C30 Controller

UR Series Instruction Manual

C30 Revision: 3.3x

Manual P/N: 1601-0088-E2 (GEK-106405A)
Copyright © 2003 GE Multilin

GE Multilin

215 Anderson Avenue, Markham, Ontario
Canada L6E 1B3
Tel: (905) 294-6222 Fax: (905) 201-2098
Internet: http://www.GEindustrial.com/multilin

ADDENDUM

This Addendum contains information that relates to the C30 Controller relay, version $3.3 x$. This addendum lists a number of information items that appear in the instruction manual GEK-106405A (revision E2) but are not included in the current C30 operations.
The following functions/items are not yet available with the current version of the C30 relay:

- Setting Groups Feature

The UCA2 specifications are not yet finalized. There will be changes to the object models described in Appendix C: UCA/MMS Protocol.

GE Multilin

215 Anderson Avenue, Markham, Ontario
Canada L6E 1B3
Tel: (905) 294-6222 Fax: (905) 201-2098
Internet: http://www.GEindustrial.com/multilin

1. GETTING STARTED
1.1 IMPORTANT PROCEDURES
1.1.1 CAUTIONS AND WARNINGS 1-1
1.1.2 INSPECTION CHECKLIST 1-1
1.2 OVERVIEW
1.2.1 INTRODUCTION TO THE UR 1-2
1.2.2 HARDWARE ARCHITECTURE 1-3
1.2.3 UR SOFTWARE ARCHITECTURE 1-4
1.2.4 IMPORTANT CONCEPTS 1-4
1.3 URPC SOFTWARE
1.3.1 REQUIREMENTS 1-5
1.3.2 INSTALLATION 1-5
1.3.3 CONNECTING URPC WITH THE C30 1-6
1.4 UR HARDWARE
1.4.1 MOUNTING AND WIRING. 1-8
1.4.2 COMMUNICATIONS 1-8
1.4.3 FACEPLATE DISPLAY 1-8
1.5 USING THE RELAY
1.5.1 FACEPLATE KEYPAD. 1-9
1.5.2 MENU NAVIGATION 1-9
1.5.3 MENU HIERARCHY 1-9
1.5.4 RELAY ACTIVATION 1-10
1.5.5 BATTERY TAB 1-10
1.5.6 RELAY PASSWORDS 1-10
1.5.7 FLEXLOGIC ${ }^{\text {TM }}$ CUSTOMIZATION. 1-10
1.5.8 COMMISSIONING 1-10
2. PRODUCT DESCRIPTION
2.1 INTRODUCTION
2.1.1 OVERVIEW 2-1
2.1.2 ORDERING 2-2
2.2 SPECIFICATIONS
2.2.1 USER-PROGRAMMABLE ELEMENTS 2-4
2.2.2 MONITORING 2-5
2.2.3 INPUTS 2-5
2.2.4 POWER SUPPLY 2-6
2.2.5 OUTPUTS 2-6
2.2.6 COMMUNICATIONS 2-7
2.2.7 INTER-RELAY COMMUNICATIONS 2-7
2.2.8 ENVIRONMENTAL 2-7
2.2.9 TYPE TESTS 2-8
2.2.10 PRODUCTION TESTS 2-8
2.2.11 APPROVALS 2-8
2.2.12 MAINTENANCE 2-8
3. HARDWARE
3.1 DESCRIPTION
3.1.1 PANEL CUTOUT 3-1
3.1.2 MODULE WITHDRAWAL AND INSERTION 3-4
3.1.3 REAR TERMINAL LAYOUT 3-5
3.2 WIRING
3.2.1 TYPICAL WIRING 3-6
3.2.2 DIELECTRIC STRENGTH 3-7
3.2.3 CONTROL POWER 3-8
3.2.4 CONTACT INPUTS/OUTPUTS 3-9
3.2.5 TRANSDUCER INPUTS/OUTPUTS 3-15
3.2.6 RS232 FACEPLATE PORT 3-16
3.2.7 CPU COMMUNICATION PORTS 3-16
3.2.8 IRIG-B 3-18

4. HUMAN INTERFACES
 FACES

5. SETTINGS
SETTNGS

4.1 URPC SOFTWARE INTERFACE

4.1.1 INTRODUCTION 4-1
4.1.2 CREATING A SITE LIST 4-1
4.1.3 URPC SOFTWARE OVERVIEW 4-1
4.1.4 URPC MAIN WINDOW 4-3
4.2 FACEPLATE INTERFACE
4.2.1 FACEPLATE 4-4
4.2.2 LED INDICATORS 4-5
4.2.3 KEYPAD 4-7
4.2.4 DISPLAY 4-7
4.2.5 MENUS 4-8
4.2.6 CHANGING SETTINGS 4-10
3.3 DIRECT I/O COMMUNICATIONS
3.3.1 DESCRIPTION 3-19
3.3.2 FIBER: LED AND ELED TRANSMITTERS 3-21
3.3.3 FIBER-LASER TRANSMITTERS 3-21
3.3.4 G. 703 INTERFACE 3-22
3.3.5 RS422 INTERFACE 3-24
3.3.6 RS422 AND FIBER INTERFACE 3-27
3.3.7 G.703 AND FIBER INTERFACE 3-27
3.3.8 IEEE C37.94 INTERFACE 3-28
5.1 OVERVIEW
5.1.1 SETTINGS MAIN MENU 5-1
5.1.2 INTRODUCTION TO ELEMENTS 5-3
5.2 PRODUCT SETUP
5.2.1 PASSWORD SECURITY 5-4
5.2.2 DISPLAY PROPERTIES 5-5
5.2.3 CLEAR RELAY RECORDS 5-6
5.2.4 COMMUNICATIONS 5-7
5.2.5 MODBUS USER MAP 5-13
5.2.6 REAL TIME CLOCK 5-13
5.2.7 OSCILLOGRAPHY 5-14
5.2.8 DATA LOGGER 5-16
5.2.9 USER-PROGRAMMABLE LEDS 5-17
5.2.10 USER-PROGRAMMABLE SELF TESTS 5-20
5.2.11 CONTROL PUSHBUTTONS 5-20
5.2.12 USER-PROGRAMMABLE PUSHBUTTONS 5-21
5.2.13 FLEX STATE PARAMETERS 5-23
5.2.14 USER-DEFINABLE DISPLAYS 5-23
5.2.15 DIRECT I/O 5-25
5.2.16 INSTALLATION 5-30
5.3 FLEXLOGICTM
5.3.1 INTRODUCTION TO FLEXLOGIC ${ }^{\text {™ }}$ 5-31
5.3.2 FLEXLOGIC ${ }^{\text {TM }}$ RULES 5-36
5.3.3 FLEXLOGIC ${ }^{\text {TM }}$ EVALUATION 5-36
5.3.4 FLEXLOGIC ${ }^{\text {TM }}$ EXAMPLE 5-36
5.3.5 FLEXLOGIC ${ }^{\text {¹ }}$ EQUATION EDITOR 5-41
5.3.6 FLEXLOGIC ${ }^{\text {¹ }}$ TIMERS 5-41
5.3.7 FLEXELEMENTS ${ }^{\text {™ }}$ 5-42
5.3.8 NON-VOLATILE LATCHES 5-46
5.4 CONTROL ELEMENTS
5.4.1 OVERVIEW 5-47
5.4.2 SETTING GROUPS 5-47
5.4.3 SELECTOR SWITCH 5-47
5.4.4 DIGITAL ELEMENTS 5-53
5.4.5 DIGITAL COUNTERS 5-56
5.5 INPUTS/OUTPUTS
5.5.1 CONTACT INPUTS 5-58
5.5.2 VIRTUAL INPUTS 5-60
5.5.3 CONTACT OUTPUTS 5-61
5.5.4 LATCHING OUTPUTS 5-61
5.5.5 VIRTUAL OUTPUTS 5-63
5.5.6 REMOTE DEVICES 5-64
5.5.7 REMOTE INPUTS 5-65
5.5.8 REMOTE OUTPUTS 5-66
5.5.9 RESETTING 5-67
5.5.10 DIRECT INPUTS/OUTPUTS 5-67
5.6 TRANSDUCER I/O
5.6.1 DCMA INPUTS 5-71
5.6.2 RTD INPUTS 5-72
5.7 TESTING
5.7.1 TEST MODE 5-73
5.7.2 FORCE CONTACT INPUTS 5-73
5.7.3 FORCE CONTACT OUTPUTS 5-74
6.1 OVERVIEW
6.1.1 ACTUAL VALUES MAIN MENU 6-1
6.2 STATUS
6.2.1 CONTACT INPUTS 6-3
6.2.2 VIRTUAL INPUTS 6-3
6.2.3 REMOTE INPUTS 6-3
6.2.4 CONTACT OUTPUTS 6-4
6.2.5 VIRTUAL OUTPUTS 6-4
6.2.6 REMOTE DEVICES 6-4
6.2.7 SELECTOR SWITCHES 6-5
6.2.8 DIGITAL COUNTERS 6-5
6.2.9 FLEX STATES 6-5
6.2.10 ETHERNET 6-6
6.2.11 DIRECT INPUTS 6-6
6.2.12 DIRECT DEVICES STATUS 6-7
6.3 METERING
6.3.1 FLEXELEMENTSTM 6-8
6.3.2 TRANSDUCER I/O 6-8
6.4 RECORDS
6.4.1 EVENT RECORDS 6-9
6.4.2 OSCILLOGRAPHY 6-9
6.4.3 DATA LOGGER 6-9
6.5 PRODUCT INFORMATION
6.5.1 MODEL INFORMATION 6-10
6.5.2 FIRMWARE REVISIONS 6-10

7.1 COMMANDS

7.1.1 COMMANDS MENU 7-1
7.1.2 VIRTUAL INPUTS 7-1
7.1.3 CLEAR RECORDS 7-2
7.1.4 SET DATE AND TIME 7-2
7.1.5 RELAY MAINTENANCE 7-2
7.2 TARGETS
7.2.1 TARGETS MENU 7-3
7.2.2 TARGET MESSAGES 7-3
7.2.3 RELAY SELF-TESTS 7-3
6. ACTUAL VALUES

7. COMMANDS AND
TARGETS

A. FLEXANALOG
 PARAMETERS

A. 1 PARAMETER LIST

B. MODBUS COMMUNICATIONS

C. UCA/MMS

COMMUNICATIONS
B. 1 MODBUS RTU PROTOCOL
B.1.1 INTRODUCTION B-1
B.1.2 PHYSICAL LAYER B-1
B.1.3 DATA LINK LAYER B-1
B.1.4 CRC-16 ALGORITHM B-2
B. 2 MODBUS FUNCTION CODES
B.2.1 SUPPORTED FUNCTION CODES B-3
B.2.2 READ ACTUAL VALUES OR SETTINGS (FUNCTION CODE 03/04H) B-3
B.2.3 EXECUTE OPERATION (FUNCTION CODE 05H) B-4
B.2.4 STORE SINGLE SETTING (FUNCTION CODE 06H). B-4
B.2.5 STORE MULTIPLE SETTINGS (FUNCTION CODE 10H) B-5
B.2.6 EXCEPTION RESPONSES B-5
B. 3 FILE TRANSFERS
B.3.1 OBTAINING RELAY FILES VIA MODBUS B-6
B.3.2 MODBUS PASSWORD OPERATION B-7
B. 4 MEMORY MAPPING
B.4.1 MODBUS MEMORY MAP B-8
B.4.2 DATA FORMATS B-34
C. 1 UCA/MMS OVERVIEW
C.1.1 UCA C-1
C.1.2 MMS C-1
C.1.3 UCA REPORTING C-6
D. IEC 60870-5-104 COMMUNICATIONS
D. 1 IEC 60870-5-104
D.1.1 INTEROPERABILITY DOCUMENT D-1
D.1.2 POINT LIST D-10
E. DNP COMMUNICATIONS E. 1 DNP PROTOCOL
E.1.1 DEVICE PROFILE DOCUMENT E-1
E.1.2 DNP IMPLEMENTATION E-4
E. 2 DNP POINTS LISTS
E.2.1 BINARY INPUTS E-8
E.2.2 BINARY AND CONTROL RELAY OUTPUTS E-13
E.2.3 COUNTERS E-14
E.2.4 ANALOG INPUTS E-15
F. MISCELLANEOUS
F. 1 CHANGE NOTES
F.1.1 REVISION HISTORY F-1
F.1.2 CHANGES TO THE C30 MANUAL F-1
F. 2 ABBREVIATIONS
F.2.1 STANDARD ABBREVIATIONS F-4
F. 3 WARRANTY
F.3.1 GE MULTILIN WARRANTY F-6

INDEX

Please read this chapter to help guide you through the initial setup of your new relay.

Before attempting to install or use the relay, it is imperative that all WARNINGS and CAUTIONS in this manual are reviewed to help prevent personal injury, equipment damage, and/ or downtime.

- Open the relay packaging and inspect the unit for physical damage.
- Check that the battery tab is intact on the power supply module (for additional details, see the Battery Tab section near the end of this chapter).
- View the rear nameplate and verify that the correct model has been ordered.

Figure 1-1: REAR NAMEPLATE (EXAMPLE)

- Ensure that the following items are included:
- Instruction Manual
- GE Multilin Products CD (includes the URPC software and manuals in PDF format)
- mounting screws
- registration card (attached as the last page of the manual)
- Fill out the registration form and mail it back to GE Multilin (include the serial number located on the rear nameplate).
- For product information, instruction manual updates, and the latest software updates, please visit the GE Multilin website at http://www.GEindustrial.com/multilin.

If there is any noticeable physical damage, or any of the contents listed are missing, please contact GE Multilin immediately.

GE MULTILIN CONTACT INFORMATION AND CALL CENTER FOR PRODUCT SUPPORT:
GE Multilin
215 Anderson Avenue
Markham, Ontario
Canada L6E 1B3
TELEPHONE: (905) 294-6222, 1-800-547-8629 (North America only)
FAX: (905) 201-2098
E-MAIL: info.pm@indsys.ge.com
HOME PAGE: http://www.GEindustrial.com/multilin

1.2.1 INTRODUCTION TO THE UR

Historically, substation protection, control, and metering functions were performed with electromechanical equipment. This first generation of equipment was gradually replaced by analog electronic equipment, most of which emulated the singlefunction approach of their electromechanical precursors. Both of these technologies required expensive cabling and auxiliary equipment to produce functioning systems.
Recently, digital electronic equipment has begun to provide protection, control, and metering functions. Initially, this equipment was either single function or had very limited multi-function capability, and did not significantly reduce the cabling and auxiliary equipment required. However, recent digital relays have become quite multi-functional, reducing cabling and auxiliaries significantly. These devices also transfer data to central control facilities and Human Machine Interfaces using electronic communications. The functions performed by these products have become so broad that many users now prefer the term IED (Intelligent Electronic Device).
It is obvious to station designers that the amount of cabling and auxiliary equipment installed in stations can be even further reduced, to 20% to 70% of the levels common in 1990, to achieve large cost reductions. This requires placing even more functions within the IEDs.

Users of power equipment are also interested in reducing cost by improving power quality and personnel productivity, and as always, in increasing system reliability and efficiency. These objectives are realized through software which is used to perform functions at both the station and supervisory levels. The use of these systems is growing rapidly.
High speed communications are required to meet the data transfer rates required by modern automatic control and monitoring systems. In the near future, very high speed communications will be required to perform protection signaling with a performance target response time for a command signal between two IEDs, from transmission to reception, of less than 5 milliseconds. This has been established by the Electric Power Research Institute, a collective body of many American and Canadian power utilities, in their Utilities Communications Architecture 2 (MMS/UCA2) project. In late 1998, some European utilities began to show an interest in this ongoing initiative.
IEDs with the capabilities outlined above will also provide significantly more power system data than is presently available, enhance operations and maintenance, and permit the use of adaptive system configuration for protection and control systems. This new generation of equipment must also be easily incorporated into automation systems, at both the station and enterprise levels. The GE Multilin Universal Relay (UR) has been developed to meet these goals.

a) UR BASIC DESIGN

The UR is a digital-based device containing a central processing unit (CPU) that handles multiple types of input and output signals. The UR can communicate over a local area network (LAN) with an operator interface, a programming device, or another UR device.

Figure 1-2: UR CONCEPT BLOCK DIAGRAM
The CPU module contains firmware that provides protection elements in the form of logic algorithms, as well as programmable logic gates, timers, and latches for control features.

Input elements accept a variety of analog or digital signals from the field. The UR isolates and converts these signals into logic signals used by the relay.
Output elements convert and isolate the logic signals generated by the relay into digital or analog signals that can be used to control field devices.
b) UR SIGNAL TYPES

The contact inputs and outputs are digital signals associated with connections to hard-wired contacts. Both 'wet' and 'dry' contacts are supported.
The virtual inputs and outputs are digital signals associated with UR internal logic signals. Virtual inputs include signals generated by the local user interface. The virtual outputs are outputs of FlexLogic ${ }^{\text {TM }}$ equations used to customize the UR device. Virtual outputs can also serve as virtual inputs to FlexLogic ${ }^{T M}$ equations.
The analog inputs and outputs are signals that are associated with transducers, such as Resistance Temperature Detectors (RTDs).

The CT and VT inputs refer to analog current transformer and voltage transformer signals used to monitor AC power lines. The UR supports 1 A and 5 A CTs.
The remote inputs and outputs provide a means of sharing digital point state information between remote UR devices. The remote outputs interface to the remote inputs of other UR devices. Remote outputs are FlexLogic ${ }^{\text {TM }}$ operands inserted into UCA2 GOOSE messages and are of two assignment types: DNA standard functions and USER defined functions.
The direct inputs and outputs provide a means of sharing digital point states between a number of UR IEDs over a dedicated fiber (single or multimode), RS422, or G. 703 interface. No switching equipment is required as the IEDs are connected directly in a ring or redundant (dual) ring configuration. This feature is optimized for speed and intended for pilot-aided schemes, distributed logic applications, or the extension of the input/output capabilities of a single UR chassis.

c) UR SCAN OPERATION

The UR device operates in a cyclic scan fashion. The UR reads the inputs into an input status table, solves the logic program (FlexLogic ${ }^{\text {TM }}$ equation), and then sets each output to the appropriate state in an output status table. Any resulting task execution is priority interrupt-driven.

Figure 1-3: UR SCAN OPERATION

The firmware (software embedded in the relay) is designed in functional modules which can be installed in any relay as required. This is achieved with Object-Oriented Design and Programming (OOD/OOP) techniques.
Object-Oriented techniques involve the use of 'objects' and 'classes'. An 'object' is defined as "a logical entity that contains both data and code that manipulates that data". A 'class' is the generalized form of similar objects. By using this concept, one can create a Protection Class with the Protection Elements as objects of the class such as Time Overcurrent, Instantaneous Overcurrent, Current Differential, Undervoltage, Overvoltage, Underfrequency, and Distance. These objects represent completely self-contained software modules. The same object-class concept can be used for Metering, I/O Control, HMI, Communications, or any functional entity in the system.

Employing OOD/OOP in the software architecture of the Universal Relay achieves the same features as the hardware architecture: modularity, scalability, and flexibility. The application software for any Universal Relay (e.g. Feeder Protection, Transformer Protection, Distance Protection) is constructed by combining objects from the various functionality classes. This results in a 'common look and feel' across the entire family of UR platform-based applications.

As described above, the architecture of the UR relay is different from previous devices. In order to achieve a general understanding of this device, some sections of Chapter 5 are quite helpful. The most important functions of the relay are contained in "Elements". A description of UR elements can be found in the Introduction to Elements section in Chapter 5. An example of a simple element, and some of the organization of this manual, can be found in the Digital Elements settings section. An explanation of the use of inputs from CTs and VTs is in the Introduction to AC Sources section in Chapter 5. A description of how digital signals are used and routed within the relay is contained in the Introduction to FlexLogic ${ }^{\top M}$ section in Chapter 5.

The Faceplate keypad and display or the URPC software interface can be used to communicate with the relay.
The URPC software interface is the preferred method to edit settings and view actual values because the PC monitor can display more information in a simple comprehensible format.
The following minimum requirements must be met for the URPC software to properly operate on a PC.

- Pentium class or higher processor (Pentium II 300 MHz or higher recommended)
- Windows 95, 98, 98SE, ME, NT 4.0 (Service Pack 4 or higher), 2000, XP
- 64 MB of RAM (256 MB recommended)
- 40 MB of available hard drive space (100 MB recommended)
- Video capable of displaying 800×600 or higher in High Color mode (16-bit color)
- RS232 and/or Ethernet communications port to the relay
1.3.2 INSTALLATION

Refer to the following procedure to install the URPC software:

1. Insert the GE Multilin Products CD into your PC or direct your web browser to the GE Multilin website at http:// www.GEindustrial.com/multilin (preferred method). The Products CD is essentially a snapshot of the GE Multilin website at the date printed on the CD; install from the website to ensure the most recent version of URPC.
2. If the Products CD does not start automatically, choose Run from the Windows ${ }^{\circledR}$ Start menu and type D:ISETUP.EXE.
3. Select the Software item from the Resources menu on the right of the GE Multilin welcome page.
4. Select the $\mathbf{C} 30$ Controller item from the list of protective relays shown.
5. The C30 Software page will be shown. Select the URPC Software item from the list and save the installation program to your local PC.
6. Run the installation program and follow the on-screen instructions. When the Choose Destination Location window appears and if the software is not to be located in the default directory, click Browse and type in the complete path name including the new directory name.
7. Click Next to continue with the installation procedure.
8. The default program group where the application will be added to is shown in the Select Program Folder window. If it is desired that the application be added to an already existing program group, choose the group name from the list shown.
9. Click Next to begin the installation process.
10. To launch the URPC application, click Finish in the Setup Complete window.
11. Subsequently, double click on the URPC software icon to activate the application.

Refer to Chapter 4: Human Interfaces and the URPC Help File for additional information about the URPC software interface.

This section is intended as a quick start guide to using the URPC software. Please refer to the URPC Help File and Chapter 4 of this manual for more information.

a) CONFIGURING AN ETHERNET CONNECTION

Before starting, verify that the Ethernet network cable is properly connected to the Ethernet port on the back of the relay. To setup the relay for Ethernet communications, it will be necessary to define a Site, then add the relay as a Device at that site.

1. Install and start the latest version of the URPC software (available from the GE Multilin Products CD or online from http://www.GEindustrial.com/multilin.
2. Select the Online > Device Setup menu item to open the Device Setup window and click the "Add Site" button to define a new site.
3. Enter the desired site name in the Site Name field. If desired, a short description of site can also be entered along with the display order of devices defined for the site. Click the "OK" button when complete.
4. The new site will appear in the upper-left list in the URPC window. Click on the new site name and then select the Online > Device Setup menu item to re-open the Device Setup window.
5. Click the "Add Device" button to define the new device.
6. Enter the desired name in the Device Name field and a description (optional) of the site.
7. Select "Ethernet" from the Interface drop-down list. This will display a number of interface parameters that must be entered for proper Ethernet functionality.

- Enter the relay IP address (from SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ } \Rightarrow$ NETWORK \Rightarrow IP ADDRESS) in the IP Address field.
- Enter the relay Modbus address (from the PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ } \Rightarrow$ MODBUS PROTOCOL \Rightarrow MODbus SLAVE adDress setting) in the Slave Address field.
- Enter the Modbus port address (from the PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ MODBUS PROTOCOL $\Rightarrow \sqrt{ }$ MODBUS TCP PORT NUMBER setting) in the Modbus Port field.

8. Click the "Read Order Code" button to connect to the UR device and upload the order code. If an communications error occurs, ensure that the three URPC values entered in the previous step correspond to the relay setting values.
9. Click "OK" when the relay order code has been received. The new device will be added to the Site List window (or Online window) located in the top left corner of the main URPC window.
The Site Device has now been configured for Ethernet communications. Proceed to Section c) below to begin communications.

b) CONFIGURING AN RS232 CONNECTION

Before starting, verify that the RS232 serial cable is properly connected to the RS232 port on the front panel of the relay.

1. Install and start the latest version of the URPC software (available from the GE Multilin Products CD or online from http://www.GEindustrial.com/multilin.
2. Select the Online > Device Setup menu item to open the Device Setup window and click the "Add Site" button to define a new site.
3. Enter the desired site name in the Site Name field. If desired, a short description of site can also be entered along with the display order of devices defined for the site. Click the "OK" button when complete.
4. The new site will appear in the upper-left list in the URPC window. Click on the new site name and then select the Online > Device Setup menu item to re-open the Device Setup window.
5. Click the "Add Device" button to define the new device.
6. Enter the desired name in the Device Name field and a description (optional) of the site.
7. Select "Serial" from the Interface drop-down list. This will display a number of interface parameters that must be entered for proper Ethernet functionality.

- Enter the relay slave address and COM port values (from the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{r}$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ SERIAL PORTS menu) in the Slave Address and COM Port fields.
- Enter the physical communications parameters (baud rate and parity settings) in their respective fields.

8. Click the "Read Order Code" button to connect to the UR device and upload the order code. If an communications error occurs, ensure that the URPC serial communications values entered in the previous step correspond to the relay setting values.
9. Click "OK" when the relay order code has been received. The new device will be added to the Site List window (or Online window) located in the top left corner of the main URPC window.
The Site Device has now been configured for RS232 communications. Proceed to Section c) Connecting to the Relay below to begin communications.

c) CONNECTING TO THE RELAY

1. Open the Display Properties window through the Site List tree as shown below:

2. The Display Properties window will open with a flashing status indicator on the lower left of the URPC window.
3. If the status indicator is red, verify that the Ethernet network cable is properly connected to the Ethernet port on the back of the relay and that the relay has been properly setup for communications (steps A and B earlier).
4. The Display Properties settings can now be edited, printed, or changed according to user specifications.

Refer to Chapter 4 in this manual and the URPC Help File for more information about the using the URPC software interface.

Please refer to Chapter 3: Hardware for detailed mounting and wiring instructions. Review all WARNINGS and CAUTIONS carefully.

The URPC software communicates to the relay via the faceplate RS232 port or the rear panel RS485 / Ethernet ports. To communicate via the faceplate RS232 port, a standard "straight-through" serial cable is used. The DB-9 male end is connected to the relay and the DB-9 or DB-25 female end is connected to the PC COM1 or COM2 port as described in the CPU Communications Ports section of Chapter 3.

Figure 1-4: RELAY COMMUNICATIONS OPTIONS
To communicate through the C30 rear RS485 port from a PC RS232 port, the GE Multilin RS232/RS485 converter box is required. This device (catalog number F485) connects to the computer using a "straight-through" serial cable. A shielded twisted-pair (20, 22, or 24 AWG) connects the F485 converter to the C30 rear communications port. The converter terminals (,+- , GND) are connected to the C30 communication module (,,+- COM) terminals. Refer to the CPU Communications Ports section in Chapter 3 for option details. The line should be terminated with an R-C network (i.e. $120 \Omega, 1 \mathrm{nF}$) as described in the Chapter 3.

1.4.3 FACEPLATE DISPLAY

All messages are displayed on a 2×20 character vacuum fluorescent display to make them visible under poor lighting conditions. An optional liquid crystal display (LCD) is also available. Messages are displayed in English and do not require the aid of an instruction manual for deciphering. While the keypad and display are not actively being used, the display will default to defined messages. Any high priority event driven message will automatically override the default message and appear on the display.

Display messages are organized into 'pages' under the following headings: Actual Values, Settings, Commands, and Targets. The MENU key navigates through these pages. Each heading page is broken down further into logical subgroups.
The Δ MESSAGE ∇ keys navigate through the subgroups. The Θ VALUE ∇ keys scroll increment or decrement numerical setting values when in programming mode. These keys also scroll through alphanumeric values in the text edit mode. Alternatively, values may also be entered with the numeric keypad.

The . \cdot key initiates and advance to the next character in text edit mode or enters a decimal point. The Help key may be pressed at any time for context sensitive help messages. The ENTER key stores altered setting values.
1.5.2 MENU NAVIGATION

Press the MENU key to select the desired header display page (top-level menu). The header title appears momentarily followed by a header display page menu item. Each press of the MEnv key advances through the main heading pages as illustrated below.

1.5.3 MENU HIERARCHY

The setting and actual value messages are arranged hierarchically. The header display pages are indicated by double scroll bar characters (■■), while sub-header pages are indicated by single scroll bar characters (\square). The header display pages represent the highest level of the hierarchy and the sub-header display pages fall below this level. The MESSAGE Δ and ∇ keys move within a group of headers, sub-headers, setting values, or actual values. Continually pressing the MESSAGE key from a header display displays specific information for the header category. Conversely, continually pressing the MESSAGE key from a setting value or actual value display returns to the header display.

HIGHEST LEVEL

The relay is defaulted to the "Not Programmed" state when it leaves the factory. This safeguards against the installation of a relay whose settings have not been entered. When powered up successfully, the Trouble LED will be on and the In Service LED off. The relay in the "Not Programmed" state will block signaling of any output relay. These conditions will remain until the relay is explicitly put in the "Programmed" state.
Select the menu message SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ INSTALLATION \Rightarrow RELAY SETTINGS

$$
\begin{aligned}
& \text { RELAY SETTINGS: } \\
& \text { Not Programmed } \\
& \hline
\end{aligned}
$$

To put the relay in the "Programmed" state, press either of the \otimes VALUE θ keys once and then press ENTER. The faceplate Trouble LED will turn off and the In Service LED will turn on. The settings for the relay can be programmed manually (refer to Chapter 5) via the faceplate keypad or remotely (refer to the URPC Help file) via the URPC software interface.

1.5.5 BATTERY TAB

The battery tab is installed in the power supply module before the C30 shipped from the factory. The battery tab prolongs battery life in the event the relay is powered down for long periods of time before installation. The battery is responsible for backing up event records, oscillography, data logger, and real-time clock information when the relay is powered off. The battery failure self-test error generated by the relay is a minor and should not affect the relay functionality. When the relay is installed and ready for commissioning, the tab should be removed. The battery tab should be re-inserted if the relay is powered off for an extended period of time. If required, contact the factory for a replacement battery or battery tab.
1.5.6 RELAY PASSWORDS

It is recommended that passwords be set up for each security level and assigned to specific personnel. There are two user password security access levels, COMMAND and SETTING:

1. COMMAND

The COMMAND access level restricts the user from making any settings changes, but allows the user to perform the following operations:

- change state of virtual inputs
- clear event records
- clear oscillography records
- operate user-programmable pushbuttons

2. SETTING

The SETTING access level allows the user to make any changes to any of the setting values.

1.5.7 FLEXLOGIC ${ }^{\text {TM }}$ CUSTOMIZATION

FlexLogic ${ }^{\text {TM }}$ equation editing is required for setting up user-defined logic for customizing the relay operations. See the FlexLogic ${ }^{\top \mathrm{M}}$ section in Chapter 5 for additional details.

1.5.8 COMMISSIONING

Templated tables for charting all the required settings before entering them via the keypad are available from the GE Multi-
lin website at http://www. GEindustrial.com/multilin.

The C30 relay is a microprocessor-based relay designed for power substation control and monitoring.
Diagnostic features include a sequence of records capable of storing 1024 time-tagged events. The internal clock used for time-tagging can be synchronized with an IRIG-B signal or via the SNTP protocol over the Ethernet port. This precise time stamping allows the sequence of events to be determined throughout the system. Events can also be programmed (via FlexLogic ${ }^{T M}$ equations) to trigger oscillography data capture which may be set to record the measured parameters before and after the event for viewing on a personal computer (PC). These tools significantly reduce troubleshooting time and simplify report generation in the event of a system fault.
A faceplate RS232 port may be used to connect to a PC for the programming of settings and the monitoring of actual values. A variety of communications modules are available. Two rear RS485 ports allow independent access by operating and engineering staff. All serial ports use the Modbus ${ }^{\circledR}$ RTU protocol. The RS485 ports may be connected to system computers with baud rates up to 115.2 kbps . The RS232 port has a fixed baud rate of 19.2 kbps . Optional communications modules include a 10BaseF Ethernet interface which can be used to provide fast, reliable communications in noisy environments. Another option provides two 10BaseF fiber optic ports for redundancy. The Ethernet port supports MMS/UCA2, Modbus ${ }^{\circledR} /$ TCP, and TFTP protocols, and allows access to the relay via any standard web browser (UR web pages). The IEC 60870-5-104 protocol is supported on the Ethernet port. DNP 3.0 and IEC 60870-5-104 cannot be enabled at the same time.

The C30 IEDs use flash memory technology which allows field upgrading as new features are added.

Table 2-1: DEVICE FUNCTIONS

FUNCTION
Contact Inputs (up to 96)
Contact Outputs (up to 64)
Control Pushbuttons
Data Logger
Digital Counters (8)
Digital Elements (16)
Direct Inputs/Outputs (32)
DNP 3.0 or IEC 60870-5-104 Communications
Event Recorder
FlexElements ${ }^{\text {TM }}$
FlexLogic ${ }^{\text {TM }}$ Equations
MMS/UCA Communications
MMS/UCA Remote I/O ("GOOSE")

FUNCTION
Modbus Communications
Modbus User Map
Non-Volatile Latches
Non-Volatile Selector Switch
Oscillography
Time Synchronization over SNTP
Transducer I/O
User Definable Displays
User Programmable LEDs
User Programmable Pushbuttons
User Programmable Self-Tests
Virtual Inputs (32)
Virtual Outputs (64)

The relay is available as a 19-inch rack horizontal mount unit or as a reduced size ($3 / 4$) vertical mount unit, and consists of the following UR module functions: power supply, CPU, digital input/output, transducer input/output. Each of these modules can be supplied in a number of configurations which must be specified at the time of ordering. The information required to completely specify the relay is provided in the following table (full details of available relay modules are contained in Chapter 3: Hardware).

Table 2-2: C30 ORDER CODES

The order codes for replacement modules to be ordered separately are shown in the following table. When ordering a replacement CPU module or Faceplate, please provide the serial number of your existing unit.

Table 2-3: ORDER CODES FOR UR REPLACEMENT MODULES

FLEXLOGIC ${ }^{\text {TM }}$	
Programming language:	Reverse Polish Notation with graphical visualization (keypad programmable)
Lines of code:	512
Internal variables:	64
Supported operations:	NOT, XOR, OR (2 to 16 inputs), AND (2 to 16 inputs), NOR (2 to 16 inputs), NAND (2 to 16 inputs), Latch (Reset dominant), Edge Detectors, Timers
Inputs:	any logical variable, contact, or virtual input
Number of timers:	32
Pickup delay:	0 to 60000 (ms, sec., min.) in steps of 1
Dropout delay:	0 to 60000 (ms, sec., min.) in steps of 1
FLEXCURVES ${ }^{\text {™ }}$	
Number:	4 (A through D)
Reset points:	40 (0 through 1 of pickup)
Operate points:	80 (1 through 20 of pickup)
Time delay:	0 to 65535 ms in steps of 1
FLEX STATES	
Number:	up to 256 logical variables grouped under 16 Modbus addresses
Programmability:	any logical variable, contact, or virtual input
FLEXELEMENTS ${ }^{\text {TM }}$	
Number of elements:	8
Operating signal:	any analog actual value, or two values in differential mode
Operating signal mode:	Signed or Absolute Value
Operating mode:	Level, Delta
Compensation direction:	Over, Under
Pickup Level:	-30.000 to 30.000 pu in steps of 0.001
Hysteresis:	0.1 to 50.0% in steps of 0.1
Delta dt:	20 ms to 60 days
Pickup \& dropout delay:	0.000 to 65.535 s in steps of 0.001

NON-VOLATILE LATCHES

Type:	Set-dominant or Reset-dominant
Number:	16 (individually programmed)
Output:	Stored in non-volatile memory
Execution sequence:	As input prior to protection, control, and FlexLogic ${ }^{\text {TM }}$
USER-PROGRAMMABLE LEDs	
Number:	48 plus Trip and Alarm
Programmability:	from any logical variable, contact, or virtual input
Reset mode:	Self-reset or Latched
LED TEST	
Initiation:	from any digital input or user-programmable condition
Number of tests:	3 , interruptible at any time
Duration of full test:	approximately 3 minutes
Test sequence 1:	all LEDs on
Test sequence 2:	all LEDs off, one LED at a time on for 1 s
Test sequence 3:	all LEDs on, one LED at a time off for

USER-DEFINABLE DISPLAYS

Number of displays: 16
Lines of display: 2×20 alphanumeric characters
Parameters: up to 5 , any Modbus register addresses
Invoking and scrolling: keypad, or any user-programmable condition, including pushbuttons

CONTROL PUSHBUTTONS

Number of pushbuttons: 3
Operation: drive FlexLogic ${ }^{\text {TM }}$ operands

USER-PROGRAMMABLE PUSHBUTTONS (OPTIONAL)

Number of pushbuttons: 12
Mode: Self-Reset, Latched
Display message: 2 lines of 20 characters each

SELECTOR SWITCH

Upper Position Limit:
Selecting mode: Time-out or Acknowledge
Time-out timer: $\quad 3.0$ to 60.0 s in steps of 0.1
Control inputs: Step-up and 3-bit
Power-up mode: Restore from non-volatile memory or synchronize to a 3-bit control input

OSCILLOGRAPHY

Maximum records:
Sampling rate:
Triggers:

Data:

Data storage:

64 samples per power cycle
Any element pickup, dropout or operate
Digital input change of state
Digital output change of state
FlexLogic ${ }^{\text {TM }}$ equation

AC input channels
Element state
Digital input state
Digital output state
In non-volatile memory

EVENT RECORDER

Capacity:	1024 events
Time-tag:	to 1 microsecond
Triggers:	Any element pickup, dropout or operate Digital input change of state Digital output change of state Self-test events
Data storage:	In non-volatile memory
DATA LOGGER Number of channels:	1 to 16
Parameters:	Any available analog actual value
Sampling rate:	$1 \mathrm{sec} . ; 1,5,10,15,20,30,60 \mathrm{~min}$.
Storage capacity:	(NN is dependent on memory)
1-second rate:	01 channel for NN days
\downarrow	16 channels for NN days
60-minute rate:	01 channel for NN days 16 channels for NN days

CONTACT INPUTS

Dry contacts:
Wet contacts:
Selectable thresholds: $17 \mathrm{~V}, 33 \mathrm{~V}, 84 \mathrm{~V}, 166 \mathrm{~V}$
Recognition time:
Debounce timer:
$<1 \mathrm{~ms}$
0.0 to 16.0 ms in steps of 0.5

DCMA INPUTS
Current input (mA DC): 0 to $-1,0$ to $+1,-1$ to $+1,0$ to 5,0 to 10 , 0 to 20, 4 to 20 (programmable)
Input impedance:
Conversion range:
Accuracy:
Type:

RTD INPUTS

Types (3-wire):	100Ω Platinum, $100 \& 120 \Omega$ Nickel, 10
	Ω Copper
Sensing current:	5 mA
Range:	-50 to $+250^{\circ} \mathrm{C}$
Accuracy:	$\pm 2^{\circ} \mathrm{C}$
Isolation:	$36 \mathrm{~V} \mathrm{pk-pk}$

IRIG-B INPUT
Amplitude modulation: 1 to 10 V pk-pk
DC shift: TTL
Input impedance: $\quad 22 \mathrm{k} \Omega$

REMOTE INPUTS (MMS GOOSE)

Number of input points: 32, configured from 64 incoming bit pairs Number of remote devices:16
Default states on loss of comms.: On, Off, Latest/Off, Latest/On

DIRECT INPUTS

Number of input points: 32
No. of remote devices: 8
Default states on loss of comms.: On, Off, Latest/Off, Latest/On
Ring configuration: Yes, No
Data rate: $\quad 64$ or 128 kbps
CRC: 32-bit
CRC alarm:
Responding to: Rate of messages failing the CRC
Monitoring message count: 10 to 10000 in steps of 1
Alarm threshold: 1 to 1000 in steps of 1
Unreturned message alarm:
Responding to: Rate of unreturned messages in the ring configuration
Monitoring message count: 10 to 10000 in steps of 1
Alarm threshold: $\quad 1$ to 1000 in steps of 1

LOW RANGE

Nominal DC voltage: $\quad 24$ to 48 V at 3 A
Min/max DC voltage: $20 / 60 \mathrm{~V}$
NOTE: Low range is DC only.
HIGH RANGE
Nominal DC voltage: $\quad 125$ to 250 V at 0.7 A
Min/max DC voltage: $88 / 300 \mathrm{~V}$
Nominal AC voltage: $\quad 100$ to 240 V at $50 / 60 \mathrm{~Hz}, 0.7 \mathrm{~A}$
Min/max AC voltage: $\quad 88 / 265 \mathrm{~V}$ at 48 to 62 Hz

ALL RANGES

Volt withstand:
Voltage loss hold-up:
Power consumption:

INTERNAL FUSE

 RATINGSLow range power supply: 7.5 A / 600 V
High range power supply: $5 \mathrm{~A} / 600 \mathrm{~V}$
INTERRUPTING CAPACITY

AC:	100000 A RMS symmetrical
DC:	10000 A

FORM-A RELAY

Make and carry for 0.2 s : 30 A as per ANSI C37.90
Carry continuous: 6 A
Break at L / R of 40 ms : 0.25 A DC max. at 48 V 0.10 A DC max. at 125 V

Operate time: $<4 \mathrm{~ms}$
Contact material: Silver alloy

LATCHING RELAY

Make and carry for 0.2 s : 30 A as per ANSI C37.90
Carry continuous: 6 A
Break at L/R of $40 \mathrm{~ms}: \quad 0.25$ A DC max.
Operate time: $<4 \mathrm{~ms}$
Contact material: Silver alloy
Control: separate operate and reset inputs
Control mode: operate-dominant or reset-dominant

FORM-A VOLTAGE MONITOR

Applicable voltage: approx. 15 to 250 V DC
Trickle current: approx. 1 to 2.5 mA

FORM-A CURRENT MONITOR

Threshold current: approx. 80 to 100 mA
FORM-C AND CRITICAL FAILURE RELAY
Make and carry for 0.2 s : 10 A
Carry continuous: 6 A
Break at L/R of $40 \mathrm{~ms}: \quad 0.25 \mathrm{~A} \mathrm{DC} \mathrm{max}$. 0.10 A DC max. at 125 V

Operate time: $\quad<8 \mathrm{~ms}$
Contact material: Silver alloy

FAST FORM-C RELAY

Make and carry: $\quad 0.1 \mathrm{~A}$ max. (resistive load)
Minimum load impedance:

INPUT VOLTAGE	IMPEDANCE	
	2 W RESISTOR	1 W RESISTOR
250 V DC	$20 \mathrm{~K} \Omega$	$50 \mathrm{~K} \Omega$
120 V DC	$5 \mathrm{~K} \Omega$	$2 \mathrm{~K} \Omega$
48 V DC	$2 \mathrm{~K} \Omega$	$2 \mathrm{~K} \Omega$
24 V DC	$2 \mathrm{~K} \Omega$	$2 \mathrm{~K} \Omega$

Note: values for 24 V and 48 V are the same due to a required 95% voltage drop across the load impedance.
Operate time: $\quad<0.6 \mathrm{~ms}$
INTERNAL LIMITING RESISTOR:

Power:	2 watts
Resistance:	100 ohms

CONTROL POWER EXTERNAL OUTPUT (FOR DRY CONTACT INPUT)
Capacity:
100 mA DC at 48 V DC
Isolation: $\quad \pm 300 \mathrm{Vpk}$
REMOTE OUTPUTS (MMS GOOSE)
Standard output points: 32
User output points: 32

DIRECT OUTPUTS

Output points: 32

RS232

Front port:

RS485

1 or 2 rear ports:

Typical distance:
19.2 kbps, Modbus ${ }^{\circledR}$ RTU

Up to 115 kbps, Modbus ${ }^{\circledR}$ RTU, isolated together at 36 Vpk 1200 m

ETHERNET PORT

10BaseF:	820 nm, multi-mode, supports half- duplex/full-duplex fiber optic with ST connector
Redundant 10BaseF:	820 nm, multi-mode, half-duplex/full- duplex fiber optic with ST connector
Power budget:	10 db
Max optical lp power:	-7.6 dBm
Typical distance:	1.65 km
SNTP clock synchronization error: <10 ms (typical)	

820 nm, multi-mode, supports half-duplex/full-duplex fiber optic with ST connector duplex fiber optic with ST connector 10 db
$-7.6 \mathrm{dBm}$
1.65 km

SNTP clock synchronization error: <10 ms (typical)
2.2.7 INTER-RELAY COMMUNICATIONS

SHIELDED TWISTED-PAIR INTERFACE OPTIONS

INTERFACE TYPE	TYPICAL DISTANCE
RS422	1200 m
G. 703	100 m

RS422 distance is based on transmitter power and does not take into consideration the clock source provided by the user.

LINK POWER BUDGET

EMITTER, FIBER TYPE	TRANSMIT POWER	RECEIVED SENSITIVITY	POWER BUDGET
$\begin{aligned} & \hline 820 \mathrm{~nm} \text { LED, } \\ & \text { Multimode } \end{aligned}$	-20 dBm	-30 dBm	10 dB
$1300 \mathrm{~nm} \text { LED, }$ Multimode	-21 dBm	-30 dBm	9 dB
1300 nm ELED, Singlemode	-21 dBm	-30 dBm	9 dB
1300 nm Laser, Singlemode	-1 dBm	-30 dBm	29 dB
$1550 \mathrm{~nm} \text { Laser, }$ Singlemode	+5 dBm	-30 dBm	35 dB

These Power Budgets are calculated from the manufacturer's worst-case transmitter power and worst case receiver sensitivity.

MAXIMUM OPTICAL INPUT POWER

EMITTER, FIBER TYPE	MAX. OPTICAL INPUT POWER
820 nm LED, Multimode	-7.6 dBm
1300 nm LED, Multimode	-11 dBm
1300 nm ELED, Singlemode	-14 dBm
1300 nm Laser, Singlemode	-14 dBm
1550 nm Laser, Singlemode	-14 dBm

TYPICAL LINK DISTANCE

EMITTER TYPE	FIBER TYPE	CONNECTOR TYPE	TYPICAL DISTANCE
820 nm LED	Multimode	ST	1.65 km
1300 nm LED	Multimode	ST	3.8 km
1300 nm ELED	Singlemode	ST	11.4 km
1300 nm Laser	Singlemode	ST	64 km
1550 nm Laser	Singlemode	ST	105 km

Typical distances listed are based on the following assumptions for system loss. As actual losses will vary from one installation to another, the distance covered by your system may vary.

CONNECTOR LOSSES (TOTAL OF BOTH ENDS)

ST connector
FIBER LOSSES
820 nm multimode 2 dB

820 nm multimode
$3 \mathrm{~dB} / \mathrm{km}$
1300 nm multimode $1 \mathrm{~dB} / \mathrm{km}$
1300 nm singlemode $\quad 0.35 \mathrm{~dB} / \mathrm{km}$
1550 nm singlemode $\quad 0.25 \mathrm{~dB} / \mathrm{km}$
Splice losses: One splice every 2 km , at 0.05 dB loss per splice.

SYSTEM MARGIN

3 dB additional loss added to calculations to compensate for all other losses.

Compensated difference in transmitting and receiving (channel asymmetry) channel delays using GPS satellite clock: 10 ms

OPERATING TEMPERATURES

Cold:
IEC 60028-2-1, 16 h at $-40^{\circ} \mathrm{C}$
Dry Heat:
IEC 60028-2-2, 16 h at $+85^{\circ} \mathrm{C}$

OTHER

Humidity (noncondensing): IEC 60068-2-30, 95\%, Variant 1, 6 days
Altitude: Up to 2000 m
Installation Category: II

Electrical fast transient:	ANSI/IEEE C37.90.1 IEC 61000-4-4 IEC 60255-22-4	Conducted RFI: IEC 61000-4-6 Voltage dips/interruptions/variations: IEC 61000-4-11
Oscillatory transient:	ANSIIIEEE C37.90.1 IEC 61000-4-12	IEC 60255-11 Power frequency magnetic field immunity:
Insulation resistance:	IEC 60255-5	IEC 61000-4-8
Dielectric strength:	IEC 60255-6 ANSI/IEEE C37.90	Vibration test (sinusoidal): IEC 60255-21-1 Shock and bump: IEC 60255-21-2
Electrostatic discharge: Surge immunity:	EN 61000-4-2 EN 61000-4-5	Type test report available upon request.
RFI susceptibility:	ANSI/IEEE C37.90.2 IEC 61000-4-3 IEC 60255-22-3 Ontario Hydro C-5047-77	note

THERMAL

Products go through a 12 h burn-in process at $60^{\circ} \mathrm{C}$
2.2.11 APPROVALS

APPROVALS

UL Listed for the USA and Canada
Manufactured under an ISO9000 registered system.

CE:
LVD 73/23/EEC: IEC 1010-1
EMC 81/336/EEC: EN 50081-2, EN 50082-2

MAINTENANCE
Cleaning:
Normally, cleaning is not required; but for situations where dust has accumulated on the faceplate display, a dry cloth can be used.

The relay is available as a 19 -inch rack horizontal mount unit or as a reduced size ($3 / 4$) vertical mount unit, with a removable faceplate. The modular design allows the relay to be easily upgraded or repaired by a qualified service person. The faceplate is hinged to allow easy access to the removable modules, and is itself removable to allow mounting on doors with limited rear depth. There is also a removable dust cover that fits over the faceplate, which must be removed when attempting to access the keypad or RS232 communications port.

The vertical and horizontal case dimensions are shown below, along with panel cutout details for panel mounting. When planning the location of your panel cutout, ensure that provision is made for the faceplate to swing open without interference to or from adjacent equipment.
The relay must be mounted such that the faceplate sits semi-flush with the panel or switchgear door, allowing the operator access to the keypad and the RS232 communications port. The relay is secured to the panel with the use of four screws supplied with the relay.

Figure 3-1: C30 VERTICAL MOUNTING AND DIMENSIONS

Figure 3-2: C30 VERTICAL SIDE MOUNTING INSTALLATION

Figure 3-3: C30 VERTICAL SIDE MOUNTING REAR DIMENSIONS

Figure 3-4: C30 HORIZONTAL MOUNTING AND DIMENSIONS

Module withdrawal and insertion may only be performed when control power has been removed from the unit. Inserting an incorrect module type into a slot may result in personal injury, damage to the unit or connected equipment, or undesired operation!
Proper electrostatic discharge protection (i.e. a static strap) must be used when coming in contact with modules while the relay is energized!
WARNING
The relay, being modular in design, allows for the withdrawal and insertion of modules. Modules must only be replaced with like modules in their original factory configured slots.

The faceplate can be opened to the left, once the sliding latch on the right side has been pushed up, as shown below. This allows for easy accessibility of the modules for withdrawal.

Figure 3-5: UR MODULE WITHDRAWAL/INSERTION
WITHDRAWAL: The ejector/inserter clips, located at the top and bottom of each module, must be pulled simultaneously to release the module for removal. Before performing this action, control power must be removed from the relay. Record the original location of the module to ensure that the same or replacement module is inserted into the correct slot.
INSERTION: Ensure that the correct module type is inserted into the correct slot position. The ejector/inserter clips located at the top and at the bottom of each module must be in the disengaged position as the module is smoothly inserted into the slot. Once the clips have cleared the raised edge of the chassis, engage the clips simultaneously. When the clips have locked into position, the module will be fully inserted.

Type 9C and 9D CPU modules are equipped with 10Base-T and 10Base-F Ethernet connectors for communications. These connectors must be individually disconnected from the module before the it can be removed from the chassis.

Figure 3-6: REAR TERMINAL VIEW

A

Do not touch any rear terminals while the relay is energized!

The relay follows a convention with respect to terminal number assignments which are three characters long assigned in order by module slot position, row number, and column letter. Two-slot wide modules take their slot designation from the first slot position (nearest to CPU module) which is indicated by an arrow marker on the terminal block. See the following figure for an example of rear terminal assignments.

Figure 3-7: EXAMPLE OF MODULES IN F \& H SLOTS

Figure 3-8: TYPICAL WIRING DIAGRAM

The dielectric strength of UR module hardware is shown in the following table:
Table 3-1: DIELECTRIC STRENGTH OF UR MODULE HARDWARE

MODULE TYPE	MODULE FUNCTION	TERMINALS		DIELECTRIC STRENGTH (AC)
		FROM	TO	
1	Power Supply	High (+); Low (+); (-)	Chassis	2000 V AC for 1 minute ${ }^{1}$
1	Power Supply	48 V DC (+) and (-)	Chassis	2000 V AC for 1 minute ${ }^{1}$
1	Power Supply	Relay Terminals	Chassis	2000 V AC for 1 minute ${ }^{1}$
2	Reserved for Future	N/A	N/A	N/A
3	Reserved for Future	N/A	N/A	N/A
4	Reserved for Future	N/A	N/A	N/A
5	Analog I/O	All except 8b	Chassis	$<50 \mathrm{~V}$ DC
6	Digital I/O	All (See Precaution 2)	Chassis	2000 V AC for 1 minute
8	CT/VT	All	Chassis	2000 V AC for 1 minute
9	CPU	All except 7b	Chassis	< 50 VDC

${ }^{1}$ See TEST PRECAUTION 1 below.
Filter networks and transient protection clamps are used in module hardware to prevent damage caused by high peak voltage transients, radio frequency interference (RFI) and electromagnetic interference (EMI). These protective components can be damaged by application of the ANSI/IEEE C37.90 specified test voltage for a period longer than the specified one minute. For testing of dielectric strength where the test interval may exceed one minute, always observe the following precautions:

1. The connection from ground to the Filter Ground (Terminal 8b) and Surge Ground (Terminal 8a) must be removed before testing.
2. Some versions of the digital I/O module have a Surge Ground connection on Terminal 8b. On these module types, this connection must be removed before testing.

CONTROL POWER SUPPLIED TO THE RELAY MUST BE CONNECTED TO THE MATCHING POWER SUPPLY RANGE OF THE RELAY. IF THE VOLTAGE IS APPLIED TO THE WRONG TERMINALS, DAMAGE MAY OCCUR!

The C30 relay, like almost all electronic relays, contains electrolytic capacitors. These capacitors are well known to be subject to deterioration over time if voltage is not applied periodically. Deterioration can be avoided by powering the relays up once a year.

The power supply module can be ordered with either of two possible voltage ranges. Each range has a dedicated input connection for proper operation. The ranges are as shown below (see the Technical Specifications section for details):

- LO range: 24 to 48 V (DC only) nominal
- HI range: 125 to 250 V nominal

The power supply module provides power to the relay and supplies power for dry contact input connections.
The power supply module provides 48 V DC power for dry contact input connections and a critical failure relay (see the Typical Wiring Diagram earlier). The critical failure relay is a Form-C that will be energized once control power is applied and the relay has successfully booted up with no critical self-test failures. If on-going self-test diagnostic checks detect a critical failure (see the Self-Test Errors Table in Chapter 7) or control power is lost, the relay will de-energize.

Figure 3-9: CONTROL POWER CONNECTION

Every digital input/output module has 24 terminal connections. They are arranged as 3 terminals per row, with 8 rows in total. A given row of three terminals may be used for the outputs of one relay. For example, for Form-C relay outputs, the terminals connect to the normally open (NO), normally closed (NC), and common contacts of the relay. For a Form-A output, there are options of using current or voltage detection for feature supervision, depending on the module ordered. The terminal configuration for contact inputs is different for the two applications. When a Digital I/O module is ordered with contact inputs, they are arranged in groups of four and use two rows of three terminals. Ideally, each input would be totally isolated from any other input. However, this would require that every input have two dedicated terminals and limit the available number of contacts based on the available number of terminals. So, although each input is individually optically isolated, each group of four inputs uses a single common as a reasonable compromise. This allows each group of four outputs to be supplied by wet contacts from different voltage sources (if required) or a mix of wet and dry contacts.
The tables and diagrams on the following pages illustrate the module types (6A, etc.) and contact arrangements that may be ordered for the relay. Since an entire row is used for a single contact output, the name is assigned using the module slot position and row number. However, since there are two contact inputs per row, these names are assigned by module slot position, row number, and column position.

UR RELAY FORM-A OUTPUT CONTACTS:

Some Form-A outputs include circuits to monitor the DC voltage across the output contact when it is open, and the DC current through the output contact when it is closed. Each of the monitors contains a level detector whose output is set to logic "On = 1 " when the current in the circuit is above the threshold setting. The voltage monitor is set to "On = 1 " when the current is above about 1 to 2.5 mA , and the current monitor is set to " $\mathrm{On}=1$ " when the current exceeds about 80 to 100 mA . The voltage monitor is intended to check the health of the overall trip circuit, and the current monitor can be used to seal-in the output contact until an external contact has interrupted current flow. The block diagrams of the circuits are below above for the Form-A outputs with:
a) optional voltage monitor
b) optional current monitor
c) with no monitoring

Figure 3-10: FORM-A CONTACT FUNCTIONS

The operation of voltage and current monitors is reflected with the corresponding FlexLogic ${ }^{\text {TM }}$ operands (Cont Op \# Von, Cont Op \# Voff, Cont Op \# Ion, and Cont Op \# loff) which can be used in protection, control and alarm logic. The typical application of the voltage monitor is Breaker Trip Circuit Integrity monitoring; a typical application of the Current monitor is seal-in of the control command. Refer to the Digital Elements section of Chapter 5 for an example of how Form-A contacts can be applied for Breaker Trip Circuit Integrity Monitoring.

Relay contacts must be considered unsafe to touch when the unit is energized! If the relay contacts need to be used for low voltage accessible applications, it is the customer's responsibility to ensure proper insulation levels!

${\underset{\text { NOTE }}{ }}_{\text {E }}$

USE OF FORM-A OUTPUTS IN HIGH IMPEDANCE CIRCUITS

For Form-A output contacts internally equipped with a voltage measuring clrcuit across the contact, the circuit has an impedance that can cause a problem when used in conjunction with external high input impedance monitoring equipment such as modern relay test set trigger circuits. These monitoring circuits may continue to read the FormA contact as being closed after it has closed and subsequently opened, when measured as an impedance.
The solution to this problem is to use the voltage measuring trigger input of the relay test set, and connect the Form-A contact through a voltage-dropping resistor to a DC voltage source. If the 48 V DC output of the power supply is used as a source, a 500Ω, 10 W resistor is appropriate. In this configuration, the voltage across either the Form-A contact or the resistor can be used to monitor the state of the output.
Wherever a tilde " \sim " symbol appears, substitute with the Slot Position of the module; wherever a number sign "\#" appears, substitute the contact number

When current monitoring is used to seal-in the Form-A contact outputs, the FlexLogic ${ }^{\text {TM }}$ operand driving the contact output should be given a reset delay of 10 ms to prevent damage of the output contact (in situations when the element initiating the contact output is bouncing, at values in the region of the pickup value).

Table 3-2: DIGITAL I/O MODULE ASSIGNMENTS

$\sim 6 A$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-C
~ 4	Form-C
$\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$	2 Inputs
$\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$	2 Inputs
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{~B}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-C
~ 4	Form-C
~ 5	Form-C
~ 6	Form-C
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{CC}$ I/O MODULE	
TERMINAL	
ASSIGNMENT	OUTPUT
~ 1	Form-C
~ 2	Form-C
~ 3	Form-C
~ 4	Form-C
~ 5	Form-C
~ 6	Form-C
~ 7	Form-C
~ 8	Form-C

$\sim 6 \mathrm{D}$ I/O MODULE	
TERMINAL	OUTPUT
ASSIGNMENT	
$\sim 1 \mathrm{a}, \sim 1 \mathrm{c}$	2 Inputs
$\sim 2 \mathrm{a}, \sim 2 \mathrm{c}$	2 Inputs
$\sim 3 \mathrm{a}, \sim 3 \mathrm{c}$	2 Inputs
$\sim 4 \mathrm{a}, \sim 4 \mathrm{c}$	2 Inputs
$\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$	2 Inputs
$\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$	2 Inputs
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 E$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-C
~ 2	Form-C
~ 3	Form-C
~ 4	Form-C
$\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$	2 Inputs
$\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$	2 Inputs
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{~F}$ I/O MODULE	
TERMINAL	OUTPUT
ASSIGNMENT	
~ 1	Fast Form-C
~ 2	Fast Form-C
~ 3	Fast Form-C
~ 4	Fast Form-C
~ 5	Fast Form-C
~ 6	Fast Form-C
~ 7	Fast Form-C
~ 8	Fast Form-C

$\sim 6 \mathrm{GG}$ I/O MODULE	
TERMINAL	
ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-A
~ 4	Form-A
$\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$	2 Inputs
$\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$	2 Inputs
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{H} \mathrm{I/O}$ MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-A
~ 4	Form-A
~ 5	Form-A
~ 6	Form-A
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{~K}$ I/O MODULE	
TERMINAL	OUTPUT
ASSIGNMENT	
~ 1	Form-C
~ 2	Form-C
~ 3	Form-C
~ 4	Form-C
~ 5	Fast Form-C
~ 6	Fast Form-C
~ 7	Fast Form-C
~ 8	Fast Form-C

$\sim 6 \mathrm{LL}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-C
~ 4	Form-C
$\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$	2 Inputs
$\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$	2 Inputs
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{M}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-C
~ 4	Form-C
~ 5	Form-C
~ 6	Form-C
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{NN}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-A
~ 4	Form-A
$\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$	2 Inputs
$\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$	2 Inputs
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{P}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-A
~ 4	Form-A
~ 5	Form-A
~ 6	Form-A
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 R$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-C
~ 4	Form-C
$\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$	2 Inputs
$\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$	2 Inputs
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{~S}$ I/O MODULE	
TERMINAL	
ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-C
~ 4	Form-C
~ 5	Form-C
~ 6	Form-C
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 T \mathrm{I} / \mathrm{O}$ MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-A
~ 4	Form-A
$\sim 5 \mathrm{a}, \sim 5 \mathrm{c}$	2 Inputs
$\sim 6 \mathrm{a}, \sim 6 \mathrm{c}$	2 Inputs
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

$\sim 6 \mathrm{6U}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~ 1	Form-A
~ 2	Form-A
~ 3	Form-A
~ 4	Form-A
~ 5	Form-A
~ 6	Form-A
$\sim 7 \mathrm{a}, \sim 7 \mathrm{c}$	2 Inputs
$\sim 8 \mathrm{a}, \sim 8 \mathrm{c}$	2 Inputs

\sim 4A I/O MODULE	
TERMINAL	OUTPUT
ASSIGNMENT	
~ 1	Not Used
~ 2	Solid-State
~ 3	Not Used
~ 4	Solid-State
~ 5	Not Used
~ 6	Solid-State
~ 7	Not Used
~ 8	Solid-State

\sim 4B I/O MODULE	
TERMINAL	OUTPUT
ASSIGNMENT	
~ 1	Not Used
~ 2	Solid-State
~ 3	Not Used
~ 4	Solid-State
~ 5	Not Used
~ 6	Solid-State
~ 7	Not Used
~ 8	Solid-State

$\sim 4 \mathrm{C}$ I/O MODULE	
TERMINAL	OUTPUT
ASSIGNMENT	
~ 1	Not Used
~ 2	Solid-State
~ 3	Not Used
~ 4	Solid-State
~ 5	Not Used
~ 6	Solid-State
~ 7	Not Used
~ 8	Solid-State

$\sim 4 \mathrm{~L}$ I/O MODULE	
TERMINAL ASSIGNMENT	OUTPUT
~ 1	2 Outputs
~ 2	2 Outputs
~ 3	2 Outputs
~ 4	2 Outputs
~ 5	2 Outputs
~ 6	2 Outputs
~ 7	2 Outputs
~ 8	Not Used

827719CX-X1.dwg
Figure 3-11: DIGITAL I/O MODULE WIRING (1 of 2)

- MOSFET Solid State Contact

82719CX-X2.dwg

Figure 3-12: DIGITAL I/O MODULE WIRING (2 of 2)

CORRECT POLARITY MUST BE OBSERVED FOR ALL CONTACT INPUT CONNECTIONS OR EQUIPMENT DAMAGE MAY RESULT.

A dry contact has one side connected to Terminal B3b. This is the positive 48 V DC voltage rail supplied by the power supply module. The other side of the dry contact is connected to the required contact input terminal. Each contact input group has its own common (negative) terminal which must be connected to the DC negative terminal (B3a) of the power supply module. When a dry contact closes, a current of 1 to 3 mA will flow through the associated circuit.

A wet contact has one side connected to the positive terminal of an external DC power supply. The other side of this contact is connected to the required contact input terminal. In addition, the negative side of the external source must be connected to the relay common (negative) terminal of each contact input group. The maximum external source voltage for this arrangement is 300 V DC.

The voltage threshold at which each group of four contact inputs will detect a closed contact input is programmable as 17 V DC for 24 V sources, 33 V DC for 48 V sources, 84 V DC for 110 to 125 V sources, and 166 V DC for 250 V sources.

Figure 3-13: DRY AND WET CONTACT INPUT CONNECTIONS
Wherever a tilde " \sim " symbol appears, substitute with the Slot Position of the module.

Contact outputs may be ordered as Form-A or Form-C. The Form A contacts may be connected for external circuit supervision. These contacts are provided with voltage and current monitoring circuits used to detect the loss of DC voltage in the circuit, and the presence of DC current flowing through the contacts when the Form-A contact closes. If enabled, the current monitoring can be used as a seal-in signal to ensure that the Form-A contact does not attempt to break the energized inductive coil circuit and weld the output contacts.

There is no provision in the relay to detect a DC ground fault on 48 V DC control power external output. We recommend using an external DC supply.

Transducer input/output modules can receive input signals from external dcmA output transducers (dcmA In) or resistance temperature detectors (RTD). Hardware and software is provided to receive signals from these external transducers and convert these signals into a digital format for use as required.
Every transducer input/output module has a total of 24 terminal connections. These connections are arranged as three terminals per row with a total of eight rows. A given row may be used for either inputs or outputs, with terminals in column "a" having positive polarity and terminals in column "c" having negative polarity. Since an entire row is used for a single input/ output channel, the name of the channel is assigned using the module slot position and row number.
Each module also requires that a connection from an external ground bus be made to Terminal 8b. The figure below illustrates the transducer module types (5C, 5E, and 5F) and channel arrangements that may be ordered for the relay.

Wherever a tilde " \sim " symbol appears, substitute with the Slot Position of the module.

~1a	Hot	RTD ~ 1	O
$\sim 1 \mathrm{c}$	Comp		
$\sim 1 \mathrm{~b}$	Return	for RTD ~1 \& ~ 2	
~2a	Hot	RTD ~2	
$\sim 2 \mathrm{c}$	Comp		
$\sim 2 \mathrm{~b}$	Return	for RTD ~2 \& ~3	
$\sim 3 \mathrm{a}$	Hot	RTD ~3	
$\sim 3 \mathrm{c}$	Comp		
$\sim 3 \mathrm{~b}$	Return	for RTD ~ 3 \& ~4	
$\sim 4 \mathrm{a}$	Hot	RTD ~ 4	
$\sim 4 \mathrm{c}$	Comp		
$\sim 4 \mathrm{~b}$	Return	for RTD ~ 4 \& ~5	
$\sim 5 \mathrm{a}$	Hot	RTD ~ 5	
$\sim 5 \mathrm{c}$	Comp		
$\sim 5 \mathrm{~b}$	Return	for RTD ~5 \& ~6	
~6a	Hot	RTD ~ 6	
$\sim 6 \mathrm{c}$	Comp		
$\sim 6 \mathrm{~b}$	Return	for RTD ~6 \& ~ 7	
$\sim 7 \mathrm{a}$	Hot	RTD ~ 7	,
$\sim 7 \mathrm{c}$	Comp		
$\sim 7 \mathrm{~b}$	Return	for RTD ~7 \& ~ 8	
$\sim 8 \mathrm{a}$	Hot	RTD ~ 8	O
$\sim 8 \mathrm{c}$	Comp		$\frac{1}{4}$
$\sim 8 \mathrm{~b}$	$\underline{1}$	SURGE	<

Figure 3-14: TRANSDUCER I/O MODULE WIRING

A 9-pin RS232C serial port is located on the relay's faceplate for programming with a portable (personal) computer. All that is required to use this interface is a personal computer running the URPC software provided with the relay. Cabling for the RS232 port is shown in the following figure for both 9 pin and 25 pin connectors.
Note that the baud rate for this port is fixed at 19200 bps.

Figure 3-15: RS232 FACEPLATE PORT CONNECTION
3.2.7 CPU COMMUNICATION PORTS

a) OPTIONS

In addition to the RS232 port on the faceplate, the relay provides the user with two additional communication port(s) depending on the CPU module installed.

CPU TYPE	COM1	COM2
9A	RS485	RS485
9C	10BASE-F	RS485
9D	Redundant 10Base-F	RS485

D2a	+	RS485 COM 1	๔
D3a	-		
D4a	COM		
D3b	+	RS485 COM 2	?
D4b	-		
D5b	COM		
D5a	+	IRIG-B	
D6a	-		
D7b	$\stackrel{1}{=}$	SURGE	

${ }_{(T x)}^{\left(B_{x}\right)^{10 B a s e F}}$		NORMAL	$\underset{1}{C O M}$	O	
ㄴ 10BaseT		TEST ONLY			
D3b	+	$\begin{aligned} & \text { RS485 } \\ & \text { COM } 2 \end{aligned}$			
D4b	-				
D5b	COM				
D5a	+	IRIG-B			
D6a	-				
D7b	$\stackrel{1}{ \pm}$	SURGE			

		NORMAL	COM	앙
ப10	BaseT	TEST ONLY		
D3b	+			
D4b	-			
D5b	com			
D5a	+			
D6a	-	IRIG		\bigcirc
D7b	$\stackrel{1}{1}$	SURGE GR	ROUND	O

827831A8-X6.CDR
Figure 3-16: CPU MODULE COMMUNICATIONS WIRING

b) RS485 PORTS

RS485 data transmission and reception are accomplished over a single twisted pair with transmit and receive data alternating over the same two wires. Through the use of these port(s), continuous monitoring and control from a remote computer, SCADA system or PLC is possible.

To minimize errors from noise, the use of shielded twisted pair wire is recommended. Correct polarity must also be observed. For instance, the relays must be connected with all RS485 " + " terminals connected together, and all RS485 "-" terminals connected together. The COM terminal should be connected to the common wire inside the shield, when provided. To avoid loop currents, the shield should be grounded at one point only. Each relay should also be daisy chained to the next one in the link. A maximum of 32 relays can be connected in this manner without exceeding driver capability. For larger systems, additional serial channels must be added. It is also possible to use commercially available repeaters to increase the number of relays on a single channel to more than 32. Star or stub connections should be avoided entirely.
Lightning strikes and ground surge currents can cause large momentary voltage differences between remote ends of the communication link. For this reason, surge protection devices are internally provided at both communication ports. An isolated power supply with an optocoupled data interface also acts to reduce noise coupling. To ensure maximum reliability, all equipment should have similar transient protection devices installed.

Both ends of the RS485 circuit should also be terminated with an impedance as shown below.

Figure 3-17: RS485 SERIAL CONNECTION
c) 10BASE-F FIBER OPTIC PORT

A
 ENSURE THE DUST COVERS ARE INSTALLED WHEN THE FIBER IS NOT IN USE. DIRTY OR SCRATCHED CONNECTORS CAN LEAD TO HIGH LOSSES ON A FIBER LINK.
 OBSERVING ANY FIBER TRANSMITTER OUTPUT MAY CAUSE INJURY TO THE EYE.

The fiber optic communication ports allow for fast and efficient communications between relays at 10 Mbps. Optical fiber may be connected to the relay supporting a wavelength of 820 nanometers in multimode. Optical fiber is only available for CPU types 9C and 9D. The 9D CPU has a 10BaseF transmitter and receiver for optical fiber communications and a second pair of identical optical fiber transmitter and receiver for redundancy.
The optical fiber sizes supported include $50 / 125 \mu \mathrm{~m}, 62.5 / 125 \mu \mathrm{~m}$ and $100 / 140 \mu \mathrm{~m}$. The fiber optic port is designed such that the response times will not vary for any core that is $100 \mu \mathrm{~m}$ or less in diameter. For optical power budgeting, splices are required every 1 km for the transmitter/receiver pair (the ST type connector contributes for a connector loss of 0.2 dB). When splicing optical fibers, the diameter and numerical aperture of each fiber must be the same. In order to engage or disengage the ST type connector, only a quarter turn of the coupling is required.
3.2.8 IRIG-B

TO OTHER DEVICES
Figure 3-18: IRIG-B CONNECTION
IRIG-B is a standard time code format that allows stamping of events to be synchronized among connected devices within 1 millisecond. The IRIG time code formats are serial, width-modulated codes which can be either DC level shifted or amplitude modulated (AM). Third party equipment is available for generating the IRIG-B signal; this equipment may use a GPS satellite system to obtain the time reference so that devices at different geographic locations can also be synchronized.

The C30 Direct I/O feature makes use of the Type 7 series of communications modules. These modules are also used by the L90 Line Differential Relay for inter-relay communications. The Direct I/O feature uses the communications channel(s) provided by these modules to exchange digital state information between relays. This feature is available on all UR relays models except for the L60 and L90 Line relays.
The communications channels are normally connected in a ring configuration as shown below. The transmitter of one module is connected to the receiver of the next module. The transmitter of this second module is then connected to the receiver of the next module in the ring. This is continued to form a communications ring. The figure below illustrates a ring of four UR relays with the following connections: UR1-Tx to UR2-Rx, UR2-Tx to UR3-Rx, UR3-Tx to UR4-Rx, and UR4-Tx to UR1-Rx. The maximum number of UR relays that can be connected in a single ring is eight.

The following diagram shows the interconnection for dual-channel Type 7 communications modules. Two channel modules allow for a redundant ring configuration. That is, two rings can be created to provide an additional independent data path. The required connections are as follows: UR1-Tx1 to UR2-Rx1, UR2-Tx1 to UR3-Rx1, UR3-Tx1 to UR4-Rx1, and UR4-Tx1 to UR1-Rx1 for the first ring; and UR1-Tx2 to UR2-Rx2, UR2-Tx2 to UR3-Rx2, UR3-Tx2 to UR4-Rx2, and UR4-Tx2 to UR1$R \times 2$ for the second ring.

Figure 3-20: DIRECT I/O DUAL CHANNEL CONNECTION

The following diagram shows the interconnection for three UR-series relays using two independent communication channels. UR1 and UR3 have single Type 7 communication modules; UR2 has a dual-channel module. The two communication channels can be of different types, depending on the Type 7 modules used. To allow the Direct I/O data to 'cross-over' from Channel 1 to Channel 2 on UR2, the DIRECT I/O CHANNEL CROSSOVER setting should be "Enabled" on UR2. This forces UR2 to forward messages received on Rx1 out Tx2, and messages received on Rx2 out Tx1.

Figure 3-21: DIRECT I/O SINGLE/DUAL CHANNEL COMBINATION CONNECTION
The interconnection requirements are described in further detail in this section for each specific variation of Type 7 communications module. These modules are listed in the following table. All fiber modules use ST type connectors.

Table 3-3: CHANNEL COMMUNICATION OPTIONS

MODULE TYPE	SPECIFICATION
7A	820 nm , multi-mode, LED, 1 Channel
7B	1300 nm, multi-mode, LED, 1 Channel
7C	1300 nm, single-mode, ELED, 1 Channel
7D	1300 nm , single-mode, LASER, 1 Channel
7H	820 nm, multi-mode, LED, 2 Channels
71	1300 nm, multi-mode, LED, 2 Channels
7J	1300 nm , single-mode, ELED, 2 Channels
7K	1300 nm , single-mode, LASER, 2 Channels
7L	Channel 1: RS422, Channel: 820 nm , multi-mode, LED
7M	Channel 1: RS422, Channel 2: 1300 nm , multi-mode, LED
7N	Channel 1: RS422, Channel 2: 1300 nm , single-mode, ELED
7P	Channel 1: RS422, Channel 2: 1300 nm , single-mode, LASER
7R	G.703, 1 Channel
7S	G.703, 2 Channels
7T	RS422, 1 Channel
7W	RS422, 2 Channels
72	1550 nm, single-mode, LASER, 1 Channel
73	1550 nm, single-mode, LASER, 2 Channel
74	Channel 1-RS422; Channel 2-1550 nm, single-mode, LASER
76	IEEE C37.94, 820 nm , multi-mode, LED, 1 Channel
77	IEEE C37.94, 820 nm , multi-mode, LED, 2 Channels

OBSERVING ANY FIBER TRANSMITTER OUTPUT MAY CAUSE INJURY TO THE EYE.

3 HARDWARE

The following figure shows the configuration for the $7 \mathrm{~A}, 7 \mathrm{~B}, 7 \mathrm{C}, 7 \mathrm{H}, 7 \mathrm{I}$, and 7 J fiber-only modules.

Figure 3-22: LED AND ELED FIBER MODULES

The following figure shows the configuration for the 72, 73, 7D, and 7K fiber-laser module.

Figure 3-23: LASER FIBER MODULES
When using a LASER Interface, attenuators may be necessary to ensure that you do not exceed Maximum Optical Input Power to the receiver.

a) DESCRIPTION

The following figure shows the 64K ITU G. 703 co-directional interface configuration.
AWG 22 twisted shielded pair is recommended for external connections, with the shield grounded only at one end. Connecting the shield to Pin X1a or X6a grounds the shield since these pins are internally connected to ground. Thus, if Pin X1a or X6a is used, do not ground at the other end. This interface module is protected by surge suppression devices.

Figure 3-24: G. 703 INTERFACE CONFIGURATION
The following figure shows the typical pin interconnection between two G. 703 interfaces. For the actual physical arrangement of these pins, see the Rear Terminal Assignments section earlier in this chapter. All pin interconnections are to be maintained for a connection to a multiplexer.

\propto	$\begin{gathered} \text { G. } 703 \\ \text { CHANNEL } 1 \end{gathered}$	Shld.	X1a	X1a	Shld.	$\begin{gathered} \text { G. } 703 \\ \text { CHANNEL } 1 \end{gathered}$	1
		Tx -	X1b	X1b	Tx -		
		Rx -	X2a	X2a	Rx-		
		Tx +	X2b	X2b	Tx +		
		Rx +	X3a	X3a	Rx+		
	SURGE	$\underline{1}$	X3b	X3b	$\stackrel{1}{=}$	SURGE	
	$\begin{array}{\|c\|} \text { G. } 703 \\ \text { CHANNEL } 2 \end{array}$	Shld.	X6a	X6a	Shld.	$\begin{gathered} \text { G. } 703 \\ \text { CHANNEL } 2 \end{gathered}$	
		Tx -	X6b	X6b	Tx -		
		Rx -	X7a	X7a	Rx -		
		Tx +	X7b	X7b	Tx +		
		Rx+	X8a	X8a	Rx+		
	SURGE	$\stackrel{1}{\underline{1}}$	X8b	X8b	$\frac{1}{=}$	SURGE	

Figure 3-25: TYPICAL PIN INTERCONNECTION BETWEEN TWO G. 703 INTERFACES
Pin nomenclature may differ from one manufacturer to another. Therefore, it is not uncommon to see pinouts numbered TxA, TxB, RxA and RxB. In such cases, it can be assumed that " A " is equivalent to " + " and " B " is equivalent to "-".

b) G. 703 SELECTION SWITCH PROCEDURES

1. Remove the G. 703 module (7R or 7S):

The ejector/inserter clips located at the top and at the bottom of each module, must be pulled simultaneously in order to release the module for removal. Before performing this action, control power must be removed from the relay. The original location of the module should be recorded to help ensure that the same or replacement module is inserted into the correct slot.
2. Remove the module cover screw.
3. Remove the top cover by sliding it towards the rear and then lift it upwards.
4. Set the Timing Selection Switches (Channel 1, Channel 2) to the desired timing modes.
5. Replace the top cover and the cover screw.
6. Re-insert the G. 703 module Take care to ensure that the correct module type is inserted into the correct slot position. The ejector/inserter clips located at the top and at the bottom of each module must be in the disengaged position as

3 HARDWARE

the module is smoothly inserted into the slot. Once the clips have cleared the raised edge of the chassis, engage the clips simultaneously. When the clips have locked into position, the module will be fully inserted.

Table 3-4: G. 703 TIMING SELECTIONS

SWITCHES	FUNCTION
S1	OFF \rightarrow Octet Timing Disabled ON \rightarrow Octet Timing 8 kHz
S5 and S6	S5 $=$ OFF and S6 $=$ OFF \rightarrow Loop Timing Mode S5 ON and S6 $=$ OFF \rightarrow Internal Timing Mode S5 $=$ OFF and S6 $=$ ON \rightarrow Minimum Remote Loopback Mode S5 $=$ ON and S6 $=$ ON \rightarrow Dual Loopback Mode

c) OCTET TIMING (SWITCH S1)

If Octet Timing is enabled (ON), this 8 kHz signal will be asserted during the violation of Bit 8 (LSB) necessary for connecting to higher order systems. When L90's are connected back to back, Octet Timing should be disabled (OFF).
d) TIMING MODES (SWITCHES S5 AND S6)

- Internal Timing Mode: The system clock generated internally. Therefore, the G .703 timing selection should be in the Internal Timing Mode for back-to-back (UR-to-UR) connections. For Back to Back Connections, set for Octet Timing $(\mathrm{S} 1=\mathrm{OFF})$ and Timing Mode $=$ Internal Timing $(\mathrm{S} 5=\mathrm{ON}$ and S6 = OFF).
- Loop Timing Mode: The system clock is derived from the received line signal. Therefore, the G .703 timing selection should be in Loop Timing Mode for connections to higher order systems. For connection to a higher order system (UR-to-multiplexer, factory defaults), set to Octet Timing ($\mathrm{S} 1=\mathrm{ON}$) and set Timing Mode = Loop Timing (S5 = OFF and S6 $=O F F)$.

e) TEST MODES (SWITCHES S5 AND S6)

MINIMUM REMOTE LOOPBACK MODE:

In Minimum Remote Loopback mode, the multiplexer is enabled to return the data from the external interface without any processing to assist in diagnosing G. 703 Line Side problems irrespective of clock rate. Data enters from the G. 703 inputs, passes through the data stabilization latch which also restores the proper signal polarity, passes through the multiplexer and then returns to the transmitter. The Differential Received Data is processed and passed to the G. 703 Transmitter module after which point the data is discarded. The G. 703 Receiver module is fully functional and continues to process data and passes it to the Differential Manchester Transmitter module. Since timing is returned as it is received, the timing source is expected to be from the G. 703 line side of the interface.

DUAL LOOPBACK MODE:

In Dual Loopback Mode, the multiplexers are active and the functions of the circuit are divided into two with each Receiver/ Transmitter pair linked together to deconstruct and then reconstruct their respective signals. Differential Manchester data enters the Differential Manchester Receiver module and then is returned to the Differential Manchester Transmitter module. Likewise, G. 703 data enters the G. 703 Receiver module and is passed through to the G. 703 Transmitter module to be returned as G .703 data. Because of the complete split in the communications path and because, in each case, the clocks are extracted and reconstructed with the outgoing data, in this mode there must be two independent sources of timing. One source lies on the G. 703 line side of the interface while the other lies on the Differential Manchester side of the interface.

3.3.5 RS422 INTERFACE

a) DESCRIPTION

The following figure shows the RS422 2-Terminal interface configuration at 64K baud. AWG 22 twisted shielded pair is recommended for external connections. This interface module is protected by surge suppression devices which optically isolated.

SHIELD TERMINATION

The shield pins (6a and 7b) are internally connected to the ground pin (8a). Proper shield termination is as follows:
Site 1: Terminate shield to pins 6 a and/or 7b; Site 2: Terminate shield to 'COM' pin 2 b .

3 HARDWARE

The clock terminating impedance should match the impedance of the line.

W3b	Tx -	RS422 CHANNEL 1	3
W3a	Rx-		
W2a	Tx +		
W4b	Rx+		
W6a	Shld.		
W5b	Tx -	RS422 CHANNEL 2	
W5a	Rx-		
W4a	Tx+		
W6b	Rx+		
W7b	Shld.		
W7a	+	CLOCK	
W8b	-		
W 2b	com		
W8a	$\underline{\square}$	SURGE	

The following figure shows the typical pin interconnection between two RS422 interfaces. All pin interconnections are to be maintained for a connection to a multiplexer.

Figure 3-28: TYPICAL PIN INTERCONNECTION BETWEEN TWO RS422 INTERFACES

b) TWO CHANNEL APPLICATIONS VIA MULTIPLEXERS

The RS422 Interface may be used for ' 1 channel' or ' 2 channel' applications over SONET/SDH and/or Multiplexed systems. When used in 1 channel applications, the RS422 interface links to higher order systems in a typical fashion observing Tx, Rx, and Send Timing connections. However, when used in 2 channel applications, certain criteria have to be followed due to the fact that there is 1 clock input for the two RS422 channels. The system will function correctly if the following connections are observed and your Data Module has a feature called Terminal Timing. Terminal Timing is a common feature to most Synchronous Data Units that allows the module to accept timing from an external source. Using the Terminal Timing feature, 2 channel applications can be achieved if these connections are followed: The Send Timing outputs from the Multiplexer - Data Module 1, will connect to the Clock inputs of the UR-RS422 interface in the usual fashion. In addition, the Send Timing outputs of Data Module 1 will also be paralleled to the Terminal Timing inputs of Data Module 2. By using this configuration the timing for both Data Modules and both UR-RS422 channels will be derived from a single clock source. As a result, data sampling for both of the UR-RS422 channels will be synchronized via the Send Timing leads on Data Module 1 as shown in the following figure. If the Terminal Timing feature is not available or this type of connection is not desired, the G. 703 interface is a viable option that does not impose timing restrictions.

831022A2.CDR
Figure 3-29: TIMING CONFIGURATION FOR RS422 TWO-CHANNEL, 3-TERMINAL APPLICATION
Data Module 1 provides timing to the C30 RS422 interface via the $\mathrm{ST}(\mathrm{A})$ and $\mathrm{ST}(\mathrm{B})$ outputs. Data Module 1 also provides timing to Data Module $2 \mathrm{TT}(A)$ and $\mathrm{TT}(B)$ inputs via the $\mathrm{ST}(A)$ and $\mathrm{AT}(B)$ outputs. The Data Module pin numbers have been omitted in the figure above since they may vary depending on the manufacturer.

c) TRANSIT TIMING

The RS422 Interface accepts one clock input for Transmit Timing. It is important that the rising edge of the 64 kHz Transmit Timing clock of the Multiplexer Interface is sampling the data in the center of the Transmit Data window. Therefore, it is important to confirm Clock and Data Transitions to ensure Proper System Operation. For example, the following figure shows the positive edge of the Tx Clock in the center of the Tx Data bit.

Figure 3-30: CLOCK AND DATA TRANSITIONS

3 HARDWARE

d) RECEIVE TIMING

The RS422 Interface utilizes NRZI-MARK Modulation Code and; therefore, does not rely on an Rx Clock to recapture data. NRZI-MARK is an edge-type, invertible, self-clocking code.

To recover the Rx Clock from the data-stream, an integrated DPLL (Digital Phase Lock Loop) circuit is utilized. The DPLL is driven by an internal clock, which is over-sampled 16X, and uses this clock along with the data-stream to generate a data clock that can be used as the SCC (Serial Communication Controller) receive clock.
3.3.6 RS422 AND FIBER INTERFACE

The following figure shows the combined RS422 plus Fiber interface configuration at 64 K baud. The $7 \mathrm{~L}, 7 \mathrm{M}, 7 \mathrm{~N}, 7 \mathrm{P}$, and 74 modules are used in 2-terminal with a redundant channel or 3-terminal configurations where Channel 1 is employed via the RS422 interface (possibly with a multiplexer) and Channel 2 via direct fiber.
AWG 22 twisted shielded pair is recommended for external RS422 connections and the shield should be grounded only at one end. For the direct fiber channel, power budget issues should be addressed properly.

Figure 3-31: RS422 AND FIBER INTERFACE CONNECTION
Connections shown above are for multiplexers configured as DCE (Data Communications Equipment) units.
3.3.7 G.703 AND FIBER INTERFACE

The figure below shows the combined G. 703 plus Fiber interface configuration at 64 K baud. The 7E, 7F, 7G, 7Q, and 75 modules are used in configurations where Channel 1 is employed via the G. 703 interface (possibly with a multiplexer) and Channel 2 via direct fiber. AWG 22 twisted shielded pair is recommended for external G. 703 connections connecting the shield to Pin 1A at one end only. For the direct fiber channel, power budget issues should be addressed properly. See previous sections for more details on the G. 703 and Fiber interfaces.

When using a LASER Interface, attenuators may be necessary to ensure that you do not exceed Maximum Optical Input Power to the receiver.

Figure 3-32: G. 703 AND FIBER INTERFACE CONNECTION

The UR series IEEE C37.94 communication modules (76 and 77) are designed to interface with IEEE C37.94 compliant digital multiplexer and/or an IEEE C37.94 compliant interface converter for use with Direct I/O applications on firmware revision 3.3x. The IEEE C37.94 Standard defines a point to point optical link for synchronous data between a multiplexer and a teleprotection device. This data is typically 64 kbps but the standard provides for speeds up to $64 n \mathrm{kbps}$, where $n=1$, 2, ..12. The UR series C37.94 communication module is 64 kbps only with n fixed at 1 . The frame is a valid International Telecommunications Union (ITU-T) recommendation G. 704 pattern from the standpoint of framing and data rate. The frame is 256 bits and is repeated at a frame rate of 8000 Hz , with a resultant bit rate of 2048 kbps .
The specifications for the module are as follows:
IEEE standard: C37.94 for $1 \times 64 \mathrm{kbps}$ optical fiber interface
Fiber optic cable type: 50 mm or 62.5 mm core diameter optical fiber
Fiber optic mode: multi-mode
Fiber optic cable length: up to 2 km
Fiber optic connector: Type ST
Wavelength: $830 \pm 40 \mathrm{~nm}$
Connection: as per all fiber optic connections, a Tx to Rx connection is required.
The UR series C37.94 communication module can be connected directly to an compliant digital multiplexer that supports the IEEE C37.94 standard as shown below.

The UR series C37.94 communication module can be connected to the electrical interface (G.703, RS422, or X.21) of a non-compliant digital multiplexer via an optical-to-electrical interface converter that supports the IEEE C37.94 standard as shown below.

The UR series C37.94 communication module has six (6) switches that are used to set the clock configuration. The functions of the control switches is shown below.

Internal Timing Mode

Loop Timed

Switch	Internal	Loop Timed
$\mathbf{1}$	ON	OFF
$\mathbf{2}$	ON	OFF
$\mathbf{3}$	OFF	OFF
$\mathbf{4}$	OFF	OFF
$\mathbf{5}$	OFF	OFF
$\mathbf{6}$	OFF	OFF

3 HARDWARE

For the Internal Timing Mode, the system clock is generated internally; therefore, the timing switch selection should be Internal Timing for Relay 1 and Loop Timed for Relay 2. There must be only one timing source configured.
For the Looped Timing Mode, the system clock is derived from the received line signal; therefore, the timing selection should be in Loop Timing Mode for connections to higher order systems.

The C37.94 communications module cover removal procedure is as follows:

1. Remove the C 37.94 module (76 or 77):

The ejector/inserter clips located at the top and at the bottom of each module, must be pulled simultaneously in order to release the module for removal. Before performing this action, control power must be removed from the relay. The original location of the module should be recorded to help ensure that the same or replacement module is inserted into the correct slot.
2. Remove the module cover screw.
3. Remove the top cover by sliding it towards the rear and then lift it upwards.
4. Set the Timing Selection Switches (Channel 1, Channel 2) to the desired timing modes (see description above).
5. Replace the top cover and the cover screw.
6. Re-insert the C37.94 module Take care to ensure that the correct module type is inserted into the correct slot position. The ejector/inserter clips located at the top and at the bottom of each module must be in the disengaged position as the module is smoothly inserted into the slot. Once the clips have cleared the raised edge of the chassis, engage the clips simultaneously. When the clips have locked into position, the module will be fully inserted.

Figure 3-33: C37.94 TIMING SELECTION SWITCH SETTING

The URPC software provides a graphical user interface (GUI) as one of two human interfaces to a UR device. The alternate human interface is implemented via the device's faceplate keypad and display (see Faceplate Interface section in this chapter).
URPC provides a single facility to configure, monitor, maintain, and trouble-shoot the operation of relay functions, connected over local or wide area communication networks. It can be used while disconnected (i.e. off-line) or connected (i.e. on-line) to a UR device. In off-line mode, settings files can be created for eventual downloading to the device. In on-line mode, you can communicate with the device in real-time.
The URPC software, provided with every C30 relay, can be run from any computer supporting Microsoft Windows ${ }^{\circledR} 95$, 98, or NT. This chapter provides a summary of the basic URPC software interface features. The URPC Help File provides details for getting started and using the URPC software interface.

4.1.2 CREATING A SITE LIST

To start using the URPC software, a site definition and device definition must first be created. See the URPC Help File or refer to the Connecting URPC with the C30 section in Chapter 1 for details.
4.1.3 URPC SOFTWARE OVERVIEW

a) ENGAGING A DEVICE

The URPC software may be used in on-line mode (relay connected) to directly communicate with a UR relay. Communicating relays are organized and grouped by communication interfaces and into sites. Sites may contain any number of relays selected from the UR product series.

b) USING SETTINGS FILES

The URPC software interface supports three ways of handling changes to relay settings:

- In off-line mode (relay disconnected) to create or edit relay settings files for later download to communicating relays.
- While connected to a communicating relay to directly modify any relay settings via relay data view windows, and then save the settings to the relay.
- You can create/edit settings files and then write them to the relay while the interface is connected to the relay.

Settings files are organized on the basis of file names assigned by the user. A settings file contains data pertaining to the following types of relay settings:

- Device Definition
- Product Setup
- FlexLogic ${ }^{\text {TM }}$
- Control Elements
- Inputs/Outputs
- Testing

Factory default values are supplied and can be restored after any changes.

c) CREATING FLEXLOGIC ${ }^{\text {TM }}$ EQUATIONS

You can create or edit a FlexLogic ${ }^{\text {TM }}$ equation in order to customize the relay. You can subsequently view the automatically generated logic diagram.
d) VIEWING ACTUAL VALUES

You can view real-time relay data such as input/output status and measured parameters.

e) VIEWING TRIGGERED EVENTS

While the interface is in either on-line or off-line mode, you can view and analyze data generated by triggered specified parameters, via one of the following:

- Event Recorder facility: The event recorder captures contextual data associated with the last 1024 events, listed in chronological order from most recent to oldest.
- Oscillography facility: The oscillography waveform traces and digital states are used to provide a visual display of power system and relay operation data captured during specific triggered events.

f) FILE SUPPORT

- Execution: Any URPC file which is double clicked or opened will launch the application, or provide focus to the already opened application. If the file was a settings file (has a URS extension) which had been removed from the Settings List tree menu, it will be added back to the Settings List tree menu.
- Drag and Drop: The Site List and Settings List control bar windows are each mutually a drag source and a drop target for device-order-code-compatible files or individual menu items. Also, the Settings List control bar window and any Windows Explorer directory folder are each mutually a file drag source and drop target.
New files which are dropped into the Settings List window are added to the tree which is automatically sorted alphabetically with respect to settings file names. Files or individual menu items which are dropped in the selected device menu in the Site List window will automatically be sent to the on-line communicating device.

g) FIRMWARE UPGRADES

The firmware of a UR device can be upgraded, locally or remotely, via the URPC ${ }^{\circledR}$ software. The corresponding instructions are provided by the URPC ${ }^{\circledR}$ Help program under the topic "Upgrading Firmware".

Modbus addresses assigned to firmware modules, features, settings, and corresponding data items (i.e. default values, min/max values, data type, and item size) may change slightly from version to version of firmware. The addresses are rearranged when new features are added or existing features are enhanced or modified. The "EEPROM DATA ERROR" message displayed after upgrading/downgrading the firmware is a resettable, self-test message intended to inform users that the Modbus addresses have changed with the upgraded firmware. This message does not signal any problems when appearing after firmware upgrades.

The URPC software main window supports the following primary display components:
a. Title bar which shows the pathname of the active data view
b. Main window menu bar
c. Main window tool bar
d. Site List control bar window
e. Settings List control bar window
f. Device data view window(s), with common tool bar
g. Settings File data view window(s), with common tool bar
h. Workspace area with data view tabs
i. Status bar

Figure 4-1: URPC SOFTWARE MAIN WINDOW

The keypad/display/LED interface is one of two alternate human interfaces supported. The other alternate human interface is implemented via the URPC software. The UR faceplate interface is available in two configurations: horizontal or vertical. The faceplate interface consists of several functional panels.
The faceplate is hinged to allow easy access to the removable modules. There is also a removable dust cover that fits over the faceplate which must be removed in order to access the keypad panel. The following two figures show the horizontal and vertical arrangement of faceplate panels.

Figure 4-2: UR HORIZONTAL FACEPLATE PANELS

Figure 4-3: UR VERTICAL FACEPLATE PANELS

a) LED PANEL 1

This panel provides several LED indicators, several keys, and a communications port. The RESET key is used to reset any latched LED indicator or target message, once the condition has been cleared (these latched conditions can also be reset via the SETTINGS $\Rightarrow \sqrt{ }$ INPUT/OUTPUTS $\Rightarrow \sqrt{ }$ RESETTING menu). The USER keys are not used in this unit. The RS232 port is intended for connection to a portable PC.

Figure 4-4: LED PANEL 1

STATUS INDICATORS:

- IN SERVICE: Indicates that control power is applied; all monitored inputs/outputs and internal systems are OK; the relay has been programmed.
- TROUBLE: Indicates that the relay has detected an internal problem.
- TEST MODE: Indicates that the relay is in test mode.
- TRIP: Indicates that the selected FlexLogic ${ }^{\text {TM }}$ operand serving as a Trip switch has operated. This indicator always latches; the RESET command must be initiated to allow the latch to be reset.
- ALARM: Indicates that the selected FlexLogic ${ }^{\top M}$ operand serving as an Alarm switch has operated. This indicator is never latched.
- PICKUP: Indicates that an element is picked up. This indicator is never latched.

EVENT CAUSE INDICATORS:

These indicate the input type that was involved in a condition detected by an element that is operated or has a latched flag waiting to be reset.

- VOLTAGE: Not used.
- CURRENT: Not used.
- FREQUENCY: Not used.
- OTHER: Indicates a digital element was involved.
- PHASE A: Not used.
- PHASE B: Not used.
- PHASE C: Not used.
- NEUTRAL/GROUND: Not used.
b) LED PANELS 2 AND 3

Figure 4-5: LED PANELS 2 AND 3 (INDEX TEMPLATES)
These panels provide 48 amber LED indicators whose operation is controlled by the user. Support for applying a customized label beside every LED is provided. User customization of LED operation is of maximum benefit in installations where languages other than English are used to communicate with operators. Refer to Chapter 5 for instructions on programming these LEDs.

c) CUSTOM LABELING OF LEDS

Custom labeling of an LED-only panel is facilitated through a Microsoft Word file available from the following URL:
http://www.GEindustrial.com/multilin/support/ur/
This file provides templates and instructions for creating appropriate labeling for the LED panel. The following procedures are contained in the downloadable file. The panel templates provide relative LED locations and located example text (x) edit boxes. The following procedure demonstrates how to install/uninstall the custom panel labeling.

1. Remove the clear Lexan Front Cover (GE Multilin Part Number: 1501-0014).

2. Pop out the LED Module and/or the Blank Module with a screwdriver as shown below. Be careful not to damage the plastic.

3. Place the left side of the customized module back to the front panel frame, then snap back the right side.
4. Put the clear Lexan Front Cover back into place.

d) CUSTOMIZING THE DISPLAY MODULE

The following items are required to customize the UR display module:

- Black and white or color printer (color preferred)
- Microsoft Word 97 or later software
- 1 each of: $8.5^{\prime \prime} \times 11^{\prime \prime}$ white paper, exacto knife, ruler, custom display module (GE Multilin Part Number: 1516-0069), and a custom module cover (GE Multilin Part Number: 1502-0015)

1. Open the LED panel customization template with Microsoft Word. Add text in places of the LED \mathbf{x} text placeholders on the template(s). Delete unused place holders as required.
2. When complete, save the Word file to your local PC for future use.
3. Print the template(s) to a local printer.
4. From the printout, cut-out the Background Template from the three windows, using the cropmarks as a guide.
5. Put the Background Template on top of the custom display module (GE Multilin Part Number: 1513-0069) and snap the clear custom module cover (GE Multilin Part Number: 1502-0015) over it and the templates.

All messages are displayed on a 2×20 character vacuum fluorescent display to make them visible under poor lighting conditions. An optional liquid crystal display (LCD) is also available. Messages are displayed in English and do not require the aid of an instruction manual for deciphering. While the keypad and display are not actively being used, the display will default to defined messages. Any high priority event driven message will automatically override the default message and appear on the display.
4.2.4 DISPLAY

Display messages are organized into 'pages' under the following headings: Actual Values, Settings, Commands, and Targets. The MENU key navigates through these pages. Each heading page is broken down further into logical subgroups.
The \triangle MESSAGE \square keys navigate through the subgroups. The \otimes VALUE ϑ keys scroll increment or decrement numerical setting values when in programming mode. These keys also scroll through alphanumeric values in the text edit mode. Alternatively, values may also be entered with the numeric keypad.
The - key initiates and advance to the next character in text edit mode or enters a decimal point. The HELP key may be pressed at any time for context sensitive help messages. The ENTER key stores altered setting values.
a) NAVIGATION

Press the MENU key to select the desired header display page (top-level menu). The header title appears momentarily followed by a header display page menu item. Each press of the MENU key advances through the main heading pages as illustrated below.

b) HIERARCHY

The setting and actual value messages are arranged hierarchically. The header display pages are indicated by double scroll bar characters (■■), while sub-header pages are indicated by single scroll bar characters (\square). The header display pages represent the highest level of the hierarchy and the sub-header display pages fall below this level. The MESSAGE Δ and ∇ keys move within a group of headers, sub-headers, setting values, or actual values. Continually pressing the MESSAGE key from a header display displays specific information for the header category. Conversely, continually pressing the MESSAGE key from a setting value or actual value display returns to the header display.

HIGHEST LEVEL

LOWEST LEVEL (SETTING VALUE)
(4) \qquad (1)

```
ACCESS LEVEL:
Restricted
```


c) EXAMPLE MENU NAVIGATION SCENARIO

■ ACTUAL VALUES ■■ StATUS	Press the MENU key until the header for the first Actual Values page appears. This page contains system and relay status information. Repeatedly press the Δ MESSAGE \square keys to display the other actual value headers.
Ω	
■■ SETTINGS ■■ PRODUCT SETUP	Press the MENU key until the header for the first page of Settings appears. This page contains settings to configure the relay.
$\sqrt{3}$	
■■ SETTINGS ■■ FLEXLOGIC	Press the MESSAGE key to move to the next Settings page. This page contains settings for FlexLogic ${ }^{\text {TM }}$. Repeatedly press the Δ MESSAGE ∇ keys to display the other setting headers and then back to the first Settings page header.
$\sqrt{3}$	
\square PASSWORD ■ SECURITY	From the Settings page one header (Product Setup), press the MESSAGE \square key once to display the first sub-header (Password Security).
$\sqrt{3}$	
ACCESS LEVEL: Restricted	Press the MESSAGE key once more and this will display the first setting for Password Security. Pressing the MESSAGE ∇ key repeatedly will display the remaining setting messages for this sub-header.
\checkmark	

Press the MESSAGE (4) key once to move back to the first sub-header message.

a) ENTERING NUMERICAL DATA

Each numerical setting has its own minimum, maximum, and increment value associated with it. These parameters define what values are acceptable for a setting.

$\begin{aligned} & \text { FLASH MESSAGE } \\ & \text { TIME: } 1.0 \mathrm{~s} \end{aligned}$		For example, select the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ DISPLAY PROPERTIES \Rightarrow FLASH MESSAGE TIME setting.
	\checkmark	
MINIMUM: MAXIMUM :	$\begin{array}{r} 0.5 \\ 10.0 \end{array}$	Press the HELP key to view the minimum and maximum values. Press the HELP key again to view the next context sensitive help message.

Two methods of editing and storing a numerical setting value are available.

- 0 to 9 and (decimal point): The relay numeric keypad works the same as that of any electronic calculator. A number is entered one digit at a time. The leftmost digit is entered first and the rightmost digit is entered last. Pressing the MESSAGE (4 key or pressing the ESCAPE key, returns the original value to the display.
- VALUE $\nabla_{\text {: }}$ The VALUE key increments the displayed value by the step value, up to the maximum value allowed. While at the maximum value, pressing the VALUE \rightarrow key again will allow the setting selection to continue upward from the minimum value. The VALUE \varnothing key decrements the displayed value by the step value, down to the minimum value. While at the minimum value, pressing the VALUE key again will allow the setting selection to continue downward from the maximum value.

As an example, set the flash message time setting to 2.5 seconds. Press the appropriate numeric keys in the sequence " 2.5 ". The display message will change as the digits are being entered.

Until ENTER is pressed, editing changes are not registered by the relay. Therefore, press ENTER to store the new value in memory. This flash message will momentarily appear as confirmation of the storing process. Numerical values which contain decimal places will be rounded-off if more decimal place digits are entered than specified by the step value.

b) ENTERING ENUMERATION DATA

Enumeration settings have data values which are part of a set, whose members are explicitly defined by a name. A set is comprised of two or more members.

ACCESS LEVEL:	For example, the selections available for ACCESS LEVEL are "Restricted", "Command", Restricted

Enumeration type values are changed using the VALUE keys. The VALUE key displays the next selection while the VALUE \oslash key displays the previous selection.

ACCESS LEVEL: Setting	If the ACCESS LEVEL needs to be "Setting", press the VALUE keys until the proper selection is displayed. Press \square at any time for the context sensitive help messages.
$\sqrt{3}$	
NEW SETTING HAS BEEN STORED	Changes are not registered by the relay until the \square key is pressed. Pressing \square stores the new value in memory. This flash message momentarily appears as confirmation of the storing process.

c) ENTERING ALPHANUMERIC TEXT

Text settings have data values which are fixed in length, but user-defined in character. They may be comprised of upper case letters, lower case letters, numerals, and a selection of special characters.

There are several places where text messages may be programmed to allow the relay to be customized for specific applications. One example is the Message Scratchpad. Use the following procedure to enter alphanumeric text messages.
For example: to enter the text, "Breaker \#1"

1. Press $-\square$ to enter text edit mode.
2. Press the VALUE keys until the character 'B' appears; press $\square \cdot$ to advance the cursor to the next position.
3. Repeat step 2 for the remaining characters: r,e,a,k,e,r, ,\#,1.
4. Press Enter to store the text.
5. If you have any problem, press HELP to view context sensitive help. Flash messages will sequentially appear for several seconds each. For the case of a text setting message, pressing HELP displays how to edit and store new values.
d) ACTIVATING THE RELAY

$$
\begin{array}{|l|l}
\hline \text { RELAY SETTINGS: } & \text { When the relay is powered up, the Trouble LED will be on, the In Service LED off, and } \\
\text { Not Programmed } & \text { this message displayed, indicating the relay is in the "Not Programmed" state and is } \\
\text { safeguarding (output relays blocked) against the installation of a relay whose settings } \\
& \text { have not been entered. This message remains until the relay is explicitly put in the } \\
\text { "Programmed" state. }
\end{array}
$$

To change the relay settings: "Not Programmed" mode to "Programmed", proceed as follows:

1. Press the menu key until the SETtings header flashes momentarily and the SETtINGS PRODUCT SETUP message appears on the display.
2. Press the MESSAGE \square key until the PASSWORD SECURITY message appears on the display.
3. Press the MESSAGE key until the INSTALLATION message appears on the display.
4. Press the MESSAGE \square key until the RELAY SETtings: Not Programmed message is displayed.

5. After the relay settings: Not Programmed message appears on the display, press the VALUE keys change the selection to "Programmed".
6. Press the ENTER key.

RELAY SETTINGS: Not Programmed	$\otimes \otimes$RELAY SETTINGS: Programmed	ENTER	NEW SETTING HAS BEEN STORED

7. When the "NEW SETTING HAS BEEN STORED" message appears, the relay will be in "Programmed" state and the In Service LED will turn on.
e) ENTERING INITIAL PASSWORDS

To enter the initial Setting (or Command) Password, proceed as follows:

1. Press the MENU key until the 'SETTINGS' header flashes momentarily and the 'SETTINGS PRODUCT SETUP' message appears on the display.
2. Press the MESSAGE \square key until the 'ACCESS LEVEL:' message appears on the display.
3. Press the MESSAGE key until the 'CHANGE SETTING (or COMMAND) PASSWORD:' message appears on the display.

(ID

\square	PASSWORD
SECURITY	

(1) $\begin{aligned} & \text { ACCESS LEVEL: } \\ & \text { Restricted }\end{aligned}$

Q	CHANGE COMMAND PASSWORD: No
QHANGE SETTING	
PASSWORD: No	

4. After the 'CHANGE...PASSWORD' message appears on the display, press the VALUE \rightarrow key or the VALUE key to change the selection to Yes.
5. Press the ENTER key and the display will prompt you to 'ENTER NEW PASSWORD'.
6. Type in a numerical password (up to 10 characters) and press the ENTER key.
7. When the 'VERIFY NEW PASSWORD' is displayed, re-type in the same password and press ENTER.

8. When the 'NEW PASSWORD HAS BEEN STORED' message appears, your new Setting (or Command) Password will be active.

f) CHANGING EXISTING PASSWORD

To change an existing password, follow the instructions in the previous section with the following exception. A message will prompt you to type in the existing password (for each security level) before a new password can be entered.
In the event that a password has been lost (forgotten), submit the corresponding Encrypted Password from the PASSWORD sECURITY menu to the Factory for decoding.

∇

Q

-

\square	USER-PROGRAMMABLE
LEDS	

See page 5-17.

See page 5-20.

See page 5-20.

See page 5-21.

See page 5-23.

See page 5-23.

See page 5-25.

See page 5-30.

See page 5-41.

See page 5-41.

See page 5-42.

See page 5-46.

The main characteristics of an element are shown on the element logic diagram. This includes the input(s), settings, fixed logic, and the output operands generated (abbreviations used on scheme logic diagrams are defined in Appendix F).

- FUNCTION setting: This setting programs the element to be operational when selected as "Enabled". The factory default is "Disabled". Once programmed to "Enabled", any element associated with the Function becomes active and all options become available.
- NAME setting: This setting is used to uniquely identify the element.
- PICKUP DELAY setting: This setting sets a time-delay-on-pickup, or on-delay, for the duration between the Pickup and Operate output states.
- RESET DELAY setting: This setting is used to set a time-delay-on-dropout, or off-delay, for the duration between the Operate output state and the return to logic 0 after the input transits outside the defined pickup range.
- BLOCK setting: The default output operand state of all comparators is a logic 0 or "flag not set". The comparator remains in this default state until a logic 1 is asserted at the RUN input, allowing the test to be performed. If the RUN input changes to logic 0 at any time, the comparator returns to the default state. The RUN input is used to supervise the comparator. The BLOCK input is used as one of the inputs to RUN control.
- TARGET setting: This setting is used to define the operation of an element target message. When set to Disabled, no target message or illumination of a faceplate LED indicator is issued upon operation of the element. When set to SelfReset, the target message and LED indication follow the Operate state of the element, and self-resets once the operate element condition clears. When set to Latched, the target message and LED indication will remain visible after the element output returns to logic 0 - until a RESET command is received by the relay.
- EVENTS setting: This setting is used to control whether the Pickup, Dropout or Operate states are recorded by the event recorder. When set to Disabled, element pickup, dropout or operate are not recorded as events. When set to Enabled, events are created for:
(Element) PKP (pickup)
(Element) DPO (dropout)
(Element) OP (operate)
The DPO event is created when the measure and decide comparator output transits from the pickup state (logic 1) to the dropout state (logic 0). This could happen when the element is in the operate state if the reset delay time is not ' 0 '.

PATH: SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow PASSWORD SECURITY

\square PASSWORD		(1)	ACCESS LEVEL: Restricted	Range: Range:	Restricted, Command, Setting, Factory Service (for factory use only)
	MESSAGE	-	CHANGE COMMAND PASSWORD: No		No, Yes
	MESSAGE	∇	CHANGE SETTING PASSWORD: No	Range:	No, Yes
	MESSAGE	-	ENCRYPTED COMMAND PASSWORD: ---------	Range:	0 to 9999999999 Note: \qquad indicates no password
	MESSAGE	(2)	ENCRYPTED SETTING PASSWORD: $----\quad$.	Range:	0 to 9999999999 Note: \qquad indicates no password

Two levels of password security are provided: Command and Setting. Operations under password supervision are:

- COMMAND: changing the state of virtual inputs, clearing the event records, clearing the oscillography records, changing the date and time, clearing the data logger
- SETTING: changing any setting, test mode operation

The Command and Setting passwords are defaulted to "Null" when the relay is shipped from the factory. When a password is set to "Null", the password security feature is disabled.
Programming a password code is required to enable each access level. A password consists of 1 to 10 numerical characters. When a CHANGE ... PASSWORD setting is set to "Yes", the following message sequence is invoked:

1. ENTER NEW PASSWORD: \qquad
2. VERIFY NEW PASSWORD: \qquad
3. NEW PASSWORD HAS BEEN STORED

To gain write access to a "Restricted" setting, set ACCESS LEVEL to "Setting" and then change the setting, or attempt to change the setting and follow the prompt to enter the programmed password. If the password is correctly entered, access will be allowed. If no keys are pressed for longer than 30 minutes or control power is cycled, accessibility will automatically revert to the "Restricted" level.

If an entered password is lost (or forgotten), consult the factory with the corresponding ENCRYPTED PASSWORD.
The C30 provides a means to raise an alarm upon failed password entry. Should password verification fail while accessing a password-protected level of the relay (either settings or commands), the UNAUTHORIZED ACCESS FlexLogic ${ }^{\text {M }}$ operand is asserted. The operand can be programmed to raise an alarm via contact outputs or communications. This feature can be used to protect against both unauthorized and accidental access attempts.

The UNAUTHORISED ACCESS operand is reset with the COMMANDS $\Rightarrow \sqrt{ }$ CLEAR RECORDS $\Rightarrow \sqrt{ }$ RESET UNAUTHORISED ALARMS command. Therefore, to apply this feature with security, the command level should be password-protected.

The operand does not generate events or targets. If these are required, the operand can be assigned to a digital element programmed with event logs and/or targets enabled.

If the SETting and COMMAND passwords are identical, this one password allows access to both commands and settings.

When URPC is used to access a particular level, the user will continue to have access to that level as long as there are open windows in URPC. To re-establish the Password Security feature, all URPC windows must be closed for at least 30 minutes.

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ DISPLAY PROPERTIES

$\begin{array}{ll}\square & \text { DISPLAY } \\ \square & \text { PROPERTIES }\end{array}$		(4)	$\begin{aligned} & \text { FLASH MESSAGE } \\ & \text { TIME: } 1.0 \mathrm{~s} \end{aligned}$	Range: Range:	0.5 to 10.0 s in steps of 0.1 10 to 900 s in steps of 1
	MESSAGE		DEFAULT MESSAGE TIMEOUT: 300 s		
	MESSAGE	∇	DEFAULT MESSAGE INTENSITY: 25%	Range:	$25 \%, 50 \%, 75 \%, 100 \%$ Visible only if a VFD is installed
	MESSAGE	-	SCREEN SAVER FEATURE: Disabled	Range:	Disabled, Enabled Visible only if an LCD is installed
	MESSAGE	-	SCREEN SAVER WAIT TIME: 30 min	Range:	1 to 65535 min. in steps of 1 Visible only if an LCD is installed
	MESSAGE	-	CURRENT CUT-OFF LEVEL: 0.020 pu	Range:	0.002 to 0.020 pu in steps of 0.001
	MESSAGE	(2)	VOLTAGE CUT-OFF LEVEL: 1.0 V	Range:	0.1 to 1.0 V secondary in steps of 0.1

Some relay messaging characteristics can be modified to suit different situations using the display properties settings.

- FLASH MESSAGE TIME: Flash messages are status, warning, error, or information messages displayed for several seconds in response to certain key presses during setting programming. These messages override any normal messages. The duration of a flash message on the display can be changed to accommodate different reading rates.
- DEFAULT MESSAGE TIMEOUT: If the keypad is inactive for a period of time, the relay automatically reverts to a default message. The inactivity time is modified via this setting to ensure messages remain on the screen long enough during programming or reading of actual values.
- DEFAULT MESSAGE INTENSITY: To extend phosphor life in the vacuum fluorescent display, the brightness can be attenuated during default message display. During keypad interrogation, the display always operates at full brightness.
- SCREEN SAVER FEATURE and SCREEN SAVER WAIT TIME: These settings are only visible if the C30 has a liquid crystal display (LCD) and control its backlighting. When the SCREEN SAVER FEATURE is "Enabled", the LCD backlighting is turned off after the default message timeout followed by the sCreen saver wait time, providing that no keys have been pressed and no target messages are active. When a keypress occurs or a target becomes active, the LCD backlighting is turned on.
- CURRENT CUT-OFF LEVEL: This setting modifies the current cut-off threshold. Very low currents (1 to 2% of the rated value) are very susceptible to noise. Some customers prefer very low currents to display as zero, while others prefer the current be displayed even when the value reflects noise rather than the actual signal. The C30 applies a cutoff value to the magnitudes and angles of the measured currents. If the magnitude is below the cut-off level, it is substituted with zero. This applies to phase and ground current phasors as well as true RMS values and symmetrical components. The cut-off operation applies to quantities used for metering, protection, and control, as well as those used by communications protocols. Note that the cut-off level for the sensitive ground input is 10 times lower that the CURRENT CUT-OFF LEVEL setting value. Raw current samples available via oscillography are not subject to cut-off.
- VOLTAGE CUT-OFF LEVEL: This setting modifies the voltage cut-off threshold. Very low secondary voltage measurements (at the fractional volt level) can be affected by noise. Some customers prefer these low voltages to be displayed as zero, while others prefer the voltage to be displayed even when the value reflects noise rather than the actual signal. The C30 applies a cut-off value to the magnitudes and angles of the measured voltages. If the magnitude is below the cut-off level, it is substituted with zero. This operation applies to phase and auxiliary voltages, and symmetrical components. The cut-off operation applies to quantities used for metering, protection, and control, as well as those used by communications protocols. Raw samples of the voltages available via oscillography are not subject cut-off.

Lower the voltage cut-off level and Current cut-off Level with care as the relay accepts lower signals as valid measurements. Unless dictated otherwise by a specific application, the default settings of " 0.02 pu" for CURRENT CUT-OFF LEVEL and "1.0 V" for VOLTAGE CUT-OFF LEVEL are recommended.

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{2}$ CLEAR RELAY RECORDS

\square CLEAR RELAYRECORDS		(4)	CLEAR EVENT RECORDS: Off	Range: FlexLogic ${ }^{\text {TM }}$ operandRange: FlexLogic ${ }^{\text {TM }}$ operand
	MESSAG		CLEAR OSCILLOGRAPHY? No	
	MESSAG	-	CLEAR DATA LOGGER: Off	Range: FlexLogic ${ }^{\text {TM }}$ operand
	MESSAG	-	RESET UNAUTH ACCESS: Off	Range: FlexLogic ${ }^{\text {TM }}$ operand
	MESSAG	(4)	CLEAR DIR I/O STATS: Off	Range: FlexLogic ${ }^{\text {TM }}$ operand. Valid only for units with Direct I/O module.

The C30 allows selected records to be cleared from user-programmable conditions with FlexLogic ${ }^{\text {TM }}$ operands. Setting user-programmable pushbuttons to clear specific records are typical applications for these commands. The C30 responds to rising edges of the configured FlexLogic ${ }^{\text {TM }}$ operands. As such, the operand must be asserted for at least 50 ms to take effect.
Clearing records with user-programmable operands is not protected by the command password. However, user-programmable pushbuttons are protected by the command password. Thus, if they are used to clear records, the user-programmable pushbuttons can provide extra security if required.

APPLICATION EXAMPLE:

User-Programmable Pushbutton 1 is to be used to clear demand records. The following settings should be applied.
Assign the Clear Demand function to Pushbutton 1 by making the following change in the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ CLEAR RELAY RECORDS menu:

CLEAR DEMAND: "PUSHBUTTON 1 ON"
Set the properties for User-Programmable Pushbutton 1 by making the following changes in the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ USER-PROGRAMMABLE PUSHBUTTONS \Rightarrow USER PUSHBUTTON 1 menu:

PUSHBUTTON 1 FUNCTION: "Self-reset"
PUSHBTN 1 DROP-OUT TIME: "0.20 s"
a) MAIN MENU

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS

b) SERIAL PORTS

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow 』$ COMMUNICATIONS \Rightarrow SERIAL PORTS

\square SERIAL PORTS		(1)	RS485 COM1 BAUD RATE: 19200	Range: 300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 33600, 38400, 57600, 115200. Only active if CPU 9A is ordered.
	MESSAGE	-	RS485 COM1 PARITY: None	Range: None, Odd, Even Only active if CPU Type 9A is ordered
	MESSAGE	-	$\begin{array}{lc}\text { RS485 COM1 } & \text { RESPONSE } \\ \text { MIN TIME: } & 0 \mathrm{~ms}\end{array}$	Range: 0 to 1000 ms in steps of 10 Only active if CPU Type 9A is ordered
	MESSAGE	-	RS485 COM2 BAUD RATE: 19200	Range: 300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 33600, 38400, 57600, 115200
	MESSAGE	-	RS485 COM2 PARITY: None	Range: None, Odd, Even
	MESSAGE	(4)	$\begin{array}{lc}\text { RS485 COM2 } & \text { RESPONSE } \\ \text { MIN TIME: } & 0 \mathrm{~ms}\end{array}$	Range: 0 to 1000 ms in steps of 10

The C30 is equipped with up to 3 independent serial communication ports. The faceplate RS232 port is intended for local use and has fixed parameters of 19200 baud and no parity. The rear COM1 port type will depend on the CPU ordered: it may be either an Ethernet or an RS485 port. The rear COM2 port is RS485. The RS485 ports have settings for baud rate and parity. It is important that these parameters agree with the settings used on the computer or other equipment that is connected to these ports. Any of these ports may be connected to a personal computer running URPC. This software is used for downloading or uploading setting files, viewing measured parameters, and upgrading the relay firmware to the latest version. A maximum of 32 relays can be daisy-chained and connected to a DCS, PLC or PC using the RS485 ports.

For each RS485 port, the minimum time before the port will transmit after receiving data from a host can be set. This feature allows operation with hosts which hold the RS485 transmitter active for some time after each transmission.

c) NETWORK

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \curvearrowleft$ COMMUNICATIONS $\Rightarrow \curvearrowleft$ NETWORK

These messages appear only if the C30 is ordered with an Ethernet card. The ETHERNET PRI LINK MONITOR and ETHERNET SEC LINK MONITOR settings allow internal self-test targets to be triggered when either the Primary or Secondary ethernet link status indicates a connection loss. When both channels are healthy, the primary Ethernet link will be the active link. In the event of a communication failure on the primary Ethernet link, the secondary link becomes the active link until the primary link failure has been rectified.

The IP addresses are used with DNP/Network, Modbus/TCP, MMS/UCA2, IEC 60870-5-104, TFTP, and HTTP protocols. The NSAP address is used with the MMS/UCA2 protocol over the OSI (CLNP/TP4) stack only. Each network protocol has a setting for the TCP/UDP PORT NUMBER. These settings are used only in advanced network configurations and should normally be left at their default values, but may be changed if required (for example, to allow access to multiple URs behind a router). By setting a different TCP/UDP PORT NUMBER for a given protocol on each UR, the router can map the URs to the same external IP address. The client software (URPC, for example) must be configured to use the correct port number if these settings are used.

When the NSAP address, any TCP/UDP Port Number, or any User Map setting (when used with DNP) is changed, it will not become active until power to the relay has been cycled (OFF/ON).
Do not set more than one protocol to use the same TCP/UDP PORT NUMBER, as this will result in unreliable operation of those protocols.

d) MODBUS PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ MODBUS PROTOCOL

The serial communication ports utilize the Modbus protocol, unless configured for DNP operation (see the DNP Protocol description below). This allows the URPC software to be used. The UR operates as a Modbus slave device only. When using Modbus protocol on the RS232 port, the C30 will respond regardless of the MODBUS SLAVE ADDRESS programmed. For the RS485 ports each C30 must have a unique address from 1 to 254 . Address 0 is the broadcast address which all Modbus slave devices listen to. Addresses do not have to be sequential, but no two devices can have the same address or conflicts resulting in errors will occur. Generally, each device added to the link should use the next higher address starting at 1. Refer to Appendix B for more information on the Modbus protocol.
e) DNP PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ } \Rightarrow$ DNP PROTOCOL

The C30 supports the Distributed Network Protocol (DNP) version 3.0. The C30 can be used as a DNP slave device connected to a single DNP master (usually an RTU or a SCADA master station). Since the C30 maintains one set of DNP data change buffers and connection information, only one DNP master should actively communicate with the C30 at one time. The DNP PORT setting selects the communications port assigned to the DNP protocol; only a single port can be assigned. Once DNP is assigned to a serial port, the Modbus protocol is disabled on that port. Note that COM1 can be used only in non-ethernet UR relays. When this setting is set to "Network", the DNP protocol can be used over either TCP/IP or UDP/IP. Refer to Appendix E for more information on the DNP protocol. The DNP ADDRESS setting is the DNP slave address. This number identifies the C30 on a DNP communications link. Each DNP slave should be assigned a unique address. The DNP NETWORK CLIENT ADDRESS setting can force the C30 to respond to a maximum of five specific DNP masters.

The DNP UNSOL RESPONSE FUNCTION should be "Disabled" for RS485 applications since there is no collision avoidance mechanism. The DNP UNSOL RESPONSE TIMEOUT sets the time the C30 waits for a DNP master to confirm an unsolicited response. The DNP UNSOL RESPONSE MAX RETRIES setting determines the number of times the C30 retransmits an unsolicited response without receiving confirmation from the master; a value of " 255 " allows infinite re-tries. The DNP UNSOL RESPONSE DEST ADDRESS is the DNP address to which all unsolicited responses are sent. The IP address to which unsolicited responses are sent is determined by the C30 from the current TCP connection or the most recent UDP message.
The USER MAP FOR DNP ANALOGS setting allows the large pre-defined Analog Inputs points list to be replaced by the much smaller Modbus User Map. This can be useful for users wishing to read only selected Analog Input points from the C30. See Appendix E for more information.
The NUMBER OF SOURCES IN ANALOG LIST setting allows the selection of the number of current/voltage source values that are included in the Analog Inputs points list. This allows the list to be customized to contain data for only the sources that are configured. This setting is relevant only when the User Map is not used.
The DNP SCALE FACTOR settings are numbers used to scale Analog Input point values. These settings group the C30 Analog Input data into types: current, voltage, power, energy, and other. Each setting represents the scale factor for all Analog Input points of that type. For example, if the DNP vOLTAGE SCALE FACTOR setting is set to a value of 1000, all DNP Analog Input points that are voltages will be returned with values 1000 times smaller (e.g. a value of 72000 V on the C30 will be returned as 72). These settings are useful when Analog Input values must be adjusted to fit within certain ranges in DNP masters. Note that a scale factor of 0.1 is equivalent to a multiplier of 10 (i.e. the value will be 10 times larger).

The DNP DEFAULT DEADBAND settings determine when to trigger unsolicited responses containing Analog Input data. These settings group the C30 Analog Input data into types: current, voltage, power, energy, and other. Each setting represents the default deadband value for all Analog Input points of that type. For example, to trigger unsolicited responses from the C30 when any current values change by 15 A, the DNP CURRENT DEFAULT DEADBAND setting should be set to " 15 ". Note that these settings are the deadband default values. DNP Object 34 points can be used to change deadband values, from the default, for each individual DNP Analog Input point. Whenever power is removed and re-applied to the C30, the default deadbands will be in effect.

The DNP TIME SYNC IIN PERIOD setting determines how often the Need Time Internal Indication (IIN) bit is set by the C30. Changing this time allows the DNP master to send time synchronization commands more or less often, as required.

The DNP MESSAGE FRAGMENT SIZE setting determines the size, in bytes, at which message fragmentation occurs. Large fragment sizes allow for more efficient throughput; smaller fragment sizes cause more application layer confirmations to be necessary which can provide for more robust data transfer over noisy communication channels.
The DNP BINARY INPUTS USER MAP setting allows for the creation of a custom DNP Binary Inputs points list. The default DNP Binary Inputs list on the C30 contains 928 points representing various binary states (contact inputs and outputs, virtual inputs and outputs, protection element states, etc.). If not all of these points are required in the DNP master, a custom Binary Inputs points list can be created by selecting up to 58 blocks of 16 points. Each block represents 16 Binary Input points. Block 1 represents Binary Input points 0 to 15, block 2 represents Binary Input points 16 to 31 , block 3 represents Binary Input points 32 to 47 , etc. The minimum number of Binary Input points that can be selected is 16 (1 block). If all of the BIN INPUT BLOCK X settings are set to "Not Used", the standard list of 928 points will be in effect. The C30 will form the Binary Inputs points list from the BIN INPUT BLOCK X settings up to the first occurrence of a setting value of "Not Used".

When using the User Maps for DNP data points (Analog Inputs and/or Binary Inputs) for relays with ethernet installed, check the "DNP Points Lists" C30 web page to ensure the desired points lists are created. This web page can be viewed using a web browser by entering the C30 IP address to access the C30 "Main Menu", then by selecting the "Device Information Menu" > "DNP Points Lists" menu item.

f) UCA/MMS PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ } \Rightarrow$ UCA/MMS PROTOCOL

The C30 supports the Manufacturing Message Specification (MMS) protocol as specified by the Utility Communication Architecture (UCA). UCA/MMS is supported over two protocol stacks: TCP/IP over ethernet and TP4/CLNP (OSI) over ethernet. The C30 operates as a UCA/MMS server. The Remote Inputs/Outputs section in this chapter describe the peer-topeer GOOSE message scheme.
The UCA LOGICAL DEVICE setting represents the MMS domain name (UCA logical device) where all UCA objects are located. The GOOSE FUNCTION setting allows for the blocking of GOOSE messages from the C30. This can be used during testing or to prevent the relay from sending GOOSE messages during normal operation. The GLOBE.ST.LocRemDS setting selects a FlexLogic ${ }^{\text {TM }}$ operand to provide the state of the UCA GLOBE.ST.LocRemDS data item. Refer to Appendix C: UCA/MMS Communications for additional details on the C30 UCA/MMS support.

g) WEB SERVER HTTP PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ WEB SERVER HTTP PROTOCOL

The C30 contains an embedded web server and is capable of transferring web pages to a web browser such as Microsoft Internet Explorer or Netscape Navigator. This feature is available only if the C30 has the ethernet option installed. The web pages are organized as a series of menus that can be accessed starting at the C30 "Main Menu". Web pages are available showing DNP and IEC 60870-5-104 points lists, Modbus registers, Event Records, Fault Reports, etc. The web pages can be accessed by connecting the UR and a computer to an ethernet network. The Main Menu will be displayed in the web browser on the computer simply by entering the IP address of the C30 into the "Address" box on the web browser.

h) TFTP PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ COMMUNICATIONS $\Rightarrow \sqrt{ } \Rightarrow$ TFTP PROTOCOL

The Trivial File Transfer Protocol (TFTP) can be used to transfer files from the UR over a network. The C30 operates as a TFTP server. TFTP client software is available from various sources, including Microsoft Windows NT. The dir.txt file obtained from the C30 contains a list and description of all available files (event records, oscillography, etc.).
i) IEC 60870-5-104 PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ } \Rightarrow$ IEC 60870-5-104 PROTOCOL

The C30 supports the IEC 60870-5-104 protocol. The C30 can be used as an IEC 60870-5-104 slave device connected to a single master (usually either an RTU or a SCADA master station). Since the C30 maintains one set of IEC 60870-5-104 data change buffers, only one master should actively communicate with the C30 at one time. For situations where a second master is active in a "hot standby" configuration, the UR supports a second IEC 60870-5-104 connection providing the standby master sends only IEC 60870-5-104 Test Frame Activation messages for as long as the primary master is active.
The NUMBER OF SOURCES IN MMENC1 LIST setting allows the selection of the number of current/voltage source values that are included in the M_ME_NC_1 (Measured value, short floating point) Analog points list. This allows the list to be customized to contain data for only the sources that are configured.
The IEC ------- DEFAULT THRESHOLD settings are the values used by the UR to determine when to trigger spontaneous responses containing M_ME_NC_1 analog data. These settings group the UR analog data into types: current, voltage, power, energy, and other. Each setting represents the default threshold value for all M_ME_NC_1 analog points of that type. For example, in order to trigger spontaneous responses from the UR when any current values change by 15 A , the IEC CURRENT DEFAULT THRESHOLD setting should be set to 15 . Note that these settings are the default values of the deadbands. P_ME_NC_1 (Parameter of measured value, short floating point value) points can be used to change threshold values, from the default, for each individual M_ME_NC_1 analog point. Whenever power is removed and re-applied to the UR, the default thresholds will be in effect.

The IEC 60870-5-104 and DNP protocols can not be used at the same time. When the IEC 60870-5-104 FUNCTION setting is set to "Enabled", the DNP protocol will not be operational. When this setting is changed it will not become active until power to the relay has been cycled (Off/On).

j) SNTP PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ COMMUNICATIONS $\Rightarrow \sqrt{ } \Rightarrow$ SNTP PROTOCOL

\square TFTP PROTOCOL		(1)	SNTP FUNCTION: Disabled	Range: Enabled, Disabled Range: 1 to 65535 in steps of 1
	MESSAGE	\square	SNTP SERVER IP ADDR: $0.0 .0 .0$	
	MESSAGE	(4)	SNTP UDP PORT NUMBER: 123	Range: 0 to 65535 in steps of 1

The C30 supports the Simple Network Time Protocol specified in RFC-2030. With SNTP, the C30 can obtain clock time over an Ethernet network. The C30 acts as an SNTP client to receive time values from an SNTP/NTP server, usually a dedicated product using a GPS receiver to provide an accurate time. Both unicast and broadcast SNTP are supported.

If SNTP functionality is enabled at the same time as IRIG-B, the IRIG-B signal provides the time value to the C30 clock for as long as a valid signal is present. If the IRIG-B signal is removed, the time obtained from the SNTP server is used. If either SNTP or IRIG-B is enabled, the C30 clock value cannot be changed using the front panel keypad.
To use SNTP in unicast mode, SNTP SERVER IP ADDR must be set to the SNTP/NTP server IP address. Once this address is set and SNTP FUNCTION is "Enabled", the C30 attempts to obtain time values from the SNTP/NTP server. Since many time values are obtained and averaged, it generally takes three to four minutes until the C30 clock is closely synchronized with the SNTP/NTP server. It may take up to one minute for the C30 to signal an SNTP self-test error if the server is offline.

To use SNTP in broadcast mode, set the SNTP SERVER IP ADDR setting to "0.0.0.0" and SNTP FUNCTION to "Enabled". The C30 then listens to SNTP messages sent to the "all ones" broadcast address for the subnet. The C30 waits up to eighteen minutes (>1024 seconds) without receiving an SNTP broadcast message before signaling an SNTP self-test error.

The UR does not support the multicast or anycast SNTP functionality.

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ MODBUS USER MAP

The Modbus User Map provides read-only access for up to 256 registers. To obtain a memory map value, enter the desired address in the ADDRESS line (this value must be converted from hex to decimal format). The corresponding value is displayed in the VALUE line. A value of " 0 " in subsequent register ADDRESS lines automatically returns values for the previous ADDRESS lines incremented by " 1 ". An address value of " 0 " in the initial register means "none" and values of " 0 " will be displayed for all registers. Different ADDRESS values can be entered as required in any of the register positions.

These settings can also be used with the DNP protocol. See the DNP Analog Input Points section in Appendix E for details.
\qquad 5.2.6 REAL TIME CLOCK

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ REAL TIME CLOCK

| \square REAL TIME |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \square CLOCK |\quad IRIG-B SIGNAL TYPE: \quad Range: None, DC Shift, Amplitude Modulated

The date and time for the relay clock can be synchronized to other relays using an IRIG-B signal. It has the same accuracy as an electronic watch, approximately ± 1 minute per month. An IRIG-B signal may be connected to the relay to synchronize the clock to a known time base and to other relays. If an IRIG-B signal is used, only the current year needs to be entered. See also the COMmANDS $\sqrt{ }$ SET DATE AND tIME menu for manually setting the relay clock.

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \Omega$ OSCILLOGRAPHY

Oscillography records contain waveforms captured at the sampling rate as well as other relay data at the point of trigger. Oscillography records are triggered by a programmable FlexLogic ${ }^{\text {TM }}$ operand. Multiple oscillography records may be captured simultaneously.

The NUMBER OF RECORDS is selectable, but the number of cycles captured in a single record varies considerably based on other factors such as sample rate. There is a fixed amount of data storage for oscillography; the more data captured, the less the number of cycles captured per record. See the ACTUAL VALUES $\Rightarrow \sqrt{ }$ RECORDS $\Rightarrow \sqrt{ }$ OSCILLOGRAPHY menu to view the number of cycles captured per record. The following table provides sample configurations with corresponding cycles/ record.

Table 5-1: OSCILLOGRAPHY CYCLES/RECORD EXAMPLE

\# RECORDS	\# CT/VTS	SAMPLE RATE	\# DIGITALS	\# ANALOGS	CYCLES/ RECORD
1	1	8	0	0	1872.0
1	1	16	16	0	1685.0
8	1	16	16	0	266.0
8	1	16	16	4	219.5
8	2	16	16	4	93.5
8	2	16	64	16	93.5
8	2	32	64	16	57.6
8	2	64	64	16	32.3
32	2	64	64	16	9.5

A new record may automatically overwrite an older record if TRIGGER MODE is set to "Automatic Overwrite".
The trigger position is programmable as a percent of the total buffer size (e.g. $10 \%, 50 \%, 75 \%$, etc.). A trigger position of 25% consists of 25% pre- and 75% post-trigger data.
The trigger source is always captured in oscillography and may be any FlexLogic ${ }^{\text {TM }}$ parameter (element state, contact input, virtual output, etc.). The relay sampling rate is 64 samples per cycle.

The AC INPUT WAVEFORMS setting determines the sampling rate at which AC input signals (i.e. current and voltage) are stored. Reducing the sampling rate allows longer records to be stored. This setting has no effect on the internal sampling rate of the relay which is always 64 samples per cycle, i.e. it has no effect on the fundamental calculations of the device.

An ANALOG CHANNEL setting selects the metering actual value recorded in an oscillography trace. The length of each oscillography trace depends in part on the number of parameters selected here. Parameters set to 'Off' are ignored. The parameters available in a given relay are dependent on: (a) the type of relay, (b) the type and number of CT/VT hardware modules installed, and (c) the type and number of Analog Input hardware modules installed. Upon startup, the relay will automatically prepare the parameter list. A list of all possible analog metering actual value parameters is presented in Appendix A: FlexAnalog Parameters. The parameter index number shown in any of the tables is used to expedite the selection of the parameter on the relay display. It can be quite time-consuming to scan through the list of parameters via the relay keypad/ display - entering this number via the relay keypad will cause the corresponding parameter to be displayed.

All eight CT/VT module channels are stored in the oscillography file. The CT/VT module channels are named as follows:
<slot_letter><terminal_number>-<l or V><phase A, B, or C, or 4th input>
The fourth current input in a bank is called IG, and the fourth voltage input in a bank is called VX. For example, F2-IB designates the IB signal on Terminal 2 of the CT/VT module in slot F. If there are no CT/VT modules and Analog Input modules, no analog traces will appear in the file; only the digital traces will appear.

When the NUMBER OF RECORDS setting is altered, all oscillography records will be CLEARED.

PATH: SETTINGS $\Rightarrow \sqrt{ }$ PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ DATA LOGGER

The data logger samples and records up to 16 analog parameters at a user-defined sampling rate. This recorded data may be downloaded to the URPC software and displayed with 'parameters' on the vertical axis and 'time' on the horizontal axis. All data is stored in non-volatile memory, meaning that the information is retained when power to the relay is lost.
For a fixed sampling rate, the data logger can be configured with a few channels over a long period or a larger number of channels for a shorter period. The relay automatically partitions the available memory between the channels in use.

E Changing any setting affecting Data Logger operation will clear any data that is currently in the log.
 Note

- DATA LOGGER RATE: This setting selects the time interval at which the actual value data will be recorded.
- DATA LOGGER CHNL 1 (16): This setting selects the metering actual value that is to be recorded in Channel 1(16) of the data log. The parameters available in a given relay are dependent on: the type of relay, the type and number of CT/ VT hardware modules installed, and the type and number of Analog Input hardware modules installed. Upon startup, the relay will automatically prepare the parameter list. A list of all possible analog metering actual value parameters is shown in Appendix A: Flexanalog Parameters. The parameter index number shown in any of the tables is used to expedite the selection of the parameter on the relay display. It can be quite time-consuming to scan through the list of parameters via the relay keypad/display - entering this number via the relay keypad will cause the corresponding parameter to be displayed.
- DATA LOGGER CONFIG: This display presents the total amount of time the Data Logger can record the channels not selected to "Off" without over-writing old data.
a) MAIN MENU

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ USER-PROGRAMMABLE LEDS

b) LED TEST

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \sqrt{ }$ USER-PROGRAMMABLE LEDS \Rightarrow LED TEST

When enabled, the LED Test can be initiated from any digital input or user-programmable condition such as user-programmable pushbutton. The control operand is configured under the LED TEST CONTROL setting. The test covers all LEDs, including the LEDs of the optional user-programmable pushbuttons.

The test consists of three stages.
Stage 1: All 62 LEDs on the relay are illuminated. This is a quick test to verify if any of the LEDs is "burned". This stage lasts as long as the control input is on, up to a maximum of 1 minute. After 1 minute, the test will end.
Stage 2: All the LEDs are turned off, and then one LED at a time turns on for 1 second, then back off. The test routine starts at the top left panel, moving from the top to bottom of each LED column. This test checks for hardware failures that lead to more than one LED being turned on from a single logic point. This stage can be interrupted at any time.
Stage 3: All the LEDs are turned on. One LED at a time turns off for 1 second, then back on. The test routine starts at the top left panel moving from top to bottom of each column of the LEDs. This test checks for hardware failures that lead to more than one LED being turned off from a single logic point. This stage can be interrupted at any time.
When testing is in progress, the LEDs are controlled by the test sequence, rather than the protection, control, and monitoring features. However, the LED control mechanism accepts all the changes to LED states generated by the relay and stores the actual LED states (On or Off) in memory. When the test completes, the LEDs reflect the actual state resulting from relay response during testing. The Reset pushbutton will not clear any targets when the LED Test is in progress.
A dedicated FlexLogic ${ }^{\text {TM }}$ operand, LED TEST IN PROGRESS, is set for the duration of the test. When the test sequence is initiated, the LED Test Initiated event is stored in the Event Recorder.
The entire test procedure is user-controlled. In particular, Stage 1 can last as long as necessary, and Stages 2 and 3 can be interrupted. The test responds to the position and rising edges of the control input defined by the LED TEST CONTROL setting. The control pulses must last at least 250 ms to take effect. The following diagram explains how the test is executed.

Figure 5-1: LED TEST SEQUENCE

APPLICATION EXAMPLE 1:

Assume one needs to check if any of the LEDs is "burned" through User-Programmable Pushbutton 1. The following settings should be applied.
Configure User-Programmable Pushbutton 1 by making the following entries in the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ USERPROGRAMMABLE PUSHBUTTONS \Rightarrow USER PUSHBUTTON 1 menu:

PUSHBUTTON 1 FUNCTION: "Self-reset"
PUSHBTN 1 DROP-OUT TIME: " 0.10 s"
Configure the LED test to recognize User-Programmable Pushbutton 1 by making the following entries in the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ USER-PROGRAMMABLE LEDS \Rightarrow LED TEST menu:

LED TEST FUNCTION: "Enabled"
LED TEST CONTROL: "PUSHBUTTON 1 ON"
The test will be initiated when the User-Programmable Pushbutton 1 is pressed. The pushbutton should remain pressed for as long as the LEDs are being visually inspected. When finished, the pushbutton should be released. The relay will then automatically start Stage 2. At this point forward, test may be aborted by pressing the pushbutton.

APPLICATION EXAMPLE 2:

Assume one needs to check if any LEDs are "burned" as well as exercise one LED at a time to check for other failures. This is to be performed via User-Programmable Pushbutton 1.

After applying the settings in Application Example 1, hold down the pushbutton as long as necessary to test all LEDs. Next, release the pushbutton to automatically start Stage 2. Once Stage 2 has started, the pushbutton can be released. When Stage 2 is completed, Stage 3 will automatically start. The test may be aborted at any time by pressing the pushbutton.

c) TRIP AND ALARM LEDS

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ USER-PROGRAMMABLE LEDS $\Rightarrow \sqrt{ }$ TRIP \& ALARM LEDS

The Trip and Alarm LEDs are on LED Panel 1. Each indicator can be programmed to become illuminated when the selected FlexLogic ${ }^{\text {TM }}$ operand is in the Logic 1 state.
d) USER-PROGRAMMABLE LED 1(48)

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ USER-PROGRAMMABLE LEDS $\Rightarrow \Omega$ USER-PROGRAMMABLE LED 1(48)

There are 48 amber LEDs across the relay faceplate LED panels. Each of these indicators can be programmed to illuminate when the selected FlexLogic ${ }^{\top M}$ operand is in the Logic 1 state.

- LEDs 1 through 24 inclusive are on LED Panel 2; LEDs 25 through 48 inclusive are on LED Panel 3.

Refer to the LED Indicators section in Chapter 4 for the locations of these indexed LEDs. This menu selects the operands to control these LEDs. Support for applying user-customized labels to these LEDs is provided. If the LED X TYPE setting is "Self-Reset" (default setting), the LED illumination will track the state of the selected LED operand. If the LED X TYPE setting is 'Latched', the LED, once lit, remains so until reset by the faceplate RESET button, from a remote device via a communications channel, or from any programmed operand, even if the LED operand state de-asserts.

Table 5-2: RECOMMENDED SETTINGS FOR LED PANEL 2 LABELS

SETTING	PARAMETER
LED 1 Operand	Off
LED 2 Operand	Off
LED 3 Operand	Off
LED 4 Operand	Off
LED 5 Operand	Off
LED 6 Operand	Off
LED 7 Operand	Off
LED 8 Operand	Off
LED 9 Operand	Off
LED 10 Operand	Off
LED 11 Operand	Off
LED 12 Operand	Off

SETTING	PARAMETER
LED 13 Operand	Off
LED 14 Operand	Off
LED 15 Operand	Off
LED 16 Operand	Off
LED 17 Operand	Off
LED 18 Operand	Off
LED 19 Operand	Off
LED 20 Operand	Off
LED 21 Operand	Off
LED 22 Operand	Off
LED 23 Operand	Off
LED 24 Operand	Off

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \Downarrow$ USER-PROGRAMMABLE SELF TESTS

\square USER-PROGRAMMABLESELF TESTS		(1)	DIRECT RING BREAK FUNCTION: Enabled	Range: Range:	Disabled, Enabled. Valid for units equipped with Direct I/O Module. Disabled, Enabled. Valid for units equipped with Direct I/O Module.
	MESSAGE		DIRECT DEVICE OFF FUNCTION: Enabled		
	MESSAGE	∇	REMOTE DEVICE OFF FUNCTION: Enabled	Range:	Disabled, Enabled. Valid for units equipped with CPU Type C or D.
	MESSAGE	-	PRI. ETHERNET FAIL FUNCTION: Disabled	Range:	Disabled, Enabled. Valid for units equipped with CPU Type C or D.
	MESSAGE	-	SEC. ETHERNET FAIL FUNCTION: Disabled	Range:	Disabled, Enabled. Valid for units equipped with CPU Type D.
	MESSAGE	-	BATTERY FAIL FUNCTION: Enabled	Range:	Disabled, Enabled.
	MESSAGE	∇	SNTP FAIL FUNCTION: Enabled	Range:	Disabled, Enabled. Valid for units equipped with CPU Type C or D.
	MESSAGE	(2)	IRIG-B FAIL FUNCTION: Enabled	Range:	Disabled, Enabled.

All major self-test alarms are reported automatically with their corresponding FlexLogic ${ }^{\top M}$ operands, events, and targets. Most of the Minor Alarms can be disabled if desired.

When in the "Disabled" mode, minor alarms will not assert a FlexLogic ${ }^{T M}$ operand, write to the event recorder, display target messages. Moreover, they will not trigger the ANY minor ALARM or ANY SELF-TEST messages. When in the "Enabled" mode, minor alarms continue to function along with other major and minor alarms. Refer to the Relay Self-Tests section in Chapter 7 for additional information on major and minor self-test alarms.

5.2.11 CONTROL PUSHBUTTONS

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \sqrt{ }$ CONTROL PUSHBUTTONS \Rightarrow CONTROL PUSHBUTTON 1(3)

The three standard pushbuttons located on the top left panel of the faceplate are user-programmable and can be used for various applications such as performing an LED test, switching setting groups, and invoking and scrolling though user-programmable displays, etc. The location of the control pushbuttons in shown below.

Figure 5-2: CONTROL PUSHBUTTONS

5 SETTINGS

The control pushbuttons are typically not used for critical operations. As such, they are not protected by the control password. However, by supervising their output operands, the user can dynamically enable or disable the control pushbuttons for security reasons.
Each control pushbutton asserts its own FlexLogic ${ }^{\text {TM }}$ operand, CONTROL PUSHBTN 1(3) ON. These operands should be configured appropriately to perform the desired function. The operand remains asserted as long as the pushbutton is pressed and resets when the pushbutton is released. A dropout delay of 100 ms is incorporated to ensure fast pushbutton manipulation will be recognized by various features that may use control pushbuttons as inputs.
An event is logged in the Event Record (as per used setting) when a control pushbutton is pressed; no event is logged when the pushbutton is released. The faceplate keys (including control keys) cannot be operated simultaneously - a given key must be released before the next one can be pressed.

Figure 5-3: CONTROL PUSHBUTTON LOGIC

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ USER-PROGRAMMABLE PUSHBUTTONS \Rightarrow USER PUSHBUTTON 1(12)

The C30 has 12 optional user-programmable pushbuttons available, each configured via 12 identical menus. The pushbuttons provide an easy and error-free method of manually entering digital information (On, Off) into FlexLogic ${ }^{\text {TM }}$ equations as well as protection and control elements. Typical applications include breaker control, autorecloser blocking, ground protection blocking, and setting groups changes.

The user-configurable pushbuttons are shown below. They can be custom labeled with a factory-provided template, available online at www.GEindustrial.com/multilin.

Figure 5-4: USER-PROGRAMMABLE PUSHBUTTONS
Each pushbutton asserts its own On and Off FlexLogic ${ }^{\text {TM }}$ operands, respectively. FlexLogic ${ }^{\text {TM }}$ operands should be used to program desired pushbutton actions. The operand names are PUSHBUTTON 1 ON and PUSHBUTTON 1 OFF.
A pushbutton may be programmed to latch or self-reset. An indicating LED next to each pushbutton signals the present status of the corresponding "On" FlexLogic ${ }^{\text {TM }}$ operand. When set to "Latched", the state of each pushbutton is stored in nonvolatile memory which is maintained during any supply power loss.
Pushbuttons states can be logged by the Event Recorder and displayed as target messages. User-defined messages can also be associated with each pushbutton and displayed when the pushbutton is ON.

- PUSHBUTTON 1 FUNCTION: This setting selects the characteristic of the pushbutton. If set to "Disabled", the pushbutton is deactivated and the corresponding FlexLogic ${ }^{\text {TM }}$ operands (both "On" and "Off") are de-asserted. If set to "Self-reset", the control logic of the pushbutton asserts the "On" corresponding FlexLogic ${ }^{\top M}$ operand as long as the pushbutton is being pressed. As soon as the pushbutton is released, the FlexLogic ${ }^{\text {TM }}$ operand is de-asserted. The "Off" operand is asserted/de-asserted accordingly.
If set to "Latched", the control logic alternates the state of the corresponding FlexLogic ${ }^{\text {TM }}$ operand between "On" and "Off" on each push of the button. When operating in "Latched" mode, FlexLogic ${ }^{\text {TM }}$ operand states are stored in non-volatile memory. Should power be lost, the correct pushbutton state is retained upon subsequent power up of the relay.
- PUSHBTN 1 ID TEXT: This setting specifies the top 20-character line of the user-programmable message and is intended to provide ID information of the pushbutton. Refer to the User-Definable Displays section for instructions on how to enter alphanumeric characters from the keypad.
- PUSHBTN 1 ON TEXT: This setting specifies the bottom 20-character line of the user-programmable message and is displayed when the pushbutton is in the "on" position. Refer to the User-Definable Displays section for instructions on entering alphanumeric characters from the keypad.
- PUSHBTN 1 OFF TEXT: This setting specifies the bottom 20-character line of the user-programmable message and is displayed when the pushbutton is activated from the On to the Off position and the PUSHBUTTON 1 FUNCTION is "Latched". This message is not displayed when the PUSHBUTTON 1 FUNCTION is "Self-reset" as the pushbutton operand status is implied to be "Off" upon its release. All user text messaging durations for the pushbuttons are configured with the PRODUCT SETUP $\Rightarrow \sqrt{ }$ DISPLAY PROPERTIES \Rightarrow FLASH MESSAGE TIME setting.
- PUSHBTN 1 DROP-OUT TIME: This setting specifies a drop-out time delay for a pushbutton in the self-reset mode. A typical applications for this setting is providing a select-before-operate functionality. The selecting pushbutton should have the drop-out time set to a desired value. The operating pushbutton should be logically ANDed with the selecting pushbutton in FlexLogic ${ }^{\text {TM }}$. The selecting pushbutton LED remains on for the duration of the drop-out time, signaling the time window for the intended operation.

For example, consider a relay with the following settings: PUSHBTN 1 ID TEXT: "AUTORECLOSER", PUSHBTN 1 ON TEXT: "DISABLED - CALL 2199", and PUSHBTN 1 OFF TEXT: "ENABLED". When Pushbutton 1 changes its state to the "On" position, the following AUTOCLOSER DISABLED - Call 2199 message is displayed: When Pushbutton 1 changes its state to the "Off" position, the message will change to AUTORECLOSER ENABLED.

User-programmable pushbuttons require a type HP relay faceplate. If an HP-type faceplate was ordered separately, the relay order code must be changed to indicate the HP faceplate option. This can be done via URPC with the Maintenance > Enable Pushbutton command.

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ FLEX STATE PARAMETERS

This feature provides a mechanism where any of 256 selected FlexLogic ${ }^{\text {TM }}$ operand states can be used for efficient monitoring. The feature allows user-customized access to the FlexLogic ${ }^{T M}$ operand states in the relay. The state bits are packed so that 16 states may be read out in a single Modbus register. The state bits can be configured so that all of the states which are of interest to the user are available in a minimum number of Modbus registers.

The state bits may be read out in the "Flex States" register array beginning at Modbus address 900 hex. 16 states are packed into each register, with the lowest-numbered state in the lowest-order bit. There are 16 registers in total to accommodate the 256 state bits.
5.2.14 USER-DEFINABLE DISPLAYS
a) MAIN MENU

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow 』$ USER-DEFINABLE DISPLAYS

This menu provides a mechanism for manually creating up to 16 user-defined information displays in a convenient viewing sequence in the USER DISPLAYS menu (between the TARGETS and ACTUAL VALUES top-level menus). The sub-menus facilitate text entry and Modbus Register data pointer options for defining the User Display content.

Once programmed, the user-definable displays can be viewed in two ways.

- KEYPAD: Use the Menu key to select the USER DISPLAYS menu item to access the first user-definable display (note that only the programmed screens are displayed). The screens can be scrolled using the Up and Down keys. The display disappears after the default message time-out period specified by the PRODUCT SETUP $\Rightarrow \sqrt{ }$ DISPLAY PROPERTIES $\Rightarrow \Omega$ DEFAULT MESSAGE TIMEOUT setting.
- USER-PROGRAMMABLE CONTROL INPUT: The user-definable displays also respond to the INVOKE AND SCROLL setting. Any FlexLogic ${ }^{\text {TM }}$ operand (in particular, the user-programmable pushbutton operands), can be used to navigate the programmed displays.
On the rising edge of the configured operand (such as when the pushbutton is pressed), the displays are invoked by showing the last user-definable display shown during the previous activity. From this moment onward, the operand acts exactly as the Down key and allows scrolling through the configured displays. The last display wraps up to the first one. The INVOKE AND SCROLL input and the Down keypad key operate concurrently.
The invoke and scroll input is active since the last activity for the time specified by the default message timeout setting. When this time expires, the feature resets and the next activity of the input invokes the first display. The invoke AND SCROLL pulses must last for at least 250 ms to take effect.
b) USER DISPLAY 1(16)

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ USER-DEFINABLE DISPLAYS \Rightarrow USER DISPLAY 1(16)

Any existing system display can be automatically copied into an available User Display by selecting the existing display and pressing the ENTER key. The display will then prompt ADD TO USER DISPLAY LIST?. After selecting "Yes", a message indicates that the selected display has been added to the user display list. When this type of entry occurs, the sub-menus are automatically configured with the proper content - this content may subsequently be edited.

This menu is used to enter user-defined text and/or user-selected Modbus-registered data fields into the particular User Display. Each User Display consists of two 20-character lines (top and bottom). The Tilde (~) character is used to mark the start of a data field - the length of the data field needs to be accounted for. Up to 5 separate data fields (ITEM 1(5)) can be entered in a User Display - the nth Tilde (\sim) refers to the nth item.

A User Display may be entered from the faceplate keypad or the URPC interface (preferred for convenience). The following procedure shows how to enter text characters in the top and bottom lines from the faceplate keypad:

1. Select the line to be edited.
2. Press the $\quad \cdot$ key to enter text edit mode.
3. Use either Value key to scroll through the characters. A space is selected like a character.
4. Press the \cdot key to advance the cursor to the next position.
5. Repeat step 3 and continue entering characters until the desired text is displayed.
6. The HELP key may be pressed at any time for context sensitive help information.
7. Press the ENTER key to store the new settings.

To enter a numerical value for any of the 5 items (the decimal form of the selected Modbus address) from the faceplate keypad, use the number keypad. Use the value of ' 0 ' for any items not being used. Use the HELP key at any selected system display (Setting, Actual Value, or Command) which has a Modbus address, to view the hexadecimal form of the Modbus address, then manually convert it to decimal form before entering it (URPC usage conveniently facilitates this conversion).

Use the menu key to go to the User Displays menu to view the user-defined content. The current user displays will show in sequence, changing every 4 seconds. While viewing a User Display, press the ENTER key and then select the 'Yes" option to remove the display from the user display list. Use the menu key again to exit the User Displays menu.

An example User Display setup and result is shown below:

a) MAIN MENU

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \|$ DIRECT I/O

Direct I/Os are intended for exchange of status information (inputs and outputs) between UR relays connected directly via Type-7 UR digital communications cards. The mechanism is very similar to UCA GOOSE, except that communications takes place over a non-switchable isolated network and is optimized for speed. On Type 7 cards that support two channels,

Direct Output messages are sent from both channels simultaneously. This effectively sends Direct Output messages both ways around a ring configuration. On Type 7 cards that support one channel, Direct Output messages are sent only in one direction. Messages will be resent (forwarded) when it is determined that the message did not originate at the receiver.
Direct Output message timing is similar to GOOSE message timing. Integrity messages (with no state changes) are sent at least every 500 ms . Messages with state changes are sent within the main pass scanning the inputs and asserting the outputs unless the communication channel bandwidth has been exceeded. Two Self-Tests are performed and signaled by the following FlexLogic ${ }^{\text {™ }}$ operands:

1. DIRECT RING BREAK (Direct I/O Ring Break). This FlexLogic ${ }^{\text {TM }}$ operand indicates that Direct Output messages sent from a UR are not being received back by the UR.
2. DIRECT DEVICE X OFF (Direct Device Offline). This FlexLogic ${ }^{\text {TM }}$ operand indicates that Direct Output messages from at least one Direct Device are not being received.

Direct I/O settings are similar to Remote I/O settings. The equivalent of the Remote Device name strings for Direct I/O, is the Direct Output Device ID.

The direct output device id identifies this UR in all Direct Output messages. All UR IEDs in a ring should have unique numbers assigned. The IED ID is used to identify the sender of the Direct I/O message.
If the Direct I/O scheme is configured to operate in a ring (DIRECT I/O RING CONFIGURATION: "Yes"), all Direct Output messages should be received back. If not, the Direct I/O Ring Break Self Test is triggered. The self-test error is signaled by the DIRECT RING BREAK FlexLogic ${ }^{\text {TM }}$ operand.
Select the DIRECT I/O DATA RATE to match the capabilities of the communications channel. Back-to-back connections of the local relays may be set to 128 kbps . All IEDs communicating over Direct I/Os must be set to the same data rate. UR IEDs equipped with dual-channel communications cards apply the same data rate to both channels. Delivery time for Direct I/O messages is approximately 0.2 of a power system cycle at 128 kbps and 0.4 of a power system cycle at 64 kbps , per each "bridge".

The DIRECT I/O CHANNEL CROSSOVER setting applies to C30s with dual-channel communication cards and allows crossing over messages from Channel 1 to Channel 2. This places all UR IEDs into one Direct I/O network regardless of the physical media of the two communication channels.

The following application examples illustrate the basic concepts for Direct I/O configuration. Please refer to the Inputs/Outputs section later in this chapter for information on configuring FlexLogic ${ }^{T M}$ operands (flags, bits) to be exchanged.
EXAMPLE 1: EXTENDING THE I/O CAPABILITIES OF A UR RELAY
Consider an application that requires additional quantities of digital inputs and/or output contacts and/or lines of programmable logic that exceed the capabilities of a single UR chassis. The problem is solved by adding an extra UR IED, such as the C30, to satisfy the additional I/Os and programmable logic requirements. The two IEDs are connected via single-channel digital communication cards as shown in the figure below.

Figure 5-5: INPUT/OUTPUT EXTENSION VIA DIRECT I/OS
In the above application, the following settings should be applied:

UR IED 1:	DIRECT OUTPUT DEVICE ID: "1"
	DIRECT I/O RING CONFIGURATION: "Yes"
	DIRECT I/O DATA RATE: "128 kbps"
UR IED 2:	DIRECT OUTPUT DEVICE ID: "2"
	DIRECT I/O RING CONFIGURATION: "Yes"
	DIRECT I/O DATA RATE: "128 kbps"

The message delivery time is about 0.2 of power cycle in both ways (at 128 kbps); i.e., from Device 1 to Device 2, and from Device 2 to Device 1. Different communications cards can be selected by the user for this back-to-back connection (fiber, G.703, or RS422).

EXAMPLE 2: INTERLOCKING BUSBAR PROTECTION

A simple interlocking busbar protection scheme could be accomplished by sending a blocking signal from downstream devices, say 2,3 , and 4 , to the upstream device that monitors a single incomer of the busbar, as shown below.

Figure 5-6: SAMPLE INTERLOCKING BUSBAR PROTECTION SCHEME
For increased reliability, a dual-ring configuration (shown below) is recommended for this application.

Figure 5-7: INTERLOCKING BUS PROTECTION SCHEME VIA DIRECT I/OS
In the above application, the following settings should be applied:

```
UR IED 1: DIRECT OUTPUT DEVICE ID: "1"
    DIRECT I/O RING CONFIGURATION: "Yes"
UR IED 3: DIRECT OUTPUT DEVICE ID: "3"
    DIRECT I/O RING CONFIGURATION: "Yes"
```

UR IED 2: DIRECT OUTPUT DEVICE ID: "2" DIRECT I/O RING CONFIGURATION: "Yes"
UR IED 4: DIRECT OUTPUT DEVICE ID: "4" DIRECT I/O RING CONFIGURATION: "Yes"

Message delivery time is approximately 0.2 of power system cycle (at 128 kbps) times number of "bridges" between the origin and destination. Dual-ring configuration effectively reduces the maximum "communications distance" by a factor of two.
In this configuration the following delivery times are expected (at 128 kbps) if both rings are healthy:

> IED 1 to IED 2: 0.2 of power system cycle; IED 1 to IED 3: 0.4 of power system cycle; IED 1 to IED 4: 0.2 of power system cycle; IED 2 to IED $3: 0.2$ of power system cycle; IED 2 to IED 4: 0.4 of power system cycle; IED 3 to IED $4: 0.2$ of power system cycle

If one ring is broken (say TX2/RX2) the delivery times are as follows:
IED 1 to IED 2: 0.2 of power system cycle; IED 1 to IED 3: 0.4 of power system cycle;
IED 1 to IED 4: 0.6 of power system cycle; IED 2 to IED 3: 0.2 of power system cycle;
IED 2 to IED 4: 0.4 of power system cycle; IED 3 to IED 4: 0.2 of power system cycle
A coordinating timer for this bus protection scheme could be selected to cover the worst case scenario (0.4 of power system cycle). Upon detecting a broken ring, the coordination time should be adaptively increased to 0.6 of power system cycle. The complete application requires addressing a number of issues such as failure of both the communications rings, failure or out-of-service conditions of one of the relays, etc. Self-monitoring flags of the Direct I/O feature would be primarily used to address these concerns.

EXAMPLE 3: PILOT-AIDED SCHEMES

Consider the three-terminal line protection application shown below:

Figure 5-8: THREE-TERMINAL LINE APPLICATION
A permissive pilot-aided scheme could be implemented in a two-ring configuration as shown below (IEDs 1 and 2 constitute a first ring, while IEDs 2 and 3 constitute a second ring):

Figure 5-9: SINGLE-CHANNEL OPEN LOOP CONFIGURATION
In the above application, the following settings should be applied:
UR IED 1: DIRECT OUTPUT DEVICE ID: "1"
DIRECT I/O RING CONFIGURATION: "Yes"
UR IED 2: DIRECT OUTPUT DEVICE ID: "2" DIRECT I/O RING CONFIGURATION: "Yes"
UR IED 3: DIRECT OUTPUT DEVICE ID: "3"
DIRECT I/O RING CONFIGURATION: "Yes"
In this configuration the following delivery times are expected (at 128 kbps):
IED 1 to IED 2: 0.2 of power system cycle; IED 1 to IED 3: 0.5 of power system cycle;
IED 2 to IED 3: 0.2 of power system cycle
In the above scheme, IEDs 1 and 3 do not communicate directly. IED 2 must be configured to forward the messages as explained in the INPUTS/OUTPUTS section. A blocking pilot-aided scheme should be implemented with more security and, ideally, faster message delivery time. This could be accomplished using a dual-ring configuration as shown below.

Figure 5-10: DUAL-CHANNEL CLOSED LOOP (DUAL-RING) CONFIGURATION

In the above application, the following settings should be applied:
UR IED 1: DIRECT OUTPUT DEVICE ID: "1"
UR IED 2: DIRECT OUTPUT DEVICE ID: "2" DIRECT I/O RING CONFIGURATION: "Yes"

UR IED 3: DIRECT OUTPUT DEVICE ID: "3" DIRECT I/O RING CONFIGURATION: "Yes"

DIRECT I/O RING CONFIGURATION: "Yes"

In this configuration the following delivery times are expected (at 128 kbps) if both the rings are healthy:
IED 1 to IED 2: 0.2 of power system cycle; IED 1 to IED 3: 0.2 of power system cycle;
IED 2 to IED 3: 0.2 of power system cycle
The two communications configurations could be applied to both permissive and blocking schemes. Speed, reliability and cost should be taken into account when selecting the required architecture.
b) CRC ALARM CH1(2)

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ DIRECT I/O $\Rightarrow \sqrt{ }$ CRC ALARM CH1(2)

The C30 checks integrity of the incoming Direct I/O messages using a 32-bit CRC. The CRC Alarm function is available for monitoring the communication medium noise by tracking the rate of messages failing the CRC check. The monitoring function counts all incoming messages, including messages that failed the CRC check. A separate counter adds up messages that failed the CRC check. When the failed CRC counter reaches the user-defined level specified by the CRC ALARM CH1 THRESHOLD setting within the user-defined message count CRC ALARM 1 CH1 COUNT, the DIR IO CH1 CRC ALARM FlexLogic ${ }^{\text {TM }}$ operand is set.
When the total message counter reaches the user-defined maximum specified by the CRC ALARM CH1 MESSAGE COUNT setting, both the counters reset and the monitoring process is restarted.
The operand shall be configured to drive an output contact, user-programmable LED, or selected communication-based output. Latching and acknowledging conditions - if required - should be programmed accordingly.

The CRC Alarm function is available on a per-channel basis. The total number of Direct I/O messages that failed the CRC check is available as the ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt{ }$ DIRECT INPUTS $\Rightarrow \sqrt{ }$ CRC FAIL COUNT CH1(2) actual value.

Message Count and Length of the Monitoring Window:

To monitor communications integrity, the relay sends 2 messages per second (at 64 kbps) or 4 messages per second (128 kbps) even if there is no change in the Direct Outputs. For example, setting the CRC ALARM CH1 MESSAGE COUNT to " 10000 ", corresponds a time window of about 80 minutes at 64 kbps and 40 minutes at 128 kbps . If the messages are sent faster as a result of Direct Outputs activity, the monitoring time interval will shorten. This should be taken into account when determining the CRC ALARM CH1 MESSAGE COUNT setting. For example, if the requirement is a maximum monitoring time interval of 10 minutes at 64 kbps , then the CRC ALARM CH1 MESSAGE COUNT should be set to $10 \times 60 \times 2=1200$.

Correlation of Failed CRC and Bit Error Rate (BER):

The CRC check may fail if one or more bits in a packet are corrupted. Therefore, an exact correlation between the CRC fail rate and the BER is not possible. Under certain assumptions an approximation can be made as follows. A Direct I/O packet containing 20 bytes results in 160 bits of data being sent and therefore, a transmission of 63 packets is equivalent to 10,000 bits. A BER of 10^{-4} implies 1 bit error for every 10,000 bits sent/received. Assuming the best case of only 1 bit error in a failed packet, having 1 failed packet for every 63 received is about equal to a BER of 10^{-4}.
c) UNRETURNED MESSAGES ALARM CH1(2)

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ DIRECT $I / O \Rightarrow \sqrt{ } \Rightarrow$ UNRETURNED MESSAGES ALARM CH1(2)

The C30 checks integrity of the Direct I/O communication ring by counting unreturned messages. In the ring configuration, all messages originating at a given device should return within a pre-defined period of time. The Unreturned Messages Alarm function is available for monitoring the integrity of the communication ring by tracking the rate of unreturned messages. This function counts all the outgoing messages and a separate counter adds the messages have failed to return. When the unreturned messages counter reaches the user-definable level specified by the UNRET MSGS ALARM CH1 THRESHOLD setting and within the user-defined message count UNRET MSGS ALARM CH1 COUNT, the DIR IO CH1 UNRET ALM FlexLogic ${ }^{\text {TM }}$ operand is set.
When the total message counter reaches the user-defined maximum specified by the UNRET MSGS ALARM CH1 MESSAGE count setting, both the counters reset and the monitoring process is restarted.

The operand shall be configured to drive an output contact, user-programmable LED, or selected communication-based output. Latching and acknowledging conditions, if required, should be programmed accordingly.
The Unreturned Messages Alarm function is available on a per-channel basis and is active only in the ring configuration. The total number of unreturned Direct I/O messages is available as the ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt{ }$ DIRECT INPUTS $\Rightarrow \sqrt{ }$ UNRETURNED MSG COUNT CH1(2) actual value.
5.2.16 INSTALLATION

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ INSTALLATION

To safeguard against the installation of a relay without any entered settings, the unit will not allow signaling of any output relay until RELAY SETTINGS is set to "Programmed". This setting is defaulted to "Not Programmed" when at the factory. The UNIT NOT PROGRAMMED self-test error message is displayed until the relay is put into the "Programmed" state.

The reLAY NAME setting allows the user to uniquely identify a relay. This name will appear on generated reports. This name is also used to identify specific devices which are engaged in automatically sending/receiving data over the Ethernet communications channel using the UCA2/MMS protocol.

To provide maximum flexibility to the user, the arrangement of internal digital logic combines fixed and user-programmed parameters. Logic upon which individual features are designed is fixed, and all other logic, from digital input signals through elements or combinations of elements to digital outputs, is variable. The user has complete control of all variable logic through FlexLogic ${ }^{\text {TM }}$. In general, the system receives analog and digital inputs which it uses to produce analog and digital outputs. The major sub-systems of a generic UR relay involved in this process are shown below.

Figure 5-11: UR ARCHITECTURE OVERVIEW
The states of all digital signals used in the UR are represented by flags (or FlexLogic ${ }^{\text {TM }}$ operands, which are described later in this section). A digital "1" is represented by a 'set' flag. Any external contact change-of-state can be used to block an element from operating, as an input to a control feature in a FlexLogic ${ }^{\top M}$ equation, or to operate a contact output. The state of the contact input can be displayed locally or viewed remotely via the communications facilities provided. If a simple scheme where a contact input is used to block an element is desired, this selection is made when programming the element. This capability also applies to the other features that set flags: elements, virtual inputs, remote inputs, schemes, and human operators.
If more complex logic than presented above is required, it is implemented via FlexLogic ${ }^{\text {TM }}$. For example, if it is desired to have the closed state of contact input H 7 a and the operated state of the phase undervoltage element block the operation of the phase time overcurrent element, the two control input states are programmed in a FlexLogic ${ }^{\top \mathrm{M}}$ equation. This equation ANDs the two control inputs to produce a 'virtual output' which is then selected when programming the phase time overcurrent to be used as a blocking input. Virtual outputs can only be created by FlexLogic ${ }^{\text {TM }}$ equations.

Traditionally, protective relay logic has been relatively limited. Any unusual applications involving interlocks, blocking, or supervisory functions had to be hard-wired using contact inputs and outputs. FlexLogic ${ }^{\text {TM }}$ minimizes the requirement for auxiliary components and wiring while making more complex schemes possible.

The logic that determines the interaction of inputs, elements, schemes and outputs is field programmable through the use of logic equations that are sequentially processed. The use of virtual inputs and outputs in addition to hardware is available internally and on the communication ports for other relays to use (distributed FlexLogic ${ }^{\text {TM }}$).
FlexLogic ${ }^{\text {TM }}$ allows users to customize the relay through a series of equations that consist of operators and operands. The operands are the states of inputs, elements, schemes and outputs. The operators are logic gates, timers and latches (with set and reset inputs). A system of sequential operations allows any combination of specified operands to be assigned as inputs to specified operators to create an output. The final output of an equation is a numbered register called a virtual output. Virtual outputs can be used as an input operand in any equation, including the equation that generates the output, as a seal-in or other type of feedback.
A FlexLogic ${ }^{\top M}$ equation consists of parameters that are either operands or operators. Operands have a logic state of 1 or 0. Operators provide a defined function, such as an AND gate or a Timer. Each equation defines the combinations of parameters to be used to set a Virtual Output flag. Evaluation of an equation results in either a 1 (=ON, i.e. flag set) or 0 (=OFF, i.e. flag not set). Each equation is evaluated at least 4 times every power system cycle.
Some types of operands are present in the relay in multiple instances; e.g. contact and remote inputs. These types of operands are grouped together (for presentation purposes only) on the faceplate display. The characteristics of the different types of operands are listed in the table below.

Table 5-3: UR FLEXLOGICTM OPERAND TYPES

OPERAND TYPE	STATE	EXAMPLE FORMAT	CHARACTERISTICS [INPUT IS '1' (= ON) IF...]
Contact Input	On	Cont Ip On	Voltage is presently applied to the input (external contact closed).
	Off	Cont Ip Off	Voltage is presently not applied to the input (external contact open).
Contact Output (type Form-A contact only)	Voltage On	Cont Op 1 VOn	Voltage exists across the contact.
	Voltage Off	Cont Op 1 VOff	Voltage does not exists across the contact.
	Current On	Cont Op 1 IOn	Current is flowing through the contact.
	Current Off	Cont Op 1 IOff	Current is not flowing through the contact.
Direct Input	On	DIRECT INPUT 1 On	The direct input is presently in the ON state.
Element (Digital)	Pickup	Dig Element 1 PKP	The input operand is at logic 1.
	Dropout	Dig Element 1 DPO	This operand is the logical inverse of the above PKP operand.
	Operate	Dig Element 1 OP	The input operand has been at logic 1 for the programmed pickup delay time, or has been at logic 1 for this period and is now at logic 0 but the reset timer has not finished timing.
$\begin{aligned} & \hline \text { Element } \\ & \text { (Digital Counter) } \end{aligned}$	Higher than	Counter 1 HI	The number of pulses counted is above the set number.
	Equal to	Counter 1 EQL	The number of pulses counted is equal to the set number.
	Lower than	Counter 1 LO	The number of pulses counted is below the set number.
Fixed	On	On	Logic 1
	Off	Off	Logic 0
Remote Input	On	REMOTE INPUT 1 On	The remote input is presently in the ON state.
Virtual Input	On	Virt Ip 1 On	The virtual input is presently in the ON state.
Virtual Output	On	Virt Op 1 On	The virtual output is presently in the set state (i.e. evaluation of the equation which produces this virtual output results in a "1").

The operands available for this relay are listed alphabetically by types in the following table.
Table 5-4: C30 FLEXLOGIC ${ }^{\text {тм }}$ OPERANDS (Sheet 1 of 2)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION
CONTROL PUSHBUTTONS	CONTROL PUSHBTN n ON	Control Pushbutton n ($n=1$ to 3) is being pressed.
DIRECT DEVICES	DIRECT DEVICE 1 On DIRECT DEVICE 8 On DIRECT DEVICE 1 Off DIRECT DEVICE 8 Off	Flag is set, logic=1 Flag is set, logic=1 Flag is set, logic=1 Flag is set, logic=1
DIRECT I/O CHANNEL MONITORING	DIR IO CH1(2) CRC ALARM DIR IO CRC ALARM DIR IO CH1(2) UNRET ALM DIR IO UNRET ALM	The rate of Direct Input messages received on Channel 1(2) and failing the CRC exceeded the user-specified level. The rate of Direct Input messages failing the CRC exceeded the userspecified level on Channel 1 or 2. The rate of returned Direct I/O messages on Channel 1(2) exceeded the user-specified level (ring configurations only). The rate of returned Direct I/O messages exceeded the user-specified level on Channel 1 or 2 (ring configurations only).
ELEMENT: Digital Counter	$\begin{gathered} \hline \text { Counter } 1 \mathrm{HI} \\ \text { Counter } 1 \mathrm{EQL} \\ \text { Counter } 1 \mathrm{LO} \\ \downarrow \\ \text { Counter } 8 \mathrm{HI} \\ \text { Counter } 8 \mathrm{EQL} \\ \text { Counter } 8 \mathrm{LO} \end{gathered}$	Digital Counter 1 output is 'more than' comparison value Digital Counter 1 output is 'equal to' comparison value Digital Counter 1 output is 'less than' comparison value \downarrow Digital Counter 8 output is 'more than' comparison value Digital Counter 8 output is 'equal to' comparison value Digital Counter 8 output is 'less than' comparison value
ELEMENT: Digital Element	Dig Element 1 PKP Dig Element 1 OP Dig Element 1 DPO Dig Element 16 PKP Dig Element 16 OP Dig Element 16 DPO	Digital Element 1 is picked up Digital Element 1 is operated Digital Element 1 is dropped out \downarrow Digital Element 16 is picked up Digital Element 16 is operated Digital Element 16 is dropped out
ELEMENT: FlexElements ${ }^{\text {TM }}$	$$	FlexElement ${ }^{T M} 1$ has picked up FlexElement ${ }^{\text {TM }} 1$ has operated FlexElement ${ }^{\text {TM }} 1$ has dropped out \downarrow FlexElement ${ }^{\text {TM }} 8$ has picked up FlexElement ${ }^{\text {TM }} 8$ has operated FlexElement ${ }^{T M} 8$ has dropped out
ELEMENT Non-Volatile Latches	LATCH 1 ON LATCH 1 OFF LATCH 16 ON LATCH 16 OFF	Non-Volatile Latch 1 is ON (Logic = 1) Non-Voltage Latch 1 is OFF (Logic $=0$) \downarrow Non-Volatile Latch 16 is ON (Logic = 1) Non-Voltage Latch 16 is OFF (Logic = 0)
ELEMENT: Selector Switch	SELECTOR 1 POS Y SELECTOR 1 BIT 0 SELECTOR 1 BIT 1 SELECTOR 1 BIT 2 SELECTOR 1 STP ALARM SELECTOR 1 BIT ALARM SELECTOR 1 ALARM SELECTOR 1 PWR ALARM	Selector Switch 1 is in Position Y (mutually exclusive operands). First bit of the 3-bit word encoding position of Selector 1. Second bit of the 3-bit word encoding position of Selector 1. Third bit of the 3-bit word encoding position of Selector 1. Position of Selector 1 has been pre-selected with the stepping up control input but not acknowledged. Position of Selector 1 has been pre-selected with the 3-bit control input but not acknowledged. Position of Selector 1 has been pre-selected but not acknowledged. Position of Selector Switch 1 is undetermined when the relay powers up and synchronizes to the 3-bit input.
	SELECTOR 2	Same set of operands as shown above for SELECTOR 1
FIXED OPERANDS	Off	Logic $=0$. Does nothing and may be used as a delimiter in an equation list; used as 'Disable' by other features.
	On	Logic = 1. Can be used as a test setting.
INPUTS/OUTPUTS: Contact Inputs	Cont Ip 1 On Cont $\operatorname{lp}_{\downarrow} 2$ On Cont Ip 1 Off Cont $\operatorname{lp}_{\downarrow} 2$ Off	(will not appear unless ordered) (will not appear unless ordered) \downarrow (will not appear unless ordered) (will not appear unless ordered)

Table 5-4: C30 FLEXLOGIC ${ }^{\text {тM }}$ OPERANDS (Sheet 2 of 2)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION
INPUTS/OUTPUTS: Contact Outputs, Current (from detector on Form-A output only)	Cont Op 1 IOn Cont Op 2 IOn \downarrow	(will not appear unless ordered) (will not appear unless ordered) \downarrow
	Cont Op 1 IOff Cont Op 2 IOff \downarrow	(will not appear unless ordered) (will not appear unless ordered) \downarrow
INPUTS/OUTPUTS: Contact Outputs, Voltage (from detector on Form-A output only)	Cont Op 1 VOn Cont Op 2 VOn \downarrow	(will not appear unless ordered) (will not appear unless ordered) \downarrow
	Cont Op 1 VOff Cont Op 2 VOff \downarrow	(will not appear unless ordered) (will not appear unless ordered) \downarrow
INPUTS/OUTPUTS Direct Inputs	$\begin{aligned} & \hline \text { DIRECT INPUT } 1 \text { On } \\ & \text { DIRECT INPUT } 32 \text { On } \end{aligned}$	$\begin{aligned} & \text { Flag is set, logic=1 } \\ & \downarrow \\ & \text { Flag is set, logic=1 } \end{aligned}$
INPUTS/OUTPUTS: Remote Inputs	$\begin{aligned} & \text { REMOTE INPUT } 1 \text { On } \\ & \text { REMOTE INPUT } 32 \text { On } \end{aligned}$	$\begin{aligned} & \text { Flag is set, logic=1 } \\ & \downarrow \\ & \text { Flag is set, logic=1 } \end{aligned}$
INPUTS/OUTPUTS: Virtual Inputs	Virt Ip 1 On Virt Ip 32 On	$\begin{aligned} & \text { Flag is set, logic=1 } \\ & \text { Flag is set, logic=1 } \end{aligned}$
INPUTS/OUTPUTS: Virtual Outputs	Virt Op 1 On Virt Op 64 On	$\begin{aligned} & \hline \text { Flag is } \downarrow \text { set, } \operatorname{logic=1} \\ & \text { Flag is set, logic=1 } \end{aligned}$
LED TEST	LED TEST IN PROGRESS	An LED test has been initiated and has not finished.
REMOTE DEVICES	REMOTE DEVICE 1 On \downarrow REMOTE DEVICE 16 On	$\begin{aligned} & \text { Flag is set, logic=1 } \\ & \downarrow \\ & \text { Flag is set, logic=1 } \end{aligned}$
	REMOTE DEVICE 1 Off \downarrow REMOTE DEVICE 16 Off	$\begin{aligned} & \text { Flag is set, logic=1 } \\ & \downarrow \\ & \text { Flag is set, logic=1 } \end{aligned}$
RESETTING	```RESET OP RESET OP (COMMS) RESET OP (OPERAND) RESET OP (PUSHBUTTON)```	Reset command is operated (set by all 3 operands below) Communications source of the reset command Operand (assigned in the INPUTS/OUTPUTS $\Rightarrow \sqrt{ } \Rightarrow$ RESETTING menu) source of the reset command Reset key (pushbutton) source of the reset command
SELF- DIAGNOSTICS	ANY MAJOR ERROR ANY MINOR ERROR ANY SELF-TEST BATTERY FAIL DIRECT DEVICE OFF DIRECT RING BREAK DSP ERROR EEPROM DATA ERROR EQUIPMENT MISMATCH FLEXLOGIC ERR TOKEN IRIG-B FAILURE LATCHING OUT ERROR LOW ON MEMORY NO DSP INTERRUPTS PRI ETHERNET FAIL PROGRAM MEMORY PROTOTYPE FIRMWARE REMOTE DEVICE OFF SEC ETHERNET FAIL SNTP FAILURE SYSTEM EXCEPTION UNIT NOT CALIBRATED UNIT NOT PROGRAMMED WATCHDOG ERROR	Any of the major self-test errors generated (major error) Any of the minor self-test errors generated (minor error) Any self-test errors generated (generic, any error) See description in Chapter 7: Commands and Targets.
UNAUTHORIZED ACCESS ALARM	UNAUTHORIZED ACCESS	Asserted when a password entry fails while accessing a password-protected level of the relay.
USER- PROGRAMMABLE PUSHBUTTONS	PUSHBUTTON x ON PUSHBUTTON x OFF	Pushbutton Number x is in the 'On' position Pushbutton Number x is in the 'Off' position

Some operands can be re-named by the user. These are the names of the breakers in the breaker control feature, the ID (identification) of contact inputs, the ID of virtual inputs, and the ID of virtual outputs. If the user changes the default name/ ID of any of these operands, the assigned name will appear in the relay list of operands. The default names are shown in the FlexLogic ${ }^{\text {™ }}$ Operands table above.

The characteristics of the logic gates are tabulated below, and the operators available in FlexLogic ${ }^{T M}$ are listed in the FlexLogic ${ }^{\text {TM }}$ Operators table.

Table 5-5: FLEXLOGIC ${ }^{\text {TM }}$ GATE CHARACTERISTICS

GATES	NUMBER OF INPUTS	OUTPUT IS '1' (= ON) IF...
NOT	1	input is '0'
OR	2 to 16	any input is '1'
AND	2 to 16	all inputs are '1'
NOR	2 to 16	all inputs are '0'
NAND	2 to 16	any input is '0'
XOR	2	only one input is '1'

Table 5-6: FLEXLOGIC ${ }^{\text {TM }}$ OPERATORS

TYPE	SYNTAX	DESCRIPTION	NOTES
Editor	INSERT	Insert a parameter in an equation list.	
	DELETE	Delete a parameter from an equation list.	
End	END	The first END encountered signifies the last entry in the list of processed FlexLogic ${ }^{\text {M }}$ parameters.	
One Shot	POSITIVE ONE SHOT	One shot that responds to a positive going edge.	A 'one shot' refers to a single input gate that generates a pulse in response to an edge on the input. The output from a 'one shot' is True (positive) for only one pass through the FlexLogic ${ }^{\text {M }}$ equation. There is a maximum of 32 'one shots'.
	NEGATIVE ONE SHOT	One shot that responds to a negative going edge.	
	DUAL ONE SHOT	One shot that responds to both the positive and negative going edges.	
LogicGate	NOT	Logical Not	Operates on the previous parameter.
	$\begin{aligned} & \hline \mathrm{OR}(2) \\ & \quad \downarrow \\ & \mathrm{OR}(16) \end{aligned}$	2 input OR gate 16 input OR gate	Operates on the 2 previous parameters. Operates on the 16 previous parameters.
		2 input AND gate 16 input AND gate	Operates on the 2 previous parameters. Operates on the 16 previous parameters.
	$\begin{aligned} & \hline \operatorname{NOR}(2) \\ & \downarrow \downarrow \\ & \operatorname{NOR}(16) \end{aligned}$	$\begin{aligned} & \hline 2 \text { input NOR gate } \\ & 16 \text { input NOR gate } \end{aligned}$	Operates on the 2 previous parameters. Operates on the 16 previous parameters.
	$\begin{aligned} & \hline \text { NAND(2) } \\ & \text { NAND(16) } \end{aligned}$	2 input NAND gate 16 input NAND gate	Operates on the 2 previous parameters. Operates on the 16 previous parameters.
	XOR(2)	2 input Exclusive OR gate	Operates on the 2 previous parameters.
	LATCH (S,R)	Latch (Set, Reset) - reset-dominant	The parameter preceding $\operatorname{LATCH}(\mathrm{S}, \mathrm{R})$ is the Reset input. The parameter preceding the Reset input is the Set input.
Timer		Timer set with FlexLogic ${ }^{\text {TM }}$ Timer 1 settings. Timer set with FlexLogic ${ }^{\text {™ }}$ Timer 32 settings.	The timer is started by the preceding parameter. The output of the timer is TIMER \#.
Assign Virtual Output	$\begin{aligned} & =\text { Virt Op } 1 \\ & =\text { Virt Op } 64 \end{aligned}$	Assigns previous FlexLogic ${ }^{\text {TM }}$ parameter to Virtual Output 1. Assigns previous FlexLogic ${ }^{\text {TM }}$ parameter to Virtual Output 64.	The virtual output is set by the preceding parameter

When forming a FlexLogic ${ }^{\text {TM }}$ equation, the sequence in the linear array of parameters must follow these general rules:

1. Operands must precede the operator which uses the operands as inputs.
2. Operators have only one output. The output of an operator must be used to create a virtual output if it is to be used as an input to two or more operators.
3. Assigning the output of an operator to a Virtual Output terminates the equation.
4. A timer operator (e.g. "TIMER 1 ") or virtual output assignment (e.g. " = Virt Op $1^{\prime \prime}$) may only be used once. If this rule is broken, a syntax error will be declared.

Each equation is evaluated in the order in which the parameters have been entered.
FlexLogic ${ }^{\text {TM }}$ provides latches which by definition have a memory action, remaining in the set state after the set input has been asserted. However, they are volatile; i.e. they reset on the re-application of control power.
When making changes to settings, all FlexLogic ${ }^{\text {TM }}$ equations are re-compiled whenever any new setting value is entered, so all latches are automatically reset. If it is necessary to re-initialize FlexLogic ${ }^{\text {™ }}$ during testing, for example, it is suggested to power the unit down and then back up.

5.3.4 FLEXLOGIC ${ }^{\text {TM }}$ EXAMPLE

This section provides an example of implementing logic for a typical application. The sequence of the steps is quite important as it should minimize the work necessary to develop the relay settings. Note that the example presented in the figure below is intended to demonstrate the procedure, not to solve a specific application situation.

In the example below, it is assumed that logic has already been programmed to produce Virtual Outputs 1 and 2, and is only a part of the full set of equations used. When using FlexLogic ${ }^{\text {™ }}$, it is important to make a note of each Virtual Output used - a Virtual Output designation (1 to 64) can only be properly assigned once.

Figure 5-12: EXAMPLE LOGIC SCHEME

1. Inspect the example logic diagram to determine if the required logic can be implemented with the FlexLogic ${ }^{\text {TM }}$ operators. If this is not possible, the logic must be altered until this condition is satisfied. Once this is done, count the inputs to each gate to verify that the number of inputs does not exceed the FlexLogic ${ }^{\text {TM }}$ limits, which is unlikely but possible. If the number of inputs is too high, subdivide the inputs into multiple gates to produce an equivalent. For example, if 25 inputs to an AND gate are required, connect Inputs 1 through 16 to AND(16), 17 through 25 to AND(9), and the outputs from these two gates to AND(2).

Inspect each operator between the initial operands and final virtual outputs to determine if the output from the operator is used as an input to more than one following operator. If so, the operator output must be assigned as a Virtual Output.

For the example shown above, the output of the AND gate is used as an input to both OR\#1 and Timer 1, and must therefore be made a Virtual Output and assigned the next available number (i.e. Virtual Output 3). The final output must also be assigned to a Virtual Output as Virtual Output 4, which will be programmed in the contact output section to operate relay H1 (i.e. Output Contact H1).
Therefore, the required logic can be implemented with two FlexLogic ${ }^{T M}$ equations with outputs of Virtual Output 3 and Virtual Output 4 as shown below.

Figure 5-13: LOGIC EXAMPLE WITH VIRTUAL OUTPUTS
2. Prepare a logic diagram for the equation to produce Virtual Output 3, as this output will be used as an operand in the Virtual Output 4 equation (create the equation for every output that will be used as an operand first, so that when these operands are required they will already have been evaluated and assigned to a specific Virtual Output). The logic for Virtual Output 3 is shown below with the final output assigned.

Figure 5-14: LOGIC FOR VIRTUAL OUTPUT 3
3. Prepare a logic diagram for Virtual Output 4, replacing the logic ahead of Virtual Output 3 with a symbol identified as Virtual Output 3, as shown below.

Figure 5-15: LOGIC FOR VIRTUAL OUTPUT 4
4. Program the FlexLogic ${ }^{\text {TM }}$ equation for Virtual Output 3 by translating the logic into available FlexLogic ${ }^{\text {TM }}$ parameters. The equation is formed one parameter at a time until the required logic is complete. It is generally easier to start at the output end of the equation and work back towards the input, as shown in the following steps. It is also recommended to list operator inputs from bottom to top. For demonstration, the final output will be arbitrarily identified as parameter 99,
and each preceding parameter decremented by one in turn. Until accustomed to using FlexLogic ${ }^{\text {TM }}$, it is suggested that a worksheet with a series of cells marked with the arbitrary parameter numbers be prepared, as shown below.

Figure 5-16: FLEXLOGIC ${ }^{\text {TM }}$ WORKSHEET
5. Following the procedure outlined, start with parameter 99, as follows:

99: The final output of the equation is Virtual Output 3, which is created by the operator "= Virt Op n". This parameter is therefore "= Virt Op 3."
98: The gate preceding the output is an AND, which in this case requires two inputs. The operator for this gate is a 2input AND so the parameter is "AND(2)". Note that FlexLogic ${ }^{\text {TM }}$ rules require that the number of inputs to most types of operators must be specified to identify the operands for the gate. As the 2-input AND will operate on the two operands preceding it, these inputs must be specified, starting with the lower.
97: This lower input to the AND gate must be passed through an inverter (the NOT operator) so the next parameter is "NOT". The NOT operator acts upon the operand immediately preceding it, so specify the inverter input next.
96: The input to the NOT gate is to be contact input H1c. The ON state of a contact input can be programmed to be set when the contact is either open or closed. Assume for this example the state is to be ON for a closed contact. The operand is therefore "Cont Ip H1c On".

95: The last step in the procedure is to specify the upper input to the AND gate, the operated state of digital element 2. This operand is "DIG ELEM 2 OP".

Writing the parameters in numerical order can now form the equation for VIRTUAL OUTPUT 3 :

```
[95] DIG ELEM 2 OP
[96] Cont Ip H1c On
[97] NOT
[98] AND(2)
[99] = Virt Op 3
```

It is now possible to check that this selection of parameters will produce the required logic by converting the set of parameters into a logic diagram. The result of this process is shown below, which is compared to the Logic for Virtual Output 3 diagram as a check.

Figure 5-17: FLEXLOGIC ${ }^{\text {TM }}$ EQUATION FOR VIRTUAL OUTPUT 3
6. Repeating the process described for VIRTUAL OUTPUT 3, select the FlexLogic ${ }^{\text {TM }}$ parameters for Virtual Output 4.

99: The final output of the equation is VIRTUAL OUTPUT 4 which is parameter "= Virt Op 4".
98: The operator preceding the output is Timer 2, which is operand "TIMER 2". Note that the settings required for the timer are established in the timer programming section.

97: The operator preceding Timer 2 is OR \#2, a 3-input OR, which is parameter "OR(3)".
96: The lowest input to OR \#2 is operand "Cont Ip H1c On".
95: The center input to OR \#2 is operand "TIMER 1".
94: The input to Timer 1 is operand "Virt Op 3 On".
93: The upper input to OR \#2 is operand "LATCH (S,R)".
92: There are two inputs to a latch, and the input immediately preceding the latch reset is OR \#1, a 4-input OR, which is parameter "OR(4)".
91: The lowest input to OR \#1 is operand "Virt Op 3 On".
90: The input just above the lowest input to OR \#1 is operand "XOR(2)".
89: The lower input to the XOR is operand "DIG ELEM 1 PKP".
88: The upper input to the XOR is operand "Virt Ip 1 On".
87: The input just below the upper input to OR \#1 is operand "Virt Op 2 On".
86: The upper input to OR \#1 is operand "Virt Op 1 On".
85: The last parameter is used to set the latch, and is operand "Virt Op 4 On".
The equation for VIRTUAL OUTPUT 4 is:

```
[85] Virt Op 4 On
[86] Virt Op 1 On
[87] Virt Op 2 On
[88] Virt Ip 1 On
[89] DIG ELEM 1 PKP
[90] XOR(2)
[91] Virt Op 3 On
[92] OR(4)
[93] LATCH (S,R)
[94] Virt Op 3 On
[95] TIMER 1
[96] Cont Ip H1c On
[97] OR(3)
[98] TIMER 2
[99] = Virt Op 4
```

It is now possible to check that the selection of parameters will produce the required logic by converting the set of parameters into a logic diagram. The result of this process is shown below, which is compared to the Logic for Virtual Output 4 diagram as a check.

Figure 5-18: FLEXLOGICTM EQUATION FOR VIRTUAL OUTPUT 4
7. Now write the complete FlexLogic ${ }^{\text {TM }}$ expression required to implement the logic, making an effort to assemble the equation in an order where Virtual Outputs that will be used as inputs to operators are created before needed. In cases where a lot of processing is required to perform logic, this may be difficult to achieve, but in most cases will not cause problems as all logic is calculated at least 4 times per power frequency cycle. The possibility of a problem caused by sequential processing emphasizes the necessity to test the performance of FlexLogic ${ }^{\top \mathrm{M}}$ before it is placed in service.
In the following equation, Virtual Output 3 is used as an input to both Latch 1 and Timer 1 as arranged in the order shown below:

```
DIG ELEM 2 OP
Cont Ip H1c On
NOT
AND (2)
= Virt Op 3
Virt Op 4 On
Virt Op 1 On
Virt Op 2 On
Virt Ip 1 On
DIG ELEM 1 PKP
XOR(2)
Virt Op 3 On
OR(4)
LATCH (S,R)
Virt Op 3 On
TIMER 1
Cont Ip H1c On
OR(3)
TIMER 2
= Virt Op 4
END
```

In the expression above, the Virtual Output 4 input to the 4 -input OR is listed before it is created. This is typical of a form of feedback, in this case, used to create a seal-in effect with the latch, and is correct.
8. The logic should always be tested after it is loaded into the relay, in the same fashion as has been used in the past. Testing can be simplified by placing an "END" operator within the overall set of FlexLogic ${ }^{\top M}$ equations. The equations will then only be evaluated up to the first "END" operator.
The "On" and "Off" operands can be placed in an equation to establish a known set of conditions for test purposes, and the "INSERT" and "DELETE" commands can be used to modify equations.
5.3.5 FLEXLOGICTM EQUATION EDITOR

PATH: SETTINGS $\Rightarrow \Omega$ FLEXLOGIC \Rightarrow FLEXLOGIC EQUATION EDITOR

There are 512 FlexLogic ${ }^{\top M}$ entries available, numbered from 1 to 512 , with default 'END' entry settings. If a "Disabled" Element is selected as a FlexLogic ${ }^{\text {TM }}$ entry, the associated state flag will never be set to ' 1 '. The ' $+/-$ ' key may be used when editing FlexLogic ${ }^{\text {TM }}$ equations from the keypad to quickly scan through the major parameter types.
5.3.6 FLEXLOGIC ${ }^{\text {TM }}$ TIMERS

Range: millisecond, second, minute
MESSAGE
MESSAGE

TIMER	1
DELAY:	0

TIMER	1	DROPOUT
DELAY:	0	

There are 32 identical FlexLogic ${ }^{\top M}$ timers available. These timers can be used as operators for FlexLogic ${ }^{\top M}$ equations.

- TIMER 1 TYPE: This setting is used to select the time measuring unit.
- TIMER 1 PICKUP DELAY: Sets the time delay to pickup. If a pickup delay is not required, set this function to " 0 ".
- TIMER 1 DROPOUT DELAY: Sets the time delay to dropout. If a dropout delay is not required, set this function to " 0 ".

PATH: SETTING $\Rightarrow \sqrt{ }$ FLEXLOGIC $\Rightarrow \sqrt{ }$ FLEXELEMENTS \Rightarrow FLEXELEMENT 1 (8)

A FlexElement ${ }^{\text {TM }}$ is a universal comparator that can be used to monitor any analog actual value calculated by the relay or a net difference of any two analog actual values of the same type. The effective operating signal could be treated as a signed number or its absolute value could be used as per user's choice.
The element can be programmed to respond either to a signal level or to a rate-of-change (delta) over a pre-defined period of time. The output operand is asserted when the operating signal is higher than a threshold or lower than a threshold as per user's choice.

Figure 5-19: FLEXELEMENT ${ }^{\text {TM }}$ SCHEME LOGIC
The FLEXELEMENT 1 +IN setting specifies the first (non-inverted) input to the FlexElement ${ }^{\text {TM }}$. Zero is assumed as the input if this setting is set to "Off". For proper operation of the element at least one input must be selected. Otherwise, the element will not assert its output operands.

This FLEXELEMENT $1-\operatorname{IN}$ setting specifies the second (inverted) input to the FlexElement ${ }^{T M}$. Zero is assumed as the input if this setting is set to "Off". For proper operation of the element at least one input must be selected. Otherwise, the element will not assert its output operands. This input should be used to invert the signal if needed for convenience, or to make the element respond to a differential signal such as for a top-bottom oil temperature differential alarm. The element will not operate if the two input signals are of different types, for example if one tries to use active power and phase angle to build the effective operating signal.
The element responds directly to the differential signal if the FLEXELEMENT 1 INPUT MODE setting is set to "Signed". The element responds to the absolute value of the differential signal if this setting is set to "Absolute". Sample applications for the "Absolute" setting include monitoring the angular difference between two phasors with a symmetrical limit angle in both directions; monitoring power regardless of its direction, or monitoring a trend regardless of whether the signal increases of decreases.

The element responds directly to its operating signal - as defined by the FLEXELEMENT 1 +IN, FLEXELEMENT 1 -IN and FLEXELEMENT 1 INPUT MODE settings - if the FLEXELEMENT 1 COMP MODE setting is set to "Threshold". The element responds to the rate of change of its operating signal if the FLEXELEMENT 1 COMP MODE setting is set to "Delta". In this case the FLEXELEMENT 1 dt UNIT and FLEXELEMENT 1 dt settings specify how the rate of change is derived.
The FLEXELEMENT 1 DIRECTION setting enables the relay to respond to either high or low values of the operating signal. The following figure explains the application of the FLEXELEMENT 1 DIRECTION, FLEXELEMENT 1 PICKUP and FLEXELEMENT 1 HYsTERESIS settings.

Figure 5-20: FLEXELEMENT ${ }^{\text {TM }}$ DIRECTION, PICKUP, AND HYSTERESIS
In conjunction with the FLEXELEMENT 1 INPUT MODE setting the element could be programmed to provide two extra characteristics as shown in the figure below.

Figure 5-21: FLEXELEMENT ${ }^{\text {TM }}$ INPUT MODE SETTING

The FLEXELEMENT 1 PICKUP setting specifies the operating threshold for the effective operating signal of the element. If set to "Over", the element picks up when the operating signal exceeds the FLEXELEMENT 1 PICKUP value. If set to "Under", the element picks up when the operating signal falls below the FLEXELEMENT 1 PICKUP value.
The fLeXeLEment 1 HYSTERESIS setting controls the element dropout. It should be noticed that both the operating signal and the pickup threshold can be negative facilitating applications such as reverse power alarm protection. The FlexElement ${ }^{\top M}$ can be programmed to work with all analog actual values measured by the relay. The FLEXELEMENT 1 PICKUP setting is entered in pu values using the following definitions of the base units:

Table 5-7: FLEXELEMENT™ BASE UNITS

dcmA	BASE $=$ maximum value of the DCMA INPUT MAX setting for the two transducers configured under the +IN and -IN inputs.
FREQUENCY	$\mathrm{f}_{\mathrm{BASE}}=1 \mathrm{~Hz}$
PHASE ANGLE	$\varphi_{\text {BASE }}=360$ degrees (see the UR angle referencing convention)
POWER FACTOR	$\mathrm{PF}_{\mathrm{BASE}}=1.00$
RTDs	BASE $=100^{\circ} \mathrm{C}$
SOURCE CURRENT	$\mathrm{I}_{\text {BASE }}=$ maximum nominal primary RMS value of the +IN and -IN inputs
SOURCE POWER	$\mathrm{P}_{\text {BASE }}=$ maximum value of $\mathrm{V}_{\text {BASE }} \times \mathrm{I}_{\mathrm{BASE}}$ for the +IN and -IN inputs
SOURCE VOLTAGE	$\mathrm{V}_{\text {BASE }}=$ maximum nominal primary RMS value of the +IN and -IN inputs

The FLEXELEMENT 1 HYSTERESIS setting defines the pickup-dropout relation of the element by specifying the width of the hysteresis loop as a percentage of the pickup value as shown in the FlexElement ${ }^{T M}$ Direction, Pickup, and Hysteresis diagram.

The FLEXELEMENT 1 DT UNIT setting specifies the time unit for the setting FLEXELEMENT 1 dt . This setting is applicable only if FLEXELEMENT 1 COMP MODE is set to "Delta". The FLEXELEMENT 1 DT setting specifies duration of the time interval for the rate of change mode of operation. This setting is applicable only if FLEXELEMENT 1 COMP MODE is set to "Delta".

This fLexelement 1 PKP delay setting specifies the pickup delay of the element. The flexelement 1 RSt delay setting specifies the reset delay of the element.

PATH: SETTINGS $\Rightarrow \sqrt{ }$ FLEXLOGIC $\Rightarrow \sqrt{ } \sqrt{ }$ NON-VOLATILE LATCHES \Rightarrow LATCH 1(16)

\square LATCH 1		(1) -	LATCH 1 FUNCTION: Disabled	Range: Self-Reset, Latched, Disabled Range: Reset Dominant, Set Dominant
	MESSAGE		LATCH 1 TYPE: Reset Dominant	
	MESSAGE	-	LATCH 1 SET: Off	Range: FlexLogic ${ }^{\text {TM }}$ operand
	MESSAGE	-	LATCH 1 RESET: Off	Range: FlexLogic ${ }^{T M}$ operand
	MESSAGE	-	LATCH 1 TARGET: Self-reset	Range: Self-reset, Latched, Disabled
	MESSAGE	-	LATCH 1 EVENTS: Disabled	Range: Disabled, Enabled

The non-volatile latches provide a permanent logical flag that is stored safely and will not reset upon reboot after the relay is powered down. Typical applications include sustaining operator commands or permanently block relay functions, such as Autorecloser, until a deliberate HMI action resets the latch. The settings, logic, and element operation are described below:

- LATCH 1 TYPE: This setting characterizes Latch 1 to be Set- or Reset-dominant.
- LATCH 1 SET: If asserted, the specified FlexLogic ${ }^{T M}$ operands 'sets' Latch 1.
- LATCH 1 RESET: If asserted, the specified FlexLogic ${ }^{\text {TM }}$ operand 'resets' Latch 1.

LATCH N TYPE	LATCH SET	LATCHN RESET	LATCHN ON	LATCHN OFF
Reset Dominant	ON	OFF	ON	OFF
	OFF	OFF	Previous State	Previous State
	ON	ON	OFF	ON
	OFF	ON	OFF	ON
	ON	OFF	ON	OFF
	ON	ON	ON	OFF
	OFF	OFF	Previous State	Previous State
	OFF	ON	OFF	ON

Figure 5-22: NON-VOLATILE LATCH OPERATION TABLE (N=1 TO 16) AND LOGIC

Control elements are generally used for control rather than protection. See the Introduction to Elements section at the beginning of this chapter for further information.

5.4.2 SETTING GROUPS

Although the Settings Groups menu is displayed, this version of the C30 does not use the Setting Groups feature since there are no DSP functions. As such, the Setting Groups functions do not operate at this time.
5.4.3 SELECTOR SWITCH

PATH: SETTINGS $\Rightarrow \sqrt{ }$ CONTROL ELEMENTS $\Rightarrow \sqrt{ }$ SELECTOR SWITCH \Rightarrow SELECTOR SWITCH 1(2)

The Selector Switch element is intended to replace a mechanical selector switch. Typical applications include setting group control or control of multiple logic sub-circuits in user-programmable logic.

The element provides for two control inputs. The step-up control allows stepping through selector position one step at a time with each pulse of the control input, such as a user-programmable pushbutton. The 3-bit control input allows setting the selector to the position defined by a 3-bit word.

The element allows pre-selecting a new position without applying it. The pre-selected position gets applied either after timeout or upon acknowledgement via separate inputs (user setting). The selector position is stored in non-volatile memory. Upon power-up, either the previous position is restored or the relay synchronizes to the current 3-bit word (user setting). Basic alarm functionality alerts the user under abnormal conditions; e.g. the 3-bit control input being out of range.

- SELECTOR 1 FULL RANGE: This setting defines the upper position of the selector. When stepping up through available positions of the selector, the upper position wraps up to the lower position (Position 1). When using a direct 3-bit control word for programming the selector to a desired position, the change would take place only if the control word is within the range of 1 to the SELECTOR FULL RANGE. If the control word is outside the range, an alarm is established by setting the SELECTOR ALARM FlexLogic ${ }^{\text {TM }}$ operand for 3 seconds.
- SELECTOR 1 TIME-OUT: This setting defines the time-out period for the selector. This value is used by the relay in the following two ways. When the SELECTOR STEP-UP MODE is "Time-out", the setting specifies the required period of inactivity of the control input after which the pre-selected position is automatically applied. When the SELECTOR STEPUP MODE is "Acknowledge", the setting specifies the period of time for the acknowledging input to appear. The timer is re-started by any activity of the control input. The acknowledging input must come before the SELECTOR 1 TIME-OUT timer expires; otherwise, the change will not take place and an alarm will be set.
- SELECTOR 1 STEP-UP: This setting specifies a control input for the selector switch. The switch is shifted to a new position at each rising edge of this signal. The position changes incrementally, wrapping up from the last (SELECTOR 1 full range) to the first (Position 1). Consecutive pulses of this control operand must not occur faster than every 50 ms . After each rising edge of the assigned operand, the time-out timer is restarted and the SELECTOR 1 CHANGE FROM \boldsymbol{Y} TO Z target message is displayed, where \boldsymbol{Y} is the present position and \boldsymbol{Z} the pre-selected position. The message is displayed for the time specified by the FLASH MESSAGE TIME setting. The pre-selected position is applied after the selector times out ("Time-out" mode), or when the acknowledging signal appears before the element times out ("Acknowledge" mode). When the new position is applied, the relay displays the SELECTOR 1 CHANGE FROM Y TO Z message. Typically, a user-programmable pushbutton is configured as the stepping up control input.
- SELECTOR 1 STEP-UP MODE: This setting defines the selector mode of operation. When set to "Time-out", the selector will change its position after a pre-defined period of inactivity at the control input. The change is automatic and does not require any explicit confirmation of the intent to change the selector's position. When set to "Acknowledge", the selector will change its position only after the intent is confirmed through a separate acknowledging signal. If the acknowledging signal does not appear within a pre-defined period of time, the selector does not accept the change and an alarm is established by setting the SELECTOR STP ALARM output FlexLogic ${ }^{\text {TM }}$ operand for 3 seconds.
- SELECTOR 1 ACK: This setting specifies an acknowledging input for the stepping up control input. The pre-selected position is applied on the rising edge of the assigned operand. This setting is active only under "Acknowledge" mode of operation. The acknowledging signal must appear within the time defined by the SELECTOR 1 TIME-OUT setting after the last activity of the control input. A user-programmable pushbutton is typically configured as the acknowledging input.
- SELECTOR 1 3BIT A0, A1, and A2: These settings specify a 3-bit control input of the selector. The 3-bit control word pre-selects the position using the following encoding convention:

A2	A1	A0	POSITION
0	0	0	rest
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

The "rest" position $(0,0,0)$ does not generate an action and is intended for situations when the device generating the 3 -bit control word is having a problem. When SELECTOR 1 3BIT MODE is "Time-out", the pre-selected position is applied in SELECTOR 1 TIME-OUT seconds after the last activity of the 3-bit input. When SELECTOR 1 3BIT MODE is "Acknowledge", the pre-selected position is applied on the rising edge of the SELECTOR 1 3BIT ACK acknowledging input.

The stepping up control input (SELECTOR 1 STEP-UP) and the 3-bit control inputs (SELECTOR 1 3BIT A0 through A2) lockout mutually: once the stepping up sequence is initiated, the 3-bit control input is inactive; once the 3-bit control sequence is initiated, the stepping up input is inactive.

- SELECTOR 1 3BIT MODE: This setting defines the selector mode of operation. When set to "Time-out", the selector changes its position after a pre-defined period of inactivity at the control input. The change is automatic and does not require explicit confirmation to change the selector position. When set to "Acknowledge", the selector changes its position only after confirmation via a separate acknowledging signal. If the acknowledging signal does not appear within a pre-defined period of time, the selector rejects the change and an alarm established by invoking the SELECTOR BIT ALARM FlexLogic ${ }^{\text {TM }}$ operand for 3 seconds.
- SELECTOR 1 3BIT ACK: This setting specifies an acknowledging input for the 3-bit control input. The pre-selected position is applied on the rising edge of the assigned FlexLogic ${ }^{\text {TM }}$ operand. This setting is active only under the "Acknowledge" mode of operation. The acknowledging signal must appear within the time defined by the SELECTOR TIME-OUT setting after the last activity of the 3-bit control inputs. Note that the stepping up control input and 3-bit control input have independent acknowledging signals (SELECTOR 1 ACK and SELECTOR 1 3BIT ACK, accordingly).
- SELECTOR 1 POWER-UP MODE: This setting specifies behavior of the element on power up of the relay. When set to "Restore", the last selector position, stored in non-volatile memory, is restored after powering up the relay. When set to "Synchronize", the selector sets to the current 3-bit control input after powering up the relay. This operation does not wait for time-out or the acknowledging input. When powering up, the rest position $(0,0,0)$ and the out-of-range 3-bit control words are also ignored, the output is set to Position 0 (no output operand selected), and an alarm is established (SELECTOR 1 PWR ALARM). If the position restored from memory is out-of-range, Position 0 (no output operand selected) is applied and an alarm is set (SELECTOR 1 PWR ALARM).
- SELECTOR 1 EVENTS: If enabled, the following events are logged:

EVENT NAME	DESCRIPTION
SELECTOR 1 CHANGED FROM YTO Z	Selector 1 changed its position to from Y to Z.
SELECTOR 1 STEP-UP ALARM	The selector position pre-selected via the stepping up control input has not been confirmed before the time out.
SELECTOR 1 3-BIT ALARM	The selector position pre-selected via the 3-bit control input has not been confirmed before the time out.

The following figures illustrate the operation of the Selector Switch. In these diagrams, "T" represents a time-out setting.

Figure 5-23: TIME-OUT MODE

Figure 5-24: ACKNOWLEDGE MODE

APPLICATION EXAMPLE

Consider an application where the selector switch is used to control Setting Groups 1 through 4 in the relay. The setting groups are to be controlled from both User-Programmable Pushbutton 1 and from an external device via Contact Inputs 1 through 3. The active setting group shall be available as an encoded 3-bit word to the external device and SCADA via output contacts 1 through 3 . The pre-selected setting group shall be applied automatically after 5 seconds of inactivity of the control inputs. When the relay powers up, it should synchronize the setting group to the 3 -bit control input.
Make the following changes to Setting Group Control in the SETTINGS $\Rightarrow \sqrt{ } \sqrt{ }$ CONTROL ELEMENTS \Rightarrow SETTING GROUPS menu:

```
SETTING GROUPS FUNCTION: "Enabled"
SETTING GROUPS BLK: "Off"
GROUP 2 ACTIVATE ON: "SELECTOR 1 POS 2"
GROUP 3 ACTIVATE ON: "SELECTOR 1 POS 3"
```

```
GROUP 4 ACTIVATE ON: "SELECTOR 1 POS 4"
GROUP 5 ACTIVATE ON: "Off"
GROUP 6 ACTIVATE ON: "Off"
```

Make the following changes to Selector Switch element in the SETTINGS $\Rightarrow \sqrt[n]{ }$ CONTROL ELEMENTS $\Rightarrow \sqrt{ }$ SELECTOR SWITCH \Rightarrow SELECTOR SWITCH 1 menu to assign control to User Programmable Pushbutton 1 and Contact Inputs 1 through 3:

```
SELECTOR 1 FUNCTION: "Enabled"
SELECTOR 1 FULL-RANGE: "4"
SELECTOR }1\mathrm{ STEP-UP MODE: "Time-out"
SELECTOR }1\mathrm{ TIME-OUT: " 5.0 s"
SELECTOR }1\mathrm{ STEP-UP: "PUSHBUTTON 1 ON"
SELECTOR 1 ACK: "Off"
```

```
SELECTOR 1 3BIT A0: "CONT IP 1 ON"
```

SELECTOR 1 3BIT A0: "CONT IP 1 ON"
SELECTOR 1 3bIt A1: "CONT IP 2 ON"
SELECTOR 1 3bIt A1: "CONT IP 2 ON"
SELECTOR 1 3BIT A2: "CONT IP 3 ON"
SELECTOR 1 3BIT A2: "CONT IP 3 ON"
SELECTOR 1 3BIT MODE: "Time-out"
SELECTOR 1 3BIT MODE: "Time-out"
SELECTOR }1\mathrm{ 3BIT ACK: "Off"
SELECTOR }1\mathrm{ 3BIT ACK: "Off"
SELECTOR 1 POWER-UP MODE: "Synchronize"

```
SELECTOR 1 POWER-UP MODE: "Synchronize"
```

Now, assign the contact output operation (assume the H6E module) to the Selector Switch element by making the following changes in the SETTINGS $\Rightarrow \sqrt{ }$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ }$ CONTACT OUTPUTS menu:
output h1 OPERATE: "SELECTOR 1 BIT 0"
OUTPUT H2 OPERATE: "SELECTOR 1 BIT 1"
OUTPUT H3 OPERATE: "SELECTOR 1 BIT 2"
Finally, assign configure User-Programmable Pushbutton 1 by making the following changes in the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ USER-PROGRAMMABLE PUSHBUTTONS \Rightarrow USER PUSHBUTTON 1 menu:

PUSHBUTTON 1 FUNCTION: "Self-reset"
PUSHBUTTON 1 DROP-OUT TIME: " 0.10 s"
The logic for the selector switch is shown below:

Figure 5-25: SELECTOR SWITCH LOGIC

PATH: SETTINGS $\Rightarrow \sqrt{2}$ CONTROL ELEMENTS $\Rightarrow 』$ DIGITAL ELEMENTS \Rightarrow DIGITAL ELEMENT 1 (16)

There are 16 identical Digital Elements available, numbered 1 to 16 . A Digital Element can monitor any FlexLogic ${ }^{\text {TM }}$ operand and present a target message and/or enable events recording depending on the output operand state. The digital element settings include a 'name' which will be referenced in any target message, a blocking input from any selected FlexLogic ${ }^{\text {TM }}$ operand, and a timer for pickup and reset delays for the output operand.

- DIGITAL ELEMENT 1 INPUT: Selects a FlexLogic ${ }^{\text {TM }}$ operand to be monitored by the Digital Element.
- DIGITAL ELEMENT 1 PICKUP DELAY: Sets the time delay to pickup. If a pickup delay is not required, set to "0".
- DIGITAL ELEMENT 1 RESET DELAY: Sets the time delay to reset. If a reset delay is not required, set to " 0 ".

Figure 5-26: DIGITAL ELEMENT SCHEME LOGIC

CIRCUIT MONITORING APPLICATIONS:

Some versions of the digital input modules include an active Voltage Monitor circuit connected across Form-A contacts. The Voltage Monitor circuit limits the trickle current through the output circuit (see Technical Specifications for Form-A).
As long as the current through the Voltage Monitor is above a threshold (see Technical Specifications for Form-A), the FlexLogic ${ }^{\top \mathrm{M}}$ operand "Cont Op \# VOn" will be set. (\# represents the output contact number). If the output circuit has a high resistance or the DC current is interrupted, the trickle current will drop below the threshold and the FlexLogic ${ }^{\text {TM }}$ operand "Cont Op \# VOff" will be set. Consequently, the state of these operands can be used as indicators of the integrity of the circuits in which Form-A contacts are inserted.

EXAMPLE 1: BREAKER TRIP CIRCUIT INTEGRITY MONITORING

In many applications it is desired to monitor the breaker trip circuit integrity so problems can be detected before a trip operation is required. The circuit is considered to be healthy when the Voltage Monitor connected across the trip output contact detects a low level of current, well below the operating current of the breaker trip coil. If the circuit presents a high resistance, the trickle current will fall below the monitor threshold and an alarm would be declared.

In most breaker control circuits, the trip coil is connected in series with a breaker auxiliary contact which is open when the breaker is open (see diagram below). To prevent unwanted alarms in this situation, the trip circuit monitoring logic must include the breaker position.

Figure 5-27: TRIP CIRCUIT EXAMPLE 1
Assume the output contact H 1 is a trip contact. Using the contact output settings, this output will be given an ID name, e.g. "Cont Op 1". Assume a 52a breaker auxiliary contact is connected to contact input H7a to monitor breaker status. Using the contact input settings, this input will be given an ID name, e.g. "Cont Ip 1" and will be set "ON" when the breaker is closed. Using Digital Element 1 to monitor the breaker trip circuit, the settings will be:

The PICKUP DELAY setting should be greater than the operating time of the breaker to avoid nuisance alarms.

EXAMPLE 2: BREAKER TRIP CIRCUIT INTEGRITY MONITORING

If it is required to monitor the trip circuit continuously, independent of the breaker position (open or closed), a method to maintain the monitoring current flow through the trip circuit when the breaker is open must be provided (as shown in the figure below). This can be achieved by connecting a suitable resistor (see figure below) across the auxiliary contact in the trip circuit. In this case, it is not required to supervise the monitoring circuit with the breaker position - the BLOCK setting is selected to "Off". In this case, the settings will be:

Table 5-8: VALUES OF RESISTOR 'R’

POWER SUPPLY (V DC)	RESISTANCE (OHMS)	POWER (WATTS)
24	1000	2
30	5000	2
48	10000	2
110	25000	5
125	25000	5
250	50000	5

Figure 5-28: TRIP CIRCUIT EXAMPLE 2

PATH: SETTINGS $\Rightarrow \Omega$ CONTROL ELEMENTS $\Rightarrow \Omega$ DIGITAL COUNTERS \Rightarrow COUNTER 1(8)

There are 8 identical digital counters, numbered from 1 to 8 . A digital counter counts the number of state transitions from Logic 0 to Logic 1. The counter is used to count operations such as the pickups of an element, the changes of state of an external contact (e.g. breaker auxiliary switch), or pulses from a watt-hour meter.

- COUNTER 1 UNITS: Assigns a label to identify the unit of measure pertaining to the digital transitions to be counted. The units label will appear in the corresponding Actual Values status.
- COUNTER 1 PRESET: Sets the count to a required preset value before counting operations begin, as in the case where a substitute relay is to be installed in place of an in-service relay, or while the counter is running.
- COUNTER 1 COMPARE: Sets the value to which the accumulated count value is compared. Three FlexLogic ${ }^{\text {TM }}$ output operands are provided to indicate if the present value is 'more than (HI)', 'equal to (EQL)', or 'less than (LO)' the set value.
- COUNTER 1 UP: Selects the FlexLogic ${ }^{\top M}$ operand for incrementing the counter. If an enabled UP input is received when the accumulated value is at the limit of $+2,147,483,647$ counts, the counter will rollover to $-2,147,483,648$.
- COUNTER 1 DOWN: Selects the FlexLogic ${ }^{\text {TM }}$ operand for decrementing the counter. If an enabled DOWN input is received when the accumulated value is at the limit of $-2,147,483,648$ counts, the counter will rollover to $+2,147,483,647$.
- COUNTER 1 BLOCK: Selects the FlexLogic ${ }^{\text {TM }}$ operand for blocking the counting operation. All counter operands are blocked.
- CNT1 SET TO PRESET: Selects the FlexLogic ${ }^{\text {TM }}$ operand used to set the count to the preset value. The counter will be set to the preset value in the following situations:

1. When the counter is enabled and the CNT1 SET TO PRESET operand has the value 1 (when the counter is enabled and CNT1 SET TO PRESET operand is 0 , the counter will be set to 0).
2. When the counter is running and the CNT1 SET TO PRESET operand changes the state from 0 to 1 (CNT1 SET TO PRESET changing from 1 to 0 while the counter is running has no effect on the count).
3. When a reset or reset/freeze command is sent to the counter and the CNT1 SET TO PRESET operand has the value 1 (when a reset or reset/freeze command is sent to the counter and the CNT1 SET TO PRESET operand has the value 0 , the counter will be set to 0).

- COUNTER 1 RESET: Selects the FlexLogic ${ }^{\top M}$ operand for setting the count to either " 0 " or the preset value depending on the state of the CNT1 SET TO PRESET operand.
- COUNTER 1 FREEZE/RESET: Selects the FlexLogic ${ }^{\text {TM }}$ operand for capturing (freezing) the accumulated count value into a separate register with the date and time of the operation, and resetting the count to " 0 ".
- COUNTER 1 FREEZE/COUNT: Selects the FlexLogic ${ }^{\text {TM }}$ operand for capturing (freezing) the accumulated count value into a separate register with the date and time of the operation, and continuing counting. The present accumulated value and captured frozen value with the associated date/time stamp are available as actual values. If control power is interrupted, the accumulated and frozen values are saved into non-volatile memory during the power down operation.

Figure 5-29: DIGITAL COUNTER SCHEME LOGIC

PATH: SETTINGS $\Rightarrow \sqrt{ } \sqrt{ }$ INPUTS/OUTPUTS \Rightarrow CONTACT INPUTS

The contact inputs menu contains configuration settings for each contact input as well as voltage thresholds for each group of four contact inputs. Upon startup, the relay processor determines (from an assessment of the installed modules) which contact inputs are available and then display settings for only those inputs.
An alphanumeric ID may be assigned to a contact input for diagnostic, setting, and event recording purposes. The "Contact Ip X On" (Logic 1) FlexLogic ${ }^{\text {TM }}$ operand corresponds to contact input "X" being closed, while "Contact Input X Off" corresponds to contact input " X " being open. The CONTACT INPUT DEBNCE TIME defines the time required for the contact to overcome 'contact bouncing' conditions. As this time differs for different contact types and manufacturers, set it as a maximum contact debounce time (per manufacturer specifications) plus some margin to ensure proper operation. If CONTACT INPUT EVENTS is set to "Enabled", every change in the contact input state will trigger an event.

A raw status is scanned for all Contact Inputs synchronously at the constant rate of 0.5 ms as shown in the figure below. The DC input voltage is compared to a user-settable threshold. A new contact input state must be maintained for a usersettable debounce time in order for the C30 to validate the new contact state. In the figure below, the debounce time is set at 2.5 ms ; thus the 6th sample in a row validates the change of state (mark no. 1 in the diagram). Once validated (debounced), the contact input asserts a corresponding FlexLogic ${ }^{\text {TM }}$ operand and logs an event as per user setting.
A time stamp of the first sample in the sequence that validates the new state is used when logging the change of the contact input into the Event Recorder (mark no. 2 in the diagram).
Protection and control elements, as well as FlexLogic ${ }^{\text {TM }}$ equations and timers, are executed eight times in a power system cycle. The protection pass duration is controlled by the frequency tracking mechanism. The FlexLogic ${ }^{\text {TM }}$ operand reflecting the debounced state of the contact is updated at the protection pass following the validation (marks no. 3 and 4 on the figure below). The update is performed at the beginning of the protection pass so all protection and control functions, as well as FlexLogic ${ }^{T M}$ equations, are fed with the updated states of the contact inputs.

The FlexLogic ${ }^{\text {TM }}$ operand response time to the contact input change is equal to the debounce time setting plus up to one protection pass (variable and depending on system frequency if frequency tracking enabled). If the change of state occurs just after a protection pass, the recognition is delayed until the subsequent protection pass; that is, by the entire duration of the protection pass. If the change occurs just prior to a protection pass, the state is recognized immediately. Statistically a delay of half the protection pass is expected. Owing to the 0.5 ms scan rate, the time resolution for the input contact is below 1 msec .

For example, 8 protection passes per cycle on a 60 Hz system correspond to a protection pass every 2.1 ms . With a contact debounce time setting of 3.0 ms , the FlexLogic ${ }^{\top \mathrm{TM}}$ operand-assert time limits are: $3.0+0.0=3.0 \mathrm{~ms}$ and $3.0+2.1=5.1$ ms. These time limits depend on how soon the protection pass runs after the debouncing time.

Regardless of the contact debounce time setting, the contact input event is time-stamped with a $1 \mu \mathrm{~s}$ accuracy using the time of the first scan corresponding to the new state (mark no. 2 below). Therefore, the time stamp reflects a change in the DC voltage across the contact input terminals that was not accidental as it was subsequently validated using the debounce timer. Keep in mind that the associated FlexLogic ${ }^{\top M}$ operand is asserted/de-asserted later, after validating the change.
The debounce algorithm is symmetrical: the same procedure and debounce time are used to filter the LOW-HIGH (marks no.1, 2, 3, and 4 in the figure below) and HIGH-LOW (marks no. 5, 6, 7, and 8 below) transitions.

Figure 5-30: INPUT CONTACT DEBOUNCING MECHANISM AND TIME-STAMPING SAMPLE TIMING
Contact inputs are isolated in groups of four to allow connection of wet contacts from different voltage sources for each group. The CONTACT INPUT THRESHOLDS determine the minimum voltage required to detect a closed contact input. This value should be selected according to the following criteria: 16 for 24 V sources, 30 for 48 V sources, 80 for 110 to 125 V sources and 140 for 250 V sources.

For example, to use contact input H 5 a as a status input from the breaker 52b contact to seal-in the trip relay and record it in the Event Records menu, make the following settings changes:

CONTACT INPUT H5A ID: "Breaker Closed (52b)" CONTACT INPUT H5A EVENTS: "Enabled"
Note that the 52 b contact is closed when the breaker is open and open when the breaker is closed.

PATH: SETTINGS $\Rightarrow \sqrt{ }$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ }$ VIRTUAL INPUTS \Rightarrow

There are 32 virtual inputs that can be individually programmed to respond to input signals from the keypad (COMMANDS menu) and communications protocols. All virtual input operands are defaulted to OFF $=0$ unless the appropriate input signal is received. Virtual input states are preserved through a control power loss.
If the VIRTUAL INPUT x FUNCTION is to "Disabled", the input will be forced to 'OFF' (Logic 0) regardless of any attempt to alter the input. If set to "Enabled", the input operates as shown on the logic diagram and generates output FlexLogic ${ }^{\text {TM }}$ operands in response to received input signals and the applied settings.
There are two types of operation: Self-Reset and Latched. If VIRTUAL INPUT x TYPE is "Self-Reset", when the input signal transits from $\mathrm{OFF}=0$ to $\mathrm{ON}=1$, the output operand will be set to $\mathrm{ON}=1$ for only one evaluation of the FlexLogic ${ }^{\mathrm{TM}}$ equa- $^{\text {en }}$ tions and then return to OFF $=0$. If set to "Latched", the virtual input sets the state of the output operand to the same state as the most recent received input, $\mathrm{ON}=1$ or $\mathrm{OFF}=0$.

The "Self-Reset" operating mode generates the output operand for a single evaluation of the FlexLogic ${ }^{\text {TM }}$ equations. If the operand is to be used anywhere other than internally in a FlexLogic ${ }^{\mathrm{TM}}$ equation, it will likely have to be lengthened in time. A FlexLogic ${ }^{\text {TM }}$ timer with a delayed reset can perform this function.

The Select-Before-Operate timer sets the interval from the receipt of an Operate signal to the automatic de-selection of the virtual input, so that an input does not remain selected indefinitely (used only with the UCA Select-Before-Operate feature).

Figure 5-31: VIRTUAL INPUTS SCHEME LOGIC

PATH: SETTINGS $\Rightarrow \curvearrowright$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ } \Rightarrow$ CONTACT OUTPUTS \Rightarrow CONTACT OUTPUT H1

Upon startup of the relay, the main processor will determine from an assessment of the modules installed in the chassis which contact outputs are available and present the settings for only these outputs.
An ID may be assigned to each contact output. The signal that can OPERATE a contact output may be any FlexLogic ${ }^{\text {TM }}$ operand (virtual output, element state, contact input, or virtual input). An additional FlexLogic ${ }^{\text {TM }}$ operand may be used to SEAL-IN the relay. Any change of state of a contact output can be logged as an Event if programmed to do so.

EXAMPLE:

The trip circuit current is monitored by providing a current threshold detector in series with some Form-A contacts (see the Trip Circuit Example in the Digital Elements section). The monitor will set a flag (see the Specifications for Form-A). The name of the FlexLogic ${ }^{\text {TM }}$ operand set by the monitor, consists of the output relay designation, followed by the name of the flag; e.g. 'Cont Op 1 IOn' or 'Cont Op 1 IOff'.

In most breaker control circuits, the trip coil is connected in series with a breaker auxiliary contact used to interrupt current flow after the breaker has tripped, to prevent damage to the less robust initiating contact. This can be done by monitoring an auxiliary contact on the breaker which opens when the breaker has tripped, but this scheme is subject to incorrect operation caused by differences in timing between breaker auxiliary contact change-of-state and interruption of current in the trip circuit. The most dependable protection of the initiating contact is provided by directly measuring current in the tripping circuit, and using this parameter to control resetting of the initiating relay. This scheme is often called "trip seal-in".
This can be realized in the UR using the 'Cont Op 1 IOn' FlexLogic ${ }^{T M}$ operand to seal-in the Contact Output as follows:
CONTACT OUTPUT H1 ID: "Cont Op 1"
OUTPUT H1 OPERATE: any suitable FlexLogic ${ }^{\text {TM }}$ operand
OUTPUT H1 SEAL-IN: "Cont Op 1 IOn"
CONTACT OUTPUT H1 EVENTS: "Enabled"

PATH: SETTINGS $\Rightarrow \sqrt{ }$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ }$ LATCHING OUTPUTS \Rightarrow LATCHING OUTPUT H1a

The C30 latching output contacts are mechanically bi-stable and controlled by two separate (open and close) coils. As such they retain their position even if the relay is not powered up. The relay recognizes all latching output contact cards and populates the setting menu accordingly. On power up, the relay reads positions of the latching contacts from the hardware before executing any other functions of the relay (such as protection and control features or FlexLogic ${ }^{\text {MM }}$).
The latching output modules, either as a part of the relay or as individual modules, are shipped from the factory with all latching contacts opened. It is highly recommended to double-check the programming and positions of the latching contacts when replacing a module.
Since the relay asserts the output contact and reads back its position, it is possible to incorporate self-monitoring capabilities for the latching outputs. If any latching outputs exhibits a discrepancy, the LATCHING OUTPUT ERROR self-test error is declared. The error is signaled by the LATCHING OUT ERROR FlexLogic ${ }^{\top M}$ operand, event, and target message.

- OUTPUT H1 OPERATE: This setting specifies a FlexLogic ${ }^{\text {TM }}$ operand to operate the 'close coil' of the contact. The relay will seal-in this input to safely close the contact. Once the contact is closed, any activity exhibited by this input, such as subsequent chattering, will not have any effect.
- OUTPUT H1 RESET: This setting specifies a FlexLogic ${ }^{\text {TM }}$ operand to operate the 'trip coil' of the contact. The relay will seal-in this input to safely open the contact. Once the contact is opened, any activity exhibited by this input, such as subsequent chattering, will not have any effect.
- OUTPUT H1 TYPE: This setting specifies the contact response under conflicting control inputs; that is, when both the operate and reset signals are applied. With both control inputs applied simultaneously, the contact will close if set to "Operate-dominant" and will open if set to "Reset-dominant".

Application Example 1:

A latching output contact H1a is to be controlled from two user-programmable pushbuttons (buttons number 1 and 2). The following settings should be applied.
Program the Latching Outputs by making the following changes in the SETTINGS $\Rightarrow \sqrt{ }$ INPUTS/OUTPUT $\Rightarrow \sqrt{ }$ LATCHING OUTPUTS \Rightarrow LATCHING OUTPUT H1a menu (assuming an H4L module):

OUTPUT H1a OPERATE: "PUSHBUTTON 1 ON"
OUTPUT H1a RESET: "PUSHBUTTON 2 ON"
Program the pushbuttons by making the following changes in the PRODUCT SETUP $\Rightarrow \sqrt{ } \sqrt{ }$ USER-PROGRAMMABLE PUSHBUTTONS $\Rightarrow \sqrt{ } \sqrt{3}$ USER PUSHBUTTON 1 and USER PUSHBUTTON 2 menus:

```
PUSHBUTTON 1 FUNCTION: "Self-reset" PUSHBUTTON 2 FUNCTION: "Self-reset"
PUSHBTN 1 DROP-OUT TIME: "0.00 s" PUSHBTN 2 DROP-OUT TIME: "0.00 s"
```


Application Example 2:

A relay, having two latching contacts H 1 a and H 1 c , is to be programmed. The H1a contact is to be a Type-a contact, while the H1c contact is to be a Type-b contact (Type-a means closed after exercising the operate input; Type-b means closed after exercising the reset input). The relay is to be controlled from virtual outputs: VO1 to operate and VO2 to reset.

Program the Latching Outputs by making the following changes in the SETTINGS $\Rightarrow \sqrt{ }$ INPUTS/OUTPUT $\Rightarrow \sqrt{ }$ LATCHING OUTPUTS \Rightarrow LATCHING OUTPUT H1a and LATCHING OUTPUT H1c menus (assuming an H4L module):

```
OUTPUT H1a OPERATE: "VO1" OUTPUT H1c OPERATE: "VO2"
OUTPUT H1a RESET: "VO2" OUTPUT H1c RESET: "VO1"
```

Since the two physical contacts in this example are mechanically separated and have individual control inputs, they will not operate at exactly the same time. A discrepancy in the range of a fraction of a maximum operating time may occur. Therefore, a pair of contacts programmed to be a multi-contact relay will not guarantee any specific sequence of operation (such as make before break). If required, the sequence of operation must be programmed explicitly by delaying some of the control inputs as shown in the next application example.

Application Example 3:

A make before break functionality must be added to the preceding example. An overlap of 20 ms is required to implement this functionality as described below:

Write the following FlexLogic ${ }^{\text {TM }}$ equation (URPC example shown):

FFuy onk Equat	Of fl D (60	matayement	\times
FLERLOGIC ENTHY	TYPE	5 WTRAx	\pm
Vimalozair	Y/e	Mirw	
FlenLoote Erie 1	Frad Mitux Outata On	Vat Op 1 On (Vat)	
Finilugr Entr?	TMEF	Trwel	
FisuLogt Entry	Wris Wius CutpetAntign\|	- Vri Cp3 (vote	
FinsLogr Eniry	Frod Wroux Cupasa Os	Vitop 2 On (VO2)	
FinLoyt Eater 5	IMEF	Immer	
Firningr Entry 6	Whoo Whua CupulAssize\|	$=\mathrm{Vit} \mathrm{Cp} 4$ (MOH)	
Flatoolt Entry	End of List		$*$
De0 wri Pustouttors urs riedlogk			

Both timers (Timer 1 and Timer 2) should be set to 20 ms pickup and 0 ms dropout.
Program the Latching Outputs by making the following changes in the SETTINGS $\Rightarrow \sqrt{ } \sqrt{2}$ INPUTS/OUTPUT $\Rightarrow \sqrt{ }$ LATCHING OUTPUTS \Rightarrow LATCHING OUTPUT H1a and LATCHING OUTPUT H1c menus (assuming an H4L module):

OUTPUT H1a OPERATE: "VO1" OUTPUT H1c OPERATE: "VO2"
OUTPUT H1a RESET: "VO4"

```
OUTPUT H1c RESET: "VO3"
```


Application Example 4:

A latching contact H 1 a is to be controlled from a single virtual output VO1. The contact should stay closed as long as VO1 is high, and should stay opened when VO1 is low. Program the relay as follows.

Write the following FlexLogic ${ }^{\text {TM }}$ equation (URPC example shown):

FLEXLOGIC EFTEY	TrPE	SYMTAX	*
Yese Pryaly	yey	Mita	
FlanLoge Estry 1	Frad Mibux Cutpets On	Vat Op 1 On (MOH)	
Fixalogr fetre?	HOT	1 rqs	
FlenLoge Eniry	Whre Wrus Cutpotasejpl	- Vit Op $2(\mathrm{MOZ}$	
Fleslogr Enity	Erid of Lill		*
D60 wth Pustbuttonsus freelogic			

Program the Latching Outputs by making the following changes in the SETTINGS $\Rightarrow \sqrt[\Omega]{ }$ INPUTS/OUTPUT $\Rightarrow \sqrt{ }$ LATCHING OUTPUTS \Rightarrow LATCHING OUTPUT H1a menu (assuming an H4L module):

OUTPUT H1a OPERATE: "VO1"
OUTPUT H1a RESET: "VO2"

PATH: SETTINGS $\Rightarrow \sqrt{ } \sqrt{ }$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ }$ VIRTUAL OUTPUTS \Rightarrow VIRTUAL OUTPUT 1

There are 64 virtual outputs that may be assigned via FlexLogic ${ }^{\text {TM }}$. If not assigned, the output will be forced to 'OFF' (Logic 0). An ID may be assigned to each virtual output. Virtual outputs are resolved in each pass through the evaluation of the FlexLogic ${ }^{T M}$ equations. Any change of state of a virtual output can be logged as an event if programmed to do so.
For example, if Virtual Output 1 is the trip signal from FlexLogic ${ }^{\text {TM }}$ and the trip relay is used to signal events, the settings would be programmed as follows:

```
VIRTUAL OUTPUT 1 ID: "Trip"
VIRTUAL OUTPUT 1 EVENTS: "Disabled"
```


a) REMOTE I/O OVERVIEW

Remote inputs and outputs, which are a means of exchanging information regarding the state of digital points between remote devices, are provided in accordance with the Electric Power Research Institute's (EPRI) UCA2 "Generic Object Oriented Substation Event (GOOSE)" specifications.

y
 The UCA2 specification requires that communications between devices be implemented on Ethernet communications facilities. For UR relays, Ethernet communications is provided only on the type 9C and 9D versions of the CPU module.

The sharing of digital point state information between GOOSE equipped relays is essentially an extension to FlexLogic ${ }^{\text {™ }}$ to allow distributed FlexLogic ${ }^{\text {TM }}$ by making operands available to/from devices on a common communications network. In addition to digital point states, GOOSE messages identify the originator of the message and provide other information required by the communication specification. All devices listen to network messages and capture data from only those messages that have originated in selected devices.

GOOSE messages are designed to be short, high priority and with a high level of reliability. The GOOSE message structure contains space for 128 bit pairs representing digital point state information. The UCA specification provides 32 "DNA" bit pairs, which are status bits representing pre-defined events. All remaining bit pairs are "UserSt" bit pairs, which are status bits representing user-definable events. The UR implementation provides 32 of the 96 available UserSt bit pairs.
The UCA2 specification includes features that are used to cope with the loss of communication between transmitting and receiving devices. Each transmitting device will send a GOOSE message upon a successful power-up, when the state of any included point changes, or after a specified interval (the "default update" time) if a change-of-state has not occurred. The transmitting device also sends a "hold time" which is set to three times the programmed default time, which is required by the receiving device.
Receiving devices are constantly monitoring the communications network for messages they require, as recognized by the identification of the originating device carried in the message. Messages received from remote devices include the message "hold" time for the device. The receiving relay sets a timer assigned to the originating device to the "hold" time interval, and if it has not received another message from this device at time-out, the remote device is declared to be non-communicating, so it will use the programmed default state for all points from that specific remote device. This mechanism allows a receiving device to fail to detect a single transmission from a remote device which is sending messages at the slowest possible rate, as set by its "default update" timer, without reverting to use of the programmed default states. If a message is received from a remote device before the "hold" time expires, all points for that device are updated to the states contained in the message and the hold timer is restarted. The status of a remote device, where 'Offline' indicates 'non-communicating', can be displayed.

The GOOSE facility provides for 32 remote inputs and 64 remote outputs.

b) LOCAL DEVICES: ID OF DEVICE FOR TRANSMITTING GOOSE MESSAGES

In a UR relay, the device ID that identifies the originator of the message is programmed in the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \quad$ INSTALLATION $\Rightarrow \sqrt{ }$ RELAY NAME setting.

c) REMOTE DEVICES: ID OF DEVICE FOR RECEIVING GOOSE MESSAGES

PATH: SETTINGS $\Rightarrow \sqrt{ } \sqrt{2}$ INPUTS/OUTPUTS $\Rightarrow \Omega$ REMOTE DEVICES \Rightarrow REMOTE DEVICE 1(16)

\square	REMOTE DEVICE 1		
\square		(1)	REMOTE DEVICE 1 ID:
:---			
Remote Device 1	\quad Range: up to 20 alphanumeric characters		

Sixteen Remote Devices, numbered from 1 to 16, can be selected for setting purposes. A receiving relay must be programmed to capture messages from only those originating remote devices of interest. This setting is used to select specific remote devices by entering (bottom row) the exact identification (ID) assigned to those devices.

PATH: SETTINGS $\Rightarrow \sqrt[夕]{ }$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ } \Rightarrow$ REMOTE INPUTS \Rightarrow REMOTE INPUT 1(32)

\square REMOTE INPUT		(1)	REMOTE IN 1 DEVICE: Remote Device 1	Range: 1 to 16 inclusive
	MESSAGE	-	REMOTE IN 1 BIT PAIR: None	Range: None, DNA-1 to DNA-32, UserSt-1 to UserSt-32
	MESSAGE	-	REMOTE IN 1 DEFAULT STATE: Off	Range: On, Off, Latest/On, Latest/Off
	MESSAGE	(4)	REMOTE IN 1 EVENTS: Disabled	Range: Disabled, Enabled

Remote Inputs which create FlexLogic ${ }^{\text {TM }}$ operands at the receiving relay, are extracted from GOOSE messages originating in remote devices. The relay provides 32 Remote Inputs, each of which can be selected from a list consisting of 64 selections: DNA-1 through DNA-32 and UserSt-1 through UserSt-32. The function of DNA inputs is defined in the UCA2 specifications and is presented in the UCA2 DNA Assignments table in the Remote Outputs section. The function of UserSt inputs is defined by the user selection of the FlexLogic ${ }^{\top M}$ operand whose state is represented in the GOOSE message. A user must program a DNA point from the appropriate FlexLogic ${ }^{\text {TM }}$ operand.
Remote Input 1 must be programmed to replicate the logic state of a specific signal from a specific remote device for local use. This programming is performed via the three settings shown above.

REMOTE IN 1 DEVICE selects the number (1 to 16) of the Remote Device which originates the required signal, as previously assigned to the remote device via the setting REMOTE DEVICE NN ID (see the Remote Devices section). REMOTE IN 1 bit PAIR selects the specific bits of the GOOSE message required.

The REMOTE IN 1 DEFAULT STATE setting selects the logic state for this point if the local relay has just completed startup or the remote device sending the point is declared to be non-communicating. The following choices are available:

- Setting REMOTE in 1 default state to "On" value defaults the input to Logic 1.
- Setting REMOTE IN 1 DEFAULT STATE to "Off" value defaults the input to Logic 0.
- Setting REMOTE in 1 default state to "Latest/On" freezes the input in case of lost communications. If the latest state is not known, such as after relay power-up but before the first communication exchange, the input will default to Logic 1. When communication resumes, the input becomes fully operational.
- Setting REMOTE IN 1 DEFAULT STATE to "Latest/Off" freezes the input in case of lost communications. If the latest state is not known, such as after relay power-up but before the first communication exchange, the input will default to Logic 0 . When communication resumes, the input becomes fully operational.

For additional information on the GOOSE specification, refer to the Remote Devices section in this chapter and to Appendix C: UCA/MMS Communications.
a) DNA BIT PAIRS

PATH: SETTINGS $\Rightarrow \sqrt[\Omega]{ }$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ } \Rightarrow$ REMOTE OUTPUTS DNA BIT PAIRS \Rightarrow REMOTE OUPUTS DNA- 1 BIT PAIR

\square REMOTE OUTPUTS \square DNA- 1 BIT PAIR	(1)	$\begin{aligned} & \text { DNA- } 1 \text { OPERAND: } \\ & \text { Off } \end{aligned}$	Range: FlexLogic ${ }^{\text {TM }}$ Operand
MESSAGE	Q	$\begin{aligned} & \text { DNA- } 1 \text { EVENTS: } \\ & \text { Disabled } \end{aligned}$	Range: Disabled, Enabled

Remote Outputs (1 to 32) are FlexLogic ${ }^{\text {TM }}$ operands inserted into GOOSE messages that are transmitted to remote devices on a LAN. Each digital point in the message must be programmed to carry the state of a specific FlexLogic ${ }^{\text {TM }}$ operand. The above operand setting represents a specific DNA function (as shown in the following table) to be transmitted.

Table 5-9: UCA DNA2 ASSIGNMENTS

DNA	DEFINITION	INTENDED FUNCTION	LOGIC 0	LOGIC 1
1	OperDev		Trip	Close
2	Lock Out		LockoutOff	LockoutOn
3	Initiate Reclosing	Initiate remote reclose sequence	InitRecloseOff	InitRecloseOn
4	Block Reclosing	Prevent/cancel remote reclose sequence	BlockOff	BlockOn
5	Breaker Failure Initiate	Initiate remote breaker failure scheme	BFIOff	BFIOn
6	Send Transfer Trip	Initiate remote trip operation	TxXfrTripOff	TxXfrTripOn
7	Receive Transfer Trip	Report receipt of remote transfer trip command	RxXfrTripOff	RxXfrTripOn
8	Send Perm	Report permissive affirmative	TxPermOff	TxPermOn
9	Receive Perm	Report receipt of permissive affirmative	RxPermOff	RxPermOn
10	Stop Perm	Override permissive affirmative	StopPermOff	StopPermOn
11	Send Block	Report block affirmative	TxBlockOff	TxBlockOn
12	Receive Block	Report receipt of block affirmative	RxBlockOff	RxBlockOn
13	Stop Block	Override block affirmative	StopBlockOff	StopBlockOn
14	BkrDS	Report breaker disconnect 3-phase state	Open	Closed
15	BkrPhsADS	Report breaker disconnect phase A state	Open	Closed
16	BkrPhsBDS	Report breaker disconnect phase B state	Open	Closed
17	BkrPhsCDS	Report breaker disconnect phase C state	Open	Closed
18	DiscSwDS		Open	Closed
19	Interlock DS		DSLockOff	DSLockOn
20	LineEndOpen	Report line open at local end	Open	Closed
21	Status	Report operating status of local GOOSE device	Offline	Available
22	Event		EventOff	EventOn
23	Fault Present		FaultOff	FaultOn
24	Sustained Arc	Report sustained arc	SustArcOff	SustArcOn
25	Downed Conductor	Report downed conductor	DownedOff	DownedOn
26	Sync Closing		SyncClsOff	SyncClsOn
27	Mode	Report mode status of local GOOSE device	Normal	Test
$28 \rightarrow 32$	Reserved			

For more information on GOOSE specifications, see the Remote I/O Overview in the Remote Devices section.

b) USERST BIT PAIRS

PATH: SETTINGS $\Rightarrow \sqrt{ } \Rightarrow$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ } \Rightarrow$ REMOTE OUTPUTS UserSt BIT PAIRS \Rightarrow REMOTE OUTPUTS UserSt- 1 BIT PAIR

Remote Outputs 1 to 32 originate as GOOSE messages to be transmitted to remote devices. Each digital point in the message must be programmed to carry the state of a specific FlexLogic ${ }^{T M}$ operand. The setting above is used to select the operand which represents a specific UserSt function (as selected by the user) to be transmitted.
The following setting represents the time between sending GOOSE messages when there has been no change of state of any selected digital point. This setting is located in the PRODUCT SETUP $\Rightarrow \sqrt{ } \Rightarrow$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ UCA/MMS PROTOCOL settings menu.

DEFAULT GOOSE UPDATE	Range: 1 to 60 s in steps of 1
TIME: 60 s	

For more information on GOOSE specifications, see the Remote I/O Overview in the Remote Devices section.

PATH: SETTINGS $\Rightarrow \Omega$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ } \Rightarrow$ RESETTING

\square RESETTING	(1)	RESET OPERAND: Off	Range: FlexLogic ${ }^{\text {TM }}$ operand

Some events can be programmed to latch the faceplate LED event indicators and the target message on the display. Once set, the latching mechanism will hold all of the latched indicators or messages in the set state after the initiating condition has cleared until a RESET command is received to return these latches (not including FlexLogic ${ }^{\text {TM }}$ latches) to the reset state. The RESET command can be sent from the faceplate RESET button, a remote device via a communications channel, or any programmed operand.
When the RESET command is received by the relay, two FlexLogic ${ }^{T M}$ operands are created. These operands, which are stored as events, reset the latches if the initiating condition has cleared. The three sources of RESET commands each create the FlexLogic ${ }^{\text {TM }}$ operand "RESET OP". Each individual source of a RESET command also creates its individual operand RESET OP (PUSHBUTTON), RESET OP (COMMS) or RESET OP (OPERAND) to identify the source of the command. The setting shown above selects the operand that will create the RESET OP (OPERAND) operand.

5.5.10 DIRECT INPUTS/OUTPUTS

a) DIRECT INPUTS

PATH: SETTINGS $\Rightarrow \sqrt{ }$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ }$ DIRECT INPUTS \Rightarrow DIRECT INPUT 1(32)

These settings specify how the Direct Input information is processed. The DIRECT INPUT DEVICE ID represents the source of this Direct Input. The specified Direct Input is driven by the device identified here.

The DIRECT INPUT 1 bit number is the bit number to extract the state for this Direct Input. Direct Input x is driven by the bit identified here as DIRECT INPUT 1 BIT NUMBER. This corresponds to the Direct Output Number of the sending device.
The direct input 1 DEFAULT STATE represents the state of the Direct Input when the associated Direct Device is offline. The following choices are available:

- Setting DIRECT INPUT 1 DEFAULT STATE to "On" value defaults the input to Logic 1.
- Setting direct input 1 DEFAULT STATE to "Off" value defaults the input to Logic 0.
- Setting DIRECT INPUT 1 DEFAULT STATE to "Latest/On" freezes the input in case of lost communications. If the latest state is not known, such as after relay power-up but before the first communication exchange, the input will default to Logic 1 . When communication resumes, the input becomes fully operational.
- Setting DIRECT INPUT 1 DEFAULT STATE to "Latest/Off" freezes the input in case of lost communications. If the latest state is not known, such as after relay power-up but before the first communication exchange, the input will default to Logic 0 . When communication resumes, the input becomes fully operational.

b) DIRECT OUTPUTS

PATH: SETTINGS $\Rightarrow \sqrt{ }$ INPUTS/OUTPUTS $\Rightarrow \sqrt{ }$ DIRECT OUTPUTS \Rightarrow DIRECT OUTPUT 1(32)

The DIR OUT 1 OPERAND is the FlexLogic ${ }^{\text {TM }}$ operand that determines the state of this Direct Output.
c) APPLICATION EXAMPLES

The example introduced in the Product Setup section for Direct I/Os is continued below to illustrate usage of the Direct Inputs and Outputs.

EXAMPLE 1: EXTENDING I/O CAPABILITIES OF A C30 RELAY

Consider an application that requires additional quantities of digital inputs and/or output contacts and/or lines of programmable logic that exceed the capabilities of a single UR chassis. The problem is solved by adding an extra UR IED, such as the C30, to satisfy the additional I/Os and programmable logic requirements. The two IEDs are connected via single-channel digital communication cards as shown below.

Figure 5-32: INPUT/OUTPUT EXTENSION VIA DIRECT I/OS
Assume Contact Input 1 from UR IED 2 is to be used by UR IED 1 . The following settings should be applied (Direct Input 5 and bit number 12 are used, as an example):

UR IED 1: DIRECT INPUT 5 DEVICE ID = " 2 "
UR IED 2: DIRECT OUT 12 OPERAND = "Cont Ip 1 On"
DIRECT INPUT 5 BIT NUMBER $=$ " 12 "
The "Cont Ip 1 On" operand of UR IED 2 is now available in UR IED 1 as "DIRECT INPUT 5 ON".

EXAMPLE 2: INTERLOCKING BUSBAR PROTECTION

A simple interlocking busbar protection scheme can be accomplished by sending a blocking signal from downstream devices, say 2,3 and 4, to the upstream device that monitors a single incomer of the busbar, as shown in the figure below.

Figure 5-33: SAMPLE INTERLOCKING BUSBAR PROTECTION SCHEME
Assume that Phase IOC1 is used by Devices 2, 3, and 4 to block Device 1. If not blocked, Device 1 would trip the bus upon detecting a fault and applying a short coordination time delay.
The following settings should be applied (assume Bit 3 is used by all 3 devices to sent the blocking signal and Direct Inputs 7,8 , and 9 are used by the receiving device to monitor the three blocking signals):
UR IED 2: DIRECT OUT 3 OPERAND: "PHASE IOC1 OP"
UR IED 3: DIRECT OUT 3 OPERAND: "PHASE IOC1 OP"
UR IED 4: DIRECT OUT 3 OPERAND: "PHASE IOC1 OP"
UR IED 1: DIRECT INPUT 7 DEVICE ID: "2"
DIRECT INPUT 7 BIT NUMBER: "3"
DIRECT INPUT 7 DEFAULT STATE: select "On" for security, select "Off" for dependability
DIRECT INPUT 8 DEVICE ID: "3"
DIRECT INPUT 8 BIT NUMBER: "3"
DIRECT INPUT 8 DEFAULT STATE: select "On" for security, select "Off" for dependability
DIRECT INPUT 9 DEVICE ID: "4"
DIRECT INPUT 9 BIT NUMBER: "3"
DIRECT INPUT 9 DEFAULT STATE: select "On" for security, select "Off" for dependability
Now the three blocking signals are available in UR IED 1 as "DIRECT INPUT 7 ON", "DIRECT INPUT 8 ON", and "DIRECT INPUT 9 ON". Upon losing communications or a device, the scheme is inclined to block (if any default state is set to "ON"), or to trip the bus on any overcurrent condition (all default states set to "OFF").

EXAMPLE 2: PILOT-AIDED SCHEMES

Consider a three-terminal line protection application shown in the figure below.

Figure 5-34: THREE-TERMINAL LINE APPLICATION
Assume the Hybrid Permissive Overreaching Transfer Trip (Hybrid POTT) scheme is applied using the architecture shown below. The scheme output operand HYB POTT TX1 is used to key the permission.

Figure 5-35: SINGLE-CHANNEL OPEN-LOOP CONFIGURATION
In the above architecture, Devices 1 and 3 do not communicate directly. Therefore, Device 2 must act as a "bridge". The following settings should be applied:

UR IED 1: DIRECT OUT 2 OPERAND: "HYB POTT TX1"
DIRECT INPUT 5 DEVICE ID: "2"
DIRECT INPUT 5 BIT NUMBER: "2" (this is a message from IED 2)
DIRECT INPUT 6 DEVICE ID: "2"
DIRECT INPUT 6 BIT NUMBER: "4" (effectively, this is a message from IED 3)
UR IED 3: DIRECT OUT 2 OPERAND: "HYB POTT TX1"
DIRECT INPUT 5 DEVICE ID: "2"
DIRECT INPUT 5 BIT NUMBER: "2" (this is a message from IED 2)
DIRECT INPUT 6 DEVICE ID: "2"
DIRECT INPUT 6 BIT NUMBER: "3" (effectively, this is a message from IED 1)
UR IED 2: DIRECT INPUT 5 DEVICE ID: "1"
DIRECT INPUT 5 BIT NUMBER: "2"
DIRECT INPUT 6 DEVICE ID: "3"
DIRECT INPUT 6 BIT NUMBER: "2"
DIRECT OUT 2 OPERAND: "HYB POTT TX1"
DIRECT OUT 3 OPERAND: "DIRECT INPUT 5" (forward a message from 1 to 3)
DIRECT OUT 4 OPERAND: "DIRECT INPUT 6" (forward a message from 3 to 1)
Signal flow between the three IEDs is shown in the figure below:

Figure 5-36: SIGNAL FLOW FOR DIRECT I/O EXAMPLE 3
In three-terminal applications, both the remote terminals must grant permission to trip. Therefore, at each terminal, Direct Inputs 5 and 6 should be ANDed in FlexLogic ${ }^{T M}$ and the resulting operand configured as the permission to trip (HYB POTT RX1 setting).

PATH: SETTINGS $\Rightarrow \sqrt{ }$ TRANSDUCER I/O $\Rightarrow \Downarrow$ DCMA INPUTS

Hardware and software is provided to receive signals from external transducers and convert these signals into a digital format for use as required. The relay will accept inputs in the range of -1 to +20 mA DC , suitable for use with most common transducer output ranges; all inputs are assumed to be linear over the complete range. Specific hardware details are contained in Chapter 3.

Before the dcmA input signal can be used, the value of the signal measured by the relay must be converted to the range and quantity of the external transducer primary input parameter, such as DC voltage or temperature. The relay simplifies this process by internally scaling the output from the external transducer and displaying the actual primary parameter.
dcmA input channels are arranged in a manner similar to CT and VT channels. The user configures individual channels with the settings shown here.

The channels are arranged in sub-modules of two channels, numbered from 1 through 8 from top to bottom. On power-up, the relay will automatically generate configuration settings for every channel, based on the order code, in the same general manner that is used for CTs and VTs. Each channel is assigned a slot letter followed by the row number, 1 through 8 inclusive, which is used as the channel number. The relay generates an actual value for each available input channel.

Settings are automatically generated for every channel available in the specific relay as shown below for the first channel of a type 5F transducer module installed in slot M .

\square DCMA INPUT M1		(1)	$\begin{aligned} & \text { DCMA INPUT M1 } \\ & \text { FUNCTION: Disabled } \end{aligned}$	Range: Disabled, Enabled
	MESSAGE	-	DCMA INPUT M1 ID: DCMA Ip 1	Range: up to 20 alphanumeric characters
	MESSAGE	-	DCMA INPUT M1 UNITS: μA	Range: 6 alphanumeric characters
	MESSAGE	-	DCMA INPUT M1 RANGE: 0 to -1 mA	Range: 0 to $-1 \mathrm{~mA}, 0$ to $+1 \mathrm{~mA},-1$ to $+1 \mathrm{~mA}, 0$ to 5 mA , 0 to $10 \mathrm{~mA}, 0$ to $20 \mathrm{~mA}, 4$ to 20 mA
	MESSAGE	-	DCMA INPUT M1 MIN VALUE : 0.000	Range: -9999.999 to +9999.999 in steps of 0.001
	MESSAGE	(2)	DCMA INPUT M1 MAX VALUE: 0.000	Range: -9999.999 to +9999.999 in steps of 0.001

The function of the channel may be either "Enabled" or "Disabled." If "Disabled", no actual values are created for the channel. An alphanumeric "ID" is assigned to each channel; this ID will be included in the channel actual value, along with the programmed units associated with the parameter measured by the transducer, such as Volt, ${ }^{\circ} \mathrm{C}$, MegaWatts, etc. This ID is also used to reference the channel as the input parameter to features designed to measure this type of parameter. The DCMA INPUT XX RANGE setting specifies the mA DC range of the transducer connected to the input channel.

The DCMA INPUT XX MIN VALUE and DCMA INPUT XX MAX VALUE settings are used to program the span of the transducer in primary units. For example, a temperature transducer might have a span from 0 to $250^{\circ} \mathrm{C}$; in this case the DCMA INPUT XX MIN VALUE value is " 0 " and the DCMA INPUT XX MAX VALUE value is " 250 ". Another example would be a Watt transducer with a span from -20 to +180 MW ; in this case the DCMA INPUT XX MIN VALUE value would be " -20 " and the DCMA INPUT XX MAX VALUE value "180". Intermediate values between the min and max values are scaled linearly.

PATH: SETTINGS $\Rightarrow \sqrt{ }$ TRANSDUCER I/O $\Rightarrow \sqrt{ }$ RTD INPUTS

Hardware and software is provided to receive signals from external Resistance Temperature Detectors and convert these signals into a digital format for use as required. These channels are intended to be connected to any of the RTD types in common use. Specific hardware details are contained in Chapter 3.

RTD input channels are arranged in a manner similar to CT and VT channels. The user configures individual channels with the settings shown here.
The channels are arranged in sub-modules of two channels, numbered from 1 through 8 from top to bottom. On power-up, the relay will automatically generate configuration settings for every channel, based on the order code, in the same general manner that is used for CTs and VTs. Each channel is assigned a slot letter followed by the row number, 1 through 8 inclusive, which is used as the channel number. The relay generates an actual value for each available input channel.
Settings are automatically generated for every channel available in the specific relay as shown below for the first channel of a type 5C transducer module installed in slot M.

The function of the channel may be either "Enabled" or "Disabled." If Disabled, there will not be an actual value created for the channel. An alphanumeric "ID" is assigned to the channel; this ID will be included in the channel actual values. It is also used to reference the channel as the input parameter to features designed to measure this type of parameter. Selecting the type of RTD connected to the channel configures the channel.
Actions based on RTD overtemperature, such as trips or alarms, are done in conjunction with the FlexElements ${ }^{\top M}$ feature. In FlexElements ${ }^{\top M}$, the operate level is scaled to a base of $100^{\circ} \mathrm{C}$. For example, a trip level of $150^{\circ} \mathrm{C}$ is achieved by setting the operate level at 1.5 pu . FlexElement ${ }^{\top \mathrm{M}}$ operands are available to FlexLogic ${ }^{T \mathrm{MM}}$ for further interlocking or to operate an output contact directly.

PATH: SETTINGS $\Rightarrow \sqrt{ }$ TESTING \Rightarrow TEST MODE

$\square \square$ SETTINGS \square TESTING		(1)	$\begin{aligned} & \text { TEST MODE } \\ & \text { FUNCTION: Disabled } \end{aligned}$	Range: Disabled, Enabled
	MESSAGE	(2)	TEST MODE INITIATE: On	Range: FlexLogic ${ }^{\text {TM }}$ operand

The relay provides test settings to verify that functionality using simulated conditions for contact inputs and outputs. The Test Mode is indicated on the relay faceplate by a flashing Test Mode LED indicator.
To initiate the Test mode, the TEST MODE FUNCTION setting must be "Enabled" and the TEST MODE INITIATE setting must be set to Logic 1. In particular:

- To initiate Test Mode through relay settings, set test mode initiate to "On". The Test Mode starts when the test mode FUNCTION setting is changed from "Disabled" to "Enabled".
- To initiate Test Mode through a user-programmable condition, such as FlexLogic ${ }^{\top M}$ operand (pushbutton, digital input, communication-based input, or a combination of these), set TEST MODE FUNCTION to "Enabled" and set TEST MODE INITIATE to the desired operand. The Test Mode starts when the selected operand assumes a Logic 1 state.
When in Test Mode, the C30 remains fully operational, allowing for various testing procedures. In particular, the protection and control elements, FlexLogic ${ }^{\top M}$, and communication-based inputs and outputs function normally.
The only difference between the normal operation and the Test Mode is the behavior of the input and output contacts. The former can be forced to report as open or closed or remain fully operational; the latter can be forced to open, close, freeze, or remain fully operational. The response of the digital input and output contacts to the Test Mode is programmed individually for each input and output using the Force Contact Inputs and Force Contact Outputs test functions described in the following sections.
5.7.2 FORCE CONTACT INPUTS

PATH: SETTINGS $\Rightarrow \sqrt{ }$ TESTING $\Rightarrow \sqrt{ }$ FORCE CONTACT INPUTS

The relay digital inputs (contact inputs) could be pre-programmed to respond to the Test Mode in the following ways:

- If set to "Disabled", the input remains fully operational. It is controlled by the voltage across its input terminals and can be turned on and off by external circuitry. This value should be selected if a given input must be operational during the test. This includes, for example, an input initiating the test, or being a part of a user pre-programmed test sequence.
- If set to "Open", the input is forced to report as opened (Logic 0) for the entire duration of the Test Mode regardless of the voltage across the input terminals.
- If set to "Closed", the input is forced to report as closed (Logic 1) for the entire duration of the Test Mode regardless of the voltage across the input terminals.

The Force Contact Inputs feature provides a method of performing checks on the function of all contact inputs. Once enabled, the relay is placed into Test Mode, allowing this feature to override the normal function of contact inputs. The Test Mode LED will be On, indicating that the relay is in Test Mode. The state of each contact input may be programmed as "Disabled", "Open", or "Closed". All contact input operations return to normal when all settings for this feature are disabled.

PATH: SETTINGS $\Rightarrow \sqrt{ }$ TESTING $\Rightarrow \sqrt{ }$ FORCE CONTACT OUTPUTS

The relay contact outputs can be pre-programmed to respond to the Test Mode.
If set to "Disabled", the contact output remains fully operational. If operates when its control operand is Logic 1 and will resets when its control operand is Logic 0 . If set to "Energize", the output will close and remain closed for the entire duration of the Test Mode, regardless of the status of the operand configured to control the output contact. If set to "De-energize", the output will open and remain opened for the entire duration of the Test Mode regardless of the status of the operand configured to control the output contact. If set to "Freeze", the output retains its position from before entering the Test Mode, regardless of the status of the operand configured to control the output contact.

These settings are applied two ways. First, external circuits may be tested by energizing or de-energizing contacts. Second, by controlling the output contact state, relay logic may be tested and undesirable effects on external circuits avoided.

Example 1: Initiating a Test from User-Programmable Pushbutton 1

The Test Mode should be initiated from User-Programmable Pushbutton 1. The pushbutton will be programmed as "Latched" (pushbutton pressed to initiate the test, and pressed again to terminate the test). During the test, Digital Input 1 should remain operational, Digital Inputs 2 and 3 should open, and Digital Input 4 should close. Also, Contact Output 1 should freeze, Contact Output 2 should open, Contact Output 3 should close, and Contact Output 4 should remain fully operational. The required settings are shown below.
To enable User-Programmable Pushbutton 1 to initiate the Test mode, make the following changes in the SETTINGS $\Rightarrow \sqrt{ }$ TESTING \Rightarrow TEST MODE menu:

TEST MODE FUNCTION: "Enabled" and TEST MODE INITIATE: "PUSHBUTTON 1 ON"
Make the following changes to configure the Contact I/Os. In the SETTINGS $\Rightarrow \sqrt{ }$ TESTING $\Rightarrow \sqrt{ }$ FORCE CONTACT INPUTS and FORCE CONTACT INPUTS menus, set:

FORCE Cont lp 1: "Disabled", FORCE Cont lp 2: "Open", FORCE Cont lp 3: "Open", and FORCE Cont lp 4: "Closed"
FORCE Cont Op 1: "Freeze", FORCE Cont Op 2: "De-energized", FORCE Cont Op 3: "Open", and FORCE Cont Op 4: "Disabled"

Example 2: Initiating a Test from User-Programmable Pushbutton 1 or through Remote Input 1

The Test should be initiated locally from User-Programmable Pushbutton 1 or remotely through Remote Input 1. Both the pushbutton and the remote input will be programmed as "Latched". The required settings are shown below.

Write the following FlexLogic ${ }^{\text {TM }}$ equation (URPC example shown):

TPlasiogir Equats	Editos// Gra withly	crias lafl	x
FLEXLOGACENTİY	TMPE	Shalax	\pm
Vmw Geghr	Vimw	May	
Fhologer Cren!	Aurreis irfuta On	Wemate WF 10 ON	
Floclogir Ertor 2	Freischas Elernert	FUSHESTTÓNícN	
FlowLagas Erter 3	OR	2 lys	
Flenlogit Ertry 4	Wheo Visal CuFsf Mosvel	- Whopl MOI)	
Flenloga Entrs	End of Lim		-
C60wth Purturtorsius FexLogc			

Set the User Programmable Pushbutton as latching by changing SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ }$ USER-PROGRAMMABLE PUSHBUTTONS \Rightarrow USER PUSHBUTTON $1 \Rightarrow$ PUSHBUTTON 1 FUNCTION to "Latched". To enable either Pushbutton 1 or Remote Input 1 to initiate the Test mode, make the following changes in the SETTINGS $\Rightarrow \sqrt{ }$ TESTING \Rightarrow TEST MODE menu:

TEST MODE FUNCTION: "Enabled" and TEST MODE INITIATE: "VO1"

■ ACTUAL VALUES $\square ⿴ 囗 十$ PRODUCT INFO	（1）	\square MODEL INFORMATION	See page 6－10．
	－	\square FIRMWARE REVISIONS	See page 6－10．

PATH: ACTUAL VALUES \Rightarrow STATUS \Rightarrow CONTACT INPUTS

The present status of the contact inputs is shown here. The first line of a message display indicates the ID of the contact input. For example, 'Cont lp 1' refers to the contact input in terms of the default name-array index. The second line of the display indicates the logic state of the contact input.
6.2.2 VIRTUAL INPUTS

PATH: ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \Downarrow$ VIRTUAL INPUTS

The present status of the 32 virtual inputs is shown here. The first line of a message display indicates the ID of the virtual input. For example, 'Virt Ip 1' refers to the virtual input in terms of the default name-array index. The second line of the display indicates the logic state of the virtual input.

PATH: ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt{ }$ R REMOTE INPUTS

The present state of the 32 remote inputs is shown here.
The state displayed will be that of the remote point unless the remote device has been established to be "Offline" in which case the value shown is the programmed default state for the remote input.

PATH: ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt{ }$ CONTACT OUTPUTS

The present state of the contact outputs is shown here. The first line of a message display indicates the ID of the contact output. For example, 'Cont Op 1' refers to the contact output in terms of the default name-array index. The second line of the display indicates the logic state of the contact output.

For Form-A outputs, the state of the voltage(V) and/or current(I) detectors will show as: Off, VOff, IOff, On, VOn, and/or IOn. For Form-C outputs, the state will show as Off or On.
6.2.5 VIRTUAL OUTPUTS

PATH: ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt{ }$ VIRTUAL OUTPUTS

The present state of up to 64 virtual outputs is shown here. The first line of a message display indicates the ID of the virtual output. For example, 'Virt Op 1' refers to the virtual output in terms of the default name-array index. The second line of the display indicates the logic state of the virtual output, as calculated by the FlexLogic ${ }^{\text {TM }}$ equation for that output.
6.2.6 REMOTE DEVICES
a) STATUS

PATH: ACTUAL VALUES \Rightarrow STATUS $\Rightarrow 』$ REMOTE DEVICES STATUS

The present state of up to 16 programmed Remote Devices is shown here. The ALL REMOTE DEvices online message indicates whether or not all programmed Remote Devices are online. If the corresponding state is "No", then at least one required Remote Device is not online.
b) STATISTICS

PATH: ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt{ }$ REMOTE DEVICES STATISTICS \Rightarrow REMOTE DEVICE 1(16)

Statistical data (2 types) for up to 16 programmed Remote Devices is shown here.
The StNum number is obtained from the indicated Remote Device and is incremented whenever a change of state of at least one DNA or UserSt bit occurs. The SqNum number is obtained from the indicated Remote Device and is incremented whenever a GOOSE message is sent. This number will rollover to zero when a count of $4,294,967,295$ is incremented.
6.2.7 SELECTOR SWITCHES

PATH: ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt{ } \Rightarrow$ SELECTOR SWITCHES

The display shows both the current position and the full range. The current position only (an integer from 0 through 7) is the actual value.
6.2.8 DIGITAL COUNTERS

PATH: ACTUAL VALUES \Rightarrow DIGITAL COUNTERS $\Rightarrow \sqrt{ } \Rightarrow$ DIGITAL COUNTERS \Rightarrow DIGITAL COUNTERS Counter 1(8)

The present status of the 8 digital counters is shown here. The status of each counter, with the user-defined counter name, includes the accumulated and frozen counts (the count units label will also appear). Also included, is the date/time stamp for the frozen count. The Counter n micros value refers to the microsecond portion of the time stamp.
6.2.9 FLEX STATES

PATH: ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt{ }$ FLEX STATES

There are 256 FlexState bits available. The second line value indicates the state of the given FlexState bit.

PATH: ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt{ }$ ETHERNET

PATH: ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt{ }$ DIRECT INPUTS

The average msg return time is the time taken for Direct Output messages to return to the sender in a Direct I/O ring configuration (this value is not applicable for non-ring configurations). This is a rolling average calculated for the last 10 messages. There are two return times for dual-channel communications modules.

The UNRETURNED MSG COUNT values (one per communications channel) count the Direct Output messages that do not make the trip around the communications ring. The CRC FAIL COUNT values (one per communications channel) count the Direct Output messages that have been received but fail the CRC check. High values for either of these counts may indicate on a problem with wiring, the communication channel, or the relay(s). The UNRETURNED MSG COUNT and CRC FAIL COUNT values can be cleared using the CLEAR DIRECT I/O COUNTERS command.
The DIRECT INPUT \mathbf{x} values represent the state of the x-th Direct Input.

PATH: ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \sqrt{ } \sqrt{ }$ DIRECT DEVICES STATUS

These actual values represent the state of Direct Devices 1 through 8.

PATH: ACTUAL VALUES $\Rightarrow \sqrt{ }$ METERING $\Rightarrow \sqrt{ }$ FLEXELEMENTS \Rightarrow FLEXELEMENT 1 (8)

The operating signals for the FlexElements are displayed in pu values using the following definitions of the base units.

Table 6-1: FLEXELEMENT ${ }^{\text {TM }}$ BASE UNITS

dcmA	BASE $=$ maximum value of the DCMA INPUT MAX setting for the two transducers configured under the $+I N$ and - IN inputs.
RTDs	BASE $=100^{\circ} \mathrm{C}$

6.3.2 TRANSDUCER I/O

PATH: ACTUAL VALUES $\Rightarrow \sqrt{ } \Rightarrow$ METERING $\Rightarrow \sqrt{ }$ TRANSDUCER I/O DCMA INPUTS \Rightarrow DCMA INPUT $x x$

| \square DCMA INPUT $\times x$ | DCMA INPUT $\times x$
 0.000 mA |
| :--- | :--- | :--- |

Actual values for each dcmA input channel that is Enabled are displayed with the top line as the programmed Channel "ID" and the bottom line as the value followed by the programmed units.
PATH: ACTUAL VALUES $\Rightarrow \sqrt{ }$ METERING $\Rightarrow \sqrt{ }$ TRANSDUCER I/O RTD INPUTS \Rightarrow RTD INPUT $x x$

Actual values for each RTD input channel that is Enabled are displayed with the top line as the programmed Channel "ID" and the bottom line as the value.

PATH: ACTUAL VALUES $\Rightarrow \Omega$ RECORDS $\Rightarrow \Omega$ EVENT RECORDS

The Event Records menu shows the contextual data associated with up to the last 1024 events, listed in chronological order from most recent to oldest. If all 1024 event records have been filled, the oldest record will be removed as a new record is added. Each event record shows the event identifier/sequence number, cause, and date/time stamp associated with the event trigger. Refer to the COMMANDS $\sqrt{ }$ CLEAR RECORDS menu for clearing event records.

PATH: ACTUAL VALUES $\Rightarrow \sqrt{ }$ RECORDS $\Rightarrow \sqrt{ }$ OSCILLOGRAPHY

This menu allows the user to view the number of triggers involved and number of oscillography traces available. The 'cycles per record' value is calculated to account for the fixed amount of data storage for oscillography. See the Oscillography section of Chapter 5 for further details.
A trigger can be forced here at any time by setting "Yes" to the FORCE TRIGGER? command. Refer to the COMMANDS $\Rightarrow \sqrt{ }$ CLEAR RECORDS menu for clearing the oscillography records.
6.4.3 DATA LOGGER

PATH: ACTUAL VALUES $\Rightarrow \sqrt{ }$ RECORDS $\Rightarrow \sqrt{ }$ DATA LOGGER

The oldest sample time is the time at which the oldest available samples were taken. It will be static until the log gets full, at which time it will start counting at the defined sampling rate. The NEWEST SAMPLE TIME is the time the most recent samples were taken. It counts up at the defined sampling rate. If Data Logger channels are defined, then both values are static. Refer to the COMMANDS $\Rightarrow \sqrt{ }$ CLEAR RECORDS menu for clearing data logger records.

PATH: ACTUAL VALUES $\Rightarrow \sqrt{ } \sqrt{ }$ PRODUCT INFO \Rightarrow MODEL INFORMATION

The product order code, serial number, Ethernet MAC address, date/time of manufacture, and operating time are shown here.

PATH: ACTUAL VALUES $\Rightarrow \sqrt{ }$ PRODUCT INFO $\Rightarrow \sqrt{ }$ FIRMWARE REVISIONS

\square FIRMWARE REVISIONS	(1)	C30 Controller REVISION:	Range: 0.00 to 655.35 Revision number of the application firmware.
MESSAG	\triangle	MODIFICATION FILE NUMBER: 0	Range: 0 to 65535 (ID of the MOD FILE) Value is 0 for each standard firmware release.
MESSAG	-	BOOT PROGRAM REVISION: 1.12	Range: 0.00 to 655.35 Revision number of the boot program firmware.
MESSAG	Q	$\begin{array}{ll}\text { FRONT PANEL PROGRAM } \\ \text { REVISION: } & 0.08\end{array}$	Range: 0.00 to 655.35 Revision number of faceplate program firmware.
MESSAG	-	COMPILE DATE: 2000/09/08 04:55:16	Range: Any valid date and time. Date and time when product firmware was built.
MESSAG	($\begin{aligned} & \text { BOOT DATE: } \\ & \text { 2000/05/11 } 16: 41: 32 \end{aligned}$	Range: Any valid date and time. Date and time when the boot program was built.

The shown data is illustrative only. A modification file number of 0 indicates that, currently, no modifications have been installed.

The Commands menu contains relay directives intended for operations personnel. All commands can be protected from unauthorized access via the Command Password; see the Password Security section of Chapter 5. The following flash message appears after successfully command entry:

PATH: COMMANDS $\sqrt{ }$ COMMANDS VIRTUAL INPUTS

The states of up to 32 virtual inputs are changed here. The first line of the display indicates the ID of the virtual input. The second line indicates the current or selected status of the virtual input. This status will be a logical state 'Off' (0) or 'On' (1).

PATH: COMMANDS $\sqrt{ }$ COMMANDS CLEAR RECORDS

This menu contains commands for clearing historical data such as the Event Records. Data is cleard by changing a command setting to "Yes" and pressing the ENTER key. After clearing data, the command setting automatically reverts to "No".
7.1.4 SET DATE AND TIME

PATH: COMMANDS $\sqrt{ }$ SET DATE AND TIME

$\square \square$ COMMANDS $\square \square$ SET DATE AND TIME	(1)	SET DATE AND TIME: $2000 / 01 / 14 \quad 13: 47: 03$	(YYYY/MM/DD HH:MM:SS)

The date and time can be entered here via the faceplate keypad only if the IRIG-B signal is not in use. The time setting is based on the 24 -hour clock. The complete date, as a minimum, must be entered to allow execution of this command. The new time will take effect at the moment the ENTER key is clicked.
7.1.5 RELAY MAINTENANCE

PATH: COMMANDS Ω RELAY MAINTENANCE

$\square \square$ COMMANDS $\square \square$ RELAY MAINTENANCE	(1)	PERFORM LAMPTEST? No	Range: No, Yes
	(4)	UPDATE ORDER CODE? No	Range: No, Yes

This menu contains commands for relay maintenance purposes. Commands are activated by changing a command setting to "Yes" and pressing the ENTER key. The command setting will then automatically revert to "No".

The PERFORM LAMPTEST command turns on all faceplate LEDs and display pixels for a short duration. The UPDATE ORDER CODE command causes the relay to scan the backplane for the hardware modules and update the order code to match. If an update occurs, the following message is shown.

There is no impact if there have been no changes to the hardware modules. When an update does not occur, the ORDER CODE NOT UPDATED message will be shown.

The status of any active targets will be displayed in the Targets menu. If no targets are active, the display will read No Active Targets:

7.2.2 TARGET MESSAGES

When there are no active targets, the first target to become active will cause the display to immediately default to that message. If there are active targets and the user is navigating through other messages, and when the default message timer times out (i.e. the keypad has not been used for a determined period of time), the display will again default back to the target message.
The range of variables for the target messages is described below. Phase information will be included if applicable. If a target message status changes, the status with the highest priority will be displayed.

Table 7-1: TARGET MESSAGE PRIORITY STATUS

PRIORITY	ACTIVE STATUS	DESCRIPTION
1	OP	element operated and still picked up
2	PKP	element picked up and timed out
3	LATCHED	element had operated but has dropped out

If a self test error is detected, a message appears indicating the cause of the error. For example UNIT NOT PROGRAMMED indicates that the minimal relay settings have not been programmed.
7.2.3 RELAY SELF-TESTS

The relay performs a number of self-test diagnostic checks to ensure device integrity. The two types of self-tests (major and minor) are listed in the tables below. When either type of self-test error occurs, the Trouble LED Indicator will turn on and a target message displayed. All errors record an event in the event recorder. Latched errors can be cleared by pressing the RESET key, providing the condition is no longer present.

Major self-test errors also result in the following:

- the critical fail relay on the power supply module is de-energized
- all other output relays are de-energized and are prevented from further operation
- the faceplate In Service LED indicator is turned off
- a RELAY OUT OF SERVICE event is recorded

Most of the minor self-test errors can be disabled. Refer to the settings in the User-Programmable Self-Tests section in Chapter 5 for additional details.

Table 7-2: MAJOR SELF-TEST ERROR MESSAGES

SELF-TEST ERROR MESSAGE	LATCHED TARGET MESSAGE?	DESCRIPTION OF PROBLEM	HOW OFTEN THE TEST IS PERFORMED	WHAT TO DO
EQUIPMENT MISMATCH with 2nd-line detail message	No	Configuration of modules does not match the order code stored in the CPU.	On power up; thereafter, the backplane is checked for missing cards every 5 seconds.	Check all modules against the order code, ensure they are inserted properly, and cycle control power (if problem persists, contact factory).
FLEXLOGIC ERR TOKEN with 2nd-line detail message	No	FlexLogic ${ }^{\text {TM }}$ equations do not compile properly.	Event driven; whenever FlexLogic ${ }^{\top M}$ equations are modified.	Finish all equation editing and use self test to debug any errors.
LATCHING OUTPUT ERROR	No	Discrepancy in the position of a latching contact between relay firmware and hardware has been detected.	Every 1/8th of a cycle.	Latching output module failed. Replace the Module.
PROGRAM MEMORY Test Failed	Yes	Error was found while checking Flash memory.	Once flash is uploaded with new firmware.	Contact the factory.
UNIT NOT CALIBRATED	No	Settings indicate the unit is not calibrated.	On power up.	Contact the factory.
UNIT NOT PROGRAMMED	No	PRODUCT SETUP $\Rightarrow \sqrt{ }$ INSTALLATION setting indicates relay is not in a programmed state.	On power up and whenever the RELAY PROGRAMMED setting is altered.	Program all settings (especially those under PRODUCT SETUP $\Rightarrow \sqrt{ }$ INSTALLATION).

Table 7-3: MINOR SELF-TEST ERROR MESSAGES

SELF-TEST ERROR MESSAGE	LATCHED TARGET MESSAGE	DESCRIPTION OF PROBLEM	HOW OFTEN THE TEST IS PERFORMED	WHAT TO DO
BATTERY FAIL	Yes	Battery is not functioning.	Monitored every 5 seconds. Reported after 1 minute if problem persists.	Replace the battery.
DIRECT RING BREAK	No	Direct I/O settings configured for a ring, but the connection is not in a ring.	Every second.	Check Direct I/O configuration and/or wiring.
DIRECT DEVICE OFF	No	Direct Device is configured but not connected	Every second.	Check Direct I/O configuration and/or wiring.
$\begin{aligned} & \text { EEPROM DATA } \\ & \text { ERROR } \end{aligned}$	Yes	The non-volatile memory has been corrupted.	On power up only.	Contact the factory.
IRIG-B FAILURE	No	Bad IRIG-B input signal.	Monitored whenever an IRIG-B signal is received.	Ensure IRIG-B cable is connected, check cable functionality (i.e. look for physical damage or perform continuity test), ensure IRIG-B receiver is functioning, and check input signal level (it may be less than specification). If none of these apply, contact the factory.
LATCHING OUT ERROR	Yes	Latching output failure.	Event driven.	Contact the factory.
LOW ON MEMORY	Yes	Memory is close to 100\% capacity	Monitored every 5 seconds.	Contact the factory.
PRI ETHERNET FAIL	Yes	Primary Ethernet connection failed	Monitored every 2 seconds	Check connections.
PROTOTYPE FIRMWARE	Yes	A prototype version of the firmware is loaded.	On power up only.	Contact the factory.
REMOTE DEVICE OFF	No	One or more GOOSE devices are not responding	Event driven. Occurs when a device programmed to receive GOOSE messages stops receiving. Every 1 to 60 s., depending on GOOSE packets.	Check GOOSE setup
SEC ETHERNET FAIL	Yes	Sec. Ethernet connection failed	Monitored every 2 seconds	Check connections.
SNTP FAILURE	No	SNTP server not responding.	10 to 60 seconds.	Check SNTP configuration and/or network connections.
SYSTEM EXCEPTION	Yes	Abnormal restart from modules being removed/inserted when powered-up, abnormal DC supply, or internal relay failure.	Event driven.	Contact the factory.
WATCHDOG ERROR	No	Some tasks are behind schedule	Event driven.	Contact the factory.

APPENDIX A

Table A-1: FLEXANALOG PARAMETERS

SETTING	DISPLAY TEXT	DESCRIPTION
39425	FlexElement 1 OpSig	FlexElement 1 Actual
39427	FlexElement 2 OpSig	FlexElement 2 Actual
39429	FlexElement 3 OpSig	FlexElement 3 Actual
39431	FlexElement 4 OpSig	FlexElement 4 Actual
39433	FlexElement 5 OpSig	FlexElement 5 Actual
39435	FlexElement 6 OpSig	FlexElement 6 Actual
39437	FlexElement 7 OpSig	FlexElement 7 Actual
39439	FlexElement 8 OpSig	FlexElement 8 Actual
40960	Communications Group	Communications Group
40971	Active Setting Group	Current Setting Group

The UR series relays support a number of communications protocols to allow connection to equipment such as personal computers, RTUs, SCADA masters, and programmable logic controllers. The Modicon Modbus RTU protocol is the most basic protocol supported by the UR. Modbus is available via RS232 or RS485 serial links or via ethernet (using the Modbus/TCP specification). The following description is intended primarily for users who wish to develop their own master communication drivers and applies to the serial Modbus RTU protocol. Note that:

- The UR always acts as a slave device, meaning that it never initiates communications; it only listens and responds to requests issued by a master computer.
- For Modbus ${ }^{\circledR}$, a subset of the Remote Terminal Unit (RTU) protocol format is supported that allows extensive monitoring, programming, and control functions using read and write register commands.
B.1.2 PHYSICAL LAYER

The Modbus ${ }^{\circledR}$ RTU protocol is hardware-independent so that the physical layer can be any of a variety of standard hardware configurations including RS232 and RS485. The relay includes a faceplate (front panel) RS232 port and two rear terminal communications ports that may be configured as RS485, fiber optic, 10BaseT, or 10BaseF. Data flow is half-duplex in all configurations. See Chapter 3 for details on wiring.

Each data byte is transmitted in an asynchronous format consisting of 1 start bit, 8 data bits, 1 stop bit, and possibly 1 parity bit. This produces a 10 or 11 bit data frame. This can be important for transmission through modems at high bit rates (11 bit data frames are not supported by many modems at baud rates greater than 300).

The baud rate and parity are independently programmable for each communications port. Baud rates of 300, 1200, 2400, $4800,9600,14400,19200,28800,33600,38400,57600$, or 115200 bps are available. Even, odd, and no parity are available. Refer to the Communications section of Chapter 5 for further details.

The master device in any system must know the address of the slave device with which it is to communicate. The relay will not act on a request from a master if the address in the request does not match the relay's slave address (unless the address is the broadcast address - see below).

A single setting selects the slave address used for all ports, with the exception that for the faceplate port, the relay will accept any address when the Modbus ${ }^{\circledR}$ RTU protocol is used.
B.1.3 DATA LINK LAYER

Communications takes place in packets which are groups of asynchronously framed byte data. The master transmits a packet to the slave and the slave responds with a packet. The end of a packet is marked by 'dead-time' on the communications line. The following describes general format for both transmit and receive packets. For exact details on packet formatting, refer to subsequent sections describing each function code.

Table B-1: MODBUS PACKET FORMAT

DESCRIPTION	SIZE
SLAVE ADDRESS	1 byte
FUNCTION CODE	1 byte
DATA	N bytes
CRC	2 bytes
DEAD TIME	3.5 bytes transmission time

- SLAVE ADDRESS: This is the address of the slave device that is intended to receive the packet sent by the master and to perform the desired action. Each slave device on a communications bus must have a unique address to prevent bus contention. All of the relay's ports have the same address which is programmable from 1 to 254; see Chapter 5 for details. Only the addressed slave will respond to a packet that starts with its address. Note that the faceplate port is an exception to this rule; it will act on a message containing any slave address.
A master transmit packet with slave address 0 indicates a broadcast command. All slaves on the communication link take action based on the packet, but none respond to the master. Broadcast mode is only recognized when associated with Function Code 05 h . For any other function code, a packet with broadcast mode slave address 0 will be ignored.
- FUNCTION CODE: This is one of the supported functions codes of the unit which tells the slave what action to perform. See the Supported Function Codes section for complete details. An exception response from the slave is indicated by setting the high order bit of the function code in the response packet. See the Exception Responses section for further details.
- DATA: This will be a variable number of bytes depending on the function code. This may include actual values, settings, or addresses sent by the master to the slave or by the slave to the master.
- CRC: This is a two byte error checking code. The RTU version of Modbus ${ }^{\circledR}$ includes a 16 -bit cyclic redundancy check (CRC-16) with every packet which is an industry standard method used for error detection. If a Modbus slave device receives a packet in which an error is indicated by the CRC, the slave device will not act upon or respond to the packet thus preventing any erroneous operations. See the CRC-16 Algorithm section for details on calculating the CRC.
- DEAD TIME: A packet is terminated when no data is received for a period of 3.5 byte transmission times (about 15 ms at $2400 \mathrm{bps}, 2 \mathrm{~ms}$ at 19200 bps , and $300 \mu \mathrm{~s}$ at 115200 bps). Consequently, the transmitting device must not allow gaps between bytes longer than this interval. Once the dead time has expired without a new byte transmission, all slaves start listening for a new packet from the master except for the addressed slave.
B.1.4 CRC-16 ALGORITHM

The CRC-16 algorithm essentially treats the entire data stream (data bits only; start, stop and parity ignored) as one continuous binary number. This number is first shifted left 16 bits and then divided by a characteristic polynomial (11000000000000101B). The 16 bit remainder of the division is appended to the end of the packet, MSByte first. The resulting packet including CRC, when divided by the same polynomial at the receiver will give a zero remainder if no transmission errors have occurred. This algorithm requires the characteristic polynomial to be reverse bit ordered. The most significant bit of the characteristic polynomial is dropped, since it does not affect the value of the remainder.
A C programming language implementation of the CRC algorithm will be provided upon request.
Table B-2: CRC-16 ALGORITHM

SYMBOLS:	-->	data transfer	
	A	16 bit working register	
	Alow	Iow order byte of A	
	Ahigh	high order byte of A	
	CRC	16 bit CRC-16 result	
	i,j	loop counters	
	(+)	logical EXCLUSIVE-OR operator	
	N	total number of data bytes	
	Di	i-th data byte ($\mathrm{i}=0$ to $\mathrm{N}-1$)	
	G	16 bit characteristic polynomial $=1010000000000001$ (binary) with MSbit dropped and bit order reversed	
	shr (x)	right shift operator (th LSbit of x is shifted into a carry flag, a '0' is shifted into the MSbit of x, all other bits are shifted right one location)	
ALGORITHM:	1.	FFFF (hex) --> A	
	2.	$0-->$ i	
	3.	$0-->j$	
	4.	Di (+) Alow --> Alow	
	5.	j + 1 --> j	
	6.	shr (A)	
	7.	Is there a carry?	No: go to 8; Yes: G (+) A -->
	8.	Is $\mathrm{j}=8$?	No: go to 5; Yes: continue
	9.	$i+1-->i$	
	10.	Is $\mathrm{i}=\mathrm{N}$?	No: go to 3; Yes: continue
	11.	A --> CRC	

Modbus ${ }^{\circledR}$ officially defines function codes from 1 to 127 though only a small subset is generally needed. The relay supports some of these functions, as summarized in the following table. Subsequent sections describe each function code in detail.

FUNCTION CODE		MODBUS DEFINITION	GE MULTILIN DEFINITION
HEX	DEC		
03	3	Read Holding Registers	Read Actual Values or Settings
04	4	Read Holding Registers	Read Actual Values or Settings
05	5	Force Single Coil	Execute Operation
06	6	Preset Single Register	Store Single Setting
10	16	Preset Multiple Registers	Store Multiple Settings

This function code allows the master to read one or more consecutive data registers (actual values or settings) from a relay. Data registers are always 16 bit (two byte) values transmitted with high order byte first. The maximum number of registers that can be read in a single packet is 125 . See the Modbus Memory Map table for exact details on the data registers.
Since some PLC implementations of Modbus ${ }^{\circledR}$ only support one of function codes 03 h and 04 h , the relay interpretation allows either function code to be used for reading one or more consecutive data registers. The data starting address will determine the type of data being read. Function codes 03h and 04h are therefore identical.

The following table shows the format of the master and slave packets. The example shows a master device requesting 3 register values starting at address 4050h from slave device 11h (17 decimal); the slave device responds with the values 40, 300, and 0 from registers $4050 \mathrm{~h}, 4051 \mathrm{~h}$, and 4052 h , respectively.

Table B-3: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

MASTER TRANSMISSION	
PACKET FORMAT	EXAMPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	04
DATA STARTING ADDRESS - high	40
DATA STARTING ADDRESS - low	50
NUMBER OF REGISTERS - high	00
NUMBER OF REGISTERS - low	03
CRC - low	A7
CRC - high	4 A

SLAVE RESPONSE	
PACKET FORMAT	EXAMPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	04
BYTE COUNT	06
DATA \#1 - high	00
DATA \#1 - low	28
DATA \#2 - high	01
DATA \#2 - low	2 C
DATA \#3 - high	00
DATA \#3 - low	00
CRC - low	$0 D$
CRC - high	60

This function code allows the master to perform various operations in the relay. Available operations are shown in the Summary of Operation Codes table below.

The following table shows the format of the master and slave packets. The example shows a master device requesting the slave device $11 \mathrm{H}(17 \mathrm{dec})$ to perform a reset. The high and low Code Value bytes always have the values "FF" and " 00 " respectively and are a remnant of the original Modbus ${ }^{\circledR}$ definition of this function code.

Table B-4: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

MASTER TRANSMISSION	
PACKET FORMAT	EXAMPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	05
OPERATION CODE - high	00
OPERATION CODE - low	01
CODE VALUE - high	FF
CODE VALUE - low	00
CRC - low	DF
CRC - high	$6 A$

SLAVE RESPONSE	
PACKET FORMAT	EXAMPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	05
OPERATION CODE - high	00
OPERATION CODE - low	01
CODE VALUE - high	FF
CODE VALUE - low	00
CRC - low	DF
CRC - high	6 A

Table B-5: SUMMARY OF OPERATION CODES FOR FUNCTION 05H

OPERATION CODE (HEX)	DEFINITION	DESCRIPTION
0000	NO OPERATION	Does not do anything.
0001	RESET	Performs the same function as the faceplate RESET key.
0005	CLEAR EVENT RECORDS	Performs the same function as the faceplate CLEAR EVENT RECORDS menu command.
0006	CLEAR OSCILLOGRAPHY	Clears all oscillography records.
1000 to 101F	VIRTUAL IN 1-32 ON/OFF	Sets the states of Virtual Inputs 1 to 32 either "ON" or "OFF".

B.2.4 STORE SINGLE SETTING (FUNCTION CODE 06H)

This function code allows the master to modify the contents of a single setting register in an relay. Setting registers are always 16 bit (two byte) values transmitted high order byte first. The following table shows the format of the master and slave packets. The example shows a master device storing the value 200 at memory map address 4051 h to slave device 11h (17 dec).

Table B-6: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

MASTER TRANSMISSION	EXAMPLE (HEX)
PACKET FORMAT	11
SLAVE ADDRESS	06
FUNCTION CODE	40
DATA STARTING ADDRESS - high	51
DATA STARTING ADDRESS - low	00
DATA - high	C8
DATA - low	CE
CRC - low	DD
CRC - high	

SLAVE RESPONSE	
PACKET FORMAT	EXAMPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	06
DATA STARTING ADDRESS - high	40
DATA STARTING ADDRESS - low	51
DATA - high	00
DATA - low	C8
CRC - low	CE
CRC - high	DD

This function code allows the master to modify the contents of a one or more consecutive setting registers in a relay. Setting registers are 16-bit (two byte) values transmitted high order byte first. The maximum number of setting registers that can be stored in a single packet is 60 . The following table shows the format of the master and slave packets. The example shows a master device storing the value 200 at memory map address 4051 h , and the value 1 at memory map address 4052 h to slave device 11 h (17 decimal).

Table B-7: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

MASTER TRANSMISSION	
PACKET FORMAT	EXAMPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	10
DATA STARTING ADDRESS - hi	40
DATA STARTING ADDRESS - lo	51
NUMBER OF SETTINGS - hi	00
NUMBER OF SETTINGS - lo	02
BYTE COUNT	04
DATA \#1 - high order byte	00
DATA \#1 - low order byte	C8
DATA \#2 - high order byte	00
DATA \#2 - low order byte	01
CRC - low order byte	12
CRC - high order byte	62

SLAVE RESPONSE	
PACKET FORMAT	EXMAPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	10
DATA STARTING ADDRESS -hi	40
DATA STARTING ADDRESS - lo	51
NUMBER OF SETTINGS - hi	00
NUMBER OF SETTINGS - lo	02
CRC -lo	07
CRC -hi	64

Programming or operation errors usually happen because of illegal data in a packet. These errors result in an exception response from the slave. The slave detecting one of these errors sends a response packet to the master with the high order bit of the function code set to 1 .

The following table shows the format of the master and slave packets. The example shows a master device sending the unsupported function code 39 h to slave device 11.

Table B-8: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

MASTER TRANSMISSION	EXAMPLE (HEX)
PACKET FORMAT	11
SLAVE ADDRESS	39
FUNCTION CODE	CD
CRC - low order byte	F2
CRC - high order byte	

SLAVE RESPONSE	
PACKET FORMAT	EXAMPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	B9
ERROR CODE	01
CRC - low order byte	93
CRC - high order byte	95

a) DESCRIPTION

The UR relay has a generic file transfer facility, meaning that you use the same method to obtain all of the different types of files from the unit. The Modbus registers that implement file transfer are found in the "Modbus File Transfer (Read/Write)" and "Modbus File Transfer (Read Only)" modules, starting at address 3100 in the Modbus Memory Map. To read a file from the UR relay, use the following steps:

1. Write the filename to the "Name of file to read" register using a write multiple registers command. If the name is shorter than 80 characters, you may write only enough registers to include all the text of the filename. Filenames are not case sensitive.
2. Repeatedly read all the registers in "Modbus File Transfer (Read Only)" using a read multiple registers command. It is not necessary to read the entire data block, since the UR relay will remember which was the last register you read. The "position" register is initially zero and thereafter indicates how many bytes (2 times the number of registers) you have read so far. The "size of..." register indicates the number of bytes of data remaining to read, to a maximum of 244.
3. Keep reading until the "size of..." register is smaller than the number of bytes you are transferring. This condition indicates end of file. Discard any bytes you have read beyond the indicated block size.
4. If you need to re-try a block, read only the "size of.." and "block of data", without reading the position. The file pointer is only incremented when you read the position register, so the same data block will be returned as was read in the previous operation. On the next read, check to see if the position is where you expect it to be, and discard the previous block if it is not (this condition would indicate that the UR relay did not process your original read request).
The UR relay retains connection-specific file transfer information, so files may be read simultaneously on multiple Modbus connections.

b) OTHER PROTOCOLS

All the files available via Modbus may also be retrieved using the standard file transfer mechanisms in other protocols (for example, TFTP or MMS).

c) COMTRADE, OSCILLOGRAPHY, AND DATA LOGGER FILES

Oscillography and data logger files are formatted using the COMTRADE file format per IEEE PC37.111 Draft 7c (02 September 1997). The files may be obtained in either text or binary COMTRADE format.

d) READING OSCILLOGRAPHY FILES

Familiarity with the oscillography feature is required to understand the following description. Refer to the Oscillography section in Chapter 5 for additional details.

The Oscillography Number of Triggers register is incremented by one every time a new oscillography file is triggered (captured) and cleared to zero when oscillography data is cleared. When a new trigger occurs, the associated oscillography file is assigned a file identifier number equal to the incremented value of this register; the newest file number is equal to the Oscillography_Number_of_Triggers register. This register can be used to determine if any new data has been captured by periodically reading it to see if the value has changed; if the number has increased then new data is available.
The Oscillography Number of Records register specifies the maximum number of files (and the number of cycles of data per file) that can be stored in memory of the relay. The Oscillography Available Records register specifies the actual number of files that are stored and still available to be read out of the relay.
Writing "Yes" (i.e. the value 1) to the Oscillography Clear Data register clears oscillography data files, clears both the Oscillography Number of Triggers and Oscillography Available Records registers to zero, and sets the Oscillography Last Cleared Date to the present date and time.

To read binary COMTRADE oscillography files, read the following filenames:

```
OSCnnnn.CFG and OSCnnn.DAT
```

Replace "nnn" with the desired oscillography trigger number. For ASCII format, use the following file names
OSCAnnnn. CFG and OSCAnnn.DAT

e) READING DATA LOGGER FILES

Familiarity with the data logger feature is required to understand this description. Refer to the Data Logger section of Chapter 5 for details. To read the entire data logger in binary COMTRADE format, read the following files.

```
datalog.cfg and datalog.dat
```

To read the entire data logger in ASCII COMTRADE format, read the following files.

```
dataloga.cfg and dataloga.dat
```

To limit the range of records to be returned in the COMTRADE files, append the following to the filename before writing it:

- To read from a specific time to the end of the log: <space> startTime
- To read a specific range of records: <space> startTime <space> endTime
- Replace <startTime> and <endTime> with Julian dates (seconds since Jan. 1 1970) as numeric text.

f) READING EVENT RECORDER FILES

To read the entire event recorder contents in ASCII format (the only available format), use the following filename:
EVT.TXT
To read from a specific record to the end of the log, use the following filename:
EVTnnn.TXT (replace "nnn" with the desired starting record number)
B.3.2 MODBUS PASSWORD OPERATION

The COMMAND password is set up at memory location 4000. Storing a value of " 0 " removes COMMAND password protection. When reading the password setting, the encrypted value (zero if no password is set) is returned. COMMAND security is required to change the COMMAND password. Similarly, the SETTING password is set up at memory location 4002. These are the same settings and encrypted values found in the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \sqrt{ } \sqrt{ }$ PASSWORD SECURITY menu via the keypad. Enabling password security for the faceplate display will also enable it for Modbus, and vice-versa.
To gain COMMAND level security access, the COMMAND password must be entered at memory location 4008. To gain SETTING level security access, the SETTING password must be entered at memory location 400A. The entered SETTING password must match the current SETTING password setting, or must be zero, to change settings or download firmware.
COMMAND and SETTING passwords each have a 30-minute timer. Each timer starts when you enter the particular password, and is re-started whenever you "use" it. For example, writing a setting re-starts the SETTING password timer and writing a command register or forcing a coil re-starts the COMMAND password timer. The value read at memory location 4010 can be used to confirm whether a COMMAND password is enabled or disabled (0 for Disabled). The value read at memory location 4011 can be used to confirm whether a SETTING password is enabled or disabled.
COMMAND or SETTING password security access is restricted to the particular port or particular TCP/IP connection on which the entry was made. Passwords must be entered when accessing the relay through other ports or connections, and the passwords must be re-entered after disconnecting and re-connecting on TCP/IP.

Table B-9: MODBUS MEMORY MAP (Sheet 1 of 26)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
Product Information (Read Only)						
0000	UR Product Type	0 to 65535	---	1	F001	0
0002	Product Version	0 to 655.35	---	0.01	F001	1
Product Information (Read Only -- Written by Factory)						
0010	Serial Number	---	---	---	F203	"0"
0020	Manufacturing Date	0 to 4294967295	---	1	F050	0
0022	Modification Number	0 to 65535	---	1	F001	0
0040	Order Code	---	---	---	F204	"Order Code x"
0090	Ethernet MAC Address	---	---	---	F072	0
0093	Reserved (13 items)	---	---	---	F001	0
00A0	CPU Module Serial Number	---	---	---	F203	(none)
00B0	CPU Supplier Serial Number	---	---	---	F203	(none)
00C0	Ethernet Sub Module Serial Number (8 items)	---	---	---	F203	(none)
Self Test Targets (Read Only)						
0200	Self Test States (2 items)	0 to 4294967295	0	1	F143	0
Front Panel (Read Only)						
0204	LED Column x State (10 items)	0 to 65535	---	1	F501	0
0220	Display Message	---	---	---	F204	(none)
0248	Last Key Pressed	0 to 42	---	1	F530	0 (None)
Keypress Emulation (Read/Write)						
0280	Simulated keypress -- write zero before each keystroke	0 to 38	---	1	F190	0 (No key -- use between real keys)
Virtual Input Commands (Read/Write Command) (32 modules)						
0400	Virtual Input x State	0 to 1	---	1	F108	0 (Off)
0401	...Repeated for module number 2					
0402	...Repeated for module number 3					
0403	...Repeated for module number 4					
0404	...Repeated for module number 5					
0405	...Repeated for module number 6					
0406	...Repeated for module number 7					
0407	...Repeated for module number 8					
0408	...Repeated for module number 9					
0409	...Repeated for module number 10					
040A	...Repeated for module number 11					
040B	...Repeated for module number 12					
040C	...Repeated for module number 13					
040D	...Repeated for module number 14					
040E	...Repeated for module number 15					
040F	...Repeated for module number 16					
0410	...Repeated for module number 17					
0411	...Repeated for module number 18					
0412	...Repeated for module number 19					
0413	...Repeated for module number 20					
0414	...Repeated for module number 21					
0415	...Repeated for module number 22					
0416	...Repeated for module number 23					
0417	...Repeated for module number 24					
0418	...Repeated for module number 25					
0419	...Repeated for module number 26					
041A	...Repeated for module number 27					
041B	...Repeated for module number 28					

Table B-9: MODBUS MEMORY MAP (Sheet 2 of 26)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
041C	...Repeated for module number 29					
041D	...Repeated for module number 30					
041E	...Repeated for module number 31					
041F	...Repeated for module number 32					
Digital Counter States (Read Only Non-Volatile) (8 modules)						
0800	Digital Counter x Value	$\begin{gathered} -2147483647 \text { to } \\ 2147483647 \end{gathered}$	---	1	F004	0
0802	Digital Counter x Frozen	$\begin{gathered} -2147483647 \text { to } \\ 2147483647 \end{gathered}$	---	1	F004	0
0804	Digital Counter x Frozen Time Stamp	0 to 4294967295	---	1	F050	0
0806	Digital Counter x Frozen Time Stamp us	0 to 4294967295	---	1	F003	0
0808	...Repeated for module number 2					
0810	...Repeated for module number 3					
0818	...Repeated for module number 4					
0820	...Repeated for module number 5					
0828	...Repeated for module number 6					
0830	...Repeated for module number 7					
0838	...Repeated for module number 8					
FlexStates (Read Only)						
0900	FlexState Bits (16 items)	0 to 65535	---	1	F001	0
Element States (Read Only)						
1000	Element Operate States (64 items)	0 to 65535	---	1	F502	0
User Displays Actuals (Read Only)						
1080	Formatted user-definable displays (8 items)	---	---	---	F200	(none)
Modbus User Map Actuals (Read Only						
1200	User Map Values (256 items)	0 to 65535	---	1	F001	0
Element Targets (Read Only)						
14C0	Target Sequence	0 to 65535	---	1	F001	0
14C1	Number of Targets	0 to 65535	---	1	F001	0
Element Targets (Read/Write)						
14C2	Target to Read	0 to 65535	---	1	F001	0
Element Targets (Read Only)						
14C3	Target Message	---	---	---	F200	"."
Digital I/O States (Read Only)						
1500	Contact Input States (6 items)	0 to 65535	---	1	F500	0
1508	Virtual Input States (2 items)	0 to 65535	---	1	F500	0
1510	Contact Output States (4 items)	0 to 65535	---	1	F500	0
1518	Contact Output Current States (4 items)	0 to 65535	---	1	F500	0
1520	Contact Output Voltage States (4 items)	0 to 65535	---	1	F500	0
1528	Virtual Output States (4 items)	0 to 65535	---	1	F500	0
1530	Contact Output Detectors (4 items)	0 to 65535	---	1	F500	0
Remote I/O States (Read Only)						
1540	Remote Device x States	0 to 65535	---	1	F500	0
1542	Remote Input States (2 items)	0 to 65535	---	1	F500	0
1550	Remote Devices Online	0 to 1	---	1	F126	0 (No)
Remote Device Status (Read Only) (16 modules)						
1551	Remote Device x StNum	0 to 4294967295	---	1	F003	0
1553	Remote Device \times SqNum	0 to 4294967295	---	1	F003	0
1555	...Repeated for module number 2					
1559	...Repeated for module number 3					
155D	...Repeated for module number 4					
1561	...Repeated for module number 5					
1565	...Repeated for module number 6					
1569	...Repeated for module number 7					
156D	...Repeated for module number 8					

Table B-9: MODBUS MEMORY MAP (Sheet 3 of 26)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
1571	...Repeated for module number 9					
1575	...Repeated for module number 10					
1579	...Repeated for module number 11					
157D	...Repeated for module number 12					
1581	...Repeated for module number 13					
1585	...Repeated for module number 14					
1589	...Repeated for module number 15					
158D	...Repeated for module number 16					
Platform Direct I/O States (Read Only)						
15C0	Direct Input States (6 items)	0 to 65535	---	1	F500	0
15C8	Platform Direct Outputs Average Msg Return Time 1	0 to 65535	ms	1	F001	0
15C9	Platform Direct Outputs Average Msg Return Time 2	0 to 65535	ms	1	F001	0
15D0	Direct Device States	0 to 65535	---	1	F500	0
15D1	Reserved					
15D2	Platform Direct I/O CRC Fail Count 1	0 to 65535	---	1	F001	0
15D3	Platform Direct I/O CRC Fail Count 2	0 to 65535	---	1	F001	0
Ethernet Fibre Channel Status (Read/Write)						
1610	Ethernet Primary Fibre Channel Status	0 to 2	---	1	F134	0 (Fail)
1611	Ethernet Secondary Fibre Channel Status	0 to 2	---	1	F134	0 (Fail)
Data Logger Actuals (Read Only)						
1618	Data Logger Channel Count	0 to 16	CHNL	1	F001	0
1619	Time of oldest available samples	0 to 4294967295	seconds	1	F050	0
161B	Time of newest available samples	0 to 4294967295	seconds	1	F050	0
161D	Data Logger Duration	0 to 999.9	DAYS	0.1	F001	0
Passwords Unauthorized Access (Read/Write Command)						
2230	Reset Unauthorized Access	0 to 1	---	1	F126	0 (No)
Fault Location (Read Only)						
2350	Prefault Phase A Current Magnitude	0 to 999999.999	A	0.001	F060	0
2352	Prefault Phase B Current Magnitude	0 to 999999.999	A	0.001	F060	0
2354	Prefault Phase C Current Magnitude	0 to 999999.999	A	0.001	F060	0
2356	Prefault Zero Seq Current	0 to 999999.999	A	0.001	F060	0
2358	Prefault Pos Seq Current	0 to 999999.999	A	0.001	F060	0
235A	Prefault Neg Seq Current	0 to 999999.999	A	0.001	F060	0
235C	Prefault Phase A Voltage	0 to 999999.999	V	0.001	F060	0
235E	Prefault Phase B Voltage	0 to 999999.999	V	0.001	F060	0
2360	Prefault Phase C Voltage	0 to 999999.999	V	0.001	F060	0
2362	Last Fault Location in Line length units (km or miles)	-3276.7 to 3276.7	---	0.1	F002	0
Expanded FlexStates (Read Only)						
2B00	FlexStates, one per register (256 items)	0 to 1	---	1	F108	0 (Off)
Expanded Digital I/O states (Read Only)						
2D00	Contact Input States, one per register (96 items)	0 to 1	---	1	F108	0 (Off)
2D80	Contact Output States, one per register (64 items)	0 to 1	---	1	F108	0 (Off)
2E00	Virtual Output States, one per register (64 items)	0 to 1	---	1	F108	0 (Off)
Expanded Remote I/O Status (Read Only)						
2F00	Remote Device States, one per register (16 items)	0 to 1	---	1	F155	0 (Offline)
2F80	Remote Input States, one per register (32 items)	0 to 1	---	1	F108	0 (Off)
Oscillography Values (Read Only)						
3000	Oscillography Number of Triggers	0 to 65535	---	1	F001	0
3001	Oscillography Available Records	0 to 65535	---	1	F001	0
3002	Oscillography Last Cleared Date	0 to 400000000	---	1	F050	0
3004	Oscillography Number Of Cycles Per Record	0 to 65535	---	1	F001	0
Oscillography Commands (Read/Write Command)						
3005	Oscillography Force Trigger	0 to 1	---	1	F126	0 (No)
3011	Oscillography Clear Data	0 to 1	---	1	F126	0 (No)

Table B-9: MODBUS MEMORY MAP (Sheet 4 of 26)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
Modbus File Transfer (Read/Write)						
3100	Name of file to read	---	---	---	F204	(none)
Modbus File Transfer (Read Only)						
3200	Character position of current block within file	0 to 4294967295	---	1	F003	0
3202	Size of currently-available data block	0 to 65535	---	1	F001	0
3203	Block of data from requested file (122 items)	0 to 65535	---	1	F001	0
Event Recorder (Read Only)						
3400	Events Since Last Clear	0 to 4294967295	---	1	F003	0
3402	Number of Available Events	0 to 4294967295	---	1	F003	0
3404	Event Recorder Last Cleared Date	0 to 4294967295	---	1	F050	0
Event Recorder (Read/Write Command)						
3406	Event Recorder Clear Command	0 to 1	---	1	F126	0 (No)
DCMA Input Values (Read Only) (24 modules)						
34C0	DCMA Inputs x Value	-9999.999 to 9999.999	---	0.001	F004	0
34C2	...Repeated for module number 2					
34C4	...Repeated for module number 3					
34C6	...Repeated for module number 4					
34C8	...Repeated for module number 5					
34CA	...Repeated for module number 6					
34CC	...Repeated for module number 7					
34CE	...Repeated for module number 8					
34D0	...Repeated for module number 9					
34D2	...Repeated for module number 10					
34D4	...Repeated for module number 11					
34D6	...Repeated for module number 12					
34D8	...Repeated for module number 13					
34DA	...Repeated for module number 14					
34DC	...Repeated for module number 15					
34DE	...Repeated for module number 16					
34E0	...Repeated for module number 17					
34E2	...Repeated for module number 18					
34E4	...Repeated for module number 19					
34E6	...Repeated for module number 20					
34E8	...Repeated for module number 21					
34EA	...Repeated for module number 22					
34EC	...Repeated for module number 23					
34EE	...Repeated for module number 24					
RTD Input Values (Read Only) (48 modules)						
34F0	RTD Inputs \times Value	-32768 to 32767	${ }^{\circ} \mathrm{C}$	1	F002	0
34F1	...Repeated for module number 2					
34F2	...Repeated for module number 3					
34F3	...Repeated for module number 4					
34F4	...Repeated for module number 5					
34F5	...Repeated for module number 6					
34F6	...Repeated for module number 7					
34F7	...Repeated for module number 8					
34F8	...Repeated for module number 9					
34F9	...Repeated for module number 10					
34FA	...Repeated for module number 11					
34FB	...Repeated for module number 12					
34FC	...Repeated for module number 13					
34FD	...Repeated for module number 14					
34FE	...Repeated for module number 15					
34FF	...Repeated for module number 16					

Table B-9: MODBUS MEMORY MAP (Sheet 5 of 26)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
3500	...Repeated for module number 17					
3501	...Repeated for module number 18					
3502	...Repeated for module number 19					
3503	...Repeated for module number 20					
3504	...Repeated for module number 21					
3505	...Repeated for module number 22					
3506	...Repeated for module number 23					
3507	...Repeated for module number 24					
3508	...Repeated for module number 25					
3509	...Repeated for module number 26					
350A	...Repeated for module number 27					
350B	...Repeated for module number 28					
350C	...Repeated for module number 29					
350D	...Repeated for module number 30					
350E	...Repeated for module number 31					
350F	...Repeated for module number 32					
3510	...Repeated for module number 33					
3511	...Repeated for module number 34					
3512	...Repeated for module number 35					
3513	...Repeated for module number 36					
3514	...Repeated for module number 37					
3515	...Repeated for module number 38					
3516	...Repeated for module number 39					
3517	...Repeated for module number 40					
3518	...Repeated for module number 41					
3519	...Repeated for module number 42					
351A	...Repeated for module number 43					
351B	...Repeated for module number 44					
351C	...Repeated for module number 45					
351D	...Repeated for module number 46					
351E	...Repeated for module number 47					
351F	...Repeated for module number 48					
Ohm Input Values (Read Only) (2 modules)						
3520	Ohm Inputs x Value	0 to 65535		1	F001	0
3521	...Repeated for module number 2					
Expanded Platform Direct I/O Status (Read Only)						
3560	Direct Device States, one per register (8 items)	0 to 1	---	1	F155	0 (Offline)
3570	Direct Input States, one per register (96 items)	0 to 1	---	1	F108	0 (Off)
Passwords (Read/Write Command)						
4000	Command Password Setting	0 to 4294967295	---	1	F003	0
Passwords (Read/Write Setting)						
4002	Setting Password Setting	0 to 4294967295	---	1	F003	0
Passwords (Read/Write)						
4008	Command Password Entry	0 to 4294967295	---	1	F003	0
400A	Setting Password Entry	0 to 4294967295	---	1	F003	0
Passwords (Read Only)						
4010	Command Password Status	0 to 1	---	1	F102	0 (Disabled)
4011	Setting Password Status	0 to 1	---	1	F102	0 (Disabled)
Preferences (Read/Write Setting)						
4050	Flash Message Time	0.5 to 10	s	0.1	F001	10
4051	Default Message Timeout	10 to 900	s	1	F001	300
4052	Default Message Intensity	0 to 3	---	1	F101	0 (25\%)
4053	Screen Saver Feature	0 to 1	---	1	F102	0 (Disabled)
4054	Screen Saver Wait Time	1 to 65535	min	1	F001	30

Table B-9: MODBUS MEMORY MAP (Sheet 6 of 26)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
4055	Current Cutoff Level	0.002 to 0.02	pu	0.001	F001	20
4056	Voltage Cutoff Level	0.1 to 1	V	0.1	F001	10
Communications (Read/Write Setting)						
407E	COM1 minimum response time	0 to 1000	ms	10	F001	0
407F	COM2 minimum response time	0 to 1000	ms	10	F001	0
4080	Modbus Slave Address	1 to 254	---	1	F001	254
4083	RS485 Com1 Baud Rate	0 to 11	---	1	F112	8 (115200)
4084	RS485 Com1 Parity	0 to 2	---	1	F113	0 (None)
4085	RS485 Com2 Baud Rate	0 to 11	---	1	F112	8 (115200)
4086	RS485 Com2 Parity	0 to 2	---	1	F113	0 (None)
4087	IP Address	0 to 4294967295	---	1	F003	56554706
4089	IP Subnet Mask	0 to 4294967295	---	1	F003	4294966272
408B	Gateway IP Address	0 to 4294967295	---	1	F003	56554497
408D	Network Address NSAP	---	---	---	F074	0
4097	Default GOOSE Update Time	1 to 60	s	1	F001	60
409A	DNP Port	0 to 4	---	1	F177	0 (NONE)
409B	DNP Address	0 to 65519	---	1	F001	1
409C	DNP Client Addresses (2 items)	0 to 4294967295	---	1	F003	0
40A0	TCP Port Number for the Modbus protocol	1 to 65535	---	1	F001	502
40A1	TCP/UDP Port Number for the DNP Protocol	1 to 65535	---	1	F001	20000
40A2	TCP Port Number for the UCA/MMS Protocol	1 to 65535	---	1	F001	102
40A3	TCP Port Number for the HTTP (Web Server) Protocol	1 to 65535	---	1	F001	80
40A4	Main UDP Port Number for the TFTP Protocol	1 to 65535	---	1	F001	69
40A5	Data Transfer UDP Port Numbers for the TFTP Protocol (zero means "automatic") (2 items)	0 to 65535	---	1	F001	0
40A7	DNP Unsolicited Responses Function	0 to 1	---	1	F102	0 (Disabled)
40A8	DNP Unsolicited Responses Timeout	0 to 60	s	1	F001	5
40A9	DNP Unsolicited Responses Max Retries	1 to 255	---	1	F001	10
40AA	DNP Unsolicited Responses Destination Address	0 to 65519	---	1	F001	1
40AB	Ethernet Operation Mode	0 to 1	---	1	F192	0 (Half-Duplex)
40AC	DNP User Map Function	0 to 1	---	1	F102	0 (Disabled)
40AD	DNP Number of Sources used in Analog points list	1 to 6	---	1	F001	1
40AE	DNP Current Scale Factor	0 to 8	---	1	F194	2 (1)
40AF	DNP Voltage Scale Factor	0 to 8	---	1	F194	2 (1)
40B0	DNP Power Scale Factor	0 to 8	---	1	F194	2 (1)
40B1	DNP Energy Scale Factor	0 to 8	---	1	F194	2 (1)
40B2	DNP Other Scale Factor	0 to 8	---	1	F194	2 (1)
40B3	DNP Current Default Deadband	0 to 65535	---	1	F001	30000
40B4	DNP Voltage Default Deadband	0 to 65535	---	1	F001	30000
40B5	DNP Power Default Deadband	0 to 65535	---	1	F001	30000
40B6	DNP Energy Default Deadband	0 to 65535	---	1	F001	30000
40B7	DNP Other Default Deadband	0 to 65535	---	1	F001	30000
40B8	DNP IIN Time Sync Bit Period	1 to 10080	min	1	F001	1440
40B9	DNP Message Fragment Size	30 to 2048	---	1	F001	240
40BA	DNP Client Address 3	0 to 4294967295	---	1	F003	0
40BC	DNP Client Address 4	0 to 4294967295	---	1	F003	0
40BE	DNP Client Address 5	0 to 4294967295	---	1	F003	0
40C0	DNP Communications Reserved (8 items)	0 to 1	---	1	F001	0
40C8	UCA Logical Device Name	---	---	---	F203	"UCADevice"
40D0	GOOSE Function	0 to 1	---	1	F102	1 (Enabled)
40D1	UCA GLOBE.ST.LocRemDS Flexlogic Operand	0 to 65535	---	1	F300	0
40D2	UCA Communications Reserved (14 items)	0 to 1	---	1	F001	0
40E0	TCP Port Number for the IEC 60870-5-104 Protocol	1 to 65535	---	1	F001	2404
40E1	IEC 60870-5-104 Protocol Function	0 to 1	---	1	F102	0 (Disabled)

Table B-9: MODBUS MEMORY MAP (Sheet 7 of 26)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
40E2	IEC 60870-5-104 Protocol Common Address of ASDU	0 to 65535	---	1	F001	0
40E3	IEC 60870-5-104 Protocol Cyclic Data Tx Period	1 to 65535	s	1	F001	60
40E4	IEC Number of Sources used in M_ME_NC_1 point list	1 to 6	---	1	F001	1
40E5	IEC Current Default Threshold	0 to 65535	---	1	F001	30000
40E6	IEC Voltage Default Threshold	0 to 65535	---	1	F001	30000
40E7	IEC Power Default Threshold	0 to 65535	---	1	F001	30000
40E8	IEC Energy Default Threshold	0 to 65535	---	1	F001	30000
40E9	IEC Other Default Threshold	0 to 65535	---	1	F001	30000
40EA	IEC Communications Reserved (22 items)	0 to 1	---	1	F001	0
4100	DNP Binary Input Block of 16 Points (58 items)	0 to 58	---	1	F197	0 (Not Used)
Simple Network Time Protocol (Read/Write Setting)						
4168	Simple Network Time Protocol (SNTP) Function	0 to 1	---	1	F102	0 (Disabled)
4169	Simple Network Time Protocol (SNTP) Server IP Addr	0 to 4294967295	---	1	F003	0
416B	Simple Network Time Protocol (SNTP) UDP Port No.	1 to 65535	---	1	F001	123
Data Logger Commands (Read/Write Command)						
4170	Clear Data Logger	0 to 1	---	1	F126	0 (No)
Data Logger (Read/Write Setting)						
4180	Data Logger Rate	0 to 7	---	1	F178	1 (1 min)
4181	Data Logger Channel Settings (16 items)	---	---	---	F600	0
Clock (Read/Write Command)						
41A0	RTC Set Time	0 to 235959	---	1	F050	0
Clock (Read/Write Setting)						
41A2	SR Date Format	0 to 4294967295	---	1	F051	0
41A4	SR Time Format	0 to 4294967295	---	1	F052	0
41A6	IRIG-B Signal Type	0 to 2	---	1	F114	0 (None)
Fault Report Settings and Commands (Read/Write Setting)						
41B0	Fault Report Source	0 to 5	---	1	F167	0 (SRC 1)
41B1	Fault Report Trigger	0 to 65535	---	1	F300	0
Fault Report Settings and Commands (Read/Write Command)						
41B2	Fault Reports Clear Data Command	0 to 1	---	1	F126	0 (No)
Oscillography (Read/Write Setting)						
41C0	Oscillography Number of Records	1 to 64	---	1	F001	15
41C1	Oscillography Trigger Mode	0 to 1	---	1	F118	0 (Auto Overwrite)
41C2	Oscillography Trigger Position	0 to 100	\%	1	F001	50
41C3	Oscillography Trigger Source	0 to 65535	---	1	F300	0
41C4	Oscillography AC Input Waveforms	0 to 4	---	1	F183	2 (16 samples/cycle)
41D0	Oscillography Analog Channel X (16 items)	0 to 65535	---	1	F600	0
4200	Oscillography Digital Channel X (63 items)	0 to 65535	--	1	F300	0
Trip and Alarm LEDs (Read/Write Setting)						
4260	Trip LED Input FlexLogic Operand	0 to 65535	---	1	F300	0
4261	Alarm LED Input FlexLogic Operand	0 to 65535	--	1	F300	0
User Programmable LEDs (Read/Write Setting) (48 modules)						
4280	FlexLogic Operand to Activate LED	0 to 65535	---	1	F300	0
4281	User LED type (latched or self-resetting)	0 to 1	---	1	F127	1 (Self-Reset)
4282	...Repeated for module number 2					
4284	...Repeated for module number 3					
4286	...Repeated for module number 4					
4288	...Repeated for module number 5					
428A	...Repeated for module number 6					
428C	...Repeated for module number 7					
428 E	...Repeated for module number 8					
4290	...Repeated for module number 9					
4292	...Repeated for module number 10					
4294	...Repeated for module number 11					

Table B-9: MODBUS MEMORY MAP (Sheet 8 of 26)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
4296	...Repeated for module number 12					
4298	...Repeated for module number 13					
429A	...Repeated for module number 14					
429C	...Repeated for module number 15					
429E	...Repeated for module number 16					
42A0	...Repeated for module number 17					
42A2	...Repeated for module number 18					
42A4	...Repeated for module number 19					
42A6	...Repeated for module number 20					
42A8	...Repeated for module number 21					
42AA	...Repeated for module number 22					
42AC	...Repeated for module number 23					
42AE	...Repeated for module number 24					
42B0	...Repeated for module number 25					
42B2	...Repeated for module number 26					
42B4	...Repeated for module number 27					
42B6	...Repeated for module number 28					
42B8	...Repeated for module number 29					
42BA	...Repeated for module number 30					
42BC	...Repeated for module number 31					
42BE	...Repeated for module number 32					
42C0	...Repeated for module number 33					
42C2	...Repeated for module number 34					
42C4	...Repeated for module number 35					
42C6	...Repeated for module number 36					
42C8	...Repeated for module number 37					
42CA	...Repeated for module number 38					
42CC	...Repeated for module number 39					
42CE	...Repeated for module number 40					
42D0	...Repeated for module number 41					
42D2	...Repeated for module number 42					
42D4	...Repeated for module number 43					
42D6	...Repeated for module number 44					
42D8	...Repeated for module number 45					
42DA	...Repeated for module number 46					
42DC	...Repeated for module number 47					
42DE	...Repeated for module number 48					
Installation (Read/Write Setting)						
43E0	Relay Programmed State	0 to 1	---	1	F133	0 (Not Programmed)
43E1	Relay Name	---	---	---	F202	"Relay-1"
User Programmable Self Tests (Read/Write Setting)						
4441	User Programmable Detect Ring Break Function	0 to 1	---	1	F102	1 (Enabled)
4442	User Programmable Direct Device Off Function	0 to 1	---	1	F102	1 (Enabled)
4443	User Programmable Remote Device Off Function	0 to 1	---	1	F102	1 (Enabled)
4444	User Programmable Primary Ethernet Fail Function	0 to 1	---	1	F102	0 (Disabled)
4445	User Programmable Secondary Ethernet Fail Function	0 to 1	---	1	F102	0 (Disabled)
4446	User Programmable Battery Fail Function	0 to 1	---	1	F102	1 (Enabled)
4447	User Programmable SNTP Fail Function	0 to 1	---	1	F102	1 (Enabled)
4448	User Programmable IRIG-B Fail Function	0 to 1	---	1	F102	1 (Enabled)
Modbus User Map (Read/Write Setting)						
4A00	Modbus Address Settings for User Map (256 items)	0 to 65535	---	1	F001	0
User Displays Settings (Read/Write Setting) (8 modules)						
4C00	User display top line text	---	---	---	F202	" "
4C0A	User display bottom line text	---	---	---	F202	"،

Table B-9: MODBUS MEMORY MAP (Sheet 9 of 26)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
4C14	Modbus addresses of displayed items (5items)	0 to 65535	---	1	F001	0
4C19	Reserved (7 items)	---	---	---	F001	0
4C20	...Repeated for module number 2					
4C40	...Repeated for module number 3					
4C60	...Repeated for module number 4					
4C80	...Repeated for module number 5					
4CA0	...Repeated for module number 6					
4CC0	...Repeated for module number 7					
4CE0	...Repeated for module number 8					
User Programmable Pushbuttons (Read/Write Setting) (12 modules)						
4E00	User Programmable Pushbutton Function	0 to 2	---	1	F109	2 (Disabled)
4E01	Programmable Pushbutton Top Line	---	---	---	F202	(none)
4E0B	Prog Pushbutton On Text	---	---	---	F202	(none)
4E15	Prog Pushbutton Off Text	---	---	---	F202	(none)
4E1F	Programmable Pushbutton Drop-Out Time	0 to 60	s	0.05	F001	0
4E20	Programmable Pushbutton Target	0 to 2	---	1	F109	0 (Self-reset)
4E21	User Programmable Pushbutton Events	0 to 1	---	1	F102	0 (Disabled)
4E22	Programmable Pushbutton Reserved (2 items)	0 to 65535	---	1	F001	0
4E24	...Repeated for module number 2					
4E48	...Repeated for module number 3					
4E6C	...Repeated for module number 4					
4E90	...Repeated for module number 5					
4EB4	...Repeated for module number 6					
4ED8	...Repeated for module number 7					
4EFC	...Repeated for module number 8					
4F20	...Repeated for module number 9					
4F44	...Repeated for module number 10					
4F68	...Repeated for module number 11					
4F8C	...Repeated for module number 12					
Flexlogic (Read/Write Setting)						
5000	FlexLogic Entry (512 items)	0 to 65535	---	1	F300	16384
Flexlogic Timers (Read/Write Setting) (32 modules)						
5800	Timer x Type	0 to 2	---	1	F129	0 (millisecond)
5801	Timer x Pickup Delay	0 to 60000	---	1	F001	0
5802	Timer x Dropout Delay	0 to 60000	---	1	F001	0
5803	Timer x Reserved (5 items)	0 to 65535	---	1	F001	0
5808	...Repeated for module number 2					
5810	...Repeated for module number 3					
5818	...Repeated for module number 4					
5820	...Repeated for module number 5					
5828	...Repeated for module number 6					
5830	...Repeated for module number 7					
5838	...Repeated for module number 8					
5840	...Repeated for module number 9					
5848	...Repeated for module number 10					
5850	...Repeated for module number 11					
5858	...Repeated for module number 12					
5860	...Repeated for module number 13					
5868	...Repeated for module number 14					
5870	...Repeated for module number 15					
5878	...Repeated for module number 16					
5880	...Repeated for module number 17					
5888	...Repeated for module number 18					
5890	...Repeated for module number 19					

Table B-9: MODBUS MEMORY MAP (Sheet 10 of 26)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
5898	...Repeated for module number 20					
58A0	...Repeated for module number 21					
58A8	...Repeated for module number 22					
58B0	...Repeated for module number 23					
58B8	...Repeated for module number 24					
58C0	...Repeated for module number 25					
58C8	...Repeated for module number 26					
58D0	...Repeated for module number 27					
58D8	...Repeated for module number 28					
58E0	...Repeated for module number 29					
58E8	...Repeated for module number 30					
58F0	...Repeated for module number 31					
58F8	...Repeated for module number 32					
DCMA Inputs (Read/Write Setting) (24 modules)						
7300	DCMA Inputs x Function	0 to 1	---	1	F102	0 (Disabled)
7301	DCMA Inputs x ID	---	---	---	F205	"DCMA lp 1"
7307	DCMA Inputs \times Reserved 1 (4 items)	0 to 65535	---	1	F001	0
730B	DCMA Inputs x Units	---	---	---	F206	"mA"
730E	DCMA Inputs \times Range	0 to 6	---	1	F173	6 (4 to 20 mA$)$
730F	DCMA Inputs x Minimum Value	-9999.999 to 9999.999	---	0.001	F004	4000
7311	DCMA Inputs x Maximum Value	-9999.999 to 9999.999	---	0.001	F004	20000
7313	DCMA Inputs \times Reserved (5 items)	0 to 65535	---	1	F001	0
7318	...Repeated for module number 2					
7330	...Repeated for module number 3					
7348	...Repeated for module number 4					
7360	...Repeated for module number 5					
7378	...Repeated for module number 6					
7390	...Repeated for module number 7					
73A8	...Repeated for module number 8					
73C0	...Repeated for module number 9					
73D8	...Repeated for module number 10					
73F0	...Repeated for module number 11					
7408	...Repeated for module number 12					
7420	...Repeated for module number 13					
7438	...Repeated for module number 14					
7450	...Repeated for module number 15					
7468	...Repeated for module number 16					
7480	...Repeated for module number 17					
7498	...Repeated for module number 18					
74B0	...Repeated for module number 19					
74C8	...Repeated for module number 20					
74E0	...Repeated for module number 21					
74F8	...Repeated for module number 22					
7510	...Repeated for module number 23					
7528	...Repeated for module number 24					
RTD Inputs (Read/Write Setting) (48 modules)						
7540	RTD Inputs x Function	0 to 1	---	1	F102	0 (Disabled)
7541	RTD Inputs x ID	---	---	---	F205	"RTD Ip 1 "
7547	RTD Inputs \times Reserved 1 (4 items)	0 to 65535	---	1	F001	0
754B	RTD Inputs \times Type	0 to 3	---	1	F174	0 (100 Ω Platinum)
754C	RTD Inputs \times Reserved 2 (4 items)	0 to 65535	---	1	F001	0
7550	...Repeated for module number 2					
7560	...Repeated for module number 3					
7570	...Repeated for module number 4					

Table B-9: MODBUS MEMORY MAP (Sheet 11 of 26)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
7580	...Repeated for module number 5					
7590	...Repeated for module number 6					
75A0	...Repeated for module number 7					
75B0	...Repeated for module number 8					
75C0	...Repeated for module number 9					
75D0	...Repeated for module number 10					
75E0	...Repeated for module number 11					
75F0	...Repeated for module number 12					
7600	...Repeated for module number 13					
7610	...Repeated for module number 14					
7620	...Repeated for module number 15					
7630	...Repeated for module number 16					
7640	...Repeated for module number 17					
7650	...Repeated for module number 18					
7660	...Repeated for module number 19					
7670	...Repeated for module number 20					
7680	...Repeated for module number 21					
7690	...Repeated for module number 22					
76A0	...Repeated for module number 23					
76B0	...Repeated for module number 24					
76C0	...Repeated for module number 25					
76D0	...Repeated for module number 26					
76E0	...Repeated for module number 27					
76F0	...Repeated for module number 28					
7700	...Repeated for module number 29					
7710	...Repeated for module number 30					
7720	...Repeated for module number 31					
7730	...Repeated for module number 32					
7740	...Repeated for module number 33					
7750	...Repeated for module number 34					
7760	...Repeated for module number 35					
7770	...Repeated for module number 36					
7780	...Repeated for module number 37					
7790	...Repeated for module number 38					
77A0	...Repeated for module number 39					
77B0	...Repeated for module number 40					
77C0	...Repeated for module number 41					
77D0	...Repeated for module number 42					
77E0	...Repeated for module number 43					
77F0	...Repeated for module number 44					
7800	...Repeated for module number 45					
7810	...Repeated for module number 46					
7820	...Repeated for module number 47					
7830	...Repeated for module number 48					
Ohm Inputs (Read/Write Setting) (2 modules)						
7840	Ohm Inputs x Function	0 to 1	---	1	F102	0 (Disabled)
7841	Ohm Inputs x ID	---	---	---	F205	"Ohm Ip 1"
7847	Ohm Inputs x Reserved (9 items)	0 to 65535	---	1	F001	0
7850	...Repeated for module number 2					
FlexState Settings (Read/Write Setting)						
8800	FlexState Parameters (256 items)	---	---	---	F300	0
FlexElement (Read/Write Setting) (16 modules)						
9000	FlexElement Function	0 to 1	---	1	F102	0 (Disabled)
9001	FlexElement Name	---	---	---	F206	"FxE 1"

Table B-9: MODBUS MEMORY MAP (Sheet 12 of 26)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
9004	FlexElement InputP	0 to 65535	---	1	F600	0
9005	FlexElement InputM	0 to 65535	---	1	F600	0
9006	FlexElement Compare	0 to 1	---	1	F516	0 (LEVEL)
9007	FlexElement Input	0 to 1	---	1	F515	0 (SIGNED)
9008	FlexElement Direction	0 to 1	---	1	F517	0 (OVER)
9009	FlexElement Hysteresis	0.1 to 50	\%	0.1	F001	30
900A	FlexElement Pickup	-90 to 90	pu	0.001	F004	1000
900C	FlexElement DeltaT Units	0 to 2	---	1	F518	0 (Milliseconds)
900D	FlexElement DeltaT	20 to 86400	---	1	F003	20
900F	FlexElement Pkp Delay	0 to 65.535	s	0.001	F001	0
9010	FlexElement Rst Delay	0 to 65.535	s	0.001	F001	0
9011	FlexElement Block	0 to 65535	---	1	F300	0
9012	FlexElement Target	0 to 2	---	1	F109	0 (Self-reset)
9013	FlexElement Events	0 to 1	---	1	F102	0 (Disabled)
9014	...Repeated for module number 2					
9028	...Repeated for module number 3					
903C	...Repeated for module number 4					
9050	...Repeated for module number 5					
9064	...Repeated for module number 6					
9078	...Repeated for module number 7					
908C	...Repeated for module number 8					
90A0	...Repeated for module number 9					
90B4	...Repeated for module number 10					
90C8	...Repeated for module number 11					
90DC	...Repeated for module number 12					
90F0	...Repeated for module number 13					
9104	...Repeated for module number 14					
9118	...Repeated for module number 15					
912C	...Repeated for module number 16					
FlexElement Actuals (Read Only) (16 modules)						
9A01	FlexElement Actual	$\begin{gathered} -2147483.647 \text { to } \\ 2147483.647 \end{gathered}$	---	0.001	F004	0
$9 \mathrm{A03}$...Repeated for module number 2					
9 A 05	...Repeated for module number 3					
9 A 07	...Repeated for module number 4					
9A09	...Repeated for module number 5					
9A0B	...Repeated for module number 6					
9A0D	...Repeated for module number 7					
9A0F	...Repeated for module number 8					
9A11	...Repeated for module number 9					
9A13	...Repeated for module number 10					
9A15	...Repeated for module number 11					
9 A 17	...Repeated for module number 12					
9A19	...Repeated for module number 13					
9A1B	...Repeated for module number 14					
9A1D	...Repeated for module number 15					
9A1F	...Repeated for module number 16					
Setting Groups (Read/Write Setting)						
A000	Setting Group for Modbus Comms (0 means group 1)	0 to 5	---	1	F001	0
A001	Setting Groups Block	0 to 65535	---	1	F300	0
A002	FlexLogic Operands to Activate Groups 2 to 8 (5 items)	0 to 65535	---	1	F300	0
A009	Setting Group Function	0 to 1	---	1	F102	0 (Disabled)
A00A	Setting Group Events	0 to 1	---	1	F102	0 (Disabled)

Table B-9: MODBUS MEMORY MAP (Sheet 13 of 26)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
Setting Groups (Read Only)						
A00B	Current Setting Group	0 to 5	---	1	F001	0
Selector Switch Actuals (Read Only)						
A400	Selector 1 Position	1 to 7	---	1	F001	0
A401	Selector 2 Position	1 to 7	---	1	F001	1
Selector Switch (Read/Write Grouped Setting) (2 modules)						
A410	Selector x Function	0 to 1	---	1	F102	0 (Disabled)
A411	Selector \times Range	1 to 7	---	1	F001	7
A412	Selector x Timeout	3 to 60	s	0.1	F001	50
A413	Selector \times Step Up	0 to 65535	---	1	F300	0
A414	Selector x Step Mode	0 to 1	---	1	F083	0 (Time-out)
A415	Selector x Ack	0 to 65535	---	1	F300	0
A416	Selector x Bit0	0 to 65535	---	1	F300	0
A417	Selector x Bit1	0 to 65535	---	1	F300	0
A418	Selector x Bit2	0 to 65535	---	1	F300	0
A419	Selector x Bit Mode	0 to 1	---	1	F083	0 (Time-out)
A41A	Selector x Bit Ack	0 to 65535	---	1	F300	0
A41B	Power Up Mode	0 to 1	---	1	F084	0 (Restore)
A41C	Selector x Target	0 to 2	---	1	F109	0 (Self-reset)
A41D	Selector x Events	0 to 1	---	1	F102	0 (Disabled)
A41E	Selector \times Reserved (10 items)	---	---	---	---	---
A428	...Repeated for module number 2					
Non Volatile Latches (Read/Write Setting) (16 modules)						
AD00	Latch x Function	0 to 1	---	1	F102	0 (Disabled)
AD01	Latch \times Type	0 to 1	---	1	F519	0 (Reset Dominant)
AD02	Latch \times Set	0 to 65535	---	1	F300	0
AD03	Latch \times Reset	0 to 65535	---	1	F300	0
AD04	Latch \times Target	0 to 2	---	1	F109	0 (Self-reset)
AD05	Latch \times Events	0 to 1	---	1	F102	0 (Disabled)
AD06	Latch \times Reserved (4 items)	---	---	---	F001	0
AD0A	...Repeated for module number 2					
AD14	...Repeated for module number 3					
AD1E	...Repeated for module number 4					
AD28	...Repeated for module number 5					
AD32	...Repeated for module number 6					
AD3C	...Repeated for module number 7					
AD46	...Repeated for module number 8					
AD50	...Repeated for module number 9					
AD5A	...Repeated for module number 10					
AD64	...Repeated for module number 11					
AD6E	...Repeated for module number 12					
AD78	...Repeated for module number 13					
AD82	...Repeated for module number 14					
AD8C	...Repeated for module number 15					
AD96	...Repeated for module number 16					
Digital Elements (Read/Write Setting) (16 modules)						
B000	Digital Element x Function	0 to 1	---	1	F102	0 (Disabled)
B001	Digital Element x Name	---	---	---	F203	"Dig Element 1 "
B015	Digital Element x Input	0 to 65535	---	1	F300	0
B016	Digital Element x Pickup Delay	0 to 999999.999	s	0.001	F003	0
B018	Digital Element x Reset Delay	0 to 999999.999	s	0.001	F003	0
B01A	Digital Element x Block	0 to 65535	---	1	F300	0
B01B	Digital Element \times Target	0 to 2	---	1	F109	0 (Self-reset)
B01C	Digital Element \times Events	0 to 1	---	1	F102	0 (Disabled)

Table B-9: MODBUS MEMORY MAP (Sheet 14 of 26)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
B01D	Digital Element x Reserved (3 items)	---	---	---	F001	0
B020	...Repeated for module number 2					
B040	...Repeated for module number 3					
B060	...Repeated for module number 4					
B080	...Repeated for module number 5					
B0A0	...Repeated for module number 6					
B0C0	...Repeated for module number 7					
B0E0	...Repeated for module number 8					
B100	...Repeated for module number 9					
B120	...Repeated for module number 10					
B140	...Repeated for module number 11					
B160	...Repeated for module number 12					
B180	...Repeated for module number 13					
B1A0	...Repeated for module number 14					
B1C0	...Repeated for module number 15					
B1E0	...Repeated for module number 16					
Digital Counter (Read/Write Setting) (8 modules)						
B300	Digital Counter x Function	0 to 1	---	1	F102	0 (Disabled)
B301	Digital Counter \times Name	---	---	---	F205	"Counter 1"
B307	Digital Counter \times Units	---	---	---	F206	(none)
B30A	Digital Counter x Block	0 to 65535	---	1	F300	0
B30B	Digital Counter x Up	0 to 65535	---	1	F300	0
B30C	Digital Counter x Down	0 to 65535	---	1	F300	0
B30D	Digital Counter x Preset	$\begin{gathered} -2147483647 \text { to } \\ 2147483647 \end{gathered}$	---	1	F004	0
B30F	Digital Counter x Compare	$\begin{gathered} -2147483647 \text { to } \\ 2147483647 \end{gathered}$	---	1	F004	0
B311	Digital Counter \times Reset	0 to 65535	---	1	F300	0
B312	Digital Counter x Freeze/Reset	0 to 65535	---	1	F300	0
B313	Digital Counter x Freeze/Count	0 to 65535	---	1	F300	0
B314	Digital Counter Set To Preset	0 to 65535	---	1	F300	0
B315	Digital Counter x Reserved (11 items)	---	---	---	F001	0
B320	...Repeated for module number 2					
B340	...Repeated for module number 3					
B360	...Repeated for module number 4					
B380	...Repeated for module number 5					
B3A0	...Repeated for module number 6					
B3C0	...Repeated for module number 7					
B3E0	...Repeated for module number 8					
Contact Inputs (Read/Write Setting) (96 modules)						
C000	Contact Input x Name	---	---	---	F205	"Cont lp 1"
C006	Contact Input x Events	0 to 1	---	1	F102	0 (Disabled)
C007	Contact Input x Debounce Time	0 to 16	ms	0.5	F001	20
C008	...Repeated for module number 2					
C010	...Repeated for module number 3					
C018	...Repeated for module number 4					
C020	...Repeated for module number 5					
C028	...Repeated for module number 6					
C030	...Repeated for module number 7					
C038	...Repeated for module number 8					
C040	...Repeated for module number 9					
C048	...Repeated for module number 10					
C050	...Repeated for module number 11					
C058	...Repeated for module number 12					
C060	...Repeated for module number 13					

Table B-9: MODBUS MEMORY MAP (Sheet 15 of 26)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
C068	...Repeated for module number 14					
C070	...Repeated for module number 15					
C078	...Repeated for module number 16					
C080	...Repeated for module number 17					
C088	...Repeated for module number 18					
C090	...Repeated for module number 19					
C098	...Repeated for module number 20					
C0AO	...Repeated for module number 21					
C0A8	...Repeated for module number 22					
COBO	...Repeated for module number 23					
C0B8	...Repeated for module number 24					
C0C0	...Repeated for module number 25					
C0C8	...Repeated for module number 26					
C0D0	...Repeated for module number 27					
C0D8	...Repeated for module number 28					
C0E0	...Repeated for module number 29					
C0E8	...Repeated for module number 30					
C0F0	...Repeated for module number 31					
C0F8	...Repeated for module number 32					
C100	...Repeated for module number 33					
C108	...Repeated for module number 34					
C110	...Repeated for module number 35					
C118	...Repeated for module number 36					
C120	...Repeated for module number 37					
C128	...Repeated for module number 38					
C130	...Repeated for module number 39					
C138	...Repeated for module number 40					
C140	...Repeated for module number 41					
C148	...Repeated for module number 42					
C150	...Repeated for module number 43					
C158	...Repeated for module number 44					
C160	...Repeated for module number 45					
C168	...Repeated for module number 46					
C170	...Repeated for module number 47					
C178	...Repeated for module number 48					
C180	...Repeated for module number 49					
C188	...Repeated for module number 50					
C190	...Repeated for module number 51					
C198	...Repeated for module number 52					
C1A0	...Repeated for module number 53					
C1A8	...Repeated for module number 54					
C1B0	...Repeated for module number 55					
C1B8	...Repeated for module number 56					
C1C0	...Repeated for module number 57					
C1C8	...Repeated for module number 58					
C1D0	...Repeated for module number 59					
C1D8	...Repeated for module number 60					
C1E0	...Repeated for module number 61					
C1E8	...Repeated for module number 62					
C1F0	...Repeated for module number 63					
C1F8	...Repeated for module number 64					
C200	...Repeated for module number 65					
C208	...Repeated for module number 66					
C210	...Repeated for module number 67					

Table B-9: MODBUS MEMORY MAP (Sheet 16 of 26)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
C218	...Repeated for module number 68					
C220	...Repeated for module number 69					
C228	...Repeated for module number 70					
C230	...Repeated for module number 71					
C238	...Repeated for module number 72					
C240	...Repeated for module number 73					
C248	...Repeated for module number 74					
C250	...Repeated for module number 75					
C258	...Repeated for module number 76					
C260	...Repeated for module number 77					
C268	...Repeated for module number 78					
C270	...Repeated for module number 79					
C278	...Repeated for module number 80					
C280	...Repeated for module number 81					
C288	...Repeated for module number 82					
C290	...Repeated for module number 83					
C298	...Repeated for module number 84					
C2A0	...Repeated for module number 85					
C2A8	...Repeated for module number 86					
C2B0	...Repeated for module number 87					
C2B8	...Repeated for module number 88					
C2C0	...Repeated for module number 89					
C2C8	...Repeated for module number 90					
C2D0	...Repeated for module number 91					
C2D8	...Repeated for module number 92					
C2E0	...Repeated for module number 93					
C2E8	...Repeated for module number 94					
C2F0	...Repeated for module number 95					
C2F8	...Repeated for module number 96					
Contact Input Thresholds (Read/Write Setting)						
C600	Contact Input x Threshold (24 items)	0 to 3	---	1	F128	1 (33 Vdc)
Virtual Inputs Global Settings (Read/Write Setting)						
C680	Virtual Inputs SBO Timeout	1 to 60	S	1	F001	30
Virtual Inputs (Read/Write Setting) (32 modules)						
C690	Virtual Input x Function	0 to 1	---	1	F102	0 (Disabled)
C691	Virtual Input x Name	---	---	---	F205	"Virt Ip 1"
C69B	Virtual Input x Programmed Type	0 to 1	---	1	F127	0 (Latched)
C69C	Virtual Input x Events	0 to 1	---	1	F102	0 (Disabled)
C69D	Virtual Input x UCA SBOClass	1 to 2	---	1	F001	1
C69E	Virtual Input x UCA SBOEna	0 to 1	---	1	F102	0 (Disabled)
C69F	Virtual Input x Reserved	---	---	---	F001	0
C6A0	...Repeated for module number 2					
C6B0	...Repeated for module number 3					
C6C0	...Repeated for module number 4					
C6D0	...Repeated for module number 5					
C6E0	...Repeated for module number 6					
C6F0	...Repeated for module number 7					
C700	...Repeated for module number 8					
C710	...Repeated for module number 9					
C720	...Repeated for module number 10					
C730	...Repeated for module number 11					
C740	...Repeated for module number 12					
C750	...Repeated for module number 13					
C760	...Repeated for module number 14					

Table B-9: MODBUS MEMORY MAP (Sheet 17 of 26)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
C770	...Repeated for module number 15					
C780	...Repeated for module number 16					
C790	...Repeated for module number 17					
C7A0	...Repeated for module number 18					
C7B0	...Repeated for module number 19					
C7C0	...Repeated for module number 20					
C7D0	...Repeated for module number 21					
C7E0	...Repeated for module number 22					
C7F0	...Repeated for module number 23					
C800	...Repeated for module number 24					
C810	...Repeated for module number 25					
C820	...Repeated for module number 26					
C830	...Repeated for module number 27					
C840	...Repeated for module number 28					
C850	...Repeated for module number 29					
C860	...Repeated for module number 30					
C870	...Repeated for module number 31					
C880	...Repeated for module number 32					
Virtual Outputs (Read/Write Setting) (64 modules)						
CC90	Virtual Output x Name	---	---	---	F205	"Virt Op 1"
CC9A	Virtual Output x Events	0 to 1	---	1	F102	0 (Disabled)
CC9B	Virtual Output x Reserved (5 items)	---	---	---	F001	0
CCAO	...Repeated for module number 2					
CCB0	...Repeated for module number 3					
CCC0	...Repeated for module number 4					
CCD0	...Repeated for module number 5					
CCEO	...Repeated for module number 6					
CCFO	...Repeated for module number 7					
CD00	...Repeated for module number 8					
CD10	...Repeated for module number 9					
CD20	...Repeated for module number 10					
CD30	...Repeated for module number 11					
CD40	...Repeated for module number 12					
CD50	...Repeated for module number 13					
CD60	...Repeated for module number 14					
CD70	...Repeated for module number 15					
CD80	...Repeated for module number 16					
CD90	...Repeated for module number 17					
CDAO	...Repeated for module number 18					
CDB0	...Repeated for module number 19					
CDC0	...Repeated for module number 20					
CDD0	...Repeated for module number 21					
CDE0	...Repeated for module number 22					
CDF0	...Repeated for module number 23					
CE00	...Repeated for module number 24					
CE10	...Repeated for module number 25					
CE20	...Repeated for module number 26					
CE30	...Repeated for module number 27					
CE40	...Repeated for module number 28					
CE50	...Repeated for module number 29					
CE60	...Repeated for module number 30					
CE70	...Repeated for module number 31					
CE80	...Repeated for module number 32					
CE90	...Repeated for module number 33					

Table B-9: MODBUS MEMORY MAP (Sheet 18 of 26)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
CEA0	...Repeated for module number 34					
CEB0	...Repeated for module number 35					
CEC0	...Repeated for module number 36					
CED0	...Repeated for module number 37					
CEE0	...Repeated for module number 38					
CEF0	...Repeated for module number 39					
CFOO	...Repeated for module number 40					
CF10	...Repeated for module number 41					
CF20	...Repeated for module number 42					
CF30	...Repeated for module number 43					
CF40	...Repeated for module number 44					
CF50	...Repeated for module number 45					
CF60	...Repeated for module number 46					
CF70	...Repeated for module number 47					
CF80	...Repeated for module number 48					
CF90	...Repeated for module number 49					
CFAO	...Repeated for module number 50					
CFB0	...Repeated for module number 51					
CFC0	...Repeated for module number 52					
CFD0	...Repeated for module number 53					
CFE0	...Repeated for module number 54					
CFF0	...Repeated for module number 55					
D000	...Repeated for module number 56					
D010	...Repeated for module number 57					
D020	...Repeated for module number 58					
D030	...Repeated for module number 59					
D040	...Repeated for module number 60					
D050	...Repeated for module number 61					
D060	...Repeated for module number 62					
D070	...Repeated for module number 63					
D080	...Repeated for module number 64					
Mandatory (Read/Write)						
D280	Test Mode Function	0 to 1	---	1	F102	0 (Disabled)
D281	Force VFD and LED	0 to 1	---	1	F126	0 (No)
Contact Outputs (Read/Write Setting) (64 modules)						
D290	Contact Output x Name	---	---	---	F205	"Cont Op 1 "
D29A	Contact Output x Operation	0 to 65535	---	1	F300	0
D29B	Contact Output x Seal In	0 to 65535	---	1	F300	0
D29C	Reserved	---	---	1	F001	0
D29D	Contact Output x Events	0 to 1	---	1	F102	1 (Enabled)
D29E	Reserved (2 items)	---	---	---	F001	0
D2A0	...Repeated for module number 2					
D2B0	...Repeated for module number 3					
D2C0	...Repeated for module number 4					
D2D0	...Repeated for module number 5					
D2E0	...Repeated for module number 6					
D2F0	...Repeated for module number 7					
D300	...Repeated for module number 8					
D310	...Repeated for module number 9					
D320	...Repeated for module number 10					
D330	...Repeated for module number 11					
D340	...Repeated for module number 12					
D350	...Repeated for module number 13					
D360	...Repeated for module number 14					

Table B-9: MODBUS MEMORY MAP (Sheet 19 of 26)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
D370	...Repeated for module number 15					
D380	...Repeated for module number 16					
D390	...Repeated for module number 17					
D3A0	...Repeated for module number 18					
D3B0	...Repeated for module number 19					
D3C0	...Repeated for module number 20					
D3D0	...Repeated for module number 21					
D3E0	...Repeated for module number 22					
D3F0	...Repeated for module number 23					
D400	...Repeated for module number 24					
D410	...Repeated for module number 25					
D420	...Repeated for module number 26					
D430	...Repeated for module number 27					
D440	...Repeated for module number 28					
D450	...Repeated for module number 29					
D460	...Repeated for module number 30					
D470	...Repeated for module number 31					
D480	...Repeated for module number 32					
D490	...Repeated for module number 33					
D4A0	...Repeated for module number 34					
D4B0	...Repeated for module number 35					
D4C0	...Repeated for module number 36					
D4D0	...Repeated for module number 37					
D4E0	...Repeated for module number 38					
D4F0	...Repeated for module number 39					
D500	...Repeated for module number 40					
D510	...Repeated for module number 41					
D520	...Repeated for module number 42					
D530	...Repeated for module number 43					
D540	...Repeated for module number 44					
D550	...Repeated for module number 45					
D560	...Repeated for module number 46					
D570	...Repeated for module number 47					
D580	...Repeated for module number 48					
D590	...Repeated for module number 49					
D5A0	...Repeated for module number 50					
D5B0	...Repeated for module number 51					
D5C0	...Repeated for module number 52					
D5D0	...Repeated for module number 53					
D5E0	...Repeated for module number 54					
D5F0	...Repeated for module number 55					
D600	...Repeated for module number 56					
D610	...Repeated for module number 57					
D620	...Repeated for module number 58					
D630	...Repeated for module number 59					
D640	...Repeated for module number 60					
D650	...Repeated for module number 61					
D660	...Repeated for module number 62					
D670	...Repeated for module number 63					
D680	...Repeated for module number 64					
Reset (Read/Write Setting)						
D800	FlexLogic operand which initiates a reset	0 to 65535	---	1	F300	0
Control Pushbuttons (Read/Write Setting) (3 modules)						
D810	Control Pushbutton x Function	0 to 1	---	1	F102	0 (Disabled)

Table B-9: MODBUS MEMORY MAP (Sheet 20 of 26)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
D811	Control Pushbutton x Events	0 to 1	---	1	F102	0 (Disabled)
D812	Control Pushbutton x Reserved	0 to 1	---	1	F001	0
D814	...Repeated for module number 2					
D818	...Repeated for module number 3					
Clear Relay Records (Read/Write Setting)						
D822	Clear Event Records Operand	0 to 65535	---	1	F300	0
D823	Clear Oscillography Operand	0 to 65535	---	1	F300	0
D824	Clear Data Logger Operand	0 to 65535	---	1	F300	0
D82B	Clear Unauthorized Access Operand	0 to 65535	---	1	F300	0
D82D	Clear Platform Direct I/O Stats Operand	0 to 65535	---	1	F300	0
D82E	Clear Relay Records Reserved					
Force Contact Inputs (Read/Write Setting)						
D8B0	Force Contact Input x State (96 items)	0 to 2	---	1	F144	0 (Disabled)
Force Contact Outputs (Read/Write Setting)						
D910	Force Contact Output x State (64 items)	0 to 3	---	1	F131	0 (Disabled)
Platform Direct l/O (Read/Write Setting)						
DB40	Direct Device ID	1 to 8	---	1	F001	1
DB41	Platform Direct I/O Ring Ch 1 Configuration Function	0 to 1	---	1	F126	0 (No)
DB42	Platform Direct I/O Data Rate	64 to 128	kbps	64	F001	64
DB41	Platform Direct I/O Ring Ch 2Configuration Function	0 to 1	---	1	F126	0 (No)
DB42	Platform Direct I/O Crossover Function	0 to 1	---	1	F102	0 (Disabled)
Platform Direct Inputs (Read/Write Setting) (96 modules)						
DB50	Direct Input x Device Number	0 to 8	---	1	F001	0
DB51	Direct Input x Number	0 to 96	---	1	F001	0
DB52	Direct Input x Default State	0 to 1	---	1	F108	0 (Off)
DB53	Direct Input x Events	0 to 1	---	1	F102	0 (Disabled)
DB54	...Repeated for module number 2					
DB58	...Repeated for module number 3					
DB5C	...Repeated for module number 4					
DB60	...Repeated for module number 5					
DB64	...Repeated for module number 6					
DB68	...Repeated for module number 7					
DB6C	...Repeated for module number 8					
DB70	...Repeated for module number 9					
DB74	...Repeated for module number 10					
DB78	...Repeated for module number 11					
DB7C	...Repeated for module number 12					
DB80	...Repeated for module number 13					
DB84	...Repeated for module number 14					
DB88	...Repeated for module number 15					
DB8C	...Repeated for module number 16					
DB90	...Repeated for module number 17					
DB94	...Repeated for module number 18					
DB98	...Repeated for module number 19					
DB9C	...Repeated for module number 20					
DBA0	...Repeated for module number 21					
DBA4	...Repeated for module number 22					
DBA8	...Repeated for module number 23					
DBAC	...Repeated for module number 24					
DBB0	...Repeated for module number 25					
DBB4	...Repeated for module number 26					
DBB8	...Repeated for module number 27					
DBBC	...Repeated for module number 28					
DBC0	...Repeated for module number 29					

Table B-9: MODBUS MEMORY MAP (Sheet 21 of 26)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
DBC4	...Repeated for module number 30					
DBC8	...Repeated for module number 31					
DBCC	...Repeated for module number 32					
DBD0	...Repeated for module number 33					
DBD4	...Repeated for module number 34					
DBD8	...Repeated for module number 35					
DBDC	...Repeated for module number 36					
DBE0	...Repeated for module number 37					
DBE4	...Repeated for module number 38					
DBE8	...Repeated for module number 39					
DBEC	...Repeated for module number 40					
DBF0	...Repeated for module number 41					
DBF4	...Repeated for module number 42					
DBF8	...Repeated for module number 43					
DBFC	...Repeated for module number 44					
DC00	...Repeated for module number 45					
DC04	...Repeated for module number 46					
DC08	...Repeated for module number 47					
DC0C	...Repeated for module number 48					
DC10	...Repeated for module number 49					
DC14	...Repeated for module number 50					
DC18	...Repeated for module number 51					
DC1C	...Repeated for module number 52					
DC20	...Repeated for module number 53					
DC24	...Repeated for module number 54					
DC28	...Repeated for module number 55					
DC2C	...Repeated for module number 56					
DC30	...Repeated for module number 57					
DC34	...Repeated for module number 58					
DC38	...Repeated for module number 59					
DC3C	...Repeated for module number 60					
DC40	...Repeated for module number 61					
DC44	...Repeated for module number 62					
DC48	...Repeated for module number 63					
DC4C	...Repeated for module number 64					
DC50	...Repeated for module number 65					
DC54	...Repeated for module number 66					
DC58	...Repeated for module number 67					
DC5C	...Repeated for module number 68					
DC60	...Repeated for module number 69					
DC64	...Repeated for module number 70					
DC68	...Repeated for module number 71					
DC6C	...Repeated for module number 72					
DC70	...Repeated for module number 73					
DC74	...Repeated for module number 74					
DC78	...Repeated for module number 75					
DC7C	...Repeated for module number 76					
DC80	...Repeated for module number 77					
DC84	...Repeated for module number 78					
DC88	...Repeated for module number 79					
DC8C	...Repeated for module number 80					
DC90	...Repeated for module number 81					
DC94	...Repeated for module number 82					
DC98	...Repeated for module number 83					

Table B-9: MODBUS MEMORY MAP (Sheet 22 of 26)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
DC9C	...Repeated for module number 84					
DCA0	...Repeated for module number 85					
DCA4	...Repeated for module number 86					
DCA8	...Repeated for module number 87					
DCAC	...Repeated for module number 88					
DCB0	...Repeated for module number 89					
DCB4	...Repeated for module number 90					
DCB8	...Repeated for module number 91					
DCBC	...Repeated for module number 92					
DCC0	...Repeated for module number 93					
DCC4	...Repeated for module number 94					
DCC8	...Repeated for module number 95					
DCCC	...Repeated for module number 96					
Platform Direct Outputs (Read/Write Setting) (96 modules)						
DD00	Direct Output x Operand	0 to 65535	---	1	F300	0
DD01	Direct Output x Events	0 to 1	---	1	F102	0 (Disabled)
DD02	...Repeated for module number 2					
DD04	...Repeated for module number 3					
DD06	...Repeated for module number 4					
DD08	...Repeated for module number 5					
DD0A	...Repeated for module number 6					
DD0C	...Repeated for module number 7					
DD0E	...Repeated for module number 8					
DD10	...Repeated for module number 9					
DD12	...Repeated for module number 10					
DD14	...Repeated for module number 11					
DD16	...Repeated for module number 12					
DD18	...Repeated for module number 13					
DD1A	...Repeated for module number 14					
DD1C	...Repeated for module number 15					
DD1E	...Repeated for module number 16					
DD20	...Repeated for module number 17					
DD22	...Repeated for module number 18					
DD24	...Repeated for module number 19					
DD26	...Repeated for module number 20					
DD28	...Repeated for module number 21					
DD2A	...Repeated for module number 22					
DD2C	...Repeated for module number 23					
DD2E	...Repeated for module number 24					
DD30	...Repeated for module number 25					
DD32	...Repeated for module number 26					
DD34	...Repeated for module number 27					
DD36	...Repeated for module number 28					
DD38	...Repeated for module number 29					
DD3A	...Repeated for module number 30					
DD3C	...Repeated for module number 31					
DD3E	...Repeated for module number 32					
DD40	...Repeated for module number 33					
DD42	...Repeated for module number 34					
DD44	...Repeated for module number 35					
DD46	...Repeated for module number 36					
DD48	...Repeated for module number 37					
DD4A	...Repeated for module number 38					
DD4C	...Repeated for module number 39					

Table B-9: MODBUS MEMORY MAP (Sheet 23 of 26)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
DD4E	...Repeated for module number 40					
DD50	...Repeated for module number 41					
DD52	...Repeated for module number 42					
DD54	...Repeated for module number 43					
DD56	...Repeated for module number 44					
DD58	...Repeated for module number 45					
DD5A	...Repeated for module number 46					
DD5C	...Repeated for module number 47					
DD5E	...Repeated for module number 48					
DD60	...Repeated for module number 49					
DD62	...Repeated for module number 50					
DD64	...Repeated for module number 51					
DD66	...Repeated for module number 52					
DD68	...Repeated for module number 53					
DD6A	...Repeated for module number 54					
DD6C	...Repeated for module number 55					
DD6E	...Repeated for module number 56					
DD70	...Repeated for module number 57					
DD72	...Repeated for module number 58					
DD74	...Repeated for module number 59					
DD76	...Repeated for module number 60					
DD78	...Repeated for module number 61					
DD7A	...Repeated for module number 62					
DD7C	...Repeated for module number 63					
DD7E	...Repeated for module number 64					
DD80	...Repeated for module number 65					
DD82	...Repeated for module number 66					
DD84	...Repeated for module number 67					
DD86	...Repeated for module number 68					
DD88	...Repeated for module number 69					
DD8A	...Repeated for module number 70					
DD8C	...Repeated for module number 71					
DD8E	...Repeated for module number 72					
DD90	...Repeated for module number 73					
DD92	...Repeated for module number 74					
DD94	...Repeated for module number 75					
DD96	...Repeated for module number 76					
DD98	...Repeated for module number 77					
DD9A	...Repeated for module number 78					
DD9C	...Repeated for module number 79					
DD9E	...Repeated for module number 80					
DDA0	...Repeated for module number 81					
DDA2	...Repeated for module number 82					
DDA4	...Repeated for module number 83					
DDA6	...Repeated for module number 84					
DDA8	...Repeated for module number 85					
DDAA	...Repeated for module number 86					
DDAC	...Repeated for module number 87					
DDAE	...Repeated for module number 88					
DDB0	...Repeated for module number 89					
DDB2	...Repeated for module number 90					
DDB4	...Repeated for module number 91					
DDB6	...Repeated for module number 92					
DDB8	...Repeated for module number 93					

Table B-9: MODBUS MEMORY MAP (Sheet 24 of 26)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
DDBA	...Repeated for module number 94					
DDBC	...Repeated for module number 95					
DDBE	...Repeated for module number 96					
Remote Devices (Read/Write Setting) (16 modules)						
E000	Remote Device x ID	---	---	---	F202	"Remote Device 1"
E00A	...Repeated for module number 2					
E014	...Repeated for module number 3					
E01E	...Repeated for module number 4					
E028	...Repeated for module number 5					
E032	...Repeated for module number 6					
E03C	...Repeated for module number 7					
E046	...Repeated for module number 8					
E050	...Repeated for module number 9					
E05A	...Repeated for module number 10					
E064	...Repeated for module number 11					
E06E	...Repeated for module number 12					
E078	...Repeated for module number 13					
E082	...Repeated for module number 14					
E08C	...Repeated for module number 15					
E096	...Repeated for module number 16					
Remote Inputs (Read/Write Setting) (32 modules)						
E100	Remote Input x Device	1 to 16	---	1	F001	1
E101	Remote Input x Bit Pair	0 to 64	---	1	F156	0 (None)
E102	Remote Input x Default State	0 to 1	---	1	F108	0 (Off)
E103	Remote Input x Events	0 to 1	---	1	F102	0 (Disabled)
E104	...Repeated for module number 2					
E108	...Repeated for module number 3					
E10C	...Repeated for module number 4					
E110	...Repeated for module number 5					
E114	...Repeated for module number 6					
E118	...Repeated for module number 7					
E11C	...Repeated for module number 8					
E120	...Repeated for module number 9					
E124	...Repeated for module number 10					
E128	...Repeated for module number 11					
E12C	...Repeated for module number 12					
E130	...Repeated for module number 13					
E134	...Repeated for module number 14					
E138	...Repeated for module number 15					
E13C	...Repeated for module number 16					
E140	...Repeated for module number 17					
E144	...Repeated for module number 18					
E148	...Repeated for module number 19					
E14C	...Repeated for module number 20					
E150	...Repeated for module number 21					
E154	...Repeated for module number 22					
E158	...Repeated for module number 23					
E15C	...Repeated for module number 24					
E160	...Repeated for module number 25					
E164	...Repeated for module number 26					
E168	...Repeated for module number 27					
E16C	...Repeated for module number 28					
E170	...Repeated for module number 29					
E174	...Repeated for module number 30					

Table B-9: MODBUS MEMORY MAP (Sheet 25 of 26)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
E178	...Repeated for module number 31					
E17C	...Repeated for module number 32					
Remote Output DNA Pairs (Read/Write Setting) (32 modules)						
E600	Remote Output DNA x Operand	0 to 65535	---	1	F300	0
E601	Remote Output DNA x Events	0 to 1	---	1	F102	0 (Disabled)
E602	Remote Output DNA x Reserved (2 items)	0 to 1	---	1	F001	0
E604	...Repeated for module number 2					
E608	...Repeated for module number 3					
E60C	...Repeated for module number 4					
E610	...Repeated for module number 5					
E614	...Repeated for module number 6					
E618	...Repeated for module number 7					
E61C	...Repeated for module number 8					
E620	...Repeated for module number 9					
E624	...Repeated for module number 10					
E628	...Repeated for module number 11					
E62C	...Repeated for module number 12					
E630	...Repeated for module number 13					
E634	...Repeated for module number 14					
E638	...Repeated for module number 15					
E63C	...Repeated for module number 16					
E640	...Repeated for module number 17					
E644	...Repeated for module number 18					
E648	...Repeated for module number 19					
E64C	...Repeated for module number 20					
E650	...Repeated for module number 21					
E654	...Repeated for module number 22					
E658	...Repeated for module number 23					
E65C	...Repeated for module number 24					
E660	...Repeated for module number 25					
E664	...Repeated for module number 26					
E668	...Repeated for module number 27					
E66C	...Repeated for module number 28					
E670	...Repeated for module number 29					
E674	...Repeated for module number 30					
E678	...Repeated for module number 31					
E67C	...Repeated for module number 32					
Remote Output UserSt Pairs (Read/Write Setting) (32 modules)						
E680	Remote Output UserSt x Operand	0 to 65535	---	1	F300	0
E681	Remote Output UserSt x Events	0 to 1	---	1	F102	0 (Disabled)
E682	Remote Output UserSt x Reserved (2 items)	0 to 1	---	1	F001	0
E684	...Repeated for module number 2					
E688	...Repeated for module number 3					
E68C	...Repeated for module number 4					
E690	...Repeated for module number 5					
E694	...Repeated for module number 6					
E698	...Repeated for module number 7					
E69C	...Repeated for module number 8					
E6A0	...Repeated for module number 9					
E6A4	...Repeated for module number 10					
E6A8	...Repeated for module number 11					
E6AC	...Repeated for module number 12					
E6B0	...Repeated for module number 13					
E6B4	...Repeated for module number 14					

APPENDIX B

Table B-9: MODBUS MEMORY MAP (Sheet 26 of 26)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT
E6B8	...Repeated for module number 15			DEFAULT	
E6BC	...Repeated for module number 16				
E6C0	...Repeated for module number 17				
E6C4	...Repeated for module number 18				
E6C8	...Repeated for module number 19				
E6CC	...Repeated for module number 20				
E6D0	...Repeated for module number 21				
E6D4	...Repeated for module number 22				
E6D8	...Repeated for module number 23				
E6DC	...Repeated for module number 24				
E6E0	...Repeated for module number 25				
E6E4	...Repeated for module number 26				
E6E8	...Repeated for module number 27				
E6EC	...Repeated for module number 28				
E6F0	...Repeated for module number 29				
E6F4	...Repeated for module number 30				
E6F8	...Repeated for module number 31				
E6FC	...Repeated for module number 32				

F001

UR_UINT16 UNSIGNED 16 BIT INTEGER

F002

UR_SINT16 SIGNED 16 BIT INTEGER

F003

UR_UINT32 UNSIGNED 32 BIT INTEGER (2 registers)
High order word is stored in the first register.
Low order word is stored in the second register.

F004
 UR_SINT32 SIGNED 32 BIT INTEGER (2 registers)

High order word is stored in the first register/ Low order word is stored in the second register.

F005
 UR_UINT8 UNSIGNED 8 BIT INTEGER

F006

UR_SINT8 SIGNED 8 BIT INTEGER

F011
 UR_UINT16 FLEXCURVE DATA (120 points)

A FlexCurve is an array of 120 consecutive data points (x, y) which are interpolated to generate a smooth curve. The y-axis is the user defined trip or operation time setting; the x-axis is the pickup ratio and is pre-defined. Refer to format F119 for a listing of the pickup ratios; the enumeration value for the pickup ratio indicates the offset into the FlexCurve base address where the corresponding time value is stored.

F012

DISPLAY_SCALE DISPLAY SCALING
(unsigned 16-bit integer)
MSB indicates the SI units as a power of ten. LSB indicates the number of decimal points to display.
Example: Current values are stored as 32 bit numbers with three decimal places and base units in Amps. If the retrieved value is 12345.678 A and the display scale equals 0×0302 then the displayed value on the unit is 12.35 kA .

[^0]
F051

UR_UINT32 DATE in SR format (alternate format for F050)
First 16 bits are Month/Day (MM/DD/xxxx). Month: 1=January, 2=February,...,12=December; Day: 1 to 31 in steps of 1 Last 16 bits are Year (xx/xx/YYYY): 1970 to 2106 in steps of 1

F052

UR_UINT32 TIME in SR format (alternate format for F050)
First 16 bits are Hours/Minutes (HH:MM:xx.xxx).
Hours: $0=12 \mathrm{am}, 1=1 \mathrm{am}, \ldots, 12=12 \mathrm{pm}, \ldots 23=11 \mathrm{pm}$;
Minutes: 0 to 59 in steps of 1
Last 16 bits are Seconds (xx:xx:.SS.SSS): $0=00.000 \mathrm{~s}$, $1=00.001, \ldots, 59999=59.999 s$)

F060

FLOATING_POINT IEE FLOATING POINT (32 bits)

F070
 HEX2 2 BYTES - 4 ASCII DIGITS

F071

HEX4 4 BYTES - 8 ASCII DIGITS

F072

HEX6 6 BYTES - 12 ASCII DIGITS

F073

HEX8 8 BYTES - 16 ASCII DIGITS

F074

HEX2O 20 BYTES - 40 ASCII DIGITS

F100
 ENUMERATION: VT CONNECTION TYPE

0 = Wye; 1 = Delta

F101

ENUMERATION: MESSAGE DISPLAY INTENSITY
$0=25 \%, 1=50 \%, 2=75 \%, 3=100 \%$

F102

ENUMERATION: DISABLED/ENABLED
0 = Disabled; 1 = Enabled

F103
ENUMERATION: CURVE SHAPES

bitmask	curve shape
0	IEEE Mod Inv
1	IEEE Very Inv
2	IEEE Ext Inv
3	IEC Curve A
4	IEC Curve B
5	IEC Curve C
6	IEC Short Inv
7	IAC Ext Inv
8	IAC Very Inv

bitmask	curve shape
9	IAC Inverse
10	IAC Short Inv
11	I2t
12	Definite Time
13	FlexCurve $^{\text {TM }} \mathrm{A}$
14	FlexCurve $^{\text {TM }} \mathrm{B}$
15	FlexCurve $^{\text {TM }} \mathrm{C}$
16	FlexCurve $^{\text {TM }} \mathrm{D}$

F104

ENUMERATION: RESET TYPE
0 = Instantaneous, 1 = Timed, 2 = Linear

F105

ENUMERATION: LOGIC INPUT
$0=$ Disabled, $1=$ Input $1,2=\operatorname{Input} 2$

F106

ENUMERATION: PHASE ROTATION
$0=A B C, 1=A C B$

F108

ENUMERATION: OFF/ON
$0=\mathrm{Off}, 1=\mathrm{On}$

F109
 ENUMERATION: CONTACT OUTPUT OPERATION

0 = Self-reset, 1 = Latched, 2 = Disabled

F110
ENUMERATION: CONTACT OUTPUT LED CONTROL
0 = Trip, 1 = Alarm, 2 = None

F112
ENUMERATION: RS485 BAUD RATES

bitmask	value			
0	300			
1	1200			
2	2400			
3	4800	\quad	bitmask	value
:---:	:---	:---	:---	
4	9600			
5	19200			
6	38400			
7	57600	\quad	bitmask	value
:---:	:---:			
9	115200			
9	14400			
10	28800			
11	33600			

F113
ENUMERATION: PARITY
0 = None, 1 = Odd, 2 = Even

F114
ENUMERATION: IRIG-B SIGNAL TYPE
$0=$ None, 1 = DC Shift, 2 = Amplitude Modulated

F117
ENUMERATION: NUMBER OF OSCILLOGRAPHY RECORDS
$0=1 \times 72$ cycles, $1=3 \times 36$ cycles, $2=7 \times 18$ cycles, $3=15 \times 9$ cycles

F118
ENUMERATION: OSCILLOGRAPHY MODE
0 = Automatic Overwrite, 1 = Protected

F119

ENUMERATION: FLEXCURVETM PICKUP RATIOS

mask	value	mask	value	mask	value	mask	value
0	0.00	30	0.88	60	2.90	90	5.90
1	0.05	31	0.90	61	3.00	91	6.00
2	0.10	32	0.91	62	3.10	92	6.50
3	0.15	33	0.92	63	3.20	93	7.00
4	0.20	34	0.93	64	3.30	94	7.50
5	0.25	35	0.94	65	3.40	95	8.00
6	0.30	36	0.95	66	3.50	96	8.50
7	0.35	37	0.96	67	3.60	97	9.00
8	0.40	38	0.97	68	3.70	98	9.50
9	0.45	39	0.98	69	3.80	99	10.00
10	0.48	40	1.03	70	3.90	100	10.50
11	0.50	41	1.05	71	4.00	101	11.00
12	0.52	42	1.10	72	4.10	102	11.50
13	0.54	43	1.20	73	4.20	103	12.00
14	0.56	44	1.30	74	4.30	104	12.50
15	0.58	45	1.40	75	4.40	105	13.00
16	0.60	46	1.50	76	4.50	106	13.50
17	0.62	47	1.60	77	4.60	107	14.00
18	0.64	48	1.70	78	4.70	108	14.50
19	0.66	49	1.80	79	4.80	109	15.00
20	0.68	50	1.90	80	4.90	110	15.50
21	0.70	51	2.00	81	5.00	111	16.00
22	0.72	52	2.10	82	5.10	112	16.50
23	0.74	53	2.20	83	5.20	113	17.00
24	0.76	54	2.30	84	5.30	114	17.50
25	0.78	55	2.40	85	5.40	115	18.00
26	0.80	56	2.50	86	5.50	116	18.50
27	0.82	57	2.60	87	5.60	117	19.00
28	0.84	58	2.70	88	5.70	118	19.50
29	0.86	59	2.80	89	5.80	119	20.00

F122
ENUMERATION: ELEMENT INPUT SIGNAL TYPE
0 = Phasor, 1 = RMS

F123

ENUMERATION: CT SECONDARY
$0=1 \mathrm{~A}, 1=5 \mathrm{~A}$

F124
ENUMERATION: LIST OF ELEMENTS

bitmask	element
16	PHASE TOC1
17	PHASE TOC2
18	PHASE TOC3
19	PHASE TOC4
20	PHASE TOC5
21	PHASE TOC6
24	PH DIR1
25	PH DIR2
32	NEUTRAL IOC1
33	NEUTRAL IOC2
34	NEUTRAL IOC3
35	NEUTRAL IOC4
36	NEUTRAL IOC5
37	NEUTRAL IOC6
38	NEUTRAL IOC7
39	NEUTRAL IOC8
40	NEUTRAL IOC9
41	NEUTRAL IOC10
42	NEUTRAL IOC11
43	NEUTRAL IOC12
48	NEUTRAL TOC1
49	NEUTRAL TOC2
50	NEUTRAL TOC3
51	NEUTRAL TOC4
52	NEUTRAL TOC5
53	NEUTRAL TOC6
56	NTRL DIR OC1
57	NTRL DIR OC2
60	NEG SEQ DIR OC1
61	NEG SEQ DIR OC2
64	GROUND IOC1
65	GROUND IOC2
66	GROUND IOC3
67	GROUND IOC4
68	GROUND IOC5
69	GROUND IOC6
70	GROUND IOC7
71	GROUND IOC8
72	GROUND IOC9
73	GROUND IOC10

bitmask	element
74	GROUND IOC11
75	GROUND IOC12
80	GROUND TOC1
81	GROUND TOC2
82	GROUND TOC3
83	GROUND TOC4
84	GROUND TOC5
85	GROUND TOC6
96	NEG SEQ IOC1
97	NEG SEQ IOC2
112	NEG SEQ TOC1
113	NEG SEQ TOC2
120	NEG SEQ OV
144	PHASE UV1
145	PHASE UV2
148	AUX OV1
152	PHASE OV1
156	NEUTRAL OV1
180	LOAD ENCHR
190	POWER SWING
244	50DD
245	CONT MONITOR
246	CT FAIL
265	STATOR DIFF
272	BREAKER 1
273	BREAKER 2
280	BKR FAIL
281	BKR FAIL
288	BKR ARC
289	BKR ARC
296	ACCDNT ENRG
300	LOSS EXCIT
312	SYNC 1
313	SYNC 2
320	COLD LOAD 1
321	COLD LOAD 2
324	AMP UNBALANCE 1
325	AMP UNBALANCE 2
330	3RD HARM
336	SETTING GROUP
337	RESET
344	OVERFREQ 1
345	OVERFREQ 2
346	OVERFREQ 3
347	OVERFREQ 4
352	UNDERFREQ 1
353	UNDERFREQ 2
354	UNDERFREQ 3
355	UNDERFREQ 4
356	UNDERFREQ 5
357	UNDERFREQ 6
376	AR
377	STARTS-PER-HOUR

bitmask	element
378	TIME-BTWN-STARTS
379	RESTART DELAY
380	MECHANICAL JAM
400	FLEX ELEMENT 1
401	FLEX ELEMENT 2
402	FLEX ELEMENT 3
403	FLEX ELEMENT 4
404	FLEX ELEMENT 5
405	FLEX ELEMENT 6
406	FLEX ELEMENT 7
407	FLEX ELEMENT 8
408	FLEX ELEMENT 9
409	FLEX ELEMENT 10
410	FLEX ELEMENT 11
411	FLEX ELEMENT 12
412	FLEX ELEMENT 13
413	FLEX ELEMENT 14
414	FLEX ELEMENT 15
415	FLEX ELEMENT 16
420	LATCH 1
421	LATCH 2
422	LATCH 3
423	LATCH 4
424	LATCH 5
425	LATCH 6
426	LATCH 7
427	LATCH 8
428	LATCH 9
429	LATCH 10
430	LATCH 11
431	LATCH 12
432	LATCH 13
433	LATCH 14
434	LATCH 15
435	LATCH 16
512	DIG ELEM 1
513	DIG ELEM 2
514	DIG ELEM 3
515	DIG ELEM 4
516	DIG ELEM 5
517	DIG ELEM 6
518	DIG ELEM 7
519	DIG ELEM 8
520	DIG ELEM 9
521	DIG ELEM 10
522	DIG ELEM 11
523	DIG ELEM 12
524	DIG ELEM 13
525	DIG ELEM 14
526	DIG ELEM 15
527	DIG ELEM 16
544	COUNTER 1

bitmask	element
545	COUNTER 2
546	COUNTER 3
547	COUNTER 4
548	COUNTER 5
549	COUNTER 6
550	COUNTER 7
551	COUNTER 8
680	PUSHBUTTON 1
681	PUSHBUTTON 2
682	PUSHBUTTON 3
683	PUSHBUTTON 4
684	PUSHBUTTON 5
685	PUSHBUTTON 6
686	PUSHBUTTON 7
687	PUSHBUTTON 8
688	PUSHBUTTON 9
689	PUSHBUTTON 10
690	PUSHBUTTON 11
691	PUSHBUTTON 12

F125
ENUMERATION: ACCESS LEVEL
$0=$ Restricted; $1=$ Command, $2=$ Setting, $3=$ Factory Service

F126
ENUMERATION: NO/YES CHOICE
$0=$ No, $1=$ Yes

F127
ENUMERATION: LATCHED OR SELF-RESETTING
$0=$ Latched, $1=$ Self-Reset

F128

ENUMERATION: CONTACT INPUT THRESHOLD
$0=17 \mathrm{~V} D, 1=33 \vee D C, 2=84 \vee D C, 3=166 \vee D C$

F129

ENUMERATION: FLEXLOGIC TIMER TYPE
$0=$ millisecond, $1=$ second, $2=$ minute

F130

ENUMERATION: SIMULATION MODE
$0=$ Off. $1=$ Pre-Fault, $2=$ Fault, $3=$ Post-Fault

F131

ENUMERATION: FORCED CONTACT OUTPUT STATE
0 = Disabled, 1 = Energized, 2 = De-energized, 3 = Freeze

F133

ENUMERATION: PROGRAM STATE
$0=$ Not Programmed, 1 = Programmed

F134

ENUMERATION: PASS/FAIL
$0=$ Fail, $1=\mathrm{OK}, 2=\mathrm{n} / \mathrm{a}$

F135

ENUMERATION: GAIN CALIBRATION
$0=0 \times 1,1=1 \times 16$

F136

ENUMERATION: NUMBER OF OSCILLOGRAPHY RECORDS
$0=31 \times 8$ cycles, $1=15 \times 16$ cycles, $2=7 \times 32$ cycles
$3=3 \times 64$ cycles, $4=1 \times 128$ cycles

F138

ENUMERATION: OSCILLOGRAPHY FILE TYPE
$0=$ Data File, $1=$ Configuration File, $2=$ Header File

F140

ENUMERATION: CURRENT, SENS CURRENT, VOLTAGE, DISABLED
$0=$ Disabled, $1=$ Current $46 \mathrm{~A}, 2=$ Voltage $280 \mathrm{~V}, 3=$ Current 4.6 A, $4=$ Current 2 A, $5=$ Notched 4.6 A, $6=$ Notched 2 A

F141

ENUMERATION: SELF TEST ERROR

bitmask	error
0	ANY SELF TESTS
1	IRIG-B FAILURE
2	DSP ERROR
4	NO DSP INTERRUPTS
5	UNIT NOT CALIBRATED
9	PROTOTYPE FIRMWARE
10	FLEXLOGIC ERR TOKEN
11	EQUIPMENT MISMATCH
13	UNIT NOT PROGRAMMED
14	SYSTEM EXCEPTION
19	BATTERY FAIL
20	PRI ETHERNET FAIL
21	SEC ETHERNET FAIL
22	EEPROM DATA ERROR
23	SRAM DATA ERROR
24	PROGRAM MEMORY

bitmask	error
25	WATCHDOG ERROR
26	LOW ON MEMORY
27	REMOTE DEVICE OFF
30	ANY MINOR ERROR
31	ANY MAJOR ERROR

F142
 ENUMERATION: EVENT RECORDER ACCESS FILE TYPE

$0=$ All Record Data, $1=$ Headers Only, $2=$ Numeric Event Cause

F143

UR_UINT32: 32 BIT ERROR CODE (F141 specifies bit number)
A bit value of $0=$ no error, $1=$ error

F144

ENUMERATION: FORCED CONTACT INPUT STATE
$0=$ Disabled, $1=$ Open, $2=$ Closed

F145

ENUMERATION: ALPHABET LETTER

bitmask	type	bitmask	type	bitmask	type	bitmask	type
0	null	7	G	14	N	21	U
1	A	8	H	15	O	22	V
2	B	9	1	16	P	23	W
3	C	10	J	17	Q	24	X
4	D	11	K	18	R	25	Y
5	E	12	L	19	S	26	Z
6	F	13	M	20	T		

F146

ENUMERATION: MISC. EVENT CAUSES

bitmask	definition
0	EVENTS CLEARED
1	OSCILLOGRAPHY TRIGGERED
2	DATE/TIME CHANGED
3	DEF SETTINGS LOADED
4	TEST MODE ON
5	TEST MODE OFF
6	POWER ON
7	POWER OFF
8	RELAY IN SERVICE
9	RELAY OUT OF SERVICE
10	WATCHDOG RESET
11	OSCILLOGRAPHY CLEAR
12	REBOOT COMMAND

F151
ENUMERATION: RTD SELECTION

bitmask	RTD\#	bitmask	RTD\#	bitmask	RTD\#
0	NONE	17	RTD 17	33	RTD 33
1	RTD 1	18	RTD 18	34	RTD 34
2	RTD 2	19	RTD 19	35	RTD 35
3	RTD 3	20	RTD 20	36	RTD 36
4	RTD 4	21	RTD 21	37	RTD 37
5	RTD 5	22	RTD 22	38	RTD 38
6	RTD 6	23	RTD 23	39	RTD 39
7	RTD 7	24	RTD 24	40	RTD 40
8	RTD 8	25	RTD 25	41	RTD 41
9	RTD 9	26	RTD 26	42	RTD 42
10	RTD 10	27	RTD 27	43	RTD 43
11	RTD 11	28	RTD 28	44	RTD 44
12	RTD 12	29	RTD 29	45	RTD 45
13	RTD 13	30	RTD 30	46	RTD 46
14	RTD 14	31	RTD 31	47	RTD 47
15	RTD 15	32	RTD 32	48	RTD 48
16	RTD 16				

F152

ENUMERATION: SETTING GROUP
$0=$ Active Group, $1=$ Group 1, $2=$ Group 2, $3=$ Group 3
$4=$ Group 4, $5=$ Group 5, $6=$ Group 6

F155
 ENUMERATION: REMOTE DEVICE STATE

$0=$ Offline, 1 = Online

F156
ENUMERATION: REMOTE INPUT BIT PAIRS

bitmask	RTD\#	bitmask	RTD\#	bitmask	RTD\#
0	NONE	22	DNA-22	44	UserSt-12
1	DNA-1	23	DNA-23	45	UserSt-13
2	DNA-2	24	DNA-24	46	UserSt-14
3	DNA-3	25	DNA-25	47	UserSt-15
4	DNA-4	26	DNA-26	48	UserSt-16
5	DNA-5	27	DNA-27	49	UserSt-17
6	DNA-6	28	DNA-28	50	UserSt-18
7	DNA-7	29	DNA-29	51	UserSt-19
8	DNA-8	30	DNA-30	52	UserSt-20
9	DNA-9	31	DNA-31	53	UserSt-21
10	DNA-10	32	DNA-32	54	UserSt-22
11	DNA-11	33	UserSt-1	55	UserSt-23
12	DNA-12	34	UserSt-2	56	UserSt-24
13	DNA-13	35	UserSt-3	57	UserSt-25
14	DNA-14	36	UserSt-4	58	UserSt-26
15	DNA-15	37	UserSt-5	59	UserSt-27
16	DNA-16	38	UserSt-6	60	UserSt-28
17	DNA-17	39	UserSt-7	61	UserSt-29
18	DNA-18	40	UserSt-8	62	UserSt-30
19	DNA-19	41	UserSt-9	63	UserSt-31
20	DNA-20	42	UserSt-10	64	UserSt-32
21	DNA-21	43	UserSt-11		

F166

ENUMERATION: AUXILIARY VT CONNECTION TYPE
$0=\mathrm{Vn}, 1=\mathrm{Vag}, 2=\mathrm{Vbg}, 3=\mathrm{Vcg}, 4=\mathrm{Vab}, 5=\mathrm{Vbc}, 6=\mathrm{Vca}$

F167
ENUMERATION: SIGNAL SOURCE
$0=\operatorname{SRC} 1,1=\operatorname{SRC} 2,2=\operatorname{SRC} 3,3=\operatorname{SRC} 4$,
$4=$ SRC $5,5=$ SRC 6

F168

ENUMERATION: INRUSH INHIBIT FUNCTION
0 = Disabled, 1 = 2nd

F169

ENUMERATION: OVEREXCITATION INHIBIT FUNCTION
0 = Disabled, 1 = 5th

F170
ENUMERATION: LOW/HIGH OFFSET \& GAIN TRANSDUCER I/O SELECTION
$0=$ LOW, $1=$ HIGH

F171

ENUMERATION: TRANSDUCER CHANNEL INPUT TYPE
$0=\operatorname{dcmA} \operatorname{IN}, 1=O H M S \operatorname{IN}, 2=$ RTD IN, $3=$ dcmA OUT

F172

ENUMERATION: SLOT LETTERS

bitmask	slot	bitmask	slot	bitmask	slot	bitmask	slot
0	F	4	K	8	P	12	U
1	G	5	L	9	R	13	V
2	H	6	M	10	S	14	W
3	J	7	N	11	T	15	X

F173

ENUMERATION: TRANSDUCER DCMA I/O RANGE

bitmask	dcmA I/O range
0	0 to -1 mA
1	0 to 1 mA
2	-1 to 1 mA
3	0 to 5 mA
4	0 to 10 mA
5	0 to 20 mA
6	4 to 20 mA

F174

ENUMERATION: TRANSDUCER RTD INPUT TYPE
$0=100$ Ohm Platinum, $1=120$ Ohm Nickel,
$2=100$ Ohm Nickel, $3=10$ Ohm Copper

F175

ENUMERATION: PHASE LETTERS
$0=\mathrm{A}, 1=\mathrm{B}, 2=\mathrm{C}$

F177
 ENUMERATION: COMMUNICATION PORT

$0=$ NONE, 1 = COM1-RS485, $2=$ COM2-RS485,
$3=$ FRONT PANEL-RS232, $4=$ NETWORK

F178

ENUMERATION: DATA LOGGER RATES
$0=1 \mathrm{sec}, 1=1 \mathrm{~min}, 2=5 \mathrm{~min}, 3=10 \mathrm{~min}, 4=15 \mathrm{~min}$,
$5=20 \mathrm{~min}, 6=30 \mathrm{~min}, 7=60 \mathrm{~min}$

F180
 ENUMERATION: PHASE/GROUND

$0=$ PHASE, $1=$ GROUND

F181
ENUMERATION: ODD/EVEN/NONE
$0=\mathrm{ODD}, 1$ = EVEN, $2=\mathrm{NONE}$

F183
ENUMERATION AC INPUT WAVEFORMS

bitmask	definition
0	Off
1	8 samples/cycle
2	16 samples/cycle
3	32 samples/cycle
4	64 samples/cycle

F185
ENUMERATION PHASE A,B,C, GROUND SELECTOR
$0=A, 1=B, 2=C, 3=G$

F186

ENUMERATION MEASUREMENT MODE
$0=$ Phase to Ground, $1=$ Phase to Phase

F190
ENUMERATION Simulated Keypress

bitmask	keypress
0	--- use between real keys
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	0
11	Decimal Pt
12	Plus/Minus

bitmask	keypress
13	Value Up
14	Value Down
15	Message Up
16	Message Down
17	Message Left
18	Message Right
19	Menu
20	Help
21	Escape
22	Enter
23	Reset
24	User 1
25	User 2
26	User 3

F192
ENUMERATION ETHERNET OPERATION MODE
0 = Half-Duplex, 1 = Full-Duplex

F194
ENUMERATION DNP SCALE
A bitmask of $0=0.01,1=0.1,2=1,3=10,4=100,5=1000$

F197
ENUMERATION DNP BINARY INPUT POINT BLOCK

bitmask	Input Point Block
0	Not Used
1	Virtual Inputs 1 to 16
2	Virtual Inputs 17 to 32
3	Virtual Outputs 1 to 16
4	Virtual Outputs 17 to 32
5	Virtual Outputs 33 to 48
6	Virtual Outputs 49 to 64
7	Contact Inputs 1 to 16
8	Contact Inputs 17 to 32
9	Contact Inputs 33 to 48
10	Contact Inputs 49 to 64
11	Contact Inputs 65 to 80
12	Contact Inputs 81 to 96
13	Contact Outputs 1 to 16
14	Contact Outputs 17 to 32
15	Contact Outputs 33 to 48
16	Contact Outputs 49 to 64
17	Remote Inputs 1 to 16
18	Remote Inputs 17 to 32
19	Remote Devs 1 to 16
20	Elements 1 to 16
21	Elements 17 to 32
22	Elements 33 to 48
23	Elements 49 to 64
24	Elements 65 to 80
25	Elements 81 to 96
26	Elements 97 to 112
27	Elements 113 to 128
28	Elements 129 to 144
29	Elements 145 to 160
30	Elements 161 to 176
31	Elements 177 to 192
32	Elements 193 to 208
33	Elements 209 to 224
34	Elements 225 to 240
35	Elements 241 to 256
36	Elements 257 to 272
37	Elements 273 to 288
38	Elements 289 to 304
39	Elements 305 to 320
40	Elements 321 to 336
41	Elements 337 to 352
42	Elements 353 to 368
43	Elements 369 to 384
44	Elements 385 to 400
45	Elements 401 to 406
46	Elements 417 to 432

bitmask	Input Point Block
47	Elements 433 to 448
48	Elements 449 to 464
49	Elements 465 to 480
50	Elements 481 to 496
51	Elements 497 to 512
52	Elements 513 to 528
53	Elements 529 to 544
54	Elements 545 to 560
55	LED States 1 to 16
56	LED States 17 to 32
57	Self Tests 1 to 16
58	Self Tests 17 to 32

F200
TEXT40 40 CHARACTER ASCII TEXT
20 registers, 16 Bits: 1st Char MSB, 2nd Char. LSB

F201
TEXT8 8 CHARACTER ASCII PASSCODE
4 registers, 16 Bits: 1st Char MSB, 2nd Char. LSB

F202
 TEXT20 20 CHARACTER ASCII TEXT

10 registers, 16 Bits: 1st Char MSB, 2nd Char. LSB

F203
TEXT16 16 CHARACTER ASCII TEXT

F204
TEXT80 80 CHARACTER ASCII TEXT

F205
TEXT12 12 CHARACTER ASCII TEXT

F206
 TEXT6 6 CHARACTER ASCII TEXT

F207
TEXT4 4 CHARACTER ASCII TEXT

F208
TEXT2 2 CHARACTER ASCII TEXT

F222
ENUMERATION TEST ENUMERATION
$0=$ Test Enumeration 0, $1=$ Test Enumeration 1

F300
 UR_UINT16 FLEXLOGICTM BASE TYPE (6 bit type)

The FlexLogic ${ }^{\text {TM }}$ BASE type is 6 bits and is combined with a 9 bit descriptor and 1 bit for protection element to form a 16 bit value. The combined bits are of the form: PTTTTTTDDDDDDDDD, where P bit if set, indicates that the FlexLogic ${ }^{\text {TM }}$ type is associated with a protection element state and T represents bits for the BASE type, and D represents bits for the descriptor.
The values in square brackets indicate the base type with P prefix [PTTTTTT] and the values in round brackets indicate the descriptor range.
[0] Off(0) this is boolean FALSE value
[0] On (1)This is boolean TRUE value
[2] CONTACT INPUTS (1-96)
[3] CONTACT INPUTS OFF $(1-96)$
[4] VIRTUAL INPUTS (1-64)
[6] VIRTUAL OUTPUTS (1-64)
[10] CONTACT OUTPUTS VOLTAGE DETECTED (1-64)
[11] CONTACT OUTPUTS VOLTAGE OFF DETECTED (1-64)
[12] CONTACT OUTPUTS CURRENT DETECTED (1-64)
[13] CONTACT OUTPUTS CURRENT OFF DETECTED (1-64)
[14] REMOTE INPUTS (1-32)
[28] INSERT (Via Keypad only)
[32] END
[34] NOT (1 INPUT)
[36] 2 INPUT XOR (0)
[38] LATCH SET/RESET (2 inputs)
[40] OR (2 to 16 inputs)
[42] AND (2 to 16 inputs)
[44] NOR (2 to 16 inputs)
[46] NAND (2 to 16 inputs)
[48] TIMER (1 to 32)
[50] ASSIGN VIRTUAL OUTPUT (1 to 64)
[52] SELF-TEST ERROR (see F141 for range)
[56] ACTIVE SETTING GROUP (1 to 6)
[62] MISCELLANEOUS EVENTS (see F146 for range)
[64 to 127] ELEMENT STATES

F400

UR_UINT16 CT/VT BANK SELECTION

bitmask	bank selection
0	Card 1 Contact 1 to 4
1	Card 1 Contact 5 to 8
2	Card 2 Contact 1 to 4
3	Card 2 Contact 5 to 8
4	Card 3 Contact 1 to 4
5	Card 3 Contact 5 to 8

F500
 UR_UINT16 PACKED BITFIELD

First register indicates I/O state with bits $0(\mathrm{MSB})$-15(LSB) corresponding to $\mathrm{I} / 0$ state $1-16$. The second register indicates I / O state with bits $0-15$ corresponding to $1 / 0$ state $17-32$ (if required) The third register indicates I/O state with bits 0-15 corresponding to I/O state 33-48 (if required). The fourth register indicates I/O state with bits 0-15 corresponding to $1 / 0$ state 49-64 (if required).
The number of registers required is determined by the specific data item. A bit value of $0=\mathrm{Off}, 1=\mathrm{On}$

F501

UR_UINT16 LED STATUS

Low byte of register indicates LED status with bit 0 representing the top LED and bit 7 the bottom LED. A bit value of 1 indicates the LED is on, 0 indicates the LED is off.

F502
 BITFIELD ELEMENT OPERATE STATES

Each bit contains the operate state for an element. See the F124 format code for a list of element IDs. The operate bit for element ID X is bit [X mod 16] in register [$X / 16$].

F504
BITFIELD 3 PHASE ELEMENT STATE

bitmask	element state
0	Pickup
1	Operate
2	Pickup Phase A
3	Pickup Phase B
4	Pickup Phase C
5	Operate Phase A
6	Operate Phase B
7	Operate Phase C

F505
 BITFIELD CONTACT OUTPUT STATE

$0=$ Contact State, $1=$ Voltage Detected, $2=$ Current Detected

F506|
 BITFIELD 1 PHASE ELEMENT STATE

$0=$ Pickup, $1=$ Operate

F507

BITFIELD COUNTER ELEMENT STATE
$0=$ Count Greater Than, $1=$ Count Equal To, $2=$ Count Less Than

F509

BITFIELD SIMPLE ELEMENT STATE
$0=$ Operate

F511

BITFIELD 3 PHASE SIMPLE ELEMENT STATE

$0=$ Operate, $1=$ Operate $\mathrm{A}, 2=$ Operate $\mathrm{B}, 3=$ Operate C

F515
 ENUMERATION ELEMENT INPUT MODE

$0=$ SIGNED, 1 = ABSOLUTE

F516
ENUMERATION ELEMENT COMPARE MODE
0 = LEVEL, 1 = DELTA

F518

ENUMERATION FlexElement Units
$0=$ Milliseconds, $1=$ Seconds, $2=$ Minutes

F600

UR_UINT16 FlexAnalog Parameter

The 16 -bit value corresponds to the modbus address of the value to be used when this parameter is selected. Only certain values may be used as FlexAnalogs (basically all the metering quantities used in protection)

MMI_FLASH ENUMERATION
Flash message definitions for Front-panel MMI

bitmask	Flash Message
1	ADJUSTED VALUE HAS BEEN STORED
2	ENTERED PASSCODE IS INVALID
3	COMMAND EXECUTED
4	DEFAULT MESSAGE HAS BEEN ADDED
5	DEFAULT MESSAGE HAS BEEN REMOVED
6	INPUT FUNCTION IS ALREADY ASSIGNED
7	PRESS [ENTER] TO ADD AS DEFAULT
8	PRESS [ENTER] TO REMOVE MESSAGE
9	PRESS [ENTER] TO BEGIN TEXT EDIT
10	ENTRY MISMATCH - CODE NOT STORED
11	PRESSED KEY IS INVALID HERE
12	INVALID KEY: MUST BE IN LOCAL MODE
13	NEW PASSWORD HAS BEEN STORED
14	PLEASE ENTER A NON-ZERO PASSCODE
15	NO ACTIVE TARGETS (TESTING LEDS)
16	OUT OF RANGE - VALUE NOT STORED

bitmask	Flash Message
17	RESETTING LATCHED CONDITIONS
18	SETPOINT ACCESS IS NOW ALLOWED
19	SETPOINT ACCESS DENIED (PASSCODE)
20	SETPOINT ACCESS IS NOW RESTRICTED
21	NEW SETTING HAS BEEN STORED
22	SETPOINT ACCESS DENIED (SWITCH)
23	DATA NOT ACCEPTED
24	NOT ALL CONDITIONS HAVE BEEN RESET
25	DATE NOT ACCEPTED IRIGB IS ENABLED
26	NOT EXECUTED
27	DISPLAY ADDED TO USER DISPLAY LIST
28	DISPLAY NOT ADDED TO USER DISPLAY LIST
29	DISPLAY REMOVED FROM USER DISPLAY LIST

MMI_PASSWORD_TYPE ENUMERATION Password types for display in password prompts

bitmask	password type
0	No
1	MASTER
2	SETTING
3	COMMAND
4	FACTORY

MMI_SETTING_TYPE ENUMERATION Setting types for display in web pages

bitmask	Setting Type
0	Unrestricted Setting
1	Master-accessed Setting
2	Setting
3	Command
4	Factory Setting

The Utility Communications Architecture (UCA) Version 2 represents an attempt by utilities and vendors of electronic equipment to produce standardized communications systems. There is a set of reference documents available from the Electric Power Research Institute (EPRI) and vendors of UCA/MMS software libraries that describe the complete capabilities of the UCA. Following, is a description of the subset of UCA/MMS features that are supported by the UR relay. The reference document set includes:

- Introduction to UCA version 2
- Generic Object Models for Substation and Feeder Equipment (GOMSFE)
- Common Application Service Models (CASM) and Mapping to MMS
- UCA Version 2 Profiles

These documents can be obtained from the UCA User's Group at http://www.ucausersgroup.org. It is strongly recommended that all those involved with any UCA implementation obtain this document set.

COMMUNICATION PROFILES:

The UCA specifies a number of possibilities for communicating with electronic devices based on the OSI Reference Model. The UR relay uses the seven layer OSI stack (TP4/CLNP and TCP/IP profiles). Refer to the "UCA Version 2 Profiles" reference document for details.

The TP4/CLNP profile requires the UR relay to have a network address or Network Service Access Point (NSAP) in order to establish a communication link. The TCP/IP profile requires the UR relay to have an IP address in order to establish a communication link. These addresses are set in the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow 』$ COMMUNICATIONS $\Rightarrow \sqrt{ } \sqrt{n}$ NETWORK menu. Note that the UR relay supports UCA operation over the TP4/CLNP or the TCP/IP stacks and also supports operation over both stacks simultaneously. It is possible to have up to two simultaneous connections. This is in addition to DNP and Modbus/TCP (non-UCA) connections.
C.1.2 MMS

a) DESCRIPTION

The UCA specifies the use of the Manufacturing Message Specification (MMS) at the upper (Application) layer for transfer of real-time data. This protocol has been in existence for a number of years and provides a set of services suitable for the transfer of data within a substation LAN environment. Data can be grouped to form objects and be mapped to MMS services. Refer to the "GOMSFE" and "CASM" reference documents for details.

SUPPORTED OBJECTS:

The "GOMSFE" document describes a number of communication objects. Within these objects are items, some of which are mandatory and some of which are optional, depending on the implementation. The UR relay supports the following GOMSFE objects:

\cdot	PHIZ (high impedance ground detector)
\cdot	PIOC (instantaneous overcurrent relay)
\cdot	POVR (overvoltage relay)
\cdot	PTOC (time overcurrent relay)
\cdot	PUVR (under voltage relay)
\cdot	PVPH (volts per hertz relay)
-	ctRATO (CT ratio information)
-	vtRATO (VT ratio information)
-	RREC (reclosing relay)
-	RSYN (synchronizing or synchronism-check relay)
-	XCBR (circuit breaker)

UCA data can be accessed through the "UCADevice" MMS domain.

PEER-TO-PEER COMMUNICATION:

Peer-to-peer communication of digital state information, using the UCA GOOSE data object, is supported via the use of the UR Remote Inputs/Outputs feature. This feature allows digital points to be transferred between any UCA conforming devices.

FILE SERVICES:

MMS file services are supported to allow transfer of Oscillography, Event Record, or other files from a UR relay.

COMMUNICATION SOFTWARE UTILITIES:

The exact structure and values of the implemented objects can be seen by connecting to a UR relay with an MMS browser, such as the "MMS Object Explorer and AXS4-MMS DDE/OPC" server from Sisco Inc.

NON-UCA DATA:

The UR relay makes available a number of non-UCA data items. These data items can be accessed through the "UR" MMS domain. UCA data can be accessed through the "UCADevice" MMS domain.
b) PROTOCOL IMPLEMENTATION AND CONFORMANCE STATEMENT (PICS)

The UR relay functions as a server only; a UR relay cannot be configured as a client. Thus, the following list of supported services is for server operation only:

The MMS supported services are as follows:

CONNECTION MANAGEMENT SERVICES:

- Initiate
- Conclude
- Cancel
- Abort
- Reject

VMD SUPPORT SERVICES:

- Status
- GetNameList
- Identify

VARIABLE ACCESS SERVICES:

- Read
- Write
- InformationReport
- GetVariableAccessAttributes
- GetNamedVariableListAttributes

OPERATOR COMMUNICATION SERVICES:

(none)

SEMAPHORE MANAGEMENT SERVICES:

(none)
DOMAIN MANAGEMENT SERVICES:

- GetDomainAttributes

PROGRAM INVOCATION MANAGEMENT SERVICES:

(none)
EVENT MANAGEMENT SERVICES:
(none)

APPENDIX C

JOURNAL MANAGEMENT SERVICES:

(none)

FILE MANAGEMENT SERVICES:

- ObtainFile
- FileOpen
- FileRead
- FileClose
- FileDirectory

The following MMS parameters are supported:

- STR1 (Arrays)
- STR2 (Structures)
- NEST (Nesting Levels of STR1 and STR2) - 1
- VNAM (Named Variables)
- VADR (Unnamed Variables)
- VALT (Alternate Access Variables)
- VLIS (Named Variable Lists)
- REAL (ASN. 1 REAL Type)
c) MODEL IMPLEMENTATION CONFORMANCE (MIC)

This section provides details of the UCA object models supported by the UR series relays. Note that not all of the protective device functions are applicable to all the UR series relays.
Table C-1: DEVICE IDENTITY - DI

NAME	M/O	RWEC
Name	m	rw
Class	0	rw
d	0	rw
Own	0	rw
Loc	o	rw
VndID	m	r

Table C-2: GENERIC CONTROL - GCTL

FC	NAME	CLASS	RWECS	DESCRIPTION
ST	$\mathrm{BO}<\mathrm{n}>$	SI	rw	Generic Single Point Indication
CO	$\mathrm{BO}<\mathrm{n}>$	SI	rw	Generic Binary Output
CF	$\mathrm{BO}<\mathrm{n}>$	SBOCF	rw	SBO Configuration
DC	LN	d	rw	Description for brick
	$\mathrm{BO}<\mathrm{n}>$	d	rw	Description for each point

Actual instantiation of GCTL objects is as follows:
GCTL1 = Virtual Inputs (32 total points - SI1 to SI32); includes SBO functionality.

Table C-3: GENERIC INDICATORS - GIND 1 TO 6

FC	NAME	CLASS	RWECS	DESCRIPTION
ST	SIG<n>	SIG	r	Generic Indication (block of 16)
DC	LN	d	rw	Description for brick
RP	BrcbST	BasRCB	rw	Controls reporting of STATUS

Table C-4: GENERIC INDICATOR - GIND7

FC	OBJECT NAME	CLASS	RWECS	DESCRIPTION
ST	SI<n>	SI	r	Generic single point indication
DC	LN	d	rw	Description for brick
	SI<n>	d	rw	Description for all included SI
RP	BrcbST	BasRCB	rw	Controls reporting of STATUS

Actual instantiation of GIND objects is as follows:
GIND1 = Contact Inputs (96 total points - SIG1 to SIG6)
GIND2 $=$ Contact Outputs (64 total points - SIG1 to SIG4)
GIND3 = Virtual Inputs (32 total points - SIG1 to SIG2)
GIND4 = Virtual Outputs (64 total points - SIG1 to SIG4)
GIND5 = Remote Inputs (32 total points - SIG1 to SIG2)
GIND6 $=$ Flex States (16 total points - SIG1 representing Flex States 1 to 16)
GIND7 = Flex States (16 total points - SI1 to SI16 representing Flex States 1 to 16)
Table C-5: GLOBAL DATA - GLOBE

FC	OBJECT NAME	CLASS	RWECS	DESCRIPTION
ST	ModeDS	SIT	r	Device is: in test, off-line, available, or unhealthy
	LocRemDS	SIT	r	The mode of control, local or remote (DevST)
	ActSG	INT8U	r	Active Settings Group
	EditSG	INT8u	r	Settings Group selected for read/write operation
CO	CopySG	INT8U	w	Selects Settings Group for read/write operation
	IndRs	BOOL	w	Resets ALL targets
	ClockTOD	BTIME	rw	Date and time
RP	GOOSE	PACT	rw	Reports IED Inputs and Outputs

Table C-6: MEASUREMENT UNIT (POLYPHASE) - MMXU

FC	OBJECT NAME	CLASS	RWECS	DESCRIPTION
MX	V	WYE	rw	Voltage on phase A, B, C to G
	PPV	DELTA	rw	Voltage on AB, BC, CA
	A	WYE	rw	Current in phase A, B, C, and N
	W	WYE	rw	Watts in phase A, B, C
	TotW	AI	rw	Total watts in all three phases
	Var	AI	rw	Vars in phase A, B, C
	TotVar	WYE	rw	Total vars in all three phases
	VA	AI	rw	Total VA in all 3 phases
	TotVA	AI	rw	Power Factor for phase A, B, C
	PF	AI	rw	Average Power Factor for all three phases
	AvgPF	ACF	rw	Coner system frequency
	Hz	d	rw	Description for brick
CF	All MMXU.MX	d	rw	Description of ALL included MMXU.MX
DC	LN	BasRCB	rw	Controls reporting of measurements
	All MMXU.MX			
RP	BrcbMX			

Actual instantiation of MMXU objects is as follows:
1 MMXU per Source (as determined from the 'product order code')

Table C-7: PROTECTIVE ELEMENTS

FC	OBJECT NAME	CLASS	RWECS	DESCRIPTION
ST	Out	BOOL	r	1 = Element operated, 0 = Element not operated
	Tar	PhsTar	r	Targets since last reset
	FctDS	SIT	r	Function is enabled/disabled
	PuGrp	INT8U	r	Settings group selected for use
	EnaDisFct	DCO	w	$1=$ Element function enabled, $0=$ disabled
	RsTar	BO	w	Reset ALL Elements/Targets
	RsLat	BO	w	Reset ALL Elements/Targets
DC	LN	d	rw	Description for brick
	ElementSt	d	r	Element state string

The following GOMSFE objects are defined by the object model described via the above table:

- PBRO (basic relay object)
- PDIF (differential relay)
- PDIS (distance)
- PDOC (directional overcurrent)
- PDPR (directional power relay)
- PFRQ (frequency relay)
- PHIZ (high impedance ground detector)
- PIOC (instantaneous overcurrent relay)
- POVR (over voltage relay)
- PTOC (time overcurrent relay)
- PUVR (under voltage relay)
- RSYN (synchronizing or synchronism-check relay)
- POVR (overvoltage)
- PVPH (volts per hertz relay)
- PBRL (phase balance current relay)

Actual instantiation of these objects is determined by the number of the corresponding elements present in the UR as per the 'product order code'.

Table C-8: CT RATIO INFORMATION - ctRATO

OBJECT NAME	CLASS	RWECS	DESCRIPTION
PhsARat	RATIO	rw	Primary/secondary winding ratio
NeutARat	RATIO	rw	Primary/secondary winding ratio
LN	d	rw	Description for brick (current bank ID)

Table C-9: VT RATIO INFORMATION - vtRATO

OBJECT NAME	CLASS	RWECS	DESCRIPTION
PhsVRat	RATIO	rw	Primary/secondary winding ratio
LN	d	rw	Description for brick (current bank ID)

Actual instantiation of ctRATO and vtRATO objects is as follows:
1 ctRATO per Source (as determined from the product order code).
1 vtRATO per Source (as determined from the product order code).

Table C-10: RECLOSING RELAY - RREC

FC	OBJECT NAME	CLASS	RWECS	DESCRIPTION
ST	Out	BOOL	r	1 = Element operated, 0 = Element not operated
	FctDS	SIT	r	Function is enabled/disabled
	PuGrp	INT8U	r	Settings group selected for use
	ReclSeq	SHOTS	rw	Reclosing Sequence
CO	EnaDisFct	DCO	w	1 = Element function enabled, 0 = disabled
	RsTar	BO	w	Reset ALL Elements/Targets
	RsLat	BO	w	Reset ALL Elements/Targets
CF	ReclSeq	ACF	rw	Configuration for RREC.SG
DC	LN	d	rw	Description for brick
	ElementSt	d	r	Element state string

Actual instantiation of RREC objects is determined by the number of autoreclose elements present in the UR as per the product order code.

Also note that the Shots class data (i.e. Tmr1, Tmr2, Tmr3, Tmr4, RsTmr) is specified to be of type INT16S (16 bit signed integer); this data type is not large enough to properly display the full range of these settings from the UR. Numbers larger than 32768 will be displayed incorrectly.

Table C-11: CIRCUIT BREAKER - XCBR

FC	OBJECT NAME	CLASS	RWECS	DESCRIPTION
ST	SwDS	SIT	rw	Switch Device Status
	SwPoleDS	BSTR8	rw	Switch Pole Device Status
	PwrSupSt	SIG	rw	Health of the power supply
	PresSt	SIT	rw	The condition of the insulating medium pressure
	PoleDiscSt	SI	rw	All CB poles did not operate within time interval
	TrpCoil	SI	rw	Trip coil supervision
CO	ODSw	DCO	rw	The command to open/close the switch
CF	ODSwSBO	SBOCF	rw	Configuration for all included XCBR.CO
DC	LN	d	rw	Description for brick
RP	brcbST	BasRCB	rw	Controls reporting of Status Points

7
Actual instantiation of XCBR objects is determined by the number of breaker control elements present in the UR as per the product order code.
C.1.3 UCA REPORTING

A built-in TCP/IP connection timeout of two minutes is employed by the UR to detect "dead" connections. If there is no data traffic on a TCP connection for greater than two minutes, the connection will be aborted by the UR. This frees up the connection to be used by other clients. Therefore, when using UCA reporting, clients should configure BasRCB objects such that an integrity report will be issued at least every 2 minutes (120000 ms). This ensures that the UR will not abort the connection. If other MMS data is being polled on the same connection at least once every 2 minutes, this timeout will not apply.

This document is adapted from the IEC 60870-5-104 standard. For ths section the boxes indicate the following: - used in standard direction; \square - not used; \square - cannot be selected in IEC 60870-5-104 standard.

1. SYSTEM OR DEVICE:System Definition
\square Controlling Station Definition (Master)
Controlled Station Definition (Slave)
2. NETWORK CONFIGURATION:
\square Point-to-Point
Aultiple Point to-Point
Multipoint
Mullipoint Star
3. PHYSICAL LAYER

Transmission Speed (control direction):

Unbalanced Interchange Circuit V.24/V. 28 Standard:	Unbalanced Interchange Circuit V.24/V. 28 Recommended if $\boldsymbol{> 1 2 0 0} \mathbf{~ b i t s / s : ~}$	Balanced Interchange Circuit X.24/X.27:
100 bits/sec. 200 bits/sec. 300 bits/sec. 600 bits/seo. 1200 bits/sec.	2400 bits/sec. 4800 bits/soc. 9600 bits/sec.	$\square 2400$ bits/sec. 4800 bits $/ s 0 c$. 9600 bits $/ \mathrm{sec}$. 49200 bits $/ \mathrm{sec}$. 38400 bits $/ \mathrm{sec}$. 56000 bits $/ \mathrm{sec}$. 64000 bits $/ \mathrm{sec}$.

Transmission Speed (monitor direction):

Unbalanced Interchange Circuit V.24/V. 28 Standard:	Unbalanced Interchange Circuit V.24/V. 28 Recommended if $\mathbf{> 1 2 0 0} \mathbf{~ b i t s / s : ~}$	Balanced Interchange Circuit X.24/X.27:
100 bits/sec. 200 bits/sec. 300 bits/sec. 600 bits/seo. 1200 bits $/ s 0 e$.	2400 bits/sec. 4800 bits/sec. 9600 bits/sec.	2400 bits/sec. 4800 bits/sec. 9600 bits/sec. 19200 bits/sec. 38400 bits/sec. 56000 bits/sec. 64000 bits/sec.

4. LINK LAYER

Link Transmission Procedure:	Address Field of the Link:
Balanced Transmision Unbalanced Transmission	Not Prosent (Balanced Transmission Only) One-Octet Iwo Octets Structured Unstructured
Frame Length (maximum length, number of octets): Not selectable in companion IEC 60870-5-104 standard	

When using an unbalanced link layer, the following ADSU types are returned in class 2 messages (low priority) with the indicated causes of transmission:

The-standard assignment of ADSUs to class 2 messages is used as follows:

A special assignment of ADSUs to class 2 messages is used as follows:

5. APPLICATION LAYER

Transmission Mode for Application Data:

Mode 1 (least significant octet first), as defined in Clause 4.10 of IEC 60870-5-4, is used exclusively in this companion stanadard.

Common Address of ADSU:

- One-Octet

X Two Octets
Information Object Address:

- One-Octet
- Fwo-Octets

X Three Octets

Structured
U Unstructured

Cause of Transmission:

One-Octet
Two Octets (with originator address). Originator address is set to zero if not used.
Maximum Length of APDU: 253 (the maximum length may be reduced by the system.

Selection of standard ASDUs:

For the following lists, the boxes indicate the following: - used in standard direction; \square - not used; - cannot be selected in IEC 60870-5-104 standard.

Process information in monitor direction

\ll1> := Single-point information	M_SP_NA_1
- -2\rangle : $=$ Single-point information with time tag	M_SP_TA_1
$\square<3>$:= Double-point information	M_DP_NA_1
T-<4> : = Double point information with time tag	M_DP_TA_1
$\square<5>$:= Step position information	M_ST_NA_1
- $<6>:=$ Step position information with time tag	A_ST_TA_4
$\square<7>$: $=$ Bitstring of 32 bits	M_BO_NA_1
-8> :- Bitctring 32 bits with time	A_BO_TA_4
$\square<9>$:= Measured value, normalized value	M_ME_NA_1
- $<10>$: = Measured value, normalized value with time tag	M_NE_TA_1
$\square<11>$:= Measured value, scaled value	M_ME_NB_1
- <12> : Measured value, scaled value with time tag	M_NE_TB_4
, <13> := Measured value, short floating point value	M_ME_NC_1
- - 14\rangle : = Measured value, short floating point value with time tag	A_NE_TC_4
< $15>$: $=$ Integrated totals	M_IT_NA_1
- -16\rangle : Integrated totals with time tag	M_IT_TA_4
- $-<17\rangle:=$ Event of protection equipment with time tag	M_EP_TA_7
- <18>:-Packed startovents of protection equipmont with time tag	A_EP_TB_4
- - 19\rangle := Packed output circuit information of protection equipment with time tag	A_EP_TG_4
$\square<20>$:= Packed single-point information with status change detection	M_SP_NA_1

<21> := Measured value, normalized value without quantity descriptor	M_ME_ND_1
<30> := Single-point information with time tag CP56Time2a	M_SP_TB_1
$\square<31>$:= Double-point information wiht time tag CP56Time2a	M_DP_TB_1
$\square<32>$:= Step position information with time tag CP56Time2a	M_ST_TB_1
$\square<33>$: $=$ Bitstring of 32 bits with time tag CP56Time2a	M_BO_TB_1
$\square<34>$:= Measured value, normalized value with time tag CP56Time2a	M_ME_TD_1
$\square<35>$:= Measured value, scaled value with time tag CP56Time2a	M_ME_TE_1
$\square<36>$:= Measured value, short floating point value with time tag CP56Time2a	M_ME_TF_1
< $<37>$:= Integrated totals with time tag CP56Time2a	M_IT_TB_1
$\square<38>$:= Event of protection equipment with time tag CP56Time2a	M_EP_TD_1
$\square<39>$:= Packed start events of protection equipment with time tag CP56Time2a	M_EP_TE_1
$\square<40>$:= Packed output circuit information of protection equipment with time tag CP56Time2a	M_EP_TF_1

Either the ASDUs of the set <2>, <4>, <6>, <8>, <10>, <12>, <14>, <16>, <17>, <18>, and <19> or of the set $<30>$ to $<40>$ are used.

Process information in control direction

$\square<45>$:= Single command
$\square<46>$:= Double command	C_SC_NA_1
$\square<47>$	C_R Regulating step command

Either the ASDUs of the set $<45>$ to $<51>$ or of the set $<58>$ to $<64>$ are used.

System information in monitor direction

< $<70>$:= End of initialization
System information in control direction

< $<100>$: Interrogation command
$<101>$	C= Counter interrogation command
$<102>$:= Read command

Parameter in control direction

$$
\begin{aligned}
& \square<110>\text { := Parameter of measured value, normalized value } \\
& \square<111>\text { := Parameter of measured value, scaled value } \\
& \text { <112> := Parameter of measured value, short floating point value } \\
& \square<113>\text { := Parameter activation }
\end{aligned}
$$

PE_ME_NA_1
PE_ME_NB_1
PE_ME_NC_1
PE_AC_NA_1

File transfer

$\square<120>$:= File Ready
$\square<121>$	F_FR_NA_1
$\square<122>$:= Call directory, select file, call file, call section

Type identifier and cause of transmission assignments
(station-specific parameters)
In the following table:

- Shaded boxes are not required.
- Black boxes are not permitted in this companion standard.
- Blank boxes indicate functions or ASDU not used.
- ' \mathbf{X} ' if only used in the standard direction

TYPE IDENTIFICATION		CAUSE OF TRANSMISSION																		
											NOI $\perp \forall$ NIWY $\exists \perp$ NOI $\perp \forall$ NI \perp O	RETURN INFO CAUSED BY LOCAL CMD								
NO.	MNEMONIC	1	2	3	4	5	6	7	8	9	10	11	12	13	$\begin{array}{\|l\|} \hline 20 \\ \text { to } \\ 36 \\ \hline \end{array}$	$\begin{aligned} & 37 \\ & \text { to } \\ & 41 \end{aligned}$	44	45	46	47
<1>	M_SP_NA_1			X		X						X	X		X					
<2>	M_SP_TA_1																			
<3>	M_DP_NA_1																			
<4>	M_DP_TA_1																			
<5>	M_ST_NA_1																			
<6>	M_ST_TA_1																			
<7>	M_BO_NA_1																			
<8>	M_BO_TA_1																			

TYPE IDENTIFICATION		CAUSE OF TRANSMISSION																		
				0 0 2 2 2 2 0 0 0	$\begin{aligned} & \text { Q } \\ & \frac{N}{V} \\ & \stackrel{\rightharpoonup}{\mathbf{L}} \\ & \underline{\underline{Z}} \end{aligned}$															
NO.	MNEMONIC	1	2	3	4	5	6	7	8	9	10	11	12	13	$\begin{array}{l\|l} \hline 20 \\ \text { to } \\ 36 \end{array}$	$\begin{array}{\|l\|} \hline 37 \\ \text { to } \\ 41 \end{array}$	44	45	46	47
<9>	M_ME_NA_1																			
<10>	M_ME_TA_1																			
<11>	M_ME_NB_1																			
<12>	M_ME_TB_1																			
<13>	M_ME_NC_1	X		X		X									X					
<14>	M_ME_TC_1																			
<15>	M_IT_NA_1			X												X				
<16>	M_IT_TA_1																			
<17>	M_EP_TA_1																			
<18>	M_EP_TB_1																			
<19>	M_EP_TC_1																			
<20>	M_PS_NA_1																			
<21>	M_ME_ND_1																			
<30>	M_SP_TB_1			X								X	X							
<31>	M_DP_TB_1																			
<32>	M_ST_TB_1																			
<33>	M_BO_TB_1																			
<34>	M_ME_TD_1																			
<35>	M_ME_TE_1																			
<36>	M_ME_TF_1																			
<37>	M_IT_TB_1			X												X				
<38>	M_EP_TD_1																			
<39>	M_EP_TE_1																			
<40>	M_EP_TF_1																			
<45>	C_SC_NA_1						X	X	X	X	X									
<46>	C_DC_NA_1																			
<47>	C_RC_NA_1																			
<48>	C_SE_NA_1																			
<49>	C_SE_NB_1																			

TYPE IDENTIFICATION		CAUSE OF TRANSMISSION																		
														INTERROGATED BY GROUP <NUMBER>				nsav 」o ssmyaav nowwoo nmonynn		
NO.	MNEMONIC	1	2	3	4	5	6	7	8	9	10	11	12	13	$\begin{array}{\|l\|l} \hline 20 \\ \text { to } \\ 36 \end{array}$	$\begin{aligned} & 37 \\ & \text { to } \\ & 41 \end{aligned}$	44	45	46	47
<50>	C_SE_NC_1																			
<51>	C_BO_NA_1																			
<58>	C_SC_TA_1						X	X	X	X	X									
<59>	C_DC_TA_1																			
<60>	C_RC_TA_1																			
<61>	C_SE_TA_1																			
<62>	C_SE_TB_1																			
<63>	C_SE_TC_1																			
<64>	C_BO_TA_1																			
<70>	M_EI_NA_1*)				X															
<100>	C_IC_NA_1						X	X	X	X	X									
<101>	C_CI_NA_1						X	X			X									
<102>	C_RD_NA_1					X														
<103>	C_CS_NA_1			X			X	X												
<104>	C_TS_NA_1																			
<105>	C_RP_NA_1						X	X												
<106>	C_CD_NA_1																			
<107>	C_TS_TA_1																			
<110>	P_ME_NA_1																			
<111>	P_ME_NB_1																			
<112>	P_ME_NC_1						X	X							X					
<113>	P_AC_NA_1																			
<120>	F_FR_NA_1																			
<121>	F_SR_NA_1																			
<122>	F_SC_NA_1																			
<123>	F_LS_NA_1																			
<124>	F_AF_NA_1																			
<125>	F_SG_NA_1																			
<126>	F_DR_TA_1*)																			

6. BASIC APPLICATION FUNCTIONS

Station Initialization:

Remote initialization
Cyclic Data Transmission:
Cyclic data transmission
Read Procedure:
Read procedure
Spontaneous Transmission:
Spontaneous transmission

Double transmission of information objects with cause of transmission spontaneous:

The following type identifications may be transmitted in succession caused by a single status change of an information object. The particular information object addresses for which double transmission is enabled are defined in a projectspecific list.
\square Single point information: M_SP_NA_1, M_SP_TA_1, M_SP_TB_1, and M_PS_NA_1
\square Double point information: $M _D P _N A _1, M _D P _T A _1$, and $M _D P _T B _1$
\square Step position information: M_ST_NA_1, M_ST_TA_1, and M_ST_TB_1
\square Bitstring of 32 bits: $M _B O _N A _1, M _B O _T A _1$, and $M _B O _T B _1$ (if defined for a specific project)
\square Measured value, normalized value: M_ME_NA_1, M_ME_TA_1, M_ME_ND_1, and M_ME_TD_1
\square Measured value, scaled value: M_ME_NB_1, M_ME_TB_1, and M_ME_TE_1
\square Measured value, short floating point number: M_ME_NC_1, M_ME_TC_1, and M_ME_TF_1
Station interrogation:
Global

Group 1	Group 5 Group 9	Group 13
Group 2	Group 6	Group 10
Group 4	Group 7	Group 11

Clock synchronization:
Clock synchronization (optional, see Clause 7.6)
Command transmission:
Direct command transmission
\square Direct setpoint command transmission
Select and execute command
\square Select and execute setpoint command
X C_SE ACTTERM used
X No additional definition
Short pulse duration (duration determined by a system parameter in the outstation)
Long pulse duration (duration determined by a system parameter in the outstation)
Persistent output

Supervision of maximum delay in command direction of commands and setpoint commands
Maximum allowable delay of commands and setpoint commands: $\mathbf{1 0} \mathbf{s}$

Transmission of integrated totals:

Mode A: Local freeze with spontaneous transmission
Mode B: Local freeze with counter interrogation
Mode C: Freeze and transmit by counter-interrogation commands
Mode D: Freeze by counter-interrogation command, frozen values reported simultaneously

X Counter read
Counter freeze without reset
X Counter freeze with reset
X Counter reset

General request counter
Request counter group 1
Request counter group 2
Request counter group 3
Request counter group 4
Parameter loading:
Threshold value
\square Smoothing factorLow limit for transmission of measured valuesHigh limit for transmission of measured values
Parameter activation:
Activation/deactivation of persistent cyclic or periodic transmission of the addressed object
Test procedure:
\square Test procedure
File transfer:
File transfer in monitor direction:Transparent fileTransmission of disturbance data of protection equipmentTransmission of sequences of eventsTransmission of sequences of recorded analog values
File transfer in control direction:Transparent file
Background scan:
\square Background scan
Acquisition of transmission delay:

- Acquisition of transmission delay

Definition of time outs:

PARAMETER	DEFAULT VALUE	REMARKS	SELECTED VALUE
t_{0}	30 s	Timeout of connection establishment	120 s
t_{1}	15 s	Timeout of send or test APDUs	15 s
t_{2}	10 s	Timeout for acknowlegements in case of no data messages $t_{2}<t_{1}$	10 s
t_{3}	20 s	Timeout for sending test frames in case of a long idle state	20 s

Maximum range of values for all time outs: 1 to 255 s , accuracy 1 s

Maximum number of outstanding l-format APDUs k and latest acknowledge APDUs (w):

PARAMETER	DEFAULT VALUE	REMARKS	SELECTED VALUE
k	12 APDUs	Maximum difference receive sequence number to send state variable	12 APDUs
w	8 APDUs	Latest acknowledge after receiving $w l$-format APDUs	8 APDUs

Maximum range of values $k:$	1 to $32767\left(2^{15}-1\right)$ APDUs, accuracy 1 APDU
Maximum range of values $w:$	1 to 32767 APDUs, accuracy 1 APDU
	Recommendation: w should not exceed two-thirds of k.

Portnumber:

PARAMETER	VALUE	REMARKS
Portnumber	2404	In all cases

RFC 2200 suite:

RFC 2200 is an official Internet Standard which describes the state of standardization of protocols used in the Internet as determined by the Internet Architecture Board (IAB). It offers a broad spectrum of actual standards used in the Internet. The suitable selection of documents from RFC 2200 defined in this standard for given projects has to be chosen by the user of this standard.

Ethernet 802.3
\square Serial X. 21 interface
\square Other selection(s) from RFC 2200 (list below if selected)

Table D-1: IEC 60870-5-104 POINT LIST (SHEET 1 OF 2)

POINT	DESCRIPTION
M_ME_NC_1 POINTS	
2000	FlexElement 1 Actual
2001	FlexElement 2 Actual
2002	FlexElement 3 Actual
2003	FlexElement 4 Actual
2004	FlexElement 5 Actual
2005	FlexElement 6 Actual
2006	FlexElement 7 Actual
2007	
2016	FlexElement 8 Actual
P_ME_NC_1 POINTS	
$5000-5016$	Threshold values for M_ME_NC_1 points
M_SP_NA_1 POINTS	
$100-115$	Virtual Input States[0]
$116-131$	Virtual Input States[1]
$132-147$	Virtual Output States[0]
$148-163$	Virtual Output States[1]
$164-179$	Virtual Output States[2]
$180-195$	Virtual Output States[3]
$196-211$	Contact Input States[0]
$212-227$	Contact Input States[1]
$228-243$	Contact Input States[2]
$244-259$	Contact Input States[3]
$260-275$	Contact Input States[4]
$276-291$	Contact Input States[5]
$292-307$	Contact Output States[0]
$308-323$	Contact Output States[1]
$324-339$	Contact Output States[2]
$340-355$	Contact Output States[3]
$356-371$	Remote Input x States[0]
$372-387$	Remote Input x States[1]
$388-403$	Remote Device x States
$404-419$	LED Column x State[0]
$420-435$	LED Column x State[1]
C_SC_NA_1 POINTS	
$1100-1115$	Virtual Input States[0] - No Select Required
$1116-1131$	Virtual Input States[1] - Select Required
2	

Table D-1: IEC 60870-5-104 POINT LIST (SHEET 2 OF 2)

POINT	DESCRIPTION
M_IT_NA_1 POINTS	
4000	Digital Counter 1 Value
4001	Digital Counter 2 Value
4002	Digital Counter 3 Value
4003	Digital Counter 4 Value
4004	Digital Counter 5 Value
4005	Digital Counter 6 Value
4006	Digital Counter 7 Value
4007	Digital Counter 8 Value

The following table provides a 'Device Profile Document' in the standard format defined in the DNP 3.0 Subset Definitions Document.

Table E-1: DNP V3.00 DEVICE PROFILE (Sheet 1 of 3)

(Also see the IMPLEMENTATION TABLE in the following section)	
Vendor Name: General Electric Multilin	
Device Name: UR Series Relay	
Highest DNP Level Supported: For Requests: Level 2 For Responses: Level 2	Device Function: Master \square Slave
Notable objects, functions, and/or qualifiers supported in addition to the Highest DNP Levels Supported (the complete list is described in the attached table): Binary Inputs (Object 1) Binary Input Changes (Object 2) Binary Outputs (Object 10) Binary Counters (Object 20) Frozen Counters (Object 21) Counter Change Event (Object 22) Frozen Counter Event (Object 23) Analog Inputs (Object 30) Analog Input Changes (Object 32) Analog Deadbands (Object 34)	
Maximum Data Link Frame Size (octets) Transmitted: 292 Received: 292	Maximum Application Fragment Size (octets): Transmitted: 240 Received: 2048
Maximum Data Link Re-tries: None Fixed at 2 Configurable	Maximum Application Layer Re-tries: None Configurable
Requires Data Link Layer Confirmation: Never Always Sometimes Configurable	

Table E-1: DNP V3.00 DEVICE PROFILE (Sheet 2 of 3)

Table E-1: DNP V3.00 DEVICE PROFILE (Sheet 3 of 3)

Reports Binary Input Change Events when no specific variation requested: Never Only time-tagged Only non-time-tagged Configurable	Reports time-tagged Binary Input Change Events when no specific variation requested: Never Binary Input Change With Time Binary Input Change With Relative Time Configurable (attach explanation)
Sends Unsolicited Responses:	Sends Static Data in Unsolicited Responses: Never When Device Restarts When Status Flags Change No other options are permitted.
Default Counter Object/Variation: No Counters Reported Configurable (attach explanation) Default Object: 20 Default Variation: 1 Point-by-point list attached	Counters Roll Over at: No Counters Reported Configurable (attach explanation) 16 Bits (Counter 8) 32 Bits (Counters 0 to 7, 9) Other Value: \qquad Point-by-point list attached
Sends Multi-Fragment Responses: Yes No	

The following table identifies the variations, function codes, and qualifiers supported by the UR in both request messages and in response messages. For static (non-change-event) objects, requests sent with qualifiers 00, 01, 06, 07, or 08, will be responded with qualifiers 00 or 01 . Static object requests sent with qualifiers 17 or 28 will be responded with qualifiers 17 or 28. For change-event objects, qualifiers 17 or 28 are always responded.

Table E-2: IMPLEMENTATION TABLE (Sheet 1 of 4)

OBJECT			REQUEST		RESPONSE	
$\begin{aligned} & \text { OBJECT } \\ & \text { NO. } \end{aligned}$	VARIATION NO.	DESCRIPTION	$\begin{aligned} & \hline \text { FUNCTION } \\ & \text { CODES (DEC) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { QUALIFIER } \\ & \text { CODES (HEX) } \end{aligned}$	$\begin{aligned} & \text { FUNCTION } \\ & \text { CODES (DEC) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { QUALIFIER } \\ & \text { CODES (HEX) } \\ & \hline \end{aligned}$
1	0	Binary Input (Variation 0 is used to request default variation)	$\begin{aligned} & 1 \text { (read) } \\ & 22 \text { (assign class) } \end{aligned}$	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)		
	1	Binary Input	$\begin{aligned} & 1 \text { (read) } \\ & 22 \text { (assign class) } \end{aligned}$	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{aligned} & \text { 00, } 01 \text { (start-stop) } \\ & \text { 17, } 28 \text { (index) } \\ & \text { (see Note 2) } \end{aligned}$
	2	Binary Input with Status (default - see Note 1)	$\begin{aligned} & 1 \text { (read) } \\ & 22 \text { (assign class) } \end{aligned}$	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
2	0	Binary Input Change (Variation 0 is used to request default variation)	1 (read)	06 (no range, or all) 07, 08 (limited quantity)		
	1	Binary Input Change without Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	$\begin{aligned} & 129 \text { (response) } \\ & 130 \text { (unsol. resp.) } \end{aligned}$	17, 28 (index)
	2	Binary Input Change with Time (default - see Note 1)	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	$\begin{array}{l\|} \hline 129 \text { (response } \\ 130 \text { (unsol. resp.) } \end{array}$	17, 28 (index)
	3 (parse only)	Binary Input Change with Relative Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)		
10	0	Binary Output Status (Variation 0 is used to request default variation)	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)		
	2	Binary Output Status (default - see Note 1)	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \hline 00,01 \text { (start-stop) } \\ 17,28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
12	1	Control Relay Output Block	3 (select) 4 (operate) 5 (direct op) 6 (dir. op, noack)	00, 01 (start-stop) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	echo of request
20	0	Binary Counter (Variation 0 is used to request default variation)	1 (read) 7 (freeze) 8 (freeze noack) 9 (freeze clear) 10 (frz. cl. noack) 22 (assign class)	00, 01 (start-stop) 06(no range, or all) 07, 08 (limited quantity) 17, 28(index)		
	1	32-Bit Binary Counter (default - see Note 1)	$\begin{array}{\|l\|} \hline 1 \text { (read) } \\ 7 \text { (freeze) } \\ 8 \text { (freeze noack) } \\ 9 \text { (freeze clear) } \\ 10 \text { (frz. cl. noack) } \\ 22 \text { (assign class) } \\ \hline \end{array}$	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ 17,28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$

Note 1: A Default variation refers to the variation responded when variation 0 is requested and/or in class 0, 1, 2, or 3 scans. Type 30 (Analog Input) data is limited to data that is actually possible to be used in the UR, based on the product order code. For example, Signal Source data from source numbers that cannot be used is not included. This optimizes the class 0 poll data size.
Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28 , respectively. Otherwise, static object requests sent with qualifiers $00,01,06,07$, or 08 , will be responded with qualifiers 00 or 01 (for changeevent objects, qualifiers 17 or 28 are always responded.)
Note 3: Cold restarts are implemented the same as warm restarts - the UR is not restarted, but the DNP process is restarted.

Table E-2: IMPLEMENTATION TABLE (Sheet 2 of 4)

OBJECT			REQUEST		RESPONSE	
OBJECT NO.	VARIATION NO	DESCRIPTION	$\begin{aligned} & \hline \text { FUNCTION } \\ & \text { CODES (DEC) } \end{aligned}$	$\begin{aligned} & \text { QUALIFIER } \\ & \text { CODES (HEX) } \end{aligned}$	$\begin{aligned} & \hline \text { FUNCTION } \\ & \text { CODES (DEC) } \end{aligned}$	$\begin{aligned} & \text { QUALIFIER } \\ & \text { CODES (HEX) } \end{aligned}$
$\begin{gathered} 20 \\ \text { cont'd } \end{gathered}$	2	16-Bit Binary Counter	1 (read) 7 (freeze) 8 (freeze noack) 9 (freeze clear) 10 (frz. cl. noack) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
	5	32-Bit Binary Counter without Flag	1 (read) 7 (freeze) 8 (freeze noack) 9 (freeze clear) 10 (frz. cl. noack) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \hline 00,01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
	6	16-Bit Binary Counter without Flag	1 (read) 7 (freeze) 8 (freeze noack) 9 (freeze clear) 10 (frz. cl. noack) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \hline 00,01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
21	0	Frozen Counter (Variation 0 is used to request default variation)	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)		
	1	32-Bit Frozen Counter (default - see Note 1)	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
	2	16-Bit Frozen Counter	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
	9	32-Bit Frozen Counter without Flag	$\begin{aligned} & \hline 1 \text { (read) } \\ & 22 \text { (assign class) } \end{aligned}$	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ 17,28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
	10	16-Bit Frozen Counter without Flag	$\begin{aligned} & 1 \text { (read) } \\ & 22 \text { (assign class) } \end{aligned}$	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{array}{\|c} \hline 00,01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{array}$
22	0	Counter Change Event (Variation 0 is used to request default variation)	1 (read)	06 (no range, or all) 07, 08 (limited quantity)		
	1	32-Bit Counter Change Event (default - see Note 1)	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	$\begin{array}{l\|l\|} \hline 129 \text { (response) } \\ 130 \text { (unsol. resp.) } \end{array}$	17, 28 (index)
	2	16-Bit Counter Change Event	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	5	32-Bit Counter Change Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	$\begin{aligned} & 129 \text { (response) } \\ & 130 \text { (unsol. resp.) } \end{aligned}$	17, 28 (index)
	6	16-Bit Counter Change Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
23	0	Frozen Counter Event (Variation 0 is used to request default variation)	1 (read)	06 (no range, or all) 07, 08 (limited quantity)		
	1	32-Bit Frozen Counter Event (default - see Note 1)	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	2	16-Bit Frozen Counter Event	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)

Note 1: A Default variation refers to the variation responded when variation 0 is requested and/or in class $0,1,2$, or 3 scans. Type 30 (Analog Input) data is limited to data that is actually possible to be used in the UR, based on the product order code. For example, Signal Source data from source numbers that cannot be used is not included. This optimizes the class 0 poll data size.
Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28 , respectively. Otherwise, static object requests sent with qualifiers $00,01,06,07$, or 08 , will be responded with qualifiers 00 or 01 (for changeevent objects, qualifiers 17 or 28 are always responded.)
Note 3: Cold restarts are implemented the same as warm restarts - the UR is not restarted, but the DNP process is restarted.

Table E-2: IMPLEMENTATION TABLE (Sheet 3 of 4)

OBJECT			REQUEST		RESPONSE	
$\begin{aligned} & \text { OBJECT } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { VARIATION } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \hline \text { FUNCTION } \\ & \text { CODES (DEC) } \end{aligned}$	$\begin{aligned} & \hline \text { QUALIFIER } \\ & \text { CODES (HEX) } \end{aligned}$	$\begin{aligned} & \text { FUNCTION } \\ & \text { CODES (DEC) } \end{aligned}$	QUALIFIER CODES (HEX)
$\begin{gathered} 23 \\ \text { cont'd } \end{gathered}$	5	32-Bit Frozen Counter Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	$\begin{aligned} & 129 \text { (response) } \\ & 130 \text { (unsol. resp.) } \end{aligned}$	17, 28 (index)
	6	16-Bit Frozen Counter Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
30	0	Analog Input (Variation 0 is used to request default variation)	$\begin{aligned} & \hline 1 \text { (read) } \\ & 22 \text { (assign class) } \end{aligned}$	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)		
	1	32-Bit Analog Input (default - see Note 1)	$\begin{aligned} & \hline 1 \text { (read) } \\ & 22 \text { (assign class) } \end{aligned}$	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
	2	16-Bit Analog Input	$\begin{aligned} & \hline 1 \text { (read) } \\ & 22 \text { (assign class) } \end{aligned}$	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
	3	32-Bit Analog Input without Flag	$\begin{array}{\|l\|} \hline 1 \text { (read) } \\ 22 \text { (assign class) } \end{array}$	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
	4	16-Bit Analog Input without Flag	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
	5	short floating point	$\begin{aligned} & \hline 1 \text { (read) } \\ & 22 \text { (assign class) } \end{aligned}$	00, 01 (start-stop) 06(no range, or all) 07, 08 (limited quantity) 17, 28(index)	129 (response)	$\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
32	0	Analog Change Event (Variation 0 is used to request default variation)	1 (read)	06 (no range, or all) 07, 08 (limited quantity)		
	1	32-Bit Analog Change Event without Time (default - see Note 1)	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	2	16-Bit Analog Change Event without Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	3	32-Bit Analog Change Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	4	16-Bit Analog Change Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	5	short floating point Analog Change Event without Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	7	short floating point Analog Change Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	$\begin{aligned} & 129 \text { (response) } \\ & 130 \text { (unsol. resp.) } \end{aligned}$	17, 28 (index)
34	0	Analog Input Reporting Deadband (Variation 0 is used to request default variation)	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)		
	1	16-bit Analog Input Reporting Deadband (default - see Note 1)	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \text { 00, } 01 \text { (start-stop) } \\ \text { 17, } 28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
			2 (write)	$\begin{aligned} & \hline 00,01 \text { (start-stop) } \\ & 07,08 \text { (limited quantity) } \\ & 17,28 \text { (index) } \end{aligned}$		

Note 1: A Default variation refers to the variation responded when variation 0 is requested and/or in class $0,1,2$, or 3 scans. Type 30 (Analog Input) data is limited to data that is actually possible to be used in the UR, based on the product order code. For example, Signal Source data from source numbers that cannot be used is not included. This optimizes the class 0 poll data size.
Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28 , respectively. Otherwise, static object requests sent with qualifiers $00,01,06,07$, or 08 , will be responded with qualifiers 00 or 01 (for changeevent objects, qualifiers 17 or 28 are always responded.)
Note 3: Cold restarts are implemented the same as warm restarts - the UR is not restarted, but the DNP process is restarted.

Table E-2: IMPLEMENTATION TABLE (Sheet 4 of 4)

OBJECT			REQUEST		RESPONSE	
$\begin{aligned} & \text { OBJECT } \\ & \text { NO. } \end{aligned}$	VARIATION NO.	DESCRIPTION	$\begin{aligned} & \hline \text { FUNCTION } \\ & \text { CODES (DEC) } \end{aligned}$	$\begin{array}{\|l} \hline \text { QUALIFIER } \\ \text { CODES (HEX) } \end{array}$	$\begin{aligned} & \hline \text { FUNCTION } \\ & \text { CODES (DEC) } \end{aligned}$	$\begin{array}{\|l} \hline \text { QUALIFIER } \\ \text { CODES (HEX) } \end{array}$
$\begin{gathered} 34 \\ \text { cont'd } \end{gathered}$	2	32-bit Analog Input Reporting Deadband (default - see Note 1)	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \hline 00,01 \text { (start-stop) } \\ 17,28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
			2 (write)	$\begin{array}{\|l\|} \hline 00,01 \text { (start-stop) } \\ 07,08 \text { (limited quantity) } \\ 17,28 \text { (index) } \\ \hline \end{array}$		
	3	Short floating point Analog Input Reporting Deadband	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
50	0	Time and Date	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	$\begin{gathered} \hline 00,01 \text { (start-stop) } \\ 17,28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
	1	Time and Date (default - see Note 1)	$\begin{aligned} & 1 \text { (read) } \\ & 2 \text { (write) } \end{aligned}$	$\begin{aligned} & \hline 00,01 \text { (start-stop) } \\ & 06 \text { (no range, or all) } \\ & 07 \text { (limited qty=1) } \\ & 08 \text { (limited quantity) } \\ & 17,28 \text { (index) } \end{aligned}$	129 (response)	$\begin{gathered} \hline 00,01 \text { (start-stop) } \\ 17,28 \text { (index) } \\ \text { (see Note 2) } \end{gathered}$
52	2	Time Delay Fine			129 (response)	$\begin{aligned} & 07 \text { (limited quantity) } \\ & \text { (quantity = 1) } \end{aligned}$
60	0	Class 0, 1, 2, and 3 Data	1 (read) 20 (enable unsol) 21 (disable unsol) 22 (assign class)	06 (no range, or all)		
	1	Class 0 Data	1 (read) 22 (assign class)	06 (no range, or all)		
	2	Class 1 Data	1 (read) 20 (enable unsol) 21 (disable unsol) 22 (assign class)	06 (no range, or all) 07, 08 (limited quantity)		
	3	Class 2 Data	1 (read) 20 (enable unsol) 21 (disable unsol) 22 (assign class)	06 (no range, or all) 07, 08 (limited quantity)		
	4	Class 3 Data	1 (read) 20 (enable unsol) 21 (disable unsol) 22 (assign class)	06 (no range, or all) 07, 08 (limited quantity)		
80	1	Internal Indications	2 (write)	$\begin{aligned} & 00 \text { (start-stop) } \\ & \text { (index must =7) } \end{aligned}$		
---		No Object (function code only) see Note 3	13 (cold restart)			
---		No Object (function code only)	14 (warm restart)			
---		No Object (function code only)	23 (delay meas.)			

Note 1: A Default variation refers to the variation responded when variation 0 is requested and/or in class 0, 1, 2, or 3 scans. Type 30 (Analog Input) data is limited to data that is actually possible to be used in the UR, based on the product order code. For example, Signal Source data from source numbers that cannot be used is not included. This optimizes the class 0 poll data size.
Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28 , respectively. Otherwise, static object requests sent with qualifiers $00,01,06,07$, or 08 , will be responded with qualifiers 00 or 01 (for changeevent objects, qualifiers 17 or 28 are always responded.)
Note 3: Cold restarts are implemented the same as warm restarts - the UR is not restarted, but the DNP process is restarted.

The following table lists both Binary Counters (Object 20) and Frozen Counters (Object 21). When a freeze function is performed on a Binary Counter point, the frozen value is available in the corresponding Frozen Counter point.

BINARY INPUT POINTS

Static (Steady-State) Object Number: 1
Change Event Object Number: 2
Request Function Codes supported: 1 (read), 22 (assign class)
Static Variation reported when variation 0 requested: 2 (Binary Input with status)
Change Event Variation reported when variation 0 requested: 2 (Binary Input Change with Time)
Change Event Scan Rate: 8 times per power system cycle
Change Event Buffer Size: 1000

Table E-3: BINARY INPUTS (Sheet 1 of 9)

POINT INDEX	NAME/DESCRIPTION	CHANGE EVENT CLASS (1/2/3/NONE)
0	Virtual Input 1	2
1	Virtual Input 2	2
2	Virtual Input 3	2
3	Virtual Input 4	2
4	Virtual Input 5	2
5	Virtual Input 6	2
6	Virtual Input 7	2
7	Virtual Input 8	2
8	Virtual Input 9	2
9	Virtual Input 10	2
10	Virtual Input 11	2
11	Virtual Input 12	2
12	Virtual Input 13	2
13	Virtual Input 14	2
14	Virtual Input 15	2
15	Virtual Input 16	2
16	Virtual Input 17	2
17	Virtual Input 18	2
18	Virtual Input 19	2
19	Virtual Input 20	2
20	Virtual Input 21	2
21	Virtual Input 22	2
22	Virtual Input 23	2
23	Virtual Input 24	2
24	Virtual Input 25	2
25	Virtual Input 26	2
26	Virtual Input 27	2
27	Virtual Input 28	2
28	Virtual Input 29	2
29	Virtual Input 30	2
30	Virtual Input 31	2
31	Virtual Input 32	2

Table E-3: BINARY INPUTS (Sheet 2 of 9)

POINT INDEX	NAME/DESCRIPTION	CHANGE EVENT CLASS (1/2/3/NONE)
32	Virtual Output 1	2
33	Virtual Output 2	2
34	Virtual Output 3	2
35	Virtual Output 4	2
36	Virtual Output 5	2
37	Virtual Output 6	2
38	Virtual Output 7	2
39	Virtual Output 8	2
40	Virtual Output 9	2
41	Virtual Output 10	2
42	Virtual Output 11	2
43	Virtual Output 12	2
44	Virtual Output 13	2
45	Virtual Output 14	2
46	Virtual Output 15	2
47	Virtual Output 16	2
48	Virtual Output 17	2
49	Virtual Output 18	2
50	Virtual Output 19	2
51	Virtual Output 20	2
52	Virtual Output 21	2
53	Virtual Output 22	2
54	Virtual Output 23	2
55	Virtual Output 24	2
56	Virtual Output 25	2
57	Virtual Output 26	2
58	Virtual Output 27	2
59	Virtual Output 28	2
60	Virtual Output 29	2
61	Virtual Output 30	2
62	Virtual Output 31	2
63	Virtual Output 32	2

Table E-3: BINARY INPUTS (Sheet 3 of 9)

$\begin{aligned} & \hline \text { POINT } \\ & \text { INDEX } \end{aligned}$	NAME/DESCRIPTION	CHANGE EVENT CLASS (1/2/3/NONE)	POINT INDEX	NAME/DESCRIPTION	CHANGE EVENT CLASS (1/2/3/NONE)
64	Virtual Output 33	2	113	Contact Input 18	1
65	Virtual Output 34	2	114	Contact Input 19	1
66	Virtual Output 35	2	115	Contact Input 20	1
67	Virtual Output 36	2	116	Contact Input 21	1
68	Virtual Output 37	2	117	Contact Input 22	1
69	Virtual Output 38	2	118	Contact Input 23	1
70	Virtual Output 39	2	119	Contact Input 24	1
71	Virtual Output 40	2	120	Contact Input 25	1
72	Virtual Output 41	2	121	Contact Input 26	1
73	Virtual Output 42	2	122	Contact Input 27	1
74	Virtual Output 43	2	123	Contact Input 28	1
75	Virtual Output 44	2	124	Contact Input 29	1
76	Virtual Output 45	2	125	Contact Input 30	1
77	Virtual Output 46	2	126	Contact Input 31	1
78	Virtual Output 47	2	127	Contact Input 32	1
79	Virtual Output 48	2	128	Contact Input 33	1
80	Virtual Output 49	2	129	Contact Input 34	1
81	Virtual Output 50	2	130	Contact Input 35	1
82	Virtual Output 51	2	131	Contact Input 36	1
83	Virtual Output 52	2	132	Contact Input 37	1
84	Virtual Output 53	2	133	Contact Input 38	1
85	Virtual Output 54	2	134	Contact Input 39	1
86	Virtual Output 55	2	135	Contact Input 40	1
87	Virtual Output 56	2	136	Contact Input 41	1
88	Virtual Output 57	2	137	Contact Input 42	1
89	Virtual Output 58	2	138	Contact Input 43	1
90	Virtual Output 59	2	139	Contact Input 44	1
91	Virtual Output 60	2	140	Contact Input 45	1
92	Virtual Output 61	2	141	Contact Input 46	1
93	Virtual Output 62	2	142	Contact Input 47	1
94	Virtual Output 63	2	143	Contact Input 48	1
95	Virtual Output 64	2	144	Contact Input 49	1
96	Contact Input 1	1	145	Contact Input 50	1
97	Contact Input 2	1	146	Contact Input 51	1
98	Contact Input 3	1	147	Contact Input 52	1
99	Contact Input 4	1	148	Contact Input 53	1
100	Contact Input 5	1	149	Contact Input 54	1
101	Contact Input 6	1	150	Contact Input 55	1
102	Contact Input 7	1	151	Contact Input 56	1
103	Contact Input 8	1	152	Contact Input 57	1
104	Contact Input 9	1	153	Contact Input 58	1
105	Contact Input 10	1	154	Contact Input 59	1
106	Contact Input 11	1	155	Contact Input 60	1
107	Contact Input 12	1	156	Contact Input 61	1
108	Contact Input 13	1	157	Contact Input 62	1
109	Contact Input 14	1	158	Contact Input 63	1
110	Contact Input 15	1	159	Contact Input 64	1
111	Contact Input 16	1	160	Contact Input 65	1
112	Contact Input 17	1	161	Contact Input 66	1

Table E-3: BINARY INPUTS (Sheet 5 of 9)

POINT INDEX	NAME/DESCRIPTION	CHANGE EVENT CLASS (1/2/3/NONE)
162	Contact Input 67	1
163	Contact Input 68	1
164	Contact Input 69	1
165	Contact Input 70	1
166	Contact Input 71	1
167	Contact Input 72	1
168	Contact Input 73	1
169	Contact Input 74	1
170	Contact Input 75	1
171	Contact Input 76	1
172	Contact Input 77	1
173	Contact Input 78	1
174	Contact Input 79	1
175	Contact Input 80	1
176	Contact Input 81	1
177	Contact Input 82	1
178	Contact Input 83	1
179	Contact Input 84	1
180	Contact Input 85	1
181	Contact Input 86	1
182	Contact Input 87	1
183	Contact Input 88	1
184	Contact Input 89	1
185	Contact Input 90	1
186	Contact Input 91	1
187	Contact Input 92	1
188	Contact Input 93	1
189	Contact Input 94	1
190	Contact Input 95	1
191	Contact Input 96	1
192	Contact Output 1	1
193	Contact Output 2	1
194	Contact Output 3	1
195	Contact Output 4	1
196	Contact Output 5	1
197	Contact Output 6	1
198	Contact Output 7	1
199	Contact Output 8	1
200	Contact Output 9	1
201	Contact Output 10	1
202	Contact Output 11	1
203	Contact Output 12	1
204	Contact Output 13	1
205	Contact Output 14	1
206	Contact Output 15	1
207	Contact Output 16	1
208	Contact Output 17	1
209	Contact Output 18	1
210	Contact Output 19	1

Table E-3: BINARY INPUTS (Sheet 6 of 9)

POINT INDEX	NAME/DESCRIPTION	CHANGE EVENT CLASS (1/2/3/NONE)
211	Contact Output 20	1
212	Contact Output 21	1
213	Contact Output 22	1
214	Contact Output 23	1
215	Contact Output 24	1
216	Contact Output 25	1
217	Contact Output 26	1
218	Contact Output 27	1
219	Contact Output 28	1
220	Contact Output 29	1
221	Contact Output 30	1
222	Contact Output 31	1
223	Contact Output 32	1
224	Contact Output 33	1
225	Contact Output 34	1
226	Contact Output 35	1
227	Contact Output 36	1
228	Contact Output 37	1
229	Contact Output 38	1
230	Contact Output 39	1
231	Contact Output 40	1
232	Contact Output 41	1
233	Contact Output 42	1
234	Contact Output 43	1
235	Contact Output 44	1
236	Contact Output 45	1
237	Contact Output 46	1
238	Contact Output 47	1
239	Contact Output 48	1
240	Contact Output 49	1
241	Contact Output 50	1
242	Contact Output 51	1
243	Contact Output 52	1
244	Contact Output 53	1
245	Contact Output 54	1
246	Contact Output 55	1
247	Contact Output 56	1
248	Contact Output 57	1
249	Contact Output 58	1
250	Contact Output 59	1
251	Contact Output 60	1
252	Contact Output 61	1
253	Contact Output 62	1
254	Contact Output 63	1
255	Contact Output 64	1
256	Remote Input 1	1
257	Remote Input 2	1
258	Remote Input 3	1
259	Remote Input 4	1

Table E-3: BINARY INPUTS (Sheet 7 of 9)

$\begin{aligned} & \hline \text { POINT } \\ & \text { INDEX } \end{aligned}$	NAME/DESCRIPTION	$\begin{aligned} & \hline \text { CHANGE EVENT } \\ & \text { CLASS (1/2/3/NONE) } \end{aligned}$
260	Remote Input 5	1
261	Remote Input 6	1
262	Remote Input 7	1
263	Remote Input 8	1
264	Remote Input 9	1
265	Remote Input 10	1
266	Remote Input 11	1
267	Remote Input 12	1
268	Remote Input 13	1
269	Remote Input 14	1
270	Remote Input 15	1
271	Remote Input 16	1
272	Remote Input 17	1
273	Remote Input 18	1
274	Remote Input 19	1
275	Remote Input 20	1
276	Remote Input 21	1
277	Remote Input 22	1
278	Remote Input 23	1
279	Remote Input 24	1
280	Remote Input 25	1
281	Remote Input 26	1
282	Remote Input 27	1
283	Remote Input 28	1
284	Remote Input 29	1
285	Remote Input 30	1
286	Remote Input 31	1
287	Remote Input 32	1
288	Remote Device 1	1
289	Remote Device 2	1
290	Remote Device 3	1
291	Remote Device 4	1
292	Remote Device 5	1
293	Remote Device 6	1
294	Remote Device 7	1
295	Remote Device 8	1
296	Remote Device 9	1
297	Remote Device 10	1
298	Remote Device 11	1
299	Remote Device 12	1
300	Remote Device 13	1
301	Remote Device 14	1
302	Remote Device 15	1
303	Remote Device 16	1
640	SETTING GROUP Element OP	1
641	RESET Element OP	1
704	FLEXELEMENT 1 Element OP	1
705	FLEXELEMENT 2 Element OP	1
706	FLEXELEMENT 3 Element OP	1

Table E-3: BINARY INPUTS (Sheet 8 of 9)

POINT INDEX	NAME/DESCRIPTION	CHANGE EVENT CLASS (1/2/3/NONE)
707	FLEXELEMENT 4 Element OP	1
708	FLEXELEMENT 5 Element OP	1
709	FLEXELEMENT 6 Element OP	1
710	FLEXELEMENT 7 Element OP	1
711	FLEXELEMENT 8 Element OP	1
816	DIG ELEM 1 Element OP	1
817	DIG ELEM 2 Element OP	1
818	DIG ELEM 3 Element OP	1
819	DIG ELEM 4 Element OP	1
820	DIG ELEM 5 Element OP	1
821	DIG ELEM 6 Element OP	1
822	DIG ELEM 7 Element OP	1
823	DIG ELEM 8 Element OP	1
824	DIG ELEM 9 Element OP	1
825	DIG ELEM 10 Element OP	1
826	DIG ELEM 11 Element OP	1
827	DIG ELEM 12 Element OP	1
828	DIG ELEM 13 Element OP	1
829	DIG ELEM 14 Element OP	1
830	DIG ELEM 15 Element OP	1
831	DIG ELEM 16 Element OP	1
848	COUNTER 1 Element OP	1
849	COUNTER 2 Element OP	1
850	COUNTER 3 Element OP	1
851	COUNTER 4 Element OP	1
852	COUNTER 5 Element OP	1
853	COUNTER 6 Element OP	1
854	COUNTER 7 Element OP	1
855	COUNTER 8 Element OP	1
864	LED State 1 (IN SERVICE)	1
865	LED State 2 (TROUBLE)	1
866	LED State 3 (TEST MODE)	1
867	LED State 4 (TRIP)	1
868	LED State 5 (ALARM)	1
869	LED State 6(PICKUP)	1
880	LED State 9 (VOLTAGE)	1
881	LED State 10 (CURRENT)	1
882	LED State 11 (FREQUENCY)	1
883	LED State 12 (OTHER)	1
884	LED State 13 (PHASE A)	1
885	LED State 14 (PHASE B)	1
886	LED State 15 (PHASE C)	1
887	LED State 16 (NTL/GROUND)	1
898	SNTP FAILURE	1
899	BATTERY FAIL	1
900	PRI ETHERNET FAIL	1
901	SEC ETHERNET FAIL	1
902	EEPROM DATA ERROR	1
903	SRAM DATA ERROR	1

Table E-3: BINARY INPUTS (Sheet 9 of 9)

POINT INDEX	NAME/DESCRIPTION	CHANGE EVENT CLASS (1/2/3/NONE)
904	PROGRAM MEMORY	1
905	WATCHDOG ERROR	1
906	LOW ON MEMORY	1
907	REMOTE DEVICE OFF	1
908	DIRECT DEVICE OFF	
909	DIRECT RING BREAK	
910	ANY MINOR ERROR	1
911	ANY MAJOR ERROR	1
912	ANY SELF-TESTS	1
913	IRIG-B FAILURE	1
914	DSP ERROR	1
916	NO DSP INTERUPTS	1
917	UNIT NOT CALIBRATED	1
921	PROTOTYPE FIRMWARE	1
922	FLEXLOGIC ERR TOKEN	1
923	EQUIPMENT MISMATCH	1
925	UNIT NOT PROGRAMMED	1
926	SYSTEM EXCEPTION	1
927	LATCHING OUT ERROR	1

Supported Control Relay Output Block fields: Pulse On, Pulse Off, Latch On, Latch Off, Paired Trip, Paired Close.

BINARY OUTPUT STATUS POINTS

Object Number: 10
Request Function Codes supported: 1 (read)
Default Variation reported when Variation 0 requested: 2 (Binary Output Status)
CONTROL RELAY OUTPUT BLOCKS
Object Number: 12
Request Function Codes supported: 3 (select), 4 (operate), 5 (direct operate), 6 (direct operate, noack)

Table E-4: BINARY/CONTROL OUTPUTS

POINT	NAME/DESCRIPTION
0	Virtual Input 1
1	Virtual Input 2
2	Virtual Input 3
3	Virtual Input 4
4	Virtual Input 5
5	Virtual Input 6
6	Virtual Input 7
7	Virtual Input 8
8	Virtual Input 9
9	Virtual Input 10
10	Virtual Input 11
11	Virtual Input 12
12	Virtual Input 13
13	Virtual Input 14
14	Virtual Input 15
15	Virtual Input 16
16	Virtual Input 17
17	Virtual Input 18
18	Virtual Input 19
19	Virtual Input 20
20	Virtual Input 21
21	Virtual Input 22
22	Virtual Input 23
23	Virtual Input 24
24	Virtual Input 25
25	Virtual Input 26
26	Virtual Input 27
27	Virtual Input 28
28	Virtual Input 29
29	Virtual Input 30
30	Virtual Input 31
31	Virtual Input 32

The following table lists both Binary Counters (Object 20) and Frozen Counters (Object 21). When a freeze function is performed on a Binary Counter point, the frozen value is available in the corresponding Frozen Counter point.

BINARY COUNTERS

Static (Steady-State) Object Number: 20
Change Event Object Number: 22
Request Function Codes supported: 1 (read), 7 (freeze), 8 (freeze noack), 9 (freeze and clear), 10 (freeze and clear, noack), 22 (assign class)

Static Variation reported when variation 0 requested: 1 (32-Bit Binary Counter with Flag)
Change Event Variation reported when variation 0 requested: 1 (32 -Bit Counter Change Event without time)
Change Event Buffer Size: 10
Default Class for all points: 2
FROZEN COUNTERS
Static (Steady-State) Object Number: 21
Change Event Object Number: 23
Request Function Codes supported: 1 (read)
Static Variation reported when variation 0 requested: 1 (32-Bit Frozen Counter with Flag)
Change Event Variation reported when variation 0 requested: 1 (32-Bit Frozen Counter Event without time)
Change Event Buffer Size: 10
Default Class for all points: 2

Table E-5: BINARY AND FROZEN COUNTERS

POINT INDEX	NAME/DESCRIPTION
0	Digital Counter 1
1	Digital Counter 2
2	Digital Counter 3
3	Digital Counter 4
4	Digital Counter 5
5	Digital Counter 6
6	Digital Counter 7
7	Digital Counter 8
8	Oscillography Trigger Count
9	Events Since Last Clear

A counter freeze command has no meaning for counters 8 and 9. C30 Digital Counter values are represented as 32-bit integers. The DNP 3.0 protocol defines counters to be unsigned integers. Care should be taken when interpreting negative counter values.

The following table lists Analog Inputs (Object 30). It is important to note that 16-bit and 32-bit variations of analog inputs are transmitted through DNP as signed numbers. Even for analog input points that are not valid as negative values, the maximum positive representation is 32767 for 16 -bit values and 2147483647 for 32 -bit values. This is a DNP requirement.
The deadbands for all Analog Input points are in the same units as the Analog Input quantity. For example, an Analog Input quantity measured in volts has a corresponding deadband in units of volts. This is in conformance with DNP Technical Bulletin 9809-001 Analog Input Reporting Deadband. Relay settings are available to set default deadband values according to data type. Deadbands for individual Analog Input Points can be set using DNP Object 34.
When using the C30 in DNP systems with limited memory, the Analog Input Points below may be replaced with a userdefinable list. This user-definable list uses the same settings as the Modbus User Map and can be configured with the Modbus User Map settings. When used with DNP, each entry in the Modbus User Map represents the starting Modbus address of a data item available as a DNP Analog Input point. To enable use of the Modbus User Map for DNP Analog Input points, set the USER MAP FOR DNP ANALOGS setting to Enabled (this setting is in the PRODUCT SETUP $\Rightarrow \sqrt{ }$ COMMUNICATIONS $\Rightarrow \sqrt{ }$ DNP PROTOCOL menu). The new DNP Analog points list can be checked via the "DNP Analog Input Points List" webpage, accessible from the "Device Information menu" webpage.

After changing the USER MAP FOR DNP ANALOGS setting, the relay must be powered off and then back on for the setting to take effect.

Only Source 1 data points are shown in the following table. If the NUMBER OF SOURCES IN ANALOG LIST setting is increased, data points for subsequent sources will be added to the list immediately following the Source 1 data points.

Units for Analog Input points are as follows:

Current:	A (amps)	- Frequency:	Hz (hertz)
Voltage:	V (volts)	- Angle:	degrees
Real Power:	W (watts)	- Ohm Input:	ohms
Reactive Power:	var (vars)	- RTD Input:	${ }^{\circ} \mathrm{C}$ (degrees Celsius)
Apparent Power:	VA (volt-amps)		
Energy	Wh, varh (watt-hours, var-hours)		

[^1]Table E-6: ANALOG INPUT POINTS

POINT	DESCRIPTION
0	FlexElement 1 Actual
1	FlexElement 2 Actual
2	FlexElement 3 Actual
3	FlexElement 4 Actual
4	FlexElement 5 Actual
5	FlexElement 6 Actual
6	FlexElement 7 Actual
7	FlexElement 8 Actual
8	Current Setting Group

Table F-1: REVISION HISTORY

MANUAL P/N	REVISION	RELEASE DATE	ECO
1601-0088-A1	1.5x	19 February 1999	N/A
1601-0088-A2	1.6x	10 August 1999	URC-003
1601-0088-A3	1.8 x	29 October 1999	URC-004
1601-0088-A4	1.8x	15 November 1999	URC-008
1601-0088-A5	2.0x	17 December 1999	URC-009
1601-0088-A6	$2.2 x$	12 May 2000	URC-011
1601-0088-A7	2.2 x	14 June 2000	URC-013
1601-0088-A7a	2.2x	28 June 2000	URC-013a
1601-0088-B1	2.4x	08 September 2000	URC-015
1601-0088-B2	2.4x	03 November 2000	URC-017
1601-0088-B3	2.6 x	09 March 2001	URC-019
1601-0088-B4	$2.8 x$	26 September 2001	URC-022
1601-0088-B5	2.9x	03 December 2001	URC-024
1601-0088-C1	3.0x	02 July 2002	URC-026
1601-0088-C2	3.1 x	30 August 2002	URC-028
1601-0088-C3	3.0x	18 November 2002	URC-030
1601-0088-C4	3.1 x	18 November 2002	URC-031
1601-0088-C5	3.0x	11 February 2003	URC-034
1601-0088-C6	3.1 x	11 February 2003	URC-035
1601-0088-D1	3.2x	11 February 2003	URC-038
1601-0088-E1	$3.3 x$	01 May 2003	URX-080
1601-0088-E2	3.3x	29 May 2003	URX-089

F.1.2 CHANGES TO THE C30 MANUAL

Table F-2: MAJOR UPDATES FOR C30 MANUAL REVISION E2

PAGE (E1)	PAGE (E2)	CHANGE	DESCRIPTION
Title	Title	Update	Manual part number to 1601-0088-E2.
$4-4$	$4-4$	Update	Updated UR VERTICAL FACEPLATE PANELS figure to remove incorrect reference to User- Programmable Pushbuttons.

Table F-3: MAJOR UPDATES FOR C30 MANUAL REVISION E1

PAGE (D1)	PAGE (E1)	CHANGE	DESCRIPTION
Title	Title	Update	Manual part number to 1601-0088-E1.
$2-4$	$2-4$	Update	Added specifications for SELECTOR SWITCH, CONTROL PUSHBUTTONS, USER-DEFINABLE DISPLAYS, DIRECT INPUTS, DIRECT OUTPUTS, LATCHING OUTPUTS, and LED TEST.
$3-10$	$3-10$	Update	Updated DIGITAL I/O MODULE ASSIGNMENTS table to add the 4A, 4B, 4C, and 4L modules.
$3-12$	$3-12$	Update	Updated the DIGITAL I/O MODULE WIRING diagram to 827719CX.
$3-28$	$3-28$	Add	Added section for IEEE C37.94 Direct I/O communications.
$5-6$	$5-6$	Add	Added CLEAR RELAY RECORDS section.
$5-16$	$5-17$	Update	Updated USER-PROGRAMMABLE LEDs section to include LED Test feature.
$5-17$	$5-20$	Add	Added CONTROL PUSHBUTTONS section.
$5-19$	$5-23$	Update	Updated USER-DEFINABLE DISPLAYS section.
$5-20$	$5-25$	Update	Updated DIRECT I/O section to include CRC Alarm and Unreturned Messages Alarm features.
$5-40$	$5-47$	Add	Added SELECTOR SWITCH section.
$5-49$	$5-61$	Add	Added LATCHING OUTPUTS section.
$5-59$	$5-73$	Update	Updated TESTING section.
$7-3$	$7-3$	Update	Updated RELAY SELF-TESTS section.
B-8	B-8	Update	Updated MODBUS MEMORY MAP to reflect new firmware 3.3x features.

Table F-4: MAJOR UPDATES FOR C30 MANUAL REVISION D1

PAGE (C6)	PAGE (D1)	CHANGE	DESCRIPTION
Title	Title	Update	Manual part number to 1601-0088-D1.
$1-6$	$1-6$	Update	Updated CONNECTING URPC WITH THE C30 section to reflect new URPC software.
$2-2$	$2-2$	Update	Updated DEVICE FUNCTIONS table to include User-Programmable Self Tests.
$5-10$	$5-10$	Update	Updated UCA/MMS PROTOCOL sub-section to include two new settings.
$5-17$	$5-17$	Add	Added USER-PROGRAMMABLE SELF-TESTS section.
$5-29$	$5-27$	Update	Updated FLEXLOGICTM OPERANDS table to include firmware revision 3.2x features.
$7-3$	$7-3$	Update	Updated RELAY SELF-TESTS section.
B-9	B-8	Update	Updated MODBUS MEMORY MAP to reflect new firmware 3.2x features.

Table F-5: MAJOR UPDATES FOR C30 MANUAL REVISION C6

PAGE (C4)	PAGE (C6)	CHANGE	DESCRIPTION
Title	Title	Update	Manual part number to 1601-0088-C6.
$2-2$	$2-2$	Update	Updated ORDER CODES table to add the 67 Digital I/O option.
$2-3$	$2-3$	Update	Updated ORDER CODES FOR REPLACEMENT MODULES table to add the 67 Module option.
$3-10$	$3-10$	Update	Updated DIGITAL I/O MODULE ASSIGNMENTS table to add the 67 module.
$3-12$	$3-12$	Update	Updated the DIGITAL I/O MODULE WIRING diagram to 827719CV.

Table F-6: MAJOR UPDATES FOR C30 MANUAL REVISION C5

PAGE (C3)	PAGE (C5)	CHANGE	DESCRIPTION
Title	Title	Update	Manual part number to 1601-0088-C5.
$2-2$	$2-2$	Update	Updated ORDER CODES table to add the 67 Digital I/O option.
$2-3$	$2-3$	Update	Updated ORDER CODES FOR REPLACEMENT MODULES table to add the 67 Module option.
$3-10$	$3-10$	Update	Updated DIGITAL I/O MODULE ASSIGNMENTS table to add the 67 module.
$3-12$	$3-12$	Update	Updated the DIGITAL I/O MODULE WIRING diagram to 827719CV

Table F-7: MAJOR UPDATES FOR C30 MANUAL REVISION C4

PAGE (C2)	PAGE (C4)	CHANGE	DESCRIPTION
Title	Title	Update	Manual part number to 1601-0088-C4
$2-2$	$2-2$	Update	Updated ORDER CODES table to remove the 63 and 64 Digital I/O options
$2-3$	$2-3$	Update	Updated ORDER CODES FOR REPLACEMENT MODULES table to remove the 63 and 64 Digital I/O options
$3-10$	$3-10$	Update	Updated DIGITAL I/O MODULE ASSIGNMENTS table to remove the 63 and 64 modules
$3-12$	$3-12$	Update	Updated the DIGITAL I/O MODULE WIRING diagram to 827719CT
F-2	---	Remove	Removed List of Tables and List of Figures sections.

Table F-8: MAJOR UPDATES FOR C30 MANUAL REVISION C3

PAGE (C1)	PAGE (C3)	CHANGE	DESCRIPTION
Title	Title	Update	Manual part number to 1601-0088-C3.
$2-2$	$2-2$	Update	Updated ORDER CODES table to remove the 63 and 64 Digital I/O options
$2-3$	$2-3$	Update	Updated ORDER CODES FOR REPLACEMENT MODULES table to remove the 63 and 64 Digital I/O options.
$3-10$	$3-10$	Update	Updated DIGITAL I/O MODULE ASSIGNMENTS table to remove the 63 and 64 modules.
$3-12$	$3-12$	Update	Updated the DIGITAL I/O MODULE WIRING diagram to 827719CT.
$10-1$	---	Remove	Removed COMMISSIONING chapter; setpoints tables are available from URPC or can be downloaded from the GE Multilin website.

Table F-9: MAJOR UPDATES FOR C30 MANUAL REVISION C2

PAGE (C1)	PAGE (C2)	CHANGE	DESCRIPTION
Title	Title	Update	Manual part number from C1 to C2
$10-$	---	Remove	Removed COMMISSIONING setpoints tables; will be available online only

A.................. Ampere	FREQ............ Frequency
AC Alternating Current	FSK............... Frequency-Shift Keying
A/D Analog to Digital	FTP File Transfer Protocol
AE Accidental Energization, Application Entity	FxE FlexElement ${ }^{\text {TM }}$
AMP Ampere	FWD.............. Forward
ANG Angle	
ANSI............. American National Standards Institute	G Generator
AR Automatic Reclosure	GE................ General Electric
ASDU Application-layer Service Data Unit	GND.............. Ground
ASYM Asymmetry	GNTR............ Generator
AUTO Automatic	GOOSE......... General Object Oriented Substation Event
AUX............... Auxiliary	GPS Global Positioning System
AVG.............. Average	
	HARM Harmonic / Harmonics
BER Bit Error Rate	HCT High Current Time
BF................. Breaker Fail	HGF High-Impedance Ground Fault (CT)
BFI................. Breaker Failure Initiate	HIZ High-Impedance and Arcing Ground
BKR Breaker	HMI Human-Machine Interface
BLK Block	HTTP Hyper Text Transfer Protocol
BLKG............. Blocking	HYB Hybrid
BPNT............. Breakpoint of a characteristic	
BRKR Breaker	I.................... Instantaneous
	I_0................ Zero Sequence current
CAP Capacitor	I_1................ Positive Sequence current
CC................ Coupling Capacitor	I-2................ Negative Sequence current
CCVT Coupling Capacitor Voltage Transformer	İA Phase A current
CFG............... Configure / Configurable	IAB Phase A minus B current
.CFG.............. Filename extension for oscillography files	IB Phase B current
CHK............... Check	IBC................ Phase B minus C current
CHNL Channel	IC Phase C current
CLS Close	ICA Phase C minus A current
CLSD............. Closed	ID Identification
CMND Command	IED................ Intelligent Electronic Device
CMPRSN....... Comparison	IEC............... International Electrotechnical Commission
CO................ Contact Output	IEEE............. Institute of Electrical and Electronic Engineers
COM Communication	IG Ground (not residual) current
COMM Communications	Igd................. Differential Ground current
COMP Compensated, Comparison	IN CT Residual Current (3lo) or Input
CONN............ Connection	INC SEQ Incomplete Sequence
CONT Continuous, Contact	INIT Initiate
CO-ORD........ Coordination	INST.............. Instantaneous
CPU.............. Central Processing Unit	INV Inverse
CRC Cyclic Redundancy Code	I/O Input/Output
CRT, CRNT Current	IOC Instantaneous Overcurrent
CSA.............. Canadian Standards Association	IOV................ Instantaneous Overvoltage
CT Current Transformer	IRIG Inter-Range Instrumentation Group
CVT Capacitive Voltage Transformer	ISO \qquad International Standards Organization IUV \qquad Instantaneous Undervoltage
D/A Digital to Analog	
DC (dc)........... Direct Current	K0 Zero Sequence Current Compensation
DD................ Disturbance Detector	kA................. kiloAmpere
DFLT Default	kV................. kiloVolt
DGNST.......... Diagnostics	
DI.................. Digital Input	LED.............. Light Emitting Diode
DIFF Differential	LEO............... Line End Open
DIR Directional	LFT BLD Left Blinder
DISCREP Discrepancy	LOOP Loopback
DIST Distance	LPU............... Line Pickup
DMD Demand	LRA............... Locked-Rotor Current
DNP............... Distributed Network Protocol	LTC Load Tap-Changer
DPO Dropout	
DSP Digital Signal Processor	M.................. Machine
dt Rate of Change	mA MilliAmpere
DTT Direct Transfer Trip	MAG............. Magnitude
DUTT............. Direct Under-reaching Transfer Trip	MAN.............. Manual / Manually
	MAX Maximum
ENCRMNT Encroachment	MIC Model Implementation Conformance
EPRI.............. Electric Power Research Institute	MIN Minimum, Minutes
.EVT Filename extension for event recorder files	MMI............... Man Machine Interface
EXT Extension, External	MMS \qquad \qquad Manufacturing Message Specification MRT Minimum Response Time
F................... Field	MSG.............. Message
FAIL............... Failure	MTA.............. Maximum Torque Angle
FD Fault Detector	MTR Motor
FDH............... Fault Detector high-set	MVA MegaVolt-Ampere (total 3-phase)
FDL Fault Detector low-set	MVA_A MegaVolt-Ampere (phase A)
FLA................ Full Load Current	MVA-B.......... MegaVolt-Ampere (phase B)
FO Fiber Optic	MVA_C.......... MegaVolt-Ampere (phase C)

SAT	CT Saturation
SBO.....	Select Before Operate
SCADA	Supervisory Control and Data Acquisition
SEC	Secondary
SEL...	Select / Selector / Selection
SENS.	Sensitive
SEQ.	Sequence
SIR....	Source Impedance Ratio
SNTP	Simple Network Time Protocol
SRC..	Source
SSB....	Single Side Band
SSEL	Session Selector
STATS..	Statistics
SUPN...	Supervision
SUPV...	Supervise / Supervision
SV........	Supervision, Service
SYNC...	Synchrocheck
SYNCH	Synchrocheck
	Time, transformer
TC.	Thermal Capacity
TCP.	Transmission Control Protocol
TCU.	Thermal Capacity Used
TD MUL	Time Dial Multiplier
TEMP...	Temperature
TFTP.	Trivial File Transfer Protocol
THD ...	Total Harmonic Distortion
TMR.....	Timer
TOC	Time Overcurrent
TOV ...	Time Overvoltage
TRANS	Transient
TRANS	Transfer
TSEL.	Transport Selector
TUC	Time Undercurrent
TUV......	Time Undervoltage
TX (Tx).	Transmit, Transmitter
U	Under
	Undercurrent
UCA	Utility Communications Architecture
UDP	User Datagram Protocol
UL	Underwriters Laboratories
UNBAL.	Unbalance
UR.......	Universal Relay
URC...	Universal Recloser Control
.URS	Filename extension for settings files
UV........	Undervoltage
V/Hz.....	Volts per Hertz
V 0	Zero Sequence voltage
V-1...	Positive Sequence voltage
$\mathrm{V}^{-} 2$......	Negative Sequence voltage
VA	Phase A voltage
VAB....	Phase A to B voltage
VAG	Phase A to Ground voltage
VARH.	Var-hour voltage
VB.......	Phase B voltage
VBA.....	Phase B to A voltage
VBG.	Phase B to Ground voltage
VC........	Phase C voltage
VCA	Phase C to A voltage
VCG.	Phase C to Ground voltage
VF.......	Variable Frequency
VIBR	Vibration
VT........	Voltage Transformer
VTFF....	Voltage Transformer Fuse Failure
VTLOS.	Voltage Transformer Loss Of Signal
WDG....	Winding
WH.....	Watt-hour
w/ opt.	With Option
WRT..	With Respect To
	Reactance
XDUCER	Transducer
XFMR...	Transformer
Z.......	mpedance, Zone

GE MULTILIN RELAY WARRANTY

General Electric Multilin Inc. (GE Multilin) warrants each relay it manufactures to be free from defects in material and workmanship under normal use and service for a period of 24 months from date of shipment from factory.

In the event of a failure covered by warranty, GE Multilin will undertake to repair or replace the relay providing the warrantor determined that it is defective and it is returned with all transportation charges prepaid to an authorized service centre or the factory. Repairs or replacement under warranty will be made without charge.

Warranty shall not apply to any relay which has been subject to misuse, negligence, accident, incorrect installation or use not in accordance with instructions nor any unit that has been altered outside a GE Multilin authorized factory outlet.

GE Multilin is not liable for special, indirect or consequential damages or for loss of profit or for expenses sustained as a result of a relay malfunction, incorrect application or adjustment.

For complete text of Warranty (including limitations and disclaimers), refer to GE Multilin Standard Conditions of Sale.
Numerics
10BASE-F
communications options 3-16
description 3-18
interface 3-27
redundant option 3-16
settings 5-8
specifications 2-7
A
ABBREVIATIONS F-4
ACTIVATING THE RELAY 1-10, 4-
ACTUAL VALUES product information 6-10
ALARM LEDs 5-19
ALTITUDE 2-7
APPLICATION EXAMPLES
breaker trip circuit integrity 5-55
contact inputs 5-59
APPROVALS 2-8
ARCHITECTURE 5-31
B
BATTERY FAIL 7-4
BATTERY TAB 1-10
BINARY INPUT POINTS E-8
BINARY OUTPUT POINTS E-13
BLOCK DIAGRAM 1-3
BLOCK SETTING 5-3
BRIGHTNESS 5-5
C
C37.94 COMMUNICATIONS 3-28, 3-29
CE APPROVALS 2-8
CHANGES TO C30 MANUAL F-1
CHANGES TO MANUAL F-1, F-2, F-3
CHANNEL COMMUNICATION 3-20
CIRCUIT MONITORING APPLICATIONS 5-53
CLEANING 2-8
CLEAR RECORDS 5-6, 7-2, B-27
CLOCK
setting date and time 7-2
settings 5-13
COMMANDS MENU 7-1
COMMUNICATIONS10BASE-F3-16, 3-18, 5-8
channel 3-20
connecting to the UR 1-6, 1-7
CRC-16 error checking B-2
dnp 5-9, 5-13, E-1
G. 703 3-23
half duplex B-1
HTTP 5-11
IEC 60870-5-104 protocol 5-12
inter-relay communications 2-7
Modbus 5-8, 5-13, B-1, B-3
network 5-8
overview 1-8
RS232 3-16
RS485 3-16, 3-17, 5-7
settings $5-8,5-9,5-11,5-12,5-13$
specifications 2-7
UCA/MMS $5-11,5-60,5-64,5-65,5-66, \mathrm{C}-1$
web server 5-11
COMTRADE B-6, B-7
CONDUCTED RFI 2-8
CONTACT INFORMATION 1-1
CONTACT INPUTS
actual values 6-3
dry connections 3-14
FlexLogic ${ }^{\text {TM }}$ operands 5-33
Modbus registers B-9
module assignments 3-10
settings 5-58
specifications 2-5
thresholds 5-58
wet connections 3-14
wiring 3-12
CONTACT OUTPUTS
actual values 6-4
FlexLogic ${ }^{\text {TM }}$ operands 5-34
Modbus registers B-9
module assignments 3-10
settings 5-61
wiring 3-12
CONTROL ELEMENTS 5-47
CONTROL POWER
description 3-8
specifications 2-6
CONTROL PUSHBUTTONS
FlexLogic ${ }^{\text {TM }}$ operands 5-33
Modbus registers B-26
settings 5-20
specifications 2-4
COUNTERS
actual values 6-5
settings 5-56
CRC ALARM 5-29
CRC-16 ALGORITHM B-2
CRITICAL FAILURE RELAY 2-6, 3-8
CSA APPROVAL 2-8
D
DATA FORMATS, MODBUS B-34
DATA LOGGER
clearing 5-6, 7-2
Modbus B-6, B-7
Modbus registers B-10
settings 5-16
specifications 2-5
DATE 7-2
DCMA INPUTS 6-8
settings 5-71
specifications 2-5
DESIGN 1-3
DEVICE ID 5-64
DEVICE PROFILE DOCUMENT E-1
DIELECTRIC STRENGTH 2-8, 3-7DIGITAL COUNTERFlexLogic ${ }^{\text {TM }}$ operands5-33
DIGITAL COUNTERS
actual values 6-5
logic 5-57
Modbus registers B-9
settings 5-56
DIGITAL ELEMENT
5-33
FlexLogic ${ }^{\text {TM }}$ operands
5-54
5-54
application example
application example 5-53
setting 5-53
DIGITAL INPUTS
see entry for CONTACT INPUTS
DIGITAL OUTPUTS
see entry for CONTACT OUTPUTS
DIMENSIONS3-1
DIRECT DEVICES
actual values 6-7
DIRECT I/O
5-68, 5-69
application example
configuration examples 5-17, 5-25, 5-29, 5-30
settings 5-17, 5-25, 5-29, 5-30, 5-67
DIRECT INPUTS
actual values 6-6
application example 5-68, 5-69
clearing counters 7-2
settings 5-67
specifications 2-5
DIRECT OUTPUTS
application example 5-68, 5-69
clearing counters 7-2
settings 5-68
DISPLAY 1-8, 4-7, 5-5
DNA-1 BIT PAIR 5-66
DNP COMMUNICATIONS
binary counters E-14
binary input points E-8
binary output points E-13
control relay output blocks E-13
device profile document E-1
frozen counters E-14
implementation table E-4
settings 5-9
user map 5-10
DUPLEX, HALF B-1
E
ELECTROSTATIC DISCHARGE 2-8
ETHERNET
actual values 6-6
configuration 1-6
Modbus registers B-10
settings 5-8
specifications 2-7
EVENT CAUSE INDICATORS 4-5
EVENT RECORDER
actual values 6-9
clearing 5-6, 7-2
Modbus B-7
specifications 2-5
with URPC 4-2
EVENTS SETTING 5-3
EXCEPTION RESPONSES B-5
F
F485 1-8
FACEPLATE 3-1
FACEPLATE PANELS 4-4, 4-7
FAST FORM-C RELAY 2-6
FAST TRANSIENT TESTING 2-8
FAX NUMBERS 1-1
FEATURES 2-1
FIRMWARE REVISION 6-10
FIRMWARE UPGRADES 4-2
FLASH MESSAGES 5-5
FLEX STATE PARAMETERS
actual values 6-5
Modbus registers B-9
settings. 5-23
specifications 2-4
FLEXANALOG PARAMETER LIST A-1
FLEXCURVESTM
specifications 2-4

actual values 6-8
direction. 5-44
FlexLogic ${ }^{\text {TM }}$ operands 5-33
hysteresis 5-44
pickup 5-44
scheme logic 5-43
settings 5-42, 5-43, 5-45
specifications 2-4
FLEXLOGICTM
editing with URPC 4-1
equation editor 5-41
evaluation 5-36
example 5-31, 5-36
gate characteristics 5-35
operands 5-32, 5-33
operators 5-35
rules 5-36
specifications 2-4
timers 5-41
worksheet 5-38
FLEXLOGICTM EQUATION EDITOR 5-41
FLEXLOGICTM TIMERS 5-41
FORCE CONTACT INPUTS 5-73
FORCE CONTACT OUTPUTS 5-74
FORCE TRIGGER 6-9
FORM-A RELAY3-10
-9, 3-10, 3-14dance circuits
specifications 2-6FORM-C RELAY
outputs 3-9, 3-14
specifications 2-6
FUNCTION SETTING 5-3
FUSE 2-6
G
G. 703 3-22, 3-23, 3-24, 3-27
GOMSFE C-1
GOOSE $5-11,5-64,5-65,5-66,5-67,5-68,6-5$

H

HALF-DUPLEX B-1
HTTP PROTOCOL 5-11
HUMIDITY 2-7
I
IEC 60870-5-104 PROTOCOL
interoperability document D-1
settings 5-12
IED 1-2
IEEE C37.94 COMMUNICATIONS 3-28, 3-29
IMPORTANT CONCEPTS 1-4
IN SERVICE INDICATOR 1-10, 7-3
INPUTS
contact inputs 2-5, 3-12, 5-58, 5-73
dcmA inputs 2-5, 3-15, 5-71
direct inputs 2-5
IRIG-B 2-5, 3-18
remote inputs 2-5, 5-64, 5-65
RTD inputs 2-5, 3-15, 5-72
virtual 5-60
INSPECTION CHECKLIST 1-1
INSTALLATION
communications 3-16
contact inputs/outputs 3-10, 3-12, 3-13
RS485. 3-17
settings 5-30
INSULATION RESISTANCE 2-8
INTELLIGENT ELECTRONIC DEVICE 1-2
INTER-RELAY COMMUNICATIONS 2-7
INTRODUCTION 1-2
IP ADDRESS 5-8
IRIG-B
connection 3-18
settings 5-13
specifications 2-5
ISO-9000 REGISTRATION 2-8
K
KEYPAD 1-9, 4-7

L

LAMPTEST	7-2
LASER MODULE	3-21
LATCHING OUTPUTS	
application example.5-62, 5-63
settings	5-61
specifications	2-6
LED INDICATORS	4-5, 4-6, 5-19, B-8
LED TEST	
FlexLogic ${ }^{\text {TM }}$ operand	5-34
settings	5-17
specifications	2-4
LINK POWER BUDGET	2-7
LOGIC GATES	5-35
LOST PASSWORD	.. 5-4

M

MAINTENANCE COMMANDS 7-2
MANUFACTURING DATE 6-10
MEMORY MAP DATA FORMATS B-34
MENU HEIRARCHY 1-9, 4-8
MENU NAVIGATION 1-9, 4-8, 4-9
MIC C-3
MMS
see entry for UCA/MMS
MODBUS
data logger B-6, B-7
event recorder B-7
exception responses B-5
execute operation B-4
flex state parameters 5-23
function code 03/04h B-3
function code 05h B-4
function code 06h B-4
function code 10h B-5
introduction B-1
memory map data formats B-34
obtaining files B-6
oscillography B-6
passwords B-7
read/write settings/actual values B-3
settings 5-8, 5-13
store multiple settings B-5
store single setting B-4
supported function codes B-3
user map 5-13
user map Modbus registers B-9
MODEL INFORMATION 6-10
MODIFICATION FILE NUMBER 6-10
MODULES
communications 3-16
contact inputs/outputs 3-10, 3-12, 3-13
direct inputs/outputs. 3-21
insertion 3-4
order codes 2-3
ordering 2-3
power supply 3-8
transducer I/O 3-15
withdrawal 3-4
MOUNTING 3-1

N

NAMEPLATE 1-1
NON-VOLATILE LATCHES
FlexLogic ${ }^{\text {TM }}$ operands 5-33
settings 5-46
specifications 2-4
0
ONE SHOTS 5-35
OPERATING TEMPERATURE 2-7
ORDER CODES 2-2, 6-10, 7-2
ORDER CODES, UPDATING 7-2
ORDERING 2-2, 2-3
OSCILLATORY TRANSIENT TESTING 2-8
OSCILLOGRAPHYactual values6-9

clearing	5-6, 7-2
Modbus	B-6
settings	5-14
specifications.	2-5
with URPC	4-2
OUTPUTS	
contact outputs3-10, 3-12, 5-61
control power.	2-6
critical failure relay	2-6
Fast Form-C relay.	2-6
Form-A relay	.2-6, 3-9, 3-10, 3-14
Form-C relay 2-6, 3-9, 3-14
latching outputs 2-6, 5-61
remote outputs	... 5-66, 5-67
virtual outputs	5-63

P

PANEL CUTOUT ...3-1
PASSWORD SECURITY ..5-4
PASSWORDS
changing .. 4-12
lost password .. 4-12, 5-4
Modbus .. B-7
overview..1-10
security ...5-4
settings ...5-4
PC SOFTWARE
see entry for URPC
PHONE NUMBERS ...1-1
PICS ... C-2
POWER SUPPLY
description...3-8
low range ..2-6
specifications...2-6
PRODUCT INFORMATION ..6-10
Modbus registers .. B-8
PRODUCT SETUP ...5-4
PRODUCTION TESTS ...2-8
PUSHBUTTONS, USER-PROGRAMMABLE see USER-PROGRAMMBLE PUSHBUTTONS

R

REAL TIME CLOCK..5-13
REAR TERMINAL ASSIGNMENTS3-5
REDUNDANT 10BASE-F ...3-16
RELAY ACTIVATION..4-11
RELAY ARCHITECTURE ... 5-31
RELAY MAINTENANCE ..7-2
RELAY NAME .. 5-30
RELAY NOT PROGRAMMED ..1-10
REMOTE DEVICES
actual values ..6-4
device ID ...5-64
FlexLogic ${ }^{\text {TM }}$ operands ..5-34
Modbus registers .. B-9
settings ...5-64
statistics ..6-5
REMOTE INPUTS
actual values ...6-3
FlexLogic ${ }^{\text {TM }}$ operands ...5-34
settings ...5-65
specifications..2-5
REMOTE OUTPUTS
DNA-1 bit pair 5-66
UserSt-1 bit pair 5-67, 5-68
REPLACEMENT MODULES 2-3
RESETTING 5-34, 5-67
REVISION HISTORY F-1
RFI SUSCEPTIBILITY 2-8
RFI, CONDUCTED 2-8
RS232
configuration 1-6
specifications 2-7
wiring 3-16
RS422
configuration 3-24
timing 3-26
two-channel application 3-25
with fiber interface 3-27
RS485
communications 3-16
description 3-17
specifications 2-7
RTD INPUTS
actual values 6-8
settings 5-72
specifications 2-5
S
SALES OFFICE 1-1
SCAN OPERATION 1-4
SELECTOR SWITCH
actual values 6-5
application example 5-52
FlexLogic ${ }^{\text {TM }}$ operands 5-33
logic 5-52
settings 5-47
specifications 2-4
timing 5-50, 5-51
SELF-TESTS
description 7-3
error messages 7-4
FlexLogicTM operands 5-34
Modbus registers B-8
SERIAL NUMBER 6-10
SERIAL PORTS 5-7
SETTINGS, CHANGING 4-10
SIGNAL TYPES 1-3
SITE LIST, CREATING 4-1
SNTP PROTOCOL 5-13
SOFTWARE
see entry for URPC
sOFTWARE ARCHITECTURE 1-4
SOFTWARE, PCsee entry for URPC
SPECIFICATIONS 2-4
ST TYPE CONNECTORS 3-18
STANDARD ABBREVIATIONS F-4
STATUS INDICATORS 4-5
SURGE IMMUNITY 2-8
T
TARGET MESSAGES 7-3
target setting 5-3
TARGETS MENU 7-3

INDEX
TCP PORT NUMBER 5-11
TEMPERATURE, OPERATING 2-7
TERMINALS 3-5
TESTING
force contact inputs 5-73
force contact outputs 5-74
lamp test 7-2
self-test error messages 7-3
TIME 7-2
TIMERS 5-41
TRANSDUCER I/O
actual values 6-8
settings 5-71, 5-72
specifications 2-5
wiring 3-15
TRIP LEDs 5-19
TROUBLE INDICATOR 1-10, 7-3
TYPE TESTS 2-8
U
UCA SBO TIMER
for virtual inputs 5-60
UCA/MMS
device ID 5-64
DNA2 assignments 5-66
MIC C-3
overview C-1
PICS C-2
remote device settings 5-64
remote inputs 5-65
reporting C-6
SBO timeout. 5-60
settings 5-11
UserSt-1 bit pair 5-67, 5-68
UL APPROVAL 2-8
UNAUTHORIZED ACCESS resetting 5-6, 7-2
UNIT NOT PROGRAMMED 5-30
UNPACKING THE RELAY 1-1
UNRETURNED MESSAGES ALARM 5-30
UPDATING ORDER CODE 7-2
URPC
4-1
creating a site list
event recorder 4-2
firmware upgrades 4-2
installation 1-5
introduction 4-1
oscillography 4-2
overview 4-1
requirements 1-5
USER-DEFINABLE DISPLAYS
example 5-25
invoking and scrolling 5-23
Modbus registers B-9
settings 5-23, 5-25
specifications 2-4
USER-PROGRAMMABLE LEDs
custom labeling 4-6
settings 5-19
specifications 2-4
USER-PROGRAMMABLE PUSHBUTTONS
FlexLogic ${ }^{\text {TM }}$ operands 5-34
settings 5-21
specifications 2-4
USER-PROGRAMMABLE SELF TESTS settings 5-20
USERST-1 BIT PAIR 5-67, 5-68
V
VIBRATION TESTING 2-8
VIRTUAL INPUTS
actual values 6-3
commands 7-1
FlexLogic ${ }^{\text {TM }}$ operands 5-34
logic 5-60
Modbus registers B-8, B-9
settings 5-60
VIRTUAL OUTPUTS
actual values 6-4
FlexLogic ${ }^{\text {TM }}$ operands 5-34
settings 5-63
VOLTAGE DEVIATIONS 2-8
W
WARRANTY F-6
WEB SERVER PROTOCOL 5-11
WEBSITE 1-1

[^0]: F040
 UR_UINT48 48-BIT UNSIGNED INTEGER

 F050
 UR_UINT32 TIME and DATE (UNSIGNED 32 BIT INTEGER)
 Gives the current time in seconds elapsed since 00:00:00 January 1, 1970.

[^1]: Static (Steady-State) Object Number: 30
 Change Event Object Number: 32
 Request Function Codes supported: 1 (read), 2 (write, deadbands only), 22 (assign class)
 Static Variation reported when variation 0 requested: 1 (32-Bit Analog Input)
 Change Event Variation reported when variation 0 requested: 1 (Analog Change Event without Time)
 Change Event Scan Rate: defaults to $\mathbf{5 0 0} \mathbf{~ m s}$
 Change Event Buffer Size: 800
 Default Class for all Points: 1

