	-	GOOSE FUNCTION: Enabled	Range	Disabled, Enabled
	MESSAGE	(2)	GLOBE.ST. LocRemDS: Off	Range	FlexLogic ${ }^{\text {TM }}$ operand

The D30 supports the Manufacturing Message Specification (MMS) protocol as specified by the Utility Communication Architecture (UCA). UCA/MMS is supported over two protocol stacks: TCP/IP over ethernet and TP4/CLNP (OSI) over ethernet. The D30 operates as a UCA/MMS server. The Remote Inputs/Outputs section in this chapter describe the peer-topeer GOOSE message scheme.

The UCA LOGICAL DEVICE setting represents the MMS domain name (UCA logical device) where all UCA objects are located. The GOOSE FUNCTION setting allows for the blocking of GOOSE messages from the D30. This can be used during testing or to prevent the relay from sending GOOSE messages during normal operation. The GLOBE.ST.LocRemDS setting selects a FlexLogic ${ }^{\text {TM }}$ operand to provide the state of the UCA GLOBE.ST.LocRemDS data item. Refer to Appendix C: UCA/MMS Communications for additional details on the D30 UCA/MMS support.
g) WEB SERVER HTTP PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ 的 WEB SERVER HTTP PROTOCOL

The D30 contains an embedded web server and is capable of transferring web pages to a web browser such as Microsoft Internet Explorer or Netscape Navigator. This feature is available only if the D30 has the ethernet option installed. The web pages are organized as a series of menus that can be accessed starting at the D30 "Main Menu". Web pages are available showing DNP and IEC 60870-5-104 points lists, Modbus registers, Event Records, Fault Reports, etc. The web pages can be accessed by connecting the UR and a computer to an ethernet network. The Main Menu will be displayed in the web browser on the computer simply by entering the IP address of the D30 into the "Address" box on the web browser.
h) TFTP PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ TFTP PROTOCOL

The Trivial File Transfer Protocol (TFTP) can be used to transfer files from the UR over a network. The D30 operates as a TFTP server. TFTP client software is available from various sources, including Microsoft Windows NT. The dir . txt file obtained from the D30 contains a list and description of all available files (event records, oscillography, etc.).
i) IEC 60870-5-104 PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ IEC 60870-5-104 PROTOCOL

The D30 supports the IEC 60870-5-104 protocol. The D30 can be used as an IEC 60870-5-104 slave device connected to a single master (usually either an RTU or a SCADA master station). Since the D30 maintains one set of IEC 60870-5-104 data change buffers, only one master should actively communicate with the D30 at one time. For situations where a second master is active in a "hot standby" configuration, the UR supports a second IEC 60870-5-104 connection providing the standby master sends only IEC 60870-5-104 Test Frame Activation messages for as long as the primary master is active.
The NUMBER OF SOURCES IN MMENC1 LIST setting allows the selection of the number of current/voltage source values that are included in the M_ME_NC_1 (Measured value, short floating point) Analog points list. This allows the list to be customized to contain data for only the sources that are configured.

The IEC ------- DEFAULT THRESHOLD settings are the values used by the UR to determine when to trigger spontaneous responses containing M_ME_NC_1 analog data. These settings group the UR analog data into types: current, voltage, power, energy, and other. Each setting represents the default threshold value for all M_ME_NC_1 analog points of that type. For example, in order to trigger spontaneous responses from the UR when any current values change by 15 A , the IEC CURRENT DEFAULT THRESHOLD setting should be set to 15 . Note that these settings are the default values of the deadbands. P_ME_NC_1 (Parameter of measured value, short floating point value) points can be used to change threshold values, from the default, for each individual M_ME_NC_1 analog point. Whenever power is removed and re-applied to the UR, the default thresholds will be in effect.

The IEC 60870-5-104 and DNP protocols can not be used at the same time. When the IEC 60870-5-104 FUNCTION setting is set to "Enabled", the DNP protocol will not be operational. When this setting is changed it will not become active until power to the relay has been cycled (Off/On).

j) SNTP PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ 万 COMMUNICATIONS $\Rightarrow \sqrt{ } \Rightarrow$ SNTP PROTOCOL

\square SNTP PROTOCOL		(1)	SNTP FUNCTION: Disabled	Range: Enabled, Disabled
	MESSAGE	∇	SNTP SERVER IP ADDR: 0.0.0.0	Range: Standard IP address format
	MESSAGE	(4)	SNTP UDP PORT NUMBER: 123	Range: 0 to 65535 in steps of 1

The D30 supports the Simple Network Time Protocol specified in RFC-2030. With SNTP, the D30 can obtain clock time over an Ethernet network. The D30 acts as an SNTP client to receive time values from an SNTP/NTP server, usually a dedicated product using a GPS receiver to provide an accurate time. Both unicast and broadcast SNTP are supported.

If SNTP functionality is enabled at the same time as IRIG-B, the IRIG-B signal provides the time value to the D30 clock for as long as a valid signal is present. If the IRIG-B signal is removed, the time obtained from the SNTP server is used. If either SNTP or IRIG-B is enabled, the D30 clock value cannot be changed using the front panel keypad.
To use SNTP in unicast mode, SNTP SERVER IP ADDR must be set to the SNTP/NTP server IP address. Once this address is set and SNTP FUNCTION is "Enabled", the D30 attempts to obtain time values from the SNTP/NTP server. Since many time values are obtained and averaged, it generally takes three to four minutes until the D30 clock is closely synchronized with the SNTP/NTP server. It may take up to two minutes for the D30 to signal an SNTP self-test error if the server is offline.

To use SNTP in broadcast mode, set the SNTP SERVER IP ADDR setting to "0.0.0.0" and SNTP FUNCTION to "Enabled". The D30 then listens to SNTP messages sent to the "all ones" broadcast address for the subnet. The D30 waits up to eighteen minutes (>1024 seconds) without receiving an SNTP broadcast message before signaling an SNTP self-test error.

The UR does not support the multicast or anycast SNTP functionality.

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ MODBUS USER MAP

The Modbus User Map provides read-only access for up to 256 registers. To obtain a memory map value, enter the desired address in the ADDRESS line (this value must be converted from hex to decimal format). The corresponding value is displayed in the value line. A value of " 0 " in subsequent register ADDRESs lines automatically returns values for the previous ADDRESS lines incremented by " 1 ". An address value of " 0 " in the initial register means "none" and values of " 0 " will be displayed for all registers. Different ADDRESS values can be entered as required in any of the register positions.

These settings can also be used with the DNP protocol. See the DNP Analog Input Points section in Appendix E for details.
\qquad 5.2.6 REAL TIME CLOCK

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ REAL TIME CLOCK

| $\square \square$ REAL TIME |
| :--- | :--- | :--- | :--- |
| \square CLOCK | IRIG-B SIGNAL TYPE: | IRange: None, DC Shift, Amplitude Modulated |
| :--- |
| None |\quad

The date and time for the relay clock can be synchronized to other relays using an IRIG-B signal. It has the same accuracy as an electronic watch, approximately ± 1 minute per month. An IRIG-B signal may be connected to the relay to synchronize the clock to a known time base and to other relays. If an IRIG-B signal is used, only the current year needs to be entered. See also the commands $\sqrt{ }$ SET DATE AND time menu for manually setting the relay clock.

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ FAULT REPORT

The fault report stores data, in non-volatile memory, pertinent to an event when triggered. The captured data includes:

- Name of the relay, programmed by the user
- Date and time of trigger
- Name of trigger (specific operand)
- Active setting group
- Pre-fault current and voltage phasors (one-quarter cycle before the trigger)
- Fault current and voltage phasors (three-quarter cycle after the trigger)
- Target Messages that are set at the time of triggering
- Events (9 before trigger and 7 after trigger)

The captured data also includes the fault type and the distance to the fault location, as well as the reclose shot number (when applicable) The Fault Locator does not report fault type or location if the source VTs are connected in the Delta configuration.

The trigger can be any FlexLogic ${ }^{T M}$ operand, but in most applications it is expected to be the same operand, usually a virtual output, that is used to drive an output relay to trip a breaker. To prevent the overwriting of fault events, the disturbance detector should not be used to trigger a fault report.

If a number of protection elements are ORed to create a fault report trigger, the first operation of any element causing the OR gate output to become high triggers a fault report. However, If other elements operate during the fault and the first operated element has not been reset (the OR gate output is still high), the fault report is not triggered again. Considering the reset time of protection elements, there is very little chance that fault report can be triggered twice in this manner. As the fault report must capture a usable amount of pre and post-fault data, it can not be triggered faster than every 20 ms .
Each fault report is stored as a file; the relay capacity is ten files. An eleventh trigger overwrites the oldest file. The operand selected as the fault report trigger automatically triggers an oscillography record which can also be triggered independently.

EnerVista UR Setup is required to view all captured data. The relay faceplate display can be used to view the date and time of trigger, the fault type, the distance location of the fault, and the reclose shot number

The FAULT REPORT SOURCE setting selects the Source for input currents and voltages and disturbance detection. The fault REPORT TRIG setting assigns the FlexLogic ${ }^{\text {TM }}$ operand representing the protection element/elements requiring operational fault location calculations. The distance to fault calculations are initiated by this signal.
See also SETtINGS $\sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ } \Rightarrow$ LINE menu for specifying line characteristics and the ACTUAL VALUES $\sqrt{ }$ records \Rightarrow FAULT REPORTS menu.

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow 』$ OSCILLOGRAPHY

Oscillography records contain waveforms captured at the sampling rate as well as other relay data at the point of trigger. Oscillography records are triggered by a programmable FlexLogic ${ }^{\text {TM }}$ operand. Multiple oscillography records may be captured simultaneously.

The NUMBER OF RECORDS is selectable, but the number of cycles captured in a single record varies considerably based on other factors such as sample rate and the number of operational CT/VT modules. There is a fixed amount of data storage for oscillography; the more data captured, the less the number of cycles captured per record. See the Actual values $\Rightarrow \sqrt[n]{ }$ RECORDS $\Rightarrow \sqrt{ }$ OSCILLOGRAPHY menu to view the number of cycles captured per record. The following table provides example configurations with corresponding cycles/record.

As mentioned above, the cycles/record values shown in the table below are dependent on a number of factors, including the number of modules and which relay features are enabled. The cyles/record values below are for illustration purposes only - the actual values displayed may differ significantly.

Table 5-1: OSCILLOGRAPHY CYCLESIRECORD EXAMPLE

\# RECORDS	\# CT/VTS	SAMPLE RATE	\# DIGITALS	\# ANALOGS	CYCLESI RECORD
1	1	8	0	0	2049.0
1	1	16	16	0	922.0
8	1	16	16	0	276.0
8	1	16	16	4	263.0
8	2	16	16	4	93.5
8	2	16	64	16	93.5
8	2	32	64	16	57.6
8	2	64	64	16	32.3
32	2	64	64	16	9.5

A new record may automatically overwrite an older record if TRIGGER MODE is set to "Automatic Overwrite".
The TRIGGER POSITION is programmable as a percent of the total buffer size (e.g. $10 \%, 50 \%, 75 \%$, etc.). A trigger position of 25% consists of 25% pre- and 75% post-trigger data.
The trigger source is always captured in oscillography and may be any FlexLogic ${ }^{\text {TM }}$ parameter (element state, contact input, virtual output, etc.). The relay sampling rate is 64 samples per cycle.

The AC INPUT WAVEFORMS setting determines the sampling rate at which AC input signals (i.e. current and voltage) are stored. Reducing the sampling rate allows longer records to be stored. This setting has no effect on the internal sampling rate of the relay which is always 64 samples per cycle, i.e. it has no effect on the fundamental calculations of the device.

An ANALOG CHANNEL setting selects the metering actual value recorded in an oscillography trace. The length of each oscillography trace depends in part on the number of parameters selected here. Parameters set to 'Off' are ignored. The parameters available in a given relay are dependent on: (a) the type of relay, (b) the type and number of CT/VT hardware modules installed, and (c) the type and number of Analog Input hardware modules installed. Upon startup, the relay will automatically prepare the parameter list. A list of all possible analog metering actual value parameters is presented in Appendix A : FlexAnalog Parameters. The parameter index number shown in any of the tables is used to expedite the selection of the parameter on the relay display. It can be quite time-consuming to scan through the list of parameters via the relay keypad/ display - entering this number via the relay keypad will cause the corresponding parameter to be displayed.
All eight CT/VT module channels are stored in the oscillography file. The CT/VT module channels are named as follows:
<slot_letter><terminal_number>-<l or V><phase A, B, or C, or 4th input>
The fourth current input in a bank is called IG, and the fourth voltage input in a bank is called VX. For example, F2-IB designates the IB signal on Terminal 2 of the CT/VT module in slot F. If there are no CT/VT modules and Analog Input modules, no analog traces will appear in the file; only the digital traces will appear.

When the NUMBER OF RECORDS setting is altered, all oscillography records will be CLEARED.
a) MAIN MENU

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ USER-PROGRAMMABLE LEDS

b) LED TEST

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \curvearrowleft$ USER-PROGRAMMABLE LEDS \Rightarrow LED TEST

When enabled, the LED Test can be initiated from any digital input or user-programmable condition such as user-programmable pushbutton. The control operand is configured under the LED TEST CONTROL setting. The test covers all LEDs, including the LEDs of the optional user-programmable pushbuttons.

The test consists of three stages.
Stage 1: All 62 LEDs on the relay are illuminated. This is a quick test to verify if any of the LEDs is "burned". This stage lasts as long as the control input is on, up to a maximum of 1 minute. After 1 minute, the test will end.

Stage 2: All the LEDs are turned off, and then one LED at a time turns on for 1 second, then back off. The test routine starts at the top left panel, moving from the top to bottom of each LED column. This test checks for hardware failures that lead to more than one LED being turned on from a single logic point. This stage can be interrupted at any time.
Stage 3: All the LEDs are turned on. One LED at a time turns off for 1 second, then back on. The test routine starts at the top left panel moving from top to bottom of each column of the LEDs. This test checks for hardware failures that lead to more than one LED being turned off from a single logic point. This stage can be interrupted at any time.
When testing is in progress, the LEDs are controlled by the test sequence, rather than the protection, control, and monitoring features. However, the LED control mechanism accepts all the changes to LED states generated by the relay and stores the actual LED states (On or Off) in memory. When the test completes, the LEDs reflect the actual state resulting from relay response during testing. The Reset pushbutton will not clear any targets when the LED Test is in progress.

A dedicated FlexLogic ${ }^{\text {TM }}$ operand, LED TEST IN PROGRESS, is set for the duration of the test. When the test sequence is initiated, the LED Test Initiated event is stored in the Event Recorder.
The entire test procedure is user-controlled. In particular, Stage 1 can last as long as necessary, and Stages 2 and 3 can be interrupted. The test responds to the position and rising edges of the control input defined by the LED TEST CONTROL setting. The control pulses must last at least 250 ms to take effect. The following diagram explains how the test is executed.

Figure 5-2: LED TEST SEQUENCE

APPLICATION EXAMPLE 1:

Assume one needs to check if any of the LEDs is "burned" through User-Programmable Pushbutton 1. The following settings should be applied.
Configure User-Programmable Pushbutton 1 by making the following entries in the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ USERPROGRAMMABLE PUSHBUTTONS \Rightarrow USER PUSHBUTTON 1 menu:

PUSHBUTTON 1 FUNCTION: "Self-reset"
PUSHBTN 1 DROP-OUT TIME: "0.10 s"
Configure the LED test to recognize User-Programmable Pushbutton 1 by making the following entries in the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ USER-PROGRAMMABLE LEDS \Rightarrow LED TEST menu:

LED TEST FUNCTION: "Enabled"
LED TEST CONTROL: "PUSHBUTTON 1 ON"
The test will be initiated when the User-Programmable Pushbutton 1 is pressed. The pushbutton should remain pressed for as long as the LEDs are being visually inspected. When finished, the pushbutton should be released. The relay will then automatically start Stage 2. At this point forward, test may be aborted by pressing the pushbutton.

APPLICATION EXAMPLE 2:

Assume one needs to check if any LEDs are "burned" as well as exercise one LED at a time to check for other failures. This is to be performed via User-Programmable Pushbutton 1.

After applying the settings in Application Example 1, hold down the pushbutton as long as necessary to test all LEDs. Next, release the pushbutton to automatically start Stage 2. Once Stage 2 has started, the pushbutton can be released. When Stage 2 is completed, Stage 3 will automatically start. The test may be aborted at any time by pressing the pushbutton.

c) TRIP AND ALARM LEDS

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ USER-PROGRAMMABLE LEDS $\Rightarrow \sqrt{ }$ TRIP \& ALARM LEDS

The Trip and Alarm LEDs are on LED Panel 1. Each indicator can be programmed to become illuminated when the selected FlexLogic ${ }^{\text {™ }}$ operand is in the Logic 1 state.
d) USER-PROGRAMMABLE LED 1(48)

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ USER-PROGRAMMABLE LEDS $\Rightarrow \sqrt{ } \Rightarrow$ USER-PROGRAMMABLE LED 1(48)

There are 48 amber LEDs across the relay faceplate LED panels. Each of these indicators can be programmed to illuminate when the selected FlexLogic ${ }^{\top M}$ operand is in the Logic 1 state.

- LEDs 1 through 24 inclusive are on LED Panel 2; LEDs 25 through 48 inclusive are on LED Panel 3.

Refer to the LED Indicators section in Chapter 4 for the locations of these indexed LEDs. This menu selects the operands to control these LEDs. Support for applying user-customized labels to these LEDs is provided. If the LED X TYPE setting is "Self-Reset" (default setting), the LED illumination will track the state of the selected LED operand. If the LED X TYPE setting is 'Latched', the LED, once lit, remains so until reset by the faceplate RESET button, from a remote device via a communications channel, or from any programmed operand, even if the LED operand state de-asserts.

Table 5-2: RECOMMENDED SETTINGS FOR LED PANEL 2 LABELS

SETTING	PARAMETER
LED 1 Operand	SETTING GROUP ACT 1
LED 2 Operand	SETTING GROUP ACT 2
LED 3 Operand	SETTING GROUP ACT 3
LED 4 Operand	SETTING GROUP ACT 4
LED 5 Operand	SETTING GROUP ACT 5
LED 6 Operand	SETTING GROUP ACT 6
LED 7 Operand	Off
LED 8 Operand	Off
LED 9 Operand	BREAKER 1 OPEN
LED 10 Operand	BREAKER 1 CLOSED
LED 11 Operand	BREAKER 1 TROUBLE
LED 12 Operand	Off

SETTING	PARAMETER
LED 13 Operand	Off
LED 14 Operand	BREAKER 2 OPEN
LED 15 Operand	BREAKER 2 CLOSED
LED 16 Operand	BREAKER 2 TROUBLE
LED 17 Operand	SYNC 1 SYNC OP
LED 18 Operand	SYNC 2 SYNC OP
LED 19 Operand	Off
LED 20 Operand	Off
LED 21 Operand	AR ENABLED
LED 22 Operand	AR DISABLED
LED 23 Operand	AR RIP
LED 24 Operand	AR LO

Refer to the Control of Setting Groups example in the Control Elements section of this chapter for group activation.

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ USER-PROGRAMMABLE SELF TESTS

All major self-test alarms are reported automatically with their corresponding FlexLogic ${ }^{\text {TM }}$ operands, events, and targets. Most of the Minor Alarms can be disabled if desired.

When in the "Disabled" mode, minor alarms will not assert a FlexLogic ${ }^{\text {TM }}$ operand, write to the event recorder, display target messages. Moreover, they will not trigger the ANY MINOR ALARM or ANY SELF-TEST messages. When in the "Enabled" mode, minor alarms continue to function along with other major and minor alarms. Refer to the Relay Self-Tests section in Chapter 7 for additional information on major and minor self-test alarms.

5.2.11 CONTROL PUSHBUTTONS

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ CONTROL PUSHBUTTONS \Rightarrow CONTROL PUSHBUTTON 1(7)

\square CONTROL \square PUSHBUTTON 1		(1)	CONTROL PUSHBUTTON 1 FUNCTION: Disabled	Range: Disabled, Enabled
	MESSAGE	-	CONTROL PUSHBUTTON 1 EVENTS: Disabled	Range: Disabled, Enabled

The three standard pushbuttons located on the top left panel of the faceplate are user-programmable and can be used for various applications such as performing an LED test, switching setting groups, and invoking and scrolling though user-programmable displays, etc. Firmware revisions 3.2 x and older use these three pushbuttons for manual breaker control. This functionality has been retained - if the Breaker Control feature is configured to use the three pushbuttons, they cannot be used as user-programmable control pushbuttons. The location of the control pushbuttons in shown below.

Figure 5-3: CONTROL PUSHBUTTONS
The control pushbuttons are typically not used for critical operations. As such, they are not protected by the control password. However, by supervising their output operands, the user can dynamically enable or disable the control pushbuttons for security reasons.

5 SETTINGS

Each control pushbutton asserts its own FlexLogic ${ }^{\text {TM }}$ operand, CONTROL PUSHBTN 1(7) ON. These operands should be configured appropriately to perform the desired function. The operand remains asserted as long as the pushbutton is pressed and resets when the pushbutton is released. A dropout delay of 100 ms is incorporated to ensure fast pushbutton manipulation will be recognized by various features that may use control pushbuttons as inputs.

An event is logged in the Event Record (as per user setting) when a control pushbutton is pressed; no event is logged when the pushbutton is released. The faceplate keys (including control keys) cannot be operated simultaneously - a given key must be released before the next one can be pressed.
The control pushbuttons become user-programmable only if the Breaker Control feature is not configured for manual control via the User 1 through User 3 pushbuttons as shown below. If configured for manual control, the Breaker Control feature typically uses the larger, optional user-programmable pushbuttons, making the control pushbuttons available for other user applications.

Figure 5-4: CONTROL PUSHBUTTON LOGIC

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ USER-PROGRAMMABLE PUSHBUTTONS \Rightarrow USER PUSHBUTTON 1(12)

The D30 has 12 optional user-programmable pushbuttons available, each configured via 12 identical menus. The pushbuttons provide an easy and error-free method of manually entering digital information (On, Off) into FlexLogic ${ }^{\text {TM }}$ equations as well as protection and control elements. Typical applications include breaker control, autorecloser blocking, ground protection blocking, and setting groups changes.

The user-configurable pushbuttons are shown below. They can be custom labeled with a factory-provided template, available online at http://www.GEindustrial.com/multilin.

Figure 5-5: USER-PROGRAMMABLE PUSHBUTTONS
Each pushbutton asserts its own On and Off FlexLogic ${ }^{\text {TM }}$ operands, respectively. FlexLogic ${ }^{\text {TM }}$ operands should be used to program desired pushbutton actions. The operand names are PUSHBUTTON 1 ON and PUSHBUTTON 1 OFF.
A pushbutton may be programmed to latch or self-reset. An indicating LED next to each pushbutton signals the present status of the corresponding "On" FlexLogic ${ }^{\text {TM }}$ operand. When set to "Latched", the state of each pushbutton is stored in nonvolatile memory which is maintained during any supply power loss.
Pushbuttons states can be logged by the Event Recorder and displayed as target messages. User-defined messages can also be associated with each pushbutton and displayed when the pushbutton is ON.

- PUSHBUTTON 1 FUNCTION: This setting selects the characteristic of the pushbutton. If set to "Disabled", the pushbutton is deactivated and the corresponding FlexLogic ${ }^{\text {TM }}$ operands (both "On" and "Off") are de-asserted. If set to "Self-reset", the control logic of the pushbutton asserts the "On" corresponding FlexLogic ${ }^{\top M}$ operand as long as the pushbutton is being pressed. As soon as the pushbutton is released, the FlexLogic ${ }^{\text {TM }}$ operand is de-asserted. The "Off" operand is asserted/de-asserted accordingly.
If set to "Latched", the control logic alternates the state of the corresponding FlexLogic ${ }^{\text {TM }}$ operand between "On" and "Off" on each push of the button. When operating in "Latched" mode, FlexLogic ${ }^{\text {TM }}$ operand states are stored in non-volatile memory. Should power be lost, the correct pushbutton state is retained upon subsequent power up of the relay.
- PUSHBTN 1 ID TEXT: This setting specifies the top 20-character line of the user-programmable message and is intended to provide ID information of the pushbutton. Refer to the User-Definable Displays section for instructions on how to enter alphanumeric characters from the keypad.
- PUSHBTN 1 ON TEXT: This setting specifies the bottom 20-character line of the user-programmable message and is displayed when the pushbutton is in the "on" position. Refer to the User-Definable Displays section for instructions on entering alphanumeric characters from the keypad.
- PUSHBTN 1 OFF TEXT: This setting specifies the bottom 20-character line of the user-programmable message and is displayed when the pushbutton is activated from the On to the Off position and the pushbutton 1 FUNCTION is "Latched". This message is not displayed when the PuShbutton 1 FUNCTION is "Self-reset" as the pushbutton operand status is implied to be "Off" upon its release. All user text messaging durations for the pushbuttons are configured with the PRODUCT SETUP $\Rightarrow \sqrt{ }$ DISPLAY PROPERTIES \Rightarrow FLASH MESSAGE TIME setting.
- PUSHBTN 1 DROP-OUT TIME: This setting specifies a drop-out time delay for a pushbutton in the self-reset mode. A typical applications for this setting is providing a select-before-operate functionality. The selecting pushbutton should have the drop-out time set to a desired value. The operating pushbutton should be logically ANDed with the selecting pushbutton in FlexLogic ${ }^{\text {TM }}$. The selecting pushbutton LED remains on for the duration of the drop-out time, signaling the time window for the intended operation.

For example, consider a relay with the following settings: PUSHBTN 1 ID TEXT. "AUTORECLOSER", PUSHBTN 1 ON TEXT. "DISABLED - CALL 2199", and PUSHBTN 1 OFF TEXT. "ENABLED". When Pushbutton 1 changes its state to the "On" position, the following AUTOCLOSER DISABLED - Call 2199 message is displayed: When Pushbutton 1 changes its state to the "Off" position, the message will change to AUTORECLOSER ENABLED.

User-programmable pushbuttons require a type HP relay faceplate. If an HP-type faceplate was ordered separately, the relay order code must be changed to indicate the HP faceplate option. This can be done via EnerVista UR Setup with the Maintenance > Enable Pushbutton command.

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt[\Omega]{ }$ FLEX STATE PARAMETERS

This feature provides a mechanism where any of 256 selected FlexLogic ${ }^{\text {TM }}$ operand states can be used for efficient monitoring. The feature allows user-customized access to the FlexLogic ${ }^{\text {TM }}$ operand states in the relay. The state bits are packed so that 16 states may be read out in a single Modbus register. The state bits can be configured so that all of the states which are of interest to the user are available in a minimum number of Modbus registers.

The state bits may be read out in the "Flex States" register array beginning at Modbus address 900 hex. 16 states are packed into each register, with the lowest-numbered state in the lowest-order bit. There are 16 registers in total to accommodate the 256 state bits.
5.2.14 USER-DEFINABLE DISPLAYS
a) MAIN MENU

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ USER-DEFINABLE DISPLAYS

This menu provides a mechanism for manually creating up to 16 user-defined information displays in a convenient viewing sequence in the USER DISPLAYS menu (between the TARGETS and ACTUAL vALUES top-level menus). The sub-menus facilitate text entry and Modbus Register data pointer options for defining the User Display content.

Once programmed, the user-definable displays can be viewed in two ways.

- KEYPAD: Use the Menu key to select the USER DISPLAYS menu item to access the first user-definable display (note that only the programmed screens are displayed). The screens can be scrolled using the Up and Down keys. The display disappears after the default message time-out period specified by the PRODUCT SETUP $\Rightarrow \Omega$ DISPLAY PROPERTIES $\Rightarrow \sqrt{ } \sqrt{ }$ DEFAULT MESSAGE TIMEOUT setting.
- USER-PROGRAMMABLE CONTROL INPUT: The user-definable displays also respond to the INVOKE AND SCROLL setting. Any FlexLogic ${ }^{\text {TM }}$ operand (in particular, the user-programmable pushbutton operands), can be used to navigate the programmed displays.
On the rising edge of the configured operand (such as when the pushbutton is pressed), the displays are invoked by showing the last user-definable display shown during the previous activity. From this moment onward, the operand acts exactly as the Down key and allows scrolling through the configured displays. The last display wraps up to the first one. The INVOKE AND SCROLL input and the Down keypad key operate concurrently.
When the default timer expires (set by the default message timeout setting), the relay will start to cycle through the user displays. The next activity of the INVOKE AND SCROLL input stops the cycling at the currently displayed user display, not at the first user-defined display. The INVOKE AND SCROLL pulses must last for at least 250 ms to take effect.
b) USER DISPLAY 1(16)

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ USER-DEFINABLE DISPLAYS \Rightarrow USER DISPLAY 1(16)

Any existing system display can be automatically copied into an available User Display by selecting the existing display and pressing the ENTER key. The display will then prompt ADD TO USER DISPLAY LIST?. After selecting "Yes", a message indicates that the selected display has been added to the user display list. When this type of entry occurs, the sub-menus are automatically configured with the proper content - this content may subsequently be edited.

This menu is used to enter user-defined text and/or user-selected Modbus-registered data fields into the particular User Display. Each User Display consists of two 20-character lines (top and bottom). The Tilde (\sim) character is used to mark the start of a data field - the length of the data field needs to be accounted for. Up to 5 separate data fields (ITEM 1(5)) can be entered in a User Display - the nth Tilde (\sim) refers to the nth item.

A User Display may be entered from the faceplate keypad or the EnerVista UR Setup interface (preferred for convenience). The following procedure shows how to enter text characters in the top and bottom lines from the faceplate keypad:

1. Select the line to be edited.
2. Press the $-\quad$ key to enter text edit mode.
3. Use either Value key to scroll through the characters. A space is selected like a character.
4. Press the key to advance the cursor to the next position.
5. Repeat step 3 and continue entering characters until the desired text is displayed.
6. The HELP key may be pressed at any time for context sensitive help information.
7. Press the Enter key to store the new settings.

To enter a numerical value for any of the 5 items (the decimal form of the selected Modbus address) from the faceplate keypad, use the number keypad. Use the value of ' 0 ' for any items not being used. Use the HELP key at any selected system display (Setting, Actual Value, or Command) which has a Modbus address, to view the hexadecimal form of the Modbus address, then manually convert it to decimal form before entering it (EnerVista UR Setup usage conveniently facilitates this conversion).

Use the menu key to go to the User Displays menu to view the user-defined content. The current user displays will show in sequence, changing every 4 seconds. While viewing a User Display, press the ENTER key and then select the 'Yes" option to remove the display from the user display list. Use the MENU key again to exit the User Displays menu.

An example User Display setup and result is shown below:

a) MAIN MENU

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \sqrt{ }$ DIRECT I/O

Direct I/Os are intended for exchange of status information (inputs and outputs) between UR relays connected directly via Type-7 UR digital communications cards. The mechanism is very similar to UCA GOOSE, except that communications takes place over a non-switchable isolated network and is optimized for speed. On Type 7 cards that support two channels,

Direct Output messages are sent from both channels simultaneously. This effectively sends Direct Output messages both ways around a ring configuration. On Type 7 cards that support one channel, Direct Output messages are sent only in one direction. Messages will be resent (forwarded) when it is determined that the message did not originate at the receiver.
Direct Output message timing is similar to GOOSE message timing. Integrity messages (with no state changes) are sent at least every 1000 ms . Messages with state changes are sent within the main pass scanning the inputs and asserting the outputs unless the communication channel bandwidth has been exceeded. Two Self-Tests are performed and signaled by the following FlexLogic ${ }^{\text {TM }}$ operands:

1. DIRECT RING BREAK (Direct I/O Ring Break). This FlexLogic ${ }^{\text {TM }}$ operand indicates that Direct Output messages sent from a UR are not being received back by the UR.
2. DIRECT DEVICE 1(16) OFF (Direct Device Offline). This FlexLogic ${ }^{\text {M }}$ operand indicates that Direct Output messages from at least one Direct Device are not being received.

Direct I/O settings are similar to Remote I/O settings. The equivalent of the Remote Device name strings for Direct I/O, is the Direct Output Device ID.

The direct output device id identifies this UR in all Direct Output messages. All UR IEDs in a ring should have unique numbers assigned. The IED ID is used to identify the sender of the Direct I/O message.
If the Direct I/O scheme is configured to operate in a ring (DIRECT I/O RING CONFIGURATION: "Yes"), all Direct Output messages should be received back. If not, the Direct I/O Ring Break Self Test is triggered. The self-test error is signaled by the DIRECT RING BREAK FlexLogic ${ }^{\text {TM }}$ operand.
Select the DIRECT I/O DATA RATE to match the data capabilities of the communications channel. Back-to-back connections of the local relays configured with the $7 \mathrm{~A}, 7 \mathrm{~B}, 7 \mathrm{C}, 7 \mathrm{D}, 7 \mathrm{H}, 7 \mathrm{I}, 7 \mathrm{~J}, 7 \mathrm{~K}, 72$ and 73 fiber optic communication cards may be set to 128 kbps. For local relays configured with all other communication cards (i.e. 7E, 7F, 7G, 7L, 7M, 7N, 7P, 7R, 7S, 7T, 7W, $74,75,76$ and 77), the baud rate will be set to 64 kbps . All IEDs communicating over direct inputs/outputs must be set to the same data rate. UR-series IEDs equipped with dual-channel communications cards apply the same data rate to both channels. Delivery time for direct input/output messages is approximately 0.2 of a power system cycle at 128 kbps and 0.4 of a power system cycle at 64 kbps , per each 'bridge'.

The DIRECT I/O CHANNEL CROSSOVER setting applies to D30s with dual-channel communication cards and allows crossing over messages from Channel 1 to Channel 2. This places all UR IEDs into one Direct I/O network regardless of the physical media of the two communication channels.

The following application examples illustrate the basic concepts for Direct I/O configuration. Please refer to the Inputs/Outputs section later in this chapter for information on configuring FlexLogic ${ }^{\top \mathrm{M}}$ operands (flags, bits) to be exchanged.

EXAMPLE 1: EXTENDING THE I/O CAPABILITIES OF A UR RELAY

Consider an application that requires additional quantities of digital inputs and/or output contacts and/or lines of programmable logic that exceed the capabilities of a single UR chassis. The problem is solved by adding an extra UR IED, such as the C30, to satisfy the additional I/Os and programmable logic requirements. The two IEDs are connected via single-channel digital communication cards as shown in the figure below.

Figure 5-6: INPUT/OUTPUT EXTENSION VIA DIRECT I/OS
In the above application, the following settings should be applied:

```
UR IED 1: DIRECT OUTPUT DEvICE ID: "1"
    DIRECT I/O RING CONFIGURATION: "Yes"
    DIRECT I/O DATA RATE: "128 kbps"
```

UR IED 2: DIRECT OUTPUT DEVICE ID: "2"
DIRECT I/O RING CONFIGURATION: "Yes"
DIRECT I/O DATA RATE: "128 kbps"
The message delivery time is about 0.2 of power cycle in both ways (at 128 kbps); i.e., from Device 1 to Device 2, and from Device 2 to Device 1. Different communications cards can be selected by the user for this back-to-back connection (fiber, G.703, or RS422).

EXAMPLE 2: INTERLOCKING BUSBAR PROTECTION
A simple interlocking busbar protection scheme could be accomplished by sending a blocking signal from downstream devices, say 2,3 , and 4 , to the upstream device that monitors a single incomer of the busbar, as shown below.

Figure 5-7: SAMPLE INTERLOCKING BUSBAR PROTECTION SCHEME
For increased reliability, a dual-ring configuration (shown below) is recommended for this application.

Figure 5-8: INTERLOCKING BUS PROTECTION SCHEME VIA DIRECT I/OS
In the above application, the following settings should be applied:
$\begin{array}{ll}\text { UR IED 1: } & \text { DIRECT OUTPUT DEVICE ID: " } 1 \text { " } \\ & \text { DIRECT I/O RING CONFIGURATION: "Yes" } \\ \text { UR IED 3: } & \text { DIRECT OUTPUT DEVICE ID: " } 3 \text { " } \\ & \text { DIRECT I/O RING CONFIGURATION: "Yes" }\end{array}$
UR IED 2: DIRECT OUTPUT DEVICE ID: "2" DIRECT I/O RING CONFIGURATION: "Yes"
UR IED 4: DIRECT OUTPUT DEVICE ID: "4" DIRECT I/O RING CONFIGURATION: "Yes"
Message delivery time is approximately 0.2 of power system cycle (at 128 kbps) times number of "bridges" between the origin and destination. Dual-ring configuration effectively reduces the maximum "communications distance" by a factor of two.

In this configuration the following delivery times are expected (at 128 kbps) if both rings are healthy:
IED 1 to IED 2: 0.2 of power system cycle; IED 1 to IED 3: 0.4 of power system cycle;
IED 1 to IED 4: 0.2 of power system cycle; IED 2 to IED 3: 0.2 of power system cycle;
IED 2 to IED 4: 0.4 of power system cycle; IED 3 to IED 4: 0.2 of power system cycle
If one ring is broken (say TX2/RX2) the delivery times are as follows:
IED 1 to IED 2: 0.2 of power system cycle; IED 1 to IED 3: 0.4 of power system cycle;
IED 1 to IED 4: 0.6 of power system cycle; IED 2 to IED 3: 0.2 of power system cycle;
IED 2 to IED 4: 0.4 of power system cycle; IED 3 to IED 4: 0.2 of power system cycle

A coordinating timer for this bus protection scheme could be selected to cover the worst case scenario (0.4 of power system cycle). Upon detecting a broken ring, the coordination time should be adaptively increased to 0.6 of power system cycle. The complete application requires addressing a number of issues such as failure of both the communications rings, failure or out-of-service conditions of one of the relays, etc. Self-monitoring flags of the Direct I/O feature would be primarily used to address these concerns.

EXAMPLE 3: PILOT-AIDED SCHEMES

Consider the three-terminal line protection application shown below:

Figure 5-9: THREE-TERMINAL LINE APPLICATION
A permissive pilot-aided scheme could be implemented in a two-ring configuration as shown below (IEDs 1 and 2 constitute a first ring, while IEDs 2 and 3 constitute a second ring):

Figure 5-10: SINGLE-CHANNEL OPEN LOOP CONFIGURATION
In the above application, the following settings should be applied:

UR IED 1: DIRECT OUTPUT DEVICE ID: "1" direct I/O RING CONFIGURATION: "Yes"

UR IED 2: DIRECT OUTPUT DEVICE ID: "2" DIRECT I/O RING CONFIGURATION: "Yes"

UR IED 3: DIRECT OUTPUT DEVICE ID: "3"
DIRECT I/O RING CONFIGURATION: "Yes"
In this configuration the following delivery times are expected (at 128 kbps):
IED 1 to IED 2: 0.2 of power system cycle; IED 1 to IED 3: 0.5 of power system cycle;
IED 2 to IED 3: 0.2 of power system cycle
In the above scheme, IEDs 1 and 3 do not communicate directly. IED 2 must be configured to forward the messages as explained in the Inputs/Outputs section. A blocking pilot-aided scheme should be implemented with more security and, ideally, faster message delivery time. This could be accomplished using a dual-ring configuration as shown below.

Figure 5-11: DUAL-CHANNEL CLOSED LOOP (DUAL-RING) CONFIGURATION
In the above application, the following settings should be applied:
UR IED 1: DIRECT OUTPUT DEVICE ID: "1" DIRECT I/O RING CONFIGURATION: "Yes"

UR IED 2:
DIRECT OUTPUT DEVICE ID: "2" DIRECT I/O RING CONFIGURATION: "Yes"
UR IED 3: DIRECT OUTPUT DEVICE ID: "3" DIRECT I/O RING CONFIGURATION: "Yes"

In this configuration the following delivery times are expected (at 128 kbps) if both the rings are healthy:
IED 1 to IED 2: 0.2 of power system cycle; IED 1 to IED 3: 0.2 of power system cycle;
IED 2 to IED 3: 0.2 of power system cycle
The two communications configurations could be applied to both permissive and blocking schemes. Speed, reliability and cost should be taken into account when selecting the required architecture.
b) CRC ALARM CH1(2)

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ DIRECT I/O $\Rightarrow \sqrt{ }$ CRC ALARM CH1(2)

The D30 checks integrity of the incoming Direct I/O messages using a 32-bit CRC. The CRC Alarm function is available for monitoring the communication medium noise by tracking the rate of messages failing the CRC check. The monitoring function counts all incoming messages, including messages that failed the CRC check. A separate counter adds up messages that failed the CRC check. When the failed CRC counter reaches the user-defined level specified by the CRC ALARM CH1 THRESHOLD setting within the user-defined message count CRC ALARM 1 CH1 COUNT, the DIR IO CH1 CRC ALARM FlexLogic ${ }^{\text {TM }}$ operand is set.
When the total message counter reaches the user-defined maximum specified by the CRC ALARM CH1 MESSAGE COUNT setting, both the counters reset and the monitoring process is restarted.

The operand shall be configured to drive an output contact, user-programmable LED, or selected communication-based output. Latching and acknowledging conditions - if required - should be programmed accordingly.

The CRC Alarm function is available on a per-channel basis. The total number of Direct I/O messages that failed the CRC check is available as the ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt{ }$ DIRECT INPUTS $\Rightarrow \sqrt{ }$ CRC FAIL COUNT CH1(2) actual value.

Message Count and Length of the Monitoring Window:

To monitor communications integrity, the relay sends 1 message per second (at 64 kbps) or 2 messages per second (128 kbps) even if there is no change in the Direct Outputs. For example, setting the CRC ALARM Ch1 message count to " 10000 ", corresponds a time window of about 160 minutes at 64 kbps and 80 minutes at 128 kbps . If the messages are sent faster as a result of Direct Outputs activity, the monitoring time interval will shorten. This should be taken into account when determining the CRC ALARM CH1 MESSAGE COUNT setting. For example, if the requirement is a maximum monitoring time interval of 10 minutes at 64 kbps , then the CRC ALARM CH1 MESSAGE COUNT should be set to $10 \times 60 \times 1=600$.

Correlation of Failed CRC and Bit Error Rate (BER):

The CRC check may fail if one or more bits in a packet are corrupted. Therefore, an exact correlation between the CRC fail rate and the BER is not possible. Under certain assumptions an approximation can be made as follows. A Direct I/O packet containing 20 bytes results in 160 bits of data being sent and therefore, a transmission of 63 packets is equivalent to 10,000 bits. A BER of 10^{-4} implies 1 bit error for every 10,000 bits sent/received. Assuming the best case of only 1 bit error in a failed packet, having 1 failed packet for every 63 received is about equal to a BER of 10^{-4}.
c) UNRETURNED MESSAGES ALARM CH1(2)

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \Omega$ DIRECT I/O $\Rightarrow \Omega$ UNRETURNED MESSAGES ALARM CH1(2)

The D30 checks integrity of the Direct I/O communication ring by counting unreturned messages. In the ring configuration, all messages originating at a given device should return within a pre-defined period of time. The Unreturned Messages Alarm function is available for monitoring the integrity of the communication ring by tracking the rate of unreturned messages. This function counts all the outgoing messages and a separate counter adds the messages have failed to return. When the unreturned messages counter reaches the user-definable level specified by the UNRET MSGS ALARM Ch1 THRESHOLD setting and within the user-defined message count UNRET MSGS ALARM CH1 COUNT, the DIR IO CH1 UNRET ALM FlexLogic ${ }^{\text {TM }}$ operand is set.
When the total message counter reaches the user-defined maximum specified by the UNRET MSGS ALARM Ch1 message count setting, both the counters reset and the monitoring process is restarted.
The operand shall be configured to drive an output contact, user-programmable LED, or selected communication-based output. Latching and acknowledging conditions, if required, should be programmed accordingly.
The Unreturned Messages Alarm function is available on a per-channel basis and is active only in the ring configuration. The total number of unreturned Direct I/O messages is available as the ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt[\Omega]{ }$ DIRECT INPUTS $\Rightarrow \sqrt{ }$ UNRETURNED MSG COUNT CH1(2) actual value.

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ ת INSTALLATION

To safeguard against the installation of a relay without any entered settings, the unit will not allow signaling of any output relay until RELAY SETTINGS is set to "Programmed". This setting is defaulted to "Not Programmed" when at the factory. The UNIT NOT PROGRAMMED self-test error message is displayed until the relay is put into the "Programmed" state.
The reLay name setting allows the user to uniquely identify a relay. This name will appear on generated reports. This name is also used to identify specific devices which are engaged in automatically sending/receiving data over the Ethernet communications channel using the UCA2/MMS protocol.
a) CURRENT BANKS

PATH: SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP \Rightarrow AC INPUTS \Rightarrow CURRENT BANK F1(F5)

Two banks of phase/ground CTs can be set, where the current banks are denoted in the following format (X represents the module slot position letter):
$\boldsymbol{X a}$, where $\boldsymbol{X}=\{\mathbf{F}\}$ and $\mathbf{a}=\{\mathbf{1}, \mathbf{5}\}$.
See the Introduction to AC Sources section at the beginning of this chapter for additional details.
These settings are critical for all features that have settings dependent on current measurements. When the relay is ordered, the CT module must be specified to include a standard or sensitive ground input. As the phase CTs are connected in Wye (star), the calculated phasor sum of the three phase currents (IA $+I B+I C=$ Neutral Current $=310$) is used as the input for the neutral overcurrent elements. In addition, a zero-sequence (core balance) CT which senses current in all of the circuit primary conductors, or a CT in a neutral grounding conductor may also be used. For this configuration, the ground CT primary rating must be entered. To detect low level ground fault currents, the sensitive ground input may be used. In this case, the sensitive ground CT primary rating must be entered. Refer to Chapter 3 for more details on CT connections.
Enter the rated CT primary current values. For both 1000:5 and 1000:1 CTs, the entry would be 1000. For correct operation, the CT secondary rating must match the setting (which must also correspond to the specific CT connections used).

The following example illustrates how multiple CT inputs (current banks) are summed as one source current. Given If the following current banks:

F1: CT bank with 500:1 ratio; F5: CT bank with 1000: ratio
The following rule applies:

$$
\begin{equation*}
\text { SRC } 1=\mathrm{F} 1+\mathrm{F} 5 \tag{EQ5.6}
\end{equation*}
$$

1 pu is the highest primary current. In this case, 1000 is entered and the secondary current from the 500:1 and 800:1 ratio CTs will be adjusted to that created by a 1000:1 CT before summation. If a protection element is set up to act on SRC 1 currents, then a pickup level of 1 pu will operate on 1000 A primary.
The same rule applies for current sums from CTs with different secondary taps (5 A and 1 A).

b) VOLTAGE BANKS

PATH: SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP \Rightarrow AC INPUTS $\Rightarrow \sqrt{ }$ VOLTAGE BANK F5

\square VOLTAGE BANK F5	(1)	PHASE VT F5 CONNECTION: Wye	Range: Wye, Delta
MESSAGE	-	$\begin{aligned} & \text { PHASE VT F5 } \\ & \text { SECONDARY: } 66.4 \mathrm{~V} \end{aligned}$	Range: 50.0 to 240.0 V in steps of 0.1
MESSAGE	®	PHASE VT F5 RATIO: $1.00: 1$	Range: 1.00 to 24000.00 in steps of 0.01
MESSAGE	-	AUXILIARY VT F5 CONNECTION: Vag	Range: Vn, Vag, Vbg, Vcg, Vab, Vbc, Vca
MESSAGE	-	AUXILIARY VT F5 SECONDARY: 66.4 V	Range: 50.0 to 240.0 V in steps of 0.1
MESSAGE	(AUXILIARY VT F5 RATIO: 1.00 :1	Range: 1.00 to 24000.00 in steps of 0.01

One bank of phase/auxiliary VTs can be set, where voltage banks are denoted in the following format (X represents the module slot position letter):
$\boldsymbol{X a}$, where $\boldsymbol{X}=\{\mathrm{F}\}$ and $\boldsymbol{a}=\{\mathbf{5}\}$.
See the Introduction to AC Sources section at the beginning of this chapter for additional details.
With VTs installed, the relay can perform voltage measurements as well as power calculations. Enter the PHASE VT F5 CONNECTION made to the system as "Wye" or "Delta". An open-delta source VT connection would be entered as "Delta". See the Typical Wiring Diagram in Chapter 3 for details.

The nominal PHASE VT F5 SECONDARY voltage setting is the voltage across the relay input terminals when nominal voltage is applied to the VT primary.

For example, on a system with a 13.8 kV nominal primary voltage and with a 14400:120 volt VT in a Delta connection, the secondary voltage would be 115 , i.e. $(13800 / 14400) \times 120$. For a Wye connection, the voltage value entered must be the phase to neutral voltage which would be $115 / \sqrt{3}=66.4$.
5.3.2 On a 14.4 kV system with a Delta connection and a VT primary to secondary turns ratio of $14400: 120$, the voltage value entered would be 120, i.e. 14400 / 120.POWER SYSTEM

PATH: SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ POWER SYSTEM

The power system nominal frequency value is used as a default to set the digital sampling rate if the system frequency cannot be measured from available signals. This may happen if the signals are not present or are heavily distorted. Before reverting to the nominal frequency, the frequency tracking algorithm holds the last valid frequency measurement for a safe period of time while waiting for the signals to reappear or for the distortions to decay.

The phase sequence of the power system is required to properly calculate sequence components and power parameters. The PHASE ROTATION setting matches the power system phase sequence. Note that this setting informs the relay of the actual system phase sequence, either ABC or ACB . CT and V T inputs on the relay, labeled as A, B, and C , must be connected to system phases A, B, and C for correct operation.

The frequency and phase reference setting determines which signal source is used (and hence which AC signal) for phase angle reference. The AC signal used is prioritized based on the AC inputs that are configured for the signal source: phase voltages takes precedence, followed by auxiliary voltage, then phase currents, and finally ground current.
For three phase selection, phase A is used for angle referencing ($V_{\text {ANGLEREF }}=V_{A}$), while Clarke transformation of the phase signals is used for frequency metering and tracking $\left(V_{\text {FREQUENCY }}=\left(2 V_{A}-V_{B}-V_{C}\right) / 3\right)$ for better performance during fault, open pole, and VT and CT fail conditions.
The phase reference and frequency tracking AC signals are selected based upon the Source configuration, regardless of whether or not a particular signal is actually applied to the relay.
Phase angle of the reference signal will always display zero degrees and all other phase angles will be relative to this signal. If the pre-selected reference signal is not measurable at a given time, the phase angles are not referenced.

The phase angle referencing is done via a phase locked loop, which can synchronize independent UR-series relays if they have the same AC signal reference. These results in very precise correlation of time tagging in the event recorder between different UR relays provided the relays have an IRIG-B connection.

FREQUENCY TRACKING should only be set to "Disabled" in very unusual circumstances; consult the factory for special variable-frequency applications.
NOTE
5.3.3 SIGNAL SOURCES

PATH: SETTINGS $\Rightarrow \sqrt{ } \sqrt{3}$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ SIGNAL SOURCES \Rightarrow SOURCE 1(2)

\square SOURCE 1		(1)	SOURCE 1 NAME: SRC 1	Range:	up to 6 alphanumeric characters
	MESSAGE	-	SOURCE 1 PHASE CT: None	Range:	None, F1, F5, F1+F5,... up to a combination of any 5 CTs. Only Phase CT inputs are displayed.
	MESSAGE	-	SOURCE 1 GROUND CT: None	Range:	None, F1, F5, F1+F5,... up to a combination of any 5 CTs. Only Ground CT inputs are displayed.
	MESSAGE	\square	SOURCE 1 PHASE VT: None	Range:	None, F1, F5 Only phase voltage inputs will be displayed.
	MESSAGE	(2)	SOURCE 1 AUX VT: None	Range:	None, F1, F5 Only auxiliary voltage inputs will be displayed.

Two identical Source menus are available. The "SRC 1" text can be replaced by with a user-defined name appropriate for the associated source.
"F" represents the module slot position. The number directly following this letter represents either the first bank of four channels $(1,2,3,4)$ called " 1 " or the second bank of four channels $(5,6,7,8)$ called " 5 " in a particular CT/VT module. Refer to the Introduction to AC Sources section at the beginning of this chapter for additional details on this concept.

It is possible to select the sum of up to five (5) CTs. The first channel displayed is the CT to which all others will be referred. For example, the selection "F1+F5" indicates the sum of each phase from channels "F1" and "F5", scaled to whichever CT has the higher ratio. Selecting "None" hides the associated actual values.

The approach used to configure the AC Sources consists of several steps; first step is to specify the information about each CT and VT input. For CT inputs, this is the nominal primary and secondary current. For VTs, this is the connection type, ratio and nominal secondary voltage. Once the inputs have been specified, the configuration for each Source is entered, including specifying which CTs will be summed together.

User Selection of AC Parameters for Comparator Elements:

CT/VT modules automatically calculate all current and voltage parameters from the available inputs. Users must select the specific input parameters to be measured by every element in the relevant settings menu. The internal design of the element specifies which type of parameter to use and provides a setting for Source selection. In elements where the parameter may be either fundamental or RMS magnitude, such as phase time overcurrent, two settings are provided. One setting specifies the Source, the second setting selects between fundamental phasor and RMS.

AC Input Actual Values:

The calculated parameters associated with the configured voltage and current inputs are displayed in the current and voltage sections of Actual Values. Only the phasor quantities associated with the actual AC physical input channels will be displayed here. All parameters contained within a configured Source are displayed in the Sources section of Actual Values.

Disturbance Detectors (Internal):

The 50DD element is a sensitive current disturbance detector that detects any disturbance on the protected system. 50DD is intended for use in conjunction with measuring elements, blocking of current based elements (to prevent maloperation as a result of the wrong settings), and starting oscillography data capture. A disturbance detector is provided for each Source.
The 50DD function responds to the changes in magnitude of the sequence currents. The disturbance detector scheme logic is as follows:

Figure 5-12: DISTURBANCE DETECTOR LOGIC DIAGRAM
The disturbance detector responds to the change in currents of twice the current cut-off level. The default cut-off threshold is 0.02 pu ; thus by default the disturbance detector responds to a change of 0.04 pu . The metering sensitivity setting (PRODUCT SETUP $\Rightarrow \sqrt{ }$ DISPLAY PROPERTIES $\Rightarrow \sqrt{ }$ CURRENT CUT-OFF LEVEL) controls the sensitivity of the disturbance detector accordingly.

PATH: SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ LINE

These settings specify the characteristics of the line. The line impedance value should be entered as secondary ohms.
This data is used for fault location calculations. See the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ FAULT REPORT menu for assigning the Source and Trigger for fault calculations.

PATH: SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ BREAKERS \Rightarrow BREAKER 1(2)

\square BREAKER 1		(1)	BREAKER 1 FUNCTION: Disabled	Range:	Disabled, Enabled
	MESSAGE	-	BREAKER1 PUSH BUTTON CONTROL: Disabled	Range:	Disabled, Enabled
	MESSAGE	-	BREAKER 1 NAME: Bkr 1	Range:	up to 6 alphanumeric characters
	MESSAGE	-	BREAKER 1 MODE: 3-Pole	Range:	3-Pole, 1-Pole
	MESSAGE	-	BREAKER 1 OPEN: Off	Range:	FlexLogic ${ }^{\text {TM }}$ operand
	MESSAGE	-	BREAKER 1 CLOSE: Off	Range:	FlexLogic ${ }^{\text {M }}$ operand
	MESSAGE	-	BREAKER 1 фA/3-POLE: Off	Range:	FlexLogic ${ }^{\text {TM }}$ operand
	MESSAGE	*	BREAKER $1 \phi B$: Off	Range:	FlexLogic ${ }^{\text {™ }}$ operand
	MESSAGE	-	BREAKER $1 \phi C$: Off	Range:	FlexLogic ${ }^{\text {M }}$ operand
	MESSAGE	-	BREAKER 1 EXT ALARM: Off	Range:	FlexLogic ${ }^{\text {™ }}$ operand
	MESSAGE	-	BREAKER 1 ALARM DELAY: $\quad 0.000 \mathrm{~s}$	Range:	0.000 to 1000000.000 s in steps of 0.001
	MESSAGE	-	MANUAL CLOSE RECAL1 TIME: $\quad 0.000 \mathrm{~s}$	Range:	0.000 to 1000000.000 s in steps of 0.001
	MESSAGE	-	BREAKER 1 OUT OF SV: Off	Range:	FlexLogic ${ }^{\text {™ }}$ operand
	MESSAGE	-	UCA XCBR1 PwrSupSt0: Off	Range:	FlexLogic ${ }^{\text {TM }}$ operand
	MESSAGE	$\stackrel{\square}{\square}$	UCA XCBR1 PresSt: Off	Range:	FlexLogic ${ }^{\text {™ }}$ operand
	MESSAGE	(2)	UCA XCBR1 TrpCoil: Off	Range:	FlexLogic ${ }^{\text {M }}$ operand

(1) As for Breaker 1 above

A description of the operation of the breaker control and status monitoring features is provided in Chapter 4. Only information concerning programming of the associated settings is covered here. These features are provided for two breakers; a user may use only those portions of the design relevant to a single breaker, which must be Breaker No. 1.

- BREAKER 1(2) FUNCTION: Set to "Enable" to allow the operation of any breaker control feature.
- BREAKER1(2) PUSH BUTTON CONTROL: Set to "Enable" to allow faceplate push button operations.
- BREAKER 1(2) NAME: Assign a user-defined name (up to 6 characters) to the breaker. This name will be used in flash messages related to Breaker No. 1.
- BREAKER 1(2) MODE: Selects "3-pole" mode, where all breaker poles are operated simultaneously, or "1-pole" mode where all breaker poles are operated either independently or simultaneously.
- BREAKER 1(2) OPEN: Selects an operand that creates a programmable signal to operate an output relay to open Breaker No. 1.
- BREAKER 1(2) CLOSE: Selects an operand that creates a programmable signal to operate an output relay to close Breaker No. 1.
- BREAKER 1(2) ФA/3-POLE: Selects an operand, usually a contact input connected to a breaker auxiliary position tracking mechanism. This input can be either a 52/a or 52/b contact, or a combination the 52/a and 52/b contacts, that must be programmed to create a logic 0 when the breaker is open. If BREAKER 1 MODE is selected as " 3 -Pole", this setting selects a single input as the operand used to track the breaker open or closed position. If the mode is selected as "1-Pole", the input mentioned above is used to track phase A and settings breaker 1 ФВ and breaker 1 Фc select operands to track phases B and C, respectively.
- BREAKER 1(2) ФB: If the mode is selected as 3-pole, this setting has no function. If the mode is selected as 1-pole, this input is used to track phase B as above for phase A.
- BREAKER 1(2) ФC: If the mode is selected as 3-pole, this setting has no function. If the mode is selected as 1-pole, this input is used to track phase C as above for phase A.
- BREAKER 1(2) EXT ALARM: Selects an operand, usually an external contact input, connected to a breaker alarm reporting contact.
- BREAKER 1(2) ALARM DELAY: Sets the delay interval during which a disagreement of status among the three pole position tracking operands will not declare a pole disagreement, to allow for non-simultaneous operation of the poles.
- MANUAL CLOSE RECAL1 TIME: Sets the interval required to maintain setting changes in effect after an operator has initiated a manual close command to operate a circuit breaker.
- BREAKER 1(2) OUT OF SV: Selects an operand indicating that Breaker No. 1 is out-of-service.
- UCA XCBR1(2) PwrSupSt0: Selects a FlexLogic ${ }^{\text {TM }}$ operand to provide a value for the UCA XCBR1(2) PwrSupSt bit 0 data item.
- UCA XCBR1(2) PresSt: Selects a FlexLogic ${ }^{\text {TM }}$ operand to provide a value for the UCA XCBR1(2) PresSt data item.
- UCA XCBR1(2) TrpCoil: Selects a FlexLogic ${ }^{\text {TM }}$ operand to provide a value for the UCA XCBR1(2) TrpCoil data item.
- BKR XCBR SBO TIMEOUT: The Select-Before-Operate timer specifies an interval from the receipt of the UCA Breaker Control Select signal until the automatic de-selection of the breaker, so that the breaker does not remain selected indefinitely. This setting applies only to UCA SBO operation.

Figure 5-13: DUAL BREAKER CONTROL SCHEME LOGIC
a) SETTINGS

PATH: SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ FLEXCURVES \Rightarrow FLEXCURVE A(D)

FlexCurves ${ }^{\top \mathrm{TM}} \mathrm{A}$ through D have settings for entering times to Reset/Operate at the following pickup levels: 0.00 to 0.98 / 1.03 to 20.00. This data is converted into 2 continuous curves by linear interpolation between data points. To enter a custom FlexCurve ${ }^{\text {TM }}$, enter the Reset/Operate time (using the VALUE $\boldsymbol{\sigma}$ keys) for each selected pickup point (using the \triangle MESSAGE ∇ keys) for the desired protection curve (A, B, C, or D).

Table 5-3: FLEXCURVE ${ }^{\text {TM }}$ TABLE

RESET	$\begin{gathered} \text { TIME } \\ \text { MS } \end{gathered}$	RESET	$\begin{gathered} \text { TIME } \\ \text { MS } \end{gathered}$
0.00		0.68	
0.05		0.70	
0.10		0.72	
0.15		0.74	
0.20		0.76	
0.25		0.78	
0.30		0.80	
0.35		0.82	
0.40		0.84	
0.45		0.86	
0.48		0.88	
0.50		0.90	
0.52		0.91	
0.54		0.92	
0.56		0.93	
0.58		0.94	
0.60		0.95	
0.62		0.96	
0.64		0.97	
0.66		0.98	

OPERATE	$\begin{gathered} \text { TIME } \\ \text { MS } \end{gathered}$	OPERATE	$\begin{gathered} \text { TIME } \\ \text { MS } \end{gathered}$	OPERATE	$\begin{aligned} & \text { TIME } \\ & \text { MS } \end{aligned}$	OPERATE	$\begin{gathered} \text { TIME } \\ \text { MS } \end{gathered}$
1.03		2.9		4.9		10.5	
1.05		3.0		5.0		11.0	
1.1		3.1		5.1		11.5	
1.2		3.2		5.2		12.0	
1.3		3.3		5.3		12.5	
1.4		3.4		5.4		13.0	
1.5		3.5		5.5		13.5	
1.6		3.6		5.6		14.0	
1.7		3.7		5.7		14.5	
1.8		3.8		5.8		15.0	
1.9		3.9		5.9		15.5	
2.0		4.0		6.0		16.0	
2.1		4.1		6.5		16.5	
2.2		4.2		7.0		17.0	
2.3		4.3		7.5		17.5	
2.4		4.4		8.0		18.0	
2.5		4.5		8.5		18.5	
2.6		4.6		9.0		19.0	
2.7		4.7		9.5		19.5	
2.8		4.8		10.0		20.0	

The relay using a given FlexCurve ${ }^{T M}$ applies linear approximation for times between the user-entered points. Special care must be applied when setting the two points that are close to the multiple of pickup of 1, i.e. 0.98 pu and 1.03 pu . It is recommended to set the two times to a similar value; otherwise, the linear approximation may result in undesired behavior for the operating quantity that is close to 1.00 pu .

b) FLEXCURVE ${ }^{\text {TM }}$ CONFIGURATION WITH ENERVISTA UR SETUP

EnerVista UR Setup allows for easy configuration and management of FlexCurves ${ }^{T M}$ and their associated data points. Prospective FlexCurves ${ }^{\top M}$ can be configured from a selection of standard curves to provide the best approximate fit, then specific data points can be edited afterwards. Alternately, curve data can be imported from a specified file (.csv format) by selecting the Import Data From EnerVista UR Setup setting.

Curves and data can be exported, viewed, and cleared by clicking the appropriate buttons. FlexCurves ${ }^{\top \mathrm{M}}$ are customized by editing the operating time (ms) values at pre-defined per-unit current multiples. Note that the pickup multiples start at zero (implying the "reset time"), operating time below pickup, and operating time above pickup.

c) RECLOSER CURVE EDITING

Recloser Curve selection is special in that recloser curves can be shaped into a composite curve with a minimum response time and a fixed time above a specified pickup multiples. There are 41 recloser curve types supported. These definite operating times are useful to coordinate operating times, typically at higher currents and where upstream and downstream protective devices have different operating characteristics. The Recloser Curve configuration window shown below appears when the Initialize From EnerVista UR Setup setting is set to "Recloser Curve" and the Initialize FlexCurve button is clicked.

Figure 5-14: RECLOSER CURVE INITIALIZATION
Multiplier and Adder settings only affect the curve portion of the characteristic and not the MRT and HCT settings. The HCT settings override the MRT settings for multiples of pickup greater than the HCT Ratio.

d) EXAMPLE

A composite curve can be created from the GE_111 standard with MRT $=200 \mathrm{~ms}$ and HCT initially disabled and then enabled at 8 times pickup with an operating time of 30 ms . At approximately 4 times pickup, the curve operating time is equal to the MRT and from then onwards the operating time remains at 200 ms (see below).

Figure 5-15: COMPOSITE RECLOSER CURVE WITH HCT DISABLED
With the HCT feature enabled, the operating time reduces to 30 ms for pickup multiples exceeding 8 times pickup.

Figure 5-16: COMPOSITE RECLOSER CURVE WITH HCT ENABLED
Configuring a composite curve with an increase in operating time at increased pickup multiples is not allowed. If this is attempted, the EnerVista UR Setup software generates an error message and discards the proposed changes.
e) STANDARD RECLOSER CURVES

The standard Recloser curves available for the D30 are displayed in the following graphs.

Figure 5-17: RECLOSER CURVES GE101 TO GE106

Figure 5-18: RECLOSER CURVES GE113, GE120, GE138 AND GE142

Figure 5-19: RECLOSER CURVES GE134, GE137, GE140, GE151 AND GE201

Figure 5-20: RECLOSER CURVES GE131, GE141, GE152, AND GE200

Figure 5-21: RECLOSER CURVES GE133, GE161, GE162, GE163, GE164 AND GE165

Figure 5-22: RECLOSER CURVES GE116, GE117, GE118, GE132, GE136, AND GE139

Figure 5-23: RECLOSER CURVES GE107, GE111, GE112, GE114, GE115, GE121, AND GE122

Figure 5-24: RECLOSER CURVES GE119, GE135, AND GE202

To provide maximum flexibility to the user, the arrangement of internal digital logic combines fixed and user-programmed parameters. Logic upon which individual features are designed is fixed, and all other logic, from digital input signals through elements or combinations of elements to digital outputs, is variable. The user has complete control of all variable logic through FlexLogic ${ }^{\top M}$. In general, the system receives analog and digital inputs which it uses to produce analog and digital outputs. The major sub-systems of a generic UR relay involved in this process are shown below.

Figure 5-25: UR ARCHITECTURE OVERVIEW
The states of all digital signals used in the UR are represented by flags (or FlexLogic ${ }^{\text {TM }}$ operands, which are described later in this section). A digital " 1 " is represented by a 'set' flag. Any external contact change-of-state can be used to block an element from operating, as an input to a control feature in a FlexLogic ${ }^{\text {TM }}$ equation, or to operate a contact output. The state of the contact input can be displayed locally or viewed remotely via the communications facilities provided. If a simple scheme where a contact input is used to block an element is desired, this selection is made when programming the element. This capability also applies to the other features that set flags: elements, virtual inputs, remote inputs, schemes, and human operators.
If more complex logic than presented above is required, it is implemented via FlexLogic ${ }^{\text {TM }}$. For example, if it is desired to have the closed state of contact input H 7 a and the operated state of the phase undervoltage element block the operation of the phase time overcurrent element, the two control input states are programmed in a FlexLogic ${ }^{\top M}$ equation. This equation ANDs the two control inputs to produce a 'virtual output' which is then selected when programming the phase time overcurrent to be used as a blocking input. Virtual outputs can only be created by FlexLogic ${ }^{\text {TM }}$ equations.

Traditionally, protective relay logic has been relatively limited. Any unusual applications involving interlocks, blocking, or supervisory functions had to be hard-wired using contact inputs and outputs. FlexLogic ${ }^{\text {TM }}$ minimizes the requirement for auxiliary components and wiring while making more complex schemes possible.

The logic that determines the interaction of inputs, elements, schemes and outputs is field programmable through the use of logic equations that are sequentially processed. The use of virtual inputs and outputs in addition to hardware is available internally and on the communication ports for other relays to use (distributed FlexLogic ${ }^{\text {TM }}$).
FlexLogic ${ }^{\text {TM }}$ allows users to customize the relay through a series of equations that consist of operators and operands. The operands are the states of inputs, elements, schemes and outputs. The operators are logic gates, timers and latches (with set and reset inputs). A system of sequential operations allows any combination of specified operands to be assigned as inputs to specified operators to create an output. The final output of an equation is a numbered register called a virtual output. Virtual outputs can be used as an input operand in any equation, including the equation that generates the output, as a seal-in or other type of feedback.
A FlexLogic ${ }^{T M}$ equation consists of parameters that are either operands or operators. Operands have a logic state of 1 or 0. Operators provide a defined function, such as an AND gate or a Timer. Each equation defines the combinations of parameters to be used to set a Virtual Output flag. Evaluation of an equation results in either a 1 (=ON, i.e. flag set) or 0 (=OFF, i.e. flag not set). Each equation is evaluated at least 4 times every power system cycle.
Some types of operands are present in the relay in multiple instances; e.g. contact and remote inputs. These types of operands are grouped together (for presentation purposes only) on the faceplate display. The characteristics of the different types of operands are listed in the table below.

Table 5-4: UR FLEXLOGIC ${ }^{\text {TM }}$ OPERAND TYPES

OPERAND TYPE	STATE	EXAMPLE FORMAT	CHARACTERISTICS [INPUT IS '1' (= ON) IF...]
Contact Input	On	Cont Ip On	Voltage is presently applied to the input (external contact closed).
	Off	Cont Ip Off	Voltage is presently not applied to the input (external contact open).
Contact Output (type Form-A contact only)	Voltage On	Cont Op 1 VOn	Voltage exists across the contact.
	Voltage Off	Cont Op 1 VOff	Voltage does not exists across the contact.
	Current On	Cont Op 1 IOn	Current is flowing through the contact.
	Current Off	Cont Op 1 IOff	Current is not flowing through the contact.
Direct Input	On	DIRECT INPUT 1 On	The direct input is presently in the ON state.
Element (Analog)	Pickup	PHASE TOC1 PKP	The tested parameter is presently above the pickup setting of an element which responds to rising values or below the pickup setting of an element which responds to falling values.
	Dropout	PHASE TOC1 DPO	This operand is the logical inverse of the above PKP operand.
	Operate	PHASE TOC1 OP	The tested parameter has been above/below the pickup setting of the element for the programmed delay time, or has been at logic 1 and is now at logic 0 but the reset timer has not finished timing.
	Block	PH DIR1 BLK	The output of the comparator is set to the block function.
Element (Digital)	Pickup	Dig Element 1 PKP	The input operand is at logic 1.
	Dropout	Dig Element 1 DPO	This operand is the logical inverse of the above PKP operand.
	Operate	Dig Element 1 OP	The input operand has been at logic 1 for the programmed pickup delay time, or has been at logic 1 for this period and is now at logic 0 but the reset timer has not finished timing.
Element(Digital Counter)	Higher than	Counter 1 HI	The number of pulses counted is above the set number.
	Equal to	Counter 1 EQL	The number of pulses counted is equal to the set number.
	Lower than	Counter 1 LO	The number of pulses counted is below the set number.
Fixed	On	On	Logic 1
	Off	Off	Logic 0
Remote Input	On	REMOTE INPUT 1 On	The remote input is presently in the ON state.
Virtual Input	On	Virt Ip 1 On	The virtual input is presently in the ON state.
Virtual Output	On	Virt Op 1 On	The virtual output is presently in the set state (i.e. evaluation of the equation which produces this virtual output results in a "1").

The operands available for this relay are listed alphabetically by types in the following table.
Table 5-5: D30 FLEXLOGIC ${ }^{\text {M }}$ OPERANDS (Sheet 1 of 6)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION
CONTROL PUSHBUTTONS	CONTROL PUSHBTN n ON	Control Pushbutton n ($n=1$ to 7) is being pressed.
DIRECT DEVICES	DIRECT DEVICE 1 On DIRECT DEVICE 16 On DIRECT DEVICE 1 Off DIRECT DEVICE 16 Off	$\begin{aligned} & \text { Flag is set, logic=1 } \\ & \downarrow \\ & \text { Flag is set, logic=1 } \\ & \text { Flag is set, logic=1 } \\ & \downarrow \\ & \text { Flag is set, logic=1 } \end{aligned}$
DIRECT I/O CHANNEL MONITORING	DIR IO CH1(2) CRC ALARM DIR IO CRC ALARM DIR IO CH1(2) UNRET ALM DIR IO UNRET ALM	The rate of Direct Input messages received on Channel 1(2) and failing the CRC exceeded the user-specified level. The rate of Direct Input messages failing the CRC exceeded the userspecified level on Channel 1 or 2. The rate of returned Direct I/O messages on Channel 1(2) exceeded the user-specified level (ring configurations only). The rate of returned Direct I/O messages exceeded the user-specified level on Channel 1 or 2 (ring configurations only).
ELEMENT: Autoreclose (per CT bank)	AR 1 ENABLED AR 1 RIP AR 1 LO AR 1 BLK FROM MAN CL AR 1 CLOSE AR 1 SHOT CNT=0 AR 1 SHOT CNT=4 AR 1 DISABLED	Autoreclose 1 is enabled Autoreclose 1 is in progress Autoreclose 1 is locked out Autoreclose 1 is temporarily disabled Autoreclose 1 close command is issued Autoreclose 1 shot count is 0 Autoreclose 1 shot count is 4 Autoreclose 1 is disabled
ELEMENT: Auxiliary OV	$\begin{aligned} & \text { AUX OV1 PKP } \\ & \text { AUX OV1 DPO } \\ & \text { AUX OV1 OP } \end{aligned}$	Auxiliary Overvoltage element has picked up Auxiliary Overvoltage element has dropped out Auxiliary Overvoltage element has operated
ELEMENT: Auxiliary UV	$\begin{aligned} & \text { AUX UV1 PKP } \\ & \text { AUX UV1 DPO } \\ & \text { AUX UV1 OP } \end{aligned}$	Auxiliary Undervoltage element has picked up Auxiliary Undervoltage element has dropped out Auxiliary Undervoltage element has operated
ELEMENT: Breaker Arcing	BKR ARC 1 OP BKR ARC 2 OP	Breaker Arcing 1 is operated Breaker Arcing 2 is operated
ELEMENT: Breaker Control	BREAKER 1 OFF CMD BREAKER 1 ON CMD BREAKER 1ϕ A CLSD BREAKER 1ϕ B CLSD BREAKER $1 \phi C$ CLSD BREAKER 1 CLOSED BREAKER 1 OPEN BREAKER 1 DISCREP BREAKER 1 TROUBLE BREAKER 1 MNL CLS BREAKER 1 TRIP A BREAKER 1 TRIP B BREAKER 1 TRIP C BREAKER 1 ANY P OPEN BREAKER 1 ONE P OPEN BREAKER 1 OOS	Breaker 1 OFF command Breaker 1 ON command Breaker 1 phase A is closed Breaker 1 phase B is closed Breaker 1 phase C is closed Breaker 1 is closed Breaker 1 is open Breaker 1 has discrepancy Breaker 1 trouble alarm Breaker 1 manual close Breaker 1 trip phase A command Breaker 1 trip phase B command Breaker 1 trip phase C command At least one pole of Breaker 1 is open Only one pole of Breaker 1 is open Breaker 1 is out of service
	BREAKER 2	Same set of operands as shown for BREAKER 1
ELEMENT: Digital Counter	$\begin{aligned} & \hline \text { Counter } 1 \mathrm{HI} \\ & \text { Counter } 1 \mathrm{EQL} \\ & \text { Counter } 1 \mathrm{LO} \\ & \downarrow \\ & \text { Counter } 8 \mathrm{HI} \\ & \text { Counter } 8 \mathrm{EQL} \\ & \text { Counter } 8 \mathrm{LO} \end{aligned}$	Digital Counter 1 output is 'more than' comparison value Digital Counter 1 output is 'equal to' comparison value Digital Counter 1 output is 'less than' comparison value Digital Counter 8 output is 'more than' comparison value Digital Counter 8 output is 'equal to' comparison value Digital Counter 8 output is 'less than' comparison value

Table 5-5: D30 FLEXLOGIC ${ }^{\text {TM }}$ OPERANDS (Sheet 2 of 6)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION
ELEMENT: Digital Element	Dig Element 1 PKP Dig Element 1 OP Dig Element 1 DPO \downarrow Dig Element 16 PKP Dig Element 16 OP Dig Element 16 DPO	Digital Element 1 is picked up Digital Element 1 is operated Digital Element 1 is dropped out \downarrow Digital Element 16 is picked up Digital Element 16 is operated Digital Element 16 is dropped out
ELEMENT: FlexElements ${ }^{\text {TM }}$	$\begin{aligned} & \text { FXE } 1 \text { PKP } \\ & \text { FXE } 1 \mathrm{OP} \\ & \text { FXE } 1 \text { DPO } \\ & \\ & \text { FXE } 8 \text { PKP } \\ & \text { FXE } 8 \text { OP } \\ & \text { FxE } 8 \text { DPO } \end{aligned}$	FlexElement ${ }^{T M} 1$ has picked up FlexElement ${ }^{\text {TM }} 1$ has operated FlexElement ${ }^{\text {TM }} 1$ has dropped out FlexElement ${ }^{\text {TM }} 8$ has picked up FlexElement ${ }^{\text {TM }} 8$ has operated FlexElement ${ }^{T M} 8$ has dropped out
ELEMENT: Ground Distance	GND DIST Z1 PKP GND DIST Z1 OP GND DIST Z1 OP A GND DIST Z1 OP B GND DIST Z1 OP C GND DIST Z1 PKP A GND DIST Z1 PKP B GND DIST Z1 PKP C GND DIST Z1 SUPN IN GND DIST Z1 DPO A GND DIST Z1 DPO B GND DIST Z1 DPO C GND DIST Z2 DIR SUPN	Ground Distance Zone 1 has picked up Ground Distance Zone 1 has operated Ground Distance Zone 1 phase A has operated Ground Distance Zone 1 phase B has operated Ground Distance Zone 1 phase C has operated Ground Distance Zone 1 phase A has picked up Ground Distance Zone 1 phase B has picked up Ground Distance Zone 1 phase C has picked up Ground Distance Zone 1 neutral is supervising Ground Distance Zone 1 phase A has dropped out Ground Distance Zone 1 phase B has dropped out Ground Distance Zone 1 phase C has dropped out Ground Distance Zone 2 directional is supervising
	GND DIST Z2 to Z3	Same set of operands as shown for GND DIST Z1
ELEMENT: Ground IOC	GROUND IOC1 PKP GROUND IOC1 OP GROUND IOC1 DPO	Ground Instantaneous Overcurrent 1 has picked up Ground Instantaneous Overcurrent 1 has operated Ground Instantaneous Overcurrent 1 has dropped out
	GROUND IOC2	Same set of operands as shown for GROUND IOC 1
ELEMENT: Ground TOC	GROUND TOC1 PKP GROUND TOC1 OP GROUND TOC1 DPO	Ground Time Overcurrent 1 has picked up Ground Time Overcurrent 1 has operated Ground Time Overcurrent 1 has dropped out
	GROUND TOC2	Same set of operands as shown for GROUND TOC1
ELEMENT Non-Volatile Latches	LATCH 1 ON LATCH 1 OFF LATCH 16 ON LATCH 16 OFF	Non-Volatile Latch 1 is ON (Logic = 1) Non-Voltage Latch 1 is OFF (Logic $=0$) Non-Volatile Latch 16 is ON (Logic =1) Non-Voltage Latch 16 is OFF (Logic $=0$)
ELEMENT: Line Pickup	LINE PICKUP OP LINE PICKUP PKP LINE PICKUP DPO LINE PICKUP I<A LINE PICKUP I<B LINE PICKUP I<C LINE PICKUP UV PKP LINE PICKUP LEO PKP LINE PICKUP RCL TRIP	Line Pickup has operated Line Pickup has picked up Line Pickup has dropped out Line Pickup detected Phase A current below 5\% of nominal Line Pickup detected Phase B current below 5\% of nominal Line Pickup detected Phase C current below 5\% of nominal Line Pickup Undervoltage has picked up Line Pickup Line End Open has picked up Line Pickup operated from overreaching Zone 2 when reclosing the line (Zone 1 extension functionality)
ELEMENT: Load Encroachment	LOAD ENCHR PKP LOAD ENCHR OP LOAD ENCHR DPO	Load Encroachment has picked up Load Encroachment has operated Load Encroachment has dropped out
ELEMENT: Negative Sequence Directional OC	NEG SEQ DIR OC1 FWD NEG SEQ DIR OC1 REV NEG SEQ DIR OC2 FWD NEG SEQ DIR OC2 REV	Negative Sequence Directional OC1 Forward has operated Negative Sequence Directional OC1 Reverse has operated Negative Sequence Directional OC2 Forward has operated Negative Sequence Directional OC2 Reverse has operated
ELEMENT: Negative Sequence IOC	NEG SEQ IOC1 PKP NEG SEQ IOC1 OP NEG SEQ IOC1 DPO	Negative Sequence Instantaneous Overcurrent 1 has picked up Negative Sequence Instantaneous Overcurrent 1 has operated Negative Sequence Instantaneous Overcurrent 1 has dropped out
	NEG SEQ IOC2	Same set of operands as shown for NEG SEQ IOC1
ELEMENT: Negative Sequence OV	NEG SEQ OV PKP NEG SEQ OV DPO NEG SEQ OV OP	Negative Sequence Overvoltage element has picked up Negative Sequence Overvoltage element has dropped out Negative Sequence Overvoltage element has operated

Table 5-5: D30 FLEXLOGIC ${ }^{\text {TM }}$ OPERANDS (Sheet 3 of 6)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION
ELEMENT: Negative Sequence TOC	NEG SEQ TOC1 PKP NEG SEQ TOC1 OP NEG SEQ TOC1 DPO	Negative Sequence Time Overcurrent 1 has picked up Negative Sequence Time Overcurrent 1 has operated Negative Sequence Time Overcurrent 1 has dropped out
	NEG SEQ TOC2	Same set of operands as shown for NEG SEQ TOC1
ELEMENT: Neutral IOC	NEUTRAL IOC1 PKP NEUTRAL IOC1 OP NEUTRAL IOC1 DPO	Neutral Instantaneous Overcurrent 1 has picked up Neutral Instantaneous Overcurrent 1 has operated Neutral Instantaneous Overcurrent 1 has dropped out
	NEUTRAL IOC2	Same set of operands as shown for NEUTRAL IOC1
ELEMENT: Neutral OV	NEUTRAL OV1 PKP NEUTRAL OV1 DPO NEUTRAL OV1 OP	Neutral Overvoltage element has picked up Neutral Overvoltage element has dropped out Neutral Overvoltage element has operated
ELEMENT: Neutral TOC	$\begin{aligned} & \text { NEUTRAL TOC1 PKP } \\ & \text { NEUTRAL TOC1 OP } \\ & \text { NEUTRAL TOC1 DPO } \end{aligned}$	Neutral Time Overcurrent 1 has picked up Neutral Time Overcurrent 1 has operated Neutral Time Overcurrent 1 has dropped out
	NEUTRAL TOC2	Same set of operands as shown for NEUTRAL TOC1
ELEMENT: Neutral Directional	NTRL DIR OC1 FWD NTRL DIR OC1 REV	Neutral Directional OC1 Forward has operated Neutral Directional OC1 Reverse has operated
	NTRL DIR OC2	Same set of operands as shown for NTRL DIR OC1
ELEMENT: Phase Directional	PH DIR1 BLK A PH DIR1 BLK B PH DIR1 BLK C PH DIR1 BLK	Phase A Directional 1 Block Phase B Directional 1 Block Phase C Directional 1 Block Phase Directional 1 Block
	PH DIR2	Same set of operands as shown for PH DIR1
ELEMENT: Phase Distance	$\begin{aligned} & \hline \text { PH DIST Z1 PKP } \\ & \text { PH DIST Z1 OP } \\ & \text { PH DIST Z1 OP AB } \\ & \text { PH DIST Z1 OP BC } \\ & \text { PH DIST Z1 OP CA } \\ & \text { PH DIST Z1 PKP AB } \\ & \text { PH DIST Z1 PKP BC } \\ & \text { PH DIST Z1 PKP CA } \\ & \text { PH DIST Z1 SUPN IAB } \\ & \text { PH DIST Z1 SUPN IBC } \\ & \text { PH DIST Z1 SUPN ICA } \\ & \text { PH DIST Z1 DPO AB } \\ & \text { PH DIST Z1 DPO BC } \\ & \text { PH DIST Z1 DPO CA } \end{aligned}$	Phase Distance Zone 1 has picked up Phase Distance Zone 1 has operated Phase Distance Zone 1 phase AB has operated Phase Distance Zone 1 phase BC has operated Phase Distance Zone 1 phase CA has operated Phase Distance Zone 1 phase AB has picked up Phase Distance Zone 1 phase BC has picked up Phase Distance Zone 1 phase CA has picked up Phase Distance Zone 1 phase AB IOC is supervising Phase Distance Zone 1 phase BC IOC is supervising Phase Distance Zone 1 phase CA IOC is supervising Phase Distance Zone 1 phase AB has dropped out Phase Distance Zone 1 phase BC has dropped out Phase Distance Zone 1 phase CA has dropped out
	PH DIST Z2 to Z3	Same set of operands as shown for PH DIST Z1
ELEMENT: Phase IOC	PHASE IOC1 PKP PHASE IOC1 OP PHASE IOC1 DPO PHASE IOC1 PKP A PHASE IOC1 PKP B PHASE IOC1 PKP C PHASE IOC1 OP A PHASE IOC1 OP B PHASE IOC1 OP C PHASE IOC1 DPO A PHASE IOC1 DPO B PHASE IOC1 DPO C	At least one phase of PHASE IOC1 has picked up At least one phase of PHASE IOC1 has operated At least one phase of PHASE IOC1 has dropped out Phase A of PHASE IOC1 has picked up Phase B of PHASE IOC1 has picked up Phase C of PHASE IOC1 has picked up Phase A of PHASE IOC1 has operated Phase B of PHASE IOC1 has operated Phase C of PHASE IOC1 has operated Phase A of PHASE IOC1 has dropped out Phase B of PHASE IOC1 has dropped out Phase C of PHASE IOC1 has dropped out
	PHASE IOC2	Same set of operands as shown for PHASE IOC1
ELEMENT: Phase OV	$\begin{aligned} & \text { PHASE OV1 PKP } \\ & \text { PHASE OV1 OP } \\ & \text { PHASE OV1 DPO } \\ & \text { PHASE OV1 PKP A } \\ & \text { PHASE OV1 PKP B } \\ & \text { PHASE OV1 PKP C } \\ & \text { PHASE OV1 OP A } \\ & \text { PHASE OV1 OP B } \\ & \text { PHASE OV1 OP C } \\ & \text { PHASE OV1 DPO A } \\ & \text { PHASE OV1 DPO B } \\ & \text { PHASE OV1 DPO C } \end{aligned}$	At least one phase of OV1 has picked up At least one phase of OV1 has operated At least one phase of OV1 has dropped out Phase A of OV1 has picked up Phase B of OV1 has picked up Phase C of OV1 has picked up Phase A of OV1 has operated Phase B of OV1 has operated Phase C of OV1 has operated Phase A of OV1 has dropped out Phase B of OV1 has dropped out Phase C of OV1 has dropped out

Table 5-5: D30 FLEXLOGIC ${ }^{\text {TM }}$ OPERANDS (Sheet 4 of 6)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION
ELEMENT:	PHASE TOC1 PKP	At least one phase of PHASE TOC1 has picked up
Phase TOC	PHASE TOC1 OP	At least one phase of PHASE TOC1 has operated
	PHASE TOC1 DPO	At least one phase of PHASE TOC1 has dropped out
	PHASE TOC1 PKP A	Phase A of PHASE TOC1 has picked up
	PHASE TOC1 PKP B	Phase B of PHASE TOC1 has picked up
	PHASE TOC1 PKP C	Phase C of PHASE TOC1 has picked up
	PHASE TOC1 OP A	Phase A of PHASE TOC1 has operated
	PHASE TOC1 OP B	Phase B of PHASE TOC1 has operated
	PHASE TOC1 OP C	Phase C of PHASE TOC1 has operated
	PHASE TOC1 DPO A	Phase A of PHASE TOC1 has dropped out
	PHASE TOC1 DPO B	Phase B of PHASE TOC1 has dropped out
	PHASE TOC1 DPO C	Phase C of PHASE TOC1 has dropped out

5 SETTINGS

Table 5-5: D30 FLEXLOGIC ${ }^{\text {TM }}$ OPERANDS (Sheet 5 of 6)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION
FIXED OPERANDS	Off	Logic $=0$. Does nothing and may be used as a delimiter in an equation list; used as 'Disable' by other features.
	On	Logic = 1. Can be used as a test setting.
INPUTS/OUTPUTS: Contact Inputs	Cont Ip 1 On Cont Ip 2 On Cont Ip 1 Off Cont Ip 2 Off	(will not appear unless ordered) (will not appear unless ordered) (will not appear unless ordered) (will not appear unless ordered)
INPUTS/OUTPUTS: Contact Outputs, Current (from detector on Form-A output only)	Cont Op 1 IOn Cont Op 2 IOn \downarrow	(will not appear unless ordered) (will not appear unless ordered)
	Cont Op 1 IOff Cont Op 2 IOff \downarrow	(will not appear unless ordered) (will not appear unless ordered) \downarrow
INPUTS/OUTPUTS: Contact Outputs, Voltage (from detector on Form-A output only)	Cont Op 1 VOn Cont Op 2 VOn \downarrow	(will not appear unless ordered) (will not appear unless ordered) \downarrow
	Cont Op 1 VOff Cont Op 2 VOff	(will not appear unless ordered) (will not appear unless ordered)
INPUTS/OUTPUTS Direct Inputs	DIRECT INPUT 1 On DIRECT INPUT 32 On	$\begin{aligned} & \text { Flag is set, logic=1 } \\ & \downarrow \\ & \text { Flag is set, logic=1 } \end{aligned}$
INPUTS/OUTPUTS: Remote Inputs	$\begin{aligned} & \text { REMOTE INPUT } 1 \text { On } \\ & \downarrow \\ & \text { REMOTE INPUT } 32 \text { On } \end{aligned}$	$\begin{aligned} & \text { Flag is set, logic=1 } \\ & \downarrow \\ & \text { Flag is set, logic=1 } \end{aligned}$
INPUTS/OUTPUTS: Virtual Inputs	Virt Ip 1 On Virt Ip 32 On	$\begin{aligned} & \text { Flag is set, logic=1 } \\ & \downarrow \\ & \text { Flag is set, logic=1 } \end{aligned}$
INPUTS/OUTPUTS: Virtual Outputs	Virt Op 1 On Virt Op 64 On	$\begin{aligned} & \text { Flag is set, logic=1 } \\ & \downarrow \\ & \text { Flag is set, logic=1 } \end{aligned}$
LED TEST	LED TEST IN PROGRESS	An LED test has been initiated and has not finished.
REMOTE DEVICES	REMOTE DEVICE 1 On \downarrow REMOTE DEVICE 16 On	$\begin{aligned} & \text { Flag is set, logic=1 } \\ & \downarrow \\ & \text { Flag is set, logic=1 } \end{aligned}$
	REMOTE DEVICE 1 Off \downarrow REMOTE DEVICE 16 Off	$\begin{aligned} & \text { Flag is set, logic=1 } \\ & \downarrow \\ & \text { Flag is set, logic=1 } \end{aligned}$
RESETTING	```RESET OP RESET OP (COMMS) RESET OP (OPERAND) RESET OP (PUSHBUTTON)```	Reset command is operated (set by all 3 operands below) Communications source of the reset command Operand (assigned in the INPUTS/OUTPUTS $\Rightarrow \sqrt{ }$ RESETTING menu) source of the reset command Reset key (pushbutton) source of the reset command

Table 5-5: D30 FLEXLOGIC ${ }^{\text {TM }}$ OPERANDS (Sheet 6 of 6)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION
SELF-	ANY MAJOR ERROR	Any of the major self-test errors generated (major error)
DIAGNOSTICS	ANY MINOR ERROR	Any of the minor self-test errors generated (minor error)
	Any self-test errors generated (generic, any error)	
	ANY SELF-TEST	See description in Chapter 7: Commands and Targets.
	BATTERY FAIL	See description in Chapter 7: Commands and Targets.
	DIRECT DEVICE OFF	See description in Chapter 7: Commands and Targets.
	DIRECT RING BREAK	See description in Chapter 7: Commands and Targets.
	EEPRROR	See description in Chapter 7: Commands and Targets.
	EQUIPMENT MISMATCH	See description in Chapter 7: Commands and Targets.
	FLEXLOGIC ERR TOKEN	See description in Chapter 7: Commands and Targets.
	IRIG-B FAILURE	See description in Chapter 7: Commands and Targets.
	LATCHING OUT ERROR	See description in Chapter 7: Commands and Targets.
	LOW ON MEMORY	See description in Chapter 7: Commands and Targets.
	NO DSP INTERRUPTS	See description in Chapter 7: Commands and Targets.
	PRI ETHERNET FAIL	See description in Chapter 7: Commands and Targets.
	PROGRAM MEMORY	See description in Chapter 7: Commands and Targets.
	PROTOTYPE FIRMWARE	See description in Chapter 7: Commands and Targets.
	REMOTE DEVICE OFF	See description in Chapter 7: Commands and Targets.
	SEC ETHERNET FAIL	See description in Chapter 7: Commands and Targets.
	SNTP FAILURE	See description in Chapter 7: Commands and Targets.
	SYSTEM EXCEPTION	See description in Chapter 7: Commands and Targets.
	UNIT NOT CALIBRATED	See description in Chapter 7: Commands and Targets.
	UNIT NOT PROGRAMMED	See description in Chapter 7: Commands and Targets.
	WATCHDOG ERROR	See description in Chapter 7: Commands and Targets.
UNAUTHORIZED	UNAUTHORIZED ACCESS	Asserted when a password entry fails while accessing a password-protected
ACCESS ALARM		level of the relay.
USER-	Pushbutton Number x is in the 'On' position	
PROGRAMMABLE	PUSHBUTTON x ON	Pushbutton Number x is in the 'Off' position
PUSHBUTTONS		

Some operands can be re-named by the user. These are the names of the breakers in the breaker control feature, the ID (identification) of contact inputs, the ID of virtual inputs, and the ID of virtual outputs. If the user changes the default name/ ID of any of these operands, the assigned name will appear in the relay list of operands. The default names are shown in the FlexLogic ${ }^{\text {TM }}$ Operands table above.

The characteristics of the logic gates are tabulated below, and the operators available in FlexLogic ${ }^{\text {TM }}$ are listed in the FlexLogic ${ }^{\text {TM }}$ Operators table.

Table 5-6: FLEXLOGIC ${ }^{\text {M }}$ GATE CHARACTERISTICS

GATES	NUMBER OF INPUTS	OUTPUT IS '1' (= ON) IF...
NOT	1	input is '0'
OR	2 to 16	any input is '1'
AND	2 to 16	all inputs are '1'
NOR	2 to 16	all inputs are '0'
NAND	2 to 16	any input is '0'
XOR	2	only one input is '1'

Table 5-7: FLEXLOGIC ${ }^{\text {TM }}$ OPERATORS

TYPE	SYNTAX	DESCRIPTION	NOTES
Editor	INSERT	Insert a parameter in an equation list.	
	DELETE	Delete a parameter from an equation list.	
End	END	The first END encountered signifies the last entry in the list of processed FlexLogic ${ }^{\text {™ }}$ parameters.	
One Shot	POSITIVE ONE SHOT	One shot that responds to a positive going edge.	A 'one shot' refers to a single input gate that generates a pulse in response to an edge on the input. The output from a 'one shot' is True (positive) for only one pass through the FlexLogic ${ }^{\text {TM }}$ equation. There is a maximum of 32 'one shots'.
	NEGATIVE ONE SHOT	One shot that responds to a negative going edge.	
	DUAL ONE SHOT	One shot that responds to both the positive and negative going edges.	
Logic Gate	NOT	Logical Not	Operates on the previous parameter.
	$\begin{gathered} \hline \text { OR(2) } \\ \downarrow \\ \text { OR(16) } \end{gathered}$	2 input OR gate 16 input OR gate	Operates on the 2 previous parameters. Operates on the 16 previous parameters.
	$\begin{aligned} & \text { AND(2) } \\ & \downarrow \\ & \text { AND(16) } \end{aligned}$	2 input AND gate 16 input AND gate	Operates on the 2 previous parameters. Operates on the 16 previous parameters.
	$\begin{aligned} & \hline \text { NOR(2) } \\ & \downarrow \downarrow(16) \end{aligned}$	2 input NOR gate 16 input NOR gate	Operates on the 2 previous parameters. Operates on the 16 previous parameters.
	$\begin{aligned} & \hline \text { NAND(2) } \\ & \text { NAND(16) } \end{aligned}$	2 input NAND gate 16 input NAND gate	Operates on the 2 previous parameters. Operates on the 16 previous parameters.
	XOR(2)	2 input Exclusive OR gate	Operates on the 2 previous parameters.
	LATCH (S,R)	Latch (Set, Reset) - reset-dominant	The parameter preceding LATCH(S,R) is the Reset input. The parameter preceding the Reset input is the Set input.
Timer	$\begin{aligned} & \text { TIMER } 1 \\ & \text { TIMER } 32 \end{aligned}$	Timer set with FlexLogic ${ }^{\text {TM }}$ Timer 1 settings. Timer set with FlexLogic ${ }^{\text {™ }}$ Timer 32 settings.	The timer is started by the preceding parameter. The output of the timer is TIMER \#.
Assign Virtual Output	$\begin{aligned} & =\text { Virt Op } 1 \\ & =\downarrow \text { Virt Op } 64 \end{aligned}$	Assigns previous FlexLogic ${ }^{\text {TM }}$ parameter to Virtual Output 1. Assigns previous FlexLogic ${ }^{\text {TM }}$ parameter to Virtual Output 64.	The virtual output is set by the preceding parameter

5.4.2 FLEXLOGIC ${ }^{\text {TM }}$ RULES

When forming a FlexLogic ${ }^{\top M}$ equation, the sequence in the linear array of parameters must follow these general rules:

1. Operands must precede the operator which uses the operands as inputs.
2. Operators have only one output. The output of an operator must be used to create a virtual output if it is to be used as an input to two or more operators.
3. Assigning the output of an operator to a Virtual Output terminates the equation.
4. A timer operator (e.g. "TIMER 1") or virtual output assignment (e.g. " = Virt Op 1") may only be used once. If this rule is broken, a syntax error will be declared.
5.4.3 FLEXLOGIC ${ }^{\text {TM }}$ EVALUATION

Each equation is evaluated in the order in which the parameters have been entered.
FlexLogic ${ }^{\text {TM }}$ provides latches which by definition have a memory action, remaining in the set state after the set input has been asserted. However, they are volatile; i.e. they reset on the re-application of control power.
When making changes to settings, all FlexLogic ${ }^{\text {TM }}$ equations are re-compiled whenever any new setting value is entered, so all latches are automatically reset. If it is necessary to re-initialize FlexLogic ${ }^{\text {M }}$ during testing, for example, it is suggested to power the unit down and then back up.

This section provides an example of implementing logic for a typical application. The sequence of the steps is quite important as it should minimize the work necessary to develop the relay settings. Note that the example presented in the figure below is intended to demonstrate the procedure, not to solve a specific application situation.
In the example below, it is assumed that logic has already been programmed to produce Virtual Outputs 1 and 2, and is only a part of the full set of equations used. When using FlexLogic ${ }^{\text {™ }}$, it is important to make a note of each Virtual Output used - a Virtual Output designation (1 to 64) can only be properly assigned once.

Figure 5-26: EXAMPLE LOGIC SCHEME

1. Inspect the example logic diagram to determine if the required logic can be implemented with the FlexLogic ${ }^{\text {TM }}$ operators. If this is not possible, the logic must be altered until this condition is satisfied. Once this is done, count the inputs to each gate to verify that the number of inputs does not exceed the FlexLogic ${ }^{\text {TM }}$ limits, which is unlikely but possible. If the number of inputs is too high, subdivide the inputs into multiple gates to produce an equivalent. For example, if 25 inputs to an AND gate are required, connect Inputs 1 through 16 to AND(16), 17 through 25 to AND(9), and the outputs from these two gates to AND(2).
Inspect each operator between the initial operands and final virtual outputs to determine if the output from the operator is used as an input to more than one following operator. If so, the operator output must be assigned as a Virtual Output.

For the example shown above, the output of the AND gate is used as an input to both OR\#1 and Timer 1, and must therefore be made a Virtual Output and assigned the next available number (i.e. Virtual Output 3). The final output must also be assigned to a Virtual Output as Virtual Output 4, which will be programmed in the contact output section to operate relay H1 (i.e. Output Contact H1).
Therefore, the required logic can be implemented with two FlexLogic ${ }^{\text {TM }}$ equations with outputs of Virtual Output 3 and Virtual Output 4 as shown below.

Figure 5-27: LOGIC EXAMPLE WITH VIRTUAL OUTPUTS
2. Prepare a logic diagram for the equation to produce Virtual Output 3, as this output will be used as an operand in the Virtual Output 4 equation (create the equation for every output that will be used as an operand first, so that when these operands are required they will already have been evaluated and assigned to a specific Virtual Output). The logic for Virtual Output 3 is shown below with the final output assigned.

Figure 5-28: LOGIC FOR VIRTUAL OUTPUT 3
3. Prepare a logic diagram for Virtual Output 4, replacing the logic ahead of Virtual Output 3 with a symbol identified as Virtual Output 3, as shown below.

Figure 5-29: LOGIC FOR VIRTUAL OUTPUT 4
4. Program the FlexLogic ${ }^{\text {TM }}$ equation for Virtual Output 3 by translating the logic into available FlexLogic ${ }^{\text {™ }}$ parameters. The equation is formed one parameter at a time until the required logic is complete. It is generally easier to start at the output end of the equation and work back towards the input, as shown in the following steps. It is also recommended to list operator inputs from bottom to top. For demonstration, the final output will be arbitrarily identified as parameter 99, and each preceding parameter decremented by one in turn. Until accustomed to using FlexLogic ${ }^{\text {TM }}$, it is suggested that a worksheet with a series of cells marked with the arbitrary parameter numbers be prepared, as shown below.

Figure 5-30: FLEXLOGIC ${ }^{\text {M }}$ WORKSHEET
5. Following the procedure outlined, start with parameter 99, as follows:

99: The final output of the equation is Virtual Output 3, which is created by the operator "= Virt Op n". This parameter is therefore "= Virt Op 3."

98: The gate preceding the output is an AND, which in this case requires two inputs. The operator for this gate is a 2input AND so the parameter is "AND(2)". Note that FlexLogic ${ }^{\text {TM }}$ rules require that the number of inputs to most types of operators must be specified to identify the operands for the gate. As the 2-input AND will operate on the two operands preceding it, these inputs must be specified, starting with the lower.

97: This lower input to the AND gate must be passed through an inverter (the NOT operator) so the next parameter is "NOT". The NOT operator acts upon the operand immediately preceding it, so specify the inverter input next.
96: The input to the NOT gate is to be contact input H1c. The ON state of a contact input can be programmed to be set when the contact is either open or closed. Assume for this example the state is to be ON for a closed contact. The operand is therefore "Cont Ip H1c On".
95: The last step in the procedure is to specify the upper input to the AND gate, the operated state of digital element 2. This operand is "DIG ELEM 2 OP".

Writing the parameters in numerical order can now form the equation for VIRTUAL OUTPUT 3:

```
[95] DIG ELEM 2 OP
[96] Cont Ip H1c On
[97] NOT
[98] AND(2)
[99] = Virt Op 3
```

It is now possible to check that this selection of parameters will produce the required logic by converting the set of parameters into a logic diagram. The result of this process is shown below, which is compared to the Logic for Virtual Output 3 diagram as a check.

Figure 5-31: FLEXLOGIC ${ }^{\text {TM }}$ EQUATION FOR VIRTUAL OUTPUT 3
6. Repeating the process described for VIRTUAL OUTPUT 3, select the FlexLogic ${ }^{\text {TM }}$ parameters for Virtual Output 4.

99: The final output of the equation is VIRTUAL OUTPUT 4 which is parameter "= Virt Op 4".
98: The operator preceding the output is Timer 2, which is operand "TIMER 2". Note that the settings required for the timer are established in the timer programming section.

97: The operator preceding Timer 2 is OR \#2, a 3-input OR, which is parameter "OR(3)".
96: The lowest input to OR \#2 is operand "Cont Ip H1c On".
95: The center input to OR \#2 is operand "TIMER 1".
94: The input to Timer 1 is operand "Virt Op 3 On".
93: The upper input to OR \#2 is operand "LATCH (S,R)".
92: There are two inputs to a latch, and the input immediately preceding the latch reset is OR \#1, a 4-input OR, which is parameter " $\mathrm{OR}(4)$ ".

91: The lowest input to OR \#1 is operand "Virt Op 3 On".
90: The input just above the lowest input to OR \#1 is operand " $\mathrm{XOR}(2)$ ".
89: The lower input to the XOR is operand "DIG ELEM 1 PKP".
88: The upper input to the XOR is operand "Virt Ip 1 On".
87: The input just below the upper input to OR \#1 is operand "Virt Op 2 On".
86: The upper input to OR \#1 is operand "Virt Op 1 On".
85: The last parameter is used to set the latch, and is operand "Virt Op 4 On".

The equation for VIRTUAL OUTPUT 4 is:

```
[85] Virt Op 4 On
[86] Virt Op 1 On
[87] Virt Op 2 On
[88] Virt Ip 1 On
[89] DIG ELEM 1 PKP
[90] XOR(2)
[91] Virt Op 3 On
[92] OR(4)
[93] LATCH (S,R)
[94] Virt Op 3 On
[95] TIMER 1
[96] Cont Ip H1c On
[97] OR(3)
[98] TIMER 2
[99] = Virt Op 4
```

It is now possible to check that the selection of parameters will produce the required logic by converting the set of parameters into a logic diagram. The result of this process is shown below, which is compared to the Logic for Virtual Output 4 diagram as a check.

Figure 5-32: FLEXLOGIC ${ }^{\text {TM }}$ EQUATION FOR VIRTUAL OUTPUT 4
7. Now write the complete FlexLogic ${ }^{\top M}$ expression required to implement the logic, making an effort to assemble the equation in an order where Virtual Outputs that will be used as inputs to operators are created before needed. In cases where a lot of processing is required to perform logic, this may be difficult to achieve, but in most cases will not cause problems as all logic is calculated at least 4 times per power frequency cycle. The possibility of a problem caused by sequential processing emphasizes the necessity to test the performance of FlexLogic ${ }^{\text {TM }}$ before it is placed in service.
In the following equation, Virtual Output 3 is used as an input to both Latch 1 and Timer 1 as arranged in the order shown below:

```
DIG ELEM 2 OP
Cont Ip H1c On
NOT
AND(2)
```

```
= Virt Op 3
Virt Op 4 On
Virt Op 1 On
Virt Op 2 On
Virt Ip 1 On
DIG ELEM 1 PKP
XOR(2)
Virt Op 3 On
OR(4)
LATCH (S,R)
Virt Op 3 On
TIMER 1
Cont Ip H1c On
OR(3)
TIMER 2
= Virt Op 4
END
```

In the expression above, the Virtual Output 4 input to the 4 -input OR is listed before it is created. This is typical of a form of feedback, in this case, used to create a seal-in effect with the latch, and is correct.
8. The logic should always be tested after it is loaded into the relay, in the same fashion as has been used in the past. Testing can be simplified by placing an "END" operator within the overall set of FlexLogic ${ }^{\text {TM }}$ equations. The equations will then only be evaluated up to the first "END" operator.
The "On" and "Off" operands can be placed in an equation to establish a known set of conditions for test purposes, and the "INSERT" and "DELETE" commands can be used to modify equations.
5.4.5 FLEXLOGIC ${ }^{\text {TM }}$ EQUATION EDITOR

PATH: SETTINGS $\Rightarrow \sqrt{ } \Rightarrow$ FLEXLOGIC \Rightarrow FLEXLOGIC EQUATION EDITOR

There are 512 FlexLogic $^{\text {M }}$ entries available, numbered from 1 to 512 , with default 'END' entry settings. If a "Disabled" Element is selected as a FlexLogic ${ }^{\text {TM }}$ entry, the associated state flag will never be set to ' 1 '. The ' $+/-$ ' key may be used when editing FlexLogic ${ }^{\top M}$ equations from the keypad to quickly scan through the major parameter types.

PATH: SETTINGS $\Rightarrow \sqrt{ }$ FLEXLOGIC $\Rightarrow \sqrt{ }$ FLEXLOGIC TIMERS \Rightarrow FLEXLOGIC TIMER 1(32)

\square FLEXLOGIC \square TIMER 1		(1)	TIMER 1 TYPE: millisecond	Range: millisecond, second, minute
	MESSAGE	8	TIMER 1 PICKUP DELAY: 0	Range: 0 to 60000 in steps of 1
	MESSAGE	-	TIMER 1 DROPOUT DELAY: 0	Range: 0 to 60000 in steps of 1

There are 32 identical FlexLogic ${ }^{\text {TM }}$ timers available. These timers can be used as operators for FlexLogic ${ }^{\mathrm{TM}}$ equations. $^{\text {a }}$.

- TIMER 1 TYPE: This setting is used to select the time measuring unit.
- TIMER 1 PICKUP DELAY: Sets the time delay to pickup. If a pickup delay is not required, set this function to "0".
- TIMER 1 DROPOUT DELAY: Sets the time delay to dropout. If a dropout delay is not required, set this function to "0".

PATH: SETTING $\Rightarrow \sqrt{ } \sqrt{ }$ FLEXLOGIC $\Rightarrow \Omega$ FLEXELEMENTS \Rightarrow FLEXELEMENT 1(8)

A FlexElement ${ }^{\text {TM }}$ is a universal comparator that can be used to monitor any analog actual value calculated by the relay or a net difference of any two analog actual values of the same type. The effective operating signal could be treated as a signed number or its absolute value could be used as per user's choice.
The element can be programmed to respond either to a signal level or to a rate-of-change (delta) over a pre-defined period of time. The output operand is asserted when the operating signal is higher than a threshold or lower than a threshold as per user's choice.

Figure 5-33: FLEXELEMENT ${ }^{\text {TM }}$ SCHEME LOGIC
The fLEXELEMENT $1+$ IN setting specifies the first (non-inverted) input to the FlexElement ${ }^{\text {TM }}$. Zero is assumed as the input if this setting is set to "Off". For proper operation of the element at least one input must be selected. Otherwise, the element will not assert its output operands.

This FLEXELEMENT 1 -IN setting specifies the second (inverted) input to the FlexElement ${ }^{T M}$. Zero is assumed as the input if this setting is set to "Off". For proper operation of the element at least one input must be selected. Otherwise, the element will not assert its output operands. This input should be used to invert the signal if needed for convenience, or to make the element respond to a differential signal such as for a top-bottom oil temperature differential alarm. The element will not operate if the two input signals are of different types, for example if one tries to use active power and phase angle to build the effective operating signal.
The element responds directly to the differential signal if the FLEXELEMENT 1 INPUT MODE setting is set to "Signed". The element responds to the absolute value of the differential signal if this setting is set to "Absolute". Sample applications for the "Absolute" setting include monitoring the angular difference between two phasors with a symmetrical limit angle in both directions; monitoring power regardless of its direction, or monitoring a trend regardless of whether the signal increases of decreases.

The element responds directly to its operating signal - as defined by the fLexelement 1 +IN, FLEXELEMENT 1 -IN and flexELEMENT 1 INPUT MODE settings - if the FLEXELEMENT 1 COMP MODE setting is set to "Level". The element responds to the rate of change of its operating signal if the flexelement 1 COMP mode setting is set to "Delta". In this case the flexeleMENT 1 dt UNIT and FLEXELEMENT 1 dt settings specify how the rate of change is derived.
The FLEXELEMENT 1 DIRECTION setting enables the relay to respond to either high or low values of the operating signal. The following figure explains the application of the fLEXELEMENT 1 DIRECTION, FLEXELEMENT 1 PICKUP and FLEXELEMENT 1 HYsTERESIS settings.

Figure 5-34: FLEXELEMENT ${ }^{\text {TM }}$ DIRECTION, PICKUP, AND HYSTERESIS
In conjunction with the FLEXELEMENT 1 INPUT MODE setting the element could be programmed to provide two extra characteristics as shown in the figure below.

Figure 5-35: FLEXELEMENT ${ }^{\text {TM }}$ INPUT MODE SETTING

The fLEXELEMENT 1 PICKUP setting specifies the operating threshold for the effective operating signal of the element. If set to "Over", the element picks up when the operating signal exceeds the FLEXELEMENT 1 PICKUP value. If set to "Under", the element picks up when the operating signal falls below the FLEXELEMENT 1 PICKUP value.

The flexelement 1 hysteresis setting controls the element dropout. It should be noticed that both the operating signal and the pickup threshold can be negative facilitating applications such as reverse power alarm protection. The FlexElement ${ }^{T M}$ can be programmed to work with all analog actual values measured by the relay. The FLEXELEMENT 1 PICKUP setting is entered in pu values using the following definitions of the base units:

Table 5-8: FLEXELEMENT ${ }^{\text {TM }}$ BASE UNITS

BREAKER ARCING AMPS (Brk X Arc Amp A, B, and C)	BASE $=2000 \mathrm{kA}^{2} \times$ cycle
dcmA	BASE $=$ maximum value of the DCMA INPUT MAX setting for the two transducers configured under the +IN and -IN inputs.
FREQUENCY	$f_{\text {BASE }}=1 \mathrm{~Hz}$
PHASE ANGLE	$\varphi_{\text {BASE }}=360$ degrees (see the UR angle referencing convention)
POWER FACTOR	PF $_{\text {BASE }}=1.00$
RTDs	BASE $=100^{\circ} \mathrm{C}$
SOURCE CURRENT	$\mathrm{I}_{\text {BASE }}=$ maximum nominal primary RMS value of the +IN and -IN inputs
SOURCE POWER	$\mathrm{P}_{\text {BASE }}=$ maximum value of $\mathrm{V}_{\text {BASE }} \times \mathrm{I}_{\mathrm{BASE}}$ for the +IN and -IN inputs
SOURCE VOLTAGE	$\mathrm{V}_{\text {BASE }}=$ maximum nominal primary RMS value of the + IN and -IN inputs
SYNCHROCHECK (Max Delta Volts)	$\mathrm{V}_{\text {BASE }}=$ maximum primary RMS value of all the sources related to the +IN and -IN inputs

The flexelement 1 hysteresis setting defines the pickup-dropout relation of the element by specifying the width of the hysteresis loop as a percentage of the pickup value as shown in the FlexElement ${ }^{\text {TM }}$ Direction, Pickup, and Hysteresis diagram.
The fLexelement 1 DT UNIT setting specifies the time unit for the setting flexelement 1 dt . This setting is applicable only if FLEXELEMENT 1 COMP MODE is set to "Delta". The FLEXELEMENT 1 DT setting specifies duration of the time interval for the rate of change mode of operation. This setting is applicable only if FLEXELEMENT 1 COMP MODE is set to "Delta".

This fLexelement 1 PKP delay setting specifies the pickup delay of the element. The fLexelement 1 RST deLay setting specifies the reset delay of the element.

PATH: SETTINGS $\Rightarrow \Omega$ FLEXLOGIC $\Rightarrow \sqrt{ }$ NON-VOLATILE LATCHES \Rightarrow LATCH 1(16)

\square LATCH 1		(1)	LATCH 1 FUNCTION: Disabled	Range: Disabled, Enabled
	MESSAGE	-	LATCH 1 TYPE: Reset Dominant	Range: Reset Dominant, Set Dominant
	MESSAGE	-	LATCH 1 SET: Off	Range: FlexLogic ${ }^{\text {TM }}$ operand
	MESSAGE	-	LATCH 1 RESET: Off	Range: FlexLogic ${ }^{\text {TM }}$ operand
	MESSAGE	-	$\begin{aligned} & \text { LATCH } 1 \\ & \text { TARGET: Self-reset } \end{aligned}$	Range: Self-reset, Latched, Disabled
	MESSAGE	(4)	LATCH 1 EVENTS: Disabled	Range: Disabled, Enabled

The non-volatile latches provide a permanent logical flag that is stored safely and will not reset upon reboot after the relay is powered down. Typical applications include sustaining operator commands or permanently block relay functions, such as Autorecloser, until a deliberate HMI action resets the latch. The settings, logic, and element operation are described below:

- LATCH 1 TYPE: This setting characterizes Latch 1 to be Set- or Reset-dominant.
- LATCH 1 SET: If asserted, the specified FlexLogic ${ }^{\text {TM }}$ operands 'sets' Latch 1.
- LATCH 1 RESET: If asserted, the specified FlexLogic ${ }^{\top M}$ operand 'resets' Latch 1.

LATCH N TYPE	$\begin{aligned} & \text { LATCH N } \\ & \text { SET } \end{aligned}$	LATCHN RESET	$\begin{aligned} & \text { LATCHN } \\ & \text { ON } \end{aligned}$	$\begin{gathered} \text { LATCHN } \\ \text { OFF } \end{gathered}$
Reset Dominant	ON	OFF	ON	OFF
	OFF	OFF	Previous State	Previous State
	ON	ON	OFF	ON
	OFF	ON	OFF	ON
Set Dominant	ON	OFF	ON	OFF
	ON	ON	ON	OFF
	OFF	OFF	Previous State	$\begin{aligned} & \text { Previous } \\ & \text { State } \end{aligned}$
	OFF	ON	OFF	ON

Figure 5-36: NON-VOLATILE LATCH OPERATION TABLE (N=1 to 16) AND LOGIC

Each protection element can be assigned up to six different sets of settings according to Setting Group designations 1 to 6. The performance of these elements is defined by the active Setting Group at a given time. Multiple setting groups allow the user to conveniently change protection settings for different operating situations (e.g. altered power system configuration, season of the year). The active setting group can be preset or selected via the SETTING GROUPS menu (see the Control Elements section later in this chapter). See also the Introduction to Elements section at the beginning of this chapter.
5.5.2 SETTING GROUP

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP 1 (6)

\square SETTING GROUP 1	(1)	\square LINE PICKUP	See page 5-71.
MESSAG	Q	\square DISTANCE	See page 5-73.
MESSAG	-	\square POWER SWING D DETECT	See page 5-85.
MESSAG	®	\square LOAD ENCROACHMENT	See page 5-93.
MESSAG	-	\square PHASE CURRENT	See page 5-95.
MESSAG	-	\square NEUTRAL CURRENT	See page 5-105.
MESSAG	®	\square GROUND CURRENT	See page 5-112.
MESSAG	$\stackrel{\rightharpoonup}{\nabla}$	\square NEGATIVE SEQUENCE CURRENT	See page 5-115.
MESSAG	-	VOLTAGE ELEMENTS	See page 5-120.

Each of the six Setting Group menus is identical. SETTING GROUP 1 (the default active group) automatically becomes active if no other group is active (see the Control Elements section for additional details).

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ })$ LINE PICKUP

The Line Pickup feature uses a combination of undercurrent and undervoltage to identify a line that has been de-energized (line end open). Alternately, the user may assign a FlexLogic ${ }^{\text {TM }}$ operand to the TERMINAL OPEN setting that specifies the terminal status. Three instantaneous overcurrent elements are used to identify a previously de-energized line that has been closed onto a fault. Faults other than close-in faults can be identified satisfactorily with the Distance elements.
Co-ordination features are included to ensure satisfactory operation when high speed 'automatic reclosure (AR)' is employed. The AR CO-ORD DELAY setting allows the overcurrent setting to be below the expected load current seen after reclose. Co-ordination is achieved by the positive sequence overvoltage element picking up and blocking the trip path, before the AR CO-ORD DELAY times out. The AR CO-ORD BYPASS setting is normally enabled. It is disabled if high speed autoreclosure is implemented.

The positive sequence undervoltage pickup setting is based on phase to neutral quantities. If Delta VTs are used, then this per unit pickup is based on the (vt SECONDARY setting) $/ \sqrt{3}$.

The line pickup protection incorporates Zone 1 extension capability. When the line is being re-energized from the local terminal, pickup of an overreaching Zone 2 or excessive phase current within six power cycles after the autorecloser issues a close command results in the LINE PICKUP RCL TRIP FlexLogic ${ }^{\text {TM }}$ operand. Configure the LINE PICKUP RCL TRIP operand to perform a trip action if the intent is apply Zone 1 extension.

The Zone 1 extension philosophy used here normally operates from an under-reaching zone, and uses an overreaching distance zone when reclosing the line with the other line end open. The AR ACCELERATE setting is provided to achieve Zone 1 extension functionality if external autoreclosure is employed. Another Zone 1 extension approach is to permanently apply an overreaching zone, and reduce the reach when reclosing. This philosophy can be programmed via the Autoreclose scheme.

Figure 5-37: LINE PICKUP SCHEME LOGIC
a) MAIN MENU

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ }$ dISTANCE

Three common settings (DISTANCE SOURCE, MEMORY DURATION, and FORCE SELF-POLAR) and six menus for three zone of phase and ground distance protection are available. The distance source identifies the Signal Source for all distance functions. The Mho distance functions use a dynamic characteristic: the positive-sequence voltage - either memorized or actual - is used as a polarizing signal. The memory voltage is also used by the built-in directional supervising functions applied for both the Mho and Quad characteristics.
The MEMORY DURATION setting specifies the length of time a memorized positive-sequence voltage should be used in the distance calculations. After this interval expires, the relay checks the magnitude of the actual positive-sequence voltage. If it is higher than 10% of the nominal, the actual voltage is used, if lower - the memory voltage continues to be used.
The memory is established when the positive-sequence voltage stays above 80% of its nominal value for five power system cycles. For this reason it is important to ensure that the nominal secondary voltage of the VT is entered correctly under the SETTINGS $\sqrt{ }$ SYSTEM SETUP \Rightarrow AC INPUTS $\Rightarrow \sqrt{ }$ VOLTAGE BANK menu.
Set MEMORY DURATION long enough to ensure stability on close-in reverse three-phase faults. For this purpose, the maximum fault clearing time (breaker fail time) in the substation should be considered. On the other hand, the MEMORY DURATION cannot be too long as the power system may experience power swing conditions rotating the voltage and current phasors slowly while the memory voltage is static, as frozen at the beginning of the fault. Keeping the memory in effect for too long may eventually lead to incorrect operation of the distance functions.

The distance zones can be forced to become self-polarized through the force SELF-POLAR setting. Any user-selected condition (FlexLogic ${ }^{\text {TM }}$ operand) can be configured to force self-polarization. When the selected operand is asserted (logic 1), the distance functions become self-polarized regardless of other memory voltage logic conditions. When the selected operand is de-asserted (logic 0), the distance functions follow other conditions of the memory voltage logic as shown below.

Figure 5-38: MEMORY VOLTAGE LOGIC

b) PHASE DISTANCE

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ }$ DISTANCE $\Rightarrow \sqrt{ }$ PHASE DISTANCE Z1(Z3)

\square PHASE DISTANCE Z1	(1)	$\begin{aligned} & \text { PHS DIST Z1 } \\ & \text { FUNCTION: Disabled } \end{aligned}$	Range:	Disabled, Enabled
MESSAG	-	$\begin{aligned} & \text { PHS DIST Z1 } \\ & \text { DIRECTION: Forward } \end{aligned}$	Range:	Forward, Reverse
MESSAG	\square	PHS DIST Z1 SHAPE: Mho	Range:	Mho, Quad
MESSAG	-	PHS DIST Z1 XFMR VOL CONNECTION: None	Range:	None, Dy1, Dy3, Dy5, Dy7, Dy9, Dy11, Yd1, Yd3, Yd5, Yd7, Yd9, Yd11
MESSAG	-	PHS DIST Z1 XFMR CUR CONNECTION: None	Range:	None, Dy1, Dy3, Dy5, Dy7, Dy9, Dy11, Yd1, Yd3, Yd5, Yd7, Yd9, Yd11
MESSAG	-	PHS DIST Z1 REACH: 2.00Ω	Range:	0.02 to 250.00Ω in steps of 0.01
MESSAG	-	PHS DIST Z1 RCA: 85°	Range:	30 to 90° in steps of 1
MESSAG	-	$\begin{aligned} & \text { PHS DIST Z1 } \\ & \text { COMP LIMIT: } 90^{\circ} \end{aligned}$	Range:	30 to 90° in steps of 1
MESSAG	-	PHS DIST Z1 DIR RCA: 85°	Range:	30 to 90° in steps of 1
MESSAG	-	PHS DIST Z1 DIR COMP LIMIT: 90°	Range:	30 to 90° in steps of 1
MESSAG	-	PHS DIST Z1 QUAD RGT BLD: 10.00Ω	Range:	0.02 to 500.00Ω in steps of 0.01
MESSAG	-	PHS DIST Z1 QUAD RGT BLD RCA: 85°	Range:	60 to 90° in steps of 1
MESSAG	-	PHS DIST Z1 QUAD LFT BLD: 10.00Ω	Range:	0.02 to 500.00Ω in steps of 0.01
MESSAG	-	PHS DIST Z1 QUAD LFT BLD RCA: 85°	Range:	60 to 90° in steps of 1
MESSAG	-	PHS DIST Z1 SUPV: 0.200 pu	Range:	0.050 to 30.000 pu in steps of 0.001

MESSAGE	-	PHS DIST Z1 VOLT LEVEL: 0.000 pu	Range: 0.000 to 5.000 pu in steps of 0.001
MESSAGE	-	$\begin{array}{\|l} \text { PHS DIST Z1 } \\ \text { DELAY: } 0.000 \mathrm{~s} \end{array}$	Range: 0.000 to 65.535 s in steps of 0.001
MESSAGE	-	PHS DIST Z1 BLK: Off	Range: FlexLogic ${ }^{\text {TM }}$ operand
MESSAGE	-	PHS DIST Z1 TARGET: Self-reset	Range: Self-reset, Latched, Disabled
MESSAGE	(4)	PHS DIST Z1 EVENTS: Disabled	Range: Disabled, Enabled

The phase mho distance function uses a dynamic 100% memory-polarized mho characteristic with additional reactance, directional, and overcurrent supervising characteristics. The phase quad distance function is comprised of a reactance characteristic, right and left blinders, and 100% memory-polarized directional and current supervising characteristics.

Three zones of phase distance protection are provided. Each zone is configured individually through its own setting menu. All of the settings can be independently modified for each of the zones except:

1. The signal source setting (common for phase and ground elements of all zones as entered under SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow 』$ DISTANCE).
2. The MEMORY DURATION setting (common for phase and ground elements of all zones as entered under SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ })$ DISTANCE).
The common distance settings described earlier must be properly chosen for correct operation of the phase distance elements. Even though all three zones can be used as either instantaneous elements (pickup [PKP] and dropout [DPO] FlexLogic ${ }^{\text {™ }}$ signals) or time-delayed elements (operate [OP] FlexLogic ${ }^{\text {TM }}$ signals), only Zone 1 is intended for the instantaneous under-reaching tripping mode. Additional details may be found in Chapter 8: Theory of Operation.

Ensure that the PHASE VT SECONDARY VOLTAGE setting (see the SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP \Rightarrow AC INPUTS $\Rightarrow \sqrt{ }$ VOLTAGE BANK menu) is set correctly to prevent improper operation of associated memory action.

- PHS DIST Z1 DIRECTION: All three zones are reversible. The forward direction by the PHS DIST Z1 RCA setting, whereas the reverse direction is shifted 180° from that angle.
- PHS DIST Z1 SHAPE: This setting selects the shape of the phase distance function between the mho and quad characteristics. The selection is available on a per-zone basis. The two characteristics and their possible variations are shown in the following figures.

Figure 5-39: MHO DISTANCE CHARACTERISTIC

Figure 5-40: QUAD DISTANCE CHARACTERISTIC

Figure 5-41: MHO DISTANCE CHARACTERISTIC SAMPLE SHAPES

Figure 5-42: QUAD DISTANCE CHARACTERISTIC SAMPLE SHAPES

- PHS DIST Z1 XFMR VOL CONNECTION: The phase distance elements can be applied to look through a three-phase delta-wye or wye-delta power transformer. In addition, VTs and CTs could be located independently from one another at different windings of the transformer. If the potential source is located at the correct side of the transformer, this setting shall be set to "None".

This setting specifies the location of the voltage source with respect to the involved power transformer in the direction of the zone.

- PHS DIST Z1 XFMR CUR CONNECTION: This setting specifies the location of the current source with respect to the involved power transformer in the direction of the zone.
See Chapter 8: Theory of Operation for more details, and Chapter 9: Application of Settings for information on how to calculate distance reach settings in applications involving power transformers.

Figure 5-43: APPLICATIONS OF THE PH DIST XFMR VOLICUR CONNECTION SETTINGS

- PHS DIST Z1 REACH: This setting defines the zone reach. The reach impedance is entered in secondary ohms. The reach impedance angle is entered as the PHS DIST Z1 RCA setting.
- PHS DIST Z1 RCA: This setting specifies the characteristic angle (similar to the "maximum torque angle" in previous technologies) of the phase distance characteristic. The setting is an angle of reach impedance as shown in Mho Distance Characteristic and Quad Distance Characteristic figures. This setting is independent from PHS DIST Z1 DIR RCA, the characteristic angle of an extra directional supervising function.
- PHS DIST Z1 COMP LIMIT: This setting shapes the operating characteristic. In particular, it produces the lens-type characteristic of the MHO function and a tent-shaped characteristic of the reactance boundary of the quad function. If the mho shape is selected, the same limit angle applies to both the mho and supervising reactance comparators. In conjunction with the mho shape selection, the setting improves loadability of the protected line. In conjunction with the quad characteristic, this setting improves security for faults close to the reach point by adjusting the reactance boundary into a tent-shape.
- PHS DIST Z1 DIR RCA: This setting selects the characteristic angle (or "maximum torque angle") of the directional supervising function. If the mho shape is applied, the directional function is an extra supervising function as the dynamic mho characteristic itself is a directional one. In conjunction with the quad shape selection, this setting defines the only directional function built into the phase distance element. The directional function uses the memory voltage for polarization. This setting typically equals the distance characteristic angle PHS DIST Z1 RCA.
- PHS DIST Z1 DIR COMP LIMIT: Selects the comparator limit angle for the directional supervising function.
- PHS DIST Z1 QUAD RGT BLD: This setting defines the right blinder position of the quad characteristic along the resistive axis of the impedance plane (see the Quad Distance Characteristic figure). The angular position of the blinder is adjustable with the use of the PHS DIST Z1 QUAD RGT BLD RCA setting. This setting applies only to the quad characteristic and should be set giving consideration to the maximum load current and required resistive coverage.
- PHS DIST Z1 QUAD RGT BLD RCA: This setting defines the angular position of the right blinder of the quad characteristic (see the Quad Distance Characteristic figure). This setting applies only to the quad characteristic.
- PHS DIST Z1 QUAD LFT BLD: This setting defines the left blinder position of the quad characteristic along the resistive axis of the impedance plane (see the Quad Distance Characteristic figure). The angular position of the blinder is adjustable with the use of the PHS DIST Z1 QUAD LFT BLD RCA setting. This setting applies only to the quad characteristic and should be set with consideration to the maximum load current.
- PHS DIST Z1 QUAD LFT BLD RCA: This setting defines the angular position of the left blinder of the quad characteristic (see the Quad Distance Characteristic figure). This setting applies only to the quad characteristic.
- PHS DIST Z1 SUPV: The phase distance elements are supervised by the magnitude of the line-to-line current (fault loop current used for the distance calculations). For convenience, $\sqrt{3}$ is accommodated by the pickup (i.e., before being used, the entered value of the threshold setting is multiplied by $\sqrt{3}$).
If the minimum fault current level is sufficient, the current supervision pickup should be set above maximum full load current preventing maloperation under VT fuse fail conditions. This requirement may be difficult to meet for remote faults at the end of Zones 2 through 3. If this is the case, the current supervision pickup would be set below the full load current, but this may result in maloperation during fuse fail conditions.
- PHS DIST Z1 VOLT LEVEL: This setting is relevant for applications on series-compensated lines, or in general, if series capacitors are located between the relaying point and a point where the zone shall not overreach. For plain (non-compensated) lines, set to zero. Otherwise, the setting is entered in per unit of the phase VT bank configured under the distance source. See Chapter 8: Theory of Operation for more details, and Chapter 9: Application of Settings for information on how to calculate this setting for applications on series compensated lines.
- PHS DIST Z1 DELAY: This setting allows the user to delay operation of the distance elements and implement stepped distance protection. The distance element timers for Zones 2 through 3 apply a short dropout delay to cope with faults located close to the zone boundary when small oscillations in the voltages and/or currents could inadvertently reset the timer. Zone 1 does not need any drop out delay since it is sealed-in by the presence of current.
- PHS DIST Z1 BLK: This setting enables the user to select a FlexLogic ${ }^{\text {TM }}$ operand to block a given distance element. VT fuse fail detection is one of the applications for this setting.

Figure 5-44: PHASE DISTANCE ZONE 1 TO 3 OP SCHEME

Figure 5-45: PHASE DISTANCE ZONE 1 TO 3 SCHEME LOGIC

c) GROUND DISTANCE

The ground Mho distance function uses a dynamic 100% memory-polarized mho characteristic with additional reactance, directional, current, and phase selection supervising characteristics. The ground quadrilateral distance function is composed of a reactance characteristic, right and left blinders, and 100\% memory-polarized directional, overcurrent, and phase selection supervising characteristics.
The reactance supervision uses zero-sequence current as a polarizing quantity making the characteristic adaptable to the pre-fault power flow. The directional supervision uses memory voltage as polarizing quantity and both zero- and negativesequence currents as operating quantities.
The phase selection supervision restrains the ground elements during double-line-to-ground faults as they - by principles of distance relaying - may be inaccurate in such conditions. Ground distance Zones 1 through 3 apply additional zerosequence directional supervision. See Chapter 8: Theory of Operation for additional details.
Four zones of ground distance protection are provided. Each zone is configured individually through its own setting menu. All of the settings can be independently modified for each of the zones except:

1. The SIGNAL SOURCE setting (common for both phase and ground elements for all three zones as entered under the SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6) $\Rightarrow \sqrt{ }$ dISTANCE Menu).
2. The MEMORY DURATION setting (common for both phase and ground elements for all three zones as entered under the SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6) $\Rightarrow \sqrt{ }$ DISTANCE Menu).
The common distance settings noted at the start of the Distance section must be properly chosen for correct operation of the ground distance elements.

Although all three zones can be used as either instantaneous elements (pickup [PKP] and dropout [DPO] FlexLogic ${ }^{\text {TM }}$ signals) or time-delayed elements (operate [OP] FlexLogic ${ }^{\text {TM }}$ signals), only Zone 1 is intended for the instantaneous underreaching tripping mode.

Ensure that the PHASE VT SECONDARY VOLTAGE (see the SETtings $\Rightarrow \sqrt{ }$ SYSTEM SETUP \Rightarrow AC INPUTS $\Rightarrow \sqrt{ }$ vOLTAGE BANK menu) is set correctly to prevent improper operation of associated memory action.

- GND DIST Z1 DIRECTION: All three zones are reversible. The forward direction is defined by the GND DIST Z1 RCA setting and the reverse direction is shifted by 180° from that angle.
- GND DIST Z1 SHAPE: This setting selects the shape of the ground distance characteristic between the mho and quad characteristics. The selection is available on a per-zone basis.
- GND DIST Z1 Z0IZ1 MAG: This setting specifies the ratio between the zero-sequence and positive-sequence impedance required for zero-sequence compensation of the ground distance elements. This setting is available on a perzone basis, enabling precise settings for tapped, non-homogeneous, and series compensated lines.
- GND DIST Z1 Z0IZ1 ANG: This setting specifies the angle difference between the zero-sequence and positivesequence impedance required for zero-sequence compensation of the ground distance elements. The entered value is the zero-sequence impedance angle minus the positive-sequence impedance angle. This setting is available on a perzone basis, enabling precise values for tapped, non-homologous, and series-compensated lines.
- GND DIST Z1 ZOMIZ1 MAG: The ground distance elements can be programmed to apply compensation for the zerosequence mutual coupling between parallel lines. If this compensation is required, the ground current from the parallel line (3I_0) measured in the direction of the zone being compensated must be connected to the ground input CT of the CT bank configured under the DISTANCE SOURCE. This setting specifies the ratio between the magnitudes of the mutual zero-sequence impedance between the lines and the positive-sequence impedance of the protected line. It is imperative to set this setting to zero if the compensation is not to be performed.
- GND DIST Z1 ZOMIZ1 ANG: This setting specifies the angle difference between the mutual zero-sequence impedance between the lines and the positive-sequence impedance of the protected line.
- GND DIST Z1 REACH: This setting defines the reach of the zone. The angle of the reach impedance is entered as the GND DIST $\mathbf{Z 1}$ RCA setting. The reach impedance is entered in secondary ohms.
- GND DIST Z1 RCA: The characteristic angle (similar to the "maximum torque angle" in previous technologies) of the ground distance characteristic is specified by this setting. It is set as an angle of reach impedance as shown in the Mho
and Quad Distance Characteristic figures. This setting is independent from the GND DIST Z1 DIR RCA setting (the characteristic angle of an extra directional supervising function).

The relay internally performs zero-sequence compensation for the protected circuit based on the values entered for GND DIST Z1 Z0IZ1 MAG and GND DIST Z1 ZOIZ1 ANG, and if configured to do so, zero-sequence compensation for mutual coupling based on the values entered for GND DIST Z1 ZoMIZ1 MAG and GND DIST Z1 Z0MIZ1 ANG (see Chapter 8: Theory of Operation for details). The GND DIST Z1 REACH and GND DIST Z1 RCA should, therefore, be entered in terms of positive sequence quantities.

- GND DIST Z1 COMP LIMIT: This setting shapes the operating characteristic. In particular, it enables a lens-shaped characteristic of the mho function and a tent-shaped characteristic of the quad function reactance boundary. If the mho shape is selected, the same limit angle applies to mho and supervising reactance comparators. In conjunction with the mho shape selection, this setting improves loadability of the protected line. In conjunction with the quad characteristic, this setting improves security for faults close to the reach point by adjusting the reactance boundary into a tent-shape.
- GND DIST Z1 DIR RCA: Selects the characteristic angle (or 'maximum torque angle') of the directional supervising function. If the mho shape is applied, the directional function is an extra supervising function, as the dynamic mho characteristic itself is a directional one. In conjunction with the quad shape selection, this setting defines the only directional function built into the ground distance element. The directional function uses memory voltage for polarization.
- GND DIST Z1 DIR COMP LIMIT: This setting selects the comparator limit angle for the directional supervising function.
- GND DIST Z1 QUAD RGT BLD: This setting defines the right blinder position of the quad characteristic along the resistive axis of the impedance plane (see the Quad Distance Characteristic figure). The angular position of the blinder is adjustable with the use of the GND DIST Z1 QUAD RGT BLD RCA setting. This setting applies only to the quad characteristic and should be set with consideration to the maximum load current and required resistive coverage.
- GND DIST Z1 QUAD RGT BLD RCA: This setting defines the angular position of the right blinder of the quad characteristic (see the Quad Distance Characteristic figure). This setting applies only to the quad characteristic.
- GND DIST Z1 QUAD LFT BLD: This setting defines the left blinder position of the quad characteristic along the resistive axis of the impedance plane (see the Quad Distance Characteristic figure). The angular position of the blinder is adjustable with the use of the GND DIST Z1 QUAD LFT BLD RCA setting. This setting applies only to the quad characteristic and should be set with consideration to the maximum load current.
- GND DIST Z1 QUAD LFT BLD RCA: This setting defines the angular position of the left blinder of the quad characteristic (see the Quad Distance Characteristic figure). This setting applies only to the quad characteristic.
- GND DIST Z1 SUPV: The ground distance elements are supervised by the magnitude of the neutral (31_0) current. The current supervision pickup should be set above the maximum unbalance current under maximum load conditions preventing maloperation due to VT fuse failure.
- GND DIST Z1 VOLT LEVEL: This setting is relevant for applications on series-compensated lines, or in general, if series capacitors are located between the relaying point and a point for which the zone shall not overreach. For plain (non-compensated) lines, this setting shall be set to zero. Otherwise, the setting is entered in per unit of the VT bank configured under the distance source. See Chapter 8 for more details, and Chapter 9 for information on how to calculate this setting for applications on series compensated lines.
- GND DIST Z1 DELAY: This setting enables the user to delay operation of the distance elements and implement a stepped distance backup protection. The distance element timer applies a short drop out delay to cope with faults located close to the boundary of the zone when small oscillations in the voltages and/or currents could inadvertently reset the timer.
- GND DIST Z1 BLK: This setting enables the user to select a FlexLogic ${ }^{T M}$ operand to block the given distance element. VT fuse fail detection is one of the applications for this setting.

Figure 5-46: GROUND DISTANCE Z1 TO Z3 OP SCHEME

837029A1.CDR
Figure 5-47: GROUND DISTANCE ZONE 1 TO ZONE 3 SCHEME LOGIC

GROUND DIRECTIONAL SUPERVISION:

A dual (zero- and negative-sequence) memory-polarized directional supervision applied to the ground distance protection elements has been shown to give good directional integrity. However, a reverse double-line-to-ground fault can lead to a maloperation of the ground element in a sound phase if the zone reach setting is increased to cover high resistance faults.

Ground distance Zones 2 through 3 use an additional ground directional supervision to enhance directional integrity. The element's directional characteristic angle is used as a "maximum torque angle" together with a 90° limit angle.

The supervision is biased toward operation in order to avoid compromising the sensitivity of ground distance elements at low signal levels. Otherwise, the reverse fault condition that generates concern will have high polarizing levels so that a correct reverse fault decision can be reliably made.

Figure 5-48: GROUND DIRECTIONAL SUPERVISION SCHEME LOGIC - Z1, Z2, Z3

PATH: SETTINGS $\Rightarrow \sqrt{ } \Rightarrow$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow 』$ POWER SWING DETECT

MESSAGE	Q	POWER SWING INNER LFT BLD: 100.00Ω	Range:	0.10 to 500.00Ω in steps of 0.01
MESSAGE	-	POWER SWING PICKUP DELAY 1: 0.030 s	Range:	0.000 to 65.535 s in steps of 0.001
MESSAGE	-	POWER SWING RESET DELAY 1: 0.050 s	Range:	0.000 to 65.535 s in steps of 0.001
MESSAGE	-	POWER SWING PICKUP DELAY 2: 0.017 s	Range:	0.000 to 65.535 s in steps of 0.001
MESSAGE	-	POWER SWING PICKUP DELAY 3: 0.009 s	Range:	0.000 to 65.535 s in steps of 0.001
MESSAGE	-	POWER SWING PICKUP DELAY 4: 0.017 s	Range:	0.000 to 65.535 s in steps of 0.001
MESSAGE	-	POWER SWING SEAL-IN DELAY: 0.400 s	Range:	0.000 to 65.535 s in steps of 0.001
MESSAGE	-	POWER SWING TRIP MODE: Delayed	Range:	Early, Delayed
MESSAGE	-	POWER SWING BLK: Off	Range:	Flexlogic ${ }^{\text {TM }}$ operand
MESSAGE	-	POWER SWING TARGET: Self-Reset	Range:	Self-Reset, Latched, Disabled
MESSAGE	(POWER SWING EVENTS: Disabled	Range:	Disabled, Enabled

The Power Swing Detect element provides both power swing blocking and out-of-step tripping functions. The element measures the positive-sequence apparent impedance and traces its locus with respect to either two or three user-selectable operating characteristic boundaries. Upon detecting appropriate timing relations, the blocking and/or tripping indication is given through FlexLogic ${ }^{\top M}$ operands. The element incorporates an adaptive disturbance detector. This function does not trigger on power swings, but is capable of detecting faster disturbances - faults in particular - that may occur during power swings. Operation of this dedicated disturbance detector is signaled via the POWER SWING 50DD operand.
The Power Swing Detect element asserts two outputs intended for blocking selected protection elements on power swings: POWER SWING BLOCK is a traditional signal that is safely asserted for the entire duration of the power swing, and POWER SWING UN/BLOCK is established in the same way, but resets when an extra disturbance is detected during the power swing. The POWER SWING UN/BLOCK operand may be used for blocking selected protection elements if the intent is to respond to faults during power swing conditions.
Different protection elements respond differently to power swings. If tripping is required for faults during power swing conditions, some elements may be blocked permanently (using the POWER SWING BLOCK operand), and others may be blocked and dynamically unblocked upon fault detection (using the POWER SWING UN/BLOCK operand).

The operating characteristic and logic figures should be viewed along with the following discussion to develop an understanding of the operation of the element.

The Power Swing Detect element operates in three-step or two-step mode:

- Three-step operation: The power swing blocking sequence essentially times the passage of the locus of the positivesequence impedance between the outer and the middle characteristic boundaries. If the locus enters the outer characteristic (indicated by the POWER SWING OUTER FlexLogic ${ }^{\text {TM }}$ operand) but stays outside the middle characteristic (indicated by the POWER SWING MIDDLE FlexLogic ${ }^{\text {TM }}$ operand) for an interval longer than POWER SWING PICKUP DELAY 1 , the power swing blocking signal (POWER SWING BLOCK FlexLogic ${ }^{\text {TM }}$ operand) is established and sealed-in. The blocking signal resets when the locus leaves the outer characteristic, but not sooner than the POWER SWING RESET DELAY 1 time.
- Two-step operation: If the 2-step mode is selected, the sequence is identical, but it is the outer and inner characteristics that are used to time the power swing locus.

The Out-of-Step Tripping feature operates as follows for three-step and two-step Power Swing Detection modes:

- Three-step operation: The out-of-step trip sequence identifies unstable power swings by determining if the impedance locus spends a finite time between the outer and middle characteristics and then a finite time between the middle and inner characteristics. The first step is similar to the power swing blocking sequence. After timer POWER SWING PICKUP DELAY 1 times out, Latch 1 is set as long as the impedance stays within the outer characteristic.
If afterwards, at any time (given the impedance stays within the outer characteristic), the locus enters the middle characteristic but stays outside the inner characteristic for a period of time defined as POWER SWING PICKUP DELAY 2, Latch 2 is set as long as the impedance stays inside the outer characteristic. If afterwards, at any time (given the impedance stays within the outer characteristic), the locus enters the inner characteristic and stays there for a period of time defined as POWER SWING PICKUP DELAY 3, Latch 2 is set as long as the impedance stays inside the outer characteristic; the element is now ready to trip.
If the "Early" trip mode is selected, the POWER SWING TRIP operand is set immediately and sealed-in for the interval set by the POWER SWING SEAL-IN DELAY. If the "Delayed" trip mode is selected, the element waits until the impedance locus leaves the inner characteristic, then times out the POWER SWING PICKUP DELAY 2 and sets Latch 4; the element is now ready to trip. The trip operand is set later, when the impedance locus leaves the outer characteristic.
- Two-step operation: The 2-step mode of operation is similar to the 3-step mode with two exceptions. First, the initial stage monitors the time spent by the impedance locus between the outer and inner characteristics. Second, the stage involving the POWER SWING PICKUP DELAY 2 timer is bypassed. It is up to the user to integrate the blocking (POWER SWING BLOCK) and tripping (POWER SWING TRIP) FlexLogic ${ }^{\text {TM }}$ operands with other protection functions and output contacts in order to make this element fully operational.

The element can be set to use either lens (mho) or rectangular (quad) characteristics as illustrated below. When set to "Mho", the element applies the right and left blinders as well. If the blinders are not required, their settings should be set high enough to effectively disable the blinders.

Figure 5-49: POWER SWING DETECT MHO OPERATING CHARACTERISTICS

Figure 5-50: EFFECTS OF BLINDERS ON THE MHO CHARACTERISTICS

Figure 5-51: POWER SWING DETECT QUAD OPERATING CHARACTERISTICS
The FlexLogic ${ }^{\text {TM }}$ output operands for the Power Swing Detect element are described below:

- The POWER SWING OUTER, POWER SWING MIDDLE, POWER SWING INNER, POWER SWING TMR2 PKP, POWER SWING TMR3 PKP, and POWER SWING TMR4 PKP FlexLogic ${ }^{\text {TM }}$ operands are auxiliary operands that could be used to facilitate testing and special applications.
- The POWER SWING bLock FlexLogic ${ }^{\text {TM }}$ operand shall be used to block selected protection elements such as distance functions.
- The POWER SWING UN/BLOCK FlexLogic ${ }^{\text {TM }}$ operand shall be used to block those protection elements that are intended to be blocked under power swings, but subsequently unblocked should a fault occur after the power swing blocking condition has been established.
- The POWER SWING 50DD FlexLogic ${ }^{\text {TM }}$ operand indicates that an adaptive disturbance detector integrated with the element has picked up. This operand will trigger on faults occurring during power swing conditions. This includes both three-phase and single-pole-open conditions.
- The power swing incoming FlexLogic ${ }^{\text {™ }}$ operand indicates an unstable power swing with an incoming locus (the locus enters the inner characteristic).
- The POWER SWING OUTGOING FlexLogic ${ }^{\text {TM }}$ operand indicates an unstable power swing with an outgoing locus (the locus leaving the outer characteristic). This operand can be used to count unstable swings and take certain action only after pre-defined number of unstable power swings.
- The POWER SWING TRIP FlexLogic ${ }^{\text {TM }}$ operand is a trip command.

The settings for the Power Swing Detect element are described below:

- POWER SWING FUNCTION: This setting enables/disables the entire Power Swing Detection element. The setting applies to both power swing blocking and out-of-step tripping functions.
- POWER SWING SOURCE: The source setting identifies the Signal Source for both blocking and tripping functions.
- POWER SWING SHAPE: This setting selects the shapes (either "Mho" or "Quad") of the outer, middle and, inner characteristics of the power swing detect element. The operating principle is not affected. The "Mho" characteristics use the left and right blinders.
- POWER SWING MODE: This setting selects between the 2-step and 3-step operating modes and applies to both power swing blocking and out-of-step tripping functions. The 3-step mode applies if there is enough space between the maximum load impedances and distance characteristics of the relay that all three (outer, middle, and inner) characteristics can be placed between the load and the distance characteristics. Whether the spans between the outer and middle as well as the middle and inner characteristics are sufficient should be determined by analysis of the fastest power swings expected in correlation with settings of the power swing timers.
The 2-step mode uses only the outer and inner characteristics for both blocking and tripping functions. This leaves more space in heavily loaded systems to place two power swing characteristics between the distance characteristics and the maximum load, but allows for only one determination of the impedance trajectory.
- POWER SWING SUPV: A common overcurrent pickup level supervises all three power swing characteristics. The supervision responds to the positive sequence current.
- POWER SWING FWD REACH: This setting specifies the forward reach of all three mho characteristics and the inner quad characteristic. For a simple system consisting of a line and two equivalent sources, this reach should be higher than the sum of the line and remote source positive-sequence impedances. Detailed transient stability studies may be needed for complex systems in order to determine this setting. The angle of this reach impedance is specified by the POWER SWING FWD RCA setting.
- POWER SWING QUAD FWD REACH MID: This setting specifies the forward reach of the middle quad characteristic. The angle of this reach impedance is specified by the POWER SWING FWD RCA setting. The setting is not used if the shape setting is "Mho".
- POWER SWING QUAD FWD REACH OUT: This setting specifies the forward reach of the outer quad characteristic. The angle of this reach impedance is specified by the POWER SWING FWD RCA setting. The setting is not used if the shape setting is "Mho".
- POWER SWING FWD RCA: This setting specifies the angle of the forward reach impedance for the mho characteristics, angles of all the blinders, and both forward and reverse reach impedances of the quad characteristics.
- POWER SWING REV REACH: This setting specifies the reverse reach of all three mho characteristics and the inner quad characteristic. For a simple system of a line and two equivalent sources, this reach should be higher than the positive-sequence impedance of the local source. Detailed transient stability studies may be needed for complex systems to determine this setting. The angle of this reach impedance is specified by the POWER SWING REV RCA setting for "Mho", and the POWER SWING FWD RCA setting for "Quad".
- POWER SWING QUAD REV REACH MID: This setting specifies the reverse reach of the middle quad characteristic. The angle of this reach impedance is specified by the POWER SWING FWD RCA setting. The setting is not used if the shape setting is "Mho".
- POWER SWING QUAD REV REACH OUT: This setting specifies the reverse reach of the outer quad characteristic. The angle of this reach impedance is specified by the POWER SWING FWD RCA setting. The setting is not used if the shape setting is "Mho".
- POWER SWING REV RCA: This setting specifies the angle of the reverse reach impedance for the mho characteristics. This setting applies to mho shapes only.
- POWER SWING OUTER LIMIT ANGLE: This setting defines the outer power swing characteristic. The convention depicted in the Power Swing Detect Characteristic diagram should be observed: values greater than 90° result in an 'apple' shaped characteristic; values less than 90° result in a lens shaped characteristic. This angle must be selected in consideration of the maximum expected load. If the maximum load angle is known, the outer limit angle should be coordinated with a 20° security margin. Detailed studies may be needed for complex systems to determine this setting. This setting applies to mho shapes only.
- POWER SWING MIDDLE LIMIT ANGLE: This setting defines the middle power swing detect characteristic. It is relevant only for the 3-step mode. A typical value would be close to the average of the outer and inner limit angles. This setting applies to mho shapes only.
- POWER SWING INNER LIMIT ANGLE: This setting defines the inner power swing detect characteristic. The inner characteristic is used by the out-of-step tripping function: beyond the inner characteristic out-of-step trip action is definite (the actual trip may be delayed as per the TRIP MODE setting). Therefore, this angle must be selected in consideration to the power swing angle beyond which the system becomes unstable and cannot recover.

The inner characteristic is also used by the power swing blocking function in the 2-step mode. In this case, set this angle large enough so that the characteristics of the distance elements are safely enclosed by the inner characteristic. This setting applies to mho shapes only.

- POWER SWING OUTER, MIDDLE, and INNER RGT BLD: These settings specify the resistive reach of the right blinder. The blinder applies to both "Mho" and "Quad" characteristics. Set these value high if no blinder is required for the "Mho" characteristic.
- POWER SWING OUTER, MIDDLE, and INNER LFT BLD: These settings specify the resistive reach of the left blinder. Enter a positive value; the relay automatically uses a negative value. The blinder applies to both "Mho" and "Quad" characteristics. Set this value high if no blinder is required for the "Mho" characteristic.
- POWER SWING PICKUP DELAY 1: All the coordinating timers are related to each other and should be set to detect the fastest expected power swing and produce out-of-step tripping in a secure manner. The timers should be set in consideration to the power swing detect characteristics, mode of power swing detect operation and mode of out-ofstep tripping. This timer defines the interval that the impedance locus must spend between the outer and inner characteristics (2-step operating mode), or between the outer and middle characteristics (3-step operating mode) before the power swing blocking signal is established. This time delay must be set shorter than the time required for the impedance locus to travel between the two selected characteristics during the fastest expected power swing. This setting is relevant for both power swing blocking and out-of-step tripping.
- POWER SWING RESET DELAY 1: This setting defines the dropout delay for the power swing blocking signal. Detection of a condition requiring a Block output sets Latch 1 after PICKUP DELAY 1 time. When the impedance locus leaves the outer characteristic, timer POWER SWING RESET DELAY 1 is started. When the timer times-out the latch is reset. This setting should be selected to give extra security for the power swing blocking action.
- POWER SWING PICKUP DELAY 2: Controls the out-of-step tripping function in the 3-step mode only. This timer defines the interval the impedance locus must spend between the middle and inner characteristics before the second step of the out-of-step tripping sequence is completed. This time delay must be set shorter than the time required for the impedance locus to travel between the two characteristics during the fastest expected power swing.
- POWER SWING PICKUP DELAY 3: Controls the out-of-step tripping function only. It defines the interval the impedance locus must spend within the inner characteristic before the last step of the out-of-step tripping sequence is completed and the element is armed to trip. The actual moment of tripping is controlled by the TRIP MODE setting. This time delay is provided for extra security before the out-of-step trip action is executed.
- POWER SWING PICKUP DELAY 4: Controls the out-of-step tripping function in "Delayed" trip mode only. This timer defines the interval the impedance locus must spend outside the inner characteristic but within the outer characteristic before the element is armed for the delayed trip. The delayed trip occurs when the impedance leaves the outer characteristic. This time delay is provided for extra security and should be set considering the fastest expected power swing.
- POWER SWING SEAL-IN DELAY: The out-of-step trip FlexLogic ${ }^{\text {TM }}$ operand (POWER SWING TRIP) is sealed-in for the specified period of time. The sealing-in is crucial in the delayed trip mode, as the original trip signal is a very short pulse occurring when the impedance locus leaves the outer characteristic after the out-of-step sequence is completed.
- POWER SWING TRIP MODE: Selection of the "Early" trip mode results in an instantaneous trip after the last step in the out-of-step tripping sequence is completed. The Early trip mode will stress the circuit breakers as the currents at that moment are high (the electromotive forces of the two equivalent systems are approximately 180° apart). Selection of the "Delayed" trip mode results in a trip at the moment when the impedance locus leaves the outer characteristic. Delayed trip mode will relax the operating conditions for the breakers as the currents at that moment are low. The selection should be made considering the capability of the breakers in the system.
- POWER SWING BLK: This setting specifies the FlexLogic ${ }^{\text {TM }}$ operand used for blocking the out-of-step function only. The power swing blocking function is operational all the time as long as the element is enabled. The blocking signal resets the output POWER SWING TRIP operand but does not stop the out-of-step tripping sequence.

Figure 5-52: POWER SWING DETECT SCHEME LOGIC (1 of 3)

Figure 5-53: POWER SWING DETECT SCHEME LOGIC (2 of 3)

Figure 5-54: POWER SWING DETECT SCHEME LOGIC (3 of 3)

5 SETTINGS

PATH: SETTINGS $\Rightarrow \sqrt{ } \Rightarrow$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ })$ LOAD ENCROACHMENT

The Load Encroachment element responds to the positive-sequence voltage and current and applies a characteristic shown in the figure below.

Figure 5-55: LOAD ENCROACHMENT CHARACTERISTIC
The element operates if the positive-sequence voltage is above a settable level and asserts its output signal that can be used to block selected protection elements such as distance or phase overcurrent. The following figure shows an effect of the Load Encroachment characteristics used to block the Quad distance element.

Figure 5-56: LOAD ENCROACHMENT APPLIED TO DISTANCE ELEMENT

- LOAD ENCROACHMENT MIN VOLT: This setting specifies the minimum positive-sequence voltage required for operation of the element. If the voltage is below this threshold a blocking signal will not be asserted by the element. When selecting this setting one must remember that the D30 measures the phase-to-ground sequence voltages regardless of the VT connection.
The nominal VT secondary voltage as specified under PATH: SYSTEM SETUP $\Rightarrow \sqrt{ }$ AC INPUTS \Rightarrow VOLTAGE BANK X5 $\Rightarrow \sqrt{ }$ PHASE VT SECONDARY is the p.u. base for this setting.
- LOAD ENCROACHMENT REACH: This setting specifies the resistive reach of the element as shown in the Load Encroachment Characteristic diagram. This setting should be entered in secondary ohms and be calculated as the positive-sequence resistance seen by the relay under maximum load conditions and unity power factor.
- LOAD ENCROACHMENT ANGLE: This setting specifies the size of the blocking region as shown on the Load Encroachment Characteristic diagram and applies to the positive sequence impedance.

Figure 5-57: LOAD ENCROACHMENT SCHEME LOGIC
a) MAIN MENU

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ }$ PHASE CURRENT

b) INVERSE TOC CURVE CHARACTERISTICS

The inverse time overcurrent curves used by the TOC (time overcurrent) Current Elements are the IEEE, IEC, GE Type IAC, and $I^{2} t$ standard curve shapes. This allows for simplified coordination with downstream devices. If however, none of these curve shapes is adequate, FlexCurves ${ }^{\text {TM }}$ may be used to customize the inverse time curve characteristics. The Definite Time curve is also an option that may be appropriate if only simple protection is required.

Table 5-9: OVERCURRENT CURVE TYPES

IEEE	IEC	GE TYPE IAC	OTHER
IEEE Extremely Inv.	IEC Curve A (BS142)	IAC Extremely Inv.	$\mathrm{I}^{2} \mathrm{t}$
IEEE Very Inverse	IEC Curve B (BS142)	IAC Very Inverse	FlexCurves ${ }^{\text {TM }} \mathrm{A}, \mathrm{B}, \mathrm{C}$, and D
IEEE Moderately Inv.	IEC Curve C (BS142)	IAC Inverse	Recloser Curves
	IEC Short Inverse	IAC Short Inverse	Definite Time

A time dial multiplier setting allows selection of a multiple of the base curve shape (where the time dial multiplier $=1$) with the curve shape (CURVE) setting. Unlike the electromechanical time dial equivalent, operate times are directly proportional to the time multiplier (TD MULTIPLIER) setting value. For example, all times for a multiplier of 10 are 10 times the multiplier 1 or base curve values. Setting the multiplier to zero results in an instantaneous response to all current levels above pickup.

Time overcurrent time calculations are made with an internal "energy capacity" memory variable. When this variable indicates that the energy capacity has reached 100\%, a time overcurrent element will operate. If less than 100\% energy capacity is accumulated in this variable and the current falls below the dropout threshold of 97 to 98% of the pickup value, the variable must be reduced. Two methods of this resetting operation are available: "Instantaneous" and "Timed". The Instantaneous selection is intended for applications with other relays, such as most static relays, which set the energy capacity directly to zero when the current falls below the reset threshold. The Timed selection can be used where the relay must coordinate with electromechanical relays.

IEEE CURVES:

The IEEE time overcurrent curve shapes conform to industry standards and the IEEE C37.112-1996 curve classifications for extremely, very, and moderately inverse. The IEEE curves are derived from the formulae:

$$
\begin{equation*}
T=T D M \times\left[\frac{A}{\left(\frac{1}{l_{\text {pickup }}}\right)^{p}-1}+B\right], T_{\text {RESET }}=T D M \times\left[\frac{t_{r}}{1-\left(\frac{l}{l_{\text {pickup }}}\right)^{2}}\right] \tag{EQ5.7}
\end{equation*}
$$

where: $\quad T$ = operate time (in seconds), $T D M=$ Multiplier setting, $I=$ input current, $I_{\text {pickup }}=$ Pickup Current setting
$A, B, p=$ constants, $T_{\text {RESET }}=$ reset time in seconds (assuming energy capacity is 100% and RESET is "Timed"), $t_{r}=$ characteristic constant

Table 5-10: IEEE INVERSE TIME CURVE CONSTANTS

IEEE CURVE SHAPE	\mathbf{A}	\mathbf{B}	\mathbf{P}	$\mathbf{T}_{\mathbf{R}}$
IEEE Extremely Inverse	28.2	0.1217	2.0000	29.1
IEEE Very Inverse	19.61	0.491	2.0000	21.6
IEEE Moderately Inverse	0.0515	0.1140	0.02000	4.85

Table 5-11: IEEE CURVE TRIP TIMES (IN SECONDS)

$\begin{aligned} & \text { MULTIPLIER } \\ & \text { (TDM) } \end{aligned}$	CURRENT (I I I ${ }_{\text {pickup }}$)									
	1.5	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
IEEE EXTREMELY INVERSE										
0.5	11.341	4.761	1.823	1.001	0.648	0.464	0.355	0.285	0.237	0.203
1.0	22.682	9.522	3.647	2.002	1.297	0.927	0.709	0.569	0.474	0.407
2.0	45.363	19.043	7.293	4.003	2.593	1.855	1.418	1.139	0.948	0.813
4.0	90.727	38.087	14.587	8.007	5.187	3.710	2.837	2.277	1.897	1.626
6.0	136.090	57.130	21.880	12.010	7.780	5.564	4.255	3.416	2.845	2.439
8.0	181.454	76.174	29.174	16.014	10.374	7.419	5.674	4.555	3.794	3.252
10.0	226.817	95.217	36.467	20.017	12.967	9.274	7.092	5.693	4.742	4.065
IEEE VERY INVERSE										
0.5	8.090	3.514	1.471	0.899	0.654	0.526	0.450	0.401	0.368	0.345
1.0	16.179	7.028	2.942	1.798	1.308	1.051	0.900	0.802	0.736	0.689
2.0	32.358	14.055	5.885	3.597	2.616	2.103	1.799	1.605	1.472	1.378
4.0	64.716	28.111	11.769	7.193	5.232	4.205	3.598	3.209	2.945	2.756
6.0	97.074	42.166	17.654	10.790	7.849	6.308	5.397	4.814	4.417	4.134
8.0	129.432	56.221	23.538	14.387	10.465	8.410	7.196	6.418	5.889	5.513
10.0	161.790	70.277	29.423	17.983	13.081	10.513	8.995	8.023	7.361	6.891
IEEE MODERATELY INVERSE										
0.5	3.220	1.902	1.216	0.973	0.844	0.763	0.706	0.663	0.630	0.603
1.0	6.439	3.803	2.432	1.946	1.688	1.526	1.412	1.327	1.260	1.207
2.0	12.878	7.606	4.864	3.892	3.377	3.051	2.823	2.653	2.521	2.414
4.0	25.756	15.213	9.729	7.783	6.753	6.102	5.647	5.307	5.041	4.827
6.0	38.634	22.819	14.593	11.675	10.130	9.153	8.470	7.960	7.562	7.241
8.0	51.512	30.426	19.458	15.567	13.507	12.204	11.294	10.614	10.083	9.654
10.0	64.390	38.032	24.322	19.458	16.883	15.255	14.117	13.267	12.604	12.068

IEC CURVES

For European applications, the relay offers three standard curves defined in IEC 255-4 and British standard BS142. These are defined as IEC Curve A, IEC Curve B, and IEC Curve C. The formulae for these curves are:

$$
T=T D M \times\left[\frac{K}{\left(I / I_{\text {pickup }}\right)^{E}-1}\right], T_{R E S E T}=T D M \times\left[\frac{t_{r}}{1-\left(I / I_{\text {pickup }}\right)^{2}}\right]
$$

(EQ 5.8)
where: $\quad T=$ operate time (in seconds), $T D M=$ Multiplier setting, $I=$ input current, $I_{\text {pickup }}=$ Pickup Current setting, $K, E=$ constants, $t_{r}=$ characteristic constant, and $T_{\text {RESET }}=$ reset time in seconds (assuming energy capacity is 100% and RESET is "Timed")

Table 5-12: IEC (BS) INVERSE TIME CURVE CONSTANTS

IEC (BS) CURVE SHAPE	\mathbf{K}	\mathbf{E}	$\mathbf{T}_{\mathbf{R}}$
IEC Curve A (BS142)	0.140	0.020	9.7
IEC Curve B (BS142)	13.500	1.000	43.2
IEC Curve C (BS142)	80.000	2.000	58.2
IEC Short Inverse	0.050	0.040	0.500

Table 5-13: IEC CURVE TRIP TIMES (IN SECONDS)

MULTIPLIER (TDM)	CURRENT (I I I pickup $^{\text {) }}$									
	1.5	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
IEC CURVE A										
0.05	0.860	0.501	0.315	0.249	0.214	0.192	0.176	0.165	0.156	0.149
0.10	1.719	1.003	0.630	0.498	0.428	0.384	0.353	0.330	0.312	0.297
0.20	3.439	2.006	1.260	0.996	0.856	0.767	0.706	0.659	0.623	0.594
0.40	6.878	4.012	2.521	1.992	1.712	1.535	1.411	1.319	1.247	1.188
0.60	10.317	6.017	3.781	2.988	2.568	2.302	2.117	1.978	1.870	1.782
0.80	13.755	8.023	5.042	3.984	3.424	3.070	2.822	2.637	2.493	2.376
1.00	17.194	10.029	6.302	4.980	4.280	3.837	3.528	3.297	3.116	2.971
IEC CURVE B										
0.05	1.350	0.675	0.338	0.225	0.169	0.135	0.113	0.096	0.084	0.075
0.10	2.700	1.350	0.675	0.450	0.338	0.270	0.225	0.193	0.169	0.150
0.20	5.400	2.700	1.350	0.900	0.675	0.540	0.450	0.386	0.338	0.300
0.40	10.800	5.400	2.700	1.800	1.350	1.080	0.900	0.771	0.675	0.600
0.60	16.200	8.100	4.050	2.700	2.025	1.620	1.350	1.157	1.013	0.900
0.80	21.600	10.800	5.400	3.600	2.700	2.160	1.800	1.543	1.350	1.200
1.00	27.000	13.500	6.750	4.500	3.375	2.700	2.250	1.929	1.688	1.500
IEC CURVE C										
0.05	3.200	1.333	0.500	0.267	0.167	0.114	0.083	0.063	0.050	0.040
0.10	6.400	2.667	1.000	0.533	0.333	0.229	0.167	0.127	0.100	0.081
0.20	12.800	5.333	2.000	1.067	0.667	0.457	0.333	0.254	0.200	0.162
0.40	25.600	10.667	4.000	2.133	1.333	0.914	0.667	0.508	0.400	0.323
0.60	38.400	16.000	6.000	3.200	2.000	1.371	1.000	0.762	0.600	0.485
0.80	51.200	21.333	8.000	4.267	2.667	1.829	1.333	1.016	0.800	0.646
1.00	64.000	26.667	10.000	5.333	3.333	2.286	1.667	1.270	1.000	0.808
IEC SHORT TIME										
0.05	0.153	0.089	0.056	0.044	0.038	0.034	0.031	0.029	0.027	0.026
0.10	0.306	0.178	0.111	0.088	0.075	0.067	0.062	0.058	0.054	0.052
0.20	0.612	0.356	0.223	0.175	0.150	0.135	0.124	0.115	0.109	0.104
0.40	1.223	0.711	0.445	0.351	0.301	0.269	0.247	0.231	0.218	0.207
0.60	1.835	1.067	0.668	0.526	0.451	0.404	0.371	0.346	0.327	0.311
0.80	2.446	1.423	0.890	0.702	0.602	0.538	0.494	0.461	0.435	0.415
1.00	3.058	1.778	1.113	0.877	0.752	0.673	0.618	0.576	0.544	0.518

IAC CURVES:

The curves for the General Electric type IAC relay family are derived from the formulae:

$$
\begin{equation*}
T=\operatorname{TDM} \times\left(A+\frac{B}{\left(I / I_{p k p}\right)-C}+\frac{D}{\left(\left(I / I_{p k p}\right)-C\right)^{2}}+\frac{E}{\left(\left(I / I_{p k p}\right)-C\right)^{3}}\right), T_{R E S E T}=T D M \times\left[\frac{t_{r}}{1-\left(I / I_{p k p}\right)^{2}}\right] \tag{EQ5.9}
\end{equation*}
$$

where: $\quad T=$ operate time (in seconds), $T D M=$ Multiplier setting, $I=$ Input current, $I_{p k p}=$ Pickup Current setting, A to $E=$ constants, $t_{r}=$ characteristic constant, and $T_{\text {RESET }}=$ reset time in seconds (assuming energy capacity is 100% and RESET is "Timed")

Table 5-14: GE TYPE IAC INVERSE TIME CURVE CONSTANTS

IAC CURVE SHAPE	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	$\mathbf{T}_{\mathbf{R}}$
IAC Extreme Inverse	0.0040	0.6379	0.6200	1.7872	0.2461	6.008
IAC Very Inverse	0.0900	0.7955	0.1000	-1.2885	7.9586	4.678
IAC Inverse	0.2078	0.8630	0.8000	-0.4180	0.1947	0.990
IAC Short Inverse	0.0428	0.0609	0.6200	-0.0010	0.0221	0.222

Table 5-15: IAC CURVE TRIP TIMES

MULTIPLIER (TDM)	CURRENT (I / I pickup $^{\text {) }}$									
	1.5	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
IAC EXTREMELY INVERSE										
0.5	1.699	0.749	0.303	0.178	0.123	0.093	0.074	0.062	0.053	0.046
1.0	3.398	1.498	0.606	0.356	0.246	0.186	0.149	0.124	0.106	0.093
2.0	6.796	2.997	1.212	0.711	0.491	0.372	0.298	0.248	0.212	0.185
4.0	13.591	5.993	2.423	1.422	0.983	0.744	0.595	0.495	0.424	0.370
6.0	20.387	8.990	3.635	2.133	1.474	1.115	0.893	0.743	0.636	0.556
8.0	27.183	11.987	4.846	2.844	1.966	1.487	1.191	0.991	0.848	0.741
10.0	33.979	14.983	6.058	3.555	2.457	1.859	1.488	1.239	1.060	0.926
IAC VERY INVERSE										
0.5	1.451	0.656	0.269	0.172	0.133	0.113	0.101	0.093	0.087	0.083
1.0	2.901	1.312	0.537	0.343	0.266	0.227	0.202	0.186	0.174	0.165
2.0	5.802	2.624	1.075	0.687	0.533	0.453	0.405	0.372	0.349	0.331
4.0	11.605	5.248	2.150	1.374	1.065	0.906	0.810	0.745	0.698	0.662
6.0	17.407	7.872	3.225	2.061	1.598	1.359	1.215	1.117	1.046	0.992
8.0	23.209	10.497	4.299	2.747	2.131	1.813	1.620	1.490	1.395	1.323
10.0	29.012	13.121	5.374	3.434	2.663	2.266	2.025	1.862	1.744	1.654
IAC INVERSE										
0.5	0.578	0.375	0.266	0.221	0.196	0.180	0.168	0.160	0.154	0.148
1.0	1.155	0.749	0.532	0.443	0.392	0.360	0.337	0.320	0.307	0.297
2.0	2.310	1.499	1.064	0.885	0.784	0.719	0.674	0.640	0.614	0.594
4.0	4.621	2.997	2.128	1.770	1.569	1.439	1.348	1.280	1.229	1.188
6.0	6.931	4.496	3.192	2.656	2.353	2.158	2.022	1.921	1.843	1.781
8.0	9.242	5.995	4.256	3.541	3.138	2.878	2.695	2.561	2.457	2.375
10.0	11.552	7.494	5.320	4.426	3.922	3.597	3.369	3.201	3.072	2.969
IAC SHORT INVERSE										
0.5	0.072	0.047	0.035	0.031	0.028	0.027	0.026	0.026	0.025	0.025
1.0	0.143	0.095	0.070	0.061	0.057	0.054	0.052	0.051	0.050	0.049
2.0	0.286	0.190	0.140	0.123	0.114	0.108	0.105	0.102	0.100	0.099
4.0	0.573	0.379	0.279	0.245	0.228	0.217	0.210	0.204	0.200	0.197
6.0	0.859	0.569	0.419	0.368	0.341	0.325	0.314	0.307	0.301	0.296
8.0	1.145	0.759	0.559	0.490	0.455	0.434	0.419	0.409	0.401	0.394
10.0	1.431	0.948	0.699	0.613	0.569	0.542	0.524	0.511	0.501	0.493

5 SETTINGS

12t CURVES:

The curves for the $\mathrm{I}^{2} \mathrm{t}$ are derived from the formulae:

$$
T=\operatorname{TDM} \times\left[\frac{100}{\left(\frac{1}{I_{\text {pickup }}}\right)^{2}}\right], T_{\text {RESET }}=\operatorname{TDM} \times\left[\frac{100}{\left(\frac{1}{l_{\text {pickup }}}\right)^{-2}}\right]
$$

(EQ 5.10)
where: $\quad T=$ Operate Time (sec.); TDM = Multiplier Setting; $I=$ Input Current; $I_{\text {pickup }}=$ Pickup Current Setting; $T_{\text {RESET }}=$ Reset Time in sec. (assuming energy capacity is 100% and RESET: Timed)

Table 5-16: I^{2} T CURVE TRIP TIMES

MULTIPLIER (TDM)	CURRENT (I I I ${ }_{\text {pickup }}$)									
	1.5	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
0.01	0.44	0.25	0.11	0.06	0.04	0.03	0.02	0.02	0.01	0.01
0.10	4.44	2.50	1.11	0.63	0.40	0.28	0.20	0.16	0.12	0.10
1.00	44.44	25.00	11.11	6.25	4.00	2.78	2.04	1.56	1.23	1.00
10.00	444.44	250.00	111.11	62.50	40.00	27.78	20.41	15.63	12.35	10.00
100.00	4444.4	2500.0	1111.1	625.00	400.00	277.78	204.08	156.25	123.46	100.00
600.00	26666.7	15000.0	6666.7	3750.0	2400.0	1666.7	1224.5	937.50	740.74	600.00

FLEXCURVES ${ }^{\text {TM }}$:

The custom FlexCurves ${ }^{\text {TM }}$ are described in detail in the FlexCurves ${ }^{\text {TM }}$ section of this chapter. The curve shapes for the FlexCurves ${ }^{\text {TM }}$ are derived from the formulae:

$$
\begin{gathered}
T=\text { TDM } \times\left[\text { FlexCurve Time at }\left(\frac{1}{I_{\text {pickup }}}\right)\right] \text { when }\left(\frac{I}{I_{\text {pickup }}}\right) \geq 1.00 \\
T_{\text {RESET }}=\mathrm{TDM} \times\left[\text { FlexCurve Time at }\left(\frac{1}{I_{\text {pickup }}}\right)\right] \text { when }\left(\frac{1}{I_{\text {pickup }}}\right) \leq 0.98
\end{gathered}
$$

(EQ 5.11)
(EQ 5.12)
where: $\quad T=$ Operate Time (sec.), TDM = Multiplier setting
$I=$ Input Current, $I_{\text {pickup }}=$ Pickup Current setting
$T_{\text {RESET }}=$ Reset Time in seconds (assuming energy capacity is 100% and RESET: Timed)

DEFINITE TIME CURVE:

The Definite Time curve shape operates as soon as the pickup level is exceeded for a specified period of time. The base definite time curve delay is in seconds. The curve multiplier of 0.00 to 600.00 makes this delay adjustable from instantaneous to 600.00 seconds in steps of 10 ms .

$$
\begin{gather*}
T=\text { TDM in seconds, when } I>I_{\text {pickup }} \tag{EQ5.13}\\
T_{\text {RESET }}=\text { TDM in seconds } \tag{EQ5.14}
\end{gather*}
$$

where: $\quad T=$ Operate Time (sec.), TDM = Multiplier setting
$I=$ Input Current, $I_{\text {pickup }}=$ Pickup Current setting
$T_{\text {RESET }}=$ Reset Time in seconds (assuming energy capacity is 100% and RESET: Timed)

RECLOSER CURVES:

The D30 uses the FlexCurve ${ }^{\mathrm{TM}}$ feature to facilitate programming of 41 recloser curves. Please refer to the FlexCurve ${ }^{\mathrm{TM}}$ section in this chapter for additional details.
c) PHASE TIME OVERCURRENT (ANSI 51P)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow$ PHASE CURRENT \Rightarrow PHASE TOC1(2)

The phase time overcurrent element can provide a desired time-delay operating characteristic versus the applied current or be used as a simple Definite Time element. The phase current input quantities may be programmed as fundamental phasor magnitude or total waveform RMS magnitude as required by the application.

Two methods of resetting operation are available: "Timed" and "Instantaneous" (refer to the Inverse TOC Curves Characteristic sub-section earlier for details on curve setup, trip times and reset operation). When the element is blocked, the time accumulator will reset according to the reset characteristic. For example, if the element reset characteristic is set to "Instantaneous" and the element is blocked, the time accumulator will be cleared immediately.
The PHASE TOC1 PICKUP setting can be dynamically reduced by a voltage restraint feature (when enabled). This is accomplished via the multipliers (Mvr) corresponding to the phase-phase voltages of the voltage restraint characteristic curve (see the figure below); the pickup level is calculated as 'Mvr' times the PHASE TOC1 PICKUP setting. If the voltage restraint feature is disabled, the pickup level always remains at the setting value.

Figure 5-58: PHASE TOC VOLTAGE RESTRAINT CHARACTERISTIC

Figure 5-59: PHASE TOC1 SCHEME LOGIC
d) PHASE INSTANTANEOUS OVERCURRENT (ANSI 50P)

PATH: SETTINGS $\Rightarrow \sqrt{ } \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow$ PHASE CURRENT \Rightarrow PHASE IOC 1(2)

The phase instantaneous overcurrent element may be used as an instantaneous element with no intentional delay or as a Definite Time element. The input current is the fundamental phasor magnitude.

Figure 5-60: PHASE IOC1 SCHEME LOGIC

e) PHASE DIRECTIONAL OVERCURRENT (ANSI 67P)

PATH: SETTINGS $\Rightarrow \sqrt{ } \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6) \Rightarrow PHASE CURRENT \Rightarrow PHASE DIRECTIONAL 1(2)

The phase directional elements (one for each of phases A, B, and C) determine the phase current flow direction for steady state and fault conditions and can be used to control the operation of the phase overcurrent elements via the block inputs of these elements.

Figure 5-61: PHASE A DIRECTIONAL POLARIZATION
This element is intended to apply a block signal to an overcurrent element to prevent an operation when current is flowing in a particular direction. The direction of current flow is determined by measuring the phase angle between the current from the phase CTs and the line-line voltage from the VTs, based on the 90° or "quadrature" connection. If there is a requirement to supervise overcurrent elements for flows in opposite directions, such as can happen through a bus-tie breaker, two phase directional elements should be programmed with opposite ECA settings.

To increase security for three phase faults very close to the VTs used to measure the polarizing voltage, a 'voltage memory' feature is incorporated. This feature stores the polarizing voltage the moment before the voltage collapses, and uses it to determine direction. The voltage memory remains valid for one second after the voltage has collapsed.
The main component of the phase directional element is the phase angle comparator with two inputs: the operating signal (phase current) and the polarizing signal (the line voltage, shifted in the leading direction by the characteristic angle, ECA).
The following table shows the operating and polarizing signals used for phase directional control:

PHASE	OPERATING		
		ABC PHASE SEQUENCE	ACB PHASE SEQUENCE
A	Angle of IA	Angle of VBC $\times(1 \angle \mathrm{ECA})$	Angle of VCB $\times(1 \angle \mathrm{ECA})$
B	Angle of IB	Angle of VCA $\times(1 \angle \mathrm{ECA})$	Angle of $\mathrm{VAC} \times 1 \angle \mathrm{ECA})$
C	Angle of IC	Angle of $\mathrm{VAB} \times(1 \angle \mathrm{ECA})$	Angle of $\mathrm{VBA} \times(1 \angle \mathrm{ECA})$

MODE OF OPERATION:

- When the function is "Disabled", or the operating current is below $5 \% \times$ CT Nominal, the element output is " 0 ".
- When the function is "Enabled", the operating current is above $5 \% \times$ CT Nominal, and the polarizing voltage is above the set threshold, the element output is dependent on the phase angle between the operating and polarizing signals:
- The element output is logic " 0 " when the operating current is within polarizing voltage $\pm 90^{\circ}$.
- For all other angles, the element output is logic " 1 ".
- Once the voltage memory has expired, the phase overcurrent elements under directional control can be set to block or trip on overcurrent as follows: when BLOCK WHEN V MEM EXP is set to "Yes", the directional element will block the operation of any phase overcurrent element under directional control when voltage memory expires. When set to "No", the directional element allows tripping of Phase OC elements under directional control when voltage memory expires.
In all cases, directional blocking will be permitted to resume when the polarizing voltage becomes greater than the "polarizing voltage threshold".

SETTINGS:

- PHASE DIR 1 SIGNAL SOURCE: This setting is used to select the source for the operating and polarizing signals. The operating current for the phase directional element is the phase current for the selected current source. The polarizing voltage is the line voltage from the phase VTs, based on the 90° or "quadrature" connection and shifted in the leading direction by the Element Characteristic Angle (ECA).
- PHASE DIR 1 ECA: This setting is used to select the Element Characteristic Angle, i.e. the angle by which the polarizing voltage is shifted in the leading direction to achieve dependable operation. In the design of UR elements, a block is applied to an element by asserting logic 1 at the blocking input. This element should be programmed via the ECA setting so that the output is logic 1 for current in the non-tripping direction.
- PHASE DIR 1 POL V THRESHOLD: This setting is used to establish the minimum level of voltage for which the phase angle measurement is reliable. The setting is based on VT accuracy. The default value is " 0.700 pu ".
- PHASE DIR 1 BLOCK WHEN V MEM EXP: This setting is used to select the required operation upon expiration of voltage memory. When set to "Yes", the directional element blocks the operation of any phase overcurrent element under directional control, when voltage memory expires; when set to "No", the directional element allows tripping of phase overcurrent elements under directional control.

The Phase Directional element responds to the forward load current. In the case of a following reverse fault, the element needs some time - in the order of 8 msec - to establish a blocking signal. Some protection elements such as instantaneous overcurrent may respond to reverse faults before the blocking signal is established. Therefore, a coordination time of at least 10 msec must be added to all the instantaneous protection elements under the supervision of the Phase Directional element. If current reversal is of a concern, a longer delay - in the order of 20 msec - may be needed.

Figure 5-62: PHASE DIRECTIONAL SCHEME LOGIC
a) MAIN MENU

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ }$ NEUTRAL CURRENT

b) NEUTRAL TIME OVERCURRENT (ANSI 51N)

PATH: SETTINGS $\Rightarrow \Omega$ GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6) $\Rightarrow \Downarrow$ NEUTRAL CURRENT \Rightarrow NEUTRAL TOC1(2)

The Neutral Time Overcurrent element can provide a desired time-delay operating characteristic versus the applied current or be used as a simple Definite Time element. The neutral current input value is a quantity calculated as 3lo from the phase currents and may be programmed as fundamental phasor magnitude or total waveform RMS magnitude as required by the application.

Two methods of resetting operation are available: "Timed" and "Instantaneous" (refer to the Inverse TOC Curve Characteristics section for details on curve setup, trip times and reset operation). When the element is blocked, the time accumulator will reset according to the reset characteristic. For example, if the element reset characteristic is set to "Instantaneous" and the element is blocked, the time accumulator will be cleared immediately.

Figure 5-63: NEUTRAL TOC1 SCHEME LOGIC
c) NEUTRAL INSTANTANEOUS OVERCURRENT (ANSI 50N)

PATH: SETTINGS $\Rightarrow \Omega$ GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6) $\Rightarrow \vDash$ NEUTRAL CURRENT $\Rightarrow \vDash$ NEUTRAL IOC1(2)

The Neutral Instantaneous Overcurrent element may be used as an instantaneous function with no intentional delay or as a Definite Time function. The element essentially responds to the magnitude of a neutral current fundamental frequency phasor calculated from the phase currents. A "positive-sequence restraint" is applied for better performance. A small portion (6.25%) of the positive-sequence current magnitude is subtracted from the zero-sequence current magnitude when forming the operating quantity of the element as follows:

$$
\begin{equation*}
I_{o p}=3 \times\left(\left|I _0\right|-K \cdot\left|I _1\right|\right) \quad \text { where } K=1 / 16 \tag{EQ5.15}
\end{equation*}
$$

The positive-sequence restraint allows for more sensitive settings by counterbalancing spurious zero-sequence currents resulting from:

- system unbalances under heavy load conditions
- transformation errors of current transformers (CTs) during double-line and three-phase faults
- switch-off transients during double-line and three-phase faults

The positive-sequence restraint must be considered when testing for pickup accuracy and response time (multiple of pickup). The operating quantity depends on how test currents are injected into the relay (single-phase injection: $I_{o p}=0.9375 \cdot I_{\text {injected }} ;$ three-phase pure zero-sequence injection: $\left.I_{o p}=3 \times I_{\text {injected }}\right)$.

Figure 5-64: NEUTRAL IOC1 SCHEME LOGIC
d) NEUTRAL DIRECTIONAL OVERCURRENT (ANSI 67N)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow$ NEUTRAL CURRENT $\Rightarrow \sqrt{ }$ NEUTRAL DIRECTIONAL OC1(2)

There are two Neutral Directional Overcurrent protection elements available. The element provides both forward and reverse fault direction indications the NEUTRAL DIR OC1 FWD and NEUTRAL DIR OC1 REV operands, respectively. The output operand is asserted if the magnitude of the operating current is above a pickup level (overcurrent unit) and the fault direction is seen as "forward or "reverse", respectively (directional unit).

The overcurrent unit responds to the magnitude of a fundamental frequency phasor of the either the neutral current calculated from the phase currents or the ground current. There are two separate pickup settings for the forward- and reverselooking functions, respectively. If set to use the calculated 3I_0, the element applies a "positive-sequence restraint" for better performance: a small portion (6.25\%) of the positive-sequence current magnitude is subtracted from the zero-sequence current magnitude when forming the operating quantity.

$$
\begin{equation*}
I_{o p}=3 \times\left(\left|I _0\right|-K \times\left|I _1\right|\right) \quad \text { where } K=1 / 16 \tag{EQ5.16}
\end{equation*}
$$

The positive-sequence restraint allows for more sensitive settings by counterbalancing spurious zero-sequence currents resulting from:

- System unbalances under heavy load conditions.
- Transformation errors of Current Transformers (CTs) during double-line and three-phase faults.
- Switch-off transients during double-line and three-phase faults.

The positive-sequence restraint must be considered when testing for pickup accuracy and response time (multiple of pickup). The operating quantity depends on the way the test currents are injected into the relay (single-phase injection: $I_{o p}=0.9375 \times I_{\text {injected }}$; three-phase pure zero-sequence injection: $\left.I_{o p}=3 \times I_{\text {injected }}\right)$.
The positive-sequence restraint is removed for low currents. If the positive-sequence current is below 0.8 pu , the restraint is removed by changing the constant K to zero. This facilitates better response to high-resistance faults when the unbalance is very small and there is no danger of excessive CT errors as the current is low.
The directional unit uses the zero-sequence current (I_0) or ground current (IG) for fault direction discrimination and may be programmed to use either zero-sequence voltage ("Calculated V0" or "Measured VX"), ground current (IG), or both for polarizing. The following tables define the Neutral Directional Overcurrent element.
Table 5-17: QUANTITIES FOR "CALCULATED 3I0" CONFIGURATION

DIRECTIONAL UNIT				OVERCURRENT UNIT	
POLARIZING MODE	DIRECTION	COMPARED PHASORS			
Voltage	Forward	-V_0 + Z_offset \times I_0	I_0 $\times 1 \angle E C A$	$\begin{aligned} \mathrm{I}_{\mathrm{op}}= & 3 \times\left(\left\|I _0-\mathrm{K} \times\left\|I _1\right\|\right) \text { if }\left\|I_{1}\right\|>0.8 \mathrm{pu}\right. \\ & \mathrm{I}_{\mathrm{op}}=3 \times\left(\left\|I _0\right\|\right) \text { if }\left\|\\|_{1}\right\| \leq 0.8 \mathrm{pu} \end{aligned}$	
	Reverse	-V_0 + Z_offset × I_0	$-\mathrm{I} 0 \times 1 \angle \mathrm{ECA}$		
Current	Forward	IG	I_0		
	Reverse	IG	-1_0		
Dual	Forward	-V_0 + Z_offset × I_0	$1 _0 \times 1 \angle$ ECA		
		or			
		IG	I_0		
	Reverse	-V_0 + Z_offset × I_0	-I_0 $\times 1 \angle E C A$		
		or			
		IG	-I_0		

Table 5-18: QUANTITIES FOR "MEASURED IG" CONFIGURATION

DIRECTIONAL UNIT				OVERCURRENT UNIT
POLARIZING MODE	DIRECTION	COMPARED PHASORS		
	Forward	-V_0 + Z_offset \times IG/3	IG $\times 1 \angle \mathrm{ECA}$	
Voltage	Reverse	-V _0 + Z_offset $\times 1 \mathrm{I} / 3$	$-\mathrm{IG} \times 1 \angle \mathrm{ECA}$	$\mathrm{l}_{\mathrm{op}}=\|\mathrm{G}\|$

where: $\quad V_{-} 0=\frac{1}{3}(V A G+V B G+V C G)=$ zero sequence voltage ,
$\mathrm{I} \mathrm{O}^{0}=\frac{1}{3} \mathrm{IN}=\frac{1}{3}(\mathrm{IA}+\mathrm{IB}+\mathrm{IC})=$ zero sequence current,
ECA = element characteristic angle and IG = ground current
When neutral dir oci pol volt is set to "Measured VX", one-third of this voltage is used in place of V _ 0 . The following figure explains the usage of the voltage polarized directional unit of the element.

The figure below shows the voltage-polarized phase angle comparator characteristics for a Phase A to ground fault, with:
$\mathrm{ECA}=90^{\circ}$ (Element Characteristic Angle $=$ centerline of operating characteristic)
FWD LA $=80^{\circ}$ (Forward Limit Angle $=$ the \pm angular limit with the ECA for operation)
REV LA $=80^{\circ}$ (Reverse Limit Angle $=$ the \pm angular limit with the ECA for operation)
The element incorporates a current reversal logic: if the reverse direction is indicated for at least 1.25 of a power system cycle, the prospective forward indication will be delayed by 1.5 of a power system cycle. The element is designed to emulate an electromechanical directional device. Larger operating and polarizing signals will result in faster directional discrimination bringing more security to the element operation.
The forward-looking function is designed to be more secure as compared to the reverse-looking function, and therefore, should be used for the tripping direction. The reverse-looking function is designed to be faster as compared to the forwardlooking function and should be used for the blocking direction. This allows for better protection coordination.
The above bias should be taken into account when using the Neutral Directional Overcurrent element to directionalize other protection elements.

Figure 5-65: NEUTRAL DIRECTIONAL VOLTAGE-POLARIZED CHARACTERISTICS

- NEUTRAL DIR OC1 POLARIZING: This setting selects the polarizing mode for the directional unit.
- If "Voltage" polarizing is selected, the element uses the zero-sequence voltage angle for polarization. The user can use either the zero-sequence voltage V_0 calculated from the phase voltages, or the zero-sequence voltage supplied externally as the auxiliary voltage Vx , both from the NEUTRAL DIR OC1 SOURCE.
The calculated $V _0$ can be used as polarizing voltage only if the voltage transformers are connected in Wye. The auxiliary voltage can be used as the polarizing voltage provided SYSTEM SETUP \Rightarrow AC INPUTS $\Rightarrow \sqrt{ }$ VOLTAGE BANK $\Rightarrow \Omega$ AUXILIARY VT CONNECTION is set to "Vn" and the auxiliary voltage is connected to a zero-sequence voltage source (such as open delta connected secondary of VTs).

The zero-sequence (V _0) or auxiliary voltage ($V x$), accordingly, must be higher than 0.02 pu nominal voltage to be validated as a polarizing signal. If the polarizing signal is invalid, neither forward nor reverse indication is given.

- If "Current" polarizing is selected, the element uses the ground current angle connected externally and configured under NeUTRAL OC1 SOURCE for polarization. The Ground CT must be connected between the ground and neutral point of an adequate local source of ground current. The ground current must be higher than 0.05 pu to be validated as a polarizing signal. If the polarizing signal is not valid, neither forward nor reverse indication is given.
For a choice of current polarizing, it is recommended that the polarizing signal be analyzed to ensure that a known direction is maintained irrespective of the fault location. For example, if using an autotransformer neutral current as a polarizing source, it should be ensured that a reversal of the ground current does not occur for a high-side fault. The low-side system impedance should be assumed minimal when checking for this condition. A similar situation arises for a Wye/Delta/Wye transformer, where current in one transformer winding neutral may reverse when faults on both sides of the transformer are considered.
- If "Dual" polarizing is selected, the element performs both directional comparisons as described above. A given direction is confirmed if either voltage or current comparators indicate so. If a conflicting (simultaneous forward and reverse) indication occurs, the forward direction overrides the reverse direction.
- NEUTRAL DIR OC1 POL VOLT: Selects the polarizing voltage used by the directional unit when "Voltage" or "Dual" polarizing mode is set. The polarizing voltage can be programmed to be either the zero-sequence voltage calculated from the phase voltages ("Calculated VO") or supplied externally as an auxiliary voltage ("Measured VX").
- NEUTRAL DIR OC1 OP CURR: This setting indicates whether the 3I_0 current calculated from the phase currents, or the ground current shall be used by this protection. This setting acts as a switch between the neutral and ground modes of operation (67 N and 67 G). If set to "Calculated 310 " the element uses the phase currents and applies the pos-itive-sequence restraint; if set to "Measured IG" the element uses ground current supplied to the ground CT of the CT bank configured as NeUTRAL DIR OC1 SOURCE. If this setting is "Measured IG", then the NEUTRAL DIR OC1 POLARIZING
setting must be "Voltage", as it is not possible to use the ground current as an operating and polarizing signal simultaneously.
- NEUTRAL DIR OC1 OFFSET: This setting specifies the offset impedance used by this protection. The primary application for the offset impedance is to guarantee correct identification of fault direction on series compensated lines. See the Chapter 9 for information on how to calculate this setting. In regular applications, the offset impedance ensures proper operation even if the zero-sequence voltage at the relaying point is very small. If this is the intent, the offset impedance shall not be larger than the zero-sequence impedance of the protected circuit. Practically, it shall be several times smaller. See Chapter 8 for additional details. The offset impedance shall be entered in secondary ohms.
- NEUTRAL DIR OC1 FWD ECA: This setting defines the characteristic angle (ECA) for the forward direction in the "Voltage" polarizing mode. The "Current" polarizing mode uses a fixed ECA of 0°. The ECA in the reverse direction is the angle set for the forward direction shifted by 180°.
- NEUTRAL DIR OC1 FWD LIMIT ANGLE: This setting defines a symmetrical (in both directions from the ECA) limit angle for the forward direction.
- NEUTRAL DIR OC1 FWD PICKUP: This setting defines the pickup level for the overcurrent unit of the element in the forward direction. When selecting this setting it must be kept in mind that the design uses a "positive-sequence restraint" technique for the "Calculated 3I0" mode of operation.
- NEUTRAL DIR OC1 REV LIMIT ANGLE: This setting defines a symmetrical (in both directions from the ECA) limit angle for the reverse direction.
- NEUTRAL DIR OC1 REV PICKUP: This setting defines the pickup level for the overcurrent unit of the element in the reverse direction. When selecting this setting it must be kept in mind that the design uses a "positive-sequence restraint" technique for the "Calculated 3I0" mode of operation.

Figure 5-66: NEUTRAL DIRECTIONAL OC1 SCHEME LOGIC
a) GROUND TIME OVERCURRENT (ANSI 51G)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ }$ GROUND CURRENT \Rightarrow GROUND TOC1(2)

This element can provide a desired time-delay operating characteristic versus the applied current or be used as a simple Definite Time element. The ground current input value is the quantity measured by the ground input CT and is the fundamental phasor or RMS magnitude. Two methods of resetting operation are available; "Timed" and "Instantaneous" (refer to the Inverse TOC Characteristics section for details). When the element is blocked, the time accumulator will reset according to the reset characteristic. For example, if the element reset characteristic is set to "Instantaneous" and the element is blocked, the time accumulator will be cleared immediately.

These elements measure the current that is connected to the ground channel of a CT/VT module. This channel may be equipped with a standard or sensitive input. The conversion range of a standard channel is from 0.02 to 46 times the CT rating. The conversion range of a sensitive channel is from 0.002 to 4.6 times the CT rating.

Figure 5-67: GROUND TOC1 SCHEME LOGIC

5 SETTINGS

b) GROUND INSTANTANEOUS OVERCURRENT (ANSI 50G)

The Ground IOC element may be used as an instantaneous element with no intentional delay or as a Definite Time element. The ground current input is the quantity measured by the ground input CT and is the fundamental phasor magnitude.

Figure 5-68: GROUND IOC1 SCHEME LOGIC
These elements measure the current that is connected to the ground channel of a CT/VT module. This channel may be equipped with a standard or sensitive input. The conversion range of a standard channel is from 0.02 to 46 times the CT rating. The conversion range of a sensitive channel is from 0.002 to 4.6 times the CT rating.
a) MAIN MENU

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ }$ PHASE CURRENT

The D30 relay provides two (2) Negative Sequence Time Overcurrent elements, two (2) Negative Sequence Instantaneous Overcurrent elements, and two (2) Negative Sequence Directional Overcurrent elements. For additional information on the Negative Sequence Time Overcurrent curves, refer to the Inverse TOC Curves section earlier.

5 SETTINGS

b) NEGATIVE SEQUENCE TIME OVERCURRENT (ANSI 51_2)

PATH: SETTINGS $\sqrt{ }$ GROUPED ELEMENTS $\Rightarrow \Omega$ SETTING GROUP 1(6) $\Rightarrow \Omega$ NEGATIVE SEQUENCE CURRENT \Rightarrow NEG SEQ TOC1(2)

The negative sequence time overcurrent element may be used to determine and clear unbalance in the system. The input for calculating negative sequence current is the fundamental phasor value.

Two methods of resetting operation are available; "Timed" and "Instantaneous" (refer to the Inverse TOC Characteristics sub-section for details on curve setup, trip times and reset operation). When the element is blocked, the time accumulator will reset according to the reset characteristic. For example, if the element reset characteristic is set to "Instantaneous" and the element is blocked, the time accumulator will be cleared immediately.

Figure 5-69: NEGATIVE SEQUENCE TOC1 SCHEME LOGIC
c) NEGATIVE SEQUENCE INSTANTANEOUS OVERCURRENT (ANSI 50_2)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6) $\Rightarrow \sqrt{ }$ NEGATIVE SEQUENCE CURRENT $\Rightarrow \sqrt{ }$ NEG SEQ OC1(2)

The Negative Sequence Instantaneous Overcurrent element may be used as an instantaneous function with no intentional delay or as a Definite Time function. The element responds to the negative-sequence current fundamental frequency phasor magnitude (calculated from the phase currents) and applies a "positive-sequence" restraint for better performance: a small portion (12.5\%) of the positive-sequence current magnitude is subtracted from the negative-sequence current magnitude when forming the operating quantity:

$$
\begin{equation*}
I_{o p}=\left|I _2\right|-K \cdot\left|I _1\right| \quad \text { where } K=1 / 8 \tag{EQ5.17}
\end{equation*}
$$

The positive-sequence restraint allows for more sensitive settings by counterbalancing spurious negative-sequence currents resulting from:

- system unbalances under heavy load conditions
- transformation errors of current transformers (CTs) during three-phase faults
- fault inception and switch-off transients during three-phase faults

The positive-sequence restraint must be considered when testing for pickup accuracy and response time (multiple of pickup). The operating quantity depends on the way the test currents are injected into the relay (single phase injection: $I_{o p}=0.2917 \cdot I_{\text {injected }} ;$ three phase injection, opposite rotation: $\left.I_{o p}=I_{\text {injected }}\right)$.

Figure 5-70: NEGATIVE SEQUENCE IOC1 SCHEME LOGIC

d) NEGATIVE SEQUENCE DIRECTIONAL OVERCURRENT (ANSI 67_2)

PATH: SETTINGS $\Rightarrow \Omega$ GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6) $\Rightarrow \Omega$ NEGATIVE SEQUENCE CURRENT $\Rightarrow \Omega$ NEG SEQ DIR OC1(2)

\square NEG SEQ DIR OC1	(1)	NEG SEQ DIR OC1 FUNCTION: Disabled	Range: Disabled, Enabled
MESSAGE	-	NEG SEQ DIR OC1 SOURCE: SRC 1	Range: SRC 1, SRC 2
MESSAGE	-	NEG SEQ DIR OC1 OFFSET: 0.00Ω	Range: 0.00 to 250.00Ω in steps of 0.01
MESSAGE	-	NEG SEQ DIR OC1 TYPE: Neg Sequence	Range: Neg Sequence, Zero Sequence
MESSAGE	Q	NEG SEQ DIR OC1 FWD ECA: 75° Lag	Range: 0 to 90° Lag in steps of 1
MESSAGE	-	NEG SEQ DIR OC1 FWD LIMIT ANGLE: 90°	Range: 40 to 90° in steps of 1
MESSAGE	-	NEG SEQ DIR OC1 FWD PICKUP: 0.05 pu	Range: 0.05 to 30.00 pu in steps of 0.01
MESSAGE	-	NEG SEQ DIR OC1 REV LIMIT ANGLE: 90°	Range: 40 to 90° in steps of 1
MESSAG	-	NEG SEQ DIR OC1 REV PICKUP: 0.05 pu	Range: 0.05 to 30.00 pu in steps of 0.01
MESSAGE	-	NEG SEQ DIR OC1 BLK: Off	Range: FlexLogic ${ }^{\text {TM }}$ operand
MESSAGE	-	NEG SEQ DIR OC1 TARGET: Self-reset	Range: Self-reset, Latched, Disabled
MESSAGE	(2)	NEG SEQ DIR OC1 EVENTS: Disabled	Range: Disabled, Enabled

There are two Negative Sequence Directional Overcurrent protection elements available. The element provides both forward and reverse fault direction indications through its output operands NEG SEQ DIR OC1 FWD and NEG SEQ DIR OC1 REV, respectively. The output operand is asserted if the magnitude of the operating current is above a pickup level (overcurrent unit) and the fault direction is seen as 'forward' or 'reverse', respectively (directional unit).

The overcurrent unit of the element essentially responds to the magnitude of a fundamental frequency phasor of either the negative-sequence or zero-sequence current as per user selection. The zero-sequence current should not be mistaken with the neutral current (factor 3 difference).
A "positive-sequence restraint" is applied for better performance: a small portion (12.5% for negative-sequence and 6.25% for zero-sequence) of the positive-sequence current magnitude is subtracted from the negative- or zero-sequence current magnitude, respectively, when forming the element operating quantity.

$$
\begin{equation*}
I_{o p}=\left|__2\right|-K \times\left|__1\right|, \text { where } K=1 / 8 \quad \text { or } \quad I_{o p}=\left|I _0\right|-K \times\left|I _1\right|, \text { where } K=1 / 16 \tag{EQ5.18}
\end{equation*}
$$

The positive-sequence restraint allows for more sensitive settings by counterbalancing spurious negative- and zerosequence currents resulting from:

- System unbalances under heavy load conditions.
- Transformation errors of Current Transformers (CTs).
- Fault inception and switch-off transients.

The positive-sequence restraint must be considered when testing for pick-up accuracy and response time (multiple of pickup). The operating quantity depends on the way the test currents are injected into the relay:

- single-phase injection: $I_{o p}=0.2917 \times I_{\text {injected }}$ (negative-sequence mode); $I_{o p}=0.3125 \times I_{\text {injected }}$ (zero-sequence mode)
- three-phase pure zero- or negative-sequence injection, respectively: $I_{o p}=I_{\text {injected }}$.
- the directional unit uses the negative-sequence current and voltage for fault direction discrimination

The following table defines the Negative Sequence Directional Overcurrent element.

OVERCURRENT UNIT		DIRECTIONAL UNIT			
MODE	OPERATING CURRENT	DIRECTION	COMPARED PHASORS		
Negative-Sequence	$I_{o p}=\left\|1 _2\right\|-K \times I _1 \mid$	Forward	-V_2 + Z_offset × I_2	I_2 $\times 1 \angle \mathrm{ECA}$	
		Reverse	-V_2+Z_offset $\times 1 _2$	-(I_2 $\times 1 \angle \mathrm{ECA})$	
Zero-Sequence	$I_{o p}=\mid 1 _$O\| $-\mathrm{K} \times$ \|I_1		Forward	-V_2 + Z_offset \times I_2	$1 _2 \times 1 \angle \mathrm{ECA}$
		Reverse	-V_2+Z_offset \times I_2	-(I_2 $\times 1 \angle \mathrm{ECA})$	

The negative-sequence voltage must be higher than the PRODUCT SETUP $\Rightarrow \sqrt{ }$ DISPLAY PROPERTIES $\Rightarrow \sqrt{ }$ VOLTAGE CUT-OFF LEVEL value to be validated for use as a polarizing signal. If the polarizing signal is not validated neither forward nor reverse indication is given. The following figure explains the usage of the voltage polarized directional unit of the element.

The figure below shows the phase angle comparator characteristics for a Phase A to ground fault, with settings of:

ECA	$=75^{\circ}$ (Element Characteristic Angle $=$ centerline of operating characteristic)
FWD LA	$=80^{\circ}$ (Forward Limit Angle $= \pm$ the angular limit with the ECA for operation)
REV LA	$=80^{\circ}$ (Reverse Limit Angle $= \pm$ the angular limit with the ECA for operation)

The element incorporates a current reversal logic: if the reverse direction is indicated for at least 1.25 of a power system cycle, the prospective forward indication will be delayed by 1.5 of a power system cycle. The element is designed to emulate an electromechanical directional device. Larger operating and polarizing signals will result in faster directional discrimination bringing more security to the element operation.

Figure 5-71: NEG SEQ DIRECTIONAL CHARACTERISTICS
The forward-looking function is designed to be more secure as compared to the reverse-looking function, and therefore, should be used for the tripping direction. The reverse-looking function is designed to be faster as compared to the forwardlooking function and should be used for the blocking direction. This allows for better protection coordination. The above bias should be taken into account when using the Negative Sequence Directional Overcurrent element to 'directionalize' other protection elements.

- NEG SEQ DIR OC1 OFFSET: This setting specifies the offset impedance used by this protection. The primary application for the offset impedance is to guarantee correct identification of fault direction on series compensated lines (see the Application of Settings chapter for information on how to calculate this setting). In regular applications, the offset impedance ensures proper operation even if the negative-sequence voltage at the relaying point is very small. If this is the intent, the offset impedance shall not be larger than the negative-sequence impedance of the protected circuit. Practically, it shall be several times smaller. The offset impedance shall be entered in secondary ohms. See the Theory of Operation chapter for additional details.
- NEG SEQ DIR OC1 TYPE: This setting selects the operating mode for the overcurrent unit of the element. The choices are "Neg Sequence" and "Zero Sequence". In some applications it is advantageous to use a directional nega-tive-sequence overcurrent function instead of a directional zero-sequence overcurrent function as inter-circuit mutual effects are minimized.
- NEG SEQ DIR OC1 FWD ECA: This setting select the element characteristic angle (ECA) for the forward direction. The element characteristic angle in the reverse direction is the angle set for the forward direction shifted by 180°.
- NEG SEQ DIR OC1 FWD LIMIT ANGLE: This setting defines a symmetrical (in both directions from the ECA) limit angle for the forward direction.
- NEG SEQ DIR OC1 FWD PICKUP: This setting defines the pickup level for the overcurrent unit in the forward direction. Upon NEG SEQ DIR OC1 TYPE selection, this pickup threshold applies to zero- or negative-sequence current. When selecting this setting it must be kept in mind that the design uses a 'positive-sequence restraint' technique.
- NEG SEQ DIR OC1 REV LIMIT ANGLE: This setting defines a symmetrical (in both directions from the ECA) limit angle for the reverse direction.
- NEG SEQ DIR OC1 REV PICKUP: This setting defines the pickup level for the overcurrent unit in the reverse direction. Upon NEG SEQ DIR OC1 TYPE selection, this pickup threshold applies to zero- or negative-sequence current. When selecting this setting it must be kept in mind that the design uses a 'positive-sequence restraint' technique.

Figure 5-72: NEG SEQ DIRECTIONAL OC1 SCHEME LOGIC
a) MAIN MENU

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ })$ VOLTAGE ELEMENTS

\square VOLTAGE ELEMENTS	(1)	\square PHASE \square UNDERVOLTAGE1	See page 5-121.
MESSAG	-	\square PHASE \square UNDERVOLTAGE2	See page 5-121.
MESSAG	-	\square \square PHASE OVERVOLTAGE1	See page 5-122.
MESSAG	-	\square NEUTRAL OV1	See page 5-123.
MESSAG	-	\square NEG SEQ OV	See page 5-124.
MESSAG	-	\square AUXILIARY UV1	See page 5-125.
MESSAG	(2)	\square AUXILIARY OV1	See page 5-126.

These protection elements can be used for a variety of applications such as:
Undervoltage Protection: For voltage sensitive loads, such as induction motors, a drop in voltage increases the drawn current which may cause dangerous overheating in the motor. The undervoltage protection feature can be used to either cause a trip or generate an alarm when the voltage drops below a specified voltage setting for a specified time delay.

Permissive Functions: The undervoltage feature may be used to block the functioning of external devices by operating an output relay when the voltage falls below the specified voltage setting. The undervoltage feature may also be used to block the functioning of other elements through the block feature of those elements.
Source Transfer Schemes: In the event of an undervoltage, a transfer signal may be generated to transfer a load from its normal source to a standby or emergency power source.

The undervoltage elements can be programmed to have a Definite Time delay characteristic. The Definite Time curve operates when the voltage drops below the pickup level for a specified period of time. The time delay is adjustable from 0 to 600.00 seconds in steps of 10 ms . The undervoltage elements can also be programmed to have an inverse time delay characteristic. The undervoltage delay setting defines the family of curves shown below.

$$
T=\frac{D}{\left(1-\frac{V}{V_{\text {pickup }}}\right)}
$$

where:
T = Operating Time
$D=$ Undervoltage Delay Setting ($D=0.00$ operates instantaneously)
$V=$ Secondary Voltage applied to the relay
$V_{\text {pickup }}=$ Pickup Level
At 0\% of pickup, the operating time equals the UNDERVOLTAGE DELAY setting.

Figure 5-73: INVERSE TIME UNDERVOLTAGE CURVES

b) PHASE UNDERVOLTAGE (ANSI 27P)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ }$ VOLTAGE ELEMENTS \Rightarrow PHASE UNDERVOLTAGE1(2)

This element may be used to give a desired time-delay operating characteristic versus the applied fundamental voltage (phase-to-ground or phase-to-phase for Wye VT connection, or phase-to-phase for Delta VT connection) or as a Definite Time element. The element resets instantaneously if the applied voltage exceeds the dropout voltage. The delay setting selects the minimum operating time of the phase undervoltage. The minimum voltage setting selects the operating voltage below which the element is blocked (a setting of " 0 " will allow a dead source to be considered a fault condition).

Figure 5-74: PHASE UNDERVOLTAGE1 SCHEME LOGIC
c) PHASE OVERVOLTAGE (ANSI 59P)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ })$ VOLTAGE ELEMENTS $\Rightarrow \sqrt{ }$ PHASE OVERVOLTAGE1

The phase overvoltage element may be used as an instantaneous element with no intentional time delay or as a Definite Time element. The input voltage is the phase-to-phase voltage, either measured directly from Delta-connected VTs or as calculated from phase-to-ground (Wye) connected VTs. The specific voltages to be used for each phase are shown below.

Figure 5-75: PHASE OV SCHEME LOGIC
d) NEUTRAL OVERVOLTAGE (ANSI 59N)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ }$ VOLTAGE ELEMENTS $\Rightarrow \sqrt{ } \sqrt{ }$ NEUTRAL OV1

The Neutral Overvoltage element can be used to detect asymmetrical system voltage condition due to a ground fault or to the loss of one or two phases of the source. The element responds to the system neutral voltage ($3 \vee 10$), calculated from the phase voltages. The nominal secondary voltage of the phase voltage channels entered under SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP \Rightarrow AC INPUTS $\Rightarrow \sqrt{ }$ VOLTAGE BANK \Rightarrow PHASE VT SECONDARY is the p.u. base used when setting the pickup level.
VT errors and normal voltage unbalance must be considered when setting this element. This function requires the VTs to be Wye connected.

Figure 5-76: NEUTRAL OVERVOLTAGE1 SCHEME LOGIC
e) NEGATIVE SEQUENCE OVERVOLTAGE (ANSI 59_2)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow \sqrt{ })$ VOLTAGE ELEMENTS $\Rightarrow \sqrt{ }$ NEG SEQ OV

The negative sequence overvoltage element may be used to detect loss of one or two phases of the source, a reversed phase sequence of voltage, or a non-symmetrical system voltage condition.

Figure 5-77: NEG SEQ OV SCHEME LOGIC

f) AUXILIARY UNDERVOLTAGE (ANSI 27X)

PATH: SETTINGS $\Rightarrow \sqrt{ }$ GROUPED ELEMENTS \Rightarrow SETTING GROUP $1(6) \Rightarrow 』$ VOLTAGE ELEMENTS $\Rightarrow \sqrt{ } \Rightarrow$ AUXILIARY UV1

This element is intended for monitoring undervoltage conditions of the auxiliary voltage. The Aux uv1 PICKUP selects the voltage level at which the time undervoltage element starts timing. The nominal secondary voltage of the auxiliary voltage channel entered under SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP \Rightarrow AC INPUTS $\Rightarrow \sqrt{ }$ VOLTAGE BANK X5 $\Rightarrow \sqrt{ }$ AUXILIARY VT X5 SECONDARY is the p.u. base used when setting the pickup level.
The AUX UV1 DELAY setting selects the minimum operating time of the auxiliary undervoltage element. Both AUX UV1 PICKUP and AUX UV1 DELAY settings establish the operating curve of the undervoltage element. The auxiliary undervoltage element can be programmed to use either Definite Time Delay or Inverse Time Delay characteristics. The operating characteristics and equations for both Definite and Inverse Time Delay are as for the Phase Undervoltage element.

The element resets instantaneously. The minimum voltage setting selects the operating voltage below which the element is blocked.

Figure 5-78: AUXILIARY UNDERVOLTAGE SCHEME LOGIC
g) AUXILIARY OVERVOLTAGE (ANSI 59X)

PATH: SETTINGS $\Rightarrow \sqrt{ } \Rightarrow$ GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6) $\Rightarrow \sqrt{ }$ VOLTAGE ELEMENTS $\Rightarrow \Downarrow$ AUXILIARY OV1

\square AUXILIARY OV1			$\begin{array}{\|l\|} \hline \text { AUX OV1 } \\ \text { FUNCTION: Disabled } \end{array}$	Range: Disabled, Enabled Range: SRC 1, SRC 2	
	MESSAGE		AUX OV1 SIGNAL SOURCE: SRC 1		
	MESSAGE	-	AUX OV1 PICKUP: 0.300 pu	Range:	0.000 to 3.000 pu in steps of 0.001
	MESSAGE	-	AUX OV1 PICKUP DELAY: 1.00 s	Range:	0.00 to 600.00 s in steps of 0.01
	MESSAGE	-	$\begin{aligned} & \text { AUX OV1 RESET } \\ & \text { DELAY: } 1.00 \mathrm{~s} \end{aligned}$	Range:	0.00 to 600.00 s in steps of 0.01
	MESSAGE	-	$\begin{aligned} & \text { AUX OV1 BLOCK: } \\ & \text { Off } \end{aligned}$	Range:	FlexLogic ${ }^{\text {TM }}$ operand
	MESSAGE	-	AUX OV1 TARGET: Self-reset	Range:	Self-reset, Latched, Disabled
	MESSAGE	(2)	AUX OV1 EVENTS: Disabled	Range:	Disabled, Enabled

This element is intended for monitoring overvoltage conditions of the auxiliary voltage. A typical application for this element is monitoring the zero-sequence voltage ($3 \mathrm{~V} _0$) supplied from an open-corner-delta VT connection. The nominal secondary voltage of the auxiliary voltage channel entered under SYSTEM SETUP \Rightarrow AC INPUTS $\sqrt{ } \Rightarrow$ VOLTAGE BANK X5 $\sqrt{ } \Rightarrow$ AUXILIARY VT X5 SECONDARY is the p.u. base used when setting the pickup level.

Figure 5-79: AUXILIARY OVERVOLTAGE SCHEME LOGIC

Control elements are generally used for control rather than protection. See the Introduction to Elements section at the beginning of this chapter for further information.

PATH: SETTINGS $\Rightarrow \sqrt{ }$ CONTROL ELEMENTS \Rightarrow SETTINGS GROUPS

The Setting Groups menu controls the activation/deactivation of up to six possible groups of settings in the GROUPED ELEMENTS settings menu. The faceplate 'Settings in Use' LEDs indicate which active group (with a non-flashing energized LED) is in service.

The setting groups blk setting prevents the active setting group from changing when the FlexLogic ${ }^{\text {M }}$ parameter is set to "On". This can be useful in applications where it is undesirable to change the settings under certain conditions, such as the breaker being open.
Each GROUP n ACTIVATE ON setting selects a FlexLogic ${ }^{\text {TM }}$ operand which, when set, will make the particular setting group active for use by any grouped element. A priority scheme ensures that only one group is active at a given time - the high-est-numbered group which is activated by its GROUP n ACTIVATE ON parameter takes priority over the lower-numbered groups. There is no "activate on" setting for Group 1 (the default active group), because Group 1 automatically becomes active if no other group is active.

The relay can be set up via a FlexLogic ${ }^{T M}$ equation to receive requests to activate or de-activate a particular non-default settings group. The following FlexLogic ${ }^{\text {TM }}$ equation (see the figure below) illustrates requests via remote communications (e.g. VIRTUAL INPUT 1) or from a local contact input (e.g. H7a) to initiate the use of a particular settings group, and requests from several overcurrent pickup measuring elements to inhibit the use of the particular settings group. The assigned VIRTUAL OUTPUT 1 operand is used to control the "On" state of a particular settings group.

Figure 5-80: EXAMPLE FLEXLOGIC ${ }^{\text {TM }}$ CONTROL OF A SETTINGS GROUP

PATH: SETTINGS $\Rightarrow \sqrt{ }$ CONTROL ELEMENTS $\Rightarrow \sqrt{ }$ SELECTOR SWITCH \Rightarrow SELECTOR SWITCH 1(2)

The Selector Switch element is intended to replace a mechanical selector switch. Typical applications include setting group control or control of multiple logic sub-circuits in user-programmable logic.
The element provides for two control inputs. The step-up control allows stepping through selector position one step at a time with each pulse of the control input, such as a user-programmable pushbutton. The 3-bit control input allows setting the selector to the position defined by a 3-bit word.
The element allows pre-selecting a new position without applying it. The pre-selected position gets applied either after timeout or upon acknowledgement via separate inputs (user setting). The selector position is stored in non-volatile memory. Upon power-up, either the previous position is restored or the relay synchronizes to the current 3-bit word (user setting). Basic alarm functionality alerts the user under abnormal conditions; e.g. the 3-bit control input being out of range.

- SELECTOR 1 FULL RANGE: This setting defines the upper position of the selector. When stepping up through available positions of the selector, the upper position wraps up to the lower position (Position 1). When using a direct 3-bit control word for programming the selector to a desired position, the change would take place only if the control word is within the range of 1 to the SELECTOR FULL RANGE. If the control word is outside the range, an alarm is established by setting the SELECTOR ALARM FlexLogic ${ }^{\text {TM }}$ operand for 3 seconds.
- SELECTOR 1 TIME-OUT: This setting defines the time-out period for the selector. This value is used by the relay in the following two ways. When the SELECTOR STEP-UP MODE is "Time-out", the setting specifies the required period of
inactivity of the control input after which the pre-selected position is automatically applied. When the selector stepUP MODE is "Acknowledge", the setting specifies the period of time for the acknowledging input to appear. The timer is re-started by any activity of the control input. The acknowledging input must come before the SELECTOR 1 TIME-OUT timer expires; otherwise, the change will not take place and an alarm will be set.
- SELECTOR 1 STEP-UP: This setting specifies a control input for the selector switch. The switch is shifted to a new position at each rising edge of this signal. The position changes incrementally, wrapping up from the last (SELECTOR 1 full range) to the first (Position 1). Consecutive pulses of this control operand must not occur faster than every 50 ms . After each rising edge of the assigned operand, the time-out timer is restarted and the SELECTOR SWITCH 1: POS Z CHNG INITIATED target message is displayed, where \boldsymbol{Z} the pre-selected position. The message is displayed for the time specified by the FLASH MESSAGE TIME setting. The pre-selected position is applied after the selector times out ("Time-out" mode), or when the acknowledging signal appears before the element times out ("Acknowledge" mode). When the new position is applied, the relay displays the SELECTOR SWITCH 1: POSITION Z IN USE message. Typically, a user-programmable pushbutton is configured as the stepping up control input.
- SELECTOR 1 STEP-UP MODE: This setting defines the selector mode of operation. When set to "Time-out", the selector will change its position after a pre-defined period of inactivity at the control input. The change is automatic and does not require any explicit confirmation of the intent to change the selector's position. When set to "Acknowledge", the selector will change its position only after the intent is confirmed through a separate acknowledging signal. If the acknowledging signal does not appear within a pre-defined period of time, the selector does not accept the change and an alarm is established by setting the SELECTOR STP ALARM output FlexLogic ${ }^{\text {TM }}$ operand for 3 seconds.
- SELECTOR 1 ACK: This setting specifies an acknowledging input for the stepping up control input. The pre-selected position is applied on the rising edge of the assigned operand. This setting is active only under "Acknowledge" mode of operation. The acknowledging signal must appear within the time defined by the SELECTOR 1 TIME-OUT setting after the last activity of the control input. A user-programmable pushbutton is typically configured as the acknowledging input.
- SELECTOR 1 3BIT A0, A1, and A2: These settings specify a 3-bit control input of the selector. The 3-bit control word pre-selects the position using the following encoding convention:

A2	A1	A0	POSITION
0	0	0	rest
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

The "rest" position ($0,0,0$) does not generate an action and is intended for situations when the device generating the 3-bit control word is having a problem. When SELECTOR 1 3BIT MODE is "Time-out", the pre-selected position is applied in SELECTOR 1 TIME-OUT seconds after the last activity of the 3-bit input. When SELECTOR 1 3BIT MODE is "Acknowledge", the pre-selected position is applied on the rising edge of the SELECTOR 1 3BIT ACK acknowledging input.

The stepping up control input (SELECTOR 1 STEP-UP) and the 3-bit control inputs (SELECTOR 1 3BIT A0 through A2) lockout mutually: once the stepping up sequence is initiated, the 3-bit control input is inactive; once the 3-bit control sequence is initiated, the stepping up input is inactive.

- SELECTOR 1 3BIT MODE: This setting defines the selector mode of operation. When set to "Time-out", the selector changes its position after a pre-defined period of inactivity at the control input. The change is automatic and does not require explicit confirmation to change the selector position. When set to "Acknowledge", the selector changes its position only after confirmation via a separate acknowledging signal. If the acknowledging signal does not appear within a pre-defined period of time, the selector rejects the change and an alarm established by invoking the SELECTOR BIT ALARM FlexLogic ${ }^{\text {TM }}$ operand for 3 seconds.
- SELECTOR 1 3BIT ACK: This setting specifies an acknowledging input for the 3-bit control input. The pre-selected position is applied on the rising edge of the assigned FlexLogic ${ }^{\top M}$ operand. This setting is active only under the "Acknowledge" mode of operation. The acknowledging signal must appear within the time defined by the SELECTOR TIME-OUT setting after the last activity of the 3-bit control inputs. Note that the stepping up control input and 3-bit control input have independent acknowledging signals (SELECTOR 1 ACK and SELECTOR 1 3BIT ACK, accordingly).
- SELECTOR 1 POWER-UP MODE: This setting specifies the element behavior on power up of the relay.

When set to "Restore", the last position of the selector (stored in the non-volatile memory) is restored after powering up the relay. If the position restored from memory is out of range, position 0 (no output operand selected) is applied and an alarm is set (SELECTOR 1 PWR ALARM).

When set to "Synchronize" selector switch acts as follows. For two power cycles, the selector applies position 0 to the switch and activates SELECTOR 1 PWR ALARM. After two power cycles expire, the selector synchronizes to the position dictated by the 3-bit control input. This operation does not wait for time-out or the acknowledging input. When the synchronization attempt is unsuccessful (i.e., the 3-bit input is not available ($0,0,0$) or out of range) then the selector switch output is set to position 0 (no output operand selected) and an alarm is established (SELECTOR 1 PWR ALARM).
The operation of "Synch/Restore" mode is similar to the "Synchronize" mode. The only difference is that after an unsuccessful synchronization attempt, the switch will attempt to restore the position stored in the relay memory. The "Synch/Restore" mode is useful for applications where the selector switch is employed to change the setting group in redundant (two relay) protection schemes.

- SELECTOR 1 EVENTS: If enabled, the following events are logged:

EVENT NAME	DESCRIPTION
SELECTOR 1 POS Z	Selector 1 changed its position to Z.
SELECTOR 1 STP ALARM	The selector position pre-selected via the stepping up control input has not been confirmed before the time out.
SELECTOR 1 BIT ALARM	The selector position pre-selected via the 3-bit control input has not been confirmed before the time out.

5 SETTINGS

The following figures illustrate the operation of the Selector Switch. In these diagrams, "T" represents a time-out setting.

Figure 5-81: TIME-OUT MODE

Figure 5-82: ACKNOWLEDGE MODE

APPLICATION EXAMPLE

Consider an application where the selector switch is used to control Setting Groups 1 through 4 in the relay. The setting groups are to be controlled from both User-Programmable Pushbutton 1 and from an external device via Contact Inputs 1 through 3. The active setting group shall be available as an encoded 3 -bit word to the external device and SCADA via output contacts 1 through 3 . The pre-selected setting group shall be applied automatically after 5 seconds of inactivity of the control inputs. When the relay powers up, it should synchronize the setting group to the 3 -bit control input.
Make the following changes to Setting Group Control in the SETTINGS $\Rightarrow \sqrt{ } \sqrt{ }$ CONTROL ELEMENTS \Rightarrow SETTING GROUPS menu:

```
SETtING GROUPS FUNCTION: "Enabled"
SETTING GROUPS BLK: "Off"
GROUP 2 ACTIVATE ON: "SELECTOR 1 POS 2"
GROUP 3 ACTIVATE ON: "SELECTOR 1 POS 3"
```

```
gROUP 4 ACTIVATE ON: "SELECTOR 1 POS 4"
grouP 5 ACTIVATE ON: "Off"
gROUP 6 ACTIVATE ON: "Off"
```

Make the following changes to Selector Switch element in the SETTINGS $\Rightarrow \sqrt{ }$ CONTROL ELEMENTS $\Rightarrow \sqrt{ }$ SELECTOR SWITCH \Rightarrow SELECTOR SWITCH 1 menu to assign control to User Programmable Pushbutton 1 and Contact Inputs 1 through 3:

```
SELECTOR 1 FUNCTION: "Enabled" SELECTOR 1 3BIT A0: "CONT IP 1 ON"
SELECTOR 1 FULL-RANGE: "4" SELECTOR 1 3BIT A1: "CONT IP 2 ON"
SELECTOR 1 STEP-UP MODE: "Time-out" SELECTOR 1 3BIT A2: "CONT IP }3\mathrm{ ON"
SELECTOR }1\mathrm{ TIME-OUT: " }5.0\textrm{s}\mathrm{ " SELECTOR 1 3BIT MODE: "Time-out"
SELECTOR 1 STEP-UP: "PUSHBUTTON 1 ON"
SELECTOR 1 ACK: "Off"
```

```
SELECTOR 1 3BIT ACK: "Off"
```

SELECTOR 1 3BIT ACK: "Off"
SELECTOR 1 POWER-UP MODE: "Synchronize"

```
SELECTOR 1 POWER-UP MODE: "Synchronize"
```

Now, assign the contact output operation (assume the H6E module) to the Selector Switch element by making the following changes in the SETTINGS $\Rightarrow \sqrt{ }$ INPUTSIOUTPUTS $\Rightarrow \sqrt{ }$ CONTACT OUTPUTS menu:

```
OUTPUT H1 OPERATE: "SELECTOR 1 BIT 0"
OUTPUT H2 OPERATE: "SELECTOR 1 BIT 1"
OUTPUT H3 OPERATE: "SELECTOR 1 BIT 2"
```

Finally, assign configure User-Programmable Pushbutton 1 by making the following changes in the SETTINGS \Rightarrow PRODUCT

PUSHBUTTON 1 FUNCTION: "Self-reset"
PUSHBUTTON 1 DROP-OUT TIME: " 0.10 s"
The logic for the selector switch is shown below:

Figure 5-83: SELECTOR SWITCH LOGIC

PATH: SETTINGS $\Rightarrow \sqrt{ }$ CONTROL ELEMENTS $\Rightarrow \sqrt{2}$ SYNCHROCHECK \Rightarrow SYNCHROCHECK 1(2)

The are two identical synchrocheck elements available, numbered 1 and 2.
The synchronism check function is intended for supervising the paralleling of two parts of a system which are to be joined by the closure of a circuit breaker. The synchrocheck elements are typically used at locations where the two parts of the system are interconnected through at least one other point in the system.

Synchrocheck verifies that the voltages (V1 and V2) on the two sides of the supervised circuit breaker are within set limits of magnitude, angle and frequency differences. The time that the two voltages remain within the admissible angle difference is determined by the setting of the phase angle difference $\Delta \Phi$ and the frequency difference $\Delta \mathrm{F}$ (slip frequency). It can be defined as the time it would take the voltage phasor V 1 or V 2 to traverse an angle equal to $2 \times \Delta \Phi$ at a frequency equal to the frequency difference $\Delta \mathrm{F}$. This time can be calculated by:

$$
\begin{equation*}
T=\frac{1}{\frac{360^{\circ}}{2 \times \Delta \Phi} \times \Delta F} \tag{EQ5.19}
\end{equation*}
$$

where: $\Delta \Phi=$ phase angle difference in degrees; $\Delta F=$ frequency difference in Hz .

As an example; for the default values $\left(\Delta \Phi=30^{\circ}, \Delta F=0.1 \mathrm{~Hz}\right)$, the time while the angle between the two voltages will be less than the set value is:

$$
\begin{equation*}
T=\frac{1}{\frac{360^{\circ}}{2 \times \Delta \Phi} \times \Delta F}=\frac{1}{\frac{360^{\circ}}{2 \times 30^{\circ}} \times 0.1 \mathrm{~Hz}}=1.66 \mathrm{sec} \tag{EQ5.20}
\end{equation*}
$$

If one or both sources are de-energized, the synchrocheck programming can allow for closing of the circuit breaker using undervoltage control to by-pass the synchrocheck measurements (Dead Source function).

- SYNCHK1 V1 SOURCE: This setting selects the source for voltage V1 (see NOTES below).
- SYNCHK1 V2 SOURCE: This setting selects the source for voltage V2, which must not be the same as used for the V1 (see NOTES below).
- SYNCHK1 MAX VOLT DIFF: This setting selects the maximum primary voltage difference in ' kV ' between the two sources. A primary voltage magnitude difference between the two input voltages below this value is within the permissible limit for synchronism.
- SYNCHK1 MAX ANGLE DIFF: This setting selects the maximum angular difference in degrees between the two sources. An angular difference between the two input voltage phasors below this value is within the permissible limit for synchronism.
- SYNCHK1 MAX FREQ DIFF: This setting selects the maximum frequency difference in 'Hz' between the two sources. A frequency difference between the two input voltage systems below this value is within the permissible limit for synchronism.
- SYNCHK1 MAX FREQ HYSTERESIS: This setting specifies the required hysteresis for the maximum frequency difference condition. The condition becomes satisfied when the frequency difference becomes lower than synchki max FREQ DIFF. Once the Synchrocheck element has operated, the frequency difference must increase above the sYnchki MAX FREQ DIFF + SYNCHK1 MAX FREQ HYSTERESIS sum to drop out (assuming the other two conditions, voltage and angle, remain satisfied).
- SYNCHK1 DEAD SOURCE SELECT: This setting selects the combination of dead and live sources that will by-pass synchronism check function and permit the breaker to be closed when one or both of the two voltages (V1 or/and V2) are below the maximum voltage threshold. A dead or live source is declared by monitoring the voltage level. Six options are available:

None:	Dead Source function is disabled
LV1 and DV2:	Live V1 and Dead V2
DV1 and LV2:	Dead V1 and Live V2
DV1 or DV2:	Dead V1 or Dead V2
DV1 Xor DV2:	Dead V1 exclusive-or Dead V2 (one source is Dead and the other is Live)
DV1 and DV2:	Dead V1 and Dead V2

- SYNCHK1 DEAD V1 MAX VOLT: This setting establishes a maximum voltage magnitude for V1 in 1 'pu'. Below this magnitude, the V1 voltage input used for synchrocheck will be considered "Dead" or de-energized.
- SYNCHK1 DEAD V2 MAX VOLT: This setting establishes a maximum voltage magnitude for V2 in 'pu'. Below this magnitude, the V2 voltage input used for synchrocheck will be considered "Dead" or de-energized.
- SYNCHK1 LIVE V1 MIN VOLT: This setting establishes a minimum voltage magnitude for V1 in 'pu'. Above this magnitude, the V1 voltage input used for synchrocheck will be considered "Live" or energized.
- SYNCHK1 LIVE V2 MIN VOLT: This setting establishes a minimum voltage magnitude for V2 in 'pu'. Above this magnitude, the V2 voltage input used for synchrocheck will be considered "Live" or energized.

NOTES ON THE SYNCHROCHECK FUNCTION:

1. The selected Sources for synchrocheck inputs V1 and V2 (which must not be the same Source) may include both a three-phase and an auxiliary voltage. The relay will automatically select the specific voltages to be used by the synchrocheck element in accordance with the following table.

NO.	V1 OR V2 (SOURCE Y)	V2 OR V1 (SOURCE Z)	AUTO-SELECTED COMBINATION		AUTO-SELECTED VOLTAGE
		SOURCE Y	SOURCE Z		

The voltages V1 and V2 will be matched automatically so that the corresponding voltages from the two Sources will be used to measure conditions. A phase to phase voltage will be used if available in both sources; if one or both of the Sources have only an auxiliary voltage, this voltage will be used. For example, if an auxiliary voltage is programmed to VAG, the synchrocheck element will automatically select VAG from the other Source. If the comparison is required on a specific voltage, the user can externally connect that specific voltage to auxiliary voltage terminals and then use this "Auxiliary Voltage" to check the synchronism conditions.

If using a single CT/VT module with both phase voltages and an auxiliary voltage, ensure that only the auxiliary voltage is programmed in one of the Sources to be used for synchrocheck.

Exception: Synchronism cannot be checked between Delta connected phase VTs and a Wye connected auxiliary voltage.
2. The relay measures frequency and Volts/ Hz from an input on a given Source with priorities as established by the configuration of input channels to the Source. The relay will use the phase channel of a three-phase set of voltages if programmed as part of that Source. The relay will use the auxiliary voltage channel only if that channel is programmed as part of the Source and a three-phase set is not.

Figure 5-84: SYNCHROCHECK SCHEME LOGIC

PATH: SETTINGS $\Rightarrow 』$ CONTROL ELEMENTS $\Rightarrow \sqrt{ } \Rightarrow$ AUTORECLOSE \Rightarrow AUTORECLOSE 1

MESSAGE
MESSAGE
MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

AR1 FUNCTION:
Disabled

Range: Disabled, Enabled

| AR1 INITIATE: |
| :--- | :--- |
| Off |\quad Range: FlexLogic ${ }^{\text {TM }}$ operand

AR1 BLOCK:
Off

Range: FlexLogic ${ }^{\text {TM }}$ operand
AR1 MAX NUMBER OF
SHOTS: 1

Range: 1, 2, 3, 4

AR1 REDUCE MAX TO 1: Range: FlexLogic ${ }^{\text {TM }}$ operand
Off
AR1 REDUCE MAX TO 2:
Off
AR1 REDUCE MAX TO 3:
Off
AR1 MANUAL CLOSE:
Off
5

AR1 MNL RST FRM LO: Off	Range: FlexLogic ${ }^{\text {TM }}$ operand
AR1 RESET LOCKOUT IF	Range: Off, On

AR1 RESET LOCKOUT IF
BREAKER CLOSED: Off

Range: Off, On

AR1 RESET LOCKOUT ON Range: Off, On
MANUAL CLOSE: Off

AR1 BKR CLOSED:
Off

| AR1 BKR OPEN: Range: FlexLogic ${ }^{\text {™ }}$ operand |
| :--- | :--- |
| Off |

AR1 BLK TIME UPON	
MNL CLS: $10.000 \mathbf{~ s}$	Range: 0.00 to 655.35 s in steps of 0.01

MNL CLS: 10.000 s

Range: 0.00 to 655.35 s in steps of 0.01
1.000 s

AR1 DEAD TIME 2: Range: 0.00 to 655.35 s in steps of 0.01 2.000 s

AR1 DEAD TIME 3: Range: 0.00 to 655.35 s in steps of 0.01
AR1 DEAD TIME 4: Range: 0.00 to 655.35 s in steps of 0.01
AR1 ADD DELAY 1:
Off

Range: FlexLogic ${ }^{\text {TM }}$ operand

| AR1 DELAY 1: Range: 0.00 to 655.35 s in steps of 0.01 |
| :--- | :--- |
| 0.000 s |

AR1 ADD DELAY 2: Range: FlexLogic ${ }^{\text {TM }}$ operand

MESSAGE	AR1 DELAY 2： 0.000 s	Range： 0.00 to 655.35 s in steps of 0.01
MESSAGE 园	AR1 RESET LOCKOUT DELAY：60．000	Range： 0.00 to 655.35 s in steps of 0.01
MESSAGE 亩	AR1 RESET TIME： 60.000 s	Range： 0.00 to 655.35 s in steps of 0.01
MESSAGE 亩	AR1 INCOMPLETE SEQ TIME： 5.000 s	Range： 0.00 to 655.35 s in steps of 0.01
MESSAGE	AR1 EVENTS： Disabled	Range：Disabled，Enabled

The autoreclosure feature is intended for use with transmission and distribution lines，in three－pole tripping schemes for sin－ gle breaker applications．Up to four selectable reclosures＂shots＂are possible prior to locking out．Each shot has an inde－ pendently settable dead time．The protection settings can be changed between shots if so desired，using FlexLogic ${ }^{\text {TM }}$ ． Logic inputs are available for disabling or blocking the scheme．

Faceplate panel LEDs indicate the state of the autoreclose scheme as follows：
－RECLOSE ENABLED：The scheme is enabled and may reclose if initiated．
－RECLOSE DISABLED：The scheme is disabled．
－RECLOSE IN PROGRESS：An autoreclosure has been initiated but the breaker has not yet been signaled to close．
－RECLOSE LOCKED OUT：The scheme has generated the maximum number of breaker closures allowed and，as the fault persists，will not close the breaker again；known as＂Lockout＂．The scheme may also be sent in＂Lockout＂when the incomplete sequence timer times out or when a block signal occurs while in＂Reclose in Progress＂．The scheme must be reset from Lockout in order to perform reclose for further faults．

The reclosure scheme is considered enabled when all of the following conditions are true：
－The＂AR Function＂is set to Enabled．
－The scheme is not in the＂Lockout＂state．
－The＂Block＂input is not asserted．
－The＂AR Block Time Upon Manual Close＂timer is not active．
The autoreclose scheme is initiated by a trip signal from any selected protection feature operand．The scheme is initiated provided the circuit breaker is in the closed state before protection operation．

The Reclose－In－Progress（RIP）is set when a reclosing cycle begins following a reclose initiate signal．Once the cycle is successfully initiated，the RIP signal will seal－in and the scheme will continue through its sequence until one of the following conditions is satisfied：
－The close signal is issued when the dead timer times out，or
－The scheme goes to lockout．
While RIP is active，the scheme checks that the breaker is open and the shot number is below the limit，and then begins measuring the dead time．
Each of the four possible shots has an independently settable dead time．Two additional timers can be used to increase the initial set dead times 1 to 4 by a delay equal to AR1 DELAY 1 or AR1 DELAY 2 or the sum of these two delays depending on the selected settings．This offers enhanced setting flexibility using FlexLogic ${ }^{\text {TM }}$ operands to turn the two additional timers＂on＂ and＂off＂．These operands may possibly include＂AR x SHOT CNT＝n＂，＂SETTING GROUP ACT x＂，etc．The autoreclose provides up to maximum 4 selectable shots．Maximum number of shots can be dynamically modified through the settings AR1 REDUCE MAX TO $1(2,3)$ ，using the appropriate FlexLogic ${ }^{\text {TM }}$ operand．

Scheme lockout blocks all phases of the reclosing cycle，preventing automatic reclosure，if any of the following occurs：
－The maximum shot number was reached．
－A＂Block＂input is in effect（for instance；Breaker Failure，bus differential protection operated，etc．）．
－The＂Incomplete Sequence＂timer times out．

The recloser will be latched in the Lockout state until a "Reset from lockout" signal is asserted, either from a manual close of the breaker or from a manual reset command (local or remote). The reset from lockout can be accomplished by operator command, by manually closing the breaker, or whenever the breaker has been closed and stays closed for a preset time.

After the dead time elapses, the scheme issues the close signal. The close signal is latched until the breaker closes or the scheme goes to Lockout.

A reset timer output resets the recloser following a successful reclosure sequence. The reset time is based on the breaker "reclaim time" which is the minimum time required between successive reclose sequences.

SETTINGS:

- AR1 INITIATE: Selects the FlexLogic ${ }^{\text {TM }}$ operand that initiates the scheme, typically the trip signal from protection.
- AR1 BLOCK: Selects the FlexLogic ${ }^{\text {TM }}$ operand that blocks the Autoreclosure initiate (it could be from the Breaker Failure, Bus differential protection, etc.).
- AR1 MAX NUMBER OF SHOTS: Specifies the number of reclosures that can be attempted before reclosure goes to "Lockout" because the fault is permanent.
- AR1 REDUCE MAX TO 1(3): Selects the FlexLogic ${ }^{\text {TM }}$ operand that changes the maximum number of shots from the initial setting to 1 , 2 , or 3 , respectively.
- AR1 MANUAL CLOSE: Selects the logic input set when the breaker is manually closed.
- AR1 MNL RST FRM LO: Selects the FlexLogic ${ }^{\text {TM }}$ operand that resets the autoreclosure from Lockout condition. Typically this is a manual reset from lockout, local or remote.
- AR1 RESET LOCKOUT IF BREAKER CLOSED: This setting allows the autoreclose scheme to reset from Lockout if the breaker has been manually closed and stays closed for a preset time. In order for this setting to be effective, the next setting (AR1 RESET LOCKOUT ON MANUAL CLOSE) should be disabled.
- AR 1 RESET LOCKOUT ON MANUAL CLOSE: This setting allows the autoreclose scheme to reset from Lockout when the breaker is manually closed regardless if the breaker remains closed or not. This setting overrides the previous setting (AR1 RESET LOCKOUT IF BREAKER CLOSED).
- AR1 BLK TIME UPON MNL CLS: The autoreclose scheme can be disabled for a programmable time delay after the associated circuit breaker is manually closed. This prevents reclosing onto a fault after a manual close. This delay must be longer than the slowest expected trip from any protection not blocked after manual closing. If no overcurrent trips occur after a manual close and this time expires, the autoreclose scheme is enabled.
- AR1 DEAD TIME 1 to AR DEAD TIME 4: These are the intentional delays before first, second, third, and fourth breaker automatic reclosures (1st, 2nd, and 3rd shots), respectively, and should be set longer than the estimated deionizing time following a three pole trip.
- AR1 ADD DELAY 1: This setting selects the FlexLogic ${ }^{\text {TM }}$ operand that introduces an additional delay (DELAY 1) to the initial set Dead Time (1 to 4). When this setting is "Off", DELAY 1 is by-passed.
- AR1 DELAY 1: This setting establishes the extent of the additional dead time DELAY 1.
- AR1 ADD DELAY 2: This setting selects the FlexLogic ${ }^{\text {TM }}$ operand that introduces an additional delay (DELAY 2) to the initial set Dead Time (1 to 4). When this setting is "Off", DELAY 2 is by-passed.
- AR1 DELAY 2: This setting establishes the extent of the additional dead time DELAY 2.
- AR1 RESET LOCKOUT DELAY: This setting establishes how long the breaker should stay closed after a manual close command, in order for the autorecloser to reset from Lockout.
- AR1 RESET TIME: A reset timer output resets the recloser following a successful reclosure sequence. The setting is based on the breaker "reclaim time" which is the minimum time required between successive reclose sequences.
- AR1 INCOMPLETE SEQ TIME: This timer defines the maximum time interval allowed for a single reclose shot. It is started whenever a reclosure is initiated and is active when the scheme is in the "RECLOSE IN PROGRESS" state. If all conditions allowing a breaker closure are not satisfied when this time expires, the scheme goes to "Lockout".

This timer must be set to a delay less than the reset timer.

Figure 5-85: AUTORECLOSURE SCHEME LOGIC (Sheet 1 of 2)

Figure 5-86: AUTORECLOSURE SCHEME LOGIC (Sheet 2 of 2)

Figure 5-87: SINGLE SHOT AUTORECLOSING SEQUENCE - PERMANENT FAULT

PATH: SETTINGS $\Rightarrow \sqrt{2}$ CONTROL ELEMENTS $\Rightarrow \sqrt{ }$ DIGITAL ELEMENTS \Rightarrow DIGITAL ELEMENT 1 (16)

\square DIGITAL ELEMENT 1	(1)	DIGITAL ELEMENT 1 FUNCTION: Disabled	Range: Disabled, Enabled
MESSAG	-	DIG ELEM 1 NAME: Dig Element 1	Range: 16 alphanumeric characters
MESSAG	-	DIG ELEM 1 INPUT: Off	Range: FlexLogic ${ }^{\text {TM }}$ operand
MESSAG	-	DIG ELEM 1 PICKUP DELAY: 0.000 s	Range: 0.000 to 999999.999 s in steps of 0.001
MESSAG	-	DIG ELEM 1 RESET DELAY: 0.000 s	Range: 0.000 to 999999.999 s in steps of 0.001
MESSAG	-	DIG ELEM 1 BLOCK: Off	Range: FlexLogic ${ }^{\text {TM }}$ operand
MESSAG	-	DIGITAL ELEMENT 1 TARGET: Self-reset	Range: Self-reset, Latched, Disabled
MESSAG	(DIGITAL ELEMENT 1 EVENTS: Disabled	Range: Disabled, Enabled

There are 16 identical Digital Elements available, numbered 1 to 16 . A Digital Element can monitor any FlexLogic ${ }^{\text {TM }}$ operand and present a target message and/or enable events recording depending on the output operand state. The digital element settings include a 'name' which will be referenced in any target message, a blocking input from any selected FlexLogic ${ }^{\text {TM }}$ operand, and a timer for pickup and reset delays for the output operand.

- DIGITAL ELEMENT 1 INPUT: Selects a FlexLogic ${ }^{\text {TM }}$ operand to be monitored by the Digital Element.
- DIGITAL ELEMENT 1 PICKUP DELAY: Sets the time delay to pickup. If a pickup delay is not required, set to "0".
- DIGITAL ELEMENT 1 RESET DELAY: Sets the time delay to reset. If a reset delay is not required, set to " 0 ".

Figure 5-88: DIGITAL ELEMENT SCHEME LOGIC

CIRCUIT MONITORING APPLICATIONS:

Some versions of the digital input modules include an active Voltage Monitor circuit connected across Form-A contacts. The Voltage Monitor circuit limits the trickle current through the output circuit (see Technical Specifications for Form-A).

As long as the current through the Voltage Monitor is above a threshold (see Technical Specifications for Form-A), the FlexLogic ${ }^{\text {M }}$ operand "Cont Op \# VOn" will be set. (\# represents the output contact number). If the output circuit has a high resistance or the DC current is interrupted, the trickle current will drop below the threshold and the FlexLogic ${ }^{\text {TM }}$ operand "Cont Op \# VOff" will be set. Consequently, the state of these operands can be used as indicators of the integrity of the circuits in which Form-A contacts are inserted.

5 SETTINGS

EXAMPLE 1: BREAKER TRIP CIRCUIT INTEGRITY MONITORING

In many applications it is desired to monitor the breaker trip circuit integrity so problems can be detected before a trip operation is required. The circuit is considered to be healthy when the Voltage Monitor connected across the trip output contact detects a low level of current, well below the operating current of the breaker trip coil. If the circuit presents a high resistance, the trickle current will fall below the monitor threshold and an alarm would be declared.

In most breaker control circuits, the trip coil is connected in series with a breaker auxiliary contact which is open when the breaker is open (see diagram below). To prevent unwanted alarms in this situation, the trip circuit monitoring logic must include the breaker position.

Figure 5-89: TRIP CIRCUIT EXAMPLE 1
Assume the output contact H 1 is a trip contact. Using the contact output settings, this output will be given an ID name, e.g. "Cont Op 1". Assume a 52a breaker auxiliary contact is connected to contact input H7a to monitor breaker status. Using the contact input settings, this input will be given an ID name, e.g. "Cont Ip 1" and will be set "ON" when the breaker is closed. Using Digital Element 1 to monitor the breaker trip circuit, the settings will be:

The PICKUP DELAY setting should be greater than the operating time of the breaker to avoid nuisance alarms.

EXAMPLE 2: BREAKER TRIP CIRCUIT INTEGRITY MONITORING

If it is required to monitor the trip circuit continuously, independent of the breaker position (open or closed), a method to maintain the monitoring current flow through the trip circuit when the breaker is open must be provided (as shown in the figure below). This can be achieved by connecting a suitable resistor (see figure below) across the auxiliary contact in the trip circuit. In this case, it is not required to supervise the monitoring circuit with the breaker position - the block setting is selected to "Off". In this case, the settings will be:

Table 5-19: VALUES OF RESISTOR 'R’

POWER SUPPLY (V DC)	RESISTANCE (OHMS)	POWER (WATTS)
24	1000	2
30	5000	2
48	10000	2
110	25000	5
125	25000	5
250	50000	5

Figure 5-90: TRIP CIRCUIT EXAMPLE 2

PATH: SETTINGS $\Rightarrow \sqrt{ }$ CONTROL ELEMENTS $\Rightarrow \sqrt{ }$ DIGITAL COUNTERS \Rightarrow COUNTER 1(8)

There are 8 identical digital counters, numbered from 1 to 8 . A digital counter counts the number of state transitions from Logic 0 to Logic 1. The counter is used to count operations such as the pickups of an element, the changes of state of an external contact (e.g. breaker auxiliary switch), or pulses from a watt-hour meter.

- COUNTER 1 UNITS: Assigns a label to identify the unit of measure pertaining to the digital transitions to be counted. The units label will appear in the corresponding Actual Values status.
- COUNTER 1 PRESET: Sets the count to a required preset value before counting operations begin, as in the case where a substitute relay is to be installed in place of an in-service relay, or while the counter is running.
- COUNTER 1 COMPARE: Sets the value to which the accumulated count value is compared. Three FlexLogic ${ }^{\text {TM }}$ output operands are provided to indicate if the present value is 'more than (HI)', 'equal to (EQL)', or 'less than (LO)' the set value.
- COUNTER 1 UP: Selects the FlexLogic ${ }^{\text {TM }}$ operand for incrementing the counter. If an enabled UP input is received when the accumulated value is at the limit of $+2,147,483,647$ counts, the counter will rollover to $-2,147,483,648$.
- COUNTER 1 DOWN: Selects the FlexLogic ${ }^{\text {TM }}$ operand for decrementing the counter. If an enabled DOWN input is received when the accumulated value is at the limit of $-2,147,483,648$ counts, the counter will rollover to $+2,147,483,647$.
- COUNTER 1 BLOCK: Selects the FlexLogic ${ }^{\text {TM }}$ operand for blocking the counting operation. All counter operands are blocked.
- CNT1 SET TO PRESET: Selects the FlexLogic ${ }^{\text {TM }}$ operand used to set the count to the preset value. The counter will be set to the preset value in the following situations:

1. When the counter is enabled and the CNT1 SET TO PRESET operand has the value 1 (when the counter is enabled and CNT1 SET TO PRESET operand is 0 , the counter will be set to 0).
2. When the counter is running and the CNT1 SET TO PRESET operand changes the state from 0 to 1 (CNT1 SET TO PRESET changing from 1 to 0 while the counter is running has no effect on the count).
3. When a reset or reset/freeze command is sent to the counter and the CNT1 SET TO PRESET operand has the value 1 (when a reset or reset/freeze command is sent to the counter and the CNT1 SET TO PRESET operand has the value 0 , the counter will be set to 0).

- COUNTER 1 RESET: Selects the FlexLogic ${ }^{\text {TM }}$ operand for setting the count to either " 0 " or the preset value depending on the state of the CNT1 SET TO PRESET operand.
- COUNTER 1 FREEZE/RESET: Selects the FlexLogic ${ }^{\text {TM }}$ operand for capturing (freezing) the accumulated count value into a separate register with the date and time of the operation, and resetting the count to " 0 ".
- COUNTER 1 FREEZE/COUNT: Selects the FlexLogic ${ }^{\text {TM }}$ operand for capturing (freezing) the accumulated count value into a separate register with the date and time of the operation, and continuing counting. The present accumulated value and captured frozen value with the associated date/time stamp are available as actual values. If control power is interrupted, the accumulated and frozen values are saved into non-volatile memory during the power down operation.

Figure 5-91: DIGITAL COUNTER SCHEME LOGIC
a) MAIN MENU

PATH: SETTINGS $\Rightarrow \sqrt{ }$ CONTROL ELEMENTS $\Rightarrow \sqrt{ }$ MONITORING ELEMENTS

b) BREAKER ARCING CURRENT

PATH: SETTINGS $\Rightarrow \sqrt{ }$ CONTROL ELEMENTS $\Rightarrow \sqrt{ } \Rightarrow$ MONITORING ELEMENTS \Rightarrow BREAKER 1 $1(2)$ ARCING CURRENT

There are 2 identical Breaker Arcing Current features available for Breakers 1 and 2. This element calculates an estimate of the per-phase wear on the breaker contacts by measuring and integrating the current squared passing through the breaker contacts as an arc. These per-phase values are added to accumulated totals for each phase and compared to a programmed threshold value. When the threshold is exceeded in any phase, the relay can set an output operand to " 1 ". The accumulated value for each phase can be displayed as an actual value.

The operation of the scheme is shown in the following logic diagram. The same output operand that is selected to operate the output relay used to trip the breaker, indicating a tripping sequence has begun, is used to initiate this feature. A time delay is introduced between initiation and the starting of integration to prevent integration of current flow through the breaker before the contacts have parted. This interval includes the operating time of the output relay, any other auxiliary relays and the breaker mechanism. For maximum measurement accuracy, the interval between change-of-state of the operand (from 0 to 1) and contact separation should be measured for the specific installation. Integration of the measured current continues for 100 ms , which is expected to include the total arcing period.

- BKR 1(2) ARC AMP INIT: Selects the same output operand that is selected to operate the output relay used to trip the breaker.
- BKR 1(2) ARC AMP DELAY: This setting is used to program the delay interval between the time the tripping sequence is initiated and the time the breaker contacts are expected to part, starting the integration of the measured current.
- BKR 1(2) ARC AMP LIMIT: Selects the threshold value above which the output operand is set.

Figure 5-92: ARCING CURRENT MEASUREMENT

5

Figure 5-93: BREAKER ARCING CURRENT SCHEME LOGIC

c) VT FUSE FAILURE

PATH: SETTINGS $\Rightarrow \sqrt{ }$ CONTROL ELEMENTS $\Rightarrow \sqrt{ }$ MONITORING ELEMENTS $\Rightarrow \sqrt{ }$ VT FUSE FAILURE 1(2)

Every signal source includes a fuse failure scheme.
The VT fuse failure detector can be used to raise an alarm and/or block elements that may operate incorrectly for a full or partial loss of AC potential caused by one or more blown fuses. Some elements that might be blocked (via the BLOCK input) are distance, voltage restrained overcurrent, and directional current.
There are two classes of fuse failure that may occur:
Class A: Loss of one or two phases.
Class B: Loss of all three phases.
Different means of detection are required for each class. An indication of Class A failures is a significant level of negative sequence voltage, whereas an indication of Class B failures is when positive sequence current is present and there is an insignificant amount of positive sequence voltage. These noted indications of fuse failure could also be present when faults are present on the system, so a means of detecting faults and inhibiting fuse failure declarations during these events is provided. Once the fuse failure condition is declared, it will be sealed-in until the cause that generated it disappears.

An additional condition is introduced to inhibit a fuse failure declaration when the monitored circuit is de-energized; positive sequence voltage and current are both below threshold levels.
The vt fuse failure function setting enables/disables the fuse failure feature for each source.

Figure 5-94: VT FUSE FAIL SCHEME LOGIC

PATH: SETTINGS $\Rightarrow \sqrt{ } \sqrt{ }$ INPUTS/OUTPUTS \Rightarrow CONTACT INPUTS

The contact inputs menu contains configuration settings for each contact input as well as voltage thresholds for each group of four contact inputs. Upon startup, the relay processor determines (from an assessment of the installed modules) which contact inputs are available and then display settings for only those inputs.
An alphanumeric ID may be assigned to a contact input for diagnostic, setting, and event recording purposes. The CONTACT IP X On" (Logic 1) FlexLogic ${ }^{\text {TM }}$ operand corresponds to contact input " X " being closed, while CONTACT IP X Off corresponds to contact input " X " being open. The CONTACT INPUT DEBNCE TIME defines the time required for the contact to overcome 'contact bouncing' conditions. As this time differs for different contact types and manufacturers, set it as a maximum contact debounce time (per manufacturer specifications) plus some margin to ensure proper operation. If CONTACT INPUT EVENTS is set to "Enabled", every change in the contact input state will trigger an event.

A raw status is scanned for all Contact Inputs synchronously at the constant rate of 0.5 ms as shown in the figure below. The DC input voltage is compared to a user-settable threshold. A new contact input state must be maintained for a usersettable debounce time in order for the D30 to validate the new contact state. In the figure below, the debounce time is set at 2.5 ms ; thus the 6th sample in a row validates the change of state (mark no. 1 in the diagram). Once validated (debounced), the contact input asserts a corresponding FlexLogic ${ }^{\top M}$ operand and logs an event as per user setting.
A time stamp of the first sample in the sequence that validates the new state is used when logging the change of the contact input into the Event Recorder (mark no. 2 in the diagram).
Protection and control elements, as well as FlexLogic ${ }^{T M}$ equations and timers, are executed eight times in a power system cycle. The protection pass duration is controlled by the frequency tracking mechanism. The FlexLogic ${ }^{\text {™ }}$ operand reflecting the debounced state of the contact is updated at the protection pass following the validation (marks no. 3 and 4 on the figure below). The update is performed at the beginning of the protection pass so all protection and control functions, as well as FlexLogic ${ }^{T M}$ equations, are fed with the updated states of the contact inputs.

The FlexLogic ${ }^{\text {TM }}$ operand response time to the contact input change is equal to the debounce time setting plus up to one protection pass (variable and depending on system frequency if frequency tracking enabled). If the change of state occurs just after a protection pass, the recognition is delayed until the subsequent protection pass; that is, by the entire duration of the protection pass. If the change occurs just prior to a protection pass, the state is recognized immediately. Statistically a delay of half the protection pass is expected. Owing to the 0.5 ms scan rate, the time resolution for the input contact is below 1msec.

For example, 8 protection passes per cycle on a 60 Hz system correspond to a protection pass every 2.1 ms . With a contact debounce time setting of 3.0 ms , the FlexLogic ${ }^{\text {TM }}$ operand-assert time limits are: $3.0+0.0=3.0 \mathrm{~ms}$ and $3.0+2.1=5.1$ ms . These time limits depend on how soon the protection pass runs after the debouncing time.

Regardless of the contact debounce time setting, the contact input event is time-stamped with a $1 \mu \mathrm{~s}$ accuracy using the time of the first scan corresponding to the new state (mark no. 2 below). Therefore, the time stamp reflects a change in the DC voltage across the contact input terminals that was not accidental as it was subsequently validated using the debounce timer. Keep in mind that the associated FlexLogic ${ }^{T M}$ operand is asserted/de-asserted later, after validating the change.
The debounce algorithm is symmetrical: the same procedure and debounce time are used to filter the LOW-HIGH (marks no.1, 2, 3, and 4 in the figure below) and HIGH-LOW (marks no. 5, 6, 7, and 8 below) transitions.

Figure 5-95: INPUT CONTACT DEBOUNCING MECHANISM AND TIME-STAMPING SAMPLE TIMING
Contact inputs are isolated in groups of four to allow connection of wet contacts from different voltage sources for each group. The CONTACT INPUT THRESHOLDS determine the minimum voltage required to detect a closed contact input. This value should be selected according to the following criteria: 17 for 24 V sources, 33 for 48 V sources, 84 for 110 to 125 V sources and 166 for 250 V sources.

For example, to use contact input H 5 a as a status input from the breaker 52b contact to seal-in the trip relay and record it in the Event Records menu, make the following settings changes:

```
CONTACT INPUT H5A ID: "Breaker Closed (52b)"
CONTACT INPUT H5A EVENTS: "Enabled"
```

Note that the 52 b contact is closed when the breaker is open and open when the breaker is closed.

PATH: SETTINGS $\Rightarrow \sqrt{ }$ INPUTSIOUTPUTS $\Rightarrow \sqrt{ }$ VIRTUAL INPUTS \Rightarrow

There are 32 virtual inputs that can be individually programmed to respond to input signals from the keypad (COMMANDS menu) and communications protocols. All virtual input operands are defaulted to OFF $=0$ unless the appropriate input signal is received. Virtual input states are preserved through a control power loss.

If the VIRTUAL INPUT x FUNCTION is to "Disabled", the input will be forced to 'OFF' (Logic 0) regardless of any attempt to alter the input. If set to "Enabled", the input operates as shown on the logic diagram and generates output FlexLogic ${ }^{\text {™ }}$ operands in response to received input signals and the applied settings.

There are two types of operation: Self-Reset and Latched. If VIRTUAL INPUT x TYPE is "Self-Reset", when the input signal transits from OFF $=0$ to $\mathrm{ON}=1$, the output operand will be set to $\mathrm{ON}=1$ for only one evaluation of the FlexLogic ${ }^{\text {TM }}$ equations and then return to OFF $=0$. If set to "Latched", the virtual input sets the state of the output operand to the same state as the most recent received input, $\mathrm{ON}=1$ or $\mathrm{OFF}=0$.

The "Self-Reset" operating mode generates the output operand for a single evaluation of the FlexLogic ${ }^{\text {TM }}$ equations. If the operand is to be used anywhere other than internally in a FlexLogic ${ }^{\text {TM }}$ equation, it will likely have to be lengthened in time. A FlexLogic ${ }^{\text {TM }}$ timer with a delayed reset can perform this function.
The Select-Before-Operate timer sets the interval from the receipt of an Operate signal to the automatic de-selection of the virtual input, so that an input does not remain selected indefinitely (used only with the UCA Select-Before-Operate feature).

Figure 5-96: VIRTUAL INPUTS SCHEME LOGIC

a) DIGITAL OUTPUTS

PATH: SETTINGS $\Rightarrow \sqrt{ }$ INPUTSIOUTPUTS $\Rightarrow \sqrt{ } \Rightarrow$ CONTACT OUTPUTS \Rightarrow CONTACT OUTPUT H1

Upon startup of the relay, the main processor will determine from an assessment of the modules installed in the chassis which contact outputs are available and present the settings for only these outputs.
An ID may be assigned to each contact output. The signal that can OPERATE a contact output may be any FlexLogic ${ }^{\text {TM }}$ operand (virtual output, element state, contact input, or virtual input). An additional FlexLogic ${ }^{\top M}$ operand may be used to SEAL-IN the relay. Any change of state of a contact output can be logged as an Event if programmed to do so.

EXAMPLE:

The trip circuit current is monitored by providing a current threshold detector in series with some Form-A contacts (see the Trip Circuit Example in the Digital Elements section). The monitor will set a flag (see the Specifications for Form-A). The name of the FlexLogic ${ }^{\text {TM }}$ operand set by the monitor, consists of the output relay designation, followed by the name of the flag; e.g. 'Cont Op 1 IOn' or 'Cont Op 1 IOff'.

In most breaker control circuits, the trip coil is connected in series with a breaker auxiliary contact used to interrupt current flow after the breaker has tripped, to prevent damage to the less robust initiating contact. This can be done by monitoring an auxiliary contact on the breaker which opens when the breaker has tripped, but this scheme is subject to incorrect operation caused by differences in timing between breaker auxiliary contact change-of-state and interruption of current in the trip circuit. The most dependable protection of the initiating contact is provided by directly measuring current in the tripping circuit, and using this parameter to control resetting of the initiating relay. This scheme is often called "trip seal-in".

This can be realized in the UR using the 'Cont Op 1 IOn' FlexLogic ${ }^{\text {TM }}$ operand to seal-in the Contact Output as follows:

```
CONTACT OUTPUT H1 ID: "Cont Op 1"
OUTPUT H1 OPERATE: any suitable FlexLogicTM operand
OUTPUT H1 SEAL-IN: "Cont Op 1 IOn"
CONTACT OUTPUT H1 EVENTS: "Enabled"
```


b) LATCHING OUTPUTS

PATH: SETTINGS $\Rightarrow \sqrt{ }$ INPUTSIOUTPUTS $\Rightarrow \sqrt{ } \Rightarrow$ CONTACT OUTPUTS \Rightarrow CONTACT OUTPUT H1a

The D30 latching output contacts are mechanically bi-stable and controlled by two separate (open and close) coils. As such they retain their position even if the relay is not powered up. The relay recognizes all latching output contact cards and populates the setting menu accordingly. On power up, the relay reads positions of the latching contacts from the hardware before executing any other functions of the relay (such as protection and control features or FlexLogic ${ }^{\text {TM }}$).
The latching output modules, either as a part of the relay or as individual modules, are shipped from the factory with all latching contacts opened. It is highly recommended to double-check the programming and positions of the latching contacts when replacing a module.
Since the relay asserts the output contact and reads back its position, it is possible to incorporate self-monitoring capabilities for the latching outputs. If any latching outputs exhibits a discrepancy, the LATCHING OUTPUT ERROR self-test error is declared. The error is signaled by the LATCHING OUT ERROR FlexLogic ${ }^{\text {TM }}$ operand, event, and target message.

- OUTPUT H1a OPERATE: This setting specifies a FlexLogic ${ }^{\text {M }}$ operand to operate the 'close coil' of the contact. The relay will seal-in this input to safely close the contact. Once the contact is closed and the RESET input is logic 0 (off), any activity of the OPERATE input, such as subsequent chattering, will not have any effect. With both the OPERATE and RESET inputs active (logic 1), the response of the latching contact is specified by the OUTPUT H1A TYPE setting.
- OUTPUT H1a RESET: This setting specifies a FlexLogic ${ }^{\text {TM }}$ operand to operate the 'trip coil' of the contact. The relay will seal-in this input to safely open the contact. Once the contact is opened and the OPERATE input is logic 0 (off), any activity of the reset input, such as subsequent chattering, will not have any effect. With both the OPERATE and reset inputs active (logic 1), the response of the latching contact is specified by the OUTPUT H1A TYPE setting.
- OUTPUT H1a TYPE: This setting specifies the contact response under conflicting control inputs; that is, when both the OPERATE and RESET signals are applied. With both control inputs applied simultaneously, the contact will close if set to "Operate-dominant" and will open if set to "Reset-dominant".

Application Example 1:

A latching output contact H 1 a is to be controlled from two user-programmable pushbuttons (buttons number 1 and 2). The following settings should be applied.

Program the Latching Outputs by making the following changes in the SETTINGS $\Rightarrow \sqrt{ } \sqrt{ }$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ }$ CONTACT OUTPUTS \Rightarrow CONTACT OUTPUT H1a menu (assuming an H4L module):

OUTPUT H1a OPERATE: "PUSHBUTTON 1 ON"
OUTPUT H1a RESET: "PUSHBUTTON 2 ON"
Program the pushbutton by making the following changes in the PRODUCT SETUP $\Rightarrow \Omega$ USER-PROGRAMMABLE PUSHBUTTONS $\Rightarrow \sqrt{ } \sqrt{ }$ USER PUSHBUTTON 1 and USER PUSHBUTTON 2 menus:
PUSHBUTTON 1 FUNCTION: "Self-reset" PUSHBUTTON 2 FUNCTION: "Self-reset"
PUSHBTN 1 DROP-OUT TIME: "0.00 s"

Application Example 2:

A relay, having two latching contacts H 1 a and H 1 c , is to be programmed. The H1a contact is to be a Type-a contact, while the H1c contact is to be a Type-b contact (Type-a means closed after exercising the operate input; Type-b means closed after exercising the reset input). The relay is to be controlled from virtual outputs: VO1 to operate and VO2 to reset.

Program the Latching Outputs by making the following changes in the SETTINGS $\Rightarrow \sqrt{ } \sqrt{ }$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ }$ CONTACT OUTPUTS \Rightarrow CONTACT OUTPUT H1a and CONTACT OUTPUT H1c menus (assuming an H4L module):

```
OUTPUT H1a OPERATE: "VO1"
OUTPUT H1c OPERATE: "VO2"
```

OUTPUT H1a RESET: "VO2"
OUTPUT H1c RESET: "VO1"
Since the two physical contacts in this example are mechanically separated and have individual control inputs, they will not operate at exactly the same time. A discrepancy in the range of a fraction of a maximum operating time may occur. Therefore, a pair of contacts programmed to be a multi-contact relay will not guarantee any specific sequence of operation (such as make before break). If required, the sequence of operation must be programmed explicitly by delaying some of the control inputs as shown in the next application example.

Application Example 3:

A make before break functionality must be added to the preceding example. An overlap of 20 ms is required to implement this functionality as described below:

Write the following FlexLogic ${ }^{\text {TM }}$ equation (EnerVista UR Setup example shown):

Both timers (Timer 1 and Timer 2) should be set to 20 ms pickup and 0 ms dropout.
Program the Latching Outputs by making the following changes in the SETTINGS $\Rightarrow \sqrt{ }$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ }$ CONTACT OUTPUTS \Rightarrow CONTACT OUTPUT H1a and CONTACT OUTPUT H1c menus (assuming an H4L module):

OUTPUT H1a OPERATE: "VO1" OUTPUT H1c OPERATE: "VO2"
OUTPUT H1a RESET: "VO4"
OUTPUT H1c RESET: "VO3"

Application Example 4:

A latching contact H1a is to be controlled from a single virtual output VO1. The contact should stay closed as long as VO1 is high, and should stay opened when VO1 is low. Program the relay as follows.

Write the following FlexLogic ${ }^{\text {TM }}$ equation (EnerVista UR Setup example shown):

Program the Latching Outputs by making the following changes in the SETTINGS $\Rightarrow \sqrt{ }$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ }$ CONTACT OUTPUTS \Rightarrow CONTACT OUTPUT H1a menu (assuming an H4L module):

OUTPUT H1a OPERATE: "VO1"
OUTPUT H1a RESET: "VO2"

PATH: SETTINGS $\Rightarrow \sqrt{ }$ INPUTSIOUTPUTS $\Rightarrow \sqrt{ }$ VIRTUAL OUTPUTS \Rightarrow VIRTUAL OUTPUT 1(64)

There are 64 virtual outputs that may be assigned via FlexLogic ${ }^{\text {TM }}$. If not assigned, the output will be forced to 'OFF' (Logic 0). An ID may be assigned to each virtual output. Virtual outputs are resolved in each pass through the evaluation of the FlexLogic ${ }^{\text {TM }}$ equations. Any change of state of a virtual output can be logged as an event if programmed to do so.
For example, if Virtual Output 1 is the trip signal from FlexLogic ${ }^{\text {TM }}$ and the trip relay is used to signal events, the settings would be programmed as follows:

```
VIRTUAL OUTPUT 1 ID: "Trip"
VIRTUAL OUTPUT 1 EVENTS: "Disabled"
```


a) REMOTE I/O OVERVIEW

Remote inputs and outputs, which are a means of exchanging information regarding the state of digital points between remote devices, are provided in accordance with the Electric Power Research Institute's (EPRI) UCA2 "Generic Object Oriented Substation Event (GOOSE)" specifications.

${\underset{N O T}{2}}^{\square}$
 The UCA2 specification requires that communications between devices be implemented on Ethernet communications facilities. For UR relays, Ethernet communications is provided only on the type 9C and 9D versions of the CPU module.

The sharing of digital point state information between GOOSE equipped relays is essentially an extension to FlexLogic $^{\text {™ }}$ to allow distributed FlexLogic ${ }^{\text {™ }}$ by making operands available to/from devices on a common communications network. In addition to digital point states, GOOSE messages identify the originator of the message and provide other information required by the communication specification. All devices listen to network messages and capture data from only those messages that have originated in selected devices.

GOOSE messages are designed to be short, high priority and with a high level of reliability. The GOOSE message structure contains space for 128 bit pairs representing digital point state information. The UCA specification provides 32 "DNA" bit pairs, which are status bits representing pre-defined events. All remaining bit pairs are "UserSt" bit pairs, which are status bits representing user-definable events. The UR implementation provides 32 of the 96 available UserSt bit pairs.

The UCA2 specification includes features that are used to cope with the loss of communication between transmitting and receiving devices. Each transmitting device will send a GOOSE message upon a successful power-up, when the state of any included point changes, or after a specified interval (the "default update" time) if a change-of-state has not occurred. The transmitting device also sends a "hold time" which is set to three times the programmed default time, which is required by the receiving device.
Receiving devices are constantly monitoring the communications network for messages they require, as recognized by the identification of the originating device carried in the message. Messages received from remote devices include the message "hold" time for the device. The receiving relay sets a timer assigned to the originating device to the "hold" time interval, and if it has not received another message from this device at time-out, the remote device is declared to be non-communicating, so it will use the programmed default state for all points from that specific remote device. This mechanism allows a receiving device to fail to detect a single transmission from a remote device which is sending messages at the slowest possible rate, as set by its "default update" timer, without reverting to use of the programmed default states. If a message is received from a remote device before the "hold" time expires, all points for that device are updated to the states contained in the message and the hold timer is restarted. The status of a remote device, where 'Offline' indicates 'non-communicating', can be displayed.

The GOOSE facility provides for 32 remote inputs and 64 remote outputs.

b) LOCAL DEVICES: ID OF DEVICE FOR TRANSMITTING GOOSE MESSAGES

In a UR relay, the device ID that identifies the originator of the message is programmed in the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ INSTALLATION $\Rightarrow \sqrt{ }$ RELAY NAME setting.
c) REMOTE DEVICES: ID OF DEVICE FOR RECEIVING GOOSE MESSAGES

PATH: SETTINGS $\Rightarrow \sqrt{ }$ INPUTSIOUTPUTS $\Rightarrow \sqrt{ }$ REMOTE DEVICES \Rightarrow REMOTE DEVICE 1(16)

\square
\square
:---
Remote Device 1

Sixteen Remote Devices, numbered from 1 to 16, can be selected for setting purposes. A receiving relay must be programmed to capture messages from only those originating remote devices of interest. This setting is used to select specific remote devices by entering (bottom row) the exact identification (ID) assigned to those devices.

PATH: SETTINGS $\Rightarrow \sqrt{ } \sqrt{ }$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ } \Rightarrow$ REMOTE INPUTS \Rightarrow REMOTE INPUT 1(32)

\square REMOTE INPUT 1	(1)	REMOTE IN 1 DEVICE: Remote Device 1	Range: 1 to 16 inclusive
MESSAGE	-	REMOTE IN 1 BIT PAIR: None	Range: None, DNA-1 to DNA-32, UserSt-1 to UserSt-32
MESSAGE	Q	REMOTE IN 1 DEFAULT STATE: Off	Range: On, Off, Latest/On, Latest/Off
MESSAGE	(2)	REMOTE IN 1 EVENTS: Disabled	Range: Disabled, Enabled

Remote Inputs which create FlexLogic ${ }^{\text {TM }}$ operands at the receiving relay, are extracted from GOOSE messages originating in remote devices. The relay provides 32 remote inputs, each of which can be selected from a list consisting of 64 selections: DNA-1 through DNA-32 and UserSt-1 through UserSt-32. The function of DNA inputs is defined in the UCA2 specifications and is presented in the UCA2 DNA Assignments table in the Remote Outputs section. The function of UserSt inputs is defined by the user selection of the FlexLogic ${ }^{\text {TM }}$ operand whose state is represented in the GOOSE message. A user must program a DNA point from the appropriate FlexLogic ${ }^{\text {TM }}$ operand.
Remote Input 1 must be programmed to replicate the logic state of a specific signal from a specific remote device for local use. This programming is performed via the three settings shown above.

REMOTE IN 1 DEVICE selects the number (1 to 16) of the remote device which originates the required signal, as previously assigned to the remote device via the setting remote device nn id (see the Remote Devices section). REmote in 1 bit Pair selects the specific bits of the GOOSE message required.

The REMOTE IN 1 DEFAULT STATE setting selects the logic state for this point if the local relay has just completed startup or the remote device sending the point is declared to be non-communicating. The following choices are available:

- Setting remote in 1 default state to "On" value defaults the input to Logic 1.
- Setting remote in 1 default state to "Off" value defaults the input to Logic 0.
- Setting remote in 1 default state to "Latest/On" freezes the input in case of lost communications. If the latest state is not known, such as after relay power-up but before the first communication exchange, the input will default to Logic 1. When communication resumes, the input becomes fully operational.
- Setting REMOTE IN 1 DEFAULT STATE to "Latest/Off" freezes the input in case of lost communications. If the latest state is not known, such as after relay power-up but before the first communication exchange, the input will default to Logic 0 . When communication resumes, the input becomes fully operational.

For additional information on the GOOSE specification, refer to the Remote Devices section in this chapter and to Appendix C: UCA/MMS Communications.
a) DNA BIT PAIRS

PATH: SETTINGS $\Rightarrow \sqrt{ }$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ } \Rightarrow$ REMOTE OUTPUTS DNA BIT PAIRS \Rightarrow REMOTE OUPUTS DNA- 1(32) BIT PAIR

Remote Outputs (1 to 32) are FlexLogic ${ }^{\text {™ }}$ operands inserted into GOOSE messages that are transmitted to remote devices on a LAN. Each digital point in the message must be programmed to carry the state of a specific FlexLogic ${ }^{\text {TM }}$ operand. The above operand setting represents a specific DNA function (as shown in the following table) to be transmitted.

Table 5-20: UCA DNA2 ASSIGNMENTS

DNA	DEFINITION	INTENDED FUNCTION	LOGIC 0	LOGIC 1
1	OperDev		Trip	Close
2	Lock Out		LockoutOff	LockoutOn
3	Initiate Reclosing	Initiate remote reclose sequence	InitRecloseOff	InitRecloseOn
4	Block Reclosing	Prevent/cancel remote reclose sequence	BlockOff	BlockOn
5	Breaker Failure Initiate	Initiate remote breaker failure scheme	BFIOff	BFIOn
6	Send Transfer Trip	Initiate remote trip operation	TxXfrTripOff	TxXfrTripOn
7	Receive Transfer Trip	Report receipt of remote transfer trip command	RxXfrTripOff	RxXfrTripOn
8	Send Perm	Report permissive affirmative	TxPermOff	TxPermOn
9	Receive Perm	Report receipt of permissive affirmative	RxPermOff	RxPermOn
10	Stop Perm	Override permissive affirmative	StopPermOff	StopPermOn
11	Send Block	Report block affirmative	TxBlockOff	TxBlockOn
12	Receive Block	Report receipt of block affirmative	RxBlockOff	RxBlockOn
13	Stop Block	Override block affirmative	StopBlockOff	StopBlockOn
14	BkrDS	Report breaker disconnect 3-phase state	Open	Closed
15	BkrPhsADS	Report breaker disconnect phase A state	Open	Closed
16	BkrPhsBDS	Report breaker disconnect phase B state	Open	Closed
17	BkrPhsCDS	Report breaker disconnect phase C state	Open	Closed
18	DiscSwDS		Open	Closed
19	Interlock DS		DSLockOff	DSLockOn
20	LineEndOpen	Report line open at local end	Open	Closed
21	Status	Report operating status of local GOOSE device	Offline	Available
22	Event		EventOff	EventOn
23	Fault Present		FaultOff	FaultOn
24	Sustained Arc	Report sustained arc	SustArcOff	SustArcOn
25	Downed Conductor	Report downed conductor	DownedOff	DownedOn
26	Sync Closing		SyncClsOff	SyncClsOn
27	Mode	Report mode status of local GOOSE device	Normal	Test
$28 \rightarrow 32$	Reserved			

For more information on GOOSE specifications, see the Remote I/O Overview in the Remote Devices section.

b) USERST BIT PAIRS

PATH: SETTINGS $\Rightarrow \sqrt[夕]{ }$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ } \Rightarrow$ REMOTE OUTPUTS UserSt BIT PAIRS \Rightarrow REMOTE OUTPUTS UserSt- 1(32) BIT PAIR

Remote Outputs 1 to 32 originate as GOOSE messages to be transmitted to remote devices. Each digital point in the message must be programmed to carry the state of a specific FlexLogic ${ }^{\text {TM }}$ operand. The setting above is used to select the operand which represents a specific UserSt function (as selected by the user) to be transmitted.
The following setting represents the time between sending GOOSE messages when there has been no change of state of any selected digital point. This setting is located in the PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ UCAIMMS PROTOCOL settings menu.

DEFAULT GOOSE UPDATE TIME: 60 s

For more information on GOOSE specifications, see the Remote I/O Overview in the Remote Devices section.

PATH: SETTINGS $\Rightarrow \sqrt[\Omega]{ }$ INPUTSIOUTPUTS $\Rightarrow \sqrt{ }$ RESETTING

\square RESETTING	(1)	RESET OPERAND: Off	Range: FlexLogic ${ }^{\text {TM }}$ operand

Some events can be programmed to latch the faceplate LED event indicators and the target message on the display. Once set, the latching mechanism will hold all of the latched indicators or messages in the set state after the initiating condition has cleared until a RESET command is received to return these latches (not including FlexLogic ${ }^{\text {M }}$ latches) to the reset state. The RESET command can be sent from the faceplate Reset button, a remote device via a communications channel, or any programmed operand.
When the RESET command is received by the relay, two FlexLogic ${ }^{T M}$ operands are created. These operands, which are stored as events, reset the latches if the initiating condition has cleared. The three sources of RESET commands each create the RESET OP FlexLogic ${ }^{\text {TM }}$ operand. Each individual source of a RESET command also creates its individual operand RESET OP (PUSHBUTTON), RESET OP (COMMS) or RESET OP (OPERAND) to identify the source of the command. The setting shown above selects the operand that will create the RESET OP (OPERAND) operand.
5.7.9 DIRECT INPUTS/OUTPUTS

a) DIRECT INPUTS

PATH: SETTINGS $\Rightarrow \sqrt{ } \sqrt{ }$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ }$ DIRECT INPUTS \Rightarrow DIRECT INPUT 1(32)

These settings specify how the Direct Input information is processed. The DIRECT INPUT DEVICE ID represents the source of this Direct Input. The specified Direct Input is driven by the device identified here.

The direct input 1 bit number is the bit number to extract the state for this Direct Input. Direct Input x is driven by the bit identified here as DIRECT INPUT 1 bIT NUMBER. This corresponds to the Direct Output Number of the sending device.

The direct input 1 default state represents the state of the Direct Input when the associated Direct Device is offline. The following choices are available:

- \quad Setting DIRECT INPUT 1 DEFAULT STATE to "On" value defaults the input to Logic 1.
- Setting direct input 1 DEFAULT STATE to "Off" value defaults the input to Logic 0.
- Setting DIRECT INPUT 1 DEFAULT STATE to "Latest/On" freezes the input in case of lost communications. If the latest state is not known, such as after relay power-up but before the first communication exchange, the input will default to Logic 1 . When communication resumes, the input becomes fully operational.
- Setting direct input 1 default state to "Latest/Off" freezes the input in case of lost communications. If the latest state is not known, such as after relay power-up but before the first communication exchange, the input will default to Logic 0 . When communication resumes, the input becomes fully operational.

b) DIRECT OUTPUTS

PATH: SETTINGS $\Rightarrow \sqrt{ } \sqrt{ }$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ }$ DIRECT OUTPUTS \Rightarrow DIRECT OUTPUT 1(32)

The DIR OUT 1 OPERAND is the FlexLogic ${ }^{\text {TM }}$ operand that determines the state of this Direct Output.
c) APPLICATION EXAMPLES

The examples introduced in the Product Setup section for Direct I/Os are continued below to illustrate usage of the Direct Inputs and Outputs.

EXAMPLE 1: EXTENDING I/O CAPABILITIES OF A D30 RELAY

Consider an application that requires additional quantities of digital inputs and/or output contacts and/or lines of programmable logic that exceed the capabilities of a single UR-series chassis. The problem is solved by adding an extra UR-series IED, such as the C30, to satisfy the additional I/Os and programmable logic requirements. The two IEDs are connected via single-channel digital communication cards as shown below.

Figure 5-97: INPUT/OUTPUT EXTENSION VIA DIRECT I/OS
Assume Contact Input 1 from UR IED 2 is to be used by UR IED 1. The following settings should be applied (Direct Input 5 and bit number 12 are used, as an example):

UR IED 1: \quad DIRECT INPUT 5 DEVICE ID $=$ " 2 "
UR IED 2: DIRECT OUT 12 OPERAND = "Cont Ip 1 On"
DIRECT INPUT 5 BIT NUMBER $=$ " 12 "
The Cont ip 1 On operand of UR IED 2 is now available in UR IED 1 as DIRECT INPUT 5 ON.

EXAMPLE 2: INTERLOCKING BUSBAR PROTECTION

A simple interlocking busbar protection scheme can be accomplished by sending a blocking signal from downstream devices, say 2,3 and 4, to the upstream device that monitors a single incomer of the busbar, as shown in the figure below.

Figure 5-98: SAMPLE INTERLOCKING BUSBAR PROTECTION SCHEME
Assume that Phase IOC1 is used by Devices 2, 3, and 4 to block Device 1. If not blocked, Device 1 would trip the bus upon detecting a fault and applying a short coordination time delay.

The following settings should be applied (assume Bit 3 is used by all 3 devices to sent the blocking signal and Direct Inputs 7,8 , and 9 are used by the receiving device to monitor the three blocking signals):
UR IED 2: DIRECT OUT 3 OPERAND: "PHASE IOC1 OP"
UR IED 3: DIRECT OUT 3 OPERAND: "PHASE IOC1 OP"
UR IED 4: DIRECT OUT 3 OPERAND: "PHASE IOC1 OP"
UR IED 1: DIRECT INPUT 7 DEVICE ID: "2"
DIRECT INPUT 7 BIT NUMBER: "3"
DIRECT INPUT 7 DEFAULT STATE: select "On" for security, select "Off" for dependability
DIRECT INPUT 8 DEVICE ID: "3"
DIRECT INPUT 8 BIT NUMBER: "3"
DIRECT INPUT 8 DEFAULT STATE: select "On" for security, select "Off" for dependability
DIRECT INPUT 9 DEVICE ID: "4"
DIRECT INPUT 9 BIT NUMBER: "3"
DIRECT INPUT 9 DEFAULT STATE: select "On" for security, select "Off" for dependability
Now the three blocking signals are available in UR IED 1 as DIRECT INPUT 7 ON, DIRECT INPUT 8 ON, and DIRECT INPUT 9 ON. Upon losing communications or a device, the scheme is inclined to block (if any default state is set to "On"), or to trip the bus on any overcurrent condition (all default states set to "Off").
EXAMPLE 2: PILOT-AIDED SCHEMES
Consider a three-terminal line protection application shown in the figure below.

Figure 5-99: THREE-TERMINAL LINE APPLICATION
Assume the Hybrid Permissive Overreaching Transfer Trip (Hybrid POTT) scheme is applied using the architecture shown below. The scheme output operand HYB POTT TX1 is used to key the permission.

Figure 5-100: SINGLE-CHANNEL OPEN-LOOP CONFIGURATION
In the above architecture, Devices 1 and 3 do not communicate directly. Therefore, Device 2 must act as a 'bridge'. The following settings should be applied:

UR IED 1: DIRECT OUT 2 OPERAND: "HYB POTT TX1"
DIRECT INPUT 5 DEVICE ID: "2"
DIRECT INPUT 5 BIT NUMBER: "2" (this is a message from IED 2)
DIRECT INPUT 6 DEVICE ID: "2"
DIRECT INPUT 6 BIT NUMBER: "4" (effectively, this is a message from IED 3)
UR IED 3: DIRECT OUT 2 OPERAND: "HYB POTT TX1"
DIRECT INPUT 5 DEVICE ID: "2"
DIRECT INPUT 5 BIT NUMBER: "2" (this is a message from IED 2)
DIRECT INPUT 6 DEVICE ID: "2"
DIRECT INPUT 6 BIT NUMBER: "3" (effectively, this is a message from IED 1)
UR IED 2: DIRECT INPUT 5 DEVICE ID: "1"
DIRECT INPUT 5 BIT NUMBER: "2"
DIRECT INPUT 6 DEVICE ID: "3"
DIRECT INPUT 6 BIT NUMBER: "2"
DIRECT OUT 2 OPERAND: "HYB POTT TX1"
DIRECT OUT 3 OPERAND: "DIRECT INPUT 5" (forward a message from 1 to 3)
DIRECT OUT 4 OPERAND: "DIRECT INPUT 6" (forward a message from 3 to 1)
Signal flow between the three IEDs is shown in the figure below:

Figure 5-101: SIGNAL FLOW FOR DIRECT I/O EXAMPLE 3
In three-terminal applications, both the remote terminals must grant permission to trip. Therefore, at each terminal, Direct Inputs 5 and 6 should be ANDed in FlexLogic ${ }^{T M}$ and the resulting operand configured as the permission to trip (HYB POTT RX1 setting).

PATH: SETTINGS $\Rightarrow \sqrt{ }$ TRANSDUCER I/O $\Rightarrow \sqrt{ }$ DCMA INPUTS

Hardware and software is provided to receive signals from external transducers and convert these signals into a digital format for use as required. The relay will accept inputs in the range of -1 to +20 mA DC , suitable for use with most common transducer output ranges; all inputs are assumed to be linear over the complete range. Specific hardware details are contained in Chapter 3.

Before the dcmA input signal can be used, the value of the signal measured by the relay must be converted to the range and quantity of the external transducer primary input parameter, such as DC voltage or temperature. The relay simplifies this process by internally scaling the output from the external transducer and displaying the actual primary parameter.
dcmA input channels are arranged in a manner similar to CT and VT channels. The user configures individual channels with the settings shown here.

The channels are arranged in sub-modules of two channels, numbered from 1 through 8 from top to bottom. On power-up, the relay will automatically generate configuration settings for every channel, based on the order code, in the same general manner that is used for CTs and VTs. Each channel is assigned a slot letter followed by the row number, 1 through 8 inclusive, which is used as the channel number. The relay generates an actual value for each available input channel.

Settings are automatically generated for every channel available in the specific relay as shown below for the first channel of a type 5F transducer module installed in slot M.

\square DCMA INPUT M1		(1)	DCMA INPUT M1 FUNCTION: Disabled	Range: Disabled, Enabled	
	MESSAGE	-	$\begin{aligned} & \text { DCMA INPUT M1 ID: } \\ & \text { DCMA Ip } 1 \end{aligned}$	Range: up to 20 alphanumeric characters	
	MESSAGE	-	DCMA INPUT M1 UNITS: $\mu \mathrm{A}$	Range: 6 alphanumeric characters	
	MESSAGE	-	DCMA INPUT M1 RANGE: 0 to -1 mA	Range	0 to $-1 \mathrm{~mA}, 0$ to $+1 \mathrm{~mA},-1$ to $+1 \mathrm{~mA}, 0$ to 5 mA , 0 to $10 \mathrm{~mA}, 0$ to $20 \mathrm{~mA}, 4$ to 20 mA
	MESSAGE	-	DCMA INPUT M1 MIN VALUE: 0.000	Range: -9999.999 to +9999.999 in steps of 0.001	
	MESSAGE	(2)	DCMA INPUT M1 MAX VALUE: 0.000	Range: -9999.999 to +9999.999 in steps of 0.001	

The function of the channel may be either "Enabled" or "Disabled." If "Disabled", no actual values are created for the channel. An alphanumeric "ID" is assigned to each channel; this ID will be included in the channel actual value, along with the programmed units associated with the parameter measured by the transducer, such as Volt, ${ }^{\circ} \mathrm{C}$, MegaWatts, etc. This ID is also used to reference the channel as the input parameter to features designed to measure this type of parameter. The DCMA INPUT XX RANGE setting specifies the mA DC range of the transducer connected to the input channel.

The DCMA INPUT XX MIN VALUE and DCMA INPUT XX MAX VALUE settings are used to program the span of the transducer in primary units. For example, a temperature transducer might have a span from 0 to $250^{\circ} \mathrm{C}$; in this case the DCMA INPUT XX min value value is " 0 " and the dCmA input xx max value value is " 250 ". Another example would be a Watt transducer with a span from -20 to +180 MW ; in this case the DCMA INPUT XX MIN VALUE value would be " -20 " and the dCMA InPUT xX mAx VALUE value "180". Intermediate values between the min and max values are scaled linearly.

PATH: SETTINGS $\Rightarrow \sqrt{ }$ TRANSDUCER I/O $\Rightarrow \sqrt{ }$ RTD INPUTS

Hardware and software is provided to receive signals from external Resistance Temperature Detectors and convert these signals into a digital format for use as required. These channels are intended to be connected to any of the RTD types in common use. Specific hardware details are contained in Chapter 3.

RTD input channels are arranged in a manner similar to CT and VT channels. The user configures individual channels with the settings shown here.

The channels are arranged in sub-modules of two channels, numbered from 1 through 8 from top to bottom. On power-up, the relay will automatically generate configuration settings for every channel, based on the order code, in the same general manner that is used for CTs and VTs. Each channel is assigned a slot letter followed by the row number, 1 through 8 inclusive, which is used as the channel number. The relay generates an actual value for each available input channel.

Settings are automatically generated for every channel available in the specific relay as shown below for the first channel of a type 5C transducer module installed in slot M.

\square RTD INPUT M5		(1)	RTD INPUT M5 FUNCTION: Disabled	Range: Disabled, Enabled
	MESSAGE	$\stackrel{\Delta}{\square}$	$\begin{aligned} & \text { RTD INPUT M5 ID: } \\ & \text { RTD Ip } 1 \end{aligned}$	Range: Up to 20 alphanumeric characters
	MESSAGE	(2)	RTD INPUT M5 TYPE: 100Ω Nickel	Range: 100Ω Nickel, 10Ω Copper, 100Ω Platinum, 120 Ω Nickel

The function of the channel may be either "Enabled" or "Disabled." If Disabled, there will not be an actual value created for the channel. An alphanumeric "ID" is assigned to the channel; this ID will be included in the channel actual values. It is also used to reference the channel as the input parameter to features designed to measure this type of parameter. Selecting the type of RTD connected to the channel configures the channel.
Actions based on RTD overtemperature, such as trips or alarms, are done in conjunction with the FlexElements ${ }^{\text {™ }}$ feature. In FlexElements ${ }^{\top M}$, the operate level is scaled to a base of $100^{\circ} \mathrm{C}$. For example, a trip level of $150^{\circ} \mathrm{C}$ is achieved by setting the operate level at 1.5 pu . FlexElement ${ }^{T M}$ operands are available to FlexLogic ${ }^{T M}$ for further interlocking or to operate an output contact directly.

PATH: SETTINGS $\Rightarrow \sqrt{ } \sqrt{ }$ TESTING \Rightarrow TEST MODE

$\square \square$ SETTINGS $\square \square$ TESTING		(1)	$\begin{aligned} & \text { TEST MODE } \\ & \text { FUNCTION: Disabled } \end{aligned}$	Range: Disabled, Enabled
	MESSAGE	(4)	TEST MODE INITIATE: On	Range: FlexLogic ${ }^{\text {TM }}$ operand

The relay provides test settings to verify that functionality using simulated conditions for contact inputs and outputs. The Test Mode is indicated on the relay faceplate by a flashing Test Mode LED indicator.
To initiate the Test mode, the test mode function setting must be "Enabled" and the test mode initiate setting must be set to Logic 1. In particular:

- To initiate Test Mode through relay settings, set test mode initiate to "On". The Test Mode starts when the test mode FUNCTION setting is changed from "Disabled" to "Enabled".
- To initiate Test Mode through a user-programmable condition, such as FlexLogic ${ }^{\top M}$ operand (pushbutton, digital input, communication-based input, or a combination of these), set TEST MODE FUNCTION to "Enabled" and set TEST MODE INITIATE to the desired operand. The Test Mode starts when the selected operand assumes a Logic 1 state.
When in Test Mode, the D30 remains fully operational, allowing for various testing procedures. In particular, the protection and control elements, FlexLogic ${ }^{T M}$, and communication-based inputs and outputs function normally.
The only difference between the normal operation and the Test Mode is the behavior of the input and output contacts. The former can be forced to report as open or closed or remain fully operational; the latter can be forced to open, close, freeze, or remain fully operational. The response of the digital input and output contacts to the Test Mode is programmed individually for each input and output using the Force Contact Inputs and Force Contact Outputs test functions described in the following sections.
5.9.2 FORCE CONTACT INPUTS

PATH: SETTINGS $\Rightarrow \sqrt{ }$ TESTING $\Rightarrow \sqrt{ }$ FORCE CONTACT INPUTS

The relay digital inputs (contact inputs) could be pre-programmed to respond to the Test Mode in the following ways:

- If set to "Disabled", the input remains fully operational. It is controlled by the voltage across its input terminals and can be turned on and off by external circuitry. This value should be selected if a given input must be operational during the test. This includes, for example, an input initiating the test, or being a part of a user pre-programmed test sequence.
- If set to "Open", the input is forced to report as opened (Logic 0) for the entire duration of the Test Mode regardless of the voltage across the input terminals.
- If set to "Closed", the input is forced to report as closed (Logic 1) for the entire duration of the Test Mode regardless of the voltage across the input terminals.

The Force Contact Inputs feature provides a method of performing checks on the function of all contact inputs. Once enabled, the relay is placed into Test Mode, allowing this feature to override the normal function of contact inputs. The Test Mode LED will be On, indicating that the relay is in Test Mode. The state of each contact input may be programmed as "Disabled", "Open", or "Closed". All contact input operations return to normal when all settings for this feature are disabled.

PATH: SETTINGS $\Rightarrow \sqrt{ }$ TESTING $\Rightarrow \sqrt{ }$ FORCE CONTACT OUTPUTS

The relay contact outputs can be pre-programmed to respond to the Test Mode.
If set to "Disabled", the contact output remains fully operational. If operates when its control operand is Logic 1 and will resets when its control operand is Logic 0 . If set to "Energize", the output will close and remain closed for the entire duration of the Test Mode, regardless of the status of the operand configured to control the output contact. If set to "De-energize", the output will open and remain opened for the entire duration of the Test Mode regardless of the status of the operand configured to control the output contact. If set to "Freeze", the output retains its position from before entering the Test Mode, regardless of the status of the operand configured to control the output contact.

These settings are applied two ways. First, external circuits may be tested by energizing or de-energizing contacts. Second, by controlling the output contact state, relay logic may be tested and undesirable effects on external circuits avoided.

Example 1: Initiating a Test from User-Programmable Pushbutton 1

The Test Mode should be initiated from User-Programmable Pushbutton 1. The pushbutton will be programmed as "Latched" (pushbutton pressed to initiate the test, and pressed again to terminate the test). During the test, Digital Input 1 should remain operational, Digital Inputs 2 and 3 should open, and Digital Input 4 should close. Also, Contact Output 1 should freeze, Contact Output 2 should open, Contact Output 3 should close, and Contact Output 4 should remain fully operational. The required settings are shown below.
To enable User-Programmable Pushbutton 1 to initiate the Test mode, make the following changes in the SETTINGS $\Rightarrow \sqrt{ }$ TESTING \Rightarrow TEST MODE menu:

TEST MODE FUNCTION: "Enabled" and TEST MODE INITIATE: "PUSHBUTTON 1 ON"
Make the following changes to configure the Contact I/Os. In the SETTINGS $\Rightarrow \sqrt{ }$ TESTING $\Rightarrow \sqrt{ }$ FORCE CONTACT INPUTS and FORCE CONTACT INPUTS menus, set:

FORCE Cont Ip 1: "Disabled", FORCE Cont Ip 2: "Open", FORCE Cont Ip 3: "Open", and FORCE Cont Ip 4: "Closed"
FORCE Cont Op 1: "Freeze", FORCE Cont Op 2: "De-energized", FORCE Cont Op 3: "Open", and FORCE Cont Op 4: "Disabled"

Example 2: Initiating a Test from User-Programmable Pushbutton 1 or through Remote Input 1

The Test should be initiated locally from User-Programmable Pushbutton 1 or remotely through Remote Input 1. Both the pushbutton and the remote input will be programmed as "Latched". The required settings are shown below.

Write the following FlexLogic ${ }^{\text {TM }}$ equation (EnerVista UR Setup example shown):

S FlexLogic Equati	Editor // D60 with Pu	1s.urs : Ci \Pro...	\times
FLEXLOGIC ENTRY	TYPE	SYNTAX	-
View Graphic	View	View	
FlexLogic Entry 1	Remote Inputs On	Remote I/P 1 ON	
FlexLogic Entry 2	Protection Element	PUSHBUTTON 1 ON	
FlexLogic Entry 3	OR	2 Input	
FlexLogic Entry 4	Write Virtual Output[Assign]	= Virt Op 1 (V01)	
FlexLogic Entry 5	End of List		*
D60 with Pushbuttons.urs FlexLogic			$1 / 1$

Set the User Programmable Pushbutton as latching by changing SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \sqrt{ }$ USER-PROGRAMMABLE PUSHBUTTONS \Rightarrow USER PUSHBUTTON $1 \Rightarrow$ PUSHBUTTON 1 FUNCTION to "Latched". To enable either Pushbutton 1 or Remote Input 1 to initiate the Test mode, make the following changes in the SETTINGS $\Rightarrow \sqrt{ }$ TESTING \Rightarrow TEST MODE menu:
test mode function: "Enabled" and test mode initiate: "VO1"

$\underbrace{\text { E }}_{\text {NOTE }}$
 For status reporting, ‘On’ represents Logic 1 and ‘Off’ represents Logic 0.

6.2.1 CONTACT INPUTS

PATH: ACTUAL VALUES \Rightarrow STATUS \Rightarrow CONTACT INPUTS

The present status of the contact inputs is shown here. The first line of a message display indicates the ID of the contact input. For example, 'Cont Ip 1' refers to the contact input in terms of the default name-array index. The second line of the display indicates the logic state of the contact input.
6.2.2 VIRTUAL INPUTS

PATH: ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt{ } \Rightarrow$ VIRTUAL INPUTS

The present status of the 32 virtual inputs is shown here. The first line of a message display indicates the ID of the virtual input. For example, 'Virt Ip 1' refers to the virtual input in terms of the default name-array index. The second line of the display indicates the logic state of the virtual input.

6.2.3 REMOTE INPUTS

PATH: ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt{ } \Rightarrow$ REMOTE INPUTS

The present state of the remote inputs is shown here.
The state displayed will be that of the remote point unless the remote device has been established to be "Offline" in which case the value shown is the programmed default state for the remote input.

PATH: ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt{ }$ CONTACT OUTPUTS

The present state of the contact outputs is shown here. The first line of a message display indicates the ID of the contact output. For example, 'Cont Op 1' refers to the contact output in terms of the default name-array index. The second line of the display indicates the logic state of the contact output.

For Form-A outputs, the state of the voltage(V) and/or current(I) detectors will show as: Off, VOff, IOff, On, VOn, and/or IOn. For Form-C outputs, the state will show as Off or On.
6.2.5 VIRTUAL OUTPUTS

PATH: ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt{ }$ VIRTUAL OUTPUTS

The present state of up to 64 virtual outputs is shown here. The first line of a message display indicates the ID of the virtual output. For example, 'Virt Op 1' refers to the virtual output in terms of the default name-array index. The second line of the display indicates the logic state of the virtual output, as calculated by the FlexLogic ${ }^{\top M}$ equation for that output.

PATH: ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt{ } \sqrt{3}$ AUTORECLOSE \Rightarrow AUTORECLOSE 1

The automatic reclosure shot count is shown here.
6.2.7 REMOTE DEVICES
a) STATUS

PATH: ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt{ } \sqrt{ }$ REMOTE DEVICES STATUS

MESSAGE

Range: Online, Offline

The present state of up to 16 programmed Remote Devices is shown here. The ALL REMOTE DEVICES ONLINE message indicates whether or not all programmed Remote Devices are online. If the corresponding state is "No", then at least one required Remote Device is not online.

b) STATISTICS

PATH: ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt{ } \sqrt{ }$ REMOTE DEVICES STATISTICS \Rightarrow REMOTE DEVICE 1(16)

\square REMOTE DEVICE 1	(1)	REMOTE DEVICE 10 StNum:
MESSAGE	(2)	REMOTE DEVICE 1 SqNum: 0

Statistical data (2 types) for up to 16 programmed Remote Devices is shown here.
The StNum number is obtained from the indicated Remote Device and is incremented whenever a change of state of at least one DNA or UserSt bit occurs. The SqNum number is obtained from the indicated Remote Device and is incremented whenever a GOOSE message is sent. This number will rollover to zero when a count of $4,294,967,295$ is incremented.
6.2.8 DIGITAL COUNTERS

PATH: ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt{ } \Rightarrow$ DIGITAL COUNTERS \Rightarrow DIGITAL COUNTERS Counter 1(8)

The present status of the 8 digital counters is shown here. The status of each counter, with the user-defined counter name, includes the accumulated and frozen counts (the count units label will also appear). Also included, is the date/time stamp for the frozen count. The Counter n micros value refers to the microsecond portion of the time stamp.
6.2.9 SELECTOR SWITCHES

PATH: ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt{ } \sqrt{ }$ SELECTOR SWITCHES

The display shows both the current position and the full range. The current position only (an integer from 0 through 7) is the actual value.

PATH: ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt{ }$ FLEX STATES

There are 256 FlexState bits available. The second line value indicates the state of the given FlexState bit.

PATH: ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt{ }$ ETHERNET

PATH: ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt{ }$ DIRECT INPUTS

The average msg return time is the time taken for Direct Output messages to return to the sender in a Direct I/O ring configuration (this value is not applicable for non-ring configurations). This is a rolling average calculated for the last 10 messages. There are two return times for dual-channel communications modules.

The UNRETURNED MSG COUNT values (one per communications channel) count the Direct Output messages that do not make the trip around the communications ring. The CRC FAIL COUNT values (one per communications channel) count the Direct Output messages that have been received but fail the CRC check. High values for either of these counts may indicate on a problem with wiring, the communication channel, or the relay(s). The UNRETURNED MSG COUNT and CRC FAIL COUNT values can be cleared using the CLEAR DIRECT I/O COUNTERS command.
The direct input x values represent the state of the x-th Direct Input.

PATH: ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt{ } \sqrt{ }$ DIRECT DEVICES STATUS

These actual values represent the state of direct devices 1 through 16.

a) UR CONVENTION FOR MEASURING POWER AND ENERGY

The following figure illustrates the conventions established for use in UR-series relays.

Figure 6-1: FLOW DIRECTION OF SIGNED VALUES FOR WATTS AND VARS

b) UR CONVENTION FOR MEASURING PHASE ANGLES

All phasors calculated by UR-series relays and used for protection, control and metering functions are rotating phasors that maintain the correct phase angle relationships with each other at all times.

For display and oscillography purposes, all phasor angles in a given relay are referred to an AC input channel pre-selected by the SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ POWER SYSTEM $\Rightarrow \sqrt{ } \Rightarrow$ FREQUENCY AND PHASE REFERENCE setting. This setting defines a particular to be used as the reference.

If the AC signal pre-selected by the relay upon configuration is not measurable, the phase angles are not referenced. The phase angles are assigned as positive in the leading direction, and are presented as negative in the lagging direction, to more closely align with power system metering conventions. This is illustrated below.

827845A1.CDR
Figure 6-2: UR PHASE ANGLE MEASUREMENT CONVENTION
c) UR CONVENTION FOR MEASURING SYMMETRICAL COMPONENTS

The UR-series of relays calculate voltage symmetrical components for the power system phase A line-to-neutral voltage, and symmetrical components of the currents for the power system phase A current. Owing to the above definition, phase angle relations between the symmetrical currents and voltages stay the same irrespective of the connection of instrument transformers. This is important for setting directional protection elements that use symmetrical voltages.

For display and oscillography purposes the phase angles of symmetrical components are referenced to a common reference as described in the previous sub-section.

WYE-Connected Instrument Transformers:

- ABC phase rotation:

$$
\begin{aligned}
& V_{-}=\frac{1}{3}\left(V_{A G}+V_{B G}+V_{C G}\right) \\
& V_{-} 1=\frac{1}{3}\left(V_{A G}+a V_{B G}+a^{2} V_{C G}\right) \\
& V_{-} 2=\frac{1}{3}\left(V_{A G}+a^{2} V_{B G}+a V_{C G}\right)
\end{aligned}
$$

- ACB phase rotation:

$$
\begin{aligned}
& V_{-} 0=\frac{1}{3}\left(V_{A G}+V_{B G}+V_{C G}\right) \\
& V_{-} 1=\frac{1}{3}\left(V_{A G}+a^{2} V_{B G}+a V_{C G}\right) \\
& V_{-} 2=\frac{1}{3}\left(V_{A G}+a V_{B G}+a^{2} V_{C G}\right)
\end{aligned}
$$

The above equations apply to currents as well.

DELTA-Connected Instrument Transformers:

- ABC phase rotation:

$$
\begin{aligned}
& V_{-} 0=\mathrm{N} / \mathrm{A} \\
& \mathrm{~V}_{-} 1=\frac{1 \angle-30^{\circ}}{3 \sqrt{3}}\left(V_{A B}+a V_{B C}+\mathrm{a}^{2} V_{C A}\right) \\
& V_{-} 2=\frac{1 \angle 30^{\circ}}{3 \sqrt{3}}\left(V_{A B}+\mathrm{a}^{2} V_{B C}+a V_{C A}\right)
\end{aligned}
$$

- ACB phase rotation:

$$
\begin{aligned}
& V_{-} 0=\mathrm{N} / \mathrm{A} \\
& \mathrm{~V}_{-} 1=\frac{1 \angle 30^{\circ}}{3 \sqrt{3}}\left(V_{A B}+a^{2} V_{B C}+a V_{C A}\right) \\
& V_{-} 2=\frac{1 \angle-30^{\circ}}{3 \sqrt{3}}\left(V_{A B}+a V_{B C}+a^{2} V_{C A}\right)
\end{aligned}
$$

The zero-sequence voltage is not measurable under the Delta connection of instrument transformers and is defaulted to zero. The table below shows an example of symmetrical components calculations for the ABC phase rotation.
Table 6-1: SYMMETRICAL COMPONENTS CALCULATION EXAMPLE

SYSTEM VOLTAGES, SEC. V *						VT CONN.	UR INPUTS, SEC. V			SYMM. COMP, SEC. V		
$\mathrm{V}_{\text {AG }}$	$\mathrm{V}_{\text {BG }}$	$\mathrm{V}_{\text {CG }}$	V_{AB}	V_{BC}	V_{CA}		F5AC	F6AC	F7AC	V_{0}	V_{1}	V_{2}
$\begin{aligned} & \hline 13.9 \\ & \angle 0^{\circ} \end{aligned}$	$\begin{aligned} & 76.2 \\ & \angle-125^{\circ} \end{aligned}$	$\begin{aligned} & \hline 79.7 \\ & \angle-250^{\circ} \end{aligned}$	$\begin{aligned} & \hline 84.9 \\ & \angle-313^{\circ} \end{aligned}$	$\begin{aligned} & \hline 138.3 \\ & \angle-97^{\circ} \end{aligned}$	$\begin{aligned} & \hline 85.4 \\ & \angle-241^{\circ} \end{aligned}$	WYE	$\begin{aligned} & 13.9 \\ & \angle 0^{\circ} \end{aligned}$	$\begin{aligned} & \hline \hline 76.2 \\ & \angle-125^{\circ} \end{aligned}$	$\begin{aligned} & \hline 79.7 \\ & \angle-250^{\circ} \end{aligned}$	$\begin{aligned} & \hline 19.5 \\ & \angle-192^{\circ} \end{aligned}$	$\begin{aligned} & \hline 56.5 \\ & \angle-7^{\circ} \end{aligned}$	$\begin{gathered} \hline 23.3 \\ \angle-187^{\circ} \end{gathered}$
UNKNOWN (only V_{1} and V_{2} can be determined)			$\begin{aligned} & 84.9 \\ & \angle 0^{\circ} \end{aligned}$	$\begin{aligned} & 138.3 \\ & \angle-144^{\circ} \end{aligned}$	$\begin{aligned} & 85.4 \\ & \angle-288^{\circ} \end{aligned}$	DELTA	$\begin{aligned} & 84.9 \\ & \angle 0^{\circ} \end{aligned}$	$\begin{aligned} & 138.3 \\ & \angle-144^{\circ} \end{aligned}$	$\begin{aligned} & 85.4 \\ & \angle-288^{\circ} \end{aligned}$	N/A	$\begin{aligned} & 56.5 \\ & \angle-54^{\circ} \end{aligned}$	$\begin{aligned} & \hline 23.3 \\ & \angle-234^{\circ} \end{aligned}$

* The power system voltages are phase-referenced - for simplicity - to VAG and VAB, respectively. This, however, is a relative matter. It is important to remember that the UR displays are always referenced as specified under SETtINGS $\Rightarrow \sqrt{3}$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ POWER SYSTEM \Rightarrow 』 FREQUENCY AND PHASE REFERENCE.

The example above is illustrated in the following figure.

Figure 6-3: MEASUREMENT CONVENTION FOR SYMMETRICAL COMPONENTS

MESSAGE

MESSAGE

(

MESSAGE

MESSAGE

MESSAGE

MESSAGE

SRC 1 PHASOR Ig:
0.000 A 0.0°

SRC 1 PHASOR Igd:
0.000 A 0.0°
(D)

SRC 1 RMS Vag:
$0.000 \quad$ V
SRC 1 RMS Vbg:
0.000 V

SRC 1
0.000
V
v $\mathrm{Vcg:}$
SRC 1 PHASOR Vag:
0.000 V 0.0°

SRC 1 PHASOR Vbg
0.000 V 0.0°

Two identical Source menus are available. The "SRC 1" text will be replaced by whatever name was programmed by the user for the associated source (see SETTINGS $\Rightarrow \sqrt{ }$ SYSTEM SETUP $\Rightarrow \sqrt{ }$ SIGNAL SOURCES).

SOURCE FREQUENCY is measured via software-implemented zero-crossing detection of an AC signal. The signal is either a Clarke transformation of three-phase voltages or currents, auxiliary voltage, or ground current as per source configuration (see the SYSTEM SETUP $\Rightarrow \sqrt{ }$ POWER SYSTEM settings). The signal used for frequency estimation is low-pass filtered. The final frequency measurement is passed through a validation filter that eliminates false readings due to signal distortions and transients.

PATH: ACTUAL VALUES $\Rightarrow \Omega$ METERING $\Rightarrow \Omega$ SYNCHROCHECK \Rightarrow SYNCHROCHECK 1(2)

The Actual Values menu for Synchrocheck 2 is identical to that of Synchrocheck 1. If a Synchrocheck function setting is set to "Disabled", the corresponding actual values menu item will not be displayed.

PATH: ACTUAL VALUES $\Rightarrow \sqrt{ }$ METERING $\Rightarrow \sqrt{ } \|$ TRACKING FREQUENCY

TRACKING FREQUENCY:
 60.00 Hz

The tracking frequency is displayed here. The frequency is tracked based on configuration of the reference source. The TRACKING FREQUENCY is based upon positive sequence current phasors from all line terminals and is synchronously adjusted at all terminals. If currents are below 0.125 pu, then the nominal frequency is used.
6.3.5 FLEXELEMENTS $^{\text {M }}$

PATH: ACTUAL VALUES $\Rightarrow \sqrt{ }$ METERING $\Rightarrow \sqrt{ }$ FLEXELEMENTS \Rightarrow FLEXELEMENT 1(8)

\square FLEXELEMENT 1	(1)	FLEXELEMENT 1 OpSig: 0.000 pu

The operating signals for the FlexElements are displayed in pu values using the following definitions of the base units.
Table 6-2: FLEXELEMENT ${ }^{\text {M }}$ BASE UNITS

BREAKER ARCING AMPS (Brk X Arc Amp A, B, and C)	BASE $=2000$ kA ${ }^{2} \times$ cycle
dcmA	BASE = maximum value of the DCMA INPUT MAX setting for the two transducers configured under the +IN and -IN inputs.
FREQUENCY	$\mathrm{f}_{\text {BASE }}=1 \mathrm{~Hz}$
PHASE ANGLE	$\varphi_{\text {BASE }}=360$ degrees (see the UR angle referencing convention)
POWER FACTOR	$\mathrm{PF}_{\text {BASE }}=1.00$
RTDs	BASE $=100^{\circ} \mathrm{C}$
SOURCE CURRENT	$\mathrm{I}_{\text {BASE }}=$ maximum nominal primary RMS value of the +IN and -IN inputs
SOURCE POWER	$\mathrm{P}_{\text {BASE }}=$ maximum value of $\mathrm{V}_{\text {BASE }} \times \mathrm{I}_{\text {BASE }}$ for the +IN and -IN inputs
SOURCE VOLTAGE	$\mathrm{V}_{\text {BASE }}=$ maximum nominal primary RMS value of the +IN and -IN inputs

PATH: ACTUAL VALUES $\Rightarrow \sqrt{ } \rightarrow$ METERING $\Rightarrow \Omega$ TRANSDUCER I/O DCMA INPUTS \Rightarrow DCMA INPUT $x x$
\square DCMA INPUT $\left.x x+\begin{array}{l}\text { DCMA INPUT XX } \\ 0.000 \mathrm{~mA}\end{array}\right]$

Actual values for each dcmA input channel that is Enabled are displayed with the top line as the programmed Channel "ID" and the bottom line as the value followed by the programmed units. PATH: ACTUAL VALUES $\Rightarrow \sqrt{ }$, METERING $\Rightarrow \sqrt{ }$ TRANSDUCER I/O RTD INPUTS \Rightarrow RTD INPUT xx

| \square RTD INPUT $x x$ | RTD INPUT xx
 $-50{ }^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- |

Actual values for each RTD input channel that is Enabled are displayed with the top line as the programmed Channel "ID" and the bottom line as the value.

PATH: ACTUAL VALUES $\Rightarrow \Omega$ RECORDS \Rightarrow FAULT REPORTS

The latest 10 fault reports can be stored. The most recent fault location calculation (when applicable) is displayed in this menu, along with the date and time stamp of the event which triggered the calculation. See the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \sqrt{2}$ FAULT REPORT menu for assigning the Source and Trigger for fault calculations. Refer to the commands $\Rightarrow \sqrt{ }$ CLEAR RECORDS menu for clearing fault reports.
Fault Type determination is required for calculation of Fault Location - the algorithm uses the angle between the negative and positive sequence components of the relay currents. To improve accuracy and speed of operation, the fault components of the currents are used, i.e., the pre-fault phasors are subtracted from the measured current phasors. In addition to the angle relationships, certain extra checks are performed on magnitudes of the negative and zero sequence currents.
The single-ended fault location method assumes that the fault components of the currents supplied from the local (A) and remote (B) systems are in phase. The figure below shows an equivalent system for fault location.

Figure 6-4: EQUIVALENT SYSTEM FOR FAULT LOCATION
The following equations hold true for this equivalent system.

$$
\begin{equation*}
V_{A}=m \cdot Z \cdot I_{A}+R_{F} \cdot\left(I_{A}+I_{B}\right) \tag{EQ6.1}
\end{equation*}
$$

where: $\quad m=$ sought pu distance to fault, $Z=$ positive sequence impedance of the line.
The currents from the local and remote systems can be parted between their fault (F) and pre-fault load (pre) components:

$$
\begin{equation*}
I_{A}=I_{A F}+I_{A p r e} \tag{EQ6.2}
\end{equation*}
$$

and neglecting shunt parameters of the line:

$$
\begin{equation*}
I_{B}=I_{B F}-I_{A p r e} \tag{EQ6.3}
\end{equation*}
$$

Inserting Equations 6.2 and 6.3 into Equation 6.1 and solving for the fault resistance yields:

$$
\begin{equation*}
R_{F}=\frac{V_{A}-m \cdot Z \cdot I_{A}}{I_{A F} \cdot\left(1+\frac{I_{B F}}{I_{A F}}\right)} \tag{EQ6.4}
\end{equation*}
$$

Assuming the fault components of the currents, $I_{A F}$ and $I_{B F}$ are in phase, and observing that the fault resistance, as impedance, does not have any imaginary part gives:

$$
\begin{equation*}
\operatorname{Im}\left(\frac{V_{A}-m \cdot Z \cdot I_{A}}{I_{A F}}\right)=0 \tag{EQ6.5}
\end{equation*}
$$

where: $\operatorname{Im}()$ represents the imaginary part of a complex number. Equation 6.5 solved for the unknown m creates the following fault location algorithm:

$$
\begin{equation*}
m=\frac{\operatorname{Im}\left(V_{A} \cdot I_{A F}{ }^{*}\right)}{\operatorname{Im}\left(Z \cdot I_{A} \cdot I_{A F}{ }^{*}\right)} \tag{EQ6.6}
\end{equation*}
$$

where: * denotes the complex conjugate and

$$
\begin{equation*}
I_{A F}=I_{A}-I_{A p r e} \tag{EQ6.7}
\end{equation*}
$$

Depending on the fault type, appropriate voltage and current signals are selected from the phase quantities before applying Equations 6.6 and 6.7 (the superscripts denote phases, the subscripts denote stations):

- For AG faults: $V_{A}=V_{A}^{A}, \quad I_{A}=I_{A}^{A}+K_{0} \cdot I_{O A}$
- For BG faults: $V_{A}=V_{A}^{B}, \quad I_{A}=I_{A}^{B}+K_{0} \cdot I_{O A}$
- For CG faults: $V_{A}=V_{A}^{C}, \quad I_{A}=I_{A}^{B C}+K_{0} \cdot I_{0 A}$
- For AB and ABG faults: $V_{A}=V_{A}^{A}-V_{A}^{B}, \quad I_{A}=I_{A}^{A}-I_{A}^{B}$
- For BC and BCG faults: $V_{A}=V_{A}^{B}-V_{A}^{C}, \quad I_{A}=I_{A}^{B}-I_{A}^{C}$
- For CA and CAG faults: $V_{A}=V_{A}^{C}-V_{A}^{A}, \quad I_{A}=I_{A}^{C}-I_{A}^{A}$ where K_{0} is the zero sequence compensation factor (for the first six equations above)
- For $A B C$ faults, all three $A B, B C$, and $C A$ loops are analyzed and the final result is selected based upon consistency of the results

The element calculates the distance to the fault (with m in miles or kilometers) and the phases involved in the fault.

Figure 6-5: FAULT LOCATOR SCHEME
Since the Fault Locator algorithm is based on the single-end measurement method, in 3-terminal configuration the estimation of fault location may not be correct at all 3 terminals especially if fault occurs behind the line's tap respective to the given relay.

PATH: ACTUAL VALUES $\Rightarrow \Omega$ RECORDS \Rightarrow EVENT RECORDS

\downarrow

The Event Records menu shows the contextual data associated with up to the last 1024 events, listed in chronological order from most recent to oldest. If all 1024 event records have been filled, the oldest record will be removed as a new record is added. Each event record shows the event identifier/sequence number, cause, and date/time stamp associated with the event trigger. Refer to the COMMANDS $\sqrt{ }$ CLEAR RECORDS menu for clearing event records.

PATH: ACTUAL VALUES $\Rightarrow \sqrt{ }$ RECORDS $\Rightarrow \sqrt{ }$ OSCILLOGRAPHY

\square OSCILLOGRAPHY		(1)	FORCE TRIGGER? No	Range: No, Yes
	MESSAGE	-	NUMBER OF TRIGGERS: 0	
	MESSAGE	-	AVAILABLE RECORDS: 0	
	MESSAGE	-	CYCLES PER RECORD: 0.0	
	MESSAGE	(4)	LAST CLEARED DATE: 2000/07/14 $15: 40: 16$	

This menu allows the user to view the number of triggers involved and number of oscillography traces available. The 'cycles per record' value is calculated to account for the fixed amount of data storage for oscillography. See the Oscillography section of Chapter 5 for further details.

A trigger can be forced here at any time by setting "Yes" to the FORCE TRIGGER? command. Refer to the Commands $\Rightarrow \sqrt{ }$ CLEAR RECORDS menu for clearing the oscillography records.

PATH: ACTUAL VALUES $\Rightarrow \sqrt{ }$ RECORDS $\Rightarrow \sqrt{ }$ MAINTENANCE \Rightarrow BREAKER 1(2)

There is an identical Actual Value menu for each of the 2 Breakers. The BKR 1 ARCING AMP values are in units of $k A^{2}$ cycles. Refer to the COMMANDS $\Rightarrow \sqrt{2}$ CLEAR RECORDS menu for clearing breaker arcing current records.

PATH: ACTUAL VALUES $\Rightarrow \sqrt{ } \sqrt{ }$ PRODUCT INFO \Rightarrow MODEL INFORMATION

The product order code, serial number, Ethernet MAC address, date/time of manufacture, and operating time are shown here.

PATH: ACTUAL VALUES $\Rightarrow \sqrt{ }$ PRODUCT INFO $\Rightarrow \sqrt{ }$ FIRMWARE REVISIONS

\square FIRMWARE REVISIONS	(1)	D30 Line Relay REVISION: $\quad 3.40$	Range: 0.00 to 655.35 Revision number of the application firmware.
MESSAGE	-	MODIFICATION FILE NUMBER: 0	Range: 0 to 65535 (ID of the MOD FILE) Value is 0 for each standard firmware release.
MESSAGE	-	$\begin{aligned} & \text { BOOT PROGRAM } \\ & \text { REVISION: } 1.13 \end{aligned}$	Range: 0.00 to 655.35 Revision number of the boot program firmware.
MESSAGE	-	FRONT PANEL PROGRAM REVISION: 0.08	Range: 0.00 to 655.35 Revision number of faceplate program firmware.
MESSAGE	-	COMPILE DATE: 2003/11/20 04:55:16	Range: Any valid date and time. Date and time when product firmware was built.
MESSAGE	(2)	BOOT DATE: 2003/11/20 16:41:32	Range: Any valid date and time. Date and time when the boot program was built.

The shown data is illustrative only. A modification file number of 0 indicates that, currently, no modifications have been installed.

The Commands menu contains relay directives intended for operations personnel. All commands can be protected from unauthorized access via the Command Password; see the Password Security section of Chapter 5. The following flash message appears after successfully command entry:

```
COMMAND
EXECUTED
```

PATH: COMMANDS $\sqrt{ }$ COMMANDS VIRTUAL INPUTS

The states of up to 32 virtual inputs are changed here. The first line of the display indicates the ID of the virtual input. The second line indicates the current or selected status of the virtual input. This status will be a logical state 'Off' (0) or 'On' (1).

PATH: COMMANDS $\sqrt{ }$ COMMANDS CLEAR RECORDS

This menu contains commands for clearing historical data such as the Event Records. Data is cleared by changing a command setting to "Yes" and pressing the ENTER key. After clearing data, the command setting automatically reverts to "No".
7.1.4 SET DATE AND TIME

PATH: COMMANDS $\sqrt{ }$ SET DATE AND TIME

The date and time can be entered here via the faceplate keypad only if the IRIG-B or SNTP signal is not in use. The time setting is based on the 24 -hour clock. The complete date, as a minimum, must be entered to allow execution of this command. The new time will take effect at the moment the ENTER key is clicked.
7.1.5 RELAY MAINTENANCE

PATH: COMMANDS $\sqrt{ } \sqrt{ }$ RELAY MAINTENANCE

This menu contains commands for relay maintenance purposes. Commands are activated by changing a command setting to "Yes" and pressing the ENTER key. The command setting will then automatically revert to "No".

The PERFORM LAMPTEST command turns on all faceplate LEDs and display pixels for a short duration. The UPDATE ORDER CODE command causes the relay to scan the backplane for the hardware modules and update the order code to match. If an update occurs, the following message is shown.

> | UPDATING... |
| :--- |
| PLEASE WAIT |

There is no impact if there have been no changes to the hardware modules. When an update does not occur, the ORDER CODE NOT UPDATED message will be shown.

The status of any active targets will be displayed in the Targets menu. If no targets are active, the display will read No Active Targets:

When there are no active targets, the first target to become active will cause the display to immediately default to that message. If there are active targets and the user is navigating through other messages, and when the default message timer times out (i.e. the keypad has not been used for a determined period of time), the display will again default back to the target message.
The range of variables for the target messages is described below. Phase information will be included if applicable. If a target message status changes, the status with the highest priority will be displayed.

Table 7-1: TARGET MESSAGE PRIORITY STATUS

PRIORITY	ACTIVE STATUS	DESCRIPTION
1	OP	element operated and still picked up
2	PKP	element picked up and timed out
3	LATCHED	element had operated but has dropped out

If a self test error is detected, a message appears indicating the cause of the error. For example UNIT NOT PROGRAMmED indicates that the minimal relay settings have not been programmed.
7.2.3 RELAY SELF-TESTS

The relay performs a number of self-test diagnostic checks to ensure device integrity. The two types of self-tests (major and minor) are listed in the tables below. When either type of self-test error occurs, the Trouble LED Indicator will turn on and a target message displayed. All errors record an event in the event recorder. Latched errors can be cleared by pressing the RESET key, providing the condition is no longer present.

Major self-test errors also result in the following:

- the critical fail relay on the power supply module is de-energized
- all other output relays are de-energized and are prevented from further operation
- the faceplate In Service LED indicator is turned off
- a RELAY OUT OF SERVICE event is recorded

Most of the minor self-test errors can be disabled. Refer to the settings in the User-Programmable Self-Tests section in Chapter 5 for additional details.

Table 7-2: MAJOR SELF-TEST ERROR MESSAGES

SELF-TEST ERROR MESSAGE	LATCHED TARGET MESSAGE?	DESCRIPTION OF PROBLEM	HOW OFTEN THE TEST IS PERFORMED	WHAT TO DO
DSP ERRORS: A/D Calibration, A/D Interrupt, A/D Reset, Inter DSP Rx, Sample Int, Rx Interrupt, Tx Interrupt, Rx Sample Index, Invalid Settings, Rx Checksum	Yes	CT/VT module with digital signal processor may have a problem.	Every 1/8th of a cycle.	Cycle the control power (if the problem recurs, contact the factory).
DSP ERROR: INVALID REVISION	Yes	One or more DSP modules in a multiple DSP unit has Rev. C hardware	Rev. C DSP needs to be replaced with a Rev. D DSP.	Contact the factory
EQUIPMENT MISMATCH with 2nd-line detail message	No	Configuration of modules does not match the order code stored in the CPU.	On power up; thereafter, the backplane is checked for missing cards every 5 seconds.	Check all modules against the order code, ensure they are inserted properly, and cycle control power (if problem persists, contact factory).
FLEXLOGIC ERR TOKEN with 2 nd-line detail message	No	FlexLogic ${ }^{\text {TM }}$ equations do not compile properly.	Event driven; whenever FlexLogic ${ }^{\text {TM }}$ equations are modified.	Finish all equation editing and use self test to debug any errors.
LATCHING OUTPUT ERROR	No	Discrepancy in the position of a latching contact between relay firmware and hardware has been detected.	Every 1/8th of a cycle.	Latching output module failed. Replace the Module.
PROGRAM MEMORY Test Failed	Yes	Error was found while checking Flash memory.	Once flash is uploaded with new firmware.	Contact the factory.
UNIT NOT CALIBRATED	No	Settings indicate the unit is not calibrated.	On power up.	Contact the factory.
UNIT NOT PROGRAMMED	No	PRODUCT SETUP $\Rightarrow \sqrt{ } \sqrt{3}$ INSTALLATION setting indicates relay is not in a programmed state	On power up and whenever the RELAY PROGRAMMED setting is altered.	Program all settings (especially those under PRODUCT SETUP $\Rightarrow \sqrt{ }$ INSTALLATION).

Table 7-3: MINOR SELF-TEST ERROR MESSAGES

SELF-TEST ERROR MESSAGE	LATCHED TARGET MESSAGE	DESCRIPTION OF PROBLEM	HOW OFTEN THE TEST IS PERFORMED	WHAT TO DO
BATTERY FAIL	Yes	Battery is not functioning.	Monitored every 5 seconds. Reported after 1 minute if problem persists.	Replace the battery located in the power supply module (1H or 1L).
DIRECT RING BREAK	No	Direct I/O settings configured for a ring, but the connection is not in a ring.	Every second.	Check Direct I/O configuration and/or wiring.
DIRECT DEVICE OFF	No	Direct Device is configured but not connected	Every second.	Check Direct I/O configuration and/or wiring.
EEPROM DATA ERROR	Yes	The non-volatile memory has been corrupted.	On power up only.	Contact the factory.
IRIG-B FAILURE	No	Bad IRIG-B input signal.	Monitored whenever an IRIG-B signal is received.	Ensure IRIG-B cable is connected, check cable functionality (i.e. look for physical damage or perform continuity test), ensure IRIG-B receiver is functioning, and check input signal level (it may be less than specification). If none of these apply, contact the factory.
LATCHING OUT	Yes	Latching output failure.	Event driven.	Contact the factory.
ERROR				

The distance elements use memory voltage for polarization. Additional supervising functions - different for ground and phase distance zones - complement a classical mho characteristic to enhance directional integrity and reach accuracy:

- To avoid overreaching during resistive faults under heavy pre-fault load conditions, the ground distance elements utilize a load-adaptive (zero-sequence polarized) reactance characteristic to supervise the base mho characteristic.
- Both negative and zero-sequence currents are compared with the memory voltage to enhance directional integrity of the ground distance elements.
- It is well known that ground distance elements - as per the principle of distance relaying - may have limited accuracy during double-line-to-ground faults. In order to prevent maloperation in such cases the ground elements are blocked by an extra "fault-type comparator" that utilizes the phase angle between the negative- and zero-sequence currents.
- The phase distance elements use reactance and memory polarized directional characteristics to supervise the mho characteristic.
- Both ground and phase distance elements have the current supervision functions built-in.

The quadrilateral distance characteristic uses the reactance, directional, and current supervising functions as described above. Right and left blinders adjustable as to both the resistive and angular positions complete the characteristic.

More information regarding the distance characteristics is found in the Distance Characteristics section. An example of analysis of the steady-state operation of the distance elements is found in the Distance Elements Analysis section.

The relay provides three four zones of distance protection. All zones are identical in terms of settings. However, Zone 1 has extra adaptive mechanisms built-in to enhance the transient reach accuracy even when the voltage signals are supplied from poor quality voltage sources such as Capacitive Voltage Transformers (CVTs). Ground Zones $\overline{12}$ through $\overline{34}$, in turn, have an extra zero-sequence directional supervision implemented for their time-delayed operation after the memory expires. Consequently, Zone 1 is recommended as an underreaching element, and Zones 2 through $\overline{34}$ are recommended as overreaching elements and for time-delayed tripping.
The relay uses offset ground directional overcurrent functions as an optional supplement of the ground distance protection for pilot-aided schemes. The elements are described in more details in the Ground Directional Overcurrent section.

The relay provides for an adaptive distance reach control to cope with the overreaching and sub-synchronous oscillations when applied to, or in a near vicinity of series compensated lines. More details can be found in the Application on Series Compensated Lines section.

The distance elements use phase angle comparators to shape their characteristics as described in the Distance Characteristics section. The voltage and current phasors are estimated using optimized techniques as explained in the next section.
8.1.2 PHASOR ESTIMATION

The relay samples its input AC signals at 64 samples per power system cycle. A fast and accurate frequency tracking mechanism ensures accurate filtering and phasor estimation during off-nominal frequency conditions.
The phasor estimation process for both currents and voltages is based on the commonly used Fourier algorithm. Due to a different nature of signal distortions in the current and voltage signals digital pre-filtering algorithms have been, however, designed and optimized separately for the current and voltage channels.
The current signals are pre-filtered using an improved digital MIMIC filter. The filter removes effectively the DC component(s) guaranteeing transient overshoot below 2% regardless of the initial magnitude and time constant of the dc component(s). The filter has significantly better frequency response for higher frequencies as compared with a classical MIMIC filter. This was possible without introducing any significant phase delay thanks to the high sampling rate used by the relay.
The voltage signals are pre-filtered using a special digital filter designed to cope with CVT transients. The patented filter combines filtering and memory actions enabling the relay to cope with CVT noise under high Source Impedance Ratios (SIRs). The filter controls underestimation of the fault voltage magnitude to less than 1% of the nominal and prevents certain phase angle anomalies that can be encountered under heavy CVT noise and high SIRs.

a) DEFINITIONS

The relay shapes its distance characteristics using phase angle comparators and voltage and current phasors estimated as described in the previous section.
The following definitions pertain to all of the distance functions:

```
I
IG}\quadground current from a parallel lin
VA},\mp@subsup{V}{B}{},\mp@subsup{V}{C}{}\quad\mathrm{ Phase A to ground, Phase B to ground, and Phase C to ground voltage phasors
()_1 positive-sequence phasor of () derived from the phase quantities
()_2 negative-sequence phasor of () derived from the phase quantities
()_0 zero-sequence phasor of () derived from the phase quantities
()M memorized value of ()
Z reach impedance (REACH }\angle\mathrm{ RCA)
Z
Z
ZL
K0 zero-sequence compensating factor: K0 = (zolZ1 MAG }\angle\textrm{ZOIZI ANG) - 1
KOM mutual zero-sequence compensating factor: KOM = 1/3 x zomIz1 MAG }\angle\mathrm{ ZOMIZ1 ANG
```


b) MHO CHARACTERISTIC

The dynamic 100% memory polarized mho characteristic is achieved by checking the angle between:
AB phase element:
$B C$ phase element:
CA phase element:
A ground element:
B ground element:
$\left(I_{A}-I_{B}\right) \times Z-\left(V_{A}-V_{B}\right)$ and $\left(V_{A}-V_{B}\right)_{-} 1 M$
$\left(I_{B}-I_{C}\right) \times Z-\left(V_{B}-V_{C}\right)$ and $\left.\left(V_{B}-V_{C}\right)\right)_{1 M}$
$\left(I_{C}-I_{A}\right) \times Z-\left(V_{C}-V_{A}\right)$ and $\left(V_{C}-V_{A}\right)_{-} 1 M$
$I_{A} \times Z+I_{-} \times K 0 \times Z+I_{G} \times K O M \times Z-V_{A}$ and $V_{A _} 1 M$
$I_{B} \times Z+I_{-} \times K 0 \times Z+I_{G} \times K O M \times Z-V_{B}$ and $V_{B-1 M}$
C ground element: $\quad I_{C} \times Z+I_{-} \times K 0 \times Z+I_{G} \times K 0 M \times Z-V_{C}$ and $V_{C-1 M}$
The limit angle of the comparator is adjustable enabling the user to shape the characteristic as a mho or a lens as shown in the figures below. The memory-polarized mho characteristic has an excellent directional integrity built-in as explained in the Memory Polarization section.

8

Figure 8-1: MHO AND LENS CHARACTERISTICS

c) REACTANCE CHARACTERISTIC

The reactance characteristic is achieved by checking the angle between:

AB phase element:
$B C$ phase element:
CA phase element:
$\left(I_{A}-I_{B}\right) \times Z-\left(V_{A}-V_{B}\right)$ and $\left(I_{A}-I_{B}\right) \times Z$
$\left(I_{B}-I_{C}\right) \times Z-\left(V_{B}-V_{C}\right)$ and $\left(I_{B}-I_{C}\right) \times Z$
$\left(I_{C}-I_{A}\right) \times Z-\left(V_{C}-V_{A}\right)$ and $\left(I_{C}-I_{A}\right) \times Z$

A ground element: $\quad I_{A} \times Z+I_{-} 0 \times K O \times Z+I_{G} \times K O M \times Z-V_{A}$ and $\quad I _0 \times Z$
B ground element: $I_{B} \times Z+I_{-} 0 \times K O \times Z+I_{G} \times K O M \times Z-V_{B}$ and $I _0 \times Z$
C ground element: $I_{C} \times Z+I_{-} 0 \times K 0 \times Z+I_{G} \times K O M \times Z-V_{C}$ and $I_{-} 0 \times Z$

If the MHO characteristic is selected, the limit angle of the comparator is adjustable concurrently with the limit angle of the mho characteristic, resulting in a tent shape complementing the lens characteristic being effectively applied. If the Quad characteristic is selected, the reactance comparator constitutes the upper boundary of the operating region.

The reactance characteristic enables the relay to avoid overreaching on resistive faults during heavy load conditions.

d) DIRECTIONAL CHARACTERISTIC

The directional characteristic is achieved by checking the angle between:
AB phase element:
BC phase element:
CA phase element:

The characteristic and limit angles of the directional comparator are adjustable independently from the mho and reactance comparators. The directional characteristic improves directional integrity of the distance functions.

e) RIGHT BLINDER

The right blinder characteristic is achieved by checking the angle between the following signals:
$A B$ phase element:
$\left(I_{A}-I_{B}\right) \times Z_{R}-\left(V_{A}-V_{B}\right)$ and $\left(I_{A}-I_{B}\right) \times Z_{R}$
BC phase element:
$\left(I_{B}-I_{C}\right) \times Z_{R}-\left(V_{B}-V_{C}\right)$ and $\left(I_{B}-I_{C}\right) \times Z_{R}$
CA phase element:
A ground element:
B ground element:
$\left(I_{C}-I_{A}\right) \times Z_{R}-\left(V_{C}-V_{A}\right)$ and $\left(I_{C}-I_{A}\right) \times Z_{R}$
C ground element:
$I_{A} \times Z_{R}+I_{-0} \times K O \times Z_{R}+I_{G} \times K O M \times Z_{R}-V_{A}$ and $I_{A} \times Z_{R}+I_{-0} \times K O \times Z_{R}+I_{G} \times K O M \times Z_{R}$
$I_{B} \times Z_{R}+I_{-} \times K 0 \times Z_{R}+I_{G} \times K O M \times Z_{R}-V_{B}$ and $I_{B} \times Z_{R}+I_{-} \times K 0 \times Z_{R}+I_{G} \times K O M \times Z_{R}$
$I_{C} \times Z_{R}+I_{-} \times K 0 \times Z_{R}+I_{G} \times K O M \times Z_{R}-V_{C}$ and $I_{C} \times Z_{R}+I_{-} 0 \times K O \times Z_{R}+I_{G} \times K O M \times Z_{R}$
The blinders apply to the Quad characteristic only.

f) LEFT BLINDER

The left blinder characteristic is achieved by checking the angle between the following signals:
AB phase element:
$\left(I_{A}-I_{B}\right) \times Z_{L}-\left(V_{A}-V_{B}\right)$ and $\left(I_{A}-I_{B}\right) \times Z_{L}$
$B C$ phase element: $\quad\left(I_{B}-I_{C}\right) \times Z_{L}-\left(V_{B}-V_{C}\right)$ and $\left(I_{B}-I_{C}\right) \times Z_{L}$
CA phase element:
$\left(I_{C}-I_{A}\right) \times Z_{L}-\left(V_{C}-V_{A}\right)$ and $\left(I_{C}-I_{A}\right) \times Z_{L}$
A ground element:
$\mathrm{I}_{\mathrm{A}} \times \mathrm{Z}_{\mathrm{L}}+\mathrm{I}_{-} 0 \times \mathrm{KO} \times \mathrm{Z}_{\mathrm{L}}+\mathrm{I}_{\mathrm{G}} \times \mathrm{KOM} \times \mathrm{Z}_{\mathrm{L}}-\mathrm{V}_{\mathrm{A}}$ and $\mathrm{I}_{\mathrm{A}} \times \mathrm{Z}_{\mathrm{L}}+\mathrm{I}_{-} 0 \times \mathrm{KO} \times \mathrm{Z}_{\mathrm{L}}+\mathrm{I}_{\mathrm{G}} \times \mathrm{KOM} \times \mathrm{Z}_{\mathrm{L}}$
B ground element:
$\mathrm{I}_{\mathrm{B}} \times \mathrm{Z}_{\mathrm{L}}+\mathrm{I}_{-} 0 \times \mathrm{KO} \times \mathrm{Z}_{\mathrm{L}}+\mathrm{I}_{\mathrm{G}} \times \mathrm{KOM} \times \mathrm{Z}_{\mathrm{L}}-\mathrm{V}_{\mathrm{B}}$ and $I_{B} \times Z_{L}+I_{-} 0 \times K O \times Z_{L}+I_{G} \times K O M \times Z_{L}$
C ground element:
$\mathrm{I}_{\mathrm{C}} \times \mathrm{Z}_{\mathrm{L}}+\mathrm{I}_{-} 0 \times \mathrm{KO} \times \mathrm{Z}_{\mathrm{L}}+\mathrm{I}_{\mathrm{G}} \times \mathrm{KOM} \times \mathrm{Z}_{\mathrm{L}}-\mathrm{V}_{\mathrm{C}}$ and
$I_{C} \times Z_{L}+I_{-} 0 \times K 0 \times Z_{L}+I_{G} \times K O M \times Z_{L}$
The blinders apply to the Quad characteristic only.

g) FAULT-TYPE CHARACTERISTIC

The fault-type characteristic applies to ground elements only and is achieved by checking the angle between:
A ground element: B ground element: C ground element:
I_{-}and $I_{A _2} ;$
I_{-}and
I_{B-2}
I_{-}and
I_{C-2}

The limit angle of the comparator is not adjustable and equals 50°. The fault-type characteristic is intended to block the ground distance elements during double-line-to-ground faults.

h) ZERO-SEQUENCE DIRECTIONAL CHARACTERISTIC

The extra zero-sequence characteristic applies to ground Zones 2 to 4 only and is achieved by checking angles between:
A ground element: $\quad I_{-} 0 \times Z_{D}$ and $-V _0$
B ground element: $\quad I _0 \times Z_{D}$ and $-V _0$
C ground element: $\quad I _0 \times Z_{D}$ and $-V_{-} 0$
The limit angle of the comparator is not adjustable and equals 90°. The zero-sequence directional characteristic improves directional integrity for time-delayed operations after the memory expires.

i) OVERCURRENT SUPERVISION

The overcurrent supervision responds to the following currents:
AB phase element:
$\left(I_{A}-I_{B}\right) / \sqrt{3}$
BC phase element:
$\left(I_{B}-I_{C}\right) / \sqrt{3}$
CA phase element:
$\left(I_{C}-I_{A}\right) / \sqrt{3}$
A, B, C ground element: $3 \times I _0$

The following tables summarize the characteristics of the distance elements

Table 8-1: MHO PHASE DISTANCE FUNCTIONS

CHARACTERISTIC	COMPARATOR INPUTS		LIMIT ANGLE
Variable MHO	$\mathrm{I} \times \mathrm{Z}-\mathrm{V}$	$\mathrm{V} _1 \mathrm{M}$	COMP LIMIT
Reactance	$\mathrm{I} \times \mathrm{Z}-\mathrm{V}$	$\mathrm{I} \times \mathrm{Z}$	COMP LIMIT
Directional	$\mathrm{I} \times \mathrm{Z}_{\mathrm{D}}$	$\mathrm{V}_{-} 1 \mathrm{M}$	DIR COMP LIMIT

Table 8-2: MHO GROUND DISTANCE FUNCTIONS

CHARACTERISTIC	COMPARATOR INPUTS		LIMIT ANGLE
Variable MHO	$1 \times \mathrm{Z}-\mathrm{V}$	V_1M	COMP LIMIT
Reactance	$1 \times Z-V$	I_0 \times Z	COMP LIMIT
Directional	$1 _0 \times \mathrm{Z}_{\text {}}$	V_1M	DIR COMP LIMIT
Directional	$1 _2 \times \mathrm{Z}_{\mathrm{D}}$	V_1M	DIR COMP LIMIT
Fault-type	I_0	I_2	50° (removed during open pole conditions)
Zero-sequence	I _ \times K $\mathrm{Z}_{\text {d }}$	-V_0	90° (Zones 2, 3 and 4 only; removed for Zones 2 and 3 during open pole conditions)

Table 8-3: QUAD PHASE DISTANCE FUNCTIONS

CHARACTERISTIC	COMPARATOR INPUTS		LIMIT ANGLE
Reactance	$\mathrm{I} \times \mathrm{Z}-\mathrm{V}$	$\mathrm{I} \times \mathrm{Z}$	COMP LIMIT
Directional	$\mathrm{I} \times \mathrm{Z}_{\mathrm{D}}$	$\mathrm{V} _1 \mathrm{M}$	DIR COMP LIMIT
Right Blinder	$\mathrm{I} \times \mathrm{Z}_{\mathrm{R}}-\mathrm{V}$	$\mathrm{I} \times \mathrm{Z}_{\mathrm{R}}$	90°
Left Blinder	$\mathrm{I} \times \mathrm{Z}_{\mathrm{L}}-\mathrm{V}$	$\mathrm{I} \times \mathrm{Z}_{\mathrm{L}}$	90°

Table 8-4: QUAD GROUND DISTANCE FUNCTIONS

CHARACTERISTIC	COMPARATOR INPUTS		LIMIT ANGLE
Reactance	$1 \times \mathrm{Z}-\mathrm{V}$	I_0 \times Z	COMP LIMIT
Directional	$1 _0 \times \mathrm{Z}_{\text {D }}$	V_1M	DIR COMP LIMIT
Directional	$1 _2 \times \mathrm{Z}_{\mathrm{D}}$	V_1M	DIR COMP LIMIT
Right Blinder	$1 \times Z_{R}-\mathrm{V}$	$1 \times \mathrm{Z}_{\mathrm{R}}$	90°
Left Blinder	$1 \times Z_{L}-\mathrm{V}$	$1 \times \mathrm{Z}_{\mathrm{L}}$	90°
Fault-type	I_0	I_2	50° (removed during open pole conditions)
Zero-sequence	I - $0 \times \mathrm{Z}_{\mathrm{D}}$	-V_0	$\frac{90^{\circ}(\text { Zones } 2,3, \text { and } 4 \text { only; removed for }}{\text { Zones } 2 \text { and } 3 \text { during open pole conditions })}$

All distance functions use memory polarization. The positive-sequence voltage - either memorized or actual - is used as a polarizing signal. The memory is established when the positive-sequence voltage remains above 80% of its nominal value for five power system cycles. The memory voltage is a three-cycle old voltage.
Once established, the memory is applied for the user-specified time interval. The memory timer is started when the voltage drops below 80% of nominal. After the memory expires, the relay checks the magnitude of the actual positive-sequence voltage. If it is higher than 10% of nominal, the actual voltage is used; if lower, the memory voltage continues to be used.
The memory-polarized mho has an extra directional integrity built-in as illustrated below. The self-polarized mho characteristic is shifted in the reverse direction for a forward fault by an amount proportional to the source impedance, and in the forward direction for a reverse fault.

Figure 8-2: DYNAMIC SHIFT OF THE MHO CHARACTERISTIC
The same desirable effect of memory polarization applies to the directional comparator of the Quad characteristic.

Figure 8-3: DYNAMIC SHIFT OF THE MEMORY-POLARIZED DIRECTIONAL CHARACTERISTIC
Mutual zero-sequence compensation may raise concerns regarding directional integrity on reverse faults in the situation when the relay gets "overcompensated". This problem does not affect the D60 because its ground distance elements use zero-sequence and negative-sequence currents in extra directional comparators. Both the currents are from the protected line and are not affected by any compensation as the latter applies only to the reach defining comparators: the mho, reactance and blinder characteristics.

a) DESCRIPTION

This subsection shows how to analyze the operation of the distance elements in steady states using the results of short circuit studies. All quantities are secondary ohms, volts, and amperes. Ground phase A and phase AB distance elements are analyzed.
Assume the following settings have been entered:

Phase Rotation: ABC
Right Blinder Reach: 10Ω
Nominal Secondary Voltage: 69.28 V
Right Blinder RCA: 88°
Distance Reach: 14Ω
Left Blinder Reach: 5Ω
Distance RCA: 88 ${ }^{\circ}$
Left Blinder RCA: 88°
Assume the following signals are injected to the relay:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{A}}=64.71 \mathrm{~V} \angle 0.0^{\circ} \text { (pre-fault) } \\
& \mathrm{V}_{\mathrm{A}}=25.43 \mathrm{~V} \angle-19.9^{\circ} \\
& \mathrm{V}_{\mathrm{B}}=80.22 \mathrm{~V} \angle-133.5^{\circ} \\
& \mathrm{V}_{\mathrm{C}}=77.33 \mathrm{~V} \angle 135.7^{\circ}
\end{aligned}
$$

Directional RCA: 88°
Z0/Z1 Magnitude: 4.55
Overcurrent supervision: 3 A
Z0/Z1 Angle: - 12°
Distance Comparator limit angle: 75°
ZOM/Z1 Magnitude: 0
Directional Comparator limit angle: 75°

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{A}}=4.47 \mathrm{~A} \angle-107.8^{\circ} \\
& \mathrm{I}_{\mathrm{B}}=2.92 \mathrm{~A} \angle 68.9^{\circ} \\
& \mathrm{I}_{\mathrm{C}}=2.93 \mathrm{~A} \angle-51.1^{\circ}
\end{aligned}
$$

Based on the entered setting the relay calculates:

$$
\begin{aligned}
& \mathrm{KO}=3.58 \angle-15.2^{\circ} \\
& \mathrm{KOM}=0 \\
& Z=14.00 \Omega \angle 88^{\circ}
\end{aligned}
$$

For the assumed steady-state injection the relay calculates:

$\mathrm{V}_{\mathrm{A} _1}$	$=58.83 \mathrm{~V} \angle-2.1^{\circ}$	$-\mathrm{V}^{\circ} 0$	$=29.18 \mathrm{~V} \angle 8.4^{\circ}$
$\mathrm{V}_{\mathrm{A} _} 1 \mathrm{M}$	$=64.71 \mathrm{~V} \angle 0.0^{\circ}$	$\left(\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right)_{1} 1$	$=93.35 \mathrm{~V} \angle 32.0^{\circ}$
I_{-0}	$=1.37 \mathrm{~A} \angle-68.2^{\circ}$	$\left(\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right)_{-} 1 \mathrm{M}$	$=112.08 \mathrm{~V} \angle 30.0^{\circ}$
$\mathrm{I}_{\mathrm{A} _2}$	$=1.37 \mathrm{~A} \angle-68.1^{\circ}$	$\mathrm{I}_{\mathrm{A}}-\mathrm{I}_{\mathrm{B}}$	$=7.39 \mathrm{~A} \angle-109.1^{\circ}$

b) MHO PHASE A TO GROUND ELEMENT (BEFORE MEMORY EXPIRES)

$$
\begin{array}{ll}
\mathrm{I}_{A} \times \mathrm{Z}+\mathrm{I}_{1} 0 \times \mathrm{KO} \times \mathrm{Z}+\mathrm{I}_{\mathrm{A}} \times & \times \mathrm{K} 0 \mathrm{M} \times \mathrm{Z}-\mathrm{V}_{\mathrm{A}}=103.33 \mathrm{~V} \angle-3.9^{\circ} \\
\mathrm{V}_{\mathrm{A}} 1 \mathrm{M} & =64.71 \mathrm{~V} \angle 0.0^{\circ} \\
\mathrm{I}_{\mathrm{A}} 2 \times \mathrm{Z}_{\mathrm{D}} & =1.37 \mathrm{~V} \angle 19.8^{\circ} \\
\mathrm{I}_{0} \times \mathrm{Z} & =19.11 \mathrm{~V} \angle 19.8^{\circ} \\
\mathrm{I}_{-} \times \mathrm{Z}_{\mathrm{D}} & =1.37 \mathrm{~V} \angle 19.8^{\circ}
\end{array}
$$

- Overcurrent supervision: $\left|3 \times \mathrm{I} _0\right|=4.09 \mathrm{~A}>3 \mathrm{~A}$
- Mho difference angle $=\left|-3.9^{\circ}-0^{\circ}\right|=3.9^{\circ}<75^{\circ}$
- Reactance difference angle $=\left|-3.9^{\circ}-19.8^{\circ}\right|=23.7^{\circ}<75^{\circ}$
- Zero-sequence directional difference angle $=\left|19.8^{\circ}-0.0^{\circ}\right|=19.8^{\circ}<75^{\circ}$
- Negative-sequence directional difference angle $=\left|19.8^{\circ}-0.0^{\circ}\right|=19.8^{\circ}<75^{\circ}$
- Fault-type comparator difference angle $=\left|19.8^{\circ}-19.8^{\circ}\right|=0.0^{\circ}<50^{\circ}$

All four comparators and the overcurrent supervision are satisfied.
The MHO phase A ground element will operate for this fault.

8 THEORY OF OPERATION

c) MHO PHASE A TO GROUND ELEMENT (AFTER MEMORY EXPIRES)

After the memory expires, the relay checks the actual positive-sequence voltage and compares it with 10% of the nominal voltage:

$$
\left|\mathrm{V}_{\mathrm{A}} _1\right|=58.83 \mathrm{~V}>0.1 \times 69.28 \mathrm{~V}
$$

After the memory expires the relay will use the actual voltage for polarization.

$$
\begin{array}{ll}
\mathrm{I}_{A} \times \mathrm{Z}+\mathrm{I}_{-} 0 \times \mathrm{KO} \times \mathrm{Z}+\mathrm{I}_{G} \times \mathrm{KOM} \times \mathrm{Z}-\mathrm{V}_{\mathrm{A}}=103.33 \mathrm{~V} \angle-3.9^{\circ} \\
\mathrm{V}_{A _1} 1 & =58.83 \mathrm{~V} \angle-2.1^{\circ} \\
\mathrm{I}_{A} 2 \times \mathrm{Z}_{\mathrm{D}} & =1.37 \mathrm{~V} \angle 19.8^{\circ} \\
\mathrm{I}_{-} 0 \times \mathrm{Z} & =19.11 \mathrm{~V} \angle 19.8^{\circ} \\
\mathrm{I}_{-} 0 \times \mathrm{Z}_{\mathrm{D}} & =1.37 \mathrm{~V} \angle 19.8^{\circ}
\end{array}
$$

- Overcurrent supervision: $\mid 3 \times \mathrm{I}$ _0|=4.09 A>3 A
- Mho difference angle $=\left|-3.9^{\circ}-\left(-2.1^{\circ}\right)\right|=1.8^{\circ}<75^{\circ}$
- Reactance difference angle $=\left|-3.9^{\circ}-19.8^{\circ}\right|=23.7^{\circ}<75^{\circ}$
- Zero-sequence directional difference angle $=\left|19.8^{\circ}-\left(-2.1^{\circ}\right)\right|=21.9^{\circ}<75^{\circ}$
- Negative-sequence directional difference angle $=\left|19.8^{\circ}-\left(-2.1^{\circ}\right)\right|=21.9^{\circ}<75^{\circ}$
- Fault-type comparator difference angle $=\left|19.8^{\circ}-19.8^{\circ}\right|=0.0^{\circ}<50^{\circ}$

All four comparators and the overcurrent supervision are satisfied.

The Zone 1 MHO phase A ground element will operate for this fault.

- Zero-sequence directional difference angle for Zones 2 through $\overline{34}$ (phase A) $=\left|19.8^{\circ}-8.4^{\circ}\right|=11.4^{\circ}<90^{\circ}$.

Zones $\mathbf{2}$ through $\overline{34}$ phase A ground elements will pick-up, time-out and operate.

d) MHO AB PHASE ELEMENT
$\left(I_{A}-I_{B}\right) \times Z-\left(V_{A}-V_{B}\right) \quad=88.65 \mathrm{~V} \angle-78.7^{\circ}$
$\left(V_{A}-V_{B}\right)_{-} 1 \mathrm{M} \quad=112.08 \mathrm{~V} \angle 30.0^{\circ}$
$\left(I_{A}-I_{B}\right) \times Z \quad=103.50 \mathrm{~V} \angle-21.2^{\circ}$
$\left(I_{A}-I_{B}\right) \times Z_{D} \quad=7.39 \mathrm{~V} \angle-21.2^{\circ}$

- Overcurrent supervision: $\left|\left(I_{A}-I_{B}\right) / \sqrt{3}\right|=4.27 \mathrm{~A}>3 \mathrm{~A}$
- Mho difference angle $=\left|-78.7^{\circ}-30.0^{\circ}\right|=108.7^{\circ}>75^{\circ}$
- Reactance difference angle $=\left|-78.7^{\circ}-\left(-21.2^{\circ}\right)\right|=57.5^{\circ}<75^{\circ}$
- Directional difference angle $=\left|-21.2^{\circ}-30.0^{\circ}\right|=51.2^{\circ}<75^{\circ}$

The mho comparator is not satisfied.
The MHO AB phase element will not operate for this fault.
Repeating the above analysis one concludes that out of the six distance elements only the ground element in phase A will operate for this fault.
e) QUAD PHASE A TO GROUND ELEMENT (BEFORE MEMORY EXPIRES)
$\mathrm{I}_{\mathrm{A}} \times \mathrm{Z}+\mathrm{I}_{-} 0 \times \mathrm{KO} \times \mathrm{Z}+\mathrm{I}_{\mathrm{G}} \times \mathrm{KOM} \times \mathrm{Z}-\mathrm{V}_{\mathrm{A}}=103.33 \mathrm{~V} \angle-3.9^{\circ}$
$\mathrm{V}_{\mathrm{A} _1 \mathrm{M}} \quad=64.71 \mathrm{~V} \angle 0.0^{\circ}$
I_0 \times Z $\quad=19.11 \mathrm{~V} \angle 19.8^{\circ}$
$\mathrm{I}_{\mathrm{A} _} 2 \times \mathrm{Z}_{\mathrm{D}} \quad=1.37 \mathrm{~V} \angle 19.8^{\circ}$
$1 _0 \times Z_{D} \quad=1.37 \mathrm{~V} \angle 19.8^{\circ}$
$I_{A} \times Z_{R}+I_{-} \times K 0 \times Z_{R}+I_{G} \times K O M \times Z_{R}-V_{A}=87.6 \mathrm{~V} \angle-109.2^{\circ}$
$I_{A} \times Z_{R}+I_{1} 0 \times K 0 \times Z_{R} \quad=91.5 \mathrm{~V} \angle-93.0^{\circ}$
$\mathrm{I}_{\mathrm{A}} \times \mathrm{Z}_{\mathrm{L}}+\mathrm{I}_{\mathbf{\prime}} 0 \times \mathrm{KO} \times \mathrm{Z}_{\mathrm{L}}+\mathrm{I}_{\mathrm{G}} \times \mathrm{KOM} \times \mathrm{Z}_{\mathrm{L}}-\mathrm{V}_{\mathrm{A}}=57.0 \mathrm{~V} \angle 108.7^{\circ}$
$\mathrm{I}_{\mathrm{A}} \times \mathrm{Z}_{\mathrm{L}}+\mathrm{I}_{-} 0 \times \mathrm{KO} \times \mathrm{Z}_{\mathrm{L}} \quad=45.8 \mathrm{~V} \angle 82.9^{\circ}$

- Overcurrent supervision: $\left|3 \times \mathrm{I} _0\right|=4.09 \mathrm{~A}>3 \mathrm{~A}$
- Reactance difference angle $=\left|-3.9^{\circ}-19.8^{\circ}\right|=23.7^{\circ}<75^{\circ}$
- Zero-sequence difference angle $=\left|-19.8^{\circ}-0.0^{\circ}\right|=19.8^{\circ}<75^{\circ}$
- Negative-sequence directional difference angle $=\left|-19.8^{\circ}-0.0^{\circ}\right|=19.8^{\circ}<75^{\circ}$
- Right blinder difference angle $=\left|-93.0^{\circ}-\left(-109.2^{\circ}\right)\right|=16.2^{\circ}<90^{\circ}$
- Left blinder difference angle $=\left|82.9^{\circ}-108.7^{\circ}\right|=25.8^{\circ}<90^{\circ}$
- Fault-type comparator difference angle $=\left|19.8^{\circ}-19.8^{\circ}\right|=0.0^{\circ}<50^{\circ}$

All six comparators and the overcurrent supervision are satisfied.
The Quad Phase A ground element will operate for this fault.

As a Wye-Delta transformer introduces discontinuity for the zero-sequence circuit, the ground distance protection cannot be applied, except special circumstances, to respond to faults behind the transformer.

The phase distance elements, however, could be developed so that both accurate reach and correct fault phase identification is retained for faults behind the power transformer as seen from the relaying point. Without appropriate compensation, the relay's reach would depend on a type of fault, creating considerable difficulties in applying the relay.

The D30 provides for any location of the VTs and CTs with respect to the involved power transformer and the direction of any given zone.
In the following equations, the VT and CT locations are referenced as "None" if the transformer is not present between the CT/VT and the intended reach point. Otherwise, the location is to be selected as a type of a transformer as seen from the VT/CT position towards the intended reach point. The following figure explains the adopted rules.

Z1 XFRM VOL CONNECTION = Dy11 Z1 XFRM CUR CONNECTION = Dy11

Z1 XFRM VOL CONNECTION = None Z1 XFRM CUR CONNECTION = Dy11
(e)

Figure 8-4: APPLICATIONS OF THE "PHS DIST XFMR VOLICUR CONNECTION" SETTINGS

Figure 8-5: APPLICATIONS OF THE "PHS DIST XFMR VOLICUR CONNECTION" SETTINGS

8 THEORY OF OPERATION

Table 8-5: PHASE DISTANCE INPUT SIGNALS FOR DELTA-WYE TRANSFORMERS

TRANSFORMER CONNECTION	LOOP	CURRENT TRANSFORMATION	VOLTAGE TRANSFORMATION
None	AB	$I_{A}-I_{B}$	$V_{A B}$
	BC	$I_{B}-I_{C}$	$V_{B C}$
	CA	$I_{C}-I_{A}$	$V_{C A}$
Dy1	AB	$\sqrt{3} I_{A}$	$\frac{1}{\sqrt{3}}\left(V_{A B}-V_{C A}\right)$
	BC	$\sqrt{3} I_{B}$	$\frac{1}{\sqrt{3}}\left(V_{B C}-V_{A B}\right)$
	CA	$\sqrt{3} I_{C}$	$\frac{1}{\sqrt{3}}\left(V_{C A}-V_{B C}\right)$
Dy3	AB	$I_{A B _21 P}=-\sqrt{3} I_{C}$	$V_{A B_{-} 21 P}=\frac{1}{\sqrt{3}}\left(V_{B C}-V_{C A}\right)$
	BC	$I_{B C _21 P}=-\sqrt{3} I_{A}$	$V_{B C_{-} 21 P}=\frac{1}{\sqrt{3}}\left(V_{C A}-V_{A B}\right)$
	CA	$I_{C A _21 P}=-\sqrt{3} I_{B}$	$V_{C A _21 P}=\frac{1}{\sqrt{3}}\left(V_{A B}-V_{B C}\right)$
Dy5	AB	$I_{A B _21 P}=-\sqrt{3} I_{B}$	$V_{A B-21 P}=\frac{1}{\sqrt{3}}\left(V_{B C}-V_{A B}\right)$
	BC	$I_{B C _21 P}=-\sqrt{3} I_{C}$	$V_{B C_{-} 21 P}=\frac{1}{\sqrt{3}}\left(V_{C A}-V_{B C}\right)$
	CA	$I_{C A _21 P}=-\sqrt{3} I_{A}$	$V_{C A-21 P}=\frac{1}{\sqrt{3}}\left(V_{A B}-V_{C A}\right)$
Dy7	AB	$I_{A B _21 P}=-\sqrt{3} I_{A}$	$V_{A B-21 P}=\frac{1}{\sqrt{3}}\left(V_{C A}-V_{A B}\right)$
	BC	$I_{B C _21 P}=-\sqrt{3} I_{B}$	$V_{B C_{-} 21 P}=\frac{1}{\sqrt{3}}\left(V_{A B}-V_{B C}\right)$
	CA	$I_{C A _21 P}=-\sqrt{3} I_{C}$	$V_{C A-21 P}=\frac{1}{\sqrt{3}}\left(V_{B C}-V_{C A}\right)$
Dy9	AB	$I_{A B _21 P}=-\sqrt{3} I_{C}$	$V_{A B_{-} 21 P}=\frac{1}{\sqrt{3}}\left(V_{C A}-V_{B C}\right)$
	BC	$I_{B C _21 P}=-\sqrt{3} I_{A}$	$V_{B C_{-} 21 P}=\frac{1}{\sqrt{3}}\left(V_{A B}-V_{C A}\right)$
	CA	$I_{C A _21 P}=-\sqrt{3} I_{B}$	$V_{C A_{-} 21 P}=\frac{1}{\sqrt{3}}\left(V_{B C}-V_{A B}\right)$
Dy11	AB	$I_{A B _21 P}=-\sqrt{3} I_{B}$	$V_{A B_{-} 21 P}=\frac{1}{\sqrt{3}}\left(V_{A B}-V_{B C}\right)$
	BC	$I_{B C _21 P}=-\sqrt{3} I_{C}$	$V_{B C_{-} 21 P}=\frac{1}{\sqrt{3}}\left(V_{B C}-V_{C A}\right)$
	CA	$I_{C A _21 P}=-\sqrt{3} I_{A}$	$V_{C A_{-} 21 P}=\frac{1}{\sqrt{3}}\left(V_{C A}-V_{A B}\right)$

Table 8-6: PHASE DISTANCE INPUT SIGNALS FOR WYE-DELTA TRANSFORMERS

TRANSFORMER CONNECTION	LOOP	CURRENT TRANSFORMATION	VOLTAGE TRANSFORMATION
Yd1	AB	$I_{A B _21 P}=\frac{1}{\sqrt{3}}\left(2 I_{A}-I_{B}-I_{C}\right)$	$V_{A B _21 P}=\sqrt{3} V_{A}$
	BC	$I_{B C _21 P}=\frac{1}{\sqrt{3}}\left(2 I_{B}-I_{A}-I_{C}\right)$	$V_{B C _21 P}=\sqrt{3} V_{B}$
	CA	$I_{C A _21 P}=\frac{1}{\sqrt{3}}\left(2 I_{C}-I_{A}-I_{B}\right)$	$V_{C A_{-} 21 P}=\sqrt{3} V_{C}$
Yd3	AB	$I_{A B _21 P}=\frac{1}{\sqrt{3}}\left(I_{A}+I_{B}-2 I_{C}\right)$	$V_{A B_{-} 21 P}=-\sqrt{3} V_{C}$
	BC	$I_{B C _21 P}=\frac{1}{\sqrt{3}}\left(I_{B}+I_{C}-2 I_{A}\right)$	$V_{B C _21 P}=-\sqrt{3} V_{A}$
	CA	$I_{C A _21 P}=\frac{1}{\sqrt{3}}\left(I_{A}+I_{C}-2 I_{B}\right)$	$V_{C A _21 P}=-\sqrt{3} V_{B}$
Yd5	AB	$I_{A B _21 P}=\frac{1}{\sqrt{3}}\left(2 I_{B}-I_{A}-I_{C}\right)$	$V_{A B _21 P}=\sqrt{3} V_{B}$
	BC	$I_{B C _21 P}=\frac{1}{\sqrt{3}}\left(2 I_{C}-I_{A}-I_{B}\right)$	$V_{B C _21 P}=\sqrt{3} V_{C}$
	CA	$I_{C A _21 P}=\frac{1}{\sqrt{3}}\left(2 I_{A}-I_{B}-I_{C}\right)$	$V_{C A _21 P}=\sqrt{3} V_{A}$
Yd7	AB	$I_{A B _21 P}=\frac{1}{\sqrt{3}}\left(I_{B}+I_{C}-2 I_{A}\right)$	$V_{A B _21 P}=-\sqrt{3} V_{A}$
	BC	$I_{B C _21 P}=\frac{1}{\sqrt{3}}\left(I_{A}+I_{C}-2 I_{B}\right)$	$V_{B C _21 P}=-\sqrt{3} V_{B}$
	CA	$I_{C A _21 P}=\frac{1}{\sqrt{3}}\left(I_{A}+I_{B}-2 I_{C}\right)$	$V_{C A _21 P}=-\sqrt{3} V_{C}$
Yd9	AB	$I_{A B _21 P}=\frac{1}{\sqrt{3}}\left(2 I_{C}-I_{A}-I_{B}\right)$	$V_{A B_{-} 21 P}=\sqrt{3} V_{C}$
	BC	$I_{B C _21 P}=\frac{1}{\sqrt{3}}\left(2 I_{A}-I_{B}-I_{C}\right)$	$V_{B C _21 P}=\sqrt{3} V_{A}$
	CA	$I_{C A _21 P}=\frac{1}{\sqrt{3}}\left(2 I_{B}-I_{A}-I_{C}\right)$	$V_{C A _21 P}=\sqrt{3} V_{B}$
Yd11	AB	$I_{A B _21 P}=\frac{1}{\sqrt{3}}\left(I_{A}+I_{C}-2 I_{B}\right)$	$V_{A B_{-} 21 P}=-\sqrt{3} V_{B}$
	BC	$I_{B C _21 P}=\frac{1}{\sqrt{3}}\left(I_{A}+I_{B}-2 I_{C}\right)$	$V_{B C _21 P}=-\sqrt{3} V_{C}$
	CA	$I_{C A _21 P}=\frac{1}{\sqrt{3}}\left(I_{B}+I_{C}-2 I_{A}\right)$	$V_{C A _21 P}=-\sqrt{3} V_{A}$

8 THEORY OF OPERATION

8.2 PHASE DISTANCE APPLIED TO POWER TRANSFORMERS

Equations from the "Current Transformation" and "Voltage Transformation" columns are used to derive inputs to the three (AB, BC, and CA) phase distance elements. For example, if the CTs are located at the delta side of the Delta-Wye 11 transformer, and a given zone is set to look through the transformer into the system connected to the Wye winding, the CT location setting for that zone shall be set to Dy11 and the relay would use $-\sqrt{3} I_{B}$ instead of a traditional $I_{A}-I_{B}$ for the $A B$ phase distance element.

The current supervision pickup setting applies to the currents specified in the "Current Transformation" columns.
A distance zone originates at the location of the VTs (regardless of the location of the CTs). For more information on settings please refer to Chapter 9: Application of Settings.
8.2.2 EXAMPLE

Consider the system shown below:

150 MVA, 10\%
13.8kV/315kV

837727A2.CDR
Figure 8-6: SAMPLE SYSTEM CONFIGURATION
Normally, in order to respond to the fault shown in the figure, a distance relay shall be applied at the relaying point X. The relay input signals at this location are shown in the following table.

INPUT	PRIMARY	SECONDARY
VA	$100.4 \mathrm{kV} \angle-7.32^{\circ}$	$38.25 \mathrm{~V} \angle-7.32^{\circ}$
VB	$97.23 \mathrm{kV} \angle-53.4^{\circ}$	$37.04 \mathrm{~V} \angle-53.4^{\circ}$
VC	$181.8 \mathrm{kV} \angle-150.0^{\circ}$	$69.26 \mathrm{~V} \angle-150.0^{\circ}$
IA	$1.288 \mathrm{kA} \angle-27.6^{\circ}$	$21.47 \mathrm{~A} \angle-27.6^{\circ}$
IB	$1.288 \mathrm{kA} \angle 152.4^{\circ}$	$21.47 \mathrm{~A} \angle 152.4^{\circ}$
IC	0	0

If installed at the location X, the relay would use the following input signals for its phase $A B$ distance element:
$V=V_{A B}=77.402 \mathrm{kV} \angle 57.5^{\circ}$ primary or $29.49 \mathrm{~V} \angle 57.5^{\circ}$ secondary
$I=I_{A}-I_{B}=2.576 \mathrm{kA} \angle-27.6^{\circ}$ primary or $42.93 \mathrm{~A} \angle-27.6^{\circ}$ secondary

And consequently it would see an apparent impedance of:
$Z_{\text {app }}=V / I=30.05 \Omega \angle 85^{\circ}$ primary or $0.687 \Omega \angle 85^{\circ}$ secondary

If applied at location H , the relay sees the following input signals:

INPUT	PRIMARY	SECONDARY
VA	$7.584 \mathrm{kV} \angle-5.59^{\circ}$	$69.95 \mathrm{~V} \angle-5.59^{\circ}$
VB	$6.269 \mathrm{kV} \angle-120.1^{\circ}$	$54.52 \mathrm{~V} \angle-120.1^{\circ}$
VC	$7.751 \mathrm{kV} \angle 125.5^{\circ}$	$65.84 \mathrm{~V} \angle 125.5^{\circ}$
IA	$16.976 \mathrm{kA} \angle-27.6^{\circ}$	$10.61 \mathrm{~A} \angle-27.6^{\circ}$
IB	$33.952 \mathrm{kA} \angle 152.4^{\circ}$	$21.22 \mathrm{~A} \angle 152.4^{\circ}$
IC	$16.976 \mathrm{kA} \angle-27.6^{\circ}$	$10.61 \mathrm{~A} \angle-27.6^{\circ}$

The relay is set as follows:

```
XFMR VOL CONNECTION = "Dy11"
XFMR CUR CONNECTION = "Dy11"
```

Consequently, the following signals are applied to the phase $A B$ distance element:

$$
\begin{gather*}
V=\frac{1}{\sqrt{3}} V_{A B}-V_{B C}=10.861 \mathrm{kV} \angle 59.9^{\circ} \text { primary or } 94.45 \mathrm{~V} \angle 59.9^{\circ} \text { secondary } \tag{EQ8.1}\\
\quad I=-\sqrt{3} I_{B}=58.860 \mathrm{kA} \angle-27.6^{\circ} \text { primary or } 36.75 \mathrm{~A} \angle-27.6^{\circ} \text { secondary } \tag{EQ8.2}
\end{gather*}
$$

This results in the following apparent impedance:

$$
\begin{equation*}
Z_{\text {app }}=\frac{V}{l}=\frac{94.45 \mathrm{kV} \angle 59.9^{\circ}}{36.75 \mathrm{kA} \angle-27.6^{\circ}}=2.570 \Omega \angle 87.5^{\circ} \text { secondary } \tag{EQ8.3}
\end{equation*}
$$

The above value is a correct measure of the distance from the VT location to the fault. For relay location 2, this certainly includes the positive-sequence impedance of the transformer:

$$
\begin{align*}
& Z_{T}(\text { at } 13.8 \mathrm{kV})=\frac{10}{100} \times \frac{(13.8 \mathrm{kV})^{2}}{150 \mathrm{MVA}}=0.127 \Omega \angle 90^{\circ} \\
& Z_{L}(\text { at } 13.8 \mathrm{kV})=30.11 \times\left(\frac{13.8}{315}\right)^{2}=0.05779 \Omega \angle 85^{\circ} \tag{EQ8.4}
\end{align*}
$$

Thus, $0.127 \Omega \angle 90^{\circ}+0.05779 \Omega \angle 85^{\circ}=0.1847 \Omega \angle 88.4^{\circ}$ primary side or $2.569 \Omega \angle 88.4^{\circ}$ on the secondary side.
The above example illustrates how the relay maintains correct reach for fault behind power transformers. When installed at X, the relay shall be set to $0.687 \Omega \angle 85^{\circ}$ secondary in order to reach to the fault shown in the figure. When installed at H , the relay shall be set to $2.569 \Omega \angle 88.4^{\circ}$ to ensure exactly same coverage.

See Chapter 9: Application of Settings for more information on setting calculations.

Consider the negative-sequence directional overcurrent element. As illustrated below, the negative-sequence voltage could be low during internal fault conditions.

Figure 8-7: OFFSET IMPEDANCE AUGMENTATION
In order to ensure operation of the element under such circumstances the angle comparator uses a polarizing voltage augmented by the negative-sequence current as per following equations:

- Forward-looking element: S_pol $=-\mathrm{V} _2+\mathrm{I}$ _ $2 \times \mathrm{Z}$ _offset $\times 1 \angle E C A$

$$
\text { S_op }=1 _2 \times 1 \angle \text { ECA }
$$

- Reverse-looking element: S_pol $=-\mathrm{V} _2+\mathrm{I} _2 \times \mathrm{Z}$ _offset $\times 1 \angle \mathrm{ECA}$

$$
\text { S_op }=- \text {-_ } 2 \times 1 \angle \mathrm{ECA}
$$

where: ECA = forward ECA angle (maximum torque angle); Z_offset = offset impedance
The effect of the augmentation for forward and reverse fault is shown in the figures above. As long as the offset impedance is not higher than the negative-sequence line impedance the element will ensure correct and fast fault direction identification for both forward and reverse faults. The same principle applies to the neutral directional overcurrent element.

8.3.2 EXAMPLE

Consider relay input signals as in the Distance Elements Analysis section and assume an offset impedance of 4Ω and ECA and limit angles of 88° and 90°, respectively. The relay calculates the following negative-sequence quantities:

$$
\vee _2=6.39 \vee \angle-159.6^{\circ} ; _2=1.37 \mathrm{~A} \angle-68.1^{\circ} ; \quad _1=2.94 \mathrm{~A} \angle-144.2^{\circ}
$$

and the following signals for the directional unit of the negative-sequence directional overcurrent element:

- Forward-looking element: S_pol $=11.87 \mathrm{~V} \angle 20.2^{\circ}$

$$
\text { S_op = } 1.37 \mathrm{~V} \angle 20.2^{\circ}
$$

- Reverse-looking element: S_pol $=11.87 \mathrm{~V} \angle 20.2^{\circ}$

$$
\text { S_op }=1.37 \mathrm{~V} \angle-160.0^{\circ}
$$

After comparing the angles, a solid forward indication is given.
Assume further the pickup setting of 0.25 A for both forward and reverse directions, and the "Negative-sequence" mode setting entered for the overcurrent unit of the element. The relay calculates the operating signal using the positivesequence restraint:

$$
\text { I_op = |I_2| - |I_1| / } 8 \text { = 1.003 A > 0.25 A. }
$$

The overcurrent unit will pickup and the element will operate in the forward direction.

Faults on or in a close vicinity of series compensated lines may create problems for distance protection:

- Voltage and/or current inversion may lead to false direction discrimination by directional elements. This may potentially include both a failure to operate on a forward in-zone fault as well as misoperation on a reverse fault. Both distance and overcurrent directional elements can be affected.
- Series-capacitors and their overvoltage protection equipment (air gaps and/or Metal-Oxide Varistors) have a steadystate overreaching effect on the apparent impedance seen by the relay - a forward fault may appear much closer to the relay as compared with the actual fault location. The apparent impedance may be shifted towards the relay by as much as the total reactance of the series capacitors placed between the potential source of the relay and the fault point. This extreme steady-state overreach happens during low-current faults when the air-gaps do not flashover or the MOVs do not conduct any significant current.
- In addition to the above steady-state overreach effect; sub-synchronous oscillations in both currents and voltages may cause significant transient overreach.

Distance protection elements of the D30 deal with the problem of voltage inversion by using 100% memory polarized directional comparators. As the memory duration is set longer that the slowest fault clearing time for reverse faults, it is guaranteed that the distance element would not pick-up on reverse faults should the voltage inversion happen.
At the same time, it is guaranteed that the distance elements would pick-up for all forward faults regardless of any voltage inversion as long as the memory voltage is used. Before the memory expires the relay would respond to any fault on the protected line. Stepped distance backup zones operate after the memory voltage expires. But the backup protection responds to distant faults that do not cause any inversion of the positive-sequence voltage. As a result, the time-delayed stepped-distance zones are guaranteed to operate.
Distance protection elements of the D30 deal with the problem of current inversion by using a multi-input-comparator approach as described in the Distance Characteristics subsection. Should the current inversion happen, the distance elements are secure on reverse faults because multiple conditions involving fault-loop, negative-sequence and zero-sequence currents and the memory voltage are checked prior to declaring a forward fault.
On close-in forward faults beyond the series capacitors as seen from the relaying point, the current inversion phenomenon may take place for a short period of time. The condition cannot sustain for a long time as very high fault currents would occur causing large voltage drops across the series capacitors and prompting the overvoltage protection of the capacitors to operate quickly. This would effectively remove the series compensation and eliminate the current inversion. However, when the currents used by distance comparator (fault-loop current for ground and phase distance protection, and the nega-tive- and zero-sequence currents for ground elements) stay shifted by more than 90 degrees from their natural fault position determined by the user as the element characteristic angle, the distance elements may fail to pick-up on such a forward fault for the brief period of current inversion. This is an inherent attribute of the 100% memory polarized mho element, and not a weakness particular to the D30 relay.

Therefore, for dependability, it is recommended to use high-set phase overcurrent protection for direct tripping on close-in faults potentially causing current inversion, and overreaching ground fault directional overcurrent functions (such as nega-tive-sequence, ground or neutral) for communication-aided schemes.

The problem of steady-state overreaching due to the negative reactance of the series capacitors may be addressed in the D30 in a traditional way by shortening the reach of an underreaching distance elements to the net inductive reactance of the line between the potential source and the far end busbar(s). This generic approach has two major drawbacks. First, it leaves large portion of the line uncovered by the directly tripping distance protection. Second, it does not solve the transient overreaching problem caused by sub-synchronous oscillations.
Therefore, the D30 offers a unique option for dynamic reach control that is effectively based on the magnitude of the current flowing through the series capacitor bank(s). The underreaching distance functions can be set as for plain uncompensated line, i.e. using the impedance of the line alone, and the relay would control an effective reach accordingly using the current magnitude as illustrated in the figure below.
The reach is reduced sufficiently to cope with both steady-state and transient overreach phenomena. For large degrees of compensation and small-current faults, the transient overreach may be as high as 100%. This means that fast distance protection is not achievable. The adaptive D30's mechanism would guarantee security on external faults. Overreaching ground fault directional overcurrent functions (such as negative-sequence, ground or neutral) shall be used for dependability.

Figure 8-8: DYNAMIC REACH CONTROL
Section (a) of the figure below shows the effect of adaptive reach control for low-current external fault. The reach is reduced sufficiently to cope with both transient and steady-state overreach. Section (b) shows a high-current external fault. The air gaps or MOVs conduct majority of the fault current and neither steady-state nor transient overreach takes place. The relay does not reduce its reach as it is not necessary. Section (c) shows a high-current internal fault. Because of the large current, the reach is not reduced and the element responds to this internal fault. Traditional approach would leave this fault out of the relay reach.
The neutral and negative-sequence directional protection functions of the relay cope with the voltage and/or current inversions by adding appropriate offset to their polarizing signals as explained in the Ground Directional Overcurrent section. The offset impedance can always be successfully selected to guarantee correct fault direction discrimination regardless of the degree of compensation and location of the series capacitors and the potential source.
Refer to Chapter 9: Application of Settings for detailed recommendations on settings for series compensation applications.

Figure 8-9: DYNAMIC REACH FOR INTERNAL AND EXTERNAL FAULTS

This chapter provides general application guidelines for stepped distance, overcurrent and pilot protection. Where relevant, design details and performance characteristics of the D30 are given to facilitate the process of setting the relay for a given application.

9.1.2 IMPACT OF MEMORY POLARIZATION

As explained in Chapter 8, the D30 uses a memorized positive sequence voltage as a polarizing signal in order to achieve dependable operation for forward faults and secure non-operation for reverse faults.

The dynamic shift of the characteristic ensures improved directionality, but it also means that if a backup function is required for a reverse fault on the bus, then it is appropriate to reverse Zone $\overline{34}$ so that a time delayed backup function may be obtained. As mentioned earlier, it may be beneficial to also avoid extremely large reach settings by setting a remote backup so that it is reverse looking. This strategy can be beneficial if the reduced reach enhances the discrimination between the load and fault conditions.

9.1.3 HIGH SET OVERCURRENT ELEMENTS

Especially at low SIR values, fast fault clearance times may be seen as extremely important, both from system stability, and from equipment damage viewpoints. The high-set overcurrent element, when set appropriately, can be extremely useful in achieving these goals. It helps the setting calculations if the system impedances are reasonably well known.
The overcurrent pick up should be set to the greater of the following values:

1. The maximum infeed seen by the relay, for a close in reverse fault.
2. The maximum fault level seen by the relay for a fault at 100% of the protected line.

The maximum error of the phase overcurrent elements is below 2%. A safety factor of 1.25 should be used to account for relay errors and system impedance uncertainty.

If CT saturation is an issue such as close to a generation where long lasting dc components are likely to saturate the CTs, it should be noted that the IOC elements require 1.33 cycle of data to operate for a multiple of pickup of 1.01 . For higher multiples of pickup, the relation between the multiple of pickup and the amount of data required for operation before complete CT saturation is approximately linear. For example, for a multiple of pickup of 4 , approximately $1.33 / 4=0.332$ of power cycle is required by the phase IOC to operate. The above information should not be confused with the operating time, which includes some inherent delays such as a trip rated output contact.

a) PHASE CURRENT SUPERVISION AND THE FUSE FAILURE ELEMENT

The phase-to-phase (delta) current is used to supervise the phase distance elements, primarily to ensure that in a de-energized state the distance elements will not be picked up due to noise or induced voltages, on the line.
However, this supervision feature may also be employed to prevent operation under fuse failure conditions. This obviously requires that the setting must be above maximum load current and less than the minimum fault conditions for which operation is expected. This potential problem may be avoided by the use of a separate fuse fail function, which means that the phase current supervision can be set much lower, typically 2 times the capacitance charging current of the line.
The usage of the fuse fail function is also important during double-contingency events such as an external fault during fuse fail conditions. The current supervision alone would not prevent maloperation in such circumstances.
It must be kept in mind that the Fuse Failure element provided on the D30 needs some time to detect fuse fail conditions. This may create a race between the instantaneous Zone $\overline{12}$ and the Fuse Failure element. Therefore, for maximum security, it is recommended to both set the current supervision above the maximum load current and use the Fuse Failure function. The current supervision prevents maloperation immediately after the fuse fail condition giving some time for the Fuse Failure element to take over and block the distance elements permanently. This is of a secondary importance for timedelayed Zones 2 through 4 as the Fuse Failure element has some extra time for guaranteed operation. The current supervision may be set below the maximum load current for the time delayed zones.

Blocking distance elements during fuse fail conditions may not be acceptable in some applications and/or under some protection philosophies. Applied solutions may vary from not using the Fuse Failure element for blocking at all; through using it and modifying - through FlexLogic ${ }^{\top \mathrm{M}}$ and multiple setting groups mechanisms - other protection functions or other relays to provide some protection after detecting fuse fail conditions and blocking the distance elements; to using it and accepting the fact that the distance protection will not respond to subsequent internal faults until the problem is addressed.

To be fully operational, the Fuse Failure element must be enabled, and its output FlexLogic ${ }^{\text {TM }}$ operand must be indicated as the blocking signal for the selected protection elements.
For convenience, the current supervision threshold incorporates the $\sqrt{3}$ factor.

b) PHASE DISTANCE ZONE 1

As typically used for direct tripping, the Zone 1 reach must be chosen so that it does not extend beyond the far end(s) of the protected line. The Zone 1 provides nominally instantaneous protection for any phase fault within a pre-determined distance from the relay location. To ensure that no overreach occurs, typically requires a setting of 80 to 90% of the line length, which covers CT and VT errors, relay inaccuracy and transient overreach as well as uncertainty in the line impedance for each phase, although transposition may minimize this latter concern. The total relay inaccuracy including both steady state and transient overreach even when supplied from CVTs under the Source Impedance Ratios of up to 30, is below 5\%.

c) PHASE DISTANCE ZONE 2

The Zone 2 is an overreaching element, which essentially covers the final 10 to 20% whole of the line length with a time delay. The additional function for the Zone 2 is as a timed backup for faults on the remote bus. Typically the reach is set to 125% of the positive sequence impedance of the line, to ensure operation, with an adequate margin, for a fault at 100% of the line length. The necessary time delay must ensure that coordination is achieved with the clearance of a close-in fault on the next line section, including the breaker operating time.
Typically the Zone 2 time delay would be 0.2 to 0.6 sec ., although this may have to be reviewed more carefully if a short line terminates on the remote bus because the two Zone 2 elements may overlap and therefore not coordinate satisfactorily.

d) PHASE DISTANCE ZONE 3

If a remote backup philosophy is followed, then the reach of this element must be set to account for any infeed at the remote bus, plus the impedance of the longest line which terminates on this remote bus. The time delay must coordinate with other time-delayed protections on any remote line. Circuit loading limitations created by a long zone reach may be overcome by using lens or quadrilateral characteristics and/or a load encroachment supervising characteristic. Consideration should also be given to a situation where the load impedance may enter into the relay characteristic for a time longer than the chosen time delay, which could occur transiently during a system power swing. For this reason the Power Swing Blocking function should be used.

a) NEUTRAL CURRENT SUPERVISION

The current supervision for the ground distance elements responds to an internally calculated neutral current ($3 \times 1 _0$). The setting for this element should be based on twice the zero-sequence line capacitance current or the maximum zerosequence unbalance under maximum load conditions. This element should not be used to prevent an output when the load impedance is inside the distance characteristic on a steady state basis.

b) GROUND DISTANCE ZONE 1

The Zone 1 reach must be set so that nominally instantaneous operation does not extend beyond the end of the protected line. However this may be somewhat more complicated than for the phase elements, because of zero sequence mutual induction with an adjacent parallel line, possibly carried on the same tower, which can be out of service and grounded at multiple points. A fault beyond 100% of the protected line may cause overreach unless the reach is reduced significantly, sometimes as low as 65% of the line length. If the line being protected does not have a significant interaction with an adjacent circuit, then the typical 80% setting may be used. If there is significant mutual coupling between the parallel lines, then the mutual compensation feature of the ground distance elements can be used instead of a drastic reduction in the reach.
However, even in this case, there is more uncertainty as compared with the phase distance elements because the zerosequence impedance of the line and thus the zero-sequence-compensating factors may vary significantly due to weather and other conditions.

c) GROUND DISTANCE ZONE 2

To ensure that the Zone 2 can see 100% of the line, inter-circuit mutual effects must be considered, as they can contribute to a significant under-reach. Typically this may occur on double circuit lines, when both lines may carry the same current. An analytical study should be carried out to determine the appropriate reach setting.
The main purpose of this element is to operate for faults beyond the reach of the local Zone 1 element, and therefore a time delay must be used similar to the phase fault case.

d) GROUND DISTANCE ZONE 3

This remote back up function must have a reach which is set to account for any infeed at the remote bus, plus the impedance of the longest line which terminates on this remote bus. Similar to the phase fault case, a Zone 3 element must be time coordinated with timed clearances on the next section.

For reasons described in Chapter 8: Theory of Operation, it is recommended to apply a combination of distance, ground directional overcurrent and high-set overcurrent functions for protection of series compensated lines.

The setting rules described below must take into account variety of system configurations, particularly a status of series capacitors (in-service, by-passed). Either the worst-case topology shall be considered or - if possible - adaptive settings shall be applied though the multiple settings groups mechanism.

A line compensating capacitor is a bank of three physical capacitors and their overvoltage protecting devices (air gaps and/ or MOVs). If none of the MOV/gaps conducts any significant current, the positive-, negative- and zero-sequence reactance of the three-phase bank equal the reactance of the actual (phase) capacitors. Under asymmetrical conditions, however, such as a single line to ground fault, when only one MOV/gap may operate, the series capacitor bank would create extra (series) asymmetry in addition to the fault (shunt) asymmetry. The positive-, negative- and zero-sequence impedances will differ from each other and will not equal the impedance of the phase capacitors. Moreover, there may be mutual coupling between the sequence networks representing the series capacitor bank. This makes analytical analysis of fault conditions very burdensome. For setting calculations, however, it is justified to assume the zero-, positive-, and negative-sequence reactance of the capacitor bank equal the reactance of the actual (phase) capacitors. This represents a worst-case low-current fault scenario, when the steady-state effects of series compensation are most weighty.

Traditionally, the reach setting of an underreaching distance function shall be set based on the net inductive impedance between the potential source of the relay and the far-end busbar, or location for which the zone must not overreach. Faults behind series capacitors on the protected and adjacent lines need to be considered for this purpose. For further illustration a sample system shown in the figure below is considered.

Figure 9-1: SAMPLE SERIES COMPENSATED SYSTEM
Assuming 20\% security margin, the underreaching zone shall be set as follows.
At the Sending Bus, one must consider an external fault at F1 as the 5Ω capacitor would contribute to the overreaching effect. Any fault behind F1 is less severe as extra inductive line impedance increases the apparent impedance:

Reach Setting: $0.8 \times(10-3-5)=1.6 \Omega$ if the line-side $(B) \vee T s$ are used
Reach Setting: $0.8 \times(10-4-3-5)=-1.6 \Omega$ if the bus-side $(A) \vee T s$ are used
The negative value means that an underreaching zone cannot be used as the circuit between the potential source of the relay and an external fault for which the relay must not pick-up, is overcompensated, i.e. capacitive.
At the Receiving Bus, one must consider a fault at F2:
Reach Setting: $0.8 \times(10-4-2)=3.2 \Omega$ if the line-side (B) VTs are used
Reach Setting: $0.8 \times(10-4-3-2)=0.8 \Omega$ if the bus-side (A) VTs are used
Practically, however, to cope with the effect of sub-synchronous oscillations, one may need to reduce the reach even more. As the characteristics of sub-synchronous oscillations are in complex relations with fault and system parameters, no solid setting recommendations are given with respect to extra security margin for sub-synchronous oscillations. It is strongly recommended to use a power system simulator to verify the reach settings or to use an adaptive D30 feature for dynamic reach control.

If the adaptive reach control feature is used, the PHS DIST Z1 VOLT LEVEL setting shall be set accordingly.

This setting is a sum of the overvoltage protection levels for all the series capacitors located between the relay potential source and the far-end busbar, or location for which the zone must not overreach. The setting is entered in pu of the phase VT nominal voltage (RMS, not peak value).
If a minimum fault current level (phase current) is causing a voltage drop across a given capacitor that prompts its air gap to flash over or its MOV to carry practically all the current, then the series capacitor shall be excluded from the calculations (the capacitor is immediately by-passed by its overvoltage protection system and does not cause any overreach problems).
If a minimum fault current does not guarantee an immediate capacitor by-pass, then the capacitor must be included in the calculation: its overvoltage protection level, either air gap flash-over voltage or MOV knee-point voltage, shall be used (RMS, not peak value).
Assuming none of the series capacitors in the sample system is guaranteed to get by-passed, the following calculations apply:
For the Sending Bus: $\quad 0.5+0.7=1.2$ pu if the line-side (B) VTs are used $0.6+0.5+0.7=1.8$ pu if the bus-side (A) VTs are used
For the Receiving Bus: $\quad 0.6+0.5=1.1$ pu if the line-side $(B) V T s$ are used $0.6+0.5+0.5=1.6$ pu if the bus-side (A) VTs are used

9.3.3 GROUND DIRECTIONAL OVERCURRENT

Ground directional overcurrent function (negative-sequence or neutral) uses an offset impedance to guarantee correct fault direction discrimination. The following setting rules apply.

1. If the net impedance between the potential source and the local equivalent system is inductive, then there is no need for an offset. Otherwise, the offset impedance shall be at least the net capacitive reactance.
2. The offset cannot be higher than the net inductive reactance between the potential source and the remote equivalent system. For simplicity and extra security, the far-end busbar may be used rather than the remote equivalent system.
As the ground directional functions are meant to provide maximum fault resistance coverage, it is justified to assume that the fault current is very low and none of the series capacitors is guaranteed to get by-passed. Consider settings of the neg-ative-sequence directional overcurrent protection element for the Sample Series Compensated System.
For the Sending Bus relay, bus-side VTs:

- Net inductive reactance from the relay into the local system $=-2+3=1 \Omega>0$; there is no need for offset.
- Net inductive reactance from relay through far-end busbar $=-4+10-3=3 \Omega$; the offset cannot be higher than 3Ω.
- It is recommended to use 1.5Ω offset impedance.

For the Sending Bus relay, line-side VTs:

- Net inductive reactance from relay into local system $=-2+3-4=-3 \Omega<0$; an offset impedance $\geq 3 \Omega$ must be used.
- Net inductive reactance from relay through far-end busbar $=10-3=7 \Omega$; the offset cannot be higher than 7Ω.
- It is recommended to use 5Ω offset impedance.

For the Receiving Bus relay, bus-side VTs:

- Net inductive reactance from relay into local system $=-5+7=2 \Omega>0$; there is no need for offset.
- Net inductive reactance from relay through far-end busbar $=-3+10-4=3 \Omega$; the offset cannot be higher than 3Ω.
- It is recommended to use 1.5Ω offset impedance.

For the Receiving Bus relay, line-side VTs:

- Net inductive reactance from relay into local system $=-3-5+7=-1 \Omega<0$; an offset impedance $\geq 1 \Omega$ must be used.
- Net inductive reactance from relay through far-end busbar $=10-4=6 \Omega$; the offset cannot be higher than 6Ω.
- It is recommended to use 3.5Ω offset impedance.

The setting rules for high-set overcurrent protection are explained in the High-Set Overcurrent Elements section.

a) DESCRIPTION

Phase distance elements of the D30 could be set to respond to faults beyond any three-phase power transformer. The relay guarantees accurate reach and targeting for any phase fault. Moreover, the current and voltage transformers may be located independently on different sides of the transformer.

The following setting rules apply to this feature:

1. A given distance zone is terminated by location of the VTs, not the CTs.
2. Consequently, the positive-sequence impedance of a transformer must be included in the reach setting only if the transformer is located between the potential source and the intended reach point.
3. The current signals require compensation if the transformer is located between the CTs and the intended reach point. If this is the case the CT connection setting shall be set to transformer connection and vector group as seen from the CTs toward the reach point. Otherwise, the CT connection setting shall be set to "None".
4. The voltage signals require compensation if the transformer is located between the VTs and the intended reach point. If this is the case the VT connection setting shall be set to transformer connection and vector group as seen from the VTs toward the reach point. Otherwise, the VT connection setting shall be set to "None".
5. The reach setting is entered in secondary ohms and as such must take into account location and ratios of VTs and CTs as well as voltage ratio of the involved power transformer.
The following equations explain the setting rules. Consider two applications as shown in the figure below:

Figure 9-2: PHASE DISTANCE LOOKING THROUGH A POWER TRANSFORMER (D60)

Figure 9-3: $\overline{\text { PHASE DISTANCE PROTECTION LOOKING THROUGH A POWER TRANSFORMER (D30/G60) }}$
where: $\quad Z_{X}=$ intended reach impedance for Zone 1 (primary ohms)
$Z_{H}=$ intended reach impedance for Zone 3Zone 4 (primary ohms)
$\mathrm{Z}_{\mathrm{T}}=$ positive-sequence impedance of the transformer
$\mathrm{V}_{\mathrm{X}}, \mathrm{V}_{\mathrm{H}}=$ transformer rated voltages
$\mathrm{n}_{\mathrm{CT}}=$ transformation ratio of the CTs
$\mathrm{n}_{\mathrm{VT}}=$ transformation ratio of the VTs
Z1: Z1 reach setting (secondary ohms)
$\overline{Z 3 Z 4}$: Zone $\overline{34}$ reach setting (secondary ohms)
b) ZONE 1 SETTING IN APPLICATION (A)

As the transformer is located between the potential source and the reach point for Zone 1, the reach impedance must include the positive-sequence impedance of the transformer. In addition, the primary impedance must be re-calculated for the voltage level of the VTs and CTs, and eventually, re-calculated to secondary quantities:

$$
\begin{equation*}
Z_{1}=\left(Z_{T}(\text { at } \mathrm{X})+Z_{X}\right) \times\left(\frac{V_{H}}{V_{X}}\right)^{2} \times \frac{n_{C T}}{n_{V T}} \tag{EQ9.1}
\end{equation*}
$$

c) ZONE 3 SETTING IN APPLICATION (A)

As the transformer is not located between the potential source and the reach point for $\overline{\text { Zone 3Zone 4 }}$, the reach impedance must not include the positive-sequence impedance of the transformer. Because both VTs and CTs are located on the same side as the intended reach point, no correction for the transformer ratio is required. The primary impedance must be only re-calculated to secondary quantities:

$$
\begin{align*}
& \overline{Z_{4}=Z_{H} \times \frac{n_{C T}}{n_{V T}}} \tag{EQ9.2}\\
& \overline{Z_{3}=Z_{H} \times \frac{n_{C T}}{n_{V T}}} \tag{EQ9.3}
\end{align*}
$$

d) ZONE 1 SETTING IN APPLICATION (B)

As the transformer is not located between the potential source and the reach point for Z 1 , the reach impedance must not include the positive-sequence impedance of the transformer. The CTs are located on the other side of the transformer, thus transformer ratio must be included:

$$
\begin{equation*}
Z_{1}=Z_{X} \times\left(\frac{V_{H}}{V_{X}}\right) \times \frac{n_{C T}}{n_{V T}} \tag{EQ9.4}
\end{equation*}
$$

e) ZONE 3 SETTING IN APPLICATION (B)

As the transformer is located between the potential source and the reach point for $\overline{\text { Zone 3Zone 4, the reach impedance }}$ must include the positive-sequence impedance of the transformer. The VTs are located on the other side of the transformer, thus transformer ratio must be included:

$$
\begin{align*}
& \overline{Z_{4}=\left(Z_{T}(\text { at } \mathrm{H})+Z_{H}\right) \times\left(\frac{V_{X}}{V_{H}}\right) \times \frac{n_{C T}}{n_{V T}}} \tag{EQ9.5}\\
& \overline{Z_{3}=\left(Z_{T}(\text { at } \mathrm{H})+Z_{H}\right) \times\left(\frac{V_{X}}{V_{H}}\right) \times \frac{n_{C T}}{n_{V T}}} \tag{EQ9.6}
\end{align*}
$$

Given the following for the system shown in the previous section:
$Z_{X}=30 \Omega \angle 85^{\circ}$ (intended reach of Zone 1)
$Z_{H}=0.06 \Omega \angle 88^{\circ}$ (intended reach of Zone $\overline{34}$)
$n_{C T}=8000: 5=1600$ (located at H)
$n_{V T}=315000: 120=2625$ (located at X)
Transformer: 13.8/315 kV, 150 MVA, 10\%, delta/wye, 315 kV side lagging 30°
Transformer impedance:

$$
Z_{T}(\text { at } H)=\frac{10}{100} \times \frac{(13.8)^{2}}{150}=0.127 \Omega \angle 90^{\circ}
$$

(EQ 9.7)
The Zone 1 settings are:

$$
\begin{equation*}
z_{1}=30 \times \frac{13.8}{315} \times \frac{1600}{2625}=0.8011 \Omega \angle 85^{\circ} \tag{EQ9.8}
\end{equation*}
$$

PHS DIST Z1 REACH: " 0.80 "
PHS DIST Z1 RCA: "85"
PHS DIST Z1 XMFR VOL CONNECTION: "None"
PHS DIST Z1 XMFR CUR CONNECTION: "Dy1"
The Zone 3Zone 4 settings are:

$$
\begin{align*}
& \overline{Z_{4}=\left(0.127 \angle 90^{\circ}+0.006 \angle 88^{\circ}\right) \times \frac{315}{13.8} \times \frac{1600}{2625}=2.601 \Omega \angle 89.4^{\circ}} \tag{EQ9.9}\\
& \overline{Z_{3}=\left(0.127 \angle 90^{\circ}+0.006 \angle 88^{\circ}\right) \times \frac{315}{13.8} \times \frac{1600}{2625}=2.601 \Omega \angle 89.4^{\circ}} \tag{EQ9.10}
\end{align*}
$$

PHS DIST Z3 $\overline{Z 4}$ REACH: " 2.60 "
PHS DIST Z3Z̄ RCA: "89"
PHS DIST Z3Z̄ XMFR VOL CONNECTION: "Yd11"
PHS DIST Z3̄̄̄ XMFR CUR CONNECTION: "None"

Table A-1: FLEXANALOG PARAMETERS (Sheet 1 of 5)

ADDR	DATA ITEM
6144	SRC 1 Phase A Current RMS
6146	SRC 1 Phase B Current RMS
6148	SRC 1 Phase C Current RMS
6150	SRC 1 Neutral Current RMS
6152	SRC 1 Phase A Current Magnitude
6154	SRC 1 Phase A Current Angle
6155	SRC 1 Phase B Current Magnitude
6157	SRC 1 Phase B Current Angle
6158	SRC 1 Phase C Current Magnitude
6160	SRC 1 Phase C Current Angle
6161	SRC 1 Neutral Current Magnitude
6163	SRC 1 Neutral Current Angle
6164	SRC 1 Ground Current RMS
6166	SRC 1 Ground Current Magnitude
6168	SRC 1 Ground Current Angle
6169	SRC 1 Zero Sequence Current Magnitude
6171	SRC 1 Zero Sequence Current Angle
6172	SRC 1 Positive Sequence Current Magnitude
6174	SRC 1 Positive Sequence Current Angle
6175	SRC 1 Negative Sequence Current Magnitude
6177	SRC 1 Negative Sequence Current Angle
6178	SRC 1 Differential Ground Current Magnitude
6180	SRC 1 Differential Ground Current Angle
6208	SRC 2 Phase A Current RMS
6210	SRC 2 Phase B Current RMS
6212	SRC 2 Phase C Current RMS
6214	SRC 2 Neutral Current RMS
6216	SRC 2 Phase A Current Magnitude
6218	SRC 2 Phase A Current Angle
6219	SRC 2 Phase B Current Magnitude
6221	SRC 2 Phase B Current Angle
6222	SRC 2 Phase C Current Magnitude
6224	SRC 2 Phase C Current Angle
6225	SRC 2 Neutral Current Magnitude
6227	SRC 2 Neutral Current Angle
6228	SRC 2 Ground Current RMS
6230	SRC 2 Ground Current Magnitude
6232	SRC 2 Ground Current Angle
6233	SRC 2 Zero Sequence Current Magnitude
6235	SRC 2 Zero Sequence Current Angle
6236	SRC 2 Positive Sequence Current Magnitude
6238	SRC 2 Positive Sequence Current Angle
6239	SRC 2 Negative Sequence Current Magnitude
6241	SRC 2 Negative Sequence Current Angle
6242	SRC 2 Differential Ground Current Magnitude
6244	SRC 2 Differential Ground Current Angle
6656	SRC 1 Phase AG Voltage RMS
6658	SRC 1 Phase BG Voltage RMS
6660	SRC 1 Phase CG Voltage RMS

Table A-1: FLEXANALOG PARAMETERS (Sheet 2 of 5)

ADDR	DATA ITEM
6662	SRC 1 Phase AG Voltage Magnitude
6664	SRC 1 Phase AG Voltage Angle
6665	SRC 1 Phase BG Voltage Magnitude
6667	SRC 1 Phase BG Voltage Angle
6668	SRC 1 Phase CG Voltage Magnitude
6670	SRC 1 Phase CG Voltage Angle
6671	SRC 1 Phase AB Voltage RMS
6673	SRC 1 Phase BC Voltage RMS
6675	SRC 1 Phase CA Voltage RMS
6677	SRC 1 Phase AB Voltage Magnitude
6679	SRC 1 Phase AB Voltage Angle
6680	SRC 1 Phase BC Voltage Magnitude
6682	SRC 1 Phase BC Voltage Angle
6683	SRC 1 Phase CA Voltage Magnitude
6685	SRC 1 Phase CA Voltage Angle
6686	SRC 1 Auxiliary Voltage RMS
6688	SRC 1 Auxiliary Voltage Magnitude
6690	SRC 1 Auxiliary Voltage Angle
6691	SRC 1 Zero Sequence Voltage Magnitude
6693	SRC 1 Zero Sequence Voltage Angle
6694	SRC 1 Positive Sequence Voltage Magnitude
6696	SRC 1 Positive Sequence Voltage Angle
6697	SRC 1 Negative Sequence Voltage Magnitude
6699	SRC 1 Negative Sequence Voltage Angle
6720	SRC 2 Phase AG Voltage RMS
6722	SRC 2 Phase BG Voltage RMS
6724	SRC 2 Phase CG Voltage RMS
6726	SRC 2 Phase AG Voltage Magnitude
6728	SRC 2 Phase AG Voltage Angle
6729	SRC 2 Phase BG Voltage Magnitude
6731	SRC 2 Phase BG Voltage Angle
6732	SRC 2 Phase CG Voltage Magnitude
6734	SRC 2 Phase CG Voltage Angle
6735	SRC 2 Phase AB Voltage RMS
6737	SRC 2 Phase BC Voltage RMS
6739	SRC 2 Phase CA Voltage RMS
6741	SRC 2 Phase AB Voltage Magnitude
6743	SRC 2 Phase AB Voltage Angle
6744	SRC 2 Phase BC Voltage Magnitude
6746	SRC 2 Phase BC Voltage Angle
6747	SRC 2 Phase CA Voltage Magnitude
6749	SRC 2 Phase CA Voltage Angle
6750	SRC 2 Auxiliary Voltage RMS
6752	SRC 2 Auxiliary Voltage Magnitude
6754	SRC 2 Auxiliary Voltage Angle
6755	SRC 2 Zero Sequence Voltage Magnitude
6757	SRC 2 Zero Sequence Voltage Angle
6758	SRC 2 Positive Sequence Voltage Magnitude
6760	SRC 2 Positive Sequence Voltage Angle

Table A-1: FLEXANALOG PARAMETERS (Sheet 3 of 5)

ADDR	DATA ITEM
6761	SRC 2 Negative Sequence Voltage Magnitude
6763	SRC 2 Negative Sequence Voltage Angle
7168	SRC 1 Three Phase Real Power
7170	SRC 1 Phase A Real Power
7172	SRC 1 Phase B Real Power
7174	SRC 1 Phase C Real Power
7176	SRC 1 Three Phase Reactive Power
7178	SRC 1 Phase A Reactive Power
7180	SRC 1 Phase B Reactive Power
7182	SRC 1 Phase C Reactive Power
7184	SRC 1 Three Phase Apparent Power
7186	SRC 1 Phase A Apparent Power
7188	SRC 1 Phase B Apparent Power
7190	SRC 1 Phase C Apparent Power
7192	SRC 1 Three Phase Power Factor
7193	SRC 1 Phase A Power Factor
7194	SRC 1 Phase B Power Factor
7195	SRC 1 Phase C Power Factor
7200	SRC 2 Three Phase Real Power
7202	SRC 2 Phase A Real Power
7204	SRC 2 Phase B Real Power
7206	SRC 2 Phase C Real Power
7208	SRC 2 Three Phase Reactive Power
7210	SRC 2 Phase A Reactive Power
7212	SRC 2 Phase B Reactive Power
7214	SRC 2 Phase C Reactive Power
7216	SRC 2 Three Phase Apparent Power
7218	SRC 2 Phase A Apparent Power
7220	SRC 2 Phase B Apparent Power
7222	SRC 2 Phase C Apparent Power
7224	SRC 2 Three Phase Power Factor
7225	SRC 2 Phase A Power Factor
7226	SRC 2 Phase B Power Factor
7227	SRC 2 Phase C Power Factor
7552	SRC 1 Frequency
7553	SRC 2 Frequency
9040	Prefault Phase A Current Magnitude
9042	Prefault Phase B Current Magnitude
9044	Prefault Phase C Current Magnitude
9046	Prefault Zero Sequence Current
9048	Prefault Positive Sequence Current
9050	Prefault Negative Sequence Current
9052	Prefault Phase A Voltage
9054	Prefault Phase B Voltage
9056	Prefault Phase C Voltage
9058	Last Fault Location
9216	Synchrocheck 1 Delta Voltage
9218	Synchrocheck 1 Delta Frequency
9219	Synchrocheck 1 Delta Phase
9220	Synchrocheck 2 Delta Voltage
9222	Synchrocheck 2 Delta Frequency
9223	Synchrocheck 2 Delta Phase

Table A-1: FLEXANALOG PARAMETERS (Sheet 4 of 5)

ADDR	DATA ITEM
10112	SRC 1 la THD
10113	SRC 1 lb THD
10114	SRC 1 Ic THD
10115	SRC 1 In THD
13504	DCMA Inputs 1 Value
13505	DCMA Inputs 2 Value
13506	DCMA Inputs 3 Value
13507	DCMA Inputs 4 Value
13508	DCMA Inputs 5 Value
13509	DCMA Inputs 6 Value
13510	DCMA Inputs 7 Value
13511	DCMA Inputs 8 Value
13512	DCMA Inputs 9 Value
13513	DCMA Inputs 10 Value
13514	DCMA Inputs 11 Value
13515	DCMA Inputs 12 Value
13516	DCMA Inputs 13 Value
13517	DCMA Inputs 14 Value
13518	DCMA Inputs 15 Value
13519	DCMA Inputs 16 Value
13520	DCMA Inputs 17 Value
13521	DCMA Inputs 18 Value
13522	DCMA Inputs 19 Value
13523	DCMA Inputs 20 Value
13524	DCMA Inputs 21 Value
13525	DCMA Inputs 22 Value
13526	DCMA Inputs 23 Value
13527	DCMA Inputs 24 Value
13552	RTD Inputs 1 Value
13553	RTD Inputs 2 Value
13554	RTD Inputs 3 Value
13555	RTD Inputs 4 Value
13556	RTD Inputs 5 Value
13557	RTD Inputs 6 Value
13558	RTD Inputs 7 Value
13559	RTD Inputs 8 Value
13560	RTD Inputs 9 Value
13561	RTD Inputs 10 Value
13562	RTD Inputs 11 Value
13563	RTD Inputs 12 Value
13564	RTD Inputs 13 Value
13565	RTD Inputs 14 Value
13566	RTD Inputs 15 Value
13567	RTD Inputs 16 Value
13568	RTD Inputs 17 Value
13569	RTD Inputs 18 Value
13570	RTD Inputs 19 Value
13571	RTD Inputs 20 Value
13572	RTD Inputs 21 Value
13573	RTD Inputs 22 Value
13574	RTD Inputs 23 Value
13575	RTD Inputs 24 Value

APPENDIX A

Table A-1: FLEXANALOG PARAMETERS (Sheet 5 of 5)

ADDR	DATA ITEM
13576	RTD Inputs 25 Value
13577	RTD Inputs 26 Value
13578	RTD Inputs 27 Value
13579	RTD Inputs 28 Value
13580	RTD Inputs 29 Value
13581	RTD Inputs 30 Value
13582	RTD Inputs 31 Value
13583	RTD Inputs 32 Value
13584	RTD Inputs 33 Value
13585	RTD Inputs 34 Value
13586	RTD Inputs 35 Value
13587	RTD Inputs 36 Value
13588	RTD Inputs 37 Value
13589	RTD Inputs 38 Value
13590	RTD Inputs 39 Value
13591	RTD Inputs 40 Value
13592	RTD Inputs 41 Value
13593	RTD Inputs 42 Value
13594	RTD Inputs 43 Value
13595	RTD Inputs 44 Value
13596	RTD Inputs 45 Value
13597	RTD Inputs 46 Value
13598	RTD Inputs 47 Value
13599	RTD Inputs 48 Value
13600	Ohm Inputs 1 Value
13601	Ohm Inputs 2 Value
32768	Tracking Frequency
39425	FlexElement 1 Actual
39426	FlexElement 2 Actual
39427	FlexElement 3 Actual
39428	FlexElement 4 Actual
39429	FlexElement 5 Actual
39430	FlexElement 6 Actual
39431	FlexElement 7 Actual
39432	FlexElement 8 Actual
40971	Current Setting Group

The UR series relays support a number of communications protocols to allow connection to equipment such as personal computers, RTUs, SCADA masters, and programmable logic controllers. The Modicon Modbus RTU protocol is the most basic protocol supported by the UR. Modbus is available via RS232 or RS485 serial links or via ethernet (using the Modbus/TCP specification). The following description is intended primarily for users who wish to develop their own master communication drivers and applies to the serial Modbus RTU protocol. Note that:

- The UR always acts as a slave device, meaning that it never initiates communications; it only listens and responds to requests issued by a master computer.
- For Modbus ${ }^{\circledR}$, a subset of the Remote Terminal Unit (RTU) protocol format is supported that allows extensive monitoring, programming, and control functions using read and write register commands.
A.1.2 PHYSICAL LAYER

The Modbus ${ }^{\circledR}$ RTU protocol is hardware-independent so that the physical layer can be any of a variety of standard hardware configurations including RS232 and RS485. The relay includes a faceplate (front panel) RS232 port and two rear terminal communications ports that may be configured as RS485, fiber optic, 10BaseT, or 10BaseF. Data flow is half-duplex in all configurations. See Chapter 3 for details on wiring.

Each data byte is transmitted in an asynchronous format consisting of 1 start bit, 8 data bits, 1 stop bit, and possibly 1 parity bit. This produces a 10 or 11 bit data frame. This can be important for transmission through modems at high bit rates (11 bit data frames are not supported by many modems at baud rates greater than 300).

The baud rate and parity are independently programmable for each communications port. Baud rates of 300, 1200, 2400, $4800,9600,14400,19200,28800,33600,38400,57600$, or 115200 bps are available. Even, odd, and no parity are available. Refer to the Communications section of Chapter 5 for further details.

The master device in any system must know the address of the slave device with which it is to communicate. The relay will not act on a request from a master if the address in the request does not match the relay's slave address (unless the address is the broadcast address - see below).

A single setting selects the slave address used for all ports, with the exception that for the faceplate port, the relay will accept any address when the Modbus ${ }^{\circledR}$ RTU protocol is used.
A.1.3 DATA LINK LAYER

Communications takes place in packets which are groups of asynchronously framed byte data. The master transmits a packet to the slave and the slave responds with a packet. The end of a packet is marked by 'dead-time' on the communications line. The following describes general format for both transmit and receive packets. For exact details on packet formatting, refer to subsequent sections describing each function code.

Table A-1: MODBUS PACKET FORMAT

DESCRIPTION	SIZE
SLAVE ADDRESS	1 byte
FUNCTION CODE	1 byte
DATA	N bytes
CRC	2 bytes
DEAD TIME	3.5 bytes transmission time

- SLAVE ADDRESS: This is the address of the slave device that is intended to receive the packet sent by the master and to perform the desired action. Each slave device on a communications bus must have a unique address to prevent bus contention. All of the relay's ports have the same address which is programmable from 1 to 254; see Chapter 5 for details. Only the addressed slave will respond to a packet that starts with its address. Note that the faceplate port is an exception to this rule; it will act on a message containing any slave address.
A master transmit packet with slave address 0 indicates a broadcast command. All slaves on the communication link take action based on the packet, but none respond to the master. Broadcast mode is only recognized when associated with Function Code 05 h. For any other function code, a packet with broadcast mode slave address 0 will be ignored.
- FUNCTION CODE: This is one of the supported functions codes of the unit which tells the slave what action to perform. See the Supported Function Codes section for complete details. An exception response from the slave is indicated by setting the high order bit of the function code in the response packet. See the Exception Responses section for further details.
- DATA: This will be a variable number of bytes depending on the function code. This may include actual values, settings, or addresses sent by the master to the slave or by the slave to the master.
- CRC: This is a two byte error checking code. The RTU version of Modbus ${ }^{\circledR}$ includes a 16 -bit cyclic redundancy check (CRC-16) with every packet which is an industry standard method used for error detection. If a Modbus slave device receives a packet in which an error is indicated by the CRC, the slave device will not act upon or respond to the packet thus preventing any erroneous operations. See the CRC-16 Algorithm section for details on calculating the CRC.
- DEAD TIME: A packet is terminated when no data is received for a period of 3.5 byte transmission times (about 15 ms at $2400 \mathrm{bps}, 2 \mathrm{~ms}$ at 19200 bps , and $300 \mu \mathrm{~s}$ at 115200 bps). Consequently, the transmitting device must not allow gaps between bytes longer than this interval. Once the dead time has expired without a new byte transmission, all slaves start listening for a new packet from the master except for the addressed slave.
A.1.4 CRC-16 ALGORITHM

The CRC-16 algorithm essentially treats the entire data stream (data bits only; start, stop and parity ignored) as one continuous binary number. This number is first shifted left 16 bits and then divided by a characteristic polynomial (11000000000000101B). The 16 bit remainder of the division is appended to the end of the packet, MSByte first. The resulting packet including CRC, when divided by the same polynomial at the receiver will give a zero remainder if no transmission errors have occurred. This algorithm requires the characteristic polynomial to be reverse bit ordered. The most significant bit of the characteristic polynomial is dropped, since it does not affect the value of the remainder.
A C programming language implementation of the CRC algorithm will be provided upon request.
Table A-2: CRC-16 ALGORITHM

SYMBOLS:	-->	data transfer	
	A	16 bit working register	
	Alow	low order byte of A	
	Ahigh	high order byte of A	
	CRC	16 bit CRC-16 result	
	i,j	loop counters	
	(+)	logical EXCLUSIVE-OR operator	
	N	total number of data bytes	
	Di	i-th data byte ($\mathrm{i}=0$ to $\mathrm{N}-1$)	
	G	16 bit characteristic polynomial $=1010000000000001$ (binary) with MSbit dropped and bit order reversed	
	shr (x)	right shift operator (th LSbit of x is shifted into a carry flag, a ' 0 ' is shifted into the MSbit of x, all other bits are shifted right one location)	
ALGORITHM:	1.	FFFF (hex) --> A	
	2.	$0-->\mathrm{i}$	
	3.	$0-->$ j	
	4.	Di (+) Alow --> Alow	
	5.	j + 1 --> j	
	6.	shr (A)	
	7.	Is there a carry?	No: go to 8; Yes: G (+) A -->
	8.	Is j $=8$?	No: go to 5; Yes: continue
	9.	i + 1 --> i	
	10.	Is $\mathrm{i}=\mathrm{N}$?	No: go to 3; Yes: continue
	11.	A --> CRC	

Modbus ${ }^{\circledR}$ officially defines function codes from 1 to 127 though only a small subset is generally needed. The relay supports some of these functions, as summarized in the following table. Subsequent sections describe each function code in detail.

FUNCTION CODE		MODBUS DEFINITION	GE MULTILIN DEFINITION
HEX	DEC		Read Actual Values or Settings
03	3	Read Holding Registers	Read Actual Values or Settings
04	4	Read Holding Registers	Execute Operation
05	5	Force Single Coil	Store Single Setting
06	6	Preset Single Register	Store Multiple Settings
10	16	Preset Multiple Registers	

This function code allows the master to read one or more consecutive data registers (actual values or settings) from a relay. Data registers are always 16 bit (two byte) values transmitted with high order byte first. The maximum number of registers that can be read in a single packet is 125 . See the Modbus Memory Map table for exact details on the data registers.
Since some PLC implementations of Modbus ${ }^{\circledR}$ only support one of function codes 03 h and 04 h , the relay interpretation allows either function code to be used for reading one or more consecutive data registers. The data starting address will determine the type of data being read. Function codes 03h and 04h are therefore identical.
The following table shows the format of the master and slave packets. The example shows a master device requesting 3 register values starting at address 4050h from slave device 11 h (17 decimal); the slave device responds with the values 40 , 300, and 0 from registers 4050h, 4051h, and 4052h, respectively.

Table A-3: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

MASTER TRANSMISSION	
PACKET FORMAT	EXAMPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	04
DATA STARTING ADDRESS - high	40
DATA STARTING ADDRESS - low	50
NUMBER OF REGISTERS - high	00
NUMBER OF REGISTERS - low	03
CRC - low	A7
CRC - high	4 A

SLAVE RESPONSE	
PACKET FORMAT	EXAMPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	04
BYTE COUNT	06
DATA \#1 - high	00
DATA \#1 - low	28
DATA \#2 - high	01
DATA \#2 - low	$2 C$
DATA \#3 - high	00
DATA \#3 - low	00
CRC - low	$0 D$
CRC - high	60

This function code allows the master to perform various operations in the relay. Available operations are shown in the Summary of Operation Codes table below.

The following table shows the format of the master and slave packets. The example shows a master device requesting the slave device $11 \mathrm{H}(17 \mathrm{dec})$ to perform a reset. The high and low Code Value bytes always have the values "FF" and " 00 " respectively and are a remnant of the original Modbus ${ }^{\circledR}$ definition of this function code.

Table A-4: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

MASTER TRANSMISSION	
PACKET FORMAT	EXAMPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	05
OPERATION CODE - high	00
OPERATION CODE - low	01
CODE VALUE - high	FF
CODE VALUE - low	00
CRC - low	DF
CRC - high	$6 A$

SLAVE RESPONSE	
PACKET FORMAT	EXAMPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	05
OPERATION CODE - high	00
OPERATION CODE - low	01
CODE VALUE - high	FF
CODE VALUE - low	00
CRC - low	DF
CRC - high	$6 A$

Table A-5: SUMMARY OF OPERATION CODES FOR FUNCTION 05H

OPERATION CODE (HEX)	DEFINITION	DESCRIPTION
0000	NO OPERATION	Does not do anything.
0001	RESET	Performs the same function as the faceplate RESET key.
0005	CLEAR EVENT RECORDS	Performs the same function as the faceplate CLEAR EVENT RECORDS menu command.
0006	CLEAR OSCILLOGRAPHY	Clears all oscillography records.
1000 to 101F	VIRTUAL IN 1-32 ON/OFF	Sets the states of Virtual Inputs 1 to 32 either "ON" or "OFF".

A.2.4 STORE SINGLE SETTING (FUNCTION CODE 06H)

This function code allows the master to modify the contents of a single setting register in an relay. Setting registers are always 16 bit (two byte) values transmitted high order byte first. The following table shows the format of the master and slave packets. The example shows a master device storing the value 200 at memory map address 4051 h to slave device 11h (17 dec).

Table A-6: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

MASTER TRANSMISSION	
PACKET FORMAT	EXAMPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	06
DATA STARTING ADDRESS - high	40
DATA STARTING ADDRESS - low	51
DATA - high	00
DATA - low	C8
CRC - low	CE
CRC - high	DD

SLAVE RESPONSE	
PACKET FORMAT	EXAMPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	06
DATA STARTING ADDRESS - high	40
DATA STARTING ADDRESS - low	51
DATA - high	00
DATA - low	C8
CRC - low	CE
CRC - high	DD

This function code allows the master to modify the contents of a one or more consecutive setting registers in a relay. Setting registers are 16-bit (two byte) values transmitted high order byte first. The maximum number of setting registers that can be stored in a single packet is 60 . The following table shows the format of the master and slave packets. The example shows a master device storing the value 200 at memory map address 4051 h , and the value 1 at memory map address 4052 h to slave device 11 h (17 decimal).

Table A-7: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

MASTER TRANSMISSION	
PACKET FORMAT	EXAMPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	10
DATA STARTING ADDRESS - hi	40
DATA STARTING ADDRESS - lo	51
NUMBER OF SETTINGS - hi	00
NUMBER OF SETTINGS - lo	02
BYTE COUNT	04
DATA \#1 - high order byte	00
DATA \#1 - low order byte	C8
DATA \#2 - high order byte	00
DATA \#2 - low order byte	01
CRC - low order byte	12
CRC - high order byte	62

SLAVE RESPONSE	
PACKET FORMAT	EXMAPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	10
DATA STARTING ADDRESS - hi	40
DATA STARTING ADDRESS - lo	51
NUMBER OF SETTINGS - hi	00
NUMBER OF SETTINGS - lo	02
CRC - lo	07
CRC - hi	64

A.2.6 EXCEPTION RESPONSES

Programming or operation errors usually happen because of illegal data in a packet. These errors result in an exception response from the slave. The slave detecting one of these errors sends a response packet to the master with the high order bit of the function code set to 1 .

The following table shows the format of the master and slave packets. The example shows a master device sending the unsupported function code 39 h to slave device 11.

Table A-8: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

MASTER TRANSMISSION	
PACKET FORMAT	EXAMPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	39
CRC - low order byte	CD
CRC - high order byte	F2

SLAVE RESPONSE	
PACKET FORMAT	EXAMPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	B9
ERROR CODE	01
CRC - low order byte	93
CRC - high order byte	95

a) DESCRIPTION

The UR relay has a generic file transfer facility, meaning that you use the same method to obtain all of the different types of files from the unit. The Modbus registers that implement file transfer are found in the "Modbus File Transfer (Read/Write)" and "Modbus File Transfer (Read Only)" modules, starting at address 3100 in the Modbus Memory Map. To read a file from the UR relay, use the following steps:

1. Write the filename to the "Name of file to read" register using a write multiple registers command. If the name is shorter than 80 characters, you may write only enough registers to include all the text of the filename. Filenames are not case sensitive.
2. Repeatedly read all the registers in "Modbus File Transfer (Read Only)" using a read multiple registers command. It is not necessary to read the entire data block, since the UR relay will remember which was the last register you read. The "position" register is initially zero and thereafter indicates how many bytes (2 times the number of registers) you have read so far. The "size of..." register indicates the number of bytes of data remaining to read, to a maximum of 244.
3. Keep reading until the "size of..." register is smaller than the number of bytes you are transferring. This condition indicates end of file. Discard any bytes you have read beyond the indicated block size.
4. If you need to re-try a block, read only the "size of.." and "block of data", without reading the position. The file pointer is only incremented when you read the position register, so the same data block will be returned as was read in the previous operation. On the next read, check to see if the position is where you expect it to be, and discard the previous block if it is not (this condition would indicate that the UR relay did not process your original read request).
The UR relay retains connection-specific file transfer information, so files may be read simultaneously on multiple Modbus connections.

b) OTHER PROTOCOLS

All the files available via Modbus may also be retrieved using the standard file transfer mechanisms in other protocols (for example, TFTP or MMS).

c) COMTRADE, OSCILLOGRAPHY, AND DATA LOGGER FILES

Oscillography files are formatted using the COMTRADE file format per IEEE PC37.111 Draft 7c (02 September 1997). The files may be obtained in either text or binary COMTRADE format.

d) READING OSCILLOGRAPHY FILES

Familiarity with the oscillography feature is required to understand the following description. Refer to the Oscillography section in Chapter 5 for additional details.

The Oscillography Number of Triggers register is incremented by one every time a new oscillography file is triggered (captured) and cleared to zero when oscillography data is cleared. When a new trigger occurs, the associated oscillography file is assigned a file identifier number equal to the incremented value of this register; the newest file number is equal to the Oscillography_Number_of_Triggers register. This register can be used to determine if any new data has been captured by periodically reading it to see if the value has changed; if the number has increased then new data is available.
The Oscillography Number of Records register specifies the maximum number of files (and the number of cycles of data per file) that can be stored in memory of the relay. The Oscillography Available Records register specifies the actual number of files that are stored and still available to be read out of the relay.
Writing "Yes" (i.e. the value 1) to the Oscillography Clear Data register clears oscillography data files, clears both the Oscillography Number of Triggers and Oscillography Available Records registers to zero, and sets the Oscillography Last Cleared Date to the present date and time.

To read binary COMTRADE oscillography files, read the following filenames:

```
OSCnnnn.CFG and OSCnnn.DAT
```

Replace "nnn" with the desired oscillography trigger number. For ASCII format, use the following file names

```
OSCAnnnn.CFG and OSCAnnn.DAT
```


e) READING DATA LOGGER FILES

Familiarity with the data logger feature is required to understand this description. Refer to the Data Logger section of Chapter 5 for details. To read the entire data logger in binary COMTRADE format, read the following files.

```
datalog.cfg and datalog.dat
```

To read the entire data logger in ASCII COMTRADE format, read the following files.

```
dataloga.cfg and dataloga.dat
```

To limit the range of records to be returned in the COMTRADE files, append the following to the filename before writing it:

- To read from a specific time to the end of the log: <space> startTime
- To read a specific range of records: <space> startTime <space> endTime
- Replace <startTime> and <endTime> with Julian dates (seconds since Jan. 1 1970) as numeric text.

f) READING EVENT RECORDER FILES

To read the entire event recorder contents in ASCII format (the only available format), use the following filename:
EVT.TXT
To read from a specific record to the end of the log, use the following filename:
EVTnnn.TXT (replace nnn with the desired starting record number)
To read from a specific record to another specific record, use the following filename:
EVT.TXT xxxxx yyyyy (replace xxxxx with the starting record number and yyyyy with the ending record number)

g) READING FAULT REPORT FILES

Fault report data has been available via the D30 file retrieval mechanism since UR firmware version 2.00 . The file name is faultReport\#\#\#\#\#\#. htm. The \#\#\#\#\# refers to the fault report record number. The fault report number is a counter that indicates how many fault reports have ever occurred. The counter rolls over at a value of 65535. Only the last ten fault reports are available for retrieval; a request for a non-existent fault report file will yield a null file. The current value fault report counter is available in "Number of Fault Reports" Modbus register at location 0x3020.

For example, if 14 fault reports have occurred then the files faultReport5.htm, faultReport6.htm, up to faultReport14.htm are available to be read. The expected use of this feature has an external master periodically polling the "Number of Fault Reports' register. If the value changes, then the master reads all the new files.

The contents of the file is in standard HTML notation and can be viewed via any commercial browser.
A.3.2 MODBUS PASSWORD OPERATION

The COMMAND password is set up at memory location 4000. Storing a value of "0" removes COMMAND password protection. When reading the password setting, the encrypted value (zero if no password is set) is returned. COMMAND security is required to change the COMMAND password. Similarly, the SETTING password is set up at memory location 4002. These are the same settings and encrypted values found in the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ PASSWORD SECURITY menu via the keypad. Enabling password security for the faceplate display will also enable it for Modbus, and vice-versa.
To gain COMMAND level security access, the COMMAND password must be entered at memory location 4008. To gain SETTING level security access, the SETTING password must be entered at memory location 400A. The entered SETTING password must match the current SETTING password setting, or must be zero, to change settings or download firmware.
COMMAND and SETTING passwords each have a 30-minute timer. Each timer starts when you enter the particular password, and is re-started whenever you "use" it. For example, writing a setting re-starts the SETTING password timer and writing a command register or forcing a coil re-starts the COMMAND password timer. The value read at memory location 4010 can be used to confirm whether a COMMAND password is enabled or disabled (0 for Disabled). The value read at memory location 4011 can be used to confirm whether a SETTING password is enabled or disabled.
COMMAND or SETTING password security access is restricted to the particular port or particular TCP/IP connection on which the entry was made. Passwords must be entered when accessing the relay through other ports or connections, and the passwords must be re-entered after disconnecting and re-connecting on TCP/IP.

Table A-9: MODBUS MEMORY MAP (Sheet 1 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
Product Information (Read Only)						
0000	UR Product Type	0 to 65535	---	1	F001	0
0002	Product Version	0 to 655.35	---	0.01	F001	1
Product Information (Read Only -- Written by Factory)						
0010	Serial Number	---	---	---	F203	"0"
0020	Manufacturing Date	0 to 4294967295	---	1	F050	0
0022	Modification Number	0 to 65535	---	1	F001	0
0040	Order Code	---	---	---	F204	"Order Code x"
0090	Ethernet MAC Address	---	---	---	F072	0
0093	Reserved (13 items)	---	---	---	F001	0
00A0	CPU Module Serial Number	---	---	---	F203	(none)
00B0	CPU Supplier Serial Number	---	---	---	F203	(none)
00C0	Ethernet Sub Module Serial Number (8 items)	---	---	---	F203	(none)
Self Test Targets (Read Only)						
0200	Self Test States (2 items)	0 to 4294967295	0	1	F143	0
Front Panel (Read Only)						
0204	LED Column x State (10 items)	0 to 65535	---	1	F501	0
0220	Display Message	---	---	---	F204	(none)
0248	Last Key Pressed	0 to 42	---	1	F530	0 (None)
Keypress Emulation (Read/Write)						
0280	Simulated keypress -- write zero before each keystroke	0 to 38	---	1	F190	0 (No key -- use between real keys)
Virtual Input Commands (Read/Write Command) (32 modules)						
0400	Virtual Input x State	0 to 1	---	1	F108	0 (Off)
0401	...Repeated for module number 2					
0402	...Repeated for module number 3					
0403	...Repeated for module number 4					
0404	...Repeated for module number 5					
0405	...Repeated for module number 6					
0406	...Repeated for module number 7					
0407	...Repeated for module number 8					
0408	...Repeated for module number 9					
0409	...Repeated for module number 10					
040A	...Repeated for module number 11					
040B	...Repeated for module number 12					
040C	...Repeated for module number 13					
040D	...Repeated for module number 14					
040E	...Repeated for module number 15					
040F	...Repeated for module number 16					
0410	...Repeated for module number 17					
0411	...Repeated for module number 18					
0412	...Repeated for module number 19					
0413	...Repeated for module number 20					
0414	...Repeated for module number 21					
0415	...Repeated for module number 22					
0416	...Repeated for module number 23					
0417	...Repeated for module number 24					
0418	...Repeated for module number 25					
0419	...Repeated for module number 26					
041A	...Repeated for module number 27					
041B	...Repeated for module number 28					

Table A-9: MODBUS MEMORY MAP (Sheet 2 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
041C	...Repeated for module number 29					
041D	...Repeated for module number 30					
041E	...Repeated for module number 31					
041F	...Repeated for module number 32					
Digital Counter States (Read Only Non-Volatile) (8 modules)						
0800	Digital Counter x Value	$\begin{gathered} -2147483647 \text { to } \\ 2147483647 \end{gathered}$	---	1	F004	0
0802	Digital Counter x Frozen	$\begin{gathered} -2147483647 \text { to } \\ 2147483647 \end{gathered}$	---	1	F004	0
0804	Digital Counter x Frozen Time Stamp	0 to 4294967295	---	1	F050	0
0806	Digital Counter x Frozen Time Stamp us	0 to 4294967295	---	1	F003	0
0808	...Repeated for module number 2					
0810	...Repeated for module number 3					
0818	...Repeated for module number 4					
0820	...Repeated for module number 5					
0828	...Repeated for module number 6					
0830	...Repeated for module number 7					
0838	...Repeated for module number 8					
FlexStates (Read Only)						
0900	FlexState Bits (16 items)	0 to 65535	---	1	F001	0
Element States (Read Only)						
1000	Element Operate States (64 items)	0 to 65535	---	1	F502	0
User Displays Actuals (Read Only)						
1080	Formatted user-definable displays (8 items)	---	---	---	F200	(none)
Modbus User Map Actuals (Read Only						
1200	User Map Values (256 items)	0 to 65535	---	1	F001	0
Element Targets (Read Only)						
14C0	Target Sequence	0 to 65535	---	1	F001	0
14C1	Number of Targets	0 to 65535	---	1	F001	0
Element Targets (Read/Write)						
14C2	Target to Read	0 to 65535	---	1	F001	0
Element Targets (Read Only)						
14C3	Target Message	---	---	---	F200	"."
Digital I/O States (Read Only)						
1500	Contact Input States (6 items)	0 to 65535	---	1	F500	0
1508	Virtual Input States (2 items)	0 to 65535	---	1	F500	0
1510	Contact Output States (4 items)	0 to 65535	---	1	F500	0
1518	Contact Output Current States (4 items)	0 to 65535	---	1	F500	0
1520	Contact Output Voltage States (4 items)	0 to 65535	---	1	F500	0
1528	Virtual Output States (4 items)	0 to 65535	---	1	F500	0
1530	Contact Output Detectors (4 items)	0 to 65535	---	1	F500	0
Remote I/O States (Read Only)						
1540	Remote Device x States	0 to 65535	---	1	F500	0
1542	Remote Input States (2 items)	0 to 65535	---	1	F500	0
1550	Remote Devices Online	0 to 1	---	1	F126	0 (No)
Remote Device Status (Read Only) (16 modules)						
1551	Remote Device \times StNum	0 to 4294967295	---	1	F003	0
1553	Remote Device \times SqNum	0 to 4294967295	---	1	F003	0
1555	...Repeated for module number 2					
1559	...Repeated for module number 3					
155D	...Repeated for module number 4					
1561	...Repeated for module number 5					
1565	...Repeated for module number 6					
1569	...Repeated for module number 7					
156D	...Repeated for module number 8					

Table A－9：MODBUS MEMORY MAP（Sheet 3 of 36）

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
1571	．．．Repeated for module number 9					
1575	．．．Repeated for module number 10					
1579	．．．Repeated for module number 11					
157D	．．．Repeated for module number 12					
1581	．．．Repeated for module number 13					
1585	．．．Repeated for module number 14					
1589	．．．Repeated for module number 15					
158D	．．．Repeated for module number 16					
Platform Direct I／O States（Read Only）						
15C0	Direct Input States（6 items）	0 to 65535	－－－	1	F500	0
15C8	Platform Direct Outputs Average Msg Return Time 1	0 to 65535	ms	1	F001	0
15C9	Platform Direct Outputs Average Msg Return Time 2	0 to 65535	ms	1	F001	0
15D0	Direct Device States	0 to 65535	－－－	1	F500	0
15D1	Reserved					
15D2	Platform Direct I／O CRC Fail Count 1	0 to 65535	－－－	1	F001	0
15D3	Platform Direct I／O CRC Fail Count 2	0 to 65535	－－－	1	F001	0
Ethernet Fibre Channel Status（Read／Write）						
1610	Ethernet Primary Fibre Channel Status	0 to 2	－－－	1	F134	0 （Fail）
1611	Ethernet Secondary Fibre Channel Status	0 to 2	－－－	1	F134	0 （Fail）
Source Current（Read Only）（6 modules）						
1800	Phase A Current RMS	0 to 999999.999	A	0.001	F060	0
1802	Phase B Current RMS	0 to 999999．999	A	0.001	F060	0
1804	Phase C Current RMS	0 to 999999.999	A	0.001	F060	0
1806	Neutral Current RMS	0 to 999999.999	A	0.001	F060	0
1808	Phase A Current Magnitude	0 to 999999.999	A	0.001	F060	0
180A	Phase A Current Angle	－359．9 to 0	。	0.1	F002	0
180B	Phase B Current Magnitude	0 to 999999.999	A	0.001	F060	0
180D	Phase B Current Angle	－359．9 to 0	－	0.1	F002	0
180E	Phase C Current Magnitude	0 to 999999.999	A	0.001	F060	0
1810	Phase C Current Angle	－359．9 to 0	－	0.1	F002	0
1811	Neutral Current Magnitude	0 to 999999.999	A	0.001	F060	0
1813	Neutral Current Angle	－359．9 to 0	－	0.1	F002	0
1814	Ground Current RMS	0 to 999999.999	A	0.001	F060	0
1816	Ground Current Magnitude	0 to 999999.999	A	0.001	F060	0
1818	Ground Current Angle	－359．9 to 0	－	0.1	F002	0
1819	Zero Sequence Current Magnitude	0 to 999999.999	A	0.001	F060	0
181B	Zero Sequence Current Angle	－359．9 to 0	。	0.1	F002	0
181C	Positive Sequence Current Magnitude	0 to 999999.999	A	0.001	F060	0
181E	Positive Sequence Current Angle	－359．9 to 0	。	0.1	F002	0
181F	Negative Sequence Current Magnitude	0 to 999999.999	A	0.001	F060	0
1821	Negative Sequence Current Angle	－359．9 to 0	－	0.1	F002	0
1822	Differential Ground Current Magnitude	0 to 999999.999	A	0.001	F060	0
1824	Differential Ground Current Angle	－359．9 to 0	－	0.1	F002	0
1825	Reserved（27 items）	－－－	－－－	－－－	F001	0
1840	．．．Repeated for module number 2					
1880	．．．Repeated for module number 3					
18C0	．．．Repeated for module number 4					
1900	．．．Repeated for module number 5					
1940	．．．Repeated for module number 6					
Source Voltage（Read Only）（6 modules）						
1A00	Phase AG Voltage RMS	0 to 999999.999	V	0.001	F060	0
1A02	Phase BG Voltage RMS	0 to 999999.999	V	0.001	F060	0
1A04	Phase CG Voltage RMS	0 to 999999.999	V	0.001	F060	0
1A06	Phase AG Voltage Magnitude	0 to 999999.999	V	0.001	F060	0

Table A－9：MODBUS MEMORY MAP（Sheet 4 of 36）

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
1A08	Phase AG Voltage Angle	－359．9 to 0	。	0.1	F002	0
1A09	Phase BG Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A0B	Phase BG Voltage Angle	－359．9 to 0	－	0.1	F002	0
1A0C	Phase CG Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A0E	Phase CG Voltage Angle	－359．9 to 0	－	0.1	F002	0
1A0F	Phase AB or AC Voltage RMS	0 to 999999.999	V	0.001	F060	0
1A11	Phase BC or BA Voltage RMS	0 to 999999.999	V	0.001	F060	0
1A13	Phase CA or CB Voltage RMS	0 to 999999.999	V	0.001	F060	0
1A15	Phase AB or AC Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A17	Phase AB or AC Voltage Angle	－359．9 to 0	－	0.1	F002	0
1A18	Phase BC or BA Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A1A	Phase BC or BA Voltage Angle	－359．9 to 0	。	0.1	F002	0
1A1B	Phase CA or CB Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A1D	Phase CA or CB Voltage Angle	－359．9 to 0	－	0.1	F002	0
1A1E	Auxiliary Voltage RMS	0 to 999999.999	V	0.001	F060	0
1A20	Auxiliary Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A22	Auxiliary Voltage Angle	－359．9 to 0	－	0.1	F002	0
1A23	Zero Sequence Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A25	Zero Sequence Voltage Angle	－359．9 to 0	。	0.1	F002	0
1A26	Positive Sequence Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A28	Positive Sequence Voltage Angle	－359．9 to 0	－	0.1	F002	0
1A29	Negative Sequence Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A2B	Negative Sequence Voltage Angle	－359．9 to 0	－	0.1	F002	0
1A2C	Reserved（20 items）	－－－	－－－	－－－	F001	0
1A40	．．．Repeated for module number 2					
1A80	．．．Repeated for module number 3					
1AC0	．．．Repeated for module number 4					
1B00	．．．Repeated for module number 5					
1B40	．．．Repeated for module number 6					
Source Power（Read Only）（6 modules）						
1C00	Three Phase Real Power	$\begin{gathered} -10000000000000 \text { to } \\ 1000000000000 \end{gathered}$	W	0.001	F060	0
1C02	Phase A Real Power	$\begin{aligned} & -1000000000000 \text { to } \\ & 1000000000000 \end{aligned}$	W	0.001	F060	0
1C04	Phase B Real Power	$\begin{aligned} & -10000000000000 \text { to } \\ & 1000000000000 \end{aligned}$	W	0.001	F060	0
1C06	Phase C Real Power	$\begin{aligned} & -10000000000000 \text { to } \\ & 1000000000000 \end{aligned}$	W	0.001	F060	0
1C08	Three Phase Reactive Power	$\begin{aligned} & -10000000000000 \text { to } \\ & 1000000000000 \end{aligned}$	var	0.001	F060	0
1C0A	Phase A Reactive Power	$\begin{gathered} -10000000000000 \text { to } \\ 1000000000000 \end{gathered}$	var	0.001	F060	0
1C0C	Phase B Reactive Power	$\begin{aligned} & -1000000000000 \text { to } \\ & 1000000000000 \end{aligned}$	var	0.001	F060	0
1C0E	Phase C Reactive Power	$\begin{aligned} & -1000000000000 \text { to } \\ & 1000000000000 \end{aligned}$	var	0.001	F060	0
1C10	Three Phase Apparent Power	$\begin{gathered} -10000000000000 \text { to } \\ 1000000000000 \end{gathered}$	VA	0.001	F060	0
1C12	Phase A Apparent Power	$\begin{gathered} -1000000000000 \text { to } \\ 1000000000000 \end{gathered}$	VA	0.001	F060	0
1C14	Phase B Apparent Power	$\begin{aligned} & -10000000000000 \text { to } \\ & 1000000000000 \end{aligned}$	VA	0.001	F060	0
1C16	Phase C Apparent Power	$\begin{gathered} -10000000000000 \text { to } \\ 1000000000000 \end{gathered}$	VA	0.001	F060	0
1C18	Three Phase Power Factor	－0．999 to 1	－－－	0.001	F013	0
1C19	Phase A Power Factor	－0．999 to 1	－－－	0.001	F013	0
1C1A	Phase B Power Factor	－0．999 to 1	－－－	0.001	F013	0
1C1B	Phase C Power Factor	－0．999 to 1	－－－	0.001	F013	0

Table A-9: MODBUS MEMORY MAP (Sheet 5 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
1C1C	Reserved (4 items)	---	---	---	F001	0
1C20	...Repeated for module number 2					
1C40	...Repeated for module number 3					
1C60	...Repeated for module number 4					
1 C 80	...Repeated for module number 5					
1CA0	...Repeated for module number 6					
Source Frequency (Read Only) (6 modules)						
1D80	Frequency	2 to 90	Hz	0.01	F001	0
1D81	...Repeated for module number 2					
1D82	...Repeated for module number 3					
1D83	...Repeated for module number 4					
1D84	...Repeated for module number 5					
1D85	...Repeated for module number 6					
Breaker Arcing Current Actuals (Read Only Non-Volatile) (2 modules)						
2200	Breaker x Arcing Amp Phase A	0 to 99999999	kA2-cyc	1	F060	0
2202	Breaker x Arcing Amp Phase B	0 to 99999999	kA2-cyc	1	F060	0
2204	Breaker x Arcing Amp Phase C	0 to 99999999	kA2-cyc	1	F060	0
2206	...Repeated for module number 2					
Breaker Arcing Current Commands (Read/Write Command) (2 modules)						
220C	Breaker \times Arcing Clear Command	0 to 1	---	1	F126	0 (No)
220D	...Repeated for module number 2					
Passwords Unauthorized Access (Read/Write Command)						
2230	Reset Unauthorized Access	0 to 1	---	1	F126	0 (No)
Fault Location (Read Only)						
2350	Prefault Phase A Current Magnitude	0 to 999999.999	A	0.001	F060	0
2352	Prefault Phase B Current Magnitude	0 to 999999.999	A	0.001	F060	0
2354	Prefault Phase C Current Magnitude	0 to 999999.999	A	0.001	F060	0
2356	Prefault Zero Seq Current	0 to 999999.999	A	0.001	F060	0
2358	Prefault Pos Seq Current	0 to 999999.999	A	0.001	F060	0
235A	Prefault Neg Seq Current	0 to 999999.999	A	0.001	F060	0
235C	Prefault Phase A Voltage	0 to 999999.999	V	0.001	F060	0
235E	Prefault Phase B Voltage	0 to 999999.999	V	0.001	F060	0
2360	Prefault Phase C Voltage	0 to 999999.999	V	0.001	F060	0
2362	Last Fault Location in Line length units (km or miles)	-3276.7 to 3276.7	---	0.1	F002	0
Synchrocheck Actuals (Read Only) (2 modules)						
2400	Synchrocheck X Delta Voltage	$\begin{gathered} -10000000000000 \text { to } \\ 1000000000000 \end{gathered}$	V	1	F060	0
2402	Synchrocheck X Delta Frequency	0 to 655.35	Hz	0.01	F001	0
2403	Synchrocheck X Delta Phase	0 to 179.9	。	0.1	F001	0
2404	...Repeated for module number 2					
Autoreclose Status (Read Only) (6 modules)						
2410	Autoreclose Count	0 to 65535	---	1	F001	0
2411	...Repeated for module number 2					
2412	...Repeated for module number 3					
2413	...Repeated for module number 4					
2414	...Repeated for module number 5					
2415	...Repeated for module number 6					
Source 1 Current THD (Read Only) (6 modules)						
2780	SRC1 Ia THD	0 to 100	\%	0.1	F001	0
2781	SRC1 Ib THD	0 to 100	\%	0.1	F001	0
2782	SRC1 Ic THD	0 to 100	\%	0.1	F001	0
2783	SRC1 In THD	0 to 100	\%	0.1	F001	0
Expanded FlexStates (Read Only)						
2B00	FlexStates, one per register (256 items)	0 to 1	---	1	F108	0 (Off)

Table A-9: MODBUS MEMORY MAP (Sheet 6 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
Expanded Digital I/O states (Read Only)						
2D00	Contact Input States, one per register (96 items)	0 to 1	---	1	F108	0 (Off)
2D80	Contact Output States, one per register (64 items)	0 to 1	---	1	F108	0 (Off)
2E00	Virtual Output States, one per register (64 items)	0 to 1	---	1	F108	0 (Off)
Expanded Remote I/O Status (Read Only)						
2F00	Remote Device States, one per register (16 items)	0 to 1	---	1	F155	0 (Offline)
2F80	Remote Input States, one per register (32 items)	0 to 1	---	1	F108	0 (Off)
Oscillography Values (Read Only)						
3000	Oscillography Number of Triggers	0 to 65535	---	1	F001	0
3001	Oscillography Available Records	0 to 65535	---	1	F001	0
3002	Oscillography Last Cleared Date	0 to 400000000	---	1	F050	0
3004	Oscillography Number Of Cycles Per Record	0 to 65535	---	1	F001	0
Oscillography Commands (Read/Write Command)						
3005	Oscillography Force Trigger	0 to 1	---	1	F126	0 (No)
3011	Oscillography Clear Data	0 to 1	---	1	F126	0 (No)
Fault Report Indexing (Read Only Non-Volatile)						
3020	Number Of Fault Reports	0 to 65535	---	1	F001	0
Fault Reports (Read Only Non-Volatile) (10 modules)						
3030	Fault Time	0 to 4294967295	---	1	F050	0
3032	...Repeated for module number 2					
3034	...Repeated for module number 3					
3036	...Repeated for module number 4					
3038	...Repeated for module number 5					
303A	...Repeated for module number 6					
303C	...Repeated for module number 7					
303E	...Repeated for module number 8					
3040	...Repeated for module number 9					
3042	...Repeated for module number 10					
Modbus File Transfer (Read/Write)						
3100	Name of file to read	---	---	---	F204	(none)
Modbus File Transfer (Read Only)						
3200	Character position of current block within file	0 to 4294967295	---	1	F003	0
3202	Size of currently-available data block	0 to 65535	---	1	F001	0
3203	Block of data from requested file (122 items)	0 to 65535	---	1	F001	0
Event Recorder (Read Only)						
3400	Events Since Last Clear	0 to 4294967295	---	1	F003	0
3402	Number of Available Events	0 to 4294967295	---	1	F003	0
3404	Event Recorder Last Cleared Date	0 to 4294967295	---	1	F050	0
Event Recorder (Read/Write Command)						
3406	Event Recorder Clear Command	0 to 1	---	1	F126	0 (No)
DCMA Input Values (Read Only) (24 modules)						
34C0	DCMA Inputs \times Value	-9999.999 to 9999.999	---	0.001	F004	0
34C2	...Repeated for module number 2					
34C4	...Repeated for module number 3					
34C6	...Repeated for module number 4					
34C8	...Repeated for module number 5					
34CA	...Repeated for module number 6					
34CC	...Repeated for module number 7					
34CE	...Repeated for module number 8					
34D0	...Repeated for module number 9					
34D2	...Repeated for module number 10					
34D4	...Repeated for module number 11					
34D6	...Repeated for module number 12					
34D8	...Repeated for module number 13					

Table A-9: MODBUS MEMORY MAP (Sheet 7 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
34DA	...Repeated for module number 14					
34DC	...Repeated for module number 15					
34DE	...Repeated for module number 16					
34E0	...Repeated for module number 17					
34E2	...Repeated for module number 18					
34E4	...Repeated for module number 19					
34E6	...Repeated for module number 20					
34E8	...Repeated for module number 21					
34EA	...Repeated for module number 22					
34EC	...Repeated for module number 23					
34EE	...Repeated for module number 24					
RTD Input Values (Read Only) (48 modules)						
34F0	RTD Inputs x Value	-32768 to 32767	${ }^{\circ} \mathrm{C}$	1	F002	0
34F1	...Repeated for module number 2					
34F2	...Repeated for module number 3					
34F3	...Repeated for module number 4					
34F4	...Repeated for module number 5					
34F5	...Repeated for module number 6					
34F6	...Repeated for module number 7					
34F7	...Repeated for module number 8					
34F8	...Repeated for module number 9					
34F9	...Repeated for module number 10					
34FA	...Repeated for module number 11					
34FB	...Repeated for module number 12					
34FC	...Repeated for module number 13					
34FD	...Repeated for module number 14					
34FE	...Repeated for module number 15					
34FF	...Repeated for module number 16					
3500	...Repeated for module number 17					
3501	...Repeated for module number 18					
3502	...Repeated for module number 19					
3503	...Repeated for module number 20					
3504	...Repeated for module number 21					
3505	...Repeated for module number 22					
3506	...Repeated for module number 23					
3507	...Repeated for module number 24					
3508	...Repeated for module number 25					
3509	...Repeated for module number 26					
350A	...Repeated for module number 27					
350B	...Repeated for module number 28					
350C	...Repeated for module number 29					
350D	...Repeated for module number 30					
350E	...Repeated for module number 31					
350F	...Repeated for module number 32					
3510	...Repeated for module number 33					
3511	...Repeated for module number 34					
3512	...Repeated for module number 35					
3513	...Repeated for module number 36					
3514	...Repeated for module number 37					
3515	...Repeated for module number 38					
3516	...Repeated for module number 39					
3517	...Repeated for module number 40					
3518	...Repeated for module number 41					
3519	...Repeated for module number 42					

Table A-9: MODBUS MEMORY MAP (Sheet 8 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
351A	...Repeated for module number 43					
351B	...Repeated for module number 44					
351C	...Repeated for module number 45					
351D	...Repeated for module number 46					
351E	...Repeated for module number 47					
351F	...Repeated for module number 48					
Ohm Input Values (Read Only) (2 modules)						
3520	Ohm Inputs \times Value	0 to 65535		1	F001	0
3521	...Repeated for module number 2					
Expanded Platform Direct I/O Status (Read Only)						
3560	Direct Device States, one per register (8 items)	0 to 1	---	1	F155	0 (Offline)
3570	Direct Input States, one per register (96 items)	0 to 1	---	1	F108	0 (Off)
Passwords (Read/Write Command)						
4000	Command Password Setting	0 to 4294967295	---	1	F003	0
Passwords (Read/Write Setting)						
4002	Setting Password Setting	0 to 4294967295	---	1	F003	0
Passwords (Read/Write)						
4008	Command Password Entry	0 to 4294967295	---	1	F003	0
400A	Setting Password Entry	0 to 4294967295	---	1	F003	0
Passwords (Read Only)						
4010	Command Password Status	0 to 1	---	1	F102	0 (Disabled)
4011	Setting Password Status	0 to 1	---	1	F102	0 (Disabled)
User Display Invoke (Read/Write Setting)						
4040	Invoke and Scroll through User Display Menu Operand	0 to 65535	---	1	F300	0 (Disabled)
User Display Invoke (Read/Write Setting)						
4048	LED Test Function	0 to 1	---	1	F102	0 (Disabled)
4049	LED Test Control	0 to 65535	---	1	F300	0 (Disabled)
Preferences (Read/Write Setting)						
4050	Flash Message Time	0.5 to 10	s	0.1	F001	10
4051	Default Message Timeout	10 to 900	s	1	F001	300
4052	Default Message Intensity	0 to 3	---	1	F101	0 (25\%)
4053	Screen Saver Feature	0 to 1	---	1	F102	0 (Disabled)
4054	Screen Saver Wait Time	1 to 65535	min	1	F001	30
4055	Current Cutoff Level	0.002 to 0.02	pu	0.001	F001	20
4056	Voltage Cutoff Level	0.1 to 1	V	0.1	F001	10
Communications (Read/Write Setting)						
407E	COM1 minimum response time	0 to 1000	ms	10	F001	0
407F	COM2 minimum response time	0 to 1000	ms	10	F001	0
4080	Modbus Slave Address	1 to 254	---	1	F001	254
4083	RS485 Com1 Baud Rate	0 to 11	---	1	F112	8 (115200)
4084	RS485 Com1 Parity	0 to 2	---	1	F113	0 (None)
4085	RS485 Com2 Baud Rate	0 to 11	---	1	F112	8 (115200)
4086	RS485 Com2 Parity	0 to 2	---	1	F113	0 (None)
4087	IP Address	0 to 4294967295	---	1	F003	56554706
4089	IP Subnet Mask	0 to 4294967295	---	1	F003	4294966272
408B	Gateway IP Address	0 to 4294967295	---	1	F003	56554497
408D	Network Address NSAP	---	---	---	F074	0
4097	Default GOOSE Update Time	1 to 60	s	1	F001	60
409A	DNP Port	0 to 4	---	1	F177	0 (NONE)
409B	DNP Address	0 to 65519	---	1	F001	1
409C	DNP Client Addresses (2 items)	0 to 4294967295	---	1	F003	0
40A0	TCP Port Number for the Modbus protocol	1 to 65535	---	1	F001	502
40A1	TCP/UDP Port Number for the DNP Protocol	1 to 65535	---	1	F001	20000
40A2	TCP Port Number for the UCA/MMS Protocol	1 to 65535	---	1	F001	102

Table A-9: MODBUS MEMORY MAP (Sheet 9 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
40A3	TCP Port Number for the HTTP (Web Server) Protocol	1 to 65535	---	1	F001	80
40A4	Main UDP Port Number for the TFTP Protocol	1 to 65535	---	1	F001	69
40A5	Data Transfer UDP Port Numbers for the TFTP Protocol (zero means "automatic") (2 items)	0 to 65535	---	1	F001	0
40A7	DNP Unsolicited Responses Function	0 to 1	---	1	F102	0 (Disabled)
40A8	DNP Unsolicited Responses Timeout	0 to 60	s	1	F001	5
40A9	DNP Unsolicited Responses Max Retries	1 to 255	---	1	F001	10
40AA	DNP Unsolicited Responses Destination Address	0 to 65519	---	1	F001	1
40AB	Ethernet Operation Mode	0 to 1	---	1	F192	0 (Half-Duplex)
40AC	DNP User Map Function	0 to 1	---	1	F102	0 (Disabled)
40AD	DNP Number of Sources used in Analog points list	1 to 6	---	1	F001	1
40AE	DNP Current Scale Factor	0 to 8	---	1	F194	2 (1)
40AF	DNP Voltage Scale Factor	0 to 8	---	1	F194	2 (1)
40B0	DNP Power Scale Factor	0 to 8	---	1	F194	2 (1)
40B1	DNP Energy Scale Factor	0 to 8	---	1	F194	2 (1)
40B2	DNP Other Scale Factor	0 to 8	---	1	F194	2 (1)
40B3	DNP Current Default Deadband	0 to 65535	---	1	F001	30000
40B4	DNP Voltage Default Deadband	0 to 65535	---	1	F001	30000
40B5	DNP Power Default Deadband	0 to 65535	--	1	F001	30000
40B6	DNP Energy Default Deadband	0 to 65535	---	1	F001	30000
40B7	DNP Other Default Deadband	0 to 65535	---	1	F001	30000
40B8	DNP IIN Time Sync Bit Period	1 to 10080	min	1	F001	1440
40B9	DNP Message Fragment Size	30 to 2048	---	1	F001	240
40BA	DNP Client Address 3	0 to 4294967295	---	1	F003	0
40BC	DNP Client Address 4	0 to 4294967295	---	1	F003	0
40BE	DNP Client Address 5	0 to 4294967295	---	1	F003	0
40C0	DNP Communications Reserved (8 items)	0 to 1	---	1	F001	0
40C8	UCA Logical Device Name	---	---	---	F203	"UCADevice"
40D0	GOOSE Function	0 to 1	--	1	F102	1 (Enabled)
40D1	UCA GLOBE.ST.LocRemDS Flexlogic Operand	0 to 65535	---	1	F300	0
40D2	UCA Communications Reserved (14 items)	0 to 1	---	1	F001	0
40E0	TCP Port Number for the IEC 60870-5-104 Protocol	1 to 65535	---	1	F001	2404
40E1	IEC 60870-5-104 Protocol Function	0 to 1	--	1	F102	0 (Disabled)
40E2	IEC 60870-5-104 Protocol Common Address of ASDU	0 to 65535	--	1	F001	0
40E3	IEC 60870-5-104 Protocol Cyclic Data Tx Period	1 to 65535	S	1	F001	60
40E4	IEC Number of Sources used in M_ME_NC_1 point list	1 to 6	---	1	F001	1
40E5	IEC Current Default Threshold	0 to 65535	---	1	F001	30000
40E6	IEC Voltage Default Threshold	0 to 65535	--	1	F001	30000
40E7	IEC Power Default Threshold	0 to 65535	---	1	F001	30000
40E8	IEC Energy Default Threshold	0 to 65535	---	1	F001	30000
40E9	IEC Other Default Threshold	0 to 65535	---	1	F001	30000
40EA	IEC Communications Reserved (22 items)	0 to 1	---	1	F001	0
4100	DNP Binary Input Block of 16 Points (58 items)	0 to 58	---	1	F197	0 (Not Used)
Simple Network Time Protocol (Read/Write Setting)						
4168	Simple Network Time Protocol (SNTP) Function	0 to 1	---	1	F102	0 (Disabled)
4169	Simple Network Time Protocol (SNTP) Server IP Addr	0 to 4294967295	---	1	F003	0
416B	Simple Network Time Protocol (SNTP) UDP Port No.	1 to 65535	---	1	F001	123
Clock (Read/Write Command)						
41A0	RTC Set Time	0 to 235959	---	1	F050	0
Clock (Read/Write Setting)						
41A2	SR Date Format	0 to 4294967295	---	1	F051	0
41A4	SR Time Format	0 to 4294967295	---	1	F052	0
41A6	IRIG-B Signal Type	0 to 2	---	1	F114	0 (None)

Table A-9: MODBUS MEMORY MAP (Sheet 10 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
Fault Report Settings and Commands (Read/Write Setting)						
41B0	Fault Report Source	0 to 5	---	1	F167	0 (SRC 1)
41B1	Fault Report Trigger	0 to 65535	---	1	F300	0
Fault Report Settings and Commands (Read/Write Command)						
41B2	Fault Reports Clear Data Command	0 to 1	---	1	F126	0 (No)
Oscillography (Read/Write Setting)						
41C0	Oscillography Number of Records	1 to 64	---	1	F001	15
41C1	Oscillography Trigger Mode	0 to 1	---	1	F118	0 (Auto Overwrite)
41C2	Oscillography Trigger Position	0 to 100	\%	1	F001	50
41C3	Oscillography Trigger Source	0 to 65535	---	1	F300	0
41C4	Oscillography AC Input Waveforms	0 to 4	---	1	F183	2 (16 samples/cycle)
41D0	Oscillography Analog Channel \times (16 items)	0 to 65535	---	1	F600	0
4200	Oscillography Digital Channel \times (63 items)	0 to 65535	---	1	F300	0
Trip and Alarm LEDs (Read/Write Setting)						
4260	Trip LED Input FlexLogic Operand	0 to 65535	---	1	F300	0
4261	Alarm LED Input FlexLogic Operand	0 to 65535	---	1	F300	0
User Programmable LEDs (Read/Write Setting) (48 modules)						
4280	FlexLogic Operand to Activate LED	0 to 65535	---	1	F300	0
4281	User LED type (latched or self-resetting)	0 to 1	---	1	F127	1 (Self-Reset)
4282	...Repeated for module number 2					
4284	...Repeated for module number 3					
4286	...Repeated for module number 4					
4288	...Repeated for module number 5					
428A	...Repeated for module number 6					
428C	...Repeated for module number 7					
428E	...Repeated for module number 8					
4290	...Repeated for module number 9					
4292	...Repeated for module number 10					
4294	...Repeated for module number 11					
4296	...Repeated for module number 12					
4298	...Repeated for module number 13					
429A	...Repeated for module number 14					
429C	...Repeated for module number 15					
429E	...Repeated for module number 16					
42A0	...Repeated for module number 17					
42A2	...Repeated for module number 18					
42A4	...Repeated for module number 19					
42A6	...Repeated for module number 20					
42A8	...Repeated for module number 21					
42AA	...Repeated for module number 22					
42AC	...Repeated for module number 23					
42AE	...Repeated for module number 24					
42B0	...Repeated for module number 25					
42B2	...Repeated for module number 26					
42B4	...Repeated for module number 27					
42B6	...Repeated for module number 28					
42B8	...Repeated for module number 29					
42BA	...Repeated for module number 30					
42BC	...Repeated for module number 31					
42BE	...Repeated for module number 32					
42C0	...Repeated for module number 33					
42C2	...Repeated for module number 34					
42C4	...Repeated for module number 35					
42C6	...Repeated for module number 36					

Table A-9: MODBUS MEMORY MAP (Sheet 11 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
42C8	...Repeated for module number 37					
42CA	...Repeated for module number 38					
42CC	...Repeated for module number 39					
42CE	...Repeated for module number 40					
42D0	...Repeated for module number 41					
42D2	...Repeated for module number 42					
42D4	...Repeated for module number 43					
42D6	...Repeated for module number 44					
42D8	...Repeated for module number 45					
42DA	...Repeated for module number 46					
42DC	...Repeated for module number 47					
42DE	...Repeated for module number 48					
Installation (Read/Write Setting)						
43E0	Relay Programmed State	0 to 1	---	1	F133	0 (Not Programmed)
43E1	Relay Name	---	---	---	F202	"Relay-1"
User Programmable Self Tests (Read/Write Setting)						
4441	User Programmable Detect Ring Break Function	0 to 1	---	1	F102	1 (Enabled)
4442	User Programmable Direct Device Off Function	0 to 1	---	1	F102	1 (Enabled)
4443	User Programmable Remote Device Off Function	0 to 1	---	1	F102	1 (Enabled)
4444	User Programmable Primary Ethernet Fail Function	0 to 1	---	1	F102	0 (Disabled)
4445	User Programmable Secondary Ethernet Fail Function	0 to 1	---	1	F102	0 (Disabled)
4446	User Programmable Battery Fail Function	0 to 1	---	1	F102	1 (Enabled)
4447	User Programmable SNTP Fail Function	0 to 1	---	1	F102	1 (Enabled)
4448	User Programmable IRIG-B Fail Function	0 to 1	---	1	F102	1 (Enabled)
CT Settings (Read/Write Setting) (6 modules)						
4480	Phase CT Primary	1 to 65000	A	1	F001	1
4481	Phase CT Secondary	0 to 1	---	1	F123	0 (1 A)
4482	Ground CT Primary	1 to 65000	A	1	F001	1
4483	Ground CT Secondary	0 to 1	---	1	F123	0 (1 A)
4484	...Repeated for module number 2					
4488	...Repeated for module number 3					
448C	...Repeated for module number 4					
4490	...Repeated for module number 5					
4494	...Repeated for module number 6					
VT Settings (Read/Write Setting) (3 modules)						
4500	Phase VT Connection	0 to 1	---	1	F100	0 (Wye)
4501	Phase VT Secondary	50 to 240	V	0.1	F001	664
4502	Phase VT Ratio	1 to 24000	:1	1	F060	1
4504	Auxiliary VT Connection	0 to 6	---	1	F166	1 (Vag)
4505	Auxiliary VT Secondary	50 to 240	V	0.1	F001	664
4506	Auxiliary VT Ratio	1 to 24000	:1	1	F060	1
4508	...Repeated for module number 2					
4510	...Repeated for module number 3					
Source Settings (Read/Write Setting) (6 modules)						
4580	Source Name	---	---	---	F206	"SRC 1"
4583	Source Phase CT	0 to 63	---	1	F400	0
4584	Source Ground CT	0 to 63	---	1	F400	0
4585	Source Phase VT	0 to 63	---	1	F400	0
4586	Source Auxiliary VT	0 to 63	---	1	F400	0
4587	...Repeated for module number 2					
458E	...Repeated for module number 3					
4595	...Repeated for module number 4					
459C	...Repeated for module number 5					
45A3	...Repeated for module number 6					

Table A-9: MODBUS MEMORY MAP (Sheet 12 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
Power System (Read/Write Setting)						
4600	Nominal Frequency	25 to 60	Hz	1	F001	60
4601	Phase Rotation	0 to 1	---	1	F106	0 (ABC)
4602	Frequency And Phase Reference	0 to 5	---	1	F167	0 (SRC 1)
4603	Frequency Tracking Function	0 to 1	---	1	F102	1 (Enabled)
Line (Read/Write Setting)						
46D0	Line Pos Seq Impedance	0.01 to 250	fi	0.01	F001	300
46D1	Line Pos Seq Impedance Angle	25 to 90	。	1	F001	75
46D2	Line Zero Seq Impedance	0.01 to 650	fi	0.01	F001	900
46D3	Line Zero Seq Impedance Angle	25 to 90	-	1	F001	75
46D4	Line Length Units	0 to 1	---	1	F147	0 (km)
46D5	Line Length	0 to 2000	---	0.1	F001	1000
Breaker Control Global Settings (Read/Write Setting)						
46F0	UCA XCBR \times SelTimOut	1 to 60	s	1	F001	30
Breaker Control (Read/Write Setting) (2 modules)						
4700	Breaker 1 Function	0 to 1	---	1	F102	0 (Disabled)
4701	Breaker 1 Name	---	---	--	F206	"Bkr 1"
4704	Breaker 1 Mode	0 to 1	---	1	F157	0 (3-Pole)
4705	Breaker 1 Open	0 to 65535	---	1	F300	0
4706	Breaker 1 Close	0 to 65535	---	1	F300	0
4707	Breaker 1 Phase A 3 Pole	0 to 65535	---	1	F300	0
4708	Breaker 1 Phase B	0 to 65535	---	1	F300	0
4709	Breaker 1 Phase C	0 to 65535	---	1	F300	0
470A	Breaker 1 External Alarm	0 to 65535	---	1	F300	0
470B	Breaker 1 Alarm Delay	0 to 1000000	s	0.001	F003	0
470D	Breaker 1 Push Button Control	0 to 1	---	1	F102	0 (Disabled)
470E	Breaker 1 Manual Close Recal Time	0 to 1000000	s	0.001	F003	0
4710	Breaker 1 UCA XCBR x SBOClass	1 to 2	---	1	F001	1
4711	Breaker 1 UCA XCBR x SBOEna	0 to 1	---	1	F102	0 (Disabled)
4712	Breaker 1 Out Of Service	0 to 65535	---	1	F300	0
4713	UCA XCBR PwrSupSt Bit 0 Operand	0 to 65535	---	1	F300	0
4714	UCA XCBR x PresSt Operand	0 to 65535	---	1	F300	0
4715	UCA XCBR x TrpCoil Operand	0 to 65535	---	1	F300	0
4716	Reserved (2 items)	0 to 65535		1	F001	0
4718	...Repeated for module number 2					
Synchrocheck (Read/Write Setting) (2 modules)						
4780	Synchrocheck 1 Function	0 to 1	---	1	F102	0 (Disabled)
4781	Synchrocheck 1 V1 Source	0 to 5	---	1	F167	0 (SRC 1)
4782	Synchrocheck 1 V2 Source	0 to 5	---	1	F167	1 (SRC 2)
4783	Synchrocheck 1 Max Volt Diff	0 to 100000	V	1	F060	10000
4785	Synchrocheck 1 Max Angle Diff	0 to 100	-	1	F001	30
4786	Synchrocheck 1 Max Freq Diff	0 to 2	Hz	0.01	F001	100
4787	Synchrocheck 1 Dead Source Select	0 to 5	---	1	F176	1 (LV1 and DV2)
4788	Synchrocheck 1 Dead V1 Max Volt	0 to 1.25	pu	0.01	F001	30
4789	Synchrocheck 1 Dead V2 Max Volt	0 to 1.25	pu	0.01	F001	30
478A	Synchrocheck 1 Live V1 Min Volt	0 to 1.25	pu	0.01	F001	70
478B	Synchrocheck 1 Live V2 Min Volt	0 to 1.25	pu	0.01	F001	70
478C	Synchrocheck 1 Target	0 to 2	---	1	F109	0 (Self-reset)
478D	Synchrocheck 1 Events	0 to 1	---	1	F102	0 (Disabled)
478 E	Synchrocheck 1 Block	0 to 65535	---	1	F300	0
478F	Synchrocheck 1 Frequency Hysteresis	0 to 0.1	Hz	0.01	F001	6
4790	...Repeated for module number 2					
Flexcurve A (Read/Write Setting)						
4800	FlexCurve A (120 items)	0 to 65535	ms	1	F011	0

Table A-9: MODBUS MEMORY MAP (Sheet 13 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
Flexcurve B (Read/Write Setting)						
48F0	FlexCurve B (120 items)	0 to 65535	ms	1	F011	0
Modbus User Map (Read/Write Setting)						
4A00	Modbus Address Settings for User Map (256 items)	0 to 65535	---	1	F001	0
User Displays Settings (Read/Write Setting) (8 modules)						
4C00	User display top line text	---	---	---	F202	""
4COA	User display bottom line text	---	---	---	F202	" "
4C14	Modbus addresses of displayed items (5 items)	0 to 65535	---	1	F001	0
4C19	Reserved (7 items)	---	---	---	F001	0
4C20	...Repeated for module number 2					
4C40	...Repeated for module number 3					
4C60	...Repeated for module number 4					
4C80	...Repeated for module number 5					
4CA0	...Repeated for module number 6					
4CC0	...Repeated for module number 7					
4CE0	...Repeated for module number 8					
User Programmable Pushbuttons (Read/Write Setting) (12 modules)						
4E00	User Programmable Pushbutton Function	0 to 2	---	1	F109	2 (Disabled)
4E01	Programmable Pushbutton Top Line	---	---	---	F202	(none)
4E0B	Prog Pushbutton On Text	---	---	---	F202	(none)
4E15	Prog Pushbutton Off Text	---	---	---	F202	(none)
4E1F	Programmable Pushbutton Drop-Out Time	0 to 60	s	0.05	F001	0
4E20	Programmable Pushbutton Target	0 to 2	---	1	F109	0 (Self-reset)
4E21	User Programmable Pushbutton Events	0 to 1	---	1	F102	0 (Disabled)
4E22	Programmable Pushbutton Reserved (2 items)	0 to 65535	---	1	F001	0
4E24	...Repeated for module number 2					
4E48	...Repeated for module number 3					
4E6C	...Repeated for module number 4					
4E90	...Repeated for module number 5					
4EB4	...Repeated for module number 6					
4ED8	...Repeated for module number 7					
4EFC	...Repeated for module number 8					
4F20	...Repeated for module number 9					
4F44	...Repeated for module number 10					
4F68	...Repeated for module number 11					
4F8C	...Repeated for module number 12					
FlexLogic ${ }^{\text {TM }}$ (Read/Write Setting)						
5000	FlexLogic Entry (512 items)	0 to 65535	---	1	F300	16384
FlexLogic ${ }^{\text {TM }}$ Timers (Read/Write Setting) (32 modules)						
5800	FlexLogic ${ }^{\text {TM }}$ Timer 1 Type	0 to 2	---	1	F129	0 (millisecond)
5801	FlexLogic ${ }^{\text {™ }}$ Timer 1 Pickup Delay	0 to 60000	--	1	F001	0
5802	FlexLogic ${ }^{\text {TM }}$ Timer 1 Dropout Delay	0 to 60000	---	1	F001	0
5803	FlexLogic ${ }^{\text {™ }}$ Timer 1 Reserved (5 items)	0 to 65535	---	1	F001	0
5808	...Repeated for module number 2					
5810	...Repeated for module number 3					
5818	...Repeated for module number 4					
5820	...Repeated for module number 5					
5828	...Repeated for module number 6					
5830	...Repeated for module number 7					
5838	...Repeated for module number 8					
5840	...Repeated for module number 9					
5848	...Repeated for module number 10					
5850	...Repeated for module number 11					
5858	...Repeated for module number 12					

Table A-9: MODBUS MEMORY MAP (Sheet 14 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
5860	...Repeated for module number 13					
5868	...Repeated for module number 14					
5870	...Repeated for module number 15					
5878	...Repeated for module number 16					
5880	...Repeated for module number 17					
5888	...Repeated for module number 18					
5890	...Repeated for module number 19					
5898	...Repeated for module number 20					
58A0	...Repeated for module number 21					
58A8	...Repeated for module number 22					
58B0	...Repeated for module number 23					
58B8	...Repeated for module number 24					
58C0	...Repeated for module number 25					
58C8	...Repeated for module number 26					
58D0	...Repeated for module number 27					
58D8	...Repeated for module number 28					
58E0	...Repeated for module number 29					
58E8	...Repeated for module number 30					
58F0	...Repeated for module number 31					
58F8	...Repeated for module number 32					
Phase TOC (Read/Write Grouped Setting) (6 modules)						
5900	Phase TOC Function	0 to 1	---	1	F102	0 (Disabled)
5901	Phase TOC Signal Source	0 to 5	---	1	F167	0 (SRC 1)
5902	Phase TOC Input	0 to 1	---	1	F122	0 (Phasor)
5903	Phase TOC Pickup	0 to 30	pu	0.001	F001	1000
5904	Phase TOC Curve	0 to 16	---	1	F103	0 (IEEE Mod Inv)
5905	Phase TOC Multiplier	0 to 600	---	0.01	F001	100
5906	Phase TOC Reset	0 to 1	---	1	F104	0 (Instantaneous)
5907	Phase TOC Voltage Restraint	0 to 1	---	1	F102	0 (Disabled)
5908	Phase TOC Block For Each Phase (3 items)	0 to 65535	---	1	F300	0
590B	Phase TOC Target	0 to 2	---	1	F109	0 (Self-reset)
590C	Phase TOC Events	0 to 1	---	1	F102	0 (Disabled)
590D	Reserved (3 items)	0 to 1	---	1	F001	0
5910	...Repeated for module number 2					
5920	...Repeated for module number 3					
5930	...Repeated for module number 4					
5940	...Repeated for module number 5					
5950	...Repeated for module number 6					
Phase Instantaneous Overcurrent (Read/Write Grouped Setting) (12 modules)						
5A00	Phase Instantaneous Overcurrent 1 Function	0 to 1	---	1	F102	0 (Disabled)
5A01	Phase Instantaneous Overcurrent 1 Signal Source	0 to 5	---	1	F167	0 (SRC 1)
$5 \mathrm{A02}$	Phase Instantaneous Overcurrent 1 Pickup	0 to 30	pu	0.001	F001	1000
5 A03	Phase Instantaneous Overcurrent 1 Delay	0 to 600	s	0.01	F001	0
5A04	Phase Instantaneous Overcurrent 1 Reset Delay	0 to 600	s	0.01	F001	0
5 A05	Phase Inst OC 1 Block for each phase (3 items)	0 to 65535	--	1	F300	0
5 A08	Phase Instantaneous Overcurrent 1 Target	0 to 2	---	1	F109	0 (Self-reset)
5A09	Phase Instantaneous Overcurrent 1 Events	0 to 1	---	1	F102	0 (Disabled)
5A0A	Reserved (6 items)	0 to 1	---	1	F001	0
5 A 10	...Repeated for module number 2					
5A20	...Repeated for module number 3					
5 A 30	...Repeated for module number 4					
5A40	...Repeated for module number 5					
5A50	...Repeated for module number 6					
5A60	...Repeated for module number 7					

Table A-9: MODBUS MEMORY MAP (Sheet 15 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
5A70	...Repeated for module number 8					
5A80	...Repeated for module number 9					
5A90	...Repeated for module number 10					
5AA0	...Repeated for module number 11					
5AB0	...Repeated for module number 12					
Neutral TOC (Read/Write Grouped Setting) (6 modules)						
5B00	Neutral Time Overcurrent 1 Function	0 to 1	---	1	F102	0 (Disabled)
5B01	Neutral Time Overcurrent 1 Signal Source	0 to 5	---	1	F167	0 (SRC 1)
5B02	Neutral Time Overcurrent 1 Input	0 to 1	---	1	F122	0 (Phasor)
5B03	Neutral Time Overcurrent 1 Pickup	0 to 30	pu	0.001	F001	1000
5B04	Neutral Time Overcurrent 1 Curve	0 to 16	---	1	F103	0 (IEEE Mod Inv)
5B05	Neutral Time Overcurrent 1 Multiplier	0 to 600	---	0.01	F001	100
5B06	Neutral Time Overcurrent 1 Reset	0 to 1	---	1	F104	0 (Instantaneous)
5B07	Neutral Time Overcurrent 1 Block	0 to 65535	---	1	F300	0
5B08	Neutral Time Overcurrent 1 Target	0 to 2	---	1	F109	0 (Self-reset)
5B09	Neutral Time Overcurrent 1 Events	0 to 1	---	1	F102	0 (Disabled)
5B0A	Reserved (6 items)	0 to 1	---	1	F001	0
5B10	...Repeated for module number 2					
5B20	...Repeated for module number 3					
5B30	...Repeated for module number 4					
5B40	...Repeated for module number 5					
5B50	...Repeated for module number 6					
Neutral Instantaneous Overcurrent (Read/Write Grouped Setting) (12 modules)						
5C00	Neutral Instantaneous Overcurrent 1 Function	0 to 1	---	1	F102	0 (Disabled)
$5 \mathrm{C01}$	Neutral Instantaneous Overcurrent 1 Signal Source	0 to 5	---	1	F167	0 (SRC 1)
5C02	Neutral Instantaneous Overcurrent 1 Pickup	0 to 30	pu	0.001	F001	1000
$5 \mathrm{C03}$	Neutral Instantaneous Overcurrent 1 Delay	0 to 600	s	0.01	F001	0
5 C 04	Neutral Instantaneous Overcurrent 1 Reset Delay	0 to 600	s	0.01	F001	0
5 C 05	Neutral Instantaneous Overcurrent 1 Block	0 to 65535	---	1	F300	0
5C06	Neutral Instantaneous Overcurrent 1 Target	0 to 2	---	1	F109	0 (Self-reset)
5 C 07	Neutral Instantaneous Overcurrent 1 Events	0 to 1	---	1	F102	0 (Disabled)
5C08	Reserved (8 items)	0 to 1	---	1	F001	0
5C10	...Repeated for module number 2					
5C20	...Repeated for module number 3					
5C30	...Repeated for module number 4					
5C40	...Repeated for module number 5					
5C50	...Repeated for module number 6					
5C60	...Repeated for module number 7					
5C70	...Repeated for module number 8					
5C80	...Repeated for module number 9					
5 C 90	...Repeated for module number 10					
5CA0	...Repeated for module number 11					
5CB0	...Repeated for module number 12					
Ground Time Overcurrent (Read/Write Grouped Setting) (6 modules)						
5D00	Ground Time Overcurrent 1 Function	0 to 1	---	1	F102	0 (Disabled)
5D01	Ground Time Overcurrent 1 Signal Source	0 to 5	---	1	F167	0 (SRC 1)
5D02	Ground Time Overcurrent 1 Input	0 to 1	---	1	F122	0 (Phasor)
5D03	Ground Time Overcurrent 1 Pickup	0 to 30	pu	0.001	F001	1000
5D04	Ground Time Overcurrent 1 Curve	0 to 16	---	1	F103	0 (IEEE Mod Inv)
5D05	Ground Time Overcurrent 1 Multiplier	0 to 600	---	0.01	F001	100
5D06	Ground Time Overcurrent 1 Reset	0 to 1	---	1	F104	0 (Instantaneous)
5D07	Ground Time Overcurrent 1 Block	0 to 65535	---	1	F300	0
5D08	Ground Time Overcurrent 1 Target	0 to 2	---	1	F109	0 (Self-reset)
5D09	Ground Time Overcurrent 1 Events	0 to 1	---	1	F102	0 (Disabled)

Table A-9: MODBUS MEMORY MAP (Sheet 16 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
5D0A	Reserved (6 items)	0 to 1	---	1	F001	0
5D10	...Repeated for module number 2					
5D20	...Repeated for module number 3					
5D30	...Repeated for module number 4					
5D40	...Repeated for module number 5					
5D50	...Repeated for module number 6					
Ground Instantaneous Overcurrent (Read/Write Grouped Setting) (12 modules)						
5E00	Ground Instantaneous Overcurrent 1 Signal Source	0 to 5	---	1	F167	0 (SRC 1)
5E01	Ground Instantaneous Overcurrent 1 Function	0 to 1	---	1	F102	0 (Disabled)
5E02	Ground Instantaneous Overcurrent 1 Pickup	0 to 30	pu	0.001	F001	1000
5E03	Ground Instantaneous Overcurrent 1 Delay	0 to 600	s	0.01	F001	0
5E04	Ground Instantaneous Overcurrent 1 Reset Delay	0 to 600	s	0.01	F001	0
5E05	Ground Instantaneous Overcurrent 1 Block	0 to 65535	---	1	F300	0
5E06	Ground Instantaneous Overcurrent 1 Target	0 to 2	---	1	F109	0 (Self-reset)
5E07	Ground Instantaneous Overcurrent 1 Events	0 to 1	---	1	F102	0 (Disabled)
5E08	Reserved (8 items)	0 to 1	---	1	F001	0
5E10	...Repeated for module number 2					
5E20	...Repeated for module number 3					
5E30	...Repeated for module number 4					
5E40	...Repeated for module number 5					
5E50	...Repeated for module number 6					
5E60	...Repeated for module number 7					
5E70	...Repeated for module number 8					
5E80	...Repeated for module number 9					
5E90	...Repeated for module number 10					
5EA0	...Repeated for module number 11					
5EB0	...Repeated for module number 12					
Autoreclose (Read/Write Setting) (6 modules)						
6240	Autoreclose Function	0 to 1	---	1	F102	0 (Disabled)
6241	Autoreclose Initiate	0 to 65535	---	1	F300	0
6242	Autoreclose Block	0 to 65535	---	1	F300	0
6243	Autoreclose Max Number of Shots	1 to 4	---	1	F001	1
6244	Autoreclose Manual Close	0 to 65535	---	1	F300	0
6245	Autoreclose Manual Reset from LO	0 to 65535	---	1	F300	0
6246	Autoreclose Reset Lockout if Breaker Closed	0 to 1	---	1	F108	0 (Off)
6247	Autoreclose Reset Lockout On Manual Close	0 to 1	---	1	F108	0 (Off)
6248	Autoreclose Breaker Closed	0 to 65535	---	1	F300	0
6249	Autoreclose Breaker Open	0 to 65535	---	1	F300	0
624A	Autoreclose Block Time Upon Manual Close	0 to 655.35	s	0.01	F001	1000
624B	Autoreclose Dead Time Shot 1	0 to 655.35	s	0.01	F001	100
624C	Autoreclose Dead Time Shot 2	0 to 655.35	s	0.01	F001	200
624D	Autoreclose Dead Time Shot 3	0 to 655.35	s	0.01	F001	300
624E	Autoreclose Dead Time Shot 4	0 to 655.35	s	0.01	F001	400
624F	Autoreclose Reset Lockout Delay	0 to 655.35	s	0.01	F001	6000
6250	Autoreclose Reset Time	0 to 655.35	s	0.01	F001	6000
6251	Autoreclose Incomplete Sequence Time	0 to 655.35	s	0.01	F001	500
6252	Autoreclose Events	0 to 1	---	1	F102	0 (Disabled)
6253	Autoreclose Reduce Max 1	0 to 65535	---	1	F300	0
6254	Autoreclose Reduce Max 2	0 to 65535	---	1	F300	0
6255	Autoreclose Reduce Max 3	0 to 65535	---	1	F300	0
6256	Autoreclose Add Delay 1	0 to 65535	---	1	F300	0
6257	Autoreclose Delay 1	0 to 655.35	s	0.01	F001	0
6258	Autoreclose Add Delay 2	0 to 65535	---	1	F300	0
6259	Autoreclose Delay 2	0 to 655.35	s	0.01	F001	0

Table A－9：MODBUS MEMORY MAP（Sheet 17 of 36）

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
625A	Autoreclose Reserved（4 items）	0 to 0.001	－－－	0.001	F001	0
625E	．．．Repeated for module number 2					
627C	．．．Repeated for module number 3					
629A	．．．Repeated for module number 4					
62B8	．．．Repeated for module number 5					
62D6	．．．Repeated for module number 6					
Negative Sequence TOC（Read／Write Grouped Setting）（2 modules）						
6300	Negative Sequence TOC1 Function	0 to 1	－－－	1	F102	0 （Disabled）
6301	Negative Sequence TOC1 Signal Source	0 to 5	－－－	1	F167	0 （SRC 1）
6302	Negative Sequence TOC1 Pickup	0 to 30	pu	0.001	F001	1000
6303	Negative Sequence TOC1 Curve	0 to 16	－－－	1	F103	0 （IEEE Mod Inv）
6304	Negative Sequence TOC1 Multiplier	0 to 600	－－－	0.01	F001	100
6305	Negative Sequence TOC1 Reset	0 to 1	－－－	1	F104	0 （Instantaneous）
6306	Negative Sequence TOC1 Block	0 to 65535	－－－	1	F300	0
6307	Negative Sequence TOC1 Target	0 to 2	－－－	1	F109	0 （Self－reset）
6308	Negative Sequence TOC1 Events	0 to 1	－－－	1	F102	0 （Disabled）
6309	Reserved（7 items）	0 to 1	－－－	1	F001	0
6310	．．．Repeated for module number 2					
Negative Sequence IOC（Read／Write Grouped Setting）（2 modules）						
6400	Negative Sequence IOC1 Function	0 to 1	－－－	1	F102	0 （Disabled）
6401	Negative Sequence IOC1 Signal Source	0 to 5	－－－	1	F167	0 （SRC 1）
6402	Negative Sequence IOC1 Pickup	0 to 30	pu	0.001	F001	1000
6403	Negative Sequence IOC1 Delay	0 to 600	s	0.01	F001	0
6404	Negative Sequence IOC1 Reset Delay	0 to 600	s	0.01	F001	0
6405	Negative Sequence IOC1 Block	0 to 65535	－－－	1	F300	0
6406	Negative Sequence IOC1 Target	0 to 2	－－－	1	F109	0 （Self－reset）
6407	Negative Sequence IOC1 Events	0 to 1	－－－	1	F102	0 （Disabled）
6408	Reserved（8 items）	0 to 1	－－－	1	F001	0
6410	．．．Repeated for module number 2					
Negative Sequence Overvoltage（Read／Write Grouped Setting）						
64A0	Negative Sequence Overvoltage Function	0 to 1	－－－	1	F102	0 （Disabled）
64A1	Negative Sequence Overvoltage Source	0 to 5	－－－	1	F167	0 （SRC 1）
64A2	Negative Sequence Overvoltage Pickup	0 to 1.25	pu	0.001	F001	300
64A3	Negative Sequence Overvoltage Pickup Delay	0 to 600	s	0.01	F001	50
64A4	Negative Sequence Overvoltage Reset Delay	0 to 600	s	0.01	F001	50
64A5	Negative Sequence Overvoltage Block	0 to 65535	－－－	1	F300	0
64A6	Negative Sequence Overvoltage Target	0 to 2	－－－	1	F109	0 （Self－reset）
64A7	Negative Sequence Overvoltage Events	0 to 1	－－－	1	F102	0 （Disabled）
Power Swing Detect（Read／Write Grouped Setting）						
65C0	Power Swing Function	0 to 1	－－－	1	F102	0 （Disabled）
65C1	Power Swing Source	0 to 5	－－－	1	F167	0 （SRC 1）
65C2	Power Swing Mode	0 to 1	－－－	1	F513	0 （Two Step）
65C3	Power Swing Supv	0.05 to 30	pu	0.001	F001	600
65C4	Power Swing Fwd Reach	0.1 to 500	ohms	0.01	F001	5000
65C5	Power Swing Fwd Rca	40 to 90	。	1	F001	75
65C6	Power Swing Rev Reach	0.1 to 500	ohms	0.01	F001	5000
65C7	Power Swing Rev Rca	40 to 90	。	1	F001	75
65C8	Outer Limit Angle	40 to 140	。	1	F001	120
65C9	Middle Limit Angle	40 to 140	－	1	F001	90
65CA	Inner Limit Angle	40 to 140	－	1	F001	60
65CB	Delay 1 Pickup	0 to 65.535	s	0.001	F001	30
65CC	Delay 1 Reset	0 to 65.535	s	0.001	F001	50
65CD	Delay 2 Pickup	0 to 65.535	s	0.001	F001	17
65CE	Delay 3 Pickup	0 to 65.535	s	0.001	F001	9

Table A-9: MODBUS MEMORY MAP (Sheet 18 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
65CF	Delay 4 Pickup	0 to 65.535	S	0.001	F001	17
65D0	Seal In Delay	0 to 65.535	s	0.001	F001	400
65D1	Trip Mode	0 to 1	---	1	F514	0 (Delayed)
65D2	Power Swing Block	0 to 65535	---	1	F300	0
65D3	Power Swing Target	0 to 2	---	1	F109	0 (Self-reset)
65D4	Power Swing Event	0 to 1	---	1	F102	0 (Disabled)
65D5	Power Swing Shape	0 to 1	---	1	F085	0 (Mho)
65D6	Power Swing Quad Fwd Mid	0.1 to 500	ohms	0.01	F001	6000
65D7	Power Swing Quad Fwd Out	0.1 to 500	ohms	0.01	F001	7000
65D8	Power Swing Quad Rev Mid	0.1 to 500	ohms	0.01	F001	6000
65D9	Power Swing Quad Rev Out	0.1 to 500	ohms	0.01	F001	7000
65DA	Power Swing Outer Rgt Bld	0.1 to 500	ohms	0.01	F001	10000
65DB	Power Swing Outer Left Bld	0.1 to 500	ohms	0.01	F001	10000
65DC	Power Swing Middle Rgt Bld	0.1 to 500	ohms	0.01	F001	10000
65DD	Power Swing Middle Lft Bld	0.1 to 500	ohms	0.01	F001	10000
65DE	Power Swing Inner Rgt Bld	0.1 to 500	ohms	0.01	F001	10000
65DF	Power Swing Inner Lft Bld	0.1 to 500	ohms	0.01	F001	10000
Load Encroachment (Read/Write Grouped Setting)						
6700	Load Encroachment Function	0 to 1	---	1	F102	0 (Disabled)
6701	Load Encroachment Source	0 to 5	---	1	F167	0 (SRC 1)
6702	Load Encroachment Min Volt	0 to 3	pu	0.001	F001	250
6703	Load Encroachment Reach	0.02 to 250	ohms	0.01	F001	100
6704	Load Encroachment Angle	5 to 50	。	1	F001	30
6705	Load Encroachment Pkp Delay	0 to 65.535	s	0.001	F001	0
6706	Load Encroachment Rst Delay	0 to 65.535	s	0.001	F001	0
6707	Load Encroachment Block	0 to 65535	---	1	F300	0
6708	Load Encroachment Target	0 to 2	---	1	F109	0 (Self-reset)
6709	Load Encroachment Events	0 to 1	---	1	F102	0 (Disabled)
670A	Load Encroachment Reserved (6 items)	0 to 65535	---	1	F001	0
Phase Undervoltage (Read/Write Grouped Setting) (2 modules)						
7000	Phase Undervoltage 1 Function	0 to 1	---	1	F102	0 (Disabled)
7001	Phase Undervoltage 1 Signal Source	0 to 5	---	1	F167	0 (SRC 1)
7002	Phase Undervoltage 1 Pickup	0 to 3	pu	0.001	F001	1000
7003	Phase Undervoltage 1 Curve	0 to 1	---	1	F111	0 (Definite Time)
7004	Phase Undervoltage 1 Delay	0 to 600	s	0.01	F001	100
7005	Phase Undervoltage 1 Minimum Voltage	0 to 3	pu	0.001	F001	100
7006	Phase Undervoltage 1 Block	0 to 65535	---	1	F300	0
7007	Phase Undervoltage 1 Target	0 to 2	---	1	F109	0 (Self-reset)
7008	Phase Undervoltage 1 Events	0 to 1	---	1	F102	0 (Disabled)
7009	Phase UV Measurement Mode	0 to 1	---	1	F186	0 (Phase to Ground)
700A	Reserved (6 items)	0 to 1	---	1	F001	0
7013	...Repeated for module number 2					
Phase Overvoltage (Read/Write Grouped Setting)						
7100	Phase Overvoltage 1 Function	0 to 1	---	1	F102	0 (Disabled)
7101	Phase Overvoltage 1 Source	0 to 5	---	1	F167	0 (SRC 1)
7102	Phase Overvoltage 1 Pickup	0 to 3	pu	0.001	F001	1000
7103	Phase Overvoltage 1 Delay	0 to 600	s	0.01	F001	100
7104	Phase Overvoltage 1 Reset Delay	0 to 600	S	0.01	F001	100
7105	Phase Overvoltage 1 Block	0 to 65535	---	1	F300	0
7106	Phase Overvoltage 1 Target	0 to 2	---	1	F109	0 (Self-reset)
7107	Phase Overvoltage 1 Events	0 to 1	---	1	F102	0 (Disabled)
7108	Reserved (8 items)	0 to 1	---	1	F001	0
Distance (Read/Write Grouped Setting)						
7120	Distance Signal Source	0 to 5	---	1	F167	0 (SRC 1)

Table A－9：MODBUS MEMORY MAP（Sheet 19 of 36）

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
7121	Memory Duration	5 to 25	cycles	1	F001	10
7122	Force Self－Polar	0 to 65535	－－－	1	F300	0
Phase Distance（Read／Write Grouped Setting）（4 modules）						
7130	Phase Distance Zone 1 Function	0 to 1	－－－	1	F102	0 （Disabled）
7131	Phase Distance Zone 1 Current Supervision	0.05 to 30	pu	0.001	F001	200
7132	Phase Distance Zone 1 Reach	0.02 to 250	ohms	0.01	F001	200
7133	Phase Distance Zone 1 Direction	0 to 1	－－－	1	F154	0 （Forward）
7134	Phase Distance Zone 1 Comparator Limit	30 to 90	－	1	F001	90
7135	Phase Distance Zone 1 Delay	0 to 65.535	S	0.001	F001	0
7136	Phase Distance Zone 1 Block	0 to 65535	－－－	1	F300	0
7137	Phase Distance Zone 1 Target	0 to 2	－－－	1	F109	0 （Self－reset）
7138	Phase Distance Zone 1 Events	0 to 1	－－－	1	F102	0 （Disabled）
7139	Phase Distance Zone 1 Shape	0 to 1	－－－	1	F120	0 （Mho）
713A	Phase Distance Zone 1 RCA	30 to 90	－	1	F001	85
713B	Phase Distance Zone 1 DIR RCA	30 to 90	。	1	F001	85
713C	Phase Distance Zone 1 DIR Comp Limit	30 to 90	－	1	F001	90
713D	Phase Distance Zone 1 Quad Right Blinder	0.02 to 500	ohms	0.01	F001	1000
713E	Phase Distance Zone 1 Quad Right Blinder RCA	60 to 90	－	1	F001	85
713F	Phase Distance Zone 1 Quad Left Blinder	0.02 to 500	ohms	0.01	F001	1000
7140	Phase Distance Zone 1 Quad Left Blinder RCA	60 to 90	－	1	F001	85
7141	Phase Distance Zone 1 Volt Limit	0 to 5	pu	0.001	F001	0
7142	Phase Distance Zone 1 Transformer Voltage Connection	0 to 12	－－－	1	F153	0 （None）
7143	Phase Distance Zone 1 Transformer Current Connection	0 to 12	－－－	1	F153	0 （None）
7144	．．．Repeated for module number 2					
7158	．．．Repeated for module number 3					
716C	．．．Repeated for module number 4					
Ground Distance（Read／Write Grouped Setting）（4 modules）						
7190	Ground Distance Zone 1 Function	0 to 1	－－－	1	F102	0 （Disabled）
7191	Ground Distance Zone 1 Current Supervision	0.05 to 30	pu	0.001	F001	200
7192	Ground Distance Zone 1 Reach	0.02 to 250	ohms	0.01	F001	200
7193	Ground Distance Zone 1 Direction	0 to 1	－－－	1	F154	0 （Forward）
7194	Ground Distance Zone 1 Comparator Limit	30 to 90	－	1	F001	90
7195	Ground Distance Zone 1 Delay	0 to 65.535	s	0.001	F001	0
7196	Ground Distance Zone 1 Block	0 to 65535	－－－	1	F300	0
7197	Ground Distance Zone 1 Target	0 to 2	－－－	1	F109	0 （Self－reset）
7198	Ground Distance Zone 1 Events	0 to 1	－－－	1	F102	0 （Disabled）
7199	Ground Distance Zone 1 Shape	0 to 1	－－－	1	F120	0 （Mho）
719A	Ground Distance Zone 1 Z0 Z1 Mag	0.5 to 7	－－－	0.01	F001	270
719B	Ground Distance Zone 1 Z0 Z1 Ang	－90 to 90	－	1	F002	0
719C	Ground Distance Zone 1 RCA	30 to 90	－	1	F001	85
719D	Ground Distance Zone 1 DIR RCA	30 to 90	。	1	F001	85
719E	Ground Distance Zone 1 DIR Comp Limit	30 to 90	－	1	F001	90
719F	Ground Distance Zone 1 Quad Right Blinder	0.02 to 500	ohms	0.01	F001	1000
71A0	Ground Distance Zone 1 Quad Right Blinder RCA	60 to 90	－	1	F001	85
71A1	Ground Distance Zone 1 Quad Left Blinder	0.02 to 500	ohms	0.01	F001	1000
71A2	Ground Distance Zone 1 Quad Left Blinder RCA	60 to 90	。	1	F001	85
71A3	Ground Distance Zone 1 Z0M Z1 Mag	0 to 7	－－－	0.01	F001	0
71A4	Ground Distance Zone 1 Z0M Z1 Ang	－90 to 90	。	1	F002	0
71A5	Ground Distance Zone 1 Volt Level	0 to 5	pu	0.001	F001	0
71A6	Ground Distance Zone 1 Reserved	－－－	－－－	－－－	F001	0
71A7	．．．Repeated for module number 2					
71BE	．．．Repeated for module number 3					
71D5	．．．Repeated for module number 4					

Table A－9：MODBUS MEMORY MAP（Sheet 20 of 36）

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
Line Pickup（Read／Write Grouped Setting）						
71F0	Line Pickup Function	0 to 1	－－－	1	F102	0 （Disabled）
71F1	Line Pickup Signal Source	0 to 5	－－－	1	F167	0 （SRC 1）
71F2	Line Pickup Phase IOC Pickup	0 to 30	pu	0.001	F001	1000
71F3	Line Pickup UV Pickup	0 to 3	pu	0.001	F001	700
71F4	Line End Open Pickup Delay	0 to 65.535	S	0.001	F001	150
71F5	Line End Open Reset Delay	0 to 65.535	s	0.001	F001	90
71F6	Line Pickup OV Pickup Delay	0 to 65.535	s	0.001	F001	40
71F7	Autoreclose Coordination Pickup Delay	0 to 65.535	s	0.001	F001	45
71F8	Autoreclose Coordination Reset Delay	0 to 65.535	s	0.001	F001	5
71F9	Autoreclose Coordination Bypass	0 to 1	－－－	1	F102	1 （Enabled）
71FA	Line Pickup Block	0 to 65535	－－－	1	F300	0
71FB	Line Pickup Target	0 to 2	－－－	1	F109	0 （Self－reset）
71FC	Line Pickup Events	0 to 1	－－－	1	F102	0 （Disabled）
71FD	Terminal Open	0 to 65535	－－－	1	F300	0
71FE	AR Accelerate	0 to 65535	－－－	1	F300	0
Phase Directional（Read／Write Grouped Setting）（2 modules）						
7260	Phase Directional Overcurrent 1 Function	0 to 1	－－－	1	F102	0 （Disabled）
7261	Phase Directional Overcurrent 1 Source	0 to 5	－－－	1	F167	0 （SRC 1）
7262	Phase Directional Overcurrent 1 Block	0 to 65535	－－－	1	F300	0
7263	Phase Directional Overcurrent 1 ECA	0 to 359	－－－	1	F001	30
7264	Phase Directional Overcurrent 1 Pol V Threshold	0 to 3	pu	0.001	F001	700
7265	Phase Directional Overcurrent 1 Block OC	0 to 1	－－－	1	F126	0 （No）
7266	Phase Directional Overcurrent 1 Target	0 to 2	－－－	1	F109	0 （Self－reset）
7267	Phase Directional Overcurrent 1 Events	0 to 1	－－－	1	F102	0 （Disabled）
7268	Reserved（8 items）	0 to 1	－－－	1	F001	0
7270	．．．Repeated for module number 2					
Neutral Directional OC（Read／Write Grouped Setting）（2 modules）						
7280	Neutral DIR OC1 Function	0 to 1	－－－	1	F102	0 （Disabled）
7281	Neutral DIR OC1 Source	0 to 5	－－－	1	F167	0 （SRC 1）
7282	Neutral DIR OC1 Polarizing	0 to 2	－－－	1	F230	0 （Voltage）
7283	Neutral DIR OC1 Forward ECA	－90 to 90	${ }^{\circ} \mathrm{Lag}$	1	F002	75
7284	Neutral DIR OC1 Forward Limit Angle	40 to 90	。	1	F001	90
7285	Neutral DIR OC1 Forward Pickup	0.002 to 30	pu	0.001	F001	50
7286	Neutral DIR OC1 Reverse Limit Angle	40 to 90	。	1	F001	90
7287	Neutral DIR OC1 Reverse Pickup	0.002 to 30	pu	0.001	F001	50
7288	Neutral DIR OC1 Target	0 to 2	－－－	1	F109	0 （Self－reset）
7289	Neutral DIR OC1 Block	0 to 65535	－－－	1	F300	0
728A	Neutral DIR OC1 Events	0 to 1	－－－	1	F102	0 （Disabled）
728B	Neutral DIR OC X Polarizing Voltage	0 to 1	－－－	1	F231	0 （Calculated V0）
728C	Neutral DIR OC X Op Current	0 to 1	－－－	1	F196	0 （Calculated 310）
728D	Neutral DIR OC X Offset	0 to 250	fi	0.01	F001	0
728 E	Reserved（2 items）	0 to 1	－－－	1	F001	0
7290	．．．Repeated for module number 2					
Negative Sequence Directional OC（Read／Write Grouped Setting）（2 modules）						
72A0	Negative Sequence DIR OC1 Function	0 to 1	－－－	1	F102	0 （Disabled）
72A1	Negative Sequence DIR OC1 Source	0 to 5	－－－	1	F167	0 （SRC 1）
72A2	Negative Sequence DIR OC1 Type	0 to 1	－－－	1	F179	0 （Neg Sequence）
72A3	Negative Sequence DIR OC1 Forward ECA	0 to 90	${ }^{\circ} \mathrm{Lag}$	1	F002	75
72A4	Negative Sequence DIR OC1 Forward Limit Angle	40 to 90	。	1	F001	90
72A5	Negative Sequence DIR OC1 Forward Pickup	0.05 to 30	pu	0.01	F001	5
72A6	Negative Sequence DIR OC1 Reverse Limit Angle	40 to 90	。	1	F001	90
72A7	Negative Sequence DIR OC1 Reverse Pickup	0.05 to 30	pu	0.01	F001	5
72A8	Negative Sequence DIR OC1 Target	0 to 2	－－－	1	F109	0 （Self－reset）

Table A-9: MODBUS MEMORY MAP (Sheet 21 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
72A9	Negative Sequence DIR OC1 Block	0 to 65535	---	1	F300	0
72AA	Negative Sequence DIR OC1 Events	0 to 1	---	1	F102	0 (Disabled)
72AB	Negative Sequence DIR OC X Offset	0 to 250	fi	0.01	F001	0
72AC	Reserved (4 items)	0 to 1	---	1	F001	0
72B0	...Repeated for module number 2					
Breaker Arcing Current Settings (Read/Write Setting) (2 modules)						
72C0	Breaker x Arcing Amp Function	0 to 1	---	1	F102	0 (Disabled)
72C1	Breaker \times Arcing Amp Source	0 to 5	---	1	F167	0 (SRC 1)
72C2	Breaker x Arcing Amp Init	0 to 65535	---	1	F300	0
72C3	Breaker x Arcing Amp Delay	0 to 65.535	s	0.001	F001	0
72C4	Breaker x Arcing Amp Limit	0 to 50000	kA2-cyc	1	F001	1000
72C5	Breaker \times Arcing Amp Block	0 to 65535	---	1	F300	0
72C6	Breaker x Arcing Amp Target	0 to 2	---	1	F109	0 (Self-reset)
72C7	Breaker x Arcing Amp Events	0 to 1	---	1	F102	0 (Disabled)
72C8	...Repeated for module number 2					
DCMA Inputs (Read/Write Setting) (24 modules)						
7300	DCMA Inputs x Function	0 to 1	---	1	F102	0 (Disabled)
7301	DCMA Inputs \times ID	---	---	---	F205	"DCMA Ip 1 "
7307	DCMA Inputs x Reserved 1 (4 items)	0 to 65535	---	1	F001	0
730B	DCMA Inputs \times Units	---	---	---	F206	"mA"
730E	DCMA Inputs x Range	0 to 6	---	1	F173	6 (4 to 20 mA)
730F	DCMA Inputs x Minimum Value	-9999.999 to 9999.999	---	0.001	F004	4000
7311	DCMA Inputs x Maximum Value	-9999.999 to 9999.999	---	0.001	F004	20000
7313	DCMA Inputs \times Reserved (5 items)	0 to 65535	---	1	F001	0
7318	...Repeated for module number 2					
7330	...Repeated for module number 3					
7348	...Repeated for module number 4					
7360	...Repeated for module number 5					
7378	...Repeated for module number 6					
7390	...Repeated for module number 7					
73A8	...Repeated for module number 8					
73C0	...Repeated for module number 9					
73D8	...Repeated for module number 10					
73F0	...Repeated for module number 11					
7408	...Repeated for module number 12					
7420	...Repeated for module number 13					
7438	...Repeated for module number 14					
7450	...Repeated for module number 15					
7468	...Repeated for module number 16					
7480	...Repeated for module number 17					
7498	...Repeated for module number 18					
74B0	...Repeated for module number 19					
74C8	...Repeated for module number 20					
74E0	...Repeated for module number 21					
74F8	...Repeated for module number 22					
7510	...Repeated for module number 23					
7528	...Repeated for module number 24					
RTD Inputs (Read/Write Setting) (48 modules)						
7540	RTD Inputs x Function	0 to 1	--	1	F102	0 (Disabled)
7541	RTD Inputs x ID	---	---	---	F205	"RTD Ip 1 "
7547	RTD Inputs \times Reserved 1 (4 items)	0 to 65535	---	1	F001	0
754B	RTD Inputs x Type	0 to 3	---	1	F174	0 (100 Ω Platinum)
754C	RTD Inputs x Reserved 2 (4 items)	0 to 65535	---	1	F001	0
7550	...Repeated for module number 2					

Table A-9: MODBUS MEMORY MAP (Sheet 22 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
7560	...Repeated for module number 3					
7570	...Repeated for module number 4					
7580	...Repeated for module number 5					
7590	...Repeated for module number 6					
75A0	...Repeated for module number 7					
75B0	...Repeated for module number 8					
75C0	...Repeated for module number 9					
75D0	...Repeated for module number 10					
75E0	...Repeated for module number 11					
75F0	...Repeated for module number 12					
7600	...Repeated for module number 13					
7610	...Repeated for module number 14					
7620	...Repeated for module number 15					
7630	...Repeated for module number 16					
7640	...Repeated for module number 17					
7650	...Repeated for module number 18					
7660	...Repeated for module number 19					
7670	...Repeated for module number 20					
7680	...Repeated for module number 21					
7690	...Repeated for module number 22					
76A0	...Repeated for module number 23					
76B0	...Repeated for module number 24					
76C0	...Repeated for module number 25					
76D0	...Repeated for module number 26					
76E0	...Repeated for module number 27					
76F0	...Repeated for module number 28					
7700	...Repeated for module number 29					
7710	...Repeated for module number 30					
7720	...Repeated for module number 31					
7730	...Repeated for module number 32					
7740	...Repeated for module number 33					
7750	...Repeated for module number 34					
7760	...Repeated for module number 35					
7770	...Repeated for module number 36					
7780	...Repeated for module number 37					
7790	...Repeated for module number 38					
77A0	...Repeated for module number 39					
77B0	...Repeated for module number 40					
77C0	...Repeated for module number 41					
77D0	...Repeated for module number 42					
77E0	...Repeated for module number 43					
77F0	...Repeated for module number 44					
7800	...Repeated for module number 45					
7810	...Repeated for module number 46					
7820	...Repeated for module number 47					
7830	...Repeated for module number 48					
Ohm Inputs (Read/Write Setting) (2 modules)						
7840	Ohm Inputs x Function	0 to 1	---	1	F102	0 (Disabled)
7841	Ohm Inputs x ID	---	---	---	F205	"Ohm Ip 1 "
7847	Ohm Inputs \times Reserved (9 items)	0 to 65535	---	1	F001	0
7850	...Repeated for module number 2					
Neutral Overvoltage (Read/Write Grouped Setting) (3 modules)						
7F00	Neutral Overvoltage 1 Function	0 to 1	---	1	F102	0 (Disabled)
7F01	Neutral Overvoltage 1 Signal Source	0 to 5	---	1	F167	0 (SRC 1)

Table A-9: MODBUS MEMORY MAP (Sheet 23 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
7F02	Neutral Overvoltage 1 Pickup	0 to 1.25	pu	0.001	F001	300
7F03	Neutral Overvoltage 1 Pickup Delay	0 to 600	s	0.01	F001	100
7F04	Neutral Overvoltage 1 Reset Delay	0 to 600	s	0.01	F001	100
7F05	Neutral Overvoltage 1 Block	0 to 65535	---	1	F300	0
7F06	Neutral Overvoltage 1 Target	0 to 2	---	1	F109	0 (Self-reset)
7F07	Neutral Overvoltage 1 Events	0 to 1	---	1	F102	0 (Disabled)
7F08	Neutral Overvoltage 1 Reserved (8 items)	0 to 65535	---	1	F001	0
7F10	...Repeated for module number 2					
7F20	...Repeated for module number 3					
Auxiliary Overvoltage (Read/Write Grouped Setting) (3 modules)						
7F30	Auxiliary Overvoltage 1 Function	0 to 1	---	1	F102	0 (Disabled)
7F31	Auxiliary Overvoltage 1 Signal Source	0 to 5	---	1	F167	0 (SRC 1)
7F32	Auxiliary Overvoltage 1 Pickup	0 to 3	pu	0.001	F001	300
7F33	Auxiliary Overvoltage 1 Pickup Delay	0 to 600	s	0.01	F001	100
7F34	Auxiliary Overvoltage 1 Reset Delay	0 to 600	s	0.01	F001	100
7F35	Auxiliary Overvoltage 1 Block	0 to 65535	---	1	F300	0
7F36	Auxiliary Overvoltage 1 Target	0 to 2	---	1	F109	0 (Self-reset)
7F37	Auxiliary Overvoltage 1 Events	0 to 1	---	1	F102	0 (Disabled)
7F38	Auxiliary Overvoltage 1 Reserved (8 items)	0 to 65535	---	1	F001	0
7F40	...Repeated for module number 2					
7F50	...Repeated for module number 3					
Auxiliary Undervoltage (Read/Write Grouped Setting) (3 modules)						
7F60	Auxiliary UV 1 Function	0 to 1	---	1	F102	0 (Disabled)
7F61	Auxiliary UV 1 Signal Source	0 to 5	---	1	F167	0 (SRC 1)
7F62	Auxiliary UV 1 Pickup	0 to 3	pu	0.001	F001	700
7F63	Auxiliary UV 1 Delay	0 to 600	s	0.01	F001	100
7F64	Auxiliary UV 1 Curve	0 to 1	---	1	F111	0 (Definite Time)
7F65	Auxiliary UV 1 Minimum Voltage	0 to 3	pu	0.001	F001	100
7F66	Auxiliary UV 1 Block	0 to 65535	---	1	F300	0
7F67	Auxiliary UV 1 Target	0 to 2	---	1	F109	0 (Self-reset)
7F68	Auxiliary UV 1 Events	0 to 1	---	1	F102	0 (Disabled)
7F69	Auxiliary UV 1 Reserved (7 items)	0 to 65535	---	1	F001	0
7F70	...Repeated for module number 2					
7F80	...Repeated for module number 3					
Frequency (Read Only)						
8000	Tracking Frequency	2 to 90	Hz	0.01	F001	0
FlexState Settings (Read/Write Setting)						
8800	FlexState Parameters (256 items)	---	---	---	F300	0
FlexElement (Read/Write Setting) (16 modules)						
9000	FlexElement 1 Function	0 to 1	---	1	F102	0 (Disabled)
9001	FlexElement 1 Name	---	---	---	F206	"FxE 1"
9004	FlexElement 1 InputP	0 to 65535	---	1	F600	0
9005	FlexElement 1 InputM	0 to 65535	---	1	F600	0
9006	FlexElement 1 Compare	0 to 1	---	1	F516	0 (LEVEL)
9007	FlexElement 1 Input	0 to 1	---	1	F515	0 (SIGNED)
9008	FlexElement 1 Direction	0 to 1	---	1	F517	0 (OVER)
9009	FlexElement 1 Hysteresis	0.1 to 50	\%	0.1	F001	30
900A	FlexElement 1 Pickup	-90 to 90	pu	0.001	F004	1000
900C	FlexElement 1 DeltaT Units	0 to 2	---	1	F518	0 (Milliseconds)
900D	FlexElement 1 DeltaT	20 to 86400	---	1	F003	20
900F	FlexElement 1 Pickup Delay	0 to 65.535	s	0.001	F001	0
9010	FlexElement 1 Reset Delay	0 to 65.535	S	0.001	F001	0
9011	FlexElement 1 Block	0 to 65535	---	1	F300	0
9012	FlexElement 1 Target	0 to 2	---	1	F109	0 (Self-reset)

Table A-9: MODBUS MEMORY MAP (Sheet 24 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
9013	FlexElement 1 Events	0 to 1	---	1	F102	0 (Disabled)
9014	...Repeated for module number 2					
9028	...Repeated for module number 3					
903C	...Repeated for module number 4					
9050	...Repeated for module number 5					
9064	...Repeated for module number 6					
9078	...Repeated for module number 7					
908C	...Repeated for module number 8					
90A0	...Repeated for module number 9					
90B4	...Repeated for module number 10					
90C8	...Repeated for module number 11					
90DC	...Repeated for module number 12					
90F0	...Repeated for module number 13					
9104	...Repeated for module number 14					
9118	...Repeated for module number 15					
912C	...Repeated for module number 16					
FlexElement Actuals (Read Only) (16 modules)						
9A01	FlexElement 1 Actual	$\begin{gathered} -2147483.647 \text { to } \\ 2147483.647 \end{gathered}$	---	0.001	F004	0
9A03	...Repeated for module number 2					
9A05	...Repeated for module number 3					
9 A 07	...Repeated for module number 4					
9A09	...Repeated for module number 5					
9A0B	...Repeated for module number 6					
9A0D	...Repeated for module number 7					
9A0F	...Repeated for module number 8					
9A11	...Repeated for module number 9					
9 A 13	...Repeated for module number 10					
9 A 15	...Repeated for module number 11					
9 A 17	...Repeated for module number 12					
9A19	...Repeated for module number 13					
9A1B	...Repeated for module number 14					
9A1D	...Repeated for module number 15					
9A1F	...Repeated for module number 16					
Setting Groups (Read/Write Setting)						
A000	Setting Group for Modbus Comms (0 means group 1)	0 to 5	---	1	F001	0
A001	Setting Groups Block	0 to 65535	---	1	F300	0
A002	FlexLogic Operands to Activate Groups 2 to 8 (5 items)	0 to 65535	---	1	F300	0
A009	Setting Group Function	0 to 1	---	1	F102	0 (Disabled)
A00A	Setting Group Events	0 to 1	---	1	F102	0 (Disabled)
Setting Groups (Read Only)						
A00B	Current Setting Group	0 to 5	---	1	F001	0
VT Fuse Failure (Read/Write Setting) (6 modules)						
A040	VT Fuse Failure Function	0 to 1	---	1	F102	0 (Disabled)
A041	...Repeated for module number 2					
A042	...Repeated for module number 3					
A043	...Repeated for module number 4					
A044	...Repeated for module number 5					
A045	...Repeated for module number 6					
Selector Switch Actuals (Read Only)						
A400	Selector 1 Position	1 to 7	---	1	F001	0
A401	Selector 2 Position	1 to 7	---	1	F001	1
Selector Switch (Read/Write Grouped Setting) (2 modules)						
A410	Selector 1 Function	0 to 1	---	1	F102	0 (Disabled)

Table A-9: MODBUS MEMORY MAP (Sheet 25 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
A411	Selector 1 Range	1 to 7	---	1	F001	7
A412	Selector 1 Timeout	3 to 60	s	0.1	F001	50
A413	Selector 1 Step Up	0 to 65535	---	1	F300	0
A414	Selector 1 Step Mode	0 to 1	---	1	F083	0 (Time-out)
A415	Selector 1 Ack	0 to 65535	---	1	F300	0
A416	Selector 1 Bit0	0 to 65535	---	1	F300	0
A417	Selector 1 Bit1	0 to 65535	---	1	F300	0
A418	Selector 1 Bit2	0 to 65535	---	1	F300	0
A419	Selector 1 Bit Mode	0 to 1	---	1	F083	0 (Time-out)
A41A	Selector 1 Bit Ack	0 to 65535	---	1	F300	0
A41B	Selector 1 Power Up Mode	0 to 2	---	1	F084	0 (Restore)
A41C	Selector 1 Target	0 to 2	---	1	F109	0 (Self-reset)
A41D	Selector 1 Events	0 to 1	---	1	F102	0 (Disabled)
A41E	Selector 1 Reserved (10 items)	---	---	---	---	---
A428	...Repeated for module number 2					
Flexcurve C (Read/Write Setting)						
AC00	FlexCurve C (120 items)	0 to 65535	ms	1	F011	0
Flexcurve D (Read/Write Setting)						
AC78	FlexCurve D (120 items)	0 to 65535	ms	1	F011	0
Non Volatile Latches (Read/Write Setting) (16 modules)						
AD00	Latch 1 Function	0 to 1	---	1	F102	0 (Disabled)
AD01	Latch 1 Type	0 to 1	---	1	F519	0 (Reset Dominant)
AD02	Latch 1 Set	0 to 65535	---	1	F300	0
AD03	Latch 1 Reset	0 to 65535	---	1	F300	0
AD04	Latch 1 Target	0 to 2	---	1	F109	0 (Self-reset)
AD05	Latch 1 Events	0 to 1	---	1	F102	0 (Disabled)
AD06	Latch 1 Reserved (4 items)	---	---	---	F001	0
ADOA	...Repeated for module number 2					
AD14	...Repeated for module number 3					
AD1E	...Repeated for module number 4					
AD28	...Repeated for module number 5					
AD32	...Repeated for module number 6					
AD3C	...Repeated for module number 7					
AD46	...Repeated for module number 8					
AD50	...Repeated for module number 9					
AD5A	...Repeated for module number 10					
AD64	...Repeated for module number 11					
AD6E	...Repeated for module number 12					
AD78	...Repeated for module number 13					
AD82	...Repeated for module number 14					
AD8C	...Repeated for module number 15					
AD96	...Repeated for module number 16					
Digital Elements (Read/Write Setting) (16 modules)						
B000	Digital Element 1 Function	0 to 1	---	1	F102	0 (Disabled)
B001	Digital Element 1 Name	---	---	---	F203	"Dig Element 1 "
B015	Digital Element 1 Input	0 to 65535	---	1	F300	0
B016	Digital Element 1 Pickup Delay	0 to 999999.999	s	0.001	F003	0
B018	Digital Element 1 Reset Delay	0 to 999999.999	s	0.001	F003	0
B01A	Digital Element 1 Block	0 to 65535	---	1	F300	0
B01B	Digital Element 1 Target	0 to 2	---	1	F109	0 (Self-reset)
B01C	Digital Element 1 Events	0 to 1	---	1	F102	0 (Disabled)
B01D	Digital Element 1 Reserved (3 items)	---	---	---	F001	0
B020	...Repeated for module number 2					
B040	...Repeated for module number 3					

Table A-9: MODBUS MEMORY MAP (Sheet 26 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
B060	...Repeated for module number 4					
B080	...Repeated for module number 5					
B0A0	...Repeated for module number 6					
B0C0	...Repeated for module number 7					
B0E0	...Repeated for module number 8					
B100	...Repeated for module number 9					
B120	...Repeated for module number 10					
B140	...Repeated for module number 11					
B160	...Repeated for module number 12					
B180	...Repeated for module number 13					
B1A0	...Repeated for module number 14					
B1C0	...Repeated for module number 15					
B1E0	...Repeated for module number 16					
Digital Counter (Read/Write Setting) (8 modules)						
B300	Digital Counter 1 Function	0 to 1	---	1	F102	0 (Disabled)
B301	Digital Counter 1 Name	---	---	--	F205	"Counter 1 "
B307	Digital Counter 1 Units	---	---	---	F206	(none)
B30A	Digital Counter 1 Block	0 to 65535	---	1	F300	0
B30B	Digital Counter 1 Up	0 to 65535	---	1	F300	0
B30C	Digital Counter 1 Down	0 to 65535	---	1	F300	0
B30D	Digital Counter 1 Preset	$\begin{gathered} -2147483647 \text { to } \\ 2147483647 \end{gathered}$	---	1	F004	0
B30F	Digital Counter 1 Compare	$\begin{gathered} -2147483647 \text { to } \\ 2147483647 \end{gathered}$	---	1	F004	0
B311	Digital Counter 1 Reset	0 to 65535	---	1	F300	0
B312	Digital Counter 1 Freeze/Reset	0 to 65535	---	1	F300	0
B313	Digital Counter 1 Freeze/Count	0 to 65535	---	1	F300	0
B314	Digital Counter 1 Set To Preset	0 to 65535	---	1	F300	0
B315	Digital Counter 1 Reserved (11 items)	---	---	---	F001	0
B320	...Repeated for module number 2					
B340	...Repeated for module number 3					
B360	...Repeated for module number 4					
B380	...Repeated for module number 5					
B3A0	...Repeated for module number 6					
B3C0	...Repeated for module number 7					
B3E0	...Repeated for module number 8					
Contact Inputs (Read/Write Setting) (96 modules)						
C000	Contact Input x Name	---	---	---	F205	"Cont Ip 1"
C006	Contact Input x Events	0 to 1	---	1	F102	0 (Disabled)
C007	Contact Input x Debounce Time	0 to 16	ms	0.5	F001	20
C008	...Repeated for module number 2					
C010	...Repeated for module number 3					
C018	...Repeated for module number 4					
C020	...Repeated for module number 5					
C028	...Repeated for module number 6					
C030	...Repeated for module number 7					
C038	...Repeated for module number 8					
C040	...Repeated for module number 9					
C048	...Repeated for module number 10					
C050	...Repeated for module number 11					
C058	...Repeated for module number 12					
C060	...Repeated for module number 13					
C068	...Repeated for module number 14					
C070	...Repeated for module number 15					
C078	...Repeated for module number 16					

Table A-9: MODBUS MEMORY MAP (Sheet 27 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
C080	...Repeated for module number 17					
C088	...Repeated for module number 18					
C090	...Repeated for module number 19					
C098	...Repeated for module number 20					
COAO	...Repeated for module number 21					
C0A8	...Repeated for module number 22					
COBO	...Repeated for module number 23					
C0B8	...Repeated for module number 24					
C0C0	...Repeated for module number 25					
C0C8	...Repeated for module number 26					
C0D0	...Repeated for module number 27					
C0D8	...Repeated for module number 28					
COEO	...Repeated for module number 29					
C0E8	...Repeated for module number 30					
COFO	...Repeated for module number 31					
C0F8	...Repeated for module number 32					
C100	...Repeated for module number 33					
C108	...Repeated for module number 34					
C110	...Repeated for module number 35					
C118	...Repeated for module number 36					
C120	...Repeated for module number 37					
C128	...Repeated for module number 38					
C130	...Repeated for module number 39					
C138	...Repeated for module number 40					
C140	...Repeated for module number 41					
C148	...Repeated for module number 42					
C150	...Repeated for module number 43					
C158	...Repeated for module number 44					
C160	...Repeated for module number 45					
C168	...Repeated for module number 46					
C170	...Repeated for module number 47					
C178	...Repeated for module number 48					
C180	...Repeated for module number 49					
C188	...Repeated for module number 50					
C190	...Repeated for module number 51					
C198	...Repeated for module number 52					
C1A0	...Repeated for module number 53					
C1A8	...Repeated for module number 54					
C1B0	...Repeated for module number 55					
C1B8	...Repeated for module number 56					
C1C0	...Repeated for module number 57					
C1C8	...Repeated for module number 58					
C1D0	...Repeated for module number 59					
C1D8	...Repeated for module number 60					
C1E0	...Repeated for module number 61					
C1E8	...Repeated for module number 62					
C1F0	...Repeated for module number 63					
C1F8	...Repeated for module number 64					
C200	...Repeated for module number 65					
C208	...Repeated for module number 66					
C210	...Repeated for module number 67					
C218	...Repeated for module number 68					
C220	...Repeated for module number 69					
C228	...Repeated for module number 70					

Table A-9: MODBUS MEMORY MAP (Sheet 28 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
C230	...Repeated for module number 71					
C238	...Repeated for module number 72					
C240	...Repeated for module number 73					
C248	...Repeated for module number 74					
C250	...Repeated for module number 75					
C258	...Repeated for module number 76					
C260	...Repeated for module number 77					
C268	...Repeated for module number 78					
C270	...Repeated for module number 79					
C278	...Repeated for module number 80					
C280	...Repeated for module number 81					
C288	...Repeated for module number 82					
C290	...Repeated for module number 83					
C298	...Repeated for module number 84					
C2A0	...Repeated for module number 85					
C2A8	...Repeated for module number 86					
C2B0	...Repeated for module number 87					
C2B8	...Repeated for module number 88					
C2C0	...Repeated for module number 89					
C2C8	...Repeated for module number 90					
C2D0	...Repeated for module number 91					
C2D8	...Repeated for module number 92					
C2E0	...Repeated for module number 93					
C2E8	...Repeated for module number 94					
C2F0	...Repeated for module number 95					
C2F8	...Repeated for module number 96					
Contact Input Thresholds (Read/Write Setting)						
C600	Contact Input x Threshold (24 items)	0 to 3	---	1	F128	1 (33 Vdc)
Virtual Inputs Global Settings (Read/Write Setting)						
C680	Virtual Inputs SBO Timeout	1 to 60	S	1	F001	30
Virtual Inputs (Read/Write Setting) (32 modules)						
C690	Virtual Input x Function	0 to 1	---	1	F102	0 (Disabled)
C691	Virtual Input x Name	---	---	---	F205	"Virt Ip 1 "
C69B	Virtual Input x Programmed Type	0 to 1	---	1	F127	0 (Latched)
C69C	Virtual Input x Events	0 to 1	---	1	F102	0 (Disabled)
C69D	Virtual Input x UCA SBOClass	1 to 2	---	1	F001	1
C69E	Virtual Input x UCA SBOEna	0 to 1	---	1	F102	0 (Disabled)
C69F	Virtual Input x Reserved	---	---	---	F001	0
C6A0	...Repeated for module number 2					
C6B0	...Repeated for module number 3					
C6C0	...Repeated for module number 4					
C6D0	...Repeated for module number 5					
C6E0	...Repeated for module number 6					
C6F0	...Repeated for module number 7					
C700	...Repeated for module number 8					
C710	...Repeated for module number 9					
C720	...Repeated for module number 10					
C730	...Repeated for module number 11					
C740	...Repeated for module number 12					
C750	...Repeated for module number 13					
C760	...Repeated for module number 14					
C770	...Repeated for module number 15					
C780	...Repeated for module number 16					
C790	...Repeated for module number 17					

Table A-9: MODBUS MEMORY MAP (Sheet 29 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
C7A0	...Repeated for module number 18					
C7B0	...Repeated for module number 19					
C7C0	...Repeated for module number 20					
C7D0	...Repeated for module number 21					
C7E0	...Repeated for module number 22					
C7F0	...Repeated for module number 23					
C800	...Repeated for module number 24					
C810	...Repeated for module number 25					
C820	...Repeated for module number 26					
C830	...Repeated for module number 27					
C840	...Repeated for module number 28					
C850	...Repeated for module number 29					
C860	...Repeated for module number 30					
C870	...Repeated for module number 31					
C880	...Repeated for module number 32					
Virtual Outputs (Read/Write Setting) (64 modules)						
CC90	Virtual Output x Name	---	---	---	F205	"Virt Op 1 "
CC9A	Virtual Output x Events	0 to 1	---	1	F102	0 (Disabled)
CC9B	Virtual Output x Reserved (5 items)	---	---	---	F001	0
CCAO	...Repeated for module number 2					
CCB0	...Repeated for module number 3					
CCCO	...Repeated for module number 4					
CCDO	...Repeated for module number 5					
CCEO	...Repeated for module number 6					
CCFO	...Repeated for module number 7					
CD00	...Repeated for module number 8					
CD10	...Repeated for module number 9					
CD20	...Repeated for module number 10					
CD30	...Repeated for module number 11					
CD40	...Repeated for module number 12					
CD50	...Repeated for module number 13					
CD60	...Repeated for module number 14					
CD70	...Repeated for module number 15					
CD80	...Repeated for module number 16					
CD90	...Repeated for module number 17					
CDAO	...Repeated for module number 18					
CDB0	...Repeated for module number 19					
CDC0	...Repeated for module number 20					
CDD0	...Repeated for module number 21					
CDEO	...Repeated for module number 22					
CDF0	...Repeated for module number 23					
CE00	...Repeated for module number 24					
CE10	...Repeated for module number 25					
CE20	...Repeated for module number 26					
CE30	...Repeated for module number 27					
CE40	...Repeated for module number 28					
CE50	...Repeated for module number 29					
CE60	...Repeated for module number 30					
CE70	...Repeated for module number 31					
CE80	...Repeated for module number 32					
CE90	...Repeated for module number 33					
CEAO	...Repeated for module number 34					
CEB0	...Repeated for module number 35					
CECO	...Repeated for module number 36					

Table A-9: MODBUS MEMORY MAP (Sheet 30 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
CED0	...Repeated for module number 37					
CEEO	...Repeated for module number 38					
CEF0	...Repeated for module number 39					
CFOO	...Repeated for module number 40					
CF10	...Repeated for module number 41					
CF20	...Repeated for module number 42					
CF30	...Repeated for module number 43					
CF40	...Repeated for module number 44					
CF50	...Repeated for module number 45					
CF60	...Repeated for module number 46					
CF70	...Repeated for module number 47					
CF80	...Repeated for module number 48					
CF90	...Repeated for module number 49					
CFA0	...Repeated for module number 50					
CFB0	...Repeated for module number 51					
CFC0	...Repeated for module number 52					
CFD0	...Repeated for module number 53					
CFE0	...Repeated for module number 54					
CFF0	...Repeated for module number 55					
D000	...Repeated for module number 56					
D010	...Repeated for module number 57					
D020	...Repeated for module number 58					
D030	...Repeated for module number 59					
D040	...Repeated for module number 60					
D050	...Repeated for module number 61					
D060	...Repeated for module number 62					
D070	...Repeated for module number 63					
D080	...Repeated for module number 64					
Mandatory						
D280	Test Mode Function (Read/Write Setting)	0 to 1	---	1	F102	0 (Disabled)
D281	Force VFD and LED (Read/Write)	0 to 1	---	1	F126	0 (No)
D282	Test Mode Initiate (Read/Write Setting)	0 to 65535	---	1	F300	1
D283	Clear All Relay Records Command (R/W Command)	0 to 1	---	1	F126	0 (No)
Contact Outputs (Read/Write Setting) (64 modules)						
D290	Contact Output x Name	---	---	---	F205	"Cont Op 1 "
D29A	Contact Output x Operation	0 to 65535	---	1	F300	0
D29B	Contact Output x Seal In	0 to 65535	---	1	F300	0
D29C	Latching Output \times Reset	0 to 65535	---	1	F300	0
D29D	Contact Output x Events	0 to 1	---	1	F102	1 (Enabled)
D29E	Latching Output x Type	0 to 1	---	1	F090	0 (Operate-dominant)
D29F	Reserved	---	---	--	F001	0
D2A0	...Repeated for module number 2					
D2B0	...Repeated for module number 3					
D2C0	...Repeated for module number 4					
D2D0	...Repeated for module number 5					
D2E0	...Repeated for module number 6					
D2F0	...Repeated for module number 7					
D300	...Repeated for module number 8					
D310	...Repeated for module number 9					
D320	...Repeated for module number 10					
D330	...Repeated for module number 11					
D340	...Repeated for module number 12					
D350	...Repeated for module number 13					
D360	...Repeated for module number 14					

Table A-9: MODBUS MEMORY MAP (Sheet 31 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
D370	...Repeated for module number 15					
D380	...Repeated for module number 16					
D390	...Repeated for module number 17					
D3A0	...Repeated for module number 18					
D3B0	...Repeated for module number 19					
D3C0	...Repeated for module number 20					
D3D0	...Repeated for module number 21					
D3E0	...Repeated for module number 22					
D3F0	...Repeated for module number 23					
D400	...Repeated for module number 24					
D410	...Repeated for module number 25					
D420	...Repeated for module number 26					
D430	...Repeated for module number 27					
D440	...Repeated for module number 28					
D450	...Repeated for module number 29					
D460	...Repeated for module number 30					
D470	...Repeated for module number 31					
D480	...Repeated for module number 32					
D490	...Repeated for module number 33					
D4A0	...Repeated for module number 34					
D4B0	...Repeated for module number 35					
D4C0	...Repeated for module number 36					
D4D0	...Repeated for module number 37					
D4E0	...Repeated for module number 38					
D4F0	...Repeated for module number 39					
D500	...Repeated for module number 40					
D510	...Repeated for module number 41					
D520	...Repeated for module number 42					
D530	...Repeated for module number 43					
D540	...Repeated for module number 44					
D550	...Repeated for module number 45					
D560	...Repeated for module number 46					
D570	...Repeated for module number 47					
D580	...Repeated for module number 48					
D590	...Repeated for module number 49					
D5A0	...Repeated for module number 50					
D5B0	...Repeated for module number 51					
D5C0	...Repeated for module number 52					
D5D0	...Repeated for module number 53					
D5E0	...Repeated for module number 54					
D5F0	...Repeated for module number 55					
D600	...Repeated for module number 56					
D610	...Repeated for module number 57					
D620	...Repeated for module number 58					
D630	...Repeated for module number 59					
D640	...Repeated for module number 60					
D650	...Repeated for module number 61					
D660	...Repeated for module number 62					
D670	...Repeated for module number 63					
D680	...Repeated for module number 64					
Reset (Read/Write Setting)						
D800	FlexLogic operand which initiates a reset	0 to 65535	---	1	F300	0
Control Pushbuttons (Read/Write Setting) (3 modules)						
D810	Control Pushbutton 1 Function	0 to 1	---	1	F102	0 (Disabled)

Table A-9: MODBUS MEMORY MAP (Sheet 32 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
D811	Control Pushbutton 1 Events	0 to 1	---	1	F102	0 (Disabled)
D812	...Repeated for module number 2					
D814	...Repeated for module number 3					
D816	...Repeated for module number 4					
D818	...Repeated for module number 5					
D81A	...Repeated for module number 6					
D81C	...Repeated for module number 7					
Clear Relay Records (Read/Write Setting)						
D820	Clear Fault Reports Operand	0 to 65535	---	1	F300	0
D822	Clear Event Records Operand	0 to 65535	---	1	F300	0
D823	Clear Oscillography Operand	0 to 65535	---	1	F300	0
D825	Clear Breaker Arcing Amps 1 Operand	0 to 65535	---	1	F300	0
D826	Clear Breaker Arcing Amps 2 Operand	0 to 65535	---	1	F300	0
D82B	Clear Unauthorized Access Operand	0 to 65535	---	1	F300	0
D82D	Clear Platform Direct I/O Stats Operand	0 to 65535	---	1	F300	0
D82E	Clear Relay Records Reserved					
Force Contact Inputs (Read/Write Setting)						
D8B0	Force Contact Input x State (96 items)	0 to 2	---	1	F144	0 (Disabled)
Force Contact Outputs (Read/Write Setting)						
D910	Force Contact Output \times State (64 items)	0 to 3	---	1	F131	0 (Disabled)
Platform Direct I/O (Read/Write Setting)						
DB40	Direct Device ID	1 to 8	---	1	F001	1
DB41	Platform Direct I/O Ring Ch 1 Configuration Function	0 to 1	---	1	F126	0 (No)
DB42	Platform Direct I/O Data Rate	64 to 128	kbps	64	F001	64
DB43	Platform Direct I/O Ring Ch 2 Configuration Function	0 to 1	---	1	F126	0 (No)
DB44	Platform Direct I/O Crossover Function	0 to 1	---	1	F102	0 (Disabled)
Platform Direct I/O Commands (Read/Write Command)						
DB48	Platform Direct I/O Clear Counters Command	0 to 1	---	1	F126	0 (No)
DB41	Platform Direct I/O Ring Ch 1 Configuration Function	0 to 1	---	1	F126	0 (No)
DB42	Platform Direct I/O Data Rate	64 to 128	kbps	64	F001	64
DB43	Platform Direct I/O Ring Ch 2 Configuration Function	0 to 1	---	1	F126	0 (No)
DB44	Platform Direct I/O Crossover Function	0 to 1	---	1	F102	0 (Disabled)
Platform Direct Inputs (Read/Write Setting) (96 modules)						
DB50	Direct Input 1 Device Number	0 to 8	---	1	F001	0
DB51	Direct Input 1 Number	0 to 96	---	1	F001	0
DB52	Direct Input 1 Default State	0 to 1	---	1	F108	0 (Off)
DB53	Direct Input 1 Events	0 to 1	---	1	F102	0 (Disabled)
DB54	...Repeated for module number 2					
DB58	...Repeated for module number 3					
DB5C	...Repeated for module number 4					
DB60	...Repeated for module number 5					
DB64	...Repeated for module number 6					
DB68	...Repeated for module number 7					
DB6C	...Repeated for module number 8					
DB70	...Repeated for module number 9					
DB74	...Repeated for module number 10					
DB78	...Repeated for module number 11					
DB7C	...Repeated for module number 12					
DB80	...Repeated for module number 13					
DB84	...Repeated for module number 14					
DB88	...Repeated for module number 15					
DB8C	...Repeated for module number 16					
DB90	...Repeated for module number 17					
DB94	...Repeated for module number 18					

Table A-9: MODBUS MEMORY MAP (Sheet 33 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
DB98	...Repeated for module number 19					
DB9C	...Repeated for module number 20					
DBA0	...Repeated for module number 21					
DBA4	...Repeated for module number 22					
DBA8	...Repeated for module number 23					
DBAC	...Repeated for module number 24					
DBB0	...Repeated for module number 25					
DBB4	...Repeated for module number 26					
DBB8	...Repeated for module number 27					
DBBC	...Repeated for module number 28					
DBC0	...Repeated for module number 29					
DBC4	...Repeated for module number 30					
DBC8	...Repeated for module number 31					
DBCC	...Repeated for module number 32					
Platform Direct Outputs (Read/Write Setting) (96 modules)						
DD00	Direct Output 1 Operand	0 to 65535	---	1	F300	0
DD01	Direct Output 1 Events	0 to 1	---	1	F102	0 (Disabled)
DD02	...Repeated for module number 2					
DD04	...Repeated for module number 3					
DD06	...Repeated for module number 4					
DD08	...Repeated for module number 5					
DD0A	...Repeated for module number 6					
DDOC	...Repeated for module number 7					
DD0E	...Repeated for module number 8					
DD10	...Repeated for module number 9					
DD12	...Repeated for module number 10					
DD14	...Repeated for module number 11					
DD16	...Repeated for module number 12					
DD18	...Repeated for module number 13					
DD1A	...Repeated for module number 14					
DD1C	...Repeated for module number 15					
DD1E	...Repeated for module number 16					
DD20	...Repeated for module number 17					
DD22	...Repeated for module number 18					
DD24	...Repeated for module number 19					
DD26	...Repeated for module number 20					
DD28	...Repeated for module number 21					
DD2A	...Repeated for module number 22					
DD2C	...Repeated for module number 23					
DD2E	...Repeated for module number 24					
DD30	...Repeated for module number 25					
DD32	...Repeated for module number 26					
DD34	...Repeated for module number 27					
DD36	...Repeated for module number 28					
DD38	...Repeated for module number 29					
DD3A	...Repeated for module number 30					
DD3C	...Repeated for module number 31					
DD3E	...Repeated for module number 32					
Platform Direct I/O Alarms (Read/Write Setting)						
DE00	Platform Direct I/O Ch 1 CRC Alarm Function	0 to 1	---	1	F102	0 (Disabled)
DE01	Platform Direct I/O Ch 1 CRC Alarm Message Count	100 to 1000	---	1	F001	600
DE02	Platform Direct I/O Ch 1 CRC Alarm Threshold	1 to 1000	---	1	F001	10
DE03	Platform Direct I/O Ch 1 CRC Alarm Events	0 to 1	---	1	F102	0 (Disabled)
DE04	...Reserved (4 items)					

Table A-9: MODBUS MEMORY MAP (Sheet 34 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
DE08	Platform Direct I/O Ch 2 CRC Alarm Function	0 to 1	---	1	F102	0 (Disabled)
DE09	Platform Direct I/O Ch 2 CRC Alarm Message Count	100 to 1000	---	1	F001	600
DE0A	Platform Direct I/O Ch 2 CRC Alarm Threshold	1 to 1000	---	1	F001	10
DE0B	Platform Direct I/O Ch 2 CRC Alarm Events	0 to 1	---	1	F102	0 (Disabled)
DE0C	...Reserved (4 items)					
DE10	Direct I/O Ch 1 Unreturned Messages Alarm Function	0 to 1	---	1	F102	0 (Disabled)
DE11	Direct I/O Ch 1 Unreturned Messages Alarm Msg Count	100 to 1000	---	1	F001	600
DE12	Direct I/O Ch 1 Unreturned Messages Alarm Threshold	1 to 1000	---	1	F001	10
DE13	Direct I/O Ch 1 Unreturned Messages Alarm Events	0 to 1	---	1	F102	0 (Disabled)
DE14	...Reserved (4 items)					
DE18	Direct I/O Ch 2 Unreturned Messages Alarm Function	0 to 1	---	1	F102	0 (Disabled)
DE19	Direct I/O Ch 2 Unreturned Messages Alarm Msg Count	100 to 1000	---	1	F001	600
DE1A	Direct I/O Ch 2 Unreturned Messages Alarm Threshold	1 to 1000	---	1	F001	10
DE1B	Direct I/O Ch 2 Unreturned Messages Alarm Events	0 to 1	---	1	F102	0 (Disabled)
DE1C	...Reserved (4 items)					
Remote Devices (Read/Write Setting) (16 modules)						
E000	Remote Device 1 ID	---	---	---	F202	"Remote Device 1 "
E00A	...Repeated for module number 2					
E014	...Repeated for module number 3					
E01E	...Repeated for module number 4					
E028	...Repeated for module number 5					
E032	...Repeated for module number 6					
E03C	...Repeated for module number 7					
E046	...Repeated for module number 8					
E050	...Repeated for module number 9					
E05A	...Repeated for module number 10					
E064	...Repeated for module number 11					
E06E	...Repeated for module number 12					
E078	...Repeated for module number 13					
E082	...Repeated for module number 14					
E08C	...Repeated for module number 15					
E096	...Repeated for module number 16					
Remote Inputs (Read/Write Setting) (32 modules)						
E100	Remote Input x Device	1 to 16	---	1	F001	1
E101	Remote Input x Bit Pair	0 to 64	---	1	F156	0 (None)
E102	Remote Input x Default State	0 to 1	---	1	F108	0 (Off)
E103	Remote Input x Events	0 to 1	---	1	F102	0 (Disabled)
E104	...Repeated for module number 2					
E108	...Repeated for module number 3					
E10C	...Repeated for module number 4					
E110	...Repeated for module number 5					
E114	...Repeated for module number 6					
E118	...Repeated for module number 7					
E11C	...Repeated for module number 8					
E120	...Repeated for module number 9					
E124	...Repeated for module number 10					
E128	...Repeated for module number 11					
E12C	...Repeated for module number 12					
E130	...Repeated for module number 13					
E134	...Repeated for module number 14					
E138	...Repeated for module number 15					
E13C	...Repeated for module number 16					
E140	...Repeated for module number 17					
E144	...Repeated for module number 18					

Table A-9: MODBUS MEMORY MAP (Sheet 35 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
E148	...Repeated for module number 19					
E14C	...Repeated for module number 20					
E150	...Repeated for module number 21					
E154	...Repeated for module number 22					
E158	...Repeated for module number 23					
E15C	...Repeated for module number 24					
E160	...Repeated for module number 25					
E164	...Repeated for module number 26					
E168	...Repeated for module number 27					
E16C	...Repeated for module number 28					
E170	...Repeated for module number 29					
E174	...Repeated for module number 30					
E178	...Repeated for module number 31					
E17C	...Repeated for module number 32					
Remote Output DNA Pairs (Read/Write Setting) (32 modules)						
E600	Remote Output DNA x Operand	0 to 65535	---	1	F300	0
E601	Remote Output DNA \times Events	0 to 1	---	1	F102	0 (Disabled)
E602	Remote Output DNA \times Reserved (2 items)	0 to 1	---	1	F001	0
E604	...Repeated for module number 2					
E608	...Repeated for module number 3					
E60C	...Repeated for module number 4					
E610	...Repeated for module number 5					
E614	...Repeated for module number 6					
E618	...Repeated for module number 7					
E61C	...Repeated for module number 8					
E620	...Repeated for module number 9					
E624	...Repeated for module number 10					
E628	...Repeated for module number 11					
E62C	...Repeated for module number 12					
E630	...Repeated for module number 13					
E634	...Repeated for module number 14					
E638	...Repeated for module number 15					
E63C	...Repeated for module number 16					
E640	...Repeated for module number 17					
E644	...Repeated for module number 18					
E648	...Repeated for module number 19					
E64C	...Repeated for module number 20					
E650	...Repeated for module number 21					
E654	...Repeated for module number 22					
E658	...Repeated for module number 23					
E65C	...Repeated for module number 24					
E660	...Repeated for module number 25					
E664	...Repeated for module number 26					
E668	...Repeated for module number 27					
E66C	...Repeated for module number 28					
E670	...Repeated for module number 29					
E674	...Repeated for module number 30					
E678	...Repeated for module number 31					
E67C	...Repeated for module number 32					
Remote Output UserSt Pairs (Read/Write Setting) (32 modules)						
E680	Remote Output UserSt x Operand	0 to 65535	---	1	F300	0
E681	Remote Output UserSt x Events	0 to 1	---	1	F102	0 (Disabled)
E682	Remote Output UserSt \times Reserved (2 items)	0 to 1	---	1	F001	0
E684	...Repeated for module number 2					

Table A-9: MODBUS MEMORY MAP (Sheet 36 of 36)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
E688	...Repeated for module number 3					
E68C	...Repeated for module number 4					
E690	...Repeated for module number 5					
E694	...Repeated for module number 6					
E698	...Repeated for module number 7					
E69C	...Repeated for module number 8					
E6A0	...Repeated for module number 9					
E6A4	...Repeated for module number 10					
E6A8	...Repeated for module number 11					
E6AC	...Repeated for module number 12					
E6B0	...Repeated for module number 13					
E6B4	...Repeated for module number 14					
E6B8	...Repeated for module number 15					
E6BC	...Repeated for module number 16					
E6C0	...Repeated for module number 17					
E6C4	...Repeated for module number 18					
E6C8	...Repeated for module number 19					
E6CC	...Repeated for module number 20					
E6D0	...Repeated for module number 21					
E6D4	...Repeated for module number 22					
E6D8	...Repeated for module number 23					
E6DC	...Repeated for module number 24					
E6E0	...Repeated for module number 25					
E6E4	...Repeated for module number 26					
E6E8	...Repeated for module number 27					
E6EC	...Repeated for module number 28					
E6F0	...Repeated for module number 29					
E6F4	...Repeated for module number 30					
E6F8	...Repeated for module number 31					
E6FC	...Repeated for module number 32					

F001
 UR_UINT16 UNSIGNED 16 BIT INTEGER

F002

UR_SINT16 SIGNED 16 BIT INTEGER

F003
UR_UINT32 UNSIGNED 32 BIT INTEGER (2 registers)
High order word is stored in the first register.
Low order word is stored in the second register.

F004
 UR_SINT32 SIGNED 32 BIT INTEGER (2 registers)

High order word is stored in the first register/ Low order word is stored in the second register.

F005
UR UINT8 UNSIGNED 8 BIT INTEGER

F006
UR_SINT8 SIGNED 8 BIT INTEGER

F011
UR_UINT16 FLEXCURVE DATA (120 points)
A FlexCurve is an array of 120 consecutive data points (x, y) which are interpolated to generate a smooth curve. The y-axis is the user defined trip or operation time setting; the x-axis is the pickup ratio and is pre-defined. Refer to format F119 for a listing of the pickup ratios; the enumeration value for the pickup ratio indicates the offset into the FlexCurve base address where the corresponding time value is stored.
F012
DISPLAY_SCALE DISPLAY SCALING
(unsigned 16-bit integer)
MSB indicates the SI units as a power of ten. LSB indicates the
number of decimal points to display.
Example: Current values are stored as 32 bit numbers with three
decimal places and base units in Amps. If the retrieed value is
12345.678 A and the display scale equals 0×0302 then the dis-
played value on the unit is 12.35 kA .

F013
POWER_FACTOR PWR FACTOR (SIGNED 16 BIT INTEGER)
Positive values indicate lagging power factor; negative values indicate leading.

```
F040
UR UINT48 48-BIT UNSIGNED INTEGER
```


F050

UR_UINT32 TIME and DATE (UNSIGNED 32 BIT INTEGER)
Gives the current time in seconds elapsed since 00:00:00 January 1, 1970.

F051
UR_UINT32 DATE in SR format (alternate format for F050)
First 16 bits are Month/Day (MM/DD/xxxx). Month: 1=January, 2=February,...,12=December; Day: 1 to 31 in steps of 1 Last 16 bits are Year (xx/xx/YYYY): 1970 to 2106 in steps of 1

F052

UR_UINT32 TIME in SR format (alternate format for F050)
First 16 bits are Hours/Minutes (HH:MM:xx.xxx). Hours: 0=12am, 1=1am,...,12=12pm,...23=11pm; Minutes: 0 to 59 in steps of 1
Last 16 bits are Seconds (xx:xx:.SS.SSS): 0=00.000s, $1=00.001, \ldots, 59999=59.999 \mathrm{~s}$)

```
F060
FLOATING_POINT IEE FLOATING POINT (32 bits)
```

F070
HEX2 2 BYTES - 4 ASCII DIGITS
F071
HEX4 4 BYTES - 8 ASCII DIGITS

F072

HEX6 6 BYTES - 12 ASCII DIGITS

F073
HEX8 8 BYTES - 16 ASCII DIGITS

F074
HEX20 20 BYTES - 40 ASCII DIGITS

F083
 ENUMERATION: SELECTOR MODES

0 = Time-Out, 1 = Acknowledge

F084

ENUMERATION: SELECTOR POWER UP
0 = Restore, 1 = Synchronize, 2 = Sync/Restore

F085
ENUMERATION: POWER SWING SHAPE
0 = Mho Shape, 1 = Quad Shape

F086

ENUMERATION: DIGITAL INPUT DEFAULT STATE
0 = Off, 1 = On, 2= Latest/Off, 3 = Latest/On

F090
ENUMERATION: LATCHING OUTPUT TYPE
0 = Operate-dominant, 1 = Reset-dominant

F100
ENUMERATION: VT CONNECTION TYPE
0 = Wye; 1 = Delta

F101
ENUMERATION: MESSAGE DISPLAY INTENSITY
$0=25 \%, 1=50 \%, 2=75 \%, 3=100 \%$

F102
ENUMERATION: DISABLED/ENABLED
0 = Disabled; 1 = Enabled

F103

ENUMERATION: CURVE SHAPES

bitmask	curve shape	bitmask	curve shape
0	IEEE Mod Inv	9	IAC Inverse
1	IEEE Very Inv	10	IAC Short Inv
2	IEEE Ext Inv	11	12t
3	IEC Curve A	12	Definite Time
4	IEC Curve B	13	FlexCurve ${ }^{\text {TM }} \mathrm{A}$
5	IEC Curve C	14	FlexCurve ${ }^{\text {TM }} \mathrm{B}$
6	IEC Short Inv	15	FlexCurve ${ }^{\text {TM }} \mathrm{C}$
7	IAC Ext Inv	16	FlexCurve ${ }^{\text {TM }} \mathrm{D}$
8	IAC Very Inv		

F104

ENUMERATION: RESET TYPE

$0=$ Instantaneous, 1 = Timed, 2 = Linear

F105

ENUMERATION: LOGIC INPUT
0 = Disabled, $1=\operatorname{Input} 1,2=\operatorname{Input} 2$

F106
 ENUMERATION: PHASE ROTATION

$0=A B C, 1=A C B$

F108

ENUMERATION: OFFION
$0=\mathrm{Off}, 1=\mathrm{On}$

F109

ENUMERATION: CONTACT OUTPUT OPERATION
0 = Self-reset, 1 = Latched, 2 = Disabled

F110

ENUMERATION: CONTACT OUTPUT LED CONTROL
$0=$ Trip, $1=$ Alarm, $2=$ None
\qquad
F112
ENUMERATION: RS485 BAUD RATES

bitmask	value			
0	300			
1	1200			
2	2400			
3	4800	\quad	bitmask	value
:---:	:---	:---	:---	
4	9600			
5	19200			
6	38400			
7	57600	\quad	bitmask	value
:---:	:---:	:---:		
8	115200			
9	14400			
10	28800			
11	33600			

F113

ENUMERATION: PARITY

$$
0 \text { = None, } 1 \text { = Odd, } 2 \text { = Even }
$$

F114

ENUMERATION: IRIG-B SIGNAL TYPE
$0=$ None, $1=$ DC Shift, $2=$ Amplitude Modulated

F117
ENUMERATION: NUMBER OF OSCILLOGRAPHY RECORDS
$0=1 \times 72$ cycles, $1=3 \times 36$ cycles, $2=7 \times 18$ cycles, $3=15 \times 9$ cycles

F118

ENUMERATION: OSCILLOGRAPHY MODE
$0=$ Automatic Overwrite, $1=$ Protected

F119

ENUMERATION: FLEXCURVE ${ }^{\text {TM }}$ PICKUP RATIOS

mask	value	mask	value	mask	value	mask	value
0	0.00	30	0.88	60	2.90	90	5.90
1	0.05	31	0.90	61	3.00	91	6.00
2	0.10	32	0.91	62	3.10	92	6.50
3	0.15	33	0.92	63	3.20	93	7.00
4	0.20	34	0.93	64	3.30	94	7.50
5	0.25	35	0.94	65	3.40	95	8.00
6	0.30	36	0.95	66	3.50	96	8.50
7	0.35	37	0.96	67	3.60	97	9.00
8	0.40	38	0.97	68	3.70	98	9.50
9	0.45	39	0.98	69	3.80	99	10.00
10	0.48	40	1.03	70	3.90	100	10.50
11	0.50	41	1.05	71	4.00	101	11.00
12	0.52	42	1.10	72	4.10	102	11.50
13	0.54	43	1.20	73	4.20	103	12.00
14	0.56	44	1.30	74	4.30	104	12.50
15	0.58	45	1.40	75	4.40	105	13.00
16	0.60	46	1.50	76	4.50	106	13.50
17	0.62	47	1.60	77	4.60	107	14.00
18	0.64	48	1.70	78	4.70	108	14.50
19	0.66	49	1.80	79	4.80	109	15.00
20	0.68	50	1.90	80	4.90	110	15.50
21	0.70	51	2.00	81	5.00	111	16.00
22	0.72	52	2.10	82	5.10	112	16.50
23	0.74	53	2.20	83	5.20	113	17.00
24	0.76	54	2.30	84	5.30	114	17.50
25	0.78	55	2.40	85	5.40	115	18.00
26	0.80	56	2.50	86	5.50	116	18.50
27	0.82	57	2.60	87	5.60	117	19.00
28	0.84	58	2.70	88	5.70	118	19.50
29	0.86	59	2.80	89	5.80	119	20.00

F120
ENUMERATION: DISTANCE SHAPE
$0=$ Mho, $1=$ Quad

F122

ENUMERATION: ELEMENT INPUT SIGNAL TYPE
$0=$ Phasor, 1 = RMS

F123

ENUMERATION: CT SECONDARY
$0=1 \mathrm{~A}, 1=5 \mathrm{~A}$

F124

ENUMERATION: LIST OF ELEMENTS

bitmask	element
140	AUX UV1

bitmask	element
144	PHASE UV1
145	PHASE UV2
160	PH DIST 1
161	PH DIST 2
162	PH DIST 3
176	GND DIST 1
177	GND DIST 2
178	GND DIST 3
224	SRC1 VT FF
225	SRC2 VT FF
226	SRC3 VT FF
227	SRC4 VT FF
228	SRC5 VT FF
229	SRC6 VT FF
232	SRC1 50DD
233	SRC2 50DD
234	SRC3 50DD
235	SRC4 50DD
236	SRC5 50DD
237	SRC6 50DD
272	BREAKER 1
273	BREAKER 2
288	BREAKER ARCING 1
289	BREAKER ARCING 2
312	SYNCHROCHECK 1
313	SYNCHROCHECK 2
336	SETTING GROUP
337	RESET
385	SELECTOR 1
386	SELECTOR 2
390	CONTROL PUSHBUTTON 1
391	CONTROL PUSHBUTTON 2
392	CONTROL PUSHBUTTON 3
393	CONTROL PUSHBUTTON 4
394	CONTROL PUSHBUTTON 5
395	CONTROL PUSHBUTTON 6
396	CONTROL PUSHBUTTON 7
400	FLEX ELEMENT 1
401	FLEX ELEMENT 2
402	FLEX ELEMENT 3
403	FLEX ELEMENT 4
404	FLEX ELEMENT 5
405	FLEX ELEMENT 6
406	FLEX ELEMENT 7
407	FLEX ELEMENT 8
420	NON-VOLATILE LATCH 1
421	NON-VOLATILE LATCH 2
422	NON-VOLATILE LATCH 3
423	NON-VOLATILE LATCH 4
424	NON-VOLATILE LATCH 5
425	NON-VOLATILE LATCH 6
426	NON-VOLATILE LATCH 7
427	NON-VOLATILE LATCH 8

bitmask	element
428	NON-VOLATILE LATCH 9
429	NON-VOLATILE LATCH 10
430	NON-VOLATILE LATCH 11
431	NON-VOLATILE LATCH 12
432	NON-VOLATILE LATCH 13
433	NON-VOLATILE LATCH 14
434	NON-VOLATILE LATCH 15
435	NON-VOLATILE LATCH 16
512	DIGITAL ELEMENT 1
513	DIGITAL ELEMENT 2
514	DIGITAL ELEMENT 3
515	DIGITAL ELEMENT 4
516	DIGITAL ELEMENT 5
517	DIGITAL ELEMENT 6
518	DIGITAL ELEMENT 7
519	DIGITAL ELEMENT 8
520	DIGITAL ELEMENT 9
521	DIGITAL ELEMENT 10
522	DIGITAL ELEMENT 11
523	DIGITAL ELEMENT 12
524	DIGITAL ELEMENT 13
525	DIGITAL ELEMENT 14
526	DIGITAL ELEMENT 15
527	DIGITAL ELEMENT 16
544	DIGITAL COUNTER 1
545	DIGITAL COUNTER 2
546	DIGITAL COUNTER 3
547	DIGITAL COUNTER 4
548	DIGITAL COUNTER 5
549	DIGITAL COUNTER 6
550	DIGITAL COUNTER 7
551	DIGITAL COUNTER 8
680	PUSHBUTTON 1
681	PUSHBUTTON 2
682	PUSHBUTTON 3
683	PUSHBUTTON 4
684	PUSHBUTTON 5
685	PUSHBUTTON 6
686	PUSHBUTTON 7
687	PUSHBUTTON 8
688	PUSHBUTTON 9
689	PUSHBUTTON 10
690	PUSHBUTTON 11
691	PUSHBUTTON 12

F125
 ENUMERATION: ACCESS LEVEL

$$
0 \text { = Restricted; } 1 \text { = Command, } 2 \text { = Setting, } 3 \text { = Factory Service }
$$

F126

ENUMERATION: NOIYES CHOICE

F127
ENUMERATION: LATCHED OR SELF-RESETTING
0 = Latched, 1 = Self-Reset

F128
ENUMERATION: CONTACT INPUT THRESHOLD
$0=17 \vee D C, 1=33 \vee D C, 2=84 \vee D C, 3=166 \vee D C$

F129
ENUMERATION: FLEXLOGIC TIMER TYPE
$0=$ millisecond, $1=$ second, $2=$ minute

F130
ENUMERATION: SIMULATION MODE
0 = Off. 1 = Pre-Fault, 2 = Fault, 3 = Post-Fault

F131

ENUMERATION: FORCED CONTACT OUTPUT STATE
0 = Disabled, 1 = Energized, 2 = De-energized, 3 = Freeze

F133

ENUMERATION: PROGRAM STATE
$0=$ Not Programmed, $1=$ Programmed

F134

ENUMERATION: PASS/FAIL
$0=$ Fail, 1 = OK, 2 = n/a

F135

ENUMERATION: GAIN CALIBRATION
$0=0 \times 1,1=1 \times 16$

F136

ENUMERATION: NUMBER OF OSCILLOGRAPHY RECORDS
$0=31 \times 8$ cycles, $1=15 \times 16$ cycles, $2=7 \times 32$ cycles
$3=3 \times 64$ cycles, $4=1 \times 128$ cycles

F138

ENUMERATION: OSCILLOGRAPHY FILE TYPE
0 = Data File, 1 = Configuration File, 2 = Header File

F140

ENUMERATION: CURRENT, SENS CURRENT, VOLTAGE DISABLED
$0=$ Disabled, $1=$ Current 46 A, $2=$ Voltage $280 \mathrm{~V}, 3=$ Current 4.6 A, $4=$ Current 2 A, $5=$ Notched 4.6 A, $6=$ Notched 2 A

F141

ENUMERATION: SELF TEST ERROR

bitmask	error
0	ANY SELF TESTS
1	IRIG-B FAILURE
2	DSP ERROR
4	NO DSP INTERRUPTS
5	UNIT NOT CALIBRATED
9	PROTOTYPE FIRMWARE
10	FLEXLOGIC ERR TOKEN
11	EQUIPMENT MISMATCH
13	UNIT NOT PROGRAMMED
14	SYSTEM EXCEPTION
15	LATCHING OUT ERROR
18	SNTP FAILURE
19	BATTERY FAIL
20	PRI ETHERNET FAIL
21	SEC ETHERNET FAIL
22	EEPROM DATA ERROR
23	SRAM DATA ERROR
24	PROGRAM MEMORY
25	WATCHDOG ERROR
26	LOW ON MEMORY
27	REMOTE DEVICE OFF
28	DIRECT DEVICE OFF
29	DIRECT RING BREAK
30	ANY MINOR ERROR
31	ANY MAJOR ERROR

F142

ENUMERATION: EVENT RECORDER ACCESS FILE TYPE
$0=$ All Record Data, 1 = Headers Only, 2 = Numeric Event Cause

F143
UR_UINT32: 32 BIT ERROR CODE (F141 specifies bit number)
A bit value of $0=$ no error, $1=$ error

F144
ENUMERATION: FORCED CONTACT INPUT STATE
0 = Disabled, 1 = Open, 2 = Closed

F145

ENUMERATION: ALPHABET LETTER

bitmask	type	bitmask	type	bitmask	type	bitmask	type
0	null	7	G	14	N	21	U
1	A	8	H	15	\bigcirc	22	V
2	B	9	1	16	P	23	W
3	C	10	J	17	Q	24	X
4	D	11	K	18	R	25	Y
5	E	12	L	19	S	26	Z
6	F	13	M	20	T		

F146
ENUMERATION: MISC. EVENT CAUSES

bitmask	definition
0	EVENTS CLEARED
1	OSCILLOGRAPHY TRIGGERED
2	DATE/TIME CHANGED
3	DEF SETTINGS LOADED
4	TEST MODE ON
5	TEST MODE OFF
6	POWER ON
7	POWER OFF
8	RELAY IN SERVICE
9	RELAY OUT OF SERVICE
10	WATCHDOG RESET
11	OSCILLOGRAPHY CLEAR
12	REBOOT COMMAND
13	LED TEST INITIATED
14	FLASH PROGRAMMING

F151

ENUMERATION: RTD SELECTION

bitmask	RTD\#	bitmask	RTD\#	bitmask	RTD\#
0	NONE	17	RTD 17	33	RTD 33
1	RTD 1	18	RTD 18	34	RTD 34
2	RTD 2	19	RTD 19	35	RTD 35
3	RTD 3	20	RTD 20	36	RTD 36
4	RTD 4	21	RTD 21	37	RTD 37
5	RTD 5	22	RTD 22	38	RTD 38
6	RTD 6	23	RTD 23	39	RTD 39
7	RTD 7	24	RTD 24	40	RTD 40
8	RTD 8	25	RTD 25	41	RTD 41
9	RTD 9	26	RTD 26	42	RTD 42
10	RTD 10	27	RTD 27	43	RTD 43
11	RTD 11	28	RTD 28	44	RTD 44
12	RTD 12	29	RTD 29	45	RTD 45
13	RTD 13	30	RTD 30	46	RTD 46
14	RTD 14	31	RTD 31	47	RTD 47
15	RTD 15	32	RTD 32	48	RTD 48
16	RTD 16				

F152

ENUMERATION: SETTING GROUP
$0=$ Active Group, $1=$ Group 1, $2=$ Group 2, $3=$ Group 3
$4=$ Group 4, $5=$ Group 5, $6=$ Group 6

F153

ENUMERATION: DISTANCE TRANSFORMER CONNECTION

bitmask	type
0	None
1	Dy1
2	Dy3
3	Dy5
4	Dy7

bitmask	type
5	Dy9
6	Dy11
7	Yd1
8	Yd3
9	Yd 5

bitmask	type
10	Yd 7
11	Yd 9
12	Yd 11

F154
ENUMERATION: DISTANCE DIRECTION
0 = Forward, 1 = Reverse

F155

ENUMERATION: REMOTE DEVICE STATE
0 = Offline, 1 = Online

F156
ENUMERATION: REMOTE INPUT BIT PAIRS

bitmask	RTD\#	bitmask	RTD\#	bitmask	RTD\#
0	NONE	22	DNA-22	44	UserSt-12
1	DNA-1	23	DNA-23	45	UserSt-13
2	DNA-2	24	DNA-24	46	UserSt-14
3	DNA-3	25	DNA-25	47	UserSt-15
4	DNA-4	26	DNA-26	48	UserSt-16
5	DNA-5	27	DNA-27	49	UserSt-17
6	DNA-6	28	DNA-28	50	UserSt-18
7	DNA-7	29	DNA-29	51	UserSt-19
8	DNA-8	30	DNA-30	52	UserSt-20
9	DNA-9	31	DNA-31	53	UserSt-21
10	DNA-10	32	DNA-32	54	UserSt-22
11	DNA-11	33	UserSt-1	55	UserSt-23
12	DNA-12	34	UserSt-2	56	UserSt-24
13	DNA-13	35	UserSt-3	57	UserSt-25
14	DNA-14	36	UserSt-4	58	UserSt-26
15	DNA-15	37	UserSt-5	59	UserSt-27
16	DNA-16	38	UserSt-6	60	UserSt-28
17	DNA-17	39	UserSt-7	61	UserSt-29
18	DNA-18	40	UserSt-8	62	UserSt-30
19	DNA-19	41	UserSt-9	63	UserSt-31
20	DNA-20	42	UserSt-10	64	UserSt-32
21	DNA-21	43	UserSt-11		

F166
ENUMERATION: AUXILIARY VT CONNECTION TYPE
$0=\mathrm{Vn}, 1=\mathrm{Vag}, 2=\mathrm{Vbg}, 3=\mathrm{Vcg}, 4=\mathrm{Vab}, 5=\mathrm{Vbc}, 6=\mathrm{Vca}$

F167
ENUMERATION: SIGNAL SOURCE

```
0 = SRC 1, 1 = SRC 2, 2 = SRC 3, 3 = SRC 4,
4 = SRC 5, 5 = SRC 6
```


F168

ENUMERATION: INRUSH INHIBIT FUNCTION
0 = Disabled, 1 = Adapt. 2nd, 2 = Trad. 2nd

F169

ENUMERATION: OVEREXCITATION INHIBIT FUNCTION
0 = Disabled, 1 = 5th

F170
ENUMERATION: LOWIHIGH OFFSET \& GAIN TRANSDUCER I/O SELECTION
$0=$ LOW, $1=\mathrm{HIGH}$

F171

ENUMERATION: TRANSDUCER CHANNEL INPUT TYPE
$0=$ dcmA $\mathrm{IN}, 1=\mathrm{OHMS} \operatorname{IN}, 2=$ RTD IN, $3=$ dcmA OUT

F172

ENUMERATION: SLOT LETTERS

bitmask	slot	bitmask	slot	bitmask	slot	bitmask	slot
0	F	4	K	8	P	12	U
1	G	5	L	9	R	13	V
2	H	6	M	10	S	14	W
3	J	7	N	11	T	15	X

F173

ENUMERATION: TRANSDUCER DCMA I/O RANGE

bitmask	dcmA I/O range
0	0 to -1 mA
1	0 to 1 mA
2	-1 to 1 mA
3	0 to 5 mA
4	0 to 10 mA
5	0 to 20 mA
6	4 to 20 mA

F174

ENUMERATION: TRANSDUCER RTD INPUT TYPE
$0=100$ Ohm Platinum, $1=120$ Ohm Nickel,
2 = 100 Ohm Nickel, 3 = 10 Ohm Copper

F175

ENUMERATION: PHASE LETTERS
$0=A, 1=B, 2=C$

F177

ENUMERATION: COMMUNICATION PORT
$0=$ NONE, 1 = COM1-RS485, 2 = COM2-RS485,
3 = FRONT PANEL-RS232, 4 = NETWORK

F180

ENUMERATION: PHASE/GROUND
$0=$ PHASE, $1=$ GROUND

F181

ENUMERATION: ODD/EVEN/NONE
0 = ODD, 1 = EVEN, $2=$ NONE

F183
ENUMERATION: AC INPUT WAVEFORMS

bitmask	definition
0	Off
1	8 samples/cycle
2	16 samples/cycle
3	32 samples/cycle
4	64 samples/cycle

F185
ENUMERATION: PHASE A,B,C, GROUND SELECTOR
$0=\mathrm{A}, 1=\mathrm{B}, 2=\mathrm{C}, 3=\mathrm{G}$

F186
ENUMERATION: MEASUREMENT MODE
$0=$ Phase to Ground, $1=$ Phase to Phase

F190
ENUMERATION: SIMULATED KEYPRESS

bitmsk	keypress	bitmsk	keypress
0	use between real keys	21	Escape
		22	Enter
1	1	23	Reset
2	2	24	User 1
3	3	25	User 2
4	4	26	User 3
5	5	27	User-programmable key 1
6	6	28	User-programmable key 2
7	7	29	User-programmable key 3
8	8	30	User-programmable key 4
9	9	31	User-programmable key 5
10	0	32	User-programmable key 6
11	Decimal Pt	33	User-programmable key 7
12	Plus/Minus	34	User-programmable key 8
13	Value Up	35	User-programmable key 9
14	Value Down	36	User-programmable key 10
15	Message Up	37	User-programmable key 11
16	Message Down	38	User-programmable key 12
17	Message Left	39	User 4 (control pushbutton)
18	Message Right	40	User 5 (control pushbutton)
19	Menu	41	User 6 (control pushbutton)
20	Help	42	User 7 (control pushbutton)

F192

ENUMERATION: ETHERNET OPERATION MODE
0 = Half-Duplex, 1 = Full-Duplex

F194

ENUMERATION: DNP SCALE

A bitmask of $0=0.01,1=0.1,2=1,3=10,4=100,5=1000$, $6=10000,7=100000,8=0.001$

F197
ENUMERATION: DNP BINARY INPUT POINT BLOCK

bitmask	Input Point Block
0	Not Used
1	Virtual Inputs 1 to 16
2	Virtual Inputs 17 to 32
3	Virtual Outputs 1 to 16
4	Virtual Outputs 17 to 32
5	Virtual Outputs 33 to 48
6	Virtual Outputs 49 to 64
7	Contact Inputs 1 to 16
8	Contact Inputs 17 to 32
9	Contact Inputs 33 to 48
10	Contact Inputs 49 to 64
11	Contact Inputs 65 to 80
12	Contact Inputs 81 to 96
13	Contact Outputs 1 to 16
14	Contact Outputs 17 to 32
15	Contact Outputs 33 to 48
16	Contact Outputs 49 to 64
17	Remote Inputs 1 to 16
18	Remote Inputs 17 to 32
19	Remote Devs 1 to 16
20	Elements 1 to 16
21	Elements 17 to 32
22	Elements 33 to 48
23	Elements 49 to 64
24	Elements 65 to 80
25	Elements 81 to 96
26	Elements 97 to 112
27	Elements 113 to 128
28	Elements 129 to 144
29	Elements 145 to 160
30	Elements 161 to 176
31	Elements 177 to 192
32	Elements 193 to 208
33	Elements 209 to 224
34	Elements 225 to 240
35	Elements 241 to 256
36	Elements 257 to 272
37	Elements 273 to 288
38	Elements 289 to 304
39	Elements 305 to 320
40	Elements 321 to 336
41	Elements 337 to 352

bitmask	Input Point Block
42	Elements 353 to 368
43	Elements 369 to 384
44	Elements 385 to 400
45	Elements 401 to 406
46	Elements 417 to 432
47	Elements 433 to 448
48	Elements 449 to 464
49	Elements 465 to 480
50	Elements 481 to 496
51	Elements 497 to 512
52	Elements 513 to 528
53	Elements 529 to 544
54	Elements 545 to 560
55	LED States 1 to 16
56	LED States 17 to 32
57	Self Tests 1 to 16
58	Self Tests 17 to 32

F200
TEXT40: 40-CHARACTER ASCII TEXT
20 registers, 16 Bits: 1st Char MSB, 2nd Char. LSB

F201
TEXT8: 8-CHARACTER ASCII PASSCODE
4 registers, 16 Bits: 1st Char MSB, 2nd Char. LSB

F202
TEXT20: 20-CHARACTER ASCII TEXT
10 registers, 16 Bits: 1st Char MSB, 2nd Char. LSB

F203
TEXT16: 16-CHARACTER ASCII TEXT

F204

TEXT80: 80-CHARACTER ASCII TEXT

F205
TEXT12: 12-CHARACTER ASCII TEXT

F206
TEXT6: 6-CHARACTER ASCII TEXT

F207
TEXT4: 4-CHARACTER ASCII TEXT

F208
TEXT2: 2-CHARACTER ASCII TEXT

F222
 ENUMERATION: TEST ENUMERATION

$0=$ Test Enumeration 0, $1=$ Test Enumeration 1

F300

UR_UINT16: FLEXLOGICTM BASE TYPE (6-bit type)

The FlexLogic™ BASE type is 6 bits and is combined with a 9 bit descriptor and 1 bit for protection element to form a 16 bit value. The combined bits are of the form: PTTTTTTDDDDDDDDD, where P bit if set, indicates that the FlexLogic ${ }^{\text {TM }}$ type is associated with a protection element state and T represents bits for the BASE type, and D represents bits for the descriptor.

The values in square brackets indicate the base type with P prefix [PTTTTTT] and the values in round brackets indicate the descriptor range.
[0] Off(0) this is boolean FALSE value
[0] On (1)This is boolean TRUE value
[2] CONTACT INPUTS (1-96)
[3] CONTACT INPUTS OFF (1-96)
[4] VIRTUAL INPUTS (1-64)
[6] VIRTUAL OUTPUTS (1-64)
[10] CONTACT OUTPUTS VOLTAGE DETECTED (1-64)
[11] CONTACT OUTPUTS VOLTAGE OFF DETECTED (1-64)
[12] CONTACT OUTPUTS CURRENT DETECTED (1-64)
[13] CONTACT OUTPUTS CURRENT OFF DETECTED (1-64)
[14] REMOTE INPUTS (1-32)
[28] INSERT (Via Keypad only)
[32] END
[34] NOT (1 INPUT)
[36] 2 INPUT XOR (0)
[38] LATCH SET/RESET (2 inputs)
[40] OR (2 to 16 inputs)
[42] AND (2 to 16 inputs)
[44] NOR (2 to 16 inputs)
[46] NAND (2 to 16 inputs)
[48] TIMER (1 to 32)
[50] ASSIGN VIRTUAL OUTPUT (1 to 64)
[52] SELF-TEST ERROR (see F141 for range)
[56] ACTIVE SETTING GROUP (1 to 6)
[62] MISCELLANEOUS EVENTS (see F146 for range)
[64 to 127] ELEMENT STATES

F400
UR_UINT16: CT/VT BANK SELECTION

bitmask	bank selection
0	Card 1 Contact 1 to 4
1	Card 1 Contact 5 to 8
2	Card 2 Contact 1 to 4
3	Card 2 Contact 5 to 8
4	Card 3 Contact 1 to 4
5	Card 3 Contact 5 to 8

F500

UR_UINT16: PACKED BITFIELD

First register indicates I/O state with bits 0 (MSB)-15(LSB) corresponding to I/O state 1-16. The second register indicates I/O state with bits $0-15$ corresponding to $1 / 0$ state $17-32$ (if required) The third register indicates I/O state with bits $0-15$ corresponding to I/O state 33-48 (if required). The fourth register indicates I/O state with bits $0-15$ corresponding to $1 / 0$ state 49-64 (if required).
The number of registers required is determined by the specific data item. A bit value of $0=\mathrm{Off}, 1=\mathrm{On}$

F501
 UR_UINT16: LED STATUS

Low byte of register indicates LED status with bit 0 representing the top LED and bit 7 the bottom LED. A bit value of 1 indicates the LED is on, 0 indicates the LED is off.

F502
 BITFIELD: ELEMENT OPERATE STATES

Each bit contains the operate state for an element. See the F124 format code for a list of element IDs. The operate bit for element ID X is bit [X mod 16] in register [$\mathrm{X} / 16$].

F504
BITFIELD: 3-PHASE ELEMENT STATE

bitmask	element state
0	Pickup
1	Operate
2	Pickup Phase A
3	Pickup Phase B
4	Pickup Phase C
5	Operate Phase A
6	Operate Phase B
7	Operate Phase C

F505
BITFIELD: CONTACT OUTPUT STATE
$0=$ Contact State, $1=$ Voltage Detected, $2=$ Current Detected

F506|

BITFIELD: 1 PHASE ELEMENT STATE
0 = Pickup, 1 = Operate

F507

BITFIELD: COUNTER ELEMENT STATE
$0=$ Count Greater Than, $1=$ Count Equal To, $2=$ Count Less Than

F509

BITFIELD: SIMPLE ELEMENT STATE
0 = Operate

F511

BITFIELD: 3-PHASE SIMPLE ELEMENT STATE
$0=$ Operate, $1=$ Operate $A, 2=$ Operate $B, 3=$ Operate C

F515

ENUMERATION ELEMENT INPUT MODE
0 = SIGNED, 1 = ABSOLUTE

F516
ENUMERATION ELEMENT COMPARE MODE
0 = LEVEL, 1 = DELTA

F518

ENUMERATION: FLEXELEMENT ${ }^{\text {TM }}$ UNITS
0 = Milliseconds, 1 = Seconds, 2 = Minutes

F519

ENUMERATION: NON-VOLATILE LATCH
0 = Reset-Dominant, 1 = Set-Dominant

F530
ENUMERATION: FRONT PANEL INTERFACE KEYPRESS

bitmask	keypress
0	None
1	Menu
2	Message Up
3	7
4	8
5	9
6	Help
7	Message Left
8	4
9	5
10	6
11	Escape
12	Message Right
13	1
14	2
15	3
16	Enter
17	Message Down
18	0
19	Decimal
20	$+/-$
21	Value Up

bitmask	keypress
22	Value Down
23	Reset
24	User 1
25	User 2
26	User 3
31	User PB 1
32	User PB 2
33	User PB 3
34	User PB 4
35	User PB 5
36	User PB 6
37	User PB 7
38	User PB 8
39	User PB 9
40	User PB 10
41	User PB 11
42	User PB 12
44	User 4
45	User 5
46	User 6
47	User 7

F600

UR_UINT16: FLEXANALOG PARAMETER
The 16 -bit value corresponds to the modbus address of the value to be used when this parameter is selected. Only certain values may be used as FlexAnalogs (basically all the metering quantities used in protection)

The Utility Communications Architecture (UCA) Version 2 represents an attempt by utilities and vendors of electronic equipment to produce standardized communications systems. There is a set of reference documents available from the Electric Power Research Institute (EPRI) and vendors of UCA/MMS software libraries that describe the complete capabilities of the UCA. Following, is a description of the subset of UCA/MMS features that are supported by the UR relay. The reference document set includes:

- Introduction to UCA version 2
- Generic Object Models for Substation and Feeder Equipment (GOMSFE)
- Common Application Service Models (CASM) and Mapping to MMS
- UCA Version 2 Profiles

These documents can be obtained from the UCA User's Group at http://www.ucausersgroup.org. It is strongly recommended that all those involved with any UCA implementation obtain this document set.

COMMUNICATION PROFILES:

The UCA specifies a number of possibilities for communicating with electronic devices based on the OSI Reference Model. The UR relay uses the seven layer OSI stack (TP4/CLNP and TCP/IP profiles). Refer to the "UCA Version 2 Profiles" reference document for details.

The TP4/CLNP profile requires the UR relay to have a network address or Network Service Access Point (NSAP) in order to establish a communication link. The TCP/IP profile requires the UR relay to have an IP address in order to establish a communication link. These addresses are set in the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow 』$ COMMUNICATIONS $\Rightarrow \sqrt{ } \Rightarrow$ NETWORK menu. Note that the UR relay supports UCA operation over the TP4/CLNP or the TCP/IP stacks and also supports operation over both stacks simultaneously. It is possible to have up to two simultaneous connections. This is in addition to DNP and Modbus/TCP (non-UCA) connections.

a) DESCRIPTION

The UCA specifies the use of the Manufacturing Message Specification (MMS) at the upper (Application) layer for transfer of real-time data. This protocol has been in existence for a number of years and provides a set of services suitable for the transfer of data within a substation LAN environment. Data can be grouped to form objects and be mapped to MMS services. Refer to the "GOMSFE" and "CASM" reference documents for details.

SUPPORTED OBJECTS:

The "GOMSFE" document describes a number of communication objects. Within these objects are items, some of which are mandatory and some of which are optional, depending on the implementation. The UR relay supports the following GOMSFE objects:

\bullet	DI (device identity)
\bullet	GCTL (generic control)
-	GIND (generic indicator)
-	GLOBE (global data)
-	MMXU (polyphase measurement unit)
-	PBRL (phase balance current relay)
-	PBRO (basic relay object)
-	PDIF (differential relay)
-	PDIS (distance)
-	PDOC (directional overcurrent)
-	PDPR (directional power relay)
-	PFRQ (frequency relay)

\bullet	PHIZ (high impedance ground detector)
\bullet	PIOC (instantaneous overcurrent relay)
-	POVR (overvoltage relay)
-	PTOC (time overcurrent relay)
-	PUVR (under voltage relay)
-	PVPH (volts per hertz relay)
-	ctRATO (CT ratio information)
-	vtRATO (VT ratio information)
-	RREC (reclosing relay)
-	RSYN (synchronizing or synchronism-check relay)
-	XCBR (circuit breaker)

UCA data can be accessed through the "UCADevice" MMS domain.

PEER-TO-PEER COMMUNICATION:

Peer-to-peer communication of digital state information, using the UCA GOOSE data object, is supported via the use of the UR Remote Inputs/Outputs feature. This feature allows digital points to be transferred between any UCA conforming devices.

FILE SERVICES:

MMS file services are supported to allow transfer of Oscillography, Event Record, or other files from a UR relay.

COMMUNICATION SOFTWARE UTILITIES:

The exact structure and values of the implemented objects can be seen by connecting to a UR relay with an MMS browser, such as the "MMS Object Explorer and AXS4-MMS DDE/OPC" server from Sisco Inc.

NON-UCA DATA:

The UR relay makes available a number of non-UCA data items. These data items can be accessed through the "UR" MMS domain. UCA data can be accessed through the "UCADevice" MMS domain.
b) PROTOCOL IMPLEMENTATION AND CONFORMANCE STATEMENT (PICS)

The UR relay functions as a server only; a UR relay cannot be configured as a client. Thus, the following list of supported services is for server operation only:

The MMS supported services are as follows:

CONNECTION MANAGEMENT SERVICES:

- Initiate
- Conclude
- Cancel
- Abort
- Reject

VMD SUPPORT SERVICES:

- Status
- GetNameList
- Identify

VARIABLE ACCESS SERVICES:

- Read
- Write
- InformationReport
- GetVariableAccessAttributes
- GetNamedVariableListAttributes

OPERATOR COMMUNICATION SERVICES:
(none)
SEMAPHORE MANAGEMENT SERVICES:
(none)
DOMAIN MANAGEMENT SERVICES:

- GetDomainAttributes

PROGRAM INVOCATION MANAGEMENT SERVICES:

(none)
EVENT MANAGEMENT SERVICES:
(none)

APPENDIX B

JOURNAL MANAGEMENT SERVICES:

(none)

FILE MANAGEMENT SERVICES:

- ObtainFile
- FileOpen
- FileRead
- FileClose
- FileDirectory

The following MMS parameters are supported:

- STR1 (Arrays)
- STR2 (Structures)
- NEST (Nesting Levels of STR1 and STR2) - 1
- VNAM (Named Variables)
- VADR (Unnamed Variables)
- VALT (Alternate Access Variables)
- VLIS (Named Variable Lists)
- REAL (ASN. 1 REAL Type)
c) MODEL IMPLEMENTATION CONFORMANCE (MIC)

This section provides details of the UCA object models supported by the UR series relays. Note that not all of the protective device functions are applicable to all the UR series relays.
Table B-1: DEVICE IDENTITY - DI

NAME	M/O	RWEC
Name	m	rw
Class	0	rw
d	o	rw
Own	o	rw
Loc	o	rw
VndID	m	r

Table B-2: GENERIC CONTROL - GCTL

FC	NAME	CLASS	RWECS	DESCRIPTION
ST	BO $<n>$	SI	rw	Generic Single Point Indication
CO	BO $<n>$	SI	rw	Generic Binary Output
CF	BO $<n>$	SBOCF	rw	SBO Configuration
DC	LN	d	rw	Description for brick
	BO $<n>$	d	rw	Description for each point

Actual instantiation of GCTL objects is as follows:
GCTL1 = Virtual Inputs (32 total points - SI1 to SI32); includes SBO functionality.

Table B-3: GENERIC INDICATORS - GIND 1 TO 6

FC	NAME	CLASS	RWECS	DESCRIPTION
ST	SIG<n>	SIG	r	Generic Indication (block of 16)
DC	LN	d	rw	Description for brick
RP	BrcbST	BasRCB	rw	Controls reporting of STATUS

Table B-4: GENERIC INDICATOR - GIND7

FC	OBJECT NAME	CLASS	RWECS	DESCRIPTION
ST	SI<n>	SI	r	Generic single point indication
DC	LN	d	rw	Description for brick
	SI<n>	d	rw	Description for all included SI
RP	BrcbST	BasRCB	rw	Controls reporting of STATUS

Actual instantiation of GIND objects is as follows:
GIND1 = Contact Inputs (96 total points - SIG1 to SIG6)
GIND2 $=$ Contact Outputs (64 total points - SIG1 to SIG4)
GIND3 $=$ Virtual Inputs (32 total points - SIG1 to SIG2)
GIND4 = Virtual Outputs (64 total points - SIG1 to SIG4)
GIND5 = Remote Inputs (32 total points - SIG1 to SIG2)
GIND6 $=$ Flex States (16 total points - SIG1 representing Flex States 1 to 16)
GIND7 $=$ Flex States (16 total points - SI1 to SI16 representing Flex States 1 to 16)

Table B-5: GLOBAL DATA - GLOBE

FC	OBJECT NAME	CLASS	RWECS	DESCRIPTION
ST	ModeDS	SIT	r	Device is: in test, off-line, available, or unhealthy
	LocRemDS	SIT	r	The mode of control, local or remote (DevST)
	ActSG	INT8U	r	Active Settings Group
	EditSG	INT8u	r	Settings Group selected for read/write operation
CO	CopySG	INT8U	w	Selects Settings Group for read/write operation
	IndRs	BOOL	w	Resets ALL targets
	ClockTOD	BTIME	rw	Date and time
RP	GOOSE	PACT	rw	Reports IED Inputs and Outputs

Table B-6: MEASUREMENT UNIT (POLYPHASE) - MMXU

FC	OBJECT NAME	CLASS	RWECS	DESCRIPTION
MX	V	WYE	rw	Voltage on phase A, B, C to G
	PPV	DELTA	rw	Voltage on $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$
	A	WYE	rw	Current in phase A, B, C, and N
	W	WYE	rw	Watts in phase A, B, C
	TotW	AI	rw	Total watts in all three phases
	Var	WYE	rw	Vars in phase A, B, C
	TotVar	AI	rw	Total vars in all three phases
	VA	WYE	rw	VA in phase A, B, C
	TotVA	AI	rw	Total VA in all 3 phases
	PF	WYE	rw	Power Factor for phase A, B, C
	AvgPF	AI	rw	Average Power Factor for all three phases
	Hz	AI	rw	Power system frequency
CF	All MMXU.MX	ACF	rw	Configuration of ALL included MMXU.MX
DC	LN	d	rw	Description for brick
	All MMXU.MX	d	rw	Description of ALL included MMXU.MX
RP	BrcbMX	BasRCB	rw	Controls reporting of measurements

Actual instantiation of MMXU objects is as follows:
1 MMXU per Source (as determined from the 'product order code')

Table B-7: PROTECTIVE ELEMENTS

FC	OBJECT NAME	CLASS	RWECS	DESCRIPTION
ST	Out	BOOL	r	1 = Element operated, 0 = Element not operated
	Tar	PhsTar	r	Targets since last reset
	FctDS	SIT	r	Function is enabled/disabled
	PuGrp	INT8U	r	Settings group selected for use
	EnaDisFct	DCO	w	1 = Element function enabled, 0 = disabled
	RsTar	BO	w	Reset ALL Elements/Targets
	RsLat	BO	w	Reset ALL Elements/Targets
DC	LN	d	rw	Description for brick
	ElementSt	d	r	Element state string

The following GOMSFE objects are defined by the object model described via the above table:

- PBRO (basic relay object)
- PDIF (differential relay)
- PDIS (distance)
- PDOC (directional overcurrent)
- PDPR (directional power relay)
- PFRQ (frequency relay)
- PHIZ (high impedance ground detector)
- PIOC (instantaneous overcurrent relay)
- POVR (over voltage relay)
- PTOC (time overcurrent relay)
- PUVR (under voltage relay)
- RSYN (synchronizing or synchronism-check relay)
- POVR (overvoltage)
- PVPH (volts per hertz relay)
- PBRL (phase balance current relay)

Actual instantiation of these objects is determined by the number of the corresponding elements present in the D30 as per the 'product order code'.

Table B-8: CT RATIO INFORMATION - ctRATO

OBJECT NAME	CLASS	RWECS	DESCRIPTION
PhsARat	RATIO	rw	Primary/secondary winding ratio
NeutARat	RATIO	rw	Primary/secondary winding ratio
LN	d	rw	Description for brick (current bank ID)

Table B-9: VT RATIO INFORMATION - vtRATO

OBJECT NAME	CLASS	RWECS	DESCRIPTION
PhsVRat	RATIO	rw	Primary/secondary winding ratio
LN	d	rw	Description for brick (current bank ID)

Actual instantiation of ctRATO and vtRATO objects is as follows:
1 ctRATO per Source (as determined from the product order code).
1 vtRATO per Source (as determined from the product order code).

Table B-10: RECLOSING RELAY - RREC

FC	OBJECT NAME	CLASS	RWECS	DESCRIPTION
ST	Out	BOOL	r	1 = Element operated, 0 = Element not operated
	FctDS	SIT	r	Function is enabled/disabled
	PuGrp	INT8U	r	Settings group selected for use
SG	ReclSeq	SHOTS	rw	Reclosing Sequence
CO	EnaDisFct	DCO	w	1 = Element function enabled, 0 = disabled
	RsTar	BO	w	Reset ALL Elements/Targets
	RsLat	BO	w	Reset ALL Elements/Targets
CF	ReclSeq	ACF	rw	Configuration for RREC.SG
DC	LN	d	rw	Description for brick
	ElementSt	d	r	Element state string

Actual instantiation of RREC objects is determined by the number of autoreclose elements present in the D30 as per the product order code.

Also note that the Shots class data (i.e. Tmr1, Tmr2, Tmr3, Tmr4, RsTmr) is specified to be of type INT16S (16 bit signed integer); this data type is not large enough to properly display the full range of these settings from the D30. Numbers larger than 32768 will be displayed incorrectly.

Table B-11: CIRCUIT BREAKER - XCBR

FC	OBJECT NAME	CLASS	RWECS	DESCRIPTION
ST	SwDS	SIT	rw	Switch Device Status
	SwPoleDS	BSTR8	rw	Switch Pole Device Status
	PwrSupSt	SIG	rw	Health of the power supply
	PresSt	SIT	rw	The condition of the insulating medium pressure
	PoleDiscSt	SI	rw	All CB poles did not operate within time interval
	TrpCoil	SI	rw	Trip coil supervision
CO	ODSw	DCO	rw	The command to open/close the switch
CF	ODSwSBO	SBOCF	rw	Configuration for all included XCBR.CO
DC	LN	d	rw	Description for brick
RP	brcbST	BasRCB	rw	Controls reporting of Status Points

Actual instantiation of XCBR objects is determined by the number of breaker control elements present in the D30 as per the product order code.
B.1.3 UCA REPORTING

A built-in TCP/IP connection timeout of two minutes is employed by the UR to detect "dead" connections. If there is no data traffic on a TCP connection for greater than two minutes, the connection will be aborted by the UR. This frees up the connection to be used by other clients. Therefore, when using UCA reporting, clients should configure BasRCB objects such that an integrity report will be issued at least every 2 minutes (120000 ms). This ensures that the UR will not abort the connection. If other MMS data is being polled on the same connection at least once every 2 minutes, this timeout will not apply.

This document is adapted from the IEC 60870-5-104 standard. For ths section the boxes indicate the following: used in standard direction; \square - not used; \square - cannot be selected in IEC 60870-5-104 standard.

1. SYSTEM OR DEVICE:System Definition
\square Controlling Station Definition (Master)
Controlled Station Definition (Slave)
2. NETWORK CONFIGURATION:
\square Point-to-Point
Aultiple-Point to-Point
Multipoint
Multipoint Star
3. PHYSICAL LAYER

Transmission Speed (control direction):

Unbalanced Interchange Circuit V.24/V. 28 Standard:	Unbalanced Interchange Circuit V.24/V. 28 Recommended if $\mathbf{> 1 2 0 0}$ bits/s:	Balanced Interchange Circuit X.24/X.27:
$\square 100$ bitslsec. 200 bitslsec. 300 bitslsec. 600 bitslsec. 1200 bitslsec.	- 2400 bits/sec. 4800 bits/sec. 9600 bits/see.	2400 -bits/sec. 4800 -bits/sec. 9600 -bits/sec. 19200 -bits/sec. 38400 bits/sec. 56000 bits/sec. 64000 bits/sec.

Transmission Speed (monitor direction):

Unbalanced Interchange Circuit V.24/V. 28 Standard:	Unbalanced Interchange Circuit V.24/V. 28 Recommended if >1200 bits/s:	Balanced Interchange Circuit X.24/X.27:
100 bits/sec. 200 bits/sec. 300 bits/sec. 600 bits/sec. 1200 bits/sec.	$\square 400$ bits/sec. 4800 bits/sec. 9600 bits/sec.	2400 bitslsec. 4800 bits/sec. 9600 bits/sec. 19200 bits/sec. 38400 bits/sec. 56000 bits/sec. 64000 bits/sec.

4. LINK LAYER

Link Transmission Procedure:	Address Field of the Link:
Batanced Transmision	Not Present (Batanced Transmission-Only)
Unbatanced Transmission	One-Octet
	Swo-Octets
	Structured
Frame Length (maximum length, number of octets): Not selectable in companion IEC 60870-5-104 standard	

When using an unbalanced link layer, the following ADSU types are returned in class 2 messages (low priority) with the indicated causes of transmission:
\square The-standard assignment of ADSUs to class 2 messages is used as follows:

- A special assignment of ADSUs to class 2 messages is used as follows:

5. APPLICATION LAYER

Transmission Mode for Application Data:

Mode 1 (least significant octet first), as defined in Clause 4.10 of IEC 60870-5-4, is used exclusively in this companion stanadard.
Common Address of ADSU:
\square One Octet
X Two Octets
Information Object Address:
\square One-Octet

- TwoOctets

X Three Octets

Cause of Transmission:

One-Octet
Two Octets (with originator address). Originator address is set to zero if not used.
Maximum Length of APDU: 253 (the maximum length may be reduced by the system.

Selection of standard ASDUs:

For the following lists, the boxes indicate the following: - used in standard direction; \square - not used; - cannot be selected in IEC 60870-5-104 standard.

Process information in monitor direction

\ll > : S Single-point information	M_SP_NA_1
-<2>:- Single-point information with time tag	M_SP_TA_1
$\square<3>$:= Double-point information	M_DP_NA_1
- $<4>$: Double point information with time tag	M_DP_TA_1
$\square<5>$:= Step position information	M_ST_NA_1
$-6\rangle$: = Step position information with time tag	M_ST_TA_1
$\square<7>$:= Bitstring of 32 bits	M_BO_NA_1
-8>:- Bitstring-of 32 bits with time tag	A_BO_TA_1
<9> := Measured value, normalized value	M_ME_NA_1
- $<10>$:- Measured value, normalized value with time tag	M_NE_TA_1
] <11> := Measured value, scaled value	M_ME_NB_1
- $12>$:- Measured value, scaled value with time tag	M_NE_TB_1
< $<13>$:= Measured value, short floating point value	M_ME_NC_1
- $<14>$: M Measured value, short floating point value with time tag	M_NE_TC_1
<15> := Integrated totals	M_IT_NA_1
- $<16>$: Integrated totals with time tag	M_I_TA_1
- $<17\rangle$: = Event of protection equipment with time tag	A_EP_TA_ ${ }^{\text {a }}$
-18>: - Packed start events of protection-equipment with time tag	A_EP_TB_1
-19>:= Packed output circuit information of protection equipment with time tag	A_EP_TC_ 1
$\square<20>$:= Packed single-point information with status change detection	M_SP_NA_1

] <21> := Measured value, normalized value without quantity descriptor	M_ME_ND_1
\ll30> := Single-point information with time tag CP56Time2a	M_SP_TB_1
$\square<31>$:= Double-point information wiht time tag CP56Time2a	M_DP_TB_1
$\square<32>$:= Step position information with time tag CP56Time2a	M_ST_TB_1
$\square<33>$:= Bitstring of 32 bits with time tag CP56Time2a	M_BO_TB_1
$\square<34>$:= Measured value, normalized value with time tag CP56Time2a	M_ME_TD_1
$\square<35>$:= Measured value, scaled value with time tag CP56Time2a	M_ME_TE_1
$\square<36>$:= Measured value, short floating point value with time tag CP56Time2a	M_ME_TF_1
< $37>$:= Integrated totals with time tag CP56Time2a	M_IT_TB_1
$\square<38>$:= Event of protection equipment with time tag CP56Time2a	M_EP_TD_1
$\square<39>$:= Packed start events of protection equipment with time tag CP56Time2a	M_EP_TE_1
$\square<40>$:= Packed output circuit information of protection equipment with time tag CP56Time2a	M_EP_TF_1

Either the ASDUs of the set <2>, <4>, <6>, <8>, <10>, <12>, <14>, <16>, <17>, <18>, and <19> or of the set $<30>$ to $<40>$ are used.

Process information in control direction

\ll45> := Single command	C_SC_NA_1
$\square<46>$:= Double command	C_DC_NA_1
$\square<47>$:= Regulating step command	C_RC_NA_1
$\square<48>$:= Set point command, normalized value	C_SE_NA_1
\square <49> := Set point command, scaled value	C_SE_NB_1
$\square<50>$:= Set point command, short floating point value	C_SE_NC_1
$\square<51>$:= Bitstring of 32 bits	C_BO_NA_1
\ll 58> := Single command with time tag CP56Time2a	C_SC_TA_1
$\square<59>$:= Double command with time tag CP56Time2a	C_DC_TA_1
$\square<60>$:= Regulating step command with time tag CP56Time2a	C_RC_TA_1
$\square<61>$:= Set point command, normalized value with time tag CP56Time2a	C_SE_TA_1
$\square<62>$:= Set point command, scaled value with time tag CP56Time2a	C_SE_TB_1
$\square<63>$:= Set point command, short floating point value with time tag CP56Time2a	C_SE_TC_1
$\square<64>$:= Bitstring of 32 bits with time tag CP56Time2a	C_BO_TA_1

Either the ASDUs of the set <45> to <51> or of the set <58> to <64> are used.

System information in monitor direction

< $<70>$:= End of initialization
System information in control direction
<100> := Interrogation command
C_IC_NA_1
<101> := Counter interrogation command
<102> := Read command
<103> := Clock synchronization command (see Clause 7.6 in standard)

- <104>:- Test command
<105> := Reset process command
<106> := Delay acquisition command
< $<107>$:= Test command with time tag CP56Time2a

Parameter in control direction

$$
\begin{aligned}
& \square<110>\text { := Parameter of measured value, normalized value } \\
& \square<111>\text { := Parameter of measured value, scaled value } \\
& \square<112>\text { := Parameter of measured value, short floating point value } \\
& \square<113>\text { := Parameter activation }
\end{aligned}
$$

PE_ME_NA_1
PE_ME_NB_1
PE_ME_NC_1
PE_AC_NA_1

File transfer

$\square<120>$:= File Ready
$\square<121>$	F_FR_NA_1
$\square<122>$	$:=$ Call directory, select file, call file, call section

Type identifier and cause of transmission assignments
(station-specific parameters)
In the following table:

- Shaded boxes are not required.
- Black boxes are not permitted in this companion standard.
- Blank boxes indicate functions or ASDU not used.
- ' 'X' if only used in the standard direction

TYPE IDENTIFICATION		CAUSE OF TRANSMISSION																		
		u U \vdots \vdots u 0 0 0 \vdots \square										RETURN INFO CAUSED BY LOCAL CMD								
NO.	MNEMONIC	1	2	3	4	5	6	7	8	9	10	11	12	13	$\begin{aligned} & 20 \\ & \text { to } \\ & 36 \end{aligned}$	$\begin{aligned} & 37 \\ & \text { to } \\ & 41 \end{aligned}$	44	45	46	47
<1>	M_SP_NA_1			X		X						X	X		X					
<2>	M_SP_TA_1																			
<3>	M_DP_NA_1																			
<4>	M_DP_TA_1																			
<5>	M_ST_NA_1																			
<6>	M_ST_TA_1																			
<7>	M_BO_NA_1																			
<8>	M_BO_TA_1																			

TYPE IDENTIFICATION		CAUSE OF TRANSMISSION																		
					$\begin{aligned} & \stackrel{Q}{\underset{N}{N}} \\ & \frac{N}{\mathbb{~}} \\ & \stackrel{\rightharpoonup}{Z} \end{aligned}$												UNKNOWN CAUSE OF TRANSMISSION			
NO.	MNEMONIC	1	2	3	4	5	6	7	8	9	10	11	12	13	$\begin{array}{l\|} \hline 20 \\ \text { to } \\ 36 \end{array}$	$\begin{array}{\|l\|} \hline 37 \\ \text { to } \\ 41 \end{array}$	44	45	46	47
<9>	M_ME_NA_1																			
<10>	M_ME_TA_1																			
<11>	M_ME_NB_1																			
<12>	M_ME_TB_1																			
<13>	M_ME_NC_1	X		X		X									X					
<14>	M_ME_TC_1																			
<15>	M_IT_NA_1			X												X				
<16>	M_IT_TA_1																			
<17>	M_EP_TA_1																			
<18>	M_EP_TB_1																			
<19>	M_EP_TC_1																			
<20>	M_PS_NA_1																			
<21>	M_ME_ND_1																			
<30>	M_SP_TB_1			x								x	x							
<31>	M_DP_TB_1																			
<32>	M_ST_TB_1																			
<33>	M_BO_TB_1																			
<34>	M_ME_TD_1																			
<35>	M_ME_TE_1																			
<36>	M_ME_TF_1																			
<37>	M_IT_TB_1			X												X				
<38>	M_EP_TD_1																			
<39>	M_EP_TE_1																			
<40>	M_EP_TF_1																			
<45>	C_SC_NA_1						X	X	X	X	X									
<46>	C_DC_NA_1																			
<47>	C_RC_NA_1																			
<48>	C_SE_NA_1																			
<49>	C_SE_NB_1																			

TYPE IDENTIFICATION		CAUSE OF TRANSMISSION																		
					$\begin{aligned} & \text { Q } \\ & \underset{N}{N} \\ & \frac{1}{4} \\ & \underline{E} \end{aligned}$							RETURN INFO CAUSED BY LOCAL CMD								UNKNOWN INFORMATION OBJECT ADDR
NO.	MNEMONIC	1	2	3	4	5	6	7	8	9	10	11	12	13	$\begin{aligned} & 20 \\ & \text { to } \\ & 36 \end{aligned}$	$\begin{array}{\|l\|} \hline 37 \\ \text { to } \\ 41 \end{array}$	44	45	46	47
<50>	C_SE_NC_1																			
<51>	C_BO_NA_1																			
<58>	C_SC_TA_1						X	X	X	X	X									
<59>	C_DC_TA_1																			
<60>	C_RC_TA_1																			
<61>	C_SE_TA_1																			
<62>	C_SE_TB_1																			
<63>	C_SE_TC_1																			
<64>	C_BO_TA_1																			
<70>	M_El_NA_1*)				X															
<100>	C_IC_NA_1						X	X	X	X	X									
<101>	C_Cl_NA_1						X	X			X									
<102>	C_RD_NA_1					X														
<103>	C_CS_NA_1			X			X	X												
<104>	C_TS_NA_1																			
<105>	C_RP_NA_1						X	X												
<106>	C_CD_NA_1																			
<107>	C_TS_TA_1																			
<110>	P_ME_NA_1																			
<111>	P_ME_NB_1																			
<112>	P_ME_NC_1						X	X							X					
<113>	P_AC_NA_1																			
<120>	F_FR_NA_1																			
<121>	F_SR_NA_1																			
<122>	F_SC_NA_1																			
<123>	F_LS_NA_1																			
<124>	F_AF_NA_1																			
<125>	F_SG_NA_1																			
<126>	F_DR_TA_1*)																			

6. BASIC APPLICATION FUNCTIONS

Station Initialization:

Remote initialization
Cyclic Data Transmission:
Cyclic data transmission
Read Procedure:
Read procedure
Spontaneous Transmission:
Spontaneous transmission
Double transmission of information objects with cause of transmission spontaneous:
The following type identifications may be transmitted in succession caused by a single status change of an information object. The particular information object addresses for which double transmission is enabled are defined in a projectspecific list.
\square Single point information: M_SP_NA_1, M_SP_TA_1, M_SP_TB_1, and M_PS_NA_1
\square Double point information: M_DP_NA_1, M_DP_TA_1, and M_DP_TB_1
\square Step position information: M_ST_NA_1, M_ST_TA_1, and M_ST_TB_1
\square Bitstring of 32 bits: $M_{-} B O_{-} N A _1, M_{-} B O_{-} T A _1$, and M_BO_TB_1 (if defined for a specific project)
\square Measured value, normalized value: M_ME_NA_1, M_ME_TA_1, M_ME_ND_1, and M_ME_TD_1
\square Measured value, scaled value: M_ME_NB_1, M_ME_TB_1, and M_ME_TE_1
\square Measured value, short floating point number: M_ME_NC_1, M_ME_TC_1, and M_ME_TF_1
Station interrogation:
Global
Group 1 Group 2 Group 5 Group 9

Clock synchronization:
X Clock synchronization (optional, see Clause 7.6)
Command transmission:
Direct command transmission
\square Direct setpoint command transmission
Select and execute command
\square Select and execute setpoint command
X C_SE ACTTERM used
No additional definition
Short pulse duration (duration determined by a system parameter in the outstation)
Long pulse duration (duration determined by a system parameter in the outstation)
Persistent output

Supervision of maximum delay in command direction of commands and setpoint commands Maximum allowable delay of commands and setpoint commands: $\mathbf{1 0} \mathbf{s}$

Transmission of integrated totals:

Mode A: Local freeze with spontaneous transmission
Mode B: Local freeze with counter interrogation
Mode C: Freeze and transmit by counter-interrogation commands
M Mode D: Freeze by counter-interrogation command, frozen values reported simultaneously

X Counter read
Counter freeze without reset
Counter freeze with reset
Counter reset

General request counter
Request counter group 1
Request counter group 2
Request counter group 3
Request counter group 4
Parameter loading:
Threshold value
\square Smoothing factorLow limit for transmission of measured valuesHigh limit for transmission of measured values

Parameter activation:

\square Activation/deactivation of persistent cyclic or periodic transmission of the addressed object
Test procedure:
\square Test procedure
File transfer:
File transfer in monitor direction:Transparent fileTransmission of disturbance data of protection equipmentTransmission of sequences of eventsTransmission of sequences of recorded analog values
File transfer in control direction:Transparent file
Background scan:
\square Background scan
Acquisition of transmission delay:

- Acquisition of transmission delay

APPENDIX C

Definition of time outs:

PARAMETER	DEFAULT VALUE	REMARKS	SELECTED VALUE
t_{0}	30 s	Timeout of connection establishment	120 s
t_{1}	15 s	Timeout of send or test APDUs	15 s
t_{2}	10 s	Timeout for acknowlegements in case of no data messages $t_{2}<t_{1}$	10 s
t_{3}	20 s	Timeout for sending test frames in case of a long idle state	20 s

Maximum range of values for all time outs: 1 to 255 s , accuracy 1 s

Maximum number of outstanding l-format APDUs \boldsymbol{k} and latest acknowledge APDUs (w):

PARAMETER	DEFAULT VALUE	REMARKS	SELECTED VALUE
k	12 APDUs	Maximum difference receive sequence number to send state variable	12 APDUs
w	8 APDUs	Latest acknowledge after receiving w l-format APDUs	8 APDUs

Maximum range of values k : 1 to $32767\left(2^{15}-1\right)$ APDUs, accuracy 1 APDU
Maximum range of values w : 1 to 32767 APDUs, accuracy 1 APDU

$$
\text { Recommendation: w should not exceed two-thirds of } k \text {. }
$$

Portnumber:

PARAMETER	VALUE	REMARKS
Portnumber	2404	In all cases

RFC 2200 suite:
RFC 2200 is an official Internet Standard which describes the state of standardization of protocols used in the Internet as determined by the Internet Architecture Board (IAB). It offers a broad spectrum of actual standards used in the Internet. The suitable selection of documents from RFC 2200 defined in this standard for given projects has to be chosen by the user of this standard.

Ethernet 802.3Serial X. 21 interfaceOther selection(s) from RFC 2200 (list below if selected)

Only Source 1 data points are shown in the following table. If the NUMBER OF SOURCES IN MMENC LIST setting is increased, data points for subsequent sources will be added to the list immediately following the Source 1 data points.

Table C-1: IEC 60870-5-104 POINTS (SHEET 1 OF 3)

POINT	DESCRIPTION
M_ME_NC_1 Points	
2000	SRC 1 Phase A Current RMS
2001	SRC 1 Phase B Current RMS
2002	SRC 1 Phase C Current RMS
2003	SRC 1 Neutral Current RMS
2004	SRC 1 Phase A Current Magnitude
2005	SRC 1 Phase A Current Angle
2006	SRC 1 Phase B Current Magnitude
2007	SRC 1 Phase B Current Angle
2008	SRC 1 Phase C Current Magnitude
2009	SRC 1 Phase C Current Angle
2010	SRC 1 Neutral Current Magnitude
2011	SRC 1 Neutral Current Angle
2012	SRC 1 Ground Current RMS
2013	SRC 1 Ground Current Magnitude
2014	SRC 1 Ground Current Angle
2015	SRC 1 Zero Sequence Current Magnitude
2016	SRC 1 Zero Sequence Current Angle
2017	SRC 1 Positive Sequence Current Magnitude
2018	SRC 1 Positive Sequence Current Angle
2019	SRC 1 Negative Sequence Current Magnitude
2020	SRC 1 Negative Sequence Current Angle
2021	SRC 1 Differential Ground Current Magnitude
2022	SRC 1 Differential Ground Current Angle
2023	SRC 1 Phase AG Voltage RMS
2024	SRC 1 Phase BG Voltage RMS
2025	SRC 1 Phase CG Voltage RMS
2026	SRC 1 Phase AG Voltage Magnitude
2027	SRC 1 Phase AG Voltage Angle
2028	SRC 1 Phase BG Voltage Magnitude
2029	SRC 1 Phase BG Voltage Angle
2030	SRC 1 Phase CG Voltage Magnitude
2031	SRC 1 Phase CG Voltage Angle
2032	SRC 1 Phase AB Voltage RMS
2033	SRC 1 Phase BC Voltage RMS
2034	SRC 1 Phase CA Voltage RMS
2035	SRC 1 Phase AB Voltage Magnitude
2036	SRC 1 Phase AB Voltage Angle
2037	SRC 1 Phase BC Voltage Magnitude
2038	SRC 1 Phase BC Voltage Angle
2039	SRC 1 Phase CA Voltage Magnitude
2040	SRC 1 Phase CA Voltage Angle
2041	SRC 1 Auxiliary Voltage RMS
2042	SRC 1 Auxiliary Voltage Magnitude
2043	SRC 1 Auxiliary Voltage Angle
2044	SRC 1 Zero Sequence Voltage Magnitude

Table C-1: IEC 60870-5-104 POINTS (SHEET 2 OF 3)

POINT	DESCRIPTION
2045	SRC 1 Zero Sequence Voltage Angle
2046	SRC 1 Positive Sequence Voltage Magnitude
2047	SRC 1 Positive Sequence Voltage Angle
2048	SRC 1 Negative Sequence Voltage Magnitude
2049	SRC 1 Negative Sequence Voltage Angle
2050	SRC 1 Three Phase Real Power
2051	SRC 1 Phase A Real Power
2052	SRC 1 Phase B Real Power
2053	SRC 1 Phase C Real Power
2054	SRC 1 Three Phase Reactive Power
2055	SRC 1 Phase A Reactive Power
2056	SRC 1 Phase B Reactive Power
2057	SRC 1 Phase C Reactive Power
2058	SRC 1 Three Phase Apparent Power
2059	SRC 1 Phase A Apparent Power
2060	SRC 1 Phase B Apparent Power
2061	SRC 1 Phase C Apparent Power
2062	SRC 1 Three Phase Power Factor
2063	SRC 1 Phase A Power Factor
2064	SRC 1 Phase B Power Factor
2065	SRC 1 Phase C Power Factor
2066	SRC 1 Frequency
2067	Breaker 1 Arcing Amp Phase A
2068	Breaker 1 Arcing Amp Phase B
2069	Breaker 1 Arcing Amp Phase C
2070	Breaker 2 Arcing Amp Phase A
2071	Breaker 2 Arcing Amp Phase B
2072	Breaker 2 Arcing Amp Phase C
2073	Synchrocheck 1 Delta Voltage
2074	Synchrocheck 1 Delta Frequency
2075	Synchrocheck 1 Delta Phase
2076	Synchrocheck 2 Delta Voltage
2077	Synchrocheck 2 Delta Frequency
2078	Synchrocheck 2 Delta Phase
2079	Tracking Frequency
2080	Current Setting Group
P_ME_NC_1 Points	
5000-5080	Threshold values for M_ME_NC_1 points
M_SP_NA_1 Points	
100-115	Virtual Input States[0]
116-131	Virtual Input States[1]
132-147	Virtual Output States[0]
148-163	Virtual Output States[1]
164-179	Virtual Output States[2]
180-195	Virtual Output States[3]
196-211	Contact Input States[0]

APPENDIX C

Table C-1: IEC 60870-5-104 POINTS (SHEET 3 OF 3)

POINT	DESCRIPTION
$212-227$	Contact Input States[1]
$228-243$	Contact Input States[2]
$244-259$	Contact Input States[3]
$260-275$	Contact Input States[4]
$276-291$	Contact Input States[5]
$292-307$	Contact Output States[0]
$308-323$	Contact Output States[1]
$324-339$	Contact Output States[2]
$340-355$	Contact Output States[3]
$356-371$	Remote Input x States[0]
$372-387$	Remote Input x States[1]
$388-403$	Remote Device x States
$404-419$	LED Column x State[0]
$420-435$	LED Column x State[1]
C_SC_NA_1 Points	
$1100-1115$	Virtual Input States[0] - No Select Required
$1116-1131$	Virtual Input States[1] - Select Required
M_IT_NA_1 Points	
4000	Digital Counter 1 Value
4001	Digital Counter 2 Value
4002	Digital Counter 3 Value
4003	Digital Counter 4 Value
4004	Digital Counter 5 Value
4005	Digital Counter 6 Value
4006	Digital Counter 7 Value
4007	Digital Counter 8 Value

The following table provides a 'Device Profile Document' in the standard format defined in the DNP 3.0 Subset Definitions Document.

Table D-1: DNP V3.00 DEVICE PROFILE (Sheet 1 of 3)

(Also see the IMPLEMENTATION TABLE in the following section)	
Vendor Name: General Electric Multilin	
Device Name: UR Series Relay	
Highest DNP Level Supported: For Requests: Level 2 For Responses: Level 2	Device Function: Master Slave
Notable objects, functions, and/or qualifiers supported in addition to the Highest DNP Levels Supported (the complete list is described in the attached table): Binary Inputs (Object 1) Binary Input Changes (Object 2) Binary Outputs (Object 10) Binary Counters (Object 20) Frozen Counters (Object 21) Counter Change Event (Object 22) Frozen Counter Event (Object 23) Analog Inputs (Object 30) Analog Input Changes (Object 32) Analog Deadbands (Object 34)	
Maximum Data Link Frame Size (octets): Transmitted: 292 Received: 292	Maximum Application Fragment Size (octets): Transmitted: 240 Received: 2048
Maximum Data Link Re-tries: None Fixed at 2 Configurable	Maximum Application Layer Re-tries: None Configurable
Requires Data Link Layer Confirmation:NeverAlwaysSometimesConfigurable	

Table D-1: DNP V3.00 DEVICE PROFILE (Sheet 2 of 3)

Table D-1: DNP V3.00 DEVICE PROFILE (Sheet 3 of 3)

Reports Binary Input Change Events when no specific variation requested: Never Only time-tagged Only non-time-tagged Configurable	Reports time-tagged Binary Input Change Events when no specific variation requested: Never Binary Input Change With Time Binary Input Change With Relative Time Configurable (attach explanation)
Sends Unsolicited Responses: Never Configurable Only certain objects Sometimes (attach explanation) ENABLE/DISABLE unsolicited Function codes supported	Sends Static Data in Unsolicited Responses: Never When Device Restarts When Status Flags Change No other options are permitted.
Default Counter Object/Variation: No Counters Reported Configurable (attach explanation) Default Object: 20 Default Variation: 1 Point-by-point list attached	Counters Roll Over at: No Counters Reported Configurable (attach explanation) 16 Bits (Counter 8) 32 Bits (Counters 0 to 7, 9) Other Value: \qquad Point-by-point list attached
Sends Multi-Fragment Responses: Yes No	

The following table identifies the variations, function codes, and qualifiers supported by the UR in both request messages and in response messages. For static (non-change-event) objects, requests sent with qualifiers 00, 01, 06, 07, or 08, will be responded with qualifiers 00 or 01 . Static object requests sent with qualifiers 17 or 28 will be responded with qualifiers 17 or 28. For change-event objects, qualifiers 17 or 28 are always responded.

Table D-2: IMPLEMENTATION TABLE (Sheet 1 of 4)

OBJECT			REQUEST		RESPONSE	
$\begin{aligned} & \text { OBJECT } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { VARIATION } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	FUNCTION CODES (DEC)	$\begin{aligned} & \text { QUALIFIER } \\ & \text { CODES (HEX) } \end{aligned}$	$\begin{aligned} & \text { FUNCTION } \\ & \text { CODES (DEC) } \end{aligned}$	$\begin{aligned} & \text { QUALIFIER } \\ & \text { CODES (HEX) } \end{aligned}$
1	0	Binary Input (Variation 0 is used to request default variation)	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)		
	1	Binary Input	$\begin{array}{\|l\|} \hline 1 \text { (read) } \\ 22 \text { (assign class) } \end{array}$	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{aligned} & \text { 00, } 01 \text { (start-stop) } \\ & \text { 17, } 28 \text { (index) } \\ & \text { (see Note 2) } \end{aligned}$
	2	Binary Input with Status (default - see Note 1)	$\begin{array}{\|l\|} \hline 1 \text { (read) } \\ 22 \text { (assign class) } \end{array}$	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
2	0	Binary Input Change (Variation 0 is used to request default variation)	1 (read)	06 (no range, or all) 07, 08 (limited quantity)		
	1	Binary Input Change without Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	$\begin{aligned} & 129 \text { (response) } \\ & 130 \text { (unsol. resp.) } \end{aligned}$	17, 28 (index)
	2	Binary Input Change with Time (default - see Note 1)	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response 130 (unsol. resp.)	17, 28 (index)
	3 (parse only)	Binary Input Change with Relative Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)		
10	0	Binary Output Status (Variation 0 is used to request default variation)	1 (read)	00, 01(start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)		
	2	Binary Output Status (default - see Note 1)	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{aligned} & \text { 00, } 01 \text { (start-stop) } \\ & \text { 17, } 28 \text { (index) } \\ & \text { (see Note 2) } \end{aligned}$
12	1	Control Relay Output Block	3 (select) 4 (operate) 5 (direct op) 6 (dir. op, noack)	00, 01 (start-stop) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	echo of request
20	0	Binary Counter (Variation 0 is used to request default variation)	$\begin{array}{\|l\|} \hline 1 \text { (read) } \\ 7 \text { (freeze) } \\ 8 \text { (freeze noack) } \\ 9 \text { (freeze clear) } \\ 10 \text { (frz. cl. noack) } \\ 22 \text { (assign class) } \end{array}$	00, 01(start-stop) 06(no range, or all) 07, 08(limited quantity) 17, 28(index)		
	1	32-Bit Binary Counter (default - see Note 1)	1 (read) 7 (freeze) 8 (freeze noack) 9 (freeze clear) 10 (frz. cl. noack) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \hline 00,01 \text { (start-stop) } \\ 17,28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$

Note 1: A Default variation refers to the variation responded when variation 0 is requested and/or in class 0, 1, 2, or 3 scans. Type 30 (Analog Input) data is limited to data that is actually possible to be used in the UR, based on the product order code. For example, Signal Source data from source numbers that cannot be used is not included. This optimizes the class 0 poll data size.
Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28 , respectively. Otherwise, static object requests sent with qualifiers $00,01,06,07$, or 08 , will be responded with qualifiers 00 or 01 (for changeevent objects, qualifiers 17 or 28 are always responded.)
Note 3: Cold restarts are implemented the same as warm restarts - the UR is not restarted, but the DNP process is restarted.

Table D-2: IMPLEMENTATION TABLE (Sheet 2 of 4)

OBJECT			REQUEST		RESPONSE	
$\begin{gathered} \text { OBJECT } \\ \text { NO. } \end{gathered}$	$\begin{array}{\|l\|} \hline \text { VARIATION } \\ \text { NO. } \end{array}$	DESCRIPTION	$\begin{aligned} & \text { FUNCTION } \\ & \text { CODES (DEC) } \end{aligned}$	$\begin{array}{\|l} \hline \text { QUALIFIER } \\ \text { CODES (HEX) } \end{array}$	$\begin{aligned} & \hline \text { FUNCTION } \\ & \text { CODES (DEC) } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { QUALIFIER } \\ \text { CODES (HEX) } \end{array}$
$\begin{gathered} 20 \\ \text { cont'd } \end{gathered}$	2	16-Bit Binary Counter	$\begin{array}{\|l\|} \hline 1 \text { (read) } \\ 7 \text { (freeze) } \\ 8 \text { (freeze noack) } \\ 9 \text { (freeze clear) } \\ 10 \text { (frz. cl. noack) } \\ 22 \text { (assign class) } \\ \hline \end{array}$	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
	5	32-Bit Binary Counter without Flag	$\begin{array}{\|l\|} \hline 1 \text { (read) } \\ 7 \text { (freeze) } \\ 8 \text { (freeze noack) } \\ 9 \text { (freeze clear) } \\ 10 \text { (frz. cl. noack) } \\ 22 \text { (assign class) } \end{array}$	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \hline 00,01 \text { (start-stop) } \\ 17,28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
	6	16-Bit Binary Counter without Flag	$\begin{array}{\|l\|} \hline 1 \text { (read) } \\ 7 \text { (freeze) } \\ 8 \text { (freeze noack) } \\ 9 \text { (freeze clear) } \\ 10 \text { (frz. cl. noack) } \\ 22 \text { (assign class) } \end{array}$	$\begin{array}{\|l\|} \hline 00,01 \text { (start-stop) } \\ 06 \text { (no range, or all) } \\ 07,08 \text { (limited quantity) } \\ 17,28 \text { (index) } \end{array}$	129 (response)	$\begin{gathered} \hline 00,01 \text { (start-stop) } \\ 17,28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
21	0	Frozen Counter (Variation 0 is used to request default variation)	$\begin{aligned} & \hline 1 \text { (read) } \\ & 22 \text { (assign class) } \end{aligned}$	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)		
	1	32-Bit Frozen Counter (default - see Note 1)	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \hline 00,01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
	2	16-Bit Frozen Counter	$\begin{aligned} & \hline 1 \text { (read) } \\ & 22 \text { (assign class) } \end{aligned}$	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ 17,28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
	9	32-Bit Frozen Counter without Flag	$\begin{aligned} & \hline 1 \text { (read) } \\ & 22 \text { (assign class) } \end{aligned}$	00, 01 (start-stop) 06 (no range, or all) 07,08 (limited quantity) 17,28 (index)	129 (response)	$\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ 17,28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
	10	16-Bit Frozen Counter without Flag	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
22	0	Counter Change Event (Variation 0 is used to request default variation)	1 (read)	06 (no range, or all) 07, 08 (limited quantity)		
	1	32-Bit Counter Change Event (default - see Note 1)	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	$\begin{aligned} & 129 \text { (response) } \\ & 130 \text { (unsol. resp.) } \end{aligned}$	17, 28 (index)
	2	16-Bit Counter Change Event	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	5	32-Bit Counter Change Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	6	16-Bit Counter Change Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	$\begin{aligned} & \hline 129 \text { (response) } \\ & 130 \text { (unsol. resp.) } \end{aligned}$	17, 28 (index)
23	0	Frozen Counter Event (Variation 0 is used to request default variation)	1 (read)	06 (no range, or all) 07, 08 (limited quantity)		
	1	32-Bit Frozen Counter Event (default - see Note 1)	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	2	16-Bit Frozen Counter Event	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	$\begin{aligned} & 129 \text { (response) } \\ & 130 \text { (unsol. resp.) } \end{aligned}$	17, 28 (index)

Note 1: A Default variation refers to the variation responded when variation 0 is requested and/or in class $0,1,2$, or 3 scans. Type 30 (Analog Input) data is limited to data that is actually possible to be used in the UR, based on the product order code. For example, Signal Source data from source numbers that cannot be used is not included. This optimizes the class 0 poll data size.
Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28 , respectively. Otherwise, static object requests sent with qualifiers $00,01,06,07$, or 08 , will be responded with qualifiers 00 or 01 (for changeevent objects, qualifiers 17 or 28 are always responded.)
Note 3: Cold restarts are implemented the same as warm restarts - the UR is not restarted, but the DNP process is restarted.

Table D-2: IMPLEMENTATION TABLE (Sheet 3 of 4)

OBJECT			REQUEST		RESPONSE	
$\begin{aligned} & \text { OBJECT } \\ & \text { NO. } \end{aligned}$	VARIATION NO.	DESCRIPTION	$\begin{array}{\|l\|} \hline \text { FUNCTION } \\ \text { CODES (DEC) } \end{array}$	$\begin{aligned} & \hline \text { QUALIFIER } \\ & \text { CODES (HEX) } \end{aligned}$	$\begin{aligned} & \hline \text { FUNCTION } \\ & \text { CODES (DEC) } \end{aligned}$	$\begin{aligned} & \text { QUALIFIER } \\ & \text { CODES (HEX) } \end{aligned}$
$\begin{gathered} 23 \\ \text { cont'd } \end{gathered}$	5	32-Bit Frozen Counter Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	6	16-Bit Frozen Counter Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
30	0	Analog Input (Variation 0 is used to request default variation)	$\begin{aligned} & \hline 1 \text { (read) } \\ & 22 \text { (assign class) } \end{aligned}$	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)		
	1	32-Bit Analog Input (default - see Note 1)	$\begin{aligned} & \hline 1 \text { (read) } \\ & 22 \text { (assign class) } \end{aligned}$	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
	2	16-Bit Analog Input	$\begin{aligned} & \hline 1 \text { (read) } \\ & 22 \text { (assign class) } \end{aligned}$	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
	3	32-Bit Analog Input without Flag	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
	4	16-Bit Analog Input without Flag	$\begin{aligned} & 1 \text { (read) } \\ & 22 \text { (assign class) } \end{aligned}$	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
	5	short floating point	$\begin{array}{\|l\|} \hline 1 \text { (read) } \\ 22 \text { (assign class) } \end{array}$	00, 01 (start-stop) 06(no range, or all) 07, 08 (limited quantity) 17, 28(index)	129 (response)	$\begin{gathered} \hline 00,01 \text { (start-stop) } \\ 17,28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
32	0	Analog Change Event (Variation 0 is used to request default variation)	1 (read)	06 (no range, or all) 07, 08 (limited quantity)		
	1	32-Bit Analog Change Event without Time (default - see Note 1)	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	$\begin{aligned} & 129 \text { (response) } \\ & 130 \text { (unsol. resp.) } \end{aligned}$	17, 28 (index)
	2	16-Bit Analog Change Event without Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	3	32-Bit Analog Change Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	$\begin{aligned} & 129 \text { (response) } \\ & 130 \text { (unsol. resp.) } \end{aligned}$	17, 28 (index)
	4	16-Bit Analog Change Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	$\begin{aligned} & 129 \text { (response) } \\ & 130 \text { (unsol. resp.) } \end{aligned}$	17, 28 (index)
	5	short floating point Analog Change Event without Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	7	short floating point Analog Change Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
34	0	Analog Input Reporting Deadband (Variation 0 is used to request default variation)	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)		
	1	16-bit Analog Input Reporting Deadband (default - see Note 1)	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
			2 (write)	00, 01 (start-stop) 07,08 (limited quantity) 17,28 (index)		

Note 1: A Default variation refers to the variation responded when variation 0 is requested and/or in class 0,1 , 2, or 3 scans. Type 30 (Analog Input) data is limited to data that is actually possible to be used in the UR, based on the product order code. For example, Signal Source data from source numbers that cannot be used is not included. This optimizes the class 0 poll data size.
Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28 , respectively. Otherwise, static object requests sent with qualifiers $00,01,06,07$, or 08 , will be responded with qualifiers 00 or 01 (for changeevent objects, qualifiers 17 or 28 are always responded.)
Note 3: Cold restarts are implemented the same as warm restarts - the UR is not restarted, but the DNP process is restarted.

Table D-2: IMPLEMENTATION TABLE (Sheet 4 of 4)

OBJECT			REQUEST		RESPONSE	
$\begin{aligned} & \text { OBJECT } \\ & \text { NO. } \end{aligned}$	VARIATION NO.	DESCRIPTION	$\begin{aligned} & \hline \text { FUNCTION } \\ & \text { CODES (DEC) } \end{aligned}$	QUALIFIER CODES (HEX)	$\begin{aligned} & \hline \text { FUNCTION } \\ & \text { CODES (DEC) } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { QUALIFIER } \\ \text { CODES (HEX) } \end{array}$
$\begin{gathered} 34 \\ \text { cont'd } \end{gathered}$	2	32-bit Analog Input Reporting Deadband	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \hline 00,01 \text { (start-stop) } \\ 17,28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
			2 (write)	00, 01 (start-stop) 07, 08 (limited quantity) 17, 28 (index)		
	3	Short floating point Analog Input Reporting Deadband	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \hline 00,01 \text { (start-stop) } \\ 17,28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
50	0	Time and Date	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \hline 00,01 \text { (start-stop) } \\ 17,28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
	1	Time and Date (default - see Note 1)	$\begin{aligned} & 1 \text { (read) } \\ & 2 \text { (write) } \end{aligned}$	00, 01 (start-stop) 06 (no range, or all) 07 (limited qty=1) 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{aligned} & \hline 00,01 \text { (start-stop) } \\ & 17,28 \text { (index) } \\ & \text { (see Note 2) } \end{aligned}$
52	2	Time Delay Fine			129 (response)	$\begin{array}{\|l\|} \hline 07 \text { (limited quantity) } \\ \text { (quantity = 1) } \\ \hline \end{array}$
60	0	Class 0, 1, 2, and 3 Data	1 (read) 20 (enable unsol) 21 (disable unsol) 22 (assign class)	06 (no range, or all)		
	1	Class 0 Data	$\begin{aligned} & \hline 1 \text { (read) } \\ & 22 \text { (assign class) } \end{aligned}$	06 (no range, or all)		
	2	Class 1 Data	1 (read) 20 (enable unsol) 21 (disable unsol) 22 (assign class)	06 (no range, or all) 07, 08 (limited quantity)		
	3	Class 2 Data	1 (read) 20 (enable unsol) 21 (disable unsol) 22 (assign class)	06 (no range, or all) 07, 08 (limited quantity)		
	4	Class 3 Data	1 (read) 20 (enable unsol) 21 (disable unsol) 22 (assign class)	06 (no range, or all) 07, 08 (limited quantity)		
80	1	Internal Indications	2 (write)	$\begin{aligned} & \hline 00 \text { (start-stop) } \\ & \text { (index must =7) } \end{aligned}$		
---		No Object (function code only) see Note 3	13 (cold restart)			
---		No Object (function code only)	14 (warm restart)			
---		No Object (function code only)	23 (delay meas.)			

Note 1: A Default variation refers to the variation responded when variation 0 is requested and/or in class $0,1,2$, or 3 scans. Type 30 (Analog Input) data is limited to data that is actually possible to be used in the UR, based on the product order code. For example, Signal Source data from source numbers that cannot be used is not included. This optimizes the class 0 poll data size.
Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28 , respectively. Otherwise, static object requests sent with qualifiers $00,01,06,07$, or 08 , will be responded with qualifiers 00 or 01 (for changeevent objects, qualifiers 17 or 28 are always responded.)
Note 3: Cold restarts are implemented the same as warm restarts - the UR is not restarted, but the DNP process is restarted.

The following table lists both Binary Counters (Object 20) and Frozen Counters (Object 21). When a freeze function is performed on a Binary Counter point, the frozen value is available in the corresponding Frozen Counter point.

BINARY INPUT POINTS

Static (Steady-State) Object Number: 1
Change Event Object Number: 2
Request Function Codes supported: 1 (read), 22 (assign class)
Static Variation reported when variation 0 requested: 2 (Binary Input with status)
Change Event Variation reported when variation 0 requested: 2 (Binary Input Change with Time)
Change Event Scan Rate: 8 times per power system cycle
Change Event Buffer Size: 1000

Table D-3: BINARY INPUTS (Sheet 1 of 8)

POINT INDEX	NAME/DESCRIPTION	CHANGE EVENT CLASS (1/2/3/NONE)
0	Virtual Input 1	2
1	Virtual Input 2	2
2	Virtual Input 3	2
3	Virtual Input 4	2
4	Virtual Input 5	2
5	Virtual Input 6	2
6	Virtual Input 7	2
7	Virtual Input 8	2
8	Virtual Input 9	2
9	Virtual Input 10	2
10	Virtual Input 11	2
11	Virtual Input 12	2
12	Virtual Input 13	2
13	Virtual Input 14	2
14	Virtual Input 15	2
15	Virtual Input 16	2
16	Virtual Input 17	2
17	Virtual Input 18	2
18	Virtual Input 19	2
19	Virtual Input 20	2
20	Virtual Input 21	2
21	Virtual Input 22	2
22	Virtual Input 23	2
23	Virtual Input 24	2
24	Virtual Input 25	2
25	Virtual Input 26	2
26	Virtual Input 27	2
27	Virtual Input 28	2
28	Virtual Input 29	2
29	Virtual Input 30	2
30	Virtual Input 31	2
31	Virtual Input 32	2

Table D-3: BINARY INPUTS (Sheet 2 of 8)

POINT INDEX	NAMEIDESCRIPTION	CHANGE EVENT CLASS (1/2/3/NONE)
32	Virtual Output 1	2
33	Virtual Output 2	2
34	Virtual Output 3	2
35	Virtual Output 4	2
36	Virtual Output 5	2
37	Virtual Output 6	2
38	Virtual Output 7	2
39	Virtual Output 8	2
40	Virtual Output 9	2
41	Virtual Output 10	2
42	Virtual Output 11	2
43	Virtual Output 12	2
44	Virtual Output 13	2
45	Virtual Output 14	2
46	Virtual Output 15	2
47	Virtual Output 16	2
48	Virtual Output 17	2
49	Virtual Output 18	2
50	Virtual Output 19	2
51	Virtual Output 20	2
52	Virtual Output 21	2
53	Virtual Output 22	2
54	Virtual Output 23	2
55	Virtual Output 24	2
56	Virtual Output 25	2
57	Virtual Output 26	2
58	Virtual Output 27	2
59	Virtual Output 28	2
60	Virtual Output 29	2
61	Virtual Output 30	2
62	Virtual Output 31	2
63	Virtual Output 32	2

Table D-3: BINARY INPUTS (Sheet 3 of 8)

POINT INDEX	NAME/DESCRIPTION	CHANGE EVENT CLASS (1/2/3/NONE)
64	Virtual Output 33	2
65	Virtual Output 34	2
66	Virtual Output 35	2
67	Virtual Output 36	2
68	Virtual Output 37	2
69	Virtual Output 38	2
70	Virtual Output 39	2
71	Virtual Output 40	2
72	Virtual Output 41	2
73	Virtual Output 42	2
74	Virtual Output 43	2
75	Virtual Output 44	2
76	Virtual Output 45	2
77	Virtual Output 46	2
78	Virtual Output 47	2
79	Virtual Output 48	2
80	Virtual Output 49	2
81	Virtual Output 50	2
82	Virtual Output 51	2
83	Virtual Output 52	2
84	Virtual Output 53	2
85	Virtual Output 54	2
86	Virtual Output 55	2
87	Virtual Output 56	2
88	Virtual Output 57	2
89	Virtual Output 58	2
90	Virtual Output 59	2
91	Virtual Output 60	2
92	Virtual Output 61	2
93	Virtual Output 62	2
94	Virtual Output 63	2
95	Virtual Output 64	2
96	Contact Input 1	1
97	Contact Input 2	1
98	Contact Input 3	1
99	Contact Input 4	1
100	Contact Input 5	1
101	Contact Input 6	1
102	Contact Input 7	1
103	Contact Input 8	1
104	Contact Input 9	1
105	Contact Input 10	1
106	Contact Input 11	1
107	Contact Input 12	1
108	Contact Input 13	1
109	Contact Input 14	1
110	Contact Input 15	1
111	Contact Input 16	1
112	Contact Input 17	1

Table D-3: BINARY INPUTS (Sheet 4 of 8)

POINT INDEX	NAME/DESCRIPTION	CHANGE EVENT CLASS (1/2/3/NONE)
113	Contact Input 18	1
114	Contact Input 19	1
115	Contact Input 20	1
116	Contact Input 21	1
117	Contact Input 22	1
118	Contact Input 23	1
119	Contact Input 24	1
120	Contact Input 25	1
121	Contact Input 26	1
122	Contact Input 27	1
123	Contact Input 28	1
124	Contact Input 29	1
125	Contact Input 30	1
126	Contact Input 31	1
127	Contact Input 32	1
128	Contact Input 33	1
129	Contact Input 34	1
130	Contact Input 35	1
131	Contact Input 36	1
132	Contact Input 37	1
133	Contact Input 38	1
134	Contact Input 39	1
135	Contact Input 40	1
136	Contact Input 41	1
137	Contact Input 42	1
138	Contact Input 43	1
139	Contact Input 44	1
140	Contact Input 45	1
141	Contact Input 46	1
142	Contact Input 47	1
143	Contact Input 48	1
144	Contact Input 49	1
145	Contact Input 50	1
146	Contact Input 51	1
147	Contact Input 52	1
148	Contact Input 53	1
149	Contact Input 54	1
150	Contact Input 55	1
151	Contact Input 56	1
152	Contact Input 57	1
153	Contact Input 58	1
154	Contact Input 59	1
155	Contact Input 60	1
156	Contact Input 61	1
157	Contact Input 62	1
158	Contact Input 63	1
159	Contact Input 64	1
160	Contact Input 65	1
161	Contact Input 66	1

Table D-3: BINARY INPUTS (Sheet 5 of 8)

POINT INDEX	NAME/DESCRIPTION	CHANGE EVENT CLASS (1/2/3/NONE)
162	Contact Input 67	1
163	Contact Input 68	1
164	Contact Input 69	1
165	Contact Input 70	1
166	Contact Input 71	1
167	Contact Input 72	1
168	Contact Input 73	1
169	Contact Input 74	1
170	Contact Input 75	1
171	Contact Input 76	1
172	Contact Input 77	1
173	Contact Input 78	1
174	Contact Input 79	1
175	Contact Input 80	1
176	Contact Input 81	1
177	Contact Input 82	1
178	Contact Input 83	1
179	Contact Input 84	1
180	Contact Input 85	1
181	Contact Input 86	1
182	Contact Input 87	1
183	Contact Input 88	1
184	Contact Input 89	1
185	Contact Input 90	1
186	Contact Input 91	1
187	Contact Input 92	1
188	Contact Input 93	1
189	Contact Input 94	1
190	Contact Input 95	1
191	Contact Input 96	1
192	Contact Output 1	1
193	Contact Output 2	1
194	Contact Output 3	1
195	Contact Output 4	1
196	Contact Output 5	1
197	Contact Output 6	1
198	Contact Output 7	1
199	Contact Output 8	1
200	Contact Output 9	1
201	Contact Output 10	1
202	Contact Output 11	1
203	Contact Output 12	1
204	Contact Output 13	1
205	Contact Output 14	1
206	Contact Output 15	1
207	Contact Output 16	1
208	Contact Output 17	1
209	Contact Output 18	1
210	Contact Output 19	1

Table D-3: BINARY INPUTS (Sheet 6 of 8)

POINT INDEX	NAME/DESCRIPTION	CHANGE EVENT CLASS (1/2/3/NONE)
211	Contact Output 20	1
212	Contact Output 21	1
213	Contact Output 22	1
214	Contact Output 23	1
215	Contact Output 24	1
216	Contact Output 25	1
217	Contact Output 26	1
218	Contact Output 27	1
219	Contact Output 28	1
220	Contact Output 29	1
221	Contact Output 30	1
222	Contact Output 31	1
223	Contact Output 32	1
224	Contact Output 33	1
225	Contact Output 34	1
226	Contact Output 35	1
227	Contact Output 36	1
228	Contact Output 37	1
229	Contact Output 38	1
230	Contact Output 39	1
231	Contact Output 40	1
232	Contact Output 41	1
233	Contact Output 42	1
234	Contact Output 43	1
235	Contact Output 44	1
236	Contact Output 45	1
237	Contact Output 46	1
238	Contact Output 47	1
239	Contact Output 48	1
240	Contact Output 49	1
241	Contact Output 50	1
242	Contact Output 51	1
243	Contact Output 52	1
244	Contact Output 53	1
245	Contact Output 54	1
246	Contact Output 55	1
247	Contact Output 56	1
248	Contact Output 57	1
249	Contact Output 58	1
250	Contact Output 59	1
251	Contact Output 60	1
252	Contact Output 61	1
253	Contact Output 62	1
254	Contact Output 63	1
255	Contact Output 64	1
256	Remote Input 1	1
257	Remote Input 2	1
258	Remote Input 3	1
259	Remote Input 4	1

Table D-3: BINARY INPUTS (Sheet 7 of 8)

POINT INDEX	NAME/DESCRIPTION	CHANGE EVENT CLASS (1/2/3/NONE)
260	Remote Input 5	1
261	Remote Input 6	1
262	Remote Input 7	1
263	Remote Input 8	1
264	Remote Input 9	1
265	Remote Input 10	1
266	Remote Input 11	1
267	Remote Input 12	1
268	Remote Input 13	1
269	Remote Input 14	1
270	Remote Input 15	1
271	Remote Input 16	1
272	Remote Input 17	1
273	Remote Input 18	1
274	Remote Input 19	1
275	Remote Input 20	1
276	Remote Input 21	1
277	Remote Input 22	1
278	Remote Input 23	1
279	Remote Input 24	1
280	Remote Input 25	1
281	Remote Input 26	1
282	Remote Input 27	1
283	Remote Input 28	1
284	Remote Input 29	1
285	Remote Input 30	1
286	Remote Input 31	1
287	Remote Input 32	1
288	Remote Device 1	1
289	Remote Device 2	1
290	Remote Device 3	1
291	Remote Device 4	1
292	Remote Device 5	1
293	Remote Device 6	1
294	Remote Device 7	1
295	Remote Device 8	1
296	Remote Device 9	1
297	Remote Device 10	1
298	Remote Device 11	1
299	Remote Device 12	1
300	Remote Device 13	1
301	Remote Device 14	1
302	Remote Device 15	1
303	Remote Device 16	1
640	SETTING GROUP Element OP	1
641	RESET Element OP	1
704	FLEXELEMENT 1 Element OP	1
705	FLEXELEMENT 2 Element OP	1
706	FLEXELEMENT 3 Element OP	1

Table D-3: BINARY INPUTS (Sheet 8 of 8)

POINT INDEX	NAME/DESCRIPTION	CHANGE EVENT CLASS (1/2/3/NONE)
707	FLEXELEMENT 4 Element OP	1
708	FLEXELEMENT 5 Element OP	1
709	FLEXELEMENT 6 Element OP	1
710	FLEXELEMENT 7 Element OP	1
711	FLEXELEMENT 8 Element OP	1
864	LED State 1 (IN SERVICE)	1
865	LED State 2 (TROUBLE)	1
866	LED State 3 (TEST MODE)	1
867	LED State 4 (TRIP)	1
868	LED State 5 (ALARM)	1
869	LED State 6(PICKUP)	1
880	LED State 9 (VOLTAGE)	1
881	LED State 10 (CURRENT)	1
882	LED State 11 (FREQUENCY)	1
883	LED State 12 (OTHER)	1
884	LED State 13 (PHASE A)	1
885	LED State 14 (PHASE B)	1
886	LED State 15 (PHASE C)	1
887	LED State 16 (NTL/GROUND)	1
898	SNTP FAILURE	1
899	BATTERY FAIL	1
900	PRI ETHERNET FAIL	1
901	SEC ETHERNET FAIL	1
902	EEPROM DATA ERROR	1
903	SRAM DATA ERROR	1
904	PROGRAM MEMORY	1
905	WATCHDOG ERROR	1
906	LOW ON MEMORY	1
907	REMOTE DEVICE OFF	1
908	DIRECT DEVICE OFF	
909	DIRECT RING BREAK	
910	ANY MINOR ERROR	1
911	ANY MAJOR ERROR	1
912	ANY SELF-TESTS	1
913	IRIG-B FAILURE	1
914	DSP ERROR	1
916	NO DSP INTERUPTS	1
917	UNIT NOT CALIBRATED	1
921	PROTOTYPE FIRMWARE	1
922	FLEXLOGIC ERR TOKEN	1
923	EQUIPMENT MISMATCH	1
925	UNIT NOT PROGRAMMED	1
926	SYSTEM EXCEPTION	1
927	LATCHING OUT ERROR	1

Supported Control Relay Output Block fields: Pulse On, Pulse Off, Latch On, Latch Off, Paired Trip, Paired Close.

BINARY OUTPUT STATUS POINTS

Object Number: 10
Request Function Codes supported: 1 (read)
Default Variation reported when Variation 0 requested: 2 (Binary Output Status)
CONTROL RELAY OUTPUT BLOCKS
Object Number: 12
Request Function Codes supported: $\mathbf{3}$ (select), 4 (operate), 5 (direct operate), 6 (direct operate, noack)

Table D-4: BINARYICONTROL OUTPUTS

POINT	NAME/DESCRIPTION
0	Virtual Input 1
1	Virtual Input 2
2	Virtual Input 3
3	Virtual Input 4
4	Virtual Input 5
5	Virtual Input 6
6	Virtual Input 7
7	Virtual Input 8
8	Virtual Input 9
9	Virtual Input 10
10	Virtual Input 11
11	Virtual Input 12
12	Virtual Input 13
13	Virtual Input 14
14	Virtual Input 15
15	Virtual Input 16
16	Virtual Input 17
17	Virtual Input 18
18	Virtual Input 19
19	Virtual Input 20
20	Virtual Input 21
21	Virtual Input 22
22	Virtual Input 23
23	Virtual Input 24
24	Virtual Input 25
25	Virtual Input 26
26	Virtual Input 27
27	Virtual Input 28
28	Virtual Input 29
29	Virtual Input 30
30	Virtual Input 31
31	Virtual Input 32

The following table lists both Binary Counters (Object 20) and Frozen Counters (Object 21). When a freeze function is performed on a Binary Counter point, the frozen value is available in the corresponding Frozen Counter point.

BINARY COUNTERS

Static (Steady-State) Object Number: 20
Change Event Object Number: 22
Request Function Codes supported: 1 (read), 7 (freeze), 8 (freeze noack), 9 (freeze and clear), 10 (freeze and clear, noack), 22 (assign class)

Static Variation reported when variation 0 requested: 1 (32-Bit Binary Counter with Flag)
Change Event Variation reported when variation 0 requested: 1 (32-Bit Counter Change Event without time)
Change Event Buffer Size: 10
Default Class for all points: $\mathbf{2}$
FROZEN COUNTERS
Static (Steady-State) Object Number: 21
Change Event Object Number: 23
Request Function Codes supported: 1 (read)
Static Variation reported when variation 0 requested: 1 (32-Bit Frozen Counter with Flag)
Change Event Variation reported when variation 0 requested: 1 (32 -Bit Frozen Counter Event without time)
Change Event Buffer Size: 10
Default Class for all points: 2

Table D-5: BINARY AND FROZEN COUNTERS

POINT INDEX	NAME/DESCRIPTION
0	Digital Counter 1
1	Digital Counter 2
2	Digital Counter 3
3	Digital Counter 4
4	Digital Counter 5
5	Digital Counter 6
6	Digital Counter 7
7	Digital Counter 8
8	Oscillography Trigger Count
9	Events Since Last Clear

A counter freeze command has no meaning for counters 8 and 9. D30 Digital Counter values are represented as 32 -bit integers. The DNP 3.0 protocol defines counters to be unsigned integers. Care should be taken when interpreting negative counter values.

The following table lists Analog Inputs (Object 30). It is important to note that 16-bit and 32-bit variations of analog inputs are transmitted through DNP as signed numbers. Even for analog input points that are not valid as negative values, the maximum positive representation is 32767 for 16 -bit values and 2147483647 for 32 -bit values. This is a DNP requirement.
The deadbands for all Analog Input points are in the same units as the Analog Input quantity. For example, an Analog Input quantity measured in volts has a corresponding deadband in units of volts. This is in conformance with DNP Technical Bulletin 9809-001 Analog Input Reporting Deadband. Relay settings are available to set default deadband values according to data type. Deadbands for individual Analog Input Points can be set using DNP Object 34.
When using the D30 in DNP systems with limited memory, the Analog Input Points below may be replaced with a userdefinable list. This user-definable list uses the same settings as the Modbus User Map and can be configured with the Modbus User Map settings. When used with DNP, each entry in the Modbus User Map represents the starting Modbus address of a data item available as a DNP Analog Input point. To enable use of the Modbus User Map for DNP Analog Input points, set the USER MAP FOR DNP ANALOGS setting to Enabled (this setting is in the PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ DNP PROTOCOL menu). The new DNP Analog points list can be checked via the "DNP Analog Input Points List" webpage, accessible from the "Device Information menu" webpage.

After changing the USER MAP FOR DNP ANALOGS setting, the relay must be powered off and then back on for the setting to take effect.

Only Source 1 data points are shown in the following table. If the NUMBER OF SOURCES IN ANALOG LIST setting is increased, data points for subsequent sources will be added to the list immediately following the Source 1 data points.

Units for Analog Input points are as follows:

[^1]Table D-6: ANALOG INPUT POINTS (Sheet 1 of 2)

POINT	DESCRIPTION
0	SRC 1 Phase A Current RMS
1	SRC 1 Phase B Current RMS
2	SRC 1 Phase C Current RMS
3	SRC 1 Neutral Current RMS
4	SRC 1 Phase A Current Magnitude
5	SRC 1 Phase A Current Angle
6	SRC 1 Phase B Current Magnitude
7	SRC 1 Phase B Current Angle
8	SRC 1 Phase C Current Magnitude
9	SRC 1 Phase C Current Angle
10	SRC 1 Neutral Current Magnitude
11	SRC 1 Neutral Current Angle
12	SRC 1 Ground Current RMS
13	SRC 1 Ground Current Magnitude
14	SRC 1 Ground Current Angle
15	SRC 1 Zero Sequence Current Magnitude
16	SRC 1 Zero Sequence Current Angle
17	SRC 1 Positive Sequence Current Magnitude
18	SRC 1 Positive Sequence Current Angle
19	SRC 1 Negative Sequence Current Magnitude
20	SRC 1 Negative Sequence Current Angle
21	SRC 1 Differential Ground Current Magnitude
22	SRC 1 Differential Ground Current Angle
23	SRC 1 Phase AG Voltage RMS
24	SRC 1 Phase BG Voltage RMS
25	SRC 1 Phase CG Voltage RMS
26	SRC 1 Phase AG Voltage Magnitude
27	SRC 1 Phase AG Voltage Angle
28	SRC 1 Phase BG Voltage Magnitude
29	SRC 1 Phase BG Voltage Angle
30	SRC 1 Phase CG Voltage Magnitude
31	SRC 1 Phase CG Voltage Angle
32	SRC 1 Phase AB Voltage RMS
33	SRC 1 Phase BC Voltage RMS
34	SRC 1 Phase CA Voltage RMS
35	SRC 1 Phase AB Voltage Magnitude
36	SRC 1 Phase AB Voltage Angle
37	SRC 1 Phase BC Voltage Magnitude
38	SRC 1 Phase BC Voltage Angle
39	SRC 1 Phase CA Voltage Magnitude
40	SRC 1 Phase CA Voltage Angle
41	SRC 1 Auxiliary Voltage RMS
42	SRC 1 Auxiliary Voltage Magnitude
43	SRC 1 Auxiliary Voltage Angle
44	SRC 1 Zero Sequence Voltage Magnitude
45	SRC 1 Zero Sequence Voltage Angle
46	SRC 1 Positive Sequence Voltage Magnitude
47	SRC 1 Positive Sequence Voltage Angle
48	SRC 1 Negative Sequence Voltage Magnitude
49	SRC 1 Negative Sequence Voltage Angle
50	SRC 1 Three Phase Real Power
51	SRC 1 Phase A Real Power

Table D-6: ANALOG INPUT POINTS (Sheet 2 of 2)

POINT	DESCRIPTION
52	SRC 1 Phase B Real Power
53	SRC 1 Phase C Real Power
54	SRC 1 Three Phase Reactive Power
55	SRC 1 Phase A Reactive Power
56	SRC 1 Phase B Reactive Power
57	SRC 1 Phase C Reactive Power
58	SRC 1 Three Phase Apparent Power
59	SRC 1 Phase A Apparent Power
60	SRC 1 Phase B Apparent Power
61	SRC 1 Phase C Apparent Power
62	SRC 1 Three Phase Power Factor
63	SRC 1 Phase A Power Factor
64	SRC 1 Phase B Power Factor
65	SRC 1 Phase C Power Factor
66	SRC 1 Frequency
67	Breaker 1 Arcing Amp Phase A
68	Breaker 1 Arcing Amp Phase B
69	Breaker 1 Arcing Amp Phase C
70	Breaker 2 Arcing Amp Phase A
71	Breaker 2 Arcing Amp Phase B
72	Breaker 2 Arcing Amp Phase C
73	Synchrocheck 1 Delta Voltage
74	Synchrocheck 1 Delta Frequency
75	Synchrocheck 1 Delta Phase
76	Synchrocheck 2 Delta Voltage
77	Synchrocheck 2 Delta Frequency
78	Synchrocheck 2 Delta Phase
79	Tracking Frequency
80	Current Setting Group

Table E-1: REVISION HISTORY

MANUAL P/N	D30 REVISION	RELEASE DATE	ECO
1601-0116-C1	3.0x	15 July 2002	URD-011
1601-0116-C2	3.1x	30 August 2002	URD-013
1601-0116-C3	3.0x	18 November 2002	URD-014
1601-0116-C4	3.1x	18 November 2002	URD-015
1601-0116-C5	3.0x	11 February 2003	URD-018
1601-0116-C6	3.1x	11 February 2003	URD-019
1601-0116-D1	3.2x	11 February 2003	URD-022
1601-0116-D2	3.2x	02 June 2003	URX-084
1601-0116-E1	3.3 x	01 May 2003	URX-080
1601-0116-E2	$3.3 x$	29 May 2003	URX-083
1601-0116-F1	3.4x	10 December 2003	URX-111
1601-0116-F2	3.4x	09 February 2004	URX-115
1601-0116-F2	3.4x	25 March 2008	08-0164

E.1.2 CHANGES TO THE MANUAL

Table E-2: MAJOR UPDATES FOR D30 MANUAL REVISION F3

PAGE (F2)	PAGE (F3)	CHANGE	DESCRIPTION
Title	Title	Update	Manual part number to 1601-0116-F3.
$5-8$	$5-8$	Update	Updated DISPLAY PROPERTIES section
$5-12$	$5-12$	Update	Updated NETWORK sub-section
$5-155$	$5-155$	Update	The LATCHING OUTPUTS section is now a sub-section of the CONTACT OUTPUTS
E-8	E-8	Update	Updated BINARY INPUTS section

Table E-3: MAJOR UPDATES FOR D30 MANUAL REVISION F2

PAGE (F1)	PAGE (F2)	CHANGE	DESCRIPTION
Title	Title	Update	Manual part number to 1601-0116-F2.
$3-15$	$3-15$	Update	Updated TRANSDUCER I/O MODULE WIRING diagram to 827831A9-X1.
$5-8$	$5-8$	Update	Updated DISPLAY PROPERTIES section.
$5-41$	$5-42$	Update	Updated DUAL BREAKER CONTROL SCHEME LOGIC diagram to 827061AM.
$5-99$	$5-100$	Update	Updated PHASE TOC1 SCHEME LOGIC diagram to 827072A4.
$5-100$	$5-101$	Update	Updated PHASE IOC1 SCHEME LOGIC diagram to 827033A6.
$5-119$	$5-120$	Update	Updated PHASE UNDERVOLTAGE1 SCHEME LOGIC diagram to 827039AB.
$5-120$	$5-121$	Update	Updated PHASE OVERVOLTAGE SCHEME LOGIC diagram to 827066A5.

Table E-4: MAJOR UPDATES FOR D30 MANUAL REVISION F1

PAGE (E2)	PAGE (F1)	CHANGE	DESCRIPTION
Title	Title	Update	Manual part number to 1601-0116-F1.
$1-5$	$1-5$	Update	Updated software installation procedure.
$2-3$	$2-3$	Update	Updated ORDER CODES table to add the 67 Digital I/O option.
$2-4$	$2-4$	Update	Updated ORDER CODES FOR REPLACEMENT MODULES table to add the 67 Module option.
$3-10$	$3-10$	Update	Updated DIGITAL I/O MODULE ASSIGNMENTS table to add the 67 module.
$3-12$	$3-12$	Update	Updated the DIGITAL I/O MODULE WIRING diagram to show the 67 module.
$5-71$	$5-71$	Update	Updated DISTANCE OVERVIEW section to reflect new FORCE SELF-POLAR setting
$5-71$	$5-72$	Update	Updated MEMORY VOLTAGE LOGIC diagram to 827842A5
$5-148$	$5-148$	Update	Updated VT FUSE FAIL SCHEME LOGIC diagram to 827093AF
B-8	B-8	Update	Updated MODBUS MEMORY MAP to reflect new firmware 3.4x.

Table E-5: MAJOR UPDATES FOR D30 MANUAL REVISION E2

PAGE (E1)	PAGE (E2)	CHANGE	DESCRIPTION
Title	Title	Update	Manual part number to 1601-0116-E2.
$4-4$	$4-4$	Update	Updated UR VERTICAL FACEPLATE PANELS figure to remove incorrect reference to User- Programmable Pushbuttons.

Table E-6: MAJOR UPDATES FOR D30 MANUAL REVISION E1

PAGE (D1)	PAGE (E1)	CHANGE	DESCRIPTION
Title	Title	Update	Manual part number to 1601-0116-E1.
$2-5$	$2-5$	Update	Added specifications for SELECTOR SWITCH, FLEXELEMENTS PUSHB, CONTROL LATCHING OUTPUTS, and LED TEST.
$3-11$	$3-11$	Update	Updated DIGITAL I/O MODULE ASSIGNMENTS table to add the 4A, 4B, 4C, and 4L modules.
$3-13$	$3-13$	Update	Updated the DIGITAL I/O MODULE WIRING diagram to 827719CX.
$3-28$	$3-28$	Add	Added section for IEEE C37.94 Direct I/O communications.
$5-9$	$5-9$	Add	Added CLEAR RELAY RECORDS section.
$5-19$	$5-20$	Update	Updated USER-PROGRAMMABLE LEDs section to include LED Test feature.
$5-20$	$5-23$	Add	Added CONTROL PUSHBUTTONS section.
$5-22$	$5-26$	Update	Updated USER-DEFINABLE DISPLAYS section.
$5-56$	$5-63$	Add	Added FLEXELEMENTSTM settings section.
$5-23$	$5-28$	Update	Updated DIRECT I/O section to include CRC Alarm and Unreturned Messages Alarm features.
$5-112$	$5-126$	Add	Added SELECTOR SWITCH section.
$5-133$	$5-152$	Add	Added LATCHING OUTPUTS section.
$5-143$	$5-164$	Update	Updated TESTING section.
$6-12$	$6-13$	Add	Added FLEXELEMENTS ${ }^{\text {TM }}$ actual values section.
$7-3$	$7-3$	Update	Updated RELAY SELF-TESTS section.
B-8	B-8	Update	Updated MODBUS MEMORY MAP to reflect new firmware 3.3x features.

Table E-7: MAJOR UPDATES FOR D30 MANUAL REVISION D1

PAGE (C6)	PAGE (D1)	CHANGE	DESCRIPTION
Title	Title	Update	Manual part number to 1601-0116-D1.
$1-6$	$1-6$	Update	Updated CONNECTING URPC WITH THE D30 section to reflect new URPC software.
$2-2$	$2-2$	Update	Updated OTHER DEVICE FUNCTIONS table to include User-Programmable Self Tests.
$5-13$	$5-13$	Update	Updated UCA/MMS PROTOCOL sub-section to include two new settings.
$5-20$	$5-20$	Add	Added USER-PROGRAMMABLE SELF-TESTS section.
$5-47$	$5-45$	Update	Updated FLEXLOGICTM OPERANDS table to include firmware revision 3.2x features.
$5-61$	$5-58$	Update	Updated LINE PICKUP description and logic diagram to reflect new setting and operands.
$5-63$	$5-60$	Update	Updated MEMORY VOLTAGE LOGIC diagram to 837842A4
$5-74$	$5-71$	Update	Updated GROUND DIRECTIONAL SUPERVISION LOGIC diagram to 837009A6
$5-75$	$5-72$	Update	Updated POWER SWING DETECT description and logic diagram to reflect new operands.
$5-116$	$5-112$	Update	Updated SYNCHROCHECK description and logic diagrams to reflect new operands.
$5-134$	$5-129$	Update	Updated VT FUSE FAIL SCHEME LOGIC diagram to 827093AD
$7-3$	$7-3$	Update	Updated RELAY SELF-TESTS section.
B-9	B-8	Update	Updated MODBUS MEMORY MAP to reflect new firmware 3.2x features.

Table E-8: MAJOR UPDATES FOR D30 MANUAL REVISION C6

PAGE (C4)	PAGE (C6)	CHANGE	DESCRIPTION
Title	Title	Update	Manual part number to 1601-0116-C6.
$2-3$	$2-3$	Update	Updated ORDER CODES table to add the 67 Digital I/O option.
$2-4$	$2-4$	Update	Updated ORDER CODES FOR REPLACEMENT MODULES table to add the 67 Module option.
$3-11$	$3-11$	Update	Updated DIGITAL I/O MODULE ASSIGNMENTS table to add the 67 module.
$3-13$	$3-13$	Update	Updated the DIGITAL I/O MODULE WIRING diagram to 827719CV.

Table E-9: MAJOR UPDATES FOR D30 MANUAL REVISION C5

PAGE (C3)	PAGE (C5)	CHANGE	DESCRIPTION
Title	Title	Update	Manual part number to 1601-0116-C5.
$2-3$	$2-3$	Update	Updated ORDER CODES table to add the 67 Digital I/O option.
$2-4$	$2-4$	Update	Updated ORDER CODES FOR REPLACEMENT MODULES table to add the 67 Module option.
$3-11$	$3-11$	Update	Updated DIGITAL I/O MODULE ASSIGNMENTS table to add the 67 module.
$3-13$	$3-13$	Update	Updated the DIGITAL I/O MODULE WIRING diagram to 827719CV

A................... Ampere	FREQ............ Frequency
AC Alternating Current	FSK............... Frequency-Shift Keying
A/D Analog to Digital	FTP File Transfer Protocol
AE Accidental Energization, Application Entity	FxE FlexElement ${ }^{\text {TM }}$
AMP Ampere	FWD.............. Forward
ANG Angle	
ANSI.............. American National Standards Institute	G.................. Generator
AR Automatic Reclosure	GE................ General Electric
ASDU Application-layer Service Data Unit	GND.............. Ground
ASYM Asymmetry	GNTR............ Generator
AUTO Automatic	GOOSE......... General Object Oriented Substation Event
AUX............... Auxiliary	GPS Global Positioning System
AVG Average	
	HARM Harmonic / Harmonics
BER Bit Error Rate	HCT High Current Time
BF................. Breaker Fail	HGF High-Impedance Ground Fault (CT)
BFI................. Breaker Failure Initiate	HIZ High-Impedance and Arcing Ground
BKR............... Breaker	HMI Human-Machine Interface
BLK Block	HTTP Hyper Text Transfer Protocol
BLKG............. Blocking	HYB Hybrid
BPNT............. Breakpoint of a characteristic	
BRKR Breaker	I.................... Instantaneous
	I_0................. Zero Sequence current
CAP Capacitor	I_1................ Positive Sequence current
CC................ Coupling Capacitor	I_2................ Negative Sequence current
CCVT Coupling Capacitor Voltage Transformer	I $\overline{\mathrm{A}}$.................. Phase A current
CFG............... Configure / Configurable	IAB Phase A minus B current
.CFG.............. Filename extension for oscillography files	IB Phase B current
CHK............... Check	IBC Phase B minus C current
CHNL Channel	IC Phase C current
CLS Close	ICA................ Phase C minus A current
CLSD............. Closed	ID Identification
CMND Command	IED Intelligent Electronic Device
CMPRSN....... Comparison	IEC............... International Electrotechnical Commission
CO................ Contact Output	IEEE.............. Institute of Electrical and Electronic Engineers
COM.............. Communication	IG Ground (not residual) current
COMM Communications	Igd................. Differential Ground current
COMP Compensated, Comparison	IN CT Residual Current (3Io) or Input
CONN............ Connection	INC SEQ Incomplete Sequence
CONT Continuous, Contact	INIT............... Initiate
CO-ORD........ Coordination	INST.............. Instantaneous
CPU............... Central Processing Unit	INV Inverse
CRC Cyclic Redundancy Code	I/O Input/Output
CRT, CRNT Current	IOC Instantaneous Overcurrent
CSA.............. Canadian Standards Association	IOV................ Instantaneous Overvoltage
CT Current Transformer	IRIG Inter-Range Instrumentation Group
CVT Capacitive Voltage Transformer	ISO \qquad International Standards Organization IUV \qquad Instantaneous Undervoltage
D/A Digital to Analog	
DC (dc)........... Direct Current	K0 Zero Sequence Current Compensation
DD................ Disturbance Detector	kA.................. kiloAmpere
DFLT Default	kV.................. kiloVolt
DGNST........... Diagnostics	
DI.................. Digital Input	LED.............. Light Emitting Diode
DIFF Differential	LEO............... Line End Open
DIR Directional	LFT BLD Left Blinder
DISCREP Discrepancy	LOOP Loopback
DIST Distance	LPU............... Line Pickup
DMD Demand	LRA Locked-Rotor Current
DNP............... Distributed Network Protocol	LTC Load Tap-Changer
DPO Dropout	
DSP Digital Signal Processor	M................... Machine
dt Rate of Change	mA MilliAmpere
DTT Direct Transfer Trip	MAG.............. Magnitude
DUTT............. Direct Under-reaching Transfer Trip	MAN.............. Manual / Manually
	MAX Maximum
ENCRMNT Encroachment	MIC Model Implementation Conformance
EPRI.............. Electric Power Research Institute	MIN Minimum, Minutes
.EVT Filename extension for event recorder files	MMI............... Man Machine Interface
EXT Extension, External	MMS \qquad \qquad Manufacturing Message Specification MRT Minimum Response Time
F................... Field	MSG.............. Message
FAIL............... Failure	MTA.............. Maximum Torque Angle
FD Fault Detector	MTR Motor
FDH............... Fault Detector high-set	MVA MegaVolt-Ampere (total 3-phase)
FDL Fault Detector low-set	MVA_A.......... MegaVolt-Ampere (phase A)
FLA................ Full Load Current	MVA_B MegaVolt-Ampere (phase B)
FO Fiber Optic	MVA_C.......... MegaVolt-Ampere (phase C)

GE MULTILIN RELAY WARRANTY

General Electric Multilin Inc. (GE Multilin) warrants each relay it manufactures to be free from defects in material and workmanship under normal use and service for a period of 24 months from date of shipment from factory.

In the event of a failure covered by warranty, GE Multilin will undertake to repair or replace the relay providing the warrantor determined that it is defective and it is returned with all transportation charges prepaid to an authorized service centre or the factory. Repairs or replacement under warranty will be made without charge.

Warranty shall not apply to any relay which has been subject to misuse, negligence, accident, incorrect installation or use not in accordance with instructions nor any unit that has been altered outside a GE Multilin authorized factory outlet.

GE Multilin is not liable for special, indirect or consequential damages or for loss of profit or for expenses sustained as a result of a relay malfunction, incorrect application or adjustment.

For complete text of Warranty (including limitations and disclaimers), refer to GE Multilin Standard Conditions of Sale.
Numerics
10BASE-F
communications options 3-16
description 3-18
interface. 3-27
redundant option 3-16
settings 5-12
specifications 2-12
A
AbBREVIATIONS F-4
AC CURRENT INPUTS 2-11, 3-8, 5-36
AC VOLTAGE INPUTS 2-11, 3-8
ACTIVATING THE RELAY 1-11, 4-12
ACTIVE SETTING GROUP 5-70
ACTUAL VALUES
maintenance 6-16
metering 6-8
product information 6-17
records 6-14
status. 6-3
ALARM LEDs 5-23
ALTITUDE 2-13
ANSI DEVICE NUMBERS 2-1
APPARENT POWER 2-10
APPLICATION EXAMPLES
breaker trip circuit integrity 5-146
contact inputs 5-153
series compensated lines 8-16, 9-4
stepped distance scheme 9-2
APPROVALS 2-14
ARsee entry for AUTORECLOSE
ARCHITECTURE 5-51
ARCING CURRENT 5-149
AUTORECLOSE actual values ... 6-4
FlexLogic ${ }^{\text {TM }}$ operands 5-53
logic. 5-141, 5-142
settings 5-138, 5-140
single shot sequence 5-143
specifications 2-8
AUXILIARY OVERVOLTAGE
FlexLogic ${ }^{\text {TM }}$ operands 5-53
logic 5-126
settings 5-126
specifications 2-8
AUXILIARY UNDERVOLTAGE
FlexLogic ${ }^{\text {TM }}$ operands 5-53
logic. 5-125
settings 5-125
specifications 2-8
AUXILIARY VOLTAGE CHANNEL 3-8
AUXILIARY VOLTAGE METERING 6-12
B
BANKS 5-6, 5-36, 5-37
BATTERY FAIL 7-4
BINARY INPUT POINTS E-8
BINARY OUTPUT POINTS E-12
BLOCK DIAGRAM 1-3
BLOCK SETTING ..5-4
BREAKER ARCING
FlexLogic ${ }^{\text {TM }}$ operands 5-53
clearing 5-10, 7-2
logic 5-150
measurement 5-150
settings 5-149
BREAKER CONTROL
actual values 6-16
control of 2 breakers 4-8
description 4-8
dual breaker logic 5-43
FlexLogic ${ }^{\text {TM }}$ operands 5-53
settings 5-41
BREAKER-AND-A-HALF SCHEME 5-5
BRIGHTNESS 5-8
C
C37.94 COMMUNICATIONS 3-28, 3-29
CE APPROVALS 2-14
CHANGES TO D60 MANUAL F-1
CHANGES TO MANUAL F-1, F-2, F-3
CHANNEL COMMUNICATION 3-20
CHANNELS
banks 5-36, 5-37
CIRCUIT MONITORING APPLICATIONS 5-144
CLEANING 2-14
CLEAR RECORDS 5-10, 7-2, B-39setting date and time7-2
settings 5-17
COMMANDS MENU 7-1
COMMUNICATIONS
10BASE-F 3-16, 3-18, 5-12
channel 3-20
connecting to the UR 1-7, 1-8
CRC-16 error checking B-2
dnp. 5-12, 5-17, E-1
G. 703 3-23
half duplex B-1
HTTP. 5-15
IEC 60870-5-104 protocol. 5-16
inter-relay communications 2-13
Modbus 5-12, 5-17, B-1, B-3
network. 5-12
overview 1-9
RS232 3-16RS485 ... 5-11
settings $5-16,5-17$
specifications .. 2-12, 2-13
.........5-15, 5-41, 5-154, 5-158, 5-159, 5-160, C-1
web server 5-15
COMTRADE B-6, B-7
CONDUCTED RFI 2-14
CONTACT INFORMATION. 1-1
CONTACT INPUTS
actual values 6-3
dry connections 3-14
FlexLogic ${ }^{\text {TM }}$ operands 5-57
Modbus registers B-9
module assignments 3-10
settings 5-152
specifications 2-11
thresholds 5-152
wet connections 3-14
wiring 3-12
CONTACT OUTPUTS
actual values ...6-4 6-4
FlexLogic ${ }^{\text {TM }}$ operands 5-57
Modbus registers
module assignments 3-10
settings 5-155
wiring 3-12
CONTROL ELEMENTS 5-127
CONTROL POWER
description 3-8
specifications
specifications 2-12 2-12
CONTROL PUSHBUTTONS
FlexLogic ${ }^{\text {TM }}$ operands 5-53
Modbus registers B-38
settings 5-24
specifications 2-9
COUNTERS
actual values 6-5
settings 5-147
CRC ALARM 5-33
CRC-16 ALGORITHM B-2
CRITICAL FAILURE RELAY 2-12, 3-7
CSA APPROVAL 2-14
CT BANKS
settings 5-36
CT INPUTS 5-6, 5-36
CT WIRING 3-8
CURRENT BANK 5-36
CURRENT METERING
actual values 6-11
Modbus registers B-10
specifications 2-10
CURVES
definite time 5-99, 5-120
FlexCurves ${ }^{\text {™ }}$ 5-44, 5-99
12T 5-99
IAC 5-98
IEC. 5-97
IEEE 5-96
inverse time undervoltage 5-120
types 5-95
D
DATA FORMATS, MODBUS B-43
DATA LOGGER
Modbus B-6, B-7
DATE 7-2
DCMA INPUTS 6-13
settings 5-165
specifications 2-11
DEFINITE TIME CURVE 5-99, 5-120
DEMAND METERING
specifications 2-10
DESIGN 1-3
DEVICE ID 5-158
DEVICE PROFILE DOCUMENT E-1
DIELECTRIC STRENGTH 2-14, 3-7
DIGITAL COUNTER
FlexLogic ${ }^{\text {TM }}$ operands 5-53
DIGITAL COUNTERS
actual values 6-5
logic 5-148
Modbus registers B-9
settings 5-147
DIGITAL ELEMENT
FlexLogic ${ }^{\text {TM }}$ operands 5-54
DIGITAL ELEMENTS
application example 5-145
logic 5-144
settings. 5-144
DIGITAL INPUTSsee entry for CONTACT INPUTSDIGITAL OUTPUTSsee entry for CONTACT OUTPUTS
DIMENSIONS 3-1
DIRECT DEVICES
actual values 6-7
DIRECT I/O
see also DIRECT INPUTS and DIRECT OUTPUTS
application example 5-162, 5-163
configuration examples 5-29, 5-33, 5-35
settings $5-29,5-33,5-35,5-161$
DIRECT INPUTS
actual values. 6-6
application example $5-162,5-163$
clearing counters 7-2
settings. 5-161
specifications 2-11
DIRECT OUTPUTS
application example 5-162, 5-163
clearing counters. 7-2
settings 5-162
DIRECTIONAL OVERCURRENT
see PHASE, GROUND, and NEUTRAL DIRECTIONAL entries
DIRECTIONAL POLARIZATION 5-104
DISPLAY $1-9,4-8,5-8$
DISTANCE
analysis of elements 8-6
characteristics 8-2
ground 2-6, 5-81
mho characteristic 5-75, 5-76
phase 2-5, 5-74
quad characteristic 5-76, 5-77
settings 5-73
stepped distance 9-2
DISTURBANCE DETECTOR
FlexLogic ${ }^{\text {TM }}$ operands 5-56
internal 5-39
DNA-1 BIT PAIR 5-160
DNP COMMUNICATIONS
binary counters E-13
binary input points E-8
binary output points E-12
control relay output blocks E-12
device profile document E-1
frozen counters E-13
implementation table E-4
settings. 5-12
user map 5-14
DUPLEX, HALF B-1
DYNAMIC REACH CONTROL 8-17
E
ELECTROSTATIC DISCHARGE 2-14
ELEMENTS 5-3
ENERGY METERING specifications 2-10
EQUATIONS
definite time curve 5-99, 5-120
FlexCurve ${ }^{\mathrm{TM}}$ 5-99
${ }^{12}$ t curves 5-99
IAC curves 5-98
IEC curves 5-97
IEEE curves 5-96
ETHERNET
actual values 6-6
configuration 1-7
Modbus registers B-10
settings 5-12
specifications 2-12
EVENT CAUSE INDICATORS 4-5
EVENT RECORDER
actual values 6-16
clearing 5-10, 7-2
Modbus B-7
specifications 2-10
with URPC 4-2
EVENTS SETTING 5-4
EXCEPTION RESPONSES B-5
F
F485 1-9
FACEPLATE 3-1
FACEPLATE PANELS 4-4, 4-7
FAST FORM-C RELAY 2-12
FAST TRANSIENT TESTING 2-14
FAULT LOCATOR
logic. 6-15
operation 6-14
specifications 2-10
FAULT REPORT
actual values 6-14
clearing 5-10, 7-2
Modbus B-7
settings 5-18
FAULT TYPE 6-14
FAX NUMBERS 1-1
FEATURES 2-1
FIRMWARE REVISION 6-17
FIRMWARE UPGRADES 4-2
FLASH MESSAGES 5-8
FLEX STATE PARAMETERS
actual values 6-5
Modbus registers B-9
settings 5-27
specifications 2-9
FLEXCURVES ${ }^{\text {TM }}$
equation 5-99
settings 5-44
specifications 2-9
table 5-44
FLEXELEMENTS ${ }^{\text {M }}$
actual values 6-13
direction. 5-67
FlexLogic ${ }^{\text {TM }}$ operands 5-54
hysteresis 5-67
pickup 5-67
scheme logic 5-66
settings 5-65, 5-66, 5-68
specifications 2-9
FLEXLOGICTM
editing with URPC 4-1
equation editor 5-64
evaluation 5-59
example 5-51, 5-60
example equation. 5-127
gate characteristics 5-58
operands 5-52, 5-53
perators 5-59
rules 5-59
specifications 2-9
timers 5-64
worksheet 5-61
FLEXLOGIC ${ }^{\text {TM }}$ EQUATION EDITOR 5-64
FLEXLOGICTм TIMERS 5-64
FORCE CONTACT INPUTS 5-167
FORCE CONTACT OUTPUTS 5-168
FORCE TRIGGER 6-16
FORM-A RELAY
high impedance circuits 3-10
outputs 3-9, 3-10, 3-14
specifications 2-12
FORM-C RELAY
outputs 3-9, 3-14
specifications 2-12
REQUENCY
6-12
6-12
actual values
actual values 5-38
FREQUENCY METERING
Modbus registers B-12
specifications 2-10
FREQUENCY TRACKING 5-38
FREQUENCY, NOMINAL 5-37
FUNCTION SETTING 5-4
FUSE 2-11FUSE FAILURE
see VT FUSE FAILURE
G
G. 703 3-22, 3-23, 3-24, 3-27
GE TYPE IAC CURVES 5-98
GOMSFE C-1
GOOSE $5-15,5-158,5-159,5-160,5-161,5-162,6-5$
GROUND CURRENT METERING 6-11
GROUND DIRECTIONAL SUPERVISION 5-84GROUND DISTANCE
application of settings 9-3
FlexLogic ${ }^{\text {™ }}$ operands 5-54
settings 5-81
specifications 2-6
GROUND IOC
FlexLogic ${ }^{\text {TM }}$ operands 5-54
logic 5-113
settings 5-113
GROUND TIME OVERCURRENT
see entry for GROUND TOCGROUND TOC
FlexLogic ${ }^{\text {TM }}$ operands 5-54
logic 5-112
settings 5-112
specifications 2-7
GROUPED ELEMENTS 5-70
H
HALF-DUPLEXB-1
HTTP PROTOCOL 5-15
HUMIDITY 2-13
I
I2T CURVES 5-99
IAC CURVES 5-98
IEC 60870-5-104 PROTOCOL interoperability document D-1
settings 5-16
IEC CURVES 5-97
IED 1-2
IED SETUP 1-5
IEEE C37.94 COMMUNICATIONS 3-28, 3-29
IEEE CURVES 5-96
IMPORTANT CONCEPTS 1-4
IN SERVICE INDICATOR 1-11, 7-3
INPUTS
AC current 2-11, 5-36contact inputs ... 2-11, 3-12, 5-152, 5-167
dcmA inputs ..2-11, 3-15, 5-165
direct inputs...2-11

remote inputs 2-11, 5-158, 5-159
RTD inputs 2-11, 3-15, 5-166
virtual 5-154
INSPECTION CHECKLIST 1-1
INSTALLATION
communications 3-16
contact inputs/outputs 3-10, 3-12, 3-13
CT inputs 3-8
RS485 3-17
settings 5-35
VT inputs 3-8
INSTANTANEOUS OVERCURRENT see PHASE, GROUND, and NEUTRAL IOC entries INSULATION RESISTANCE 2-14
INTELLIGENT ELECTRONIC DEVICE. 1-2
INTER-RELAY COMMUNICATIONS 2-13
INTRODUCTION 1-2
inverse time undervoltage 5-120
IOC
see PHASE, GROUND, and NEUTRAL IOC entries IP ADDRESS 5-12
IRIG-B
connection 3-18
settings 5-17
specifications 2-11
ISO-9000 REGISTRATION 2-14
K
KEYPAD 1-10, 4-8
L
LAMPTEST 7-2
LASER MODULE 3-21 LATCHING OUTPUTS application example ..5-156, 5-157 settings ... 5-155
specifications 2-12
LED INDICATORS 4-5, 4-6, 4-7, 5-23, B-8
LED TEST
FlexLogic ${ }^{\text {TM }}$ operand 5-57
settings 5-21
specifications 2-9
LINE
pickup 5-71
settings 5-40
LINE LENGTH 5-40
LINE PICKUP
FlexLogic ${ }^{\text {TM }}$ operands 5-54
logic 5-72
settings 5-71
specifications 2-7
LINK POWER BUDGET 2-13
LOAD ENCROACHMENT
FlexLogic ${ }^{\text {TM }}$ operands 5-54
settings 5-93, 5-94
specifications 2-8
LOGIC GATES 5-59
LOST PASSWORD 5-7
M
MAINTENANCE COMMANDS.. 7-2
MANUFACTURING DATE 6-17
MEMORY MAP DATA FORMATS B-43
MEMORY POLARIZATION 8-5, 9-1
MEMORY VOLTAGE LOGIC ...5-74
MENU HEIRARCHY ...1-10, 4-10
MENU NAVIGATION 1-10, 4-9, 4-10
METERING
conventions 6-8, 6-9
current. 2-10
demand 2-10
frequency 2-10
power 2-10
voltage 2-10
METERING CONVENTIONS 6-9
MHO DISTANCE CHARACTERISTIC 5-75
MIC C-3
MMS
see entry for UCA/MMS
MODBUS
data logger B-6, B-7
event recorder B-7
exception responses B-5
execute operation B-4
fault report B-7
flex state parameters 5-27
function code 03/04h B-3
function code 05h B-4
function code 06h B-4
function code 10h B-5
introduction B-1
memory map data formats B-43
obtaining files B-6
oscillography B-6
passwords B-7
read/write settings/actual values B-3
settings 5-12, 5-17
store multiple settings B-5
store single setting B-4
supported function codes B-3
user map 5-17
user map Modbus registers B-9
Modbus B-7
MODEL INFORMATION 6-17

NON-VOLATILE LATCHES
settings 5-69
specifications 2-9
0
ONE SHOTS 5-59
OPERATING TEMPERATURE 2-13
OPERATING TIMES 2-5
ORDER CODES 2-3, 6-17, 7-2
ORDER CODES, UPDATING 7-2
ORDERING 2-3, 2-4
OSCILLATORY TRANSIENT TESTING 2-14
OSCILLOGRAPHY 6-16
clearing 5-10, 7-2
Modbus B-6
specifications 2-10
with URPC 4-2
OST 2-8, 5-86
OUTPUTS
contact outputs 3-10, 3-12, 5-155 2-12critical failure relay
Fast Form-C relay 2-12
Form-A relay. 2-12, 3-9, 3-10, 3-14
Form-C relay 2-12, 3-9, 3-14
latching outputs 2-12, 5-155
remote outputs 5-160, 5-161
virtual outputs 5-157
OVERCURRENT CURVE TYPES 5-95
OVERCURRENT CURVES
definite time 5-99
FlexCurves ${ }^{\text {™ }}$ 5-99
I2T 5-99
IAC 5-98
IEC 5-97
IEEE 5-96
OVERVOLTAGE
auxiliary 2-8, 5-126
negative sequence -124
negative-sequence 2-8
neutral 2-8, 5-123
phase 2-8, 5-122
P
PANEL CUTOUT 3-1
PASSWORD SECURITY 5-7
PASSWORDS
changing 4-13
ost password 4-13, 5-7
Modbus B-7
overview 1-11
security 5-7
settings 5-7
PC SOFTWARE
see entry for URPC
PERMISSIVE FUNCTIONS 5-120
PER-UNIT QUANTITY 5-3
PHASE ANGLE METERING 6-9
PHASE CURRENT METERING 6-11
PHASE DIRECTIONAL OVERCURRENT
FlexLogic ${ }^{\text {TM }}$ operands 5-55
logic 5-105
phase A polarization 5-103
settings 5-103, 5-104
specifications 2-7
PHASE DISTANCE
application of settings 9-2
FlexLogic ${ }^{\text {TM }}$ operands 5-55
settings 5-74
specifications 2-5
PHASE INSTANTANEOUS OVERCURRENT
see entry for PHASE IOC
PHASE IOC
FlexLogic ${ }^{\text {TM }}$ operands 5-55
logic 5-102
specifications 2-7
PHASE OVERVOLTAGE
FlexLogic ${ }^{\text {TM }}$ operands 5-55
logic 5-122
settings 5-122
specifications 2-8
PHASE ROTATION 5-37
PHASE TIME OVERCURRENTsee entry for PHASE TOCPHASE TOC
FlexLogic ${ }^{\text {TM }}$ operands 5-56
logic 5-101
settings 5-100
specifications 2-7
PHASE UNDERVOLTAGE
FlexLogic ${ }^{\text {TM }}$ operands 5-56
logic 5-121
settings 5-121
specifications 2-8
PHASOR ESTIMATION 8-1
PHONE NUMBERS 1-1
PICS C-2
POWER METERING
Modbus registers B-11
specifications 2-10
POWER SUPPLY
description 3-7
low range 2-11
specifications 2-11
POWER SWING BLOCKING 2-8, 5-86
POWER SWING DETECT5-56
5-91, 5-92
logic 5-85, 5-89FexLogic ${ }^{\text {TM }}$ operands
specifications 2-8
PRODUCT INFORMATION 6-17
Modbus registers B-8
PRODUCT SETUP 5-7
PRODUCTION TESTS 2-14
PROTECTION ELEMENTS 5-3
PU QUANTITY 5-3PUSHBUTTONS, USER-PROGRAMMABLEsee USER-PROGRAMMBLE PUSHBUTTONS
Q

R

REACTIVE POWER 2-10
REAL POWER 2-10
REAL TIME CLOCK 5-17
REAR TERMINAL ASSIGNMENTS 3-5
RECLOSER CURVES 5-47, 5-99
REDUNDANT 10BASE-F 3-16
RELAY ACTIVATION 4-12
RELAY ARCHITECTURE 5-51
RELAY MAINTENANCE 7-2
RELAY NAME 5-35
RELAY NOT PROGRAMMED 1-11
REMOTE DEVICES
actual values 6-4
device ID 5-158
FlexLogic ${ }^{\text {TM }}$ operands 5-57
Modbus registers B-9
settings 5-158
statistics 6-5
REMOTE INPUTS
actual values 6-3
FlexLogic ${ }^{\text {TM }}$ operands 5-57
settings 5-159
specifications 2-11
REMOTE OUTPUTS
DNA-1 bit pair. 5-160
UserSt-1 bit pair 5-161, 5-162
REPLACEMENT MODULES 2-4
RESETTING 5-57, 5-161
REVISION HISTORY F-1
RFI SUSCEPTIBILITY 2-14
RFI, CONDUCTED 2-14
RMS CURRENT 2-10
RMS VOLTAGE 2-10
RS232
configuration 1-7
specifications 2-12
wiring. 3-16
RS422
configuration 3-25
timing 3-26
two-channel application 3-25
with fiber interface 3-27
RS485
communications 3-16
description 3-17
specifications 2-12
RTD INPUTS
actual values. 6-13
settings. 5-166
specifications 2-11
S
SALES OFFICE 1-1
SCAN OPERATION 1-4
SELECTOR SWITCH
actual values 6-5
application example 5-133
FlexLogic ${ }^{\text {TM }}$ operands 5-56
logic 5-133
settings. 5-128
specifications 2-9
timing 5-131, 5-132
SELF-TESTS
description 7-3
error messages 7-4
FlexLogic ${ }^{\text {TM }}$ operands 5-58
Modbus registers B-8
SERIAL NUMBER 6-17
SERIAL PORTS 5-11
SERIES COMPENSATED LINES 8-16, 9-4
SETTING GROUPS $5-56,5-70,5-127$
SETTINGS, CHANGING 4-11
SIGNAL SOURCES
description 5-5
metering 6-11
settings 5-39
SIGNAL TYPES 1-3
SINGLE LINE DIAGRAM 2-2
SITE LIST, CREATING 4-1
SNTP PROTOCOL
settings 5-17
SOFTWARE
installation 1-5
see entry for URPC
SOFTWARE ARCHITECTURE .. 1-4
SOFTWARE, PC
see entry for URPC
SOURCE TRANSFER SCHEMES 5-120
SOURCES
description 5-5
metering 6-11
Modbus registers B-10
settings 5-38, 5-39
SPECIFICATIONS 2-5
ST TYPE CONNECTORS 3-18
STANDARD ABBREVIATIONS F-4
STATUS INDICATORS 4-5
STEPPED DISTANCE SCHEME 9-2
SURGE IMMUNITY 2-14
SYMMETRICAL COMPONENTS METERING 6-9
SYNCHROCHECK
actual values 6-12
FlexLogic ${ }^{\text {TM }}$ operands 5-56
logic. 5-137
settings 5-134, 5-135
specifications 2-8
SYSTEM FREQUENCY 5-37
SYSTEM SETUP 5-36
T
TARGET MESSAGES 7-3
TARGET SETTING 5-4
TARGETS MENU 7-3
TCP PORT NUMBER 5-15
TEMPERATURE, OPERATING 2-13
TERMINALS 3-5
TESTING
force contact inputs 5-167
force contact outputs 5-168
lamp test 7-2
self-test error messages 7-3
TIME OVERCURRENT see PHASE, NEUTRAL, and GROUND TOC entries TIMERS 5-64
TOC
ground 5-112

neutral	106
phase	5-100
specifications	2-7
TRACKING FREQUENCY .	6-13
TRANSDUCER I/O	
actual values	6-13
settings	5-165, 5-166
specifications	2-11
wiring	3-15
TRIP LEDs	...5-23
TROUBLE INDICATOR	.. 1-11, 7-3
TYPE TESTS	2-14
TYPICAL WIRING DIAGRA3-6

U

UCA SBO TIMER
for breaker control 5-41
for virtual inputs 5-154
UCA/MMS
device ID 5-158
DNA2 assignments 5-160
MIC C-3
overview C-1
PICS C-2
remote device settings 5-158
remote inputs 5-159
reporting C-6
SBO timeout 5-41, 5-154
settings 5-15
UserSt-1 bit pair 5-161, 5-162
UL APPROVAL 2-14
UNAUTHORIZED ACCESS resetting 5-10, 7-2
UNDERVOLTAGE 2-8auxiliary
phase 2-8, 5-121
UNDERVOLTAGE CHARACTERISTICS 5-120
UNIT NOT PROGRAMMED 5-35
UNPACKING THE RELAY 1-1
UNRETURNED MESSAGES ALARM 5-35
UPDATING ORDER CODE 7-2
URPC
creating a site list 4-1
event recorder 4-2
firmware upgrades 4-2
introduction 4-1
oscillography 4-2
overview 4-1
requirements 1-5
USER-DEFINABLE DISPLAYS
example 5-29
invoking and scrolling 5-27
Modbus registers B-9
settings 5-27, 5-29
specifications 2-9
SER-PROGRAMMABLE LEDs
custom labeling 4-7
defaults 4-6
description 4-6
settings 5-23
specifications 2-9
FlexLogic ${ }^{\text {TM }}$ operands 5-58
settings 5-25
specifications 2-9

INDEX

USER-PROGRAMMABLE SELF TESTS settings 5-24
USERST-1 BIT PAIR 5-161, 5-162
V
VAR-HOURS 2-10
VIBRATION TESTING 2-14
VIRTUAL INPUTS
actual values 6-3
commands 7-1
FlexLogic ${ }^{\text {TM }}$ operands 5-57
logic 5-154
Modbus registers B-8, B-9
settings 5-154
VIRTUAL OUTPUTS
actual values 6-4
FlexLogic ${ }^{\text {TM }}$ operands 5-57
settings 5-157
VOLTAGE BANKS 5-37
VOLTAGE DEVIATIONS 2-14
VOLTAGE ELEMENTS 5-120
VOLTAGE METERING
Modbus registers B-10
specifications 2-10
values 6-11
VOLTAGE RESTRAINT CHARACTERISTIC 5-100
T FUSE FAILURE
5-151
logic
5-151
settings 5-6, 5-37
3-8VT WIRING
VTFF
FlexLogic ${ }^{\text {TM }}$ operands 5-56
see VT FUSE FAILURE
W
WARRANTY F-6
WATT-HOURS 2-10
WEB SERVER PROTOCOL 5-15
WEBSITE 1-1
WIRING DIAGRAM 3-6

[^0]: PUSHBUTTON 1 FUNCTION: "Self-reset"
 PUSHBTN 1 DROP-OUT TIME: "0.20 s"

[^1]: Static (Steady-State) Object Number: $\mathbf{3 0}$
 Change Event Object Number: 32
 Request Function Codes supported: 1 (read), $\mathbf{2}$ (write, deadbands only), 22 (assign class)
 Static Variation reported when variation 0 requested: 1 (32-Bit Analog Input)
 Change Event Variation reported when variation 0 requested: 1 (Analog Change Event without Time)
 Change Event Scan Rate: defaults to $\mathbf{5 0 0} \mathbf{~ m s}$
 Change Event Buffer Size: $\mathbf{8 0 0}$
 Default Class for all Points: 1

