

Instructions for Installation, Operation, and Maintenance of Cutler-Hammer IQ 200 Electrical Distribution System Meter

Table of Contents

SECTION	ON 1: IN	ITRODUCTION	1
1.1	PRELIM	INARY COMMENTS AND SAFETY PRECAUTIONS	1
	1.1.1	Warranty and Liability Information	1
	1.1.2	Safety Precautions	1
	1.1.3	Factory Correspondence	2
1.2	PRODU	CT OVERVIEW	2
SECTION	ON 2: H	ARDWARE DESCRIPTION	4
2.1	GENER	AL	4
	2.1.1	IQ 200 Display Module	4
	2.1.2	IQ 200 Base Modules	4
	2.1.3	Installation	4
2.2	OPERA [®]	TOR PANEL	5
2.3	BASE M	IODULE REAR ACCESS AREA	5
	2.3.1	Current and Voltage Inputs	6
	2.3.2	Power Supply Input	6
	2.3.3	Local Display Connection	6
	2.3.4	PowerNet Communications (IQ 220 Base Module only)	6
2.4	EXTER	NAL HARDWARE	7
	2.4.1	Current Transformers	7
	2.4.2	Potential Transformers	7
	2.4.3	External Fuses	7
2.5	PRODU	CT SPECIFICATIONS	8
	2.5.1	Regulatory/Standards Compliance	8
2.6	ORDER	ING INFORMATION	11
SECTION	ON 3: IN	STALLATION	12
3.1	INTROD	OUCTION	12
3.2	PANEL	PREPARATION	12
	3.2.1	Mounting the IQ 200 Modules as a Single Unit	13
	3.2.2	Mounting the IQ 200 Display and Base Modules Separately.	14
3.3	WIRING	·	16
	3.3.1	Wiring System Current and Voltage	16

	3.3.2	Wiring Diagrams for Various System Configurations	16
	3.3.3	PowerNet Communications (IQ 220 Base Module only)	22
	3.3.4	KYZ Pulse Initiator (IQ 220 Base Module only)	22
SECTION	ON 4: C	PERATION	25
4.1	GENER	RAL	25
4.2	BUTTO	NS	25
4.3	CONTR	RAST	26
4.4	DISPLA	YED SIGN CONVENTIONS	26
4.5	USING	THE OPERATOR PANEL	27
4.6	SYSTE	M DATA DISPLAY MODE	28
	4.6.1	3 Wire System and 4 Wire System	28
4.7	PHASE	DATA DISPLAY MODE	28
	4.7.1	3 Wire System	28
	4.7.2	4 Wire System	29
4.8	MIN/MA	AX DATA DISPLAY MODE	29
	4.8.1	3 Wire System	29
	4.8.2	4 Wire System	30
4.9	VIEW S	SETPOINTS (3 and 4 wire systems)	31
	4.9.1	View All	31
	4.9.2	Password Setup	31
	4.9.3	INCOM™ Setup (IQ 220 Base Module only)	32
	4.9.4	System Frequency	32
	4.9.5	Wiring Configuration	32
	4.9.6	CT Ratio	33
	4.9.7	PT Ratio	33
	4.9.8	Demand Window	33
	4.9.9	KYZ Setup (IQ 220 Base Module only)	33
	4.9.10	Exit	33
4.10	Edit Set	tpoints (3 and 4 wire systems)	34
	4.10.1	Edit All	34
	4.10.2	Password Setup	
	4.10.3	INCOM™ Setup (IQ 220 Base Module only)	35
	4.10.4	System Frequency	36

	4.10.5	Wiring Configuration	36
	4.10.6	CT Ratio	36
	4.10.7	PT Ratio	37
	4.10.8	Demand Window	38
	4.10.9	KYZ Setup (IQ 220 Base Module only)	38
	4.10.10	Exit	39
4.11	RESET	VALUES	39
4.12	CONTR	AST ADJUST	40
4.13	DIAGNO	OSTICS	40
4.14	EXIT ME	NU	40
SECTION	ON 5: TF	ROUBLESHOOTING AND MAINTENANCE	41
5.1	GENER.	AL	41
	5.1.1	Level of Repair	41
	5.1.2	Maintenance and Care	41
5.2	REMOV	AL AND REPLACEMENT	41
	5.2.1	General Safety Precautions	42
	5.2.2	IQ 200 Display Module	42
	5.2.3	IQ 200 Base Module	42
5.3		AL TROUBLESHOOTING PROCEDURES	
5.4	TECHNI	CAL ASSISTANCE	44
5.5	RFTURI	N PROCEDURE	44

TD 17558A

List of Figui	res	
Figure 2.1	IQ 200 Display Module	4
Figure 2.2	IQ 200 Base Module	4
Figure 2.3	Operator Panel	5
Figure 2.4	IQ 200 Base Module (Rear Face View)	5
Figure 3.1	Securing the IQ 200 Display Module	13
Figure 3.2	Mounting the IQ 200 Base Module to the IQ 200 Display Module	13
Figure 3.3	Typical Mounting Options for Mounting the IQ 200 Base Module	14
Figure 3.4	Mounting Hole Pattern for the IQ 200 Base Module	15
Figure 3.5	3 Phase 3 Wire Configuration (Up to 600 Volts)	17
Figure 3.6	3 Phase 3 Wire Configuration (Above 600 Volts)	17
Figure 3.7	3 Phase 3 Wire, 2 CT Configuration (Up to 600 Volts)	18
Figure: 3.8	3 Phase 3 Wire, 2CT Configuration (Above 600 Volts)	18
Figure: 3.9	3 Phase 4 Wire Configuration (Up to 600 Volts)	19
Figure 3.10	3 Phase 4 Wire Configuration (Above 600 Volts)	19
Figure 3.11	Single Phase 3 Wire Configuration (Up to 600 Volts)	20
Figure 3.12	Single Phase 2 Wire Configuration (Up to 600 Volts)	20
Figure 3.13	Typical IQ 210 Line-Powered Configuration (Up to 240 Volts)	21
Figure 3.14	Typical IQ 220 Line-Powered Configuration (Up to 600 Volts)	21
Figure 3.15	Securing INCOM™ Cable to Shroud	22
Figure 3.16	2-Terminal (K-Y) Configuration	24
Figure 3.17	3 Terminal (K-Y-Z) Configuration	24
Figure 4.1	System Power Values Relationships	27
Figure 4.2	Main Menu	27
Figure 4.3	System Display 3 and 4 Wire Systems	28
Figure 4.4	Phase Display 3 Wire Systems	29
Figure 4.5	Phase Display 4 Wire Systems	29
Figure 4.6	Min/Max Data Display, 3 Wire System	30
Figure 4.7	Min/Max Data Display, 4 Wire System	31
Figure 4.8	No Password Required	32
Figure 4.9	Password Required	32

Figure 4.10	INCOM™ Setup	32
Figure 4.11	System Frequency	32
Figure 4.12	Wiring Configuration	32
Figure 4.13	CT Ratio	33
Figure 4.14	PT Ratio	33
Figure 4.15	Demand Window	33
Figure 4.16	KYZ Setup	33
Figure 4.17	Password Entry	34
Figure 4.18	Password Setup	34
Figure 4.19	INCOM™ Setup	35
Figure 4.20	System Frequency	36
Figure 4.21	Wiring Configuration	36
Figure 4.22	CT Ratio	36
Figure 4.23	PT Ratio	37
Figure 4.24	Demand Window	38
Figure 4.25	KYZ Setup	38
Figure 4.26	Reset Values	39
Figure 4.27	Reset Amps Min/Max	39
Figure 4.28	Contrast Adjust	40

List of Tables

Table 2.1	IQ 200 Safety Specifications	8
Table 2.2	IQ 200 Operating Specifications	9
Table 2.3	IQ 200 Metering Accuracy	. 10
Table 2.4	IQ 200 Measurement Ranges	. 10
Table 2.5	IQ 200 Physical Characteristics	. 11
Table 2.6	IQ 200 Ordering Information	. 11

Cutler-Hammer IQ 200 Electrical Distribution System Meter *Installation, Operation, and Maintenance*

SECTION 1: INTRODUCTION

1.1 PRELIMINARY COMMENTS AND SAFETY PRECAUTIONS

This Technical Document covers most aspects of installation, operation, and unit-level maintenance of the IQ 200. This document is a guide only for authorized and qualified personnel who select and use the IQ 200. Please refer to the specific WARNING and CAUTION in this section before proceeding. If you require further information regarding a particular installation, application, or maintenance activity, contact your Cutler-Hammer representative.

1.1.1 Warranty and Liability Information

No warranties, expressed or implied, including warranties of fitness for a particular purpose of merchantability, or warranties arising from course of dealing or usage of trade are made regarding this information, recommendations, and descriptions contained herein. In no event will Cutler-Hammer be responsible to the purchaser or user in contract, in tort (including negligence), strict liability, or otherwise for any special, indirect, incidental, or consequential damage or loss whatsoever, including but not limited to damage or loss of use of equipment plant or power system, cost of capital, loss of power, additional expenses in the use of existing power facilities, or claims against the purchaser or user by its customers resulting from the use of the information and descriptions contained herein.

1.1.2 Safety Precautions

All safety codes, safety standards, and/or regulations must be strictly observed in the installation, operation, and maintenance of this device.

WARNING

THE WARNINGS AND CAUTIONS INCLUDED AS PART OF THE PROCEDURAL STEPS IN THIS DOCUMENT ARE FOR PERSONNEL SAFETY AND PROTECTION OF EQUIPMENT FROM DAMAGE. AN EXAMPLE OF A TYPICAL WARNING LABEL IS SHOWN ABOVE IN REVERSE TYPE TO FAMILIARIZE PERSONNEL WITH THE STYLE OF PRESENTATION. THIS WILL HELP TO ENSURE THAT PERSONNEL ARE ALERT TO WARNINGS WHICH MAY APPEAR THROUGHOUT THE DOCUMENT. IN ADDITION, CAUTIONS ARE ALL UPPER CASE AND BOLDFACED AS SHOWN ON THE NEXT PAGE.

Page 2 TD 17558A

CAUTION

COMPLETELY READ AND UNDERSTAND THE MATERIAL PRESENTED IN THIS DOCUMENT BEFORE ATTEMPTING TO INSTALL, OPERATE OR USE THE EQUIPMENT. IN ADDITION, ONLY QUALIFIED PERSONS SHOULD BE PERMITTED TO PERFORM ANY WORK ASSOCIATED WITH THE EQUIPMENT. ANY WIRING INSTRUCTIONS PRESENTED IN THIS DOCUMENT MUST BE FOLLOWED PRECISELY. FAILURE TO DO SO COULD CAUSE PERMANENT EQUIPMENT DAMAGE.

1.1.3 Factory Correspondence

For additional information, technical assistance, or referral to a local authorized distributor, contact Power Management Application Support (PMAS) at 1-412-490-6714 or 1-800-809-2772, option 1.

1.2 PRODUCT OVERVIEW

The IQ 200 is a microprocessor based series of monitoring devices that provide single phase, 2 or 3 wire, and 3 phase, 3 or 4 wire electrical metering designed to replace numerous individual meters and recorders. The IQ 200 series devices are compact, and consist of a panel-mounted Display Module and a Base Module that can be attached to the Display Module or mounted remotely. The devices are password protected, menu driven, and display a variety of user-selected electrical system values and provide control over certain measurement and data output functions. The IQ 200 series Base Modules communicate with the IQ 200 Display Module, providing access to view and reset system, phase, and min/max values, and providing for viewing and editing of setpoints.

The IQ 200 series includes two variations of the IQ 200 Base Module and a single IQ 200 Display Module that functions with either Base type. The IQ 210 Base Module is a reduced function variation, while the IQ 220 Base Module has additional capabilites that include; a wider ranging power supply, INCOM communications, and a KYZ Pulse output.

NOTE: Throughout this document, references to IQ 200 are intended for both Base types in the series, the IQ 210 and IQ 220 Base Modules. Base unit type dependent functional and specification differences are noted in the relevant sections.

TD 17558A

The IQ 200 monitors system and phase values in the following typical system wiring configurations.

3 Phase 4 Wire	3 Phase 3 Wire	3 Phase 3 or 4 Wire	Single Phase 2 or 3 Wire
208Y/120VAC	240VAC	220/380VAC	120/240VAC
480Y/277VAC	480VAC	230/400VAC	
600Y/347VAC	600VAC	240/415VAC	

The IQ200 displays the following values:

Values Displayed				
System	Each Phase	Minimum/Maximum		
Power	Current	Currents		
Frequency	Current Demand	Line to Line Voltages		
Apparent Power Factor	Current Peak Demand	Line to Neutral Voltages		
Displacement Power Factor	Line to Line Voltage	System Power (W, vars, VA)		
Watt Hours	Line to Neutral Voltage	System Frequency		
var Hours	Watts	System Apparent Power Factor		
VA Hours	vars	System Displacement Power Factor		
Demand (W, var, VA)	VA			
Peak Demand (W, var, VA)	Apparent Power Factor			
	Displacement Power Factor			

The IQ 220 Base Module, in addition to the Display port, provides the following data outputs above and beyond the functional capabilites of the IQ 210 Base Module:

- PowerNet communications, by way of the INCOM port, to provide information to the network master device (see *sections 2.3.4, 3.3.3, 4.9.3 and 4.10.3* for details)
- KYZ Pulse Output proportional to the energy consumed by the system being monitored (see section 4.9.9 and 4.10.9 for details)

Page 4 TD 17558A

SECTION 2: HARDWARE DESCRIPTION

2.1 GENERAL

This section describes the IQ 200 hardware, its functions and nomenclature, and lists the IQ 200 specifications. An IQ 200 consists of two components, the Display Module, figure 2.1, and a Base Module, figure 2.2. Do not attempt to disassemble or open the case of either the IQ 200 Display Module or either of the IQ 200 Base Modules (IQ 210 or IQ 220). The units contain no user-serviceable components.

Figure 2.1 IQ 200 Display Module

Figure 2.2 IQ 220 Base Module

2.1.1 IQ 200 Display Module

The Display Module screen presents system values and functions. The *Menu*, up/down *Scroll*, and *Enter* buttons allow the operator to view, change, and reset system parameters. The port for connecting to an IQ 200 Base Module (IQ 210 or IQ 220) is located on the back side of the IQ 200 Display Module.

2.1.2 IQ 200 Base Modules

The IQ 200 Base Modules measure system values and provide metering data. Current and voltage input terminals, power supply terminals, and the display port are all located on the rear face of the IQ 200 Base Modules. On the IQ 220 Base Module, additional I/O is provided by way of a KYZ pulse initiator port, INCOM™ communications port, and an INCOM™ transmit indicator LED.

2.1.3 Installation

The IQ 200 is usually mounted inside an environmentally suitable electrical switch-gear enclosure. The IQ 200 Display Unit and the IQ 200 Base Module can be mounted together or separately in a variety of ways, described fully in *SECTION 3: INSTALLATION*.

2.2 OPERATOR PANEL

The Operator Panel is the front face of the IQ 200 Display Module. It is usually installed so that it is visible and accessible from the outside of the panel or door into which it is mounted.

The *Menu*, up/down *Scroll*, and *Enter* buttons allow the operator to view, change, and reset various system parameters:

Figure 2.3 Operator Panel

- Display measured system, phase, and min/max values
- View and edit all or individual setpoints
 - Password
 - INCOM™ network address and baud rate (only with IQ 220 Base)
 - System frequency
 - Wiring configuration
 - CT and PT ratios
 - Demand window
 - Energy tracking (KYZ pulse output)
 (only with IQ 220 Base)
- View energy, view and reset peak demands, and all or individual minimum and maximum values.
- Change the display contrast for best viewing

The Operator Panel is an integral part of the IQ 200 Display Module. Do not attempt to remove it from the IQ 200 Display Module.

2.3 BASE MODULE REAR ACCESS AREA

All wiring connections are made from the rear face of the chassis, shown in figure 2.4 below.

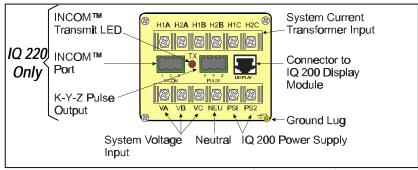


Figure 2.4 IQ 200 Base Module (Rear Face View)

Page 6 TD 17558A

Note: For sections 2.3.1 through 2.3.4 refer to figure 2.4.

2.3.1 Current and Voltage Inputs

The voltage terminal block is located at the bottom rear of the chassis. It has four terminals for wiring the phase voltages and the neutral, as shown below. The neutral terminal *must* be connected to system neutral or ground depending on system configuration. All connections must be made in accordance with national and local requirements and codes.

Phase	Voltage Terminal
Α	VA
В	VB
С	VC
Neutral	NEU

The current transformer terminal block is located at the top rear of the chassis. It has six terminals, grouped into three pairs: one pair for each phase current transformer, as shown below.

Phase	CT Terminal Pair
А	H1A, H2A
В	H1B, H2B
С	H1C, H2C

2.3.2 Power Supply Input

The IQ 200 power supply input is connected to the *PS1* and *PS2* terminals on the lower right rear of the Base Module chassis. The IQ 210 Base version requires 110 to 240 VAC or 125 to 250 VDC. The IQ 220 Base version has a wider operating power supply input range in comparison to the IQ 210 version. The IQ 220 power supply can accommodate 90 to 600 VAC or 48 to 250 VDC. The power supply may be directly wired to the monitored system, if the voltage is within the proper range.

2.3.3 Local Display Connection

The supplied *Category 5 cable* connects to the *DISPLAY* port located on the middle right rear of the chassis and to the port on the IQ 200 Display Module. *Do not route the Category 5 cable in the same enclosure or cable tray as 600V system wiring.*

2.3.4 PowerNet Communications (IQ 220 Base Module only)

The IQ 220 Electrical Distribution System Meter is a PowerNet compatible device. When connected to a PowerNet System, via the INCOM port, it can be remotely monitored and functionally modified.

PowerNet enables efficient monitoring, trending, and alarm indication for electrical distribution system equipment. PowerNet is a noise-immune communication system that permits communication between a master computer and system devices, such as the IQ 220.

Consult *TD17513 IMPACC Wiring Specification Base Rules* for detailed information on proper installation and termination of network cable.

The following functions can be performed remotely when the IQ 220 is connected to an external PowerNet compatible network:

- Display measured system, phase, and min/max values
- View and edit setpoints
 - System frequency
 - Wiring configuration
 - CT and PT ratios
 - Demand window
 - Energy tracking (KYZ pulse output)
- View energy, view and reset peak demands, and all or individual minimum and maximum values.

2.4 EXTERNAL HARDWARE

2.4.1 Current Transformers

The IQ 200 requires at least two user-supplied external *instrument class* current transformers with 5 amp secondaries. These transformers must be connected to the current transformer terminals on the IQ 200 Base Module as detailed in *section 3.3*.

2.4.2 Potential Transformers

The IQ 200 requires user-supplied potential transformers if the system line voltage is above 600 volts. These transformers must be connected to the voltage terminals on the IQ 200 Base Module as detailed in *section 3.3*.

2.4.3 External Fuses

It is recommended that user-supplied fuses be installed as described below to protect the IQ 200 and related components from damage.

2.4.3.1 IQ 200 Power Supply

External fuses should be installed in the IQ 200 power supply lines, near the IQ 200 Base Module. 600 volt ½ Amp BUSS type KTK-R-1/2 Fast Acting or equivalent fuses are recommended for the IQ 200 Base PS1 and PS2 power supply lines.

2.4.3.2 Potential Transformers

External fuses should be installed in the potential transformer lines as specified in the National Electric Code for the specific application.

Page 8 TD 17558A

2.5 PRODUCT SPECIFICATIONS

Refer to tables 2.1 to 2.5 for all IQ 200 specifications.

2.5.1 Regulatory/Standards Compliance

The IQ 200 meets UL, CUL, and CE requirements.

Table 2.1 IQ 200 Safety Specifications

Safety	
IEC 1010-1 (1990) Incl. Amend 1&2 (1995)	
EN61010-1 (1993)	
CSA C22.2 #1010.1 (1992)	
UL3111	
EMC	
Emissions	
FCC Part 15 Class A	
CISPR 11 (1990) / EN55011 (1991) Group 1 C	lass A
Immunity	
Electrostatic Discharge	
EN61000-4-2 (1995) / EN50082-2 (1995)	4kV CD
	8kV AD
Electrical Fast Transient	
EN61000-4-4 (1995) / EN50082-2 (1995)	2kV PL
	2kV SL
Radiated Immunity	
EN61000-4-3 (1997) / EN50082-2 (1995)	10V/m
Conducted Immunity	
EN61000-4-6 (1996) / EN50082-2 (1995)	10Vrms
Power Frequency Magnetic Field	
EN61000-4-8 (1995)	30 A/m

Table 2.2 IQ 200 Operating Specifications

Control Power		
Input Range		
IQ 210 Base	110-240 VAC±10%	125-250 VDC±10%
IQ 220 Base	90-600 VAC±10%	48-250 VDC±10%
Frequency Range	50/60 Hz	_
Burden		
IQ 210 Base	7 W	7 W
IQ 220 Base	180 mA	7 W
Environment	Indoor use only	
Maximum Operating Altitude	3000 meters	
Operating Temperature		
Base Unit	-20° to 50° C	
Display Module	0° to 50° C	
Storage Temperature		
Base Unit	-30° to 85° C	
Display Module	-20° to 60° C	
Maximum Relative Humidity:	(80% for temperatures up to 31° C)	
Base Unit	decreasing linearly to 50% at 50° C	
Display Module	decreasing linearly to 50% at 50° C	
Current Inputs	5 amp nominal, 10 amp maximum	
Input Impedance	0.01 Ω	
Burden	0.25 VA	
Overload Withstand	150 Amps ac 1 second	
Accuracy Range	0.5% to 200% of nominal full scale	
Voltage Inputs	90 to 600 volts nominal ±10%	
Input Impedance	$2\mathrm{M}\Omega$	
Overload Withstand	660 VAC continuous	
INCOM Communication	1200 Baud ASK	
Speeds (IQ 220 only)	9600 Baud FSK	
KYZ (IQ 220 only)		
Input Voltage	240 VAC/300 VDC	
Maximum Current Rating	96 mA	
Input/Output Isolation Voltage	3750 V _{rms}	
Transient Overvoltage Category	OVERVOLTAGE CATEGORY III	
Pollution Degree	2 (IEC 664)	

Page 10 TD 17558A

Table 2.3 IQ 200 Metering Accuracy

Parameter	Accuracy
Current (< 5 amps)	± .5% of Full Scale
Current (> 5 amps)	± .5% of Reading
Voltage, line-to-line	± .5% of Full Scale
Voltage, line-to-neutral	± .5% of Full Scale
Watts (< 5 amps)	± 1% of Full Scale
Watts (> 5 amps)	± 1% of Reading
vars (< 5 amps)	± 1% of Full Scale
vars (> 5 amps)	± 1% of Reading
VA (< 5 amps)	± 1% of Full Scale
VA (> 5 amps)	± 1% of Reading
Power Factor	± 2% of Full Scale
Frequency	± 0.1 Hz

ANSI C12 NOTE: The IQ 200 has been designed and verified to meet ANSI C12 Class 10 Revenue metering accuracy. This classification makes the IQ 200 an ideal choice for sub-metering and sub-billing applications.

Table 2.4 IQ 200 Measurement Ranges

Parameter	Max Data Range
Current	065,535 amps
Voltage	02,097,120 volts
Power	
Watts	-1,073,709,057+1,073,709,056 Watts
vars	-1,073,709,057+1,073,709,056 vars
VA	02,147,450,880 VA
Energy	
Fwd / Rev Wh	0999,999,999 kWh
Fwd / Rev varh	0999,999,999 kvarh
Net Wh	-999,999,999+999,999,999 kWh
Net varh	-999,999,999+999,999,999 kvarh
Net VAh	0999,999,999 kVAh
Power Factor	-1.00+1.00
Frequency	0255.996 Hz

Table 2.5 IQ 200 Physical Characteristics

Dimension	Display Module	Base Module	
Length	1.38 in. ⁽¹⁾	6.74 in. ⁽²⁾	
Height	4.38 in.	3.56 in. ⁽³⁾	
Width	4.38 in.	3.56 in.	
Base Unit Terminals			
Wire Size	#12-	22 AWG	
Screw Size		#6-32	
Torque Rating		9 inlbs. Maximum	
Distance Between B	arriers 0.32	in.	
Weight			
Display Module		lbs.	
Base Module		lbs.	

⁽¹⁾ includes 0.58 in. rear cover

2.6 ORDERING INFORMATION

When ordering IQ 200 components, please refer to the Catalog Number listed in table 2.6.

Table 2.6 IQ 200 Ordering Information

Description	Catalog Number
IQ 210 Base Module	IQ210TRAN
IQ 220 Base Module	IQ220TRAN
IQ 200 Display Module	IQ200D
IQ 210 Base Module & IQ 200 Display Module	IQ210
IQ 220 Base Module & IQ 200 Display Module	IQ220
3 foot long Category 5 Cable	IQ23CABLE
6 foot long Category 5 Cable	IQ26CABLE
10 foot long Category Cable	IQ210CABLE

IQ 210 Base Module

- (1) IQ 210 Base
- (1) DIN Rail Clip
- (1) L-Bracket
- (4) ½" #10 (10-32) screws
- (4) #10 Locking Washers
- (2) 1/4" #8 (8-32) screws

IO 220 Base Module

- (1) IQ 220 Base
- (1) DIN Rail Clip
- (1) L-Bracket
- (4) ½" #10 (10-32) screws
- (4) #10 Locking Washers
- (2) 1/4" #8 (8-32) screws
- (1) Phoenix Contact
- Cable Housing

IQ 200 Display Module

- (1) IQ 200 Display
- (1) 1' shielded Cat. 5 patch cable
- (1) Gasket
- (2) Mounting Brackets
- (4) #8 Locking Washers
- (4) #8 Hex Nuts

⁽²⁾ includes 0.06 in. front face mounting plate and 0.62 in. terminal block

⁽³⁾ centered on front face mounting plate

Page 12 TD 17558A

SECTION 3: INSTALLATION

3.1 INTRODUCTION

The IQ 200 is designed to be installed, operated, and maintained by adequately trained personnel. These instructions do not cover all details, variations or combinations of the equipment, its storage, delivery, installation, checkout, safe operation, or maintenance. Care must be exercised to comply with local, state, and national regulations, as well as with industry standard safety practices for this class of equipment. Refer to figure 3.5 through 3.14 for wiring details.

WARNING

A THREE PHASE SWITCH OR CIRCUIT BREAKER SHOULD BE IN CLOSE PROXIMITY TO THE IQ 200 MOUNTING LOCATION AND MARKED AS THE DISCONNECTING DEVICE FOR THE EQUIPMENT. ADDITIONALLY, IT IS RECOMMENDED THAT CT SHORTING TERMINAL BLOCKS BE USED IN ORDER TO FACILITATE ANY FUTURE MAINTAINANCE OR REMOVAL OF THE IQ 200 BASE MODUL F.

WARNING

TURN OFF AND LOCK OUT POWER SUPPLYING THE PANELBOARD OR SWITCHGEAR IN WHICH THE IQ 200 IS BEING INSTALLED. INJURY TO PERSONNEL OR DAMAGE TO EQUIPMENT CAN RESULT.

3.2 PANEL PREPARATION

It is recommended that the IQ 200 be mounted in an electrical switchgear enclosure that is suitable for its environment. The IQ 200 Display and IQ 200 Base Modules may be mounted together or separately. The IQ 200 is designed with flexibility in mind. While it is recommended that the IQ 200 Display Module be door- or panel-mounted, the Base Module may be attached to the IQ 200 Display Module; mounted remotely using the supplied L-bracket, or directly to a panel or floor; or attached to a DIN rail using the supplied DIN clip. For floor or panel mounting, a #10 (10-32) or #12 (12-28) screw is recommended.

In *all* instances where the IQ 200 Base Module is mounted remotely, the IQ 200 Display Module Chassis *must* be connected to earth ground.

Before installing the IQ 200, refer to dimensions listed in table 2.5 and allow adequate room for wiring of and access to the IQ 200 Base Module terminals and connectors.

3.2.1 Mounting the IQ 200 Modules as a Single Unit

Cut a ¼ DIN (92mm x 92mm) access cutout in the switchgear door or other panel where the IQ 200 is to be mounted as shown in figure 3.1. (Additionally a 100mm circular ANSI cutout is suitable.) Install the IQ 200 Display Module as shown in figure 3.1, following these steps:

- Slide the supplied gasket over the rear of the IQ 200 Display Module and mounting studs until it is flush with the rear of the back cover.
- Insert the IQ 200 Display Module with gasket installed into the cutout.
- Insert one end of the Category 5 cable into the port on the rear of the Display Module.
- From the inside of the panel, slide the 2 brackets over the mounting studs protruding through the cutout, capturing

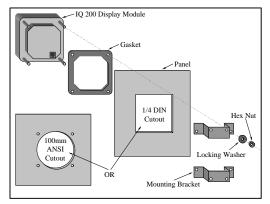


Figure 3.1 Securing the IQ 200 Display Module

- the panel and gasket between the Display Module and mounting brackets.
- Secure the brackets and display unit, with the gasket and panel between, using the four supplied #8 locking washers and hex nuts.
- Attach the IQ 200 Base Module to the brackets using the supplied #10 screws and locking washers, as shown in figure 3.2.

Connect the IQ 200 Display Module to the IQ 200 Base Module by inserting the remaining end of the Category 5 cable into the DISPLAY port on the IQ 200 Base Module. Do not route the Category 5 cable in the same enclosure or cable tray as 600V system wiring.

Proceed to section 3.3, Wiring.

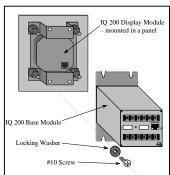


Figure 3.2 Mounting the IQ 200 Base Module to the IQ 200 Display Module

Page 14 TD 17558A

3.2.2 Mounting the IQ 200 Display and Base Modules Separately

In *all* instances where the IQ 200 Base Module is mounted remotely, the IQ 200 Display Module Chassis *must* be connected to earth ground.

Display Module Cut a ¼ DIN (92mm x 92mm) access cutout in the switchgear door or other panel where the IQ 200 is to be mounted as shown in figure 3.1. Install the IQ 200 Display Module as shown in figure 3.1, following these steps:

- Slide the supplied gasket over the rear of the IQ 200 Display Module and mounting studs until it is flush with the rear of the back cover.
- Insert the IQ 200 Display Module with gasket installed into the cutout.
- Insert one end of the Category 5 cable into the port on the rear of the Display Module
- From the inside of the panel, slide the 2 supplied brackets over the mounting studs protruding through the cutout, capturing the panel and gasket between the Display Module and mounting brackets.
- Secure the brackets and display unit, with the gasket and panel between, using the four supplied #8 locking washers and hex nuts.

Base Module Select a location for the IQ 200 Base Module. Depending on the location, use the mounting holes in the flange on the front face of the IQ 200 Base Module, the supplied L-bracket, or the DIN clip to secure the IQ 200 Base Module in the desired location and orientation. Typical mounting options are shown in figure 3.3. The hole drilling pattern for mounting the IQ 200 Base Module to floor, wall, or other surface is shown in figure 3.4.

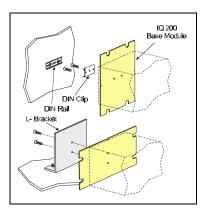


Figure 3.3 Typical Mounting Options for Mounting the IQ 200 Base Module

Connect the IQ 200 Base Module to earth ground using the grounding terminal on the rear face.

Route the Category 5 cable from the IQ 200 Base Module to the IQ 200 Display Module. Do not route the Category 5 cable in the same enclosure or cable tray as 600V system wiring.

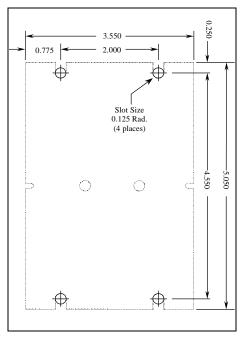


Figure 3.4 Mounting Hole Pattern for the IQ 200 Base Module Connect the IQ 200 Display Module to the IQ 200 Base Module by inserting the remaining end of the Category 5 cable into the *DISPLAY* port on the IQ 200 Base Module.

Proceed to section 3.3 Wiring.

Page 16 TD 17558A

3.3 WIRING

The IQ 200 requires connection to system currents and voltages. If mounted separately, the cases of IQ 200 Display Module *and* the IQ 200 Base Module case *must* be connected to earth ground. If mounted together as one unit, the case of the IQ 200 Base Module *must* be connected to earth ground.

Additionally, the IQ 200 may require connection to a PowerNet network and/or an external pulse counter (IQ 220 Base version). The steps for completing each type of wiring are described in the following sections.

CAUTION

ALL WIRING MUST CONFORM TO NATIONAL AND LOCAL CODES. SUFFICIENT ROOM MUST BE PROVIDED FOR ROUTING OF ALL POWER CABLES. ALL SIGNAL CABLES MUST BE ROUTED SEPARATELY FROM POWER CABLES. THE CATEGORY 5 CABLE CONNECTING THE IQ 200 DISPLAY MODULE AND THE IQ 200 BASE MODULE IS RATED AT 300V. THIS CABLE MUST NOT BE ROUTED IN THE SAME WIRING CHANNEL AS THE SYSTEM POWER.

3.3.1 Wiring System Current and Voltage

The IQ 200 must be connected to sources of current and voltage for each phase that is to be monitored. Current transformers having a 5 amp secondary provide the phase current measurement. Phase voltages under 600V may be measured directly by the IQ 200. Phase voltages over 600V must be measured using potential transformers.

3.3.2 Wiring Diagrams for Various System Configurations

Recommended IQ 200 wiring diagrams for current and potential transformers are shown below in figures 3.5 through 3.14. It is the user's responsibility to determine which wiring diagram applies and to specify and install all current transformers, potential transformers, fuses, and other components.

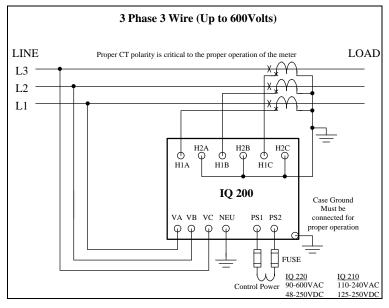


Figure 3.5 3 Phase 3 Wire Configuration (Up to 600 Volts)

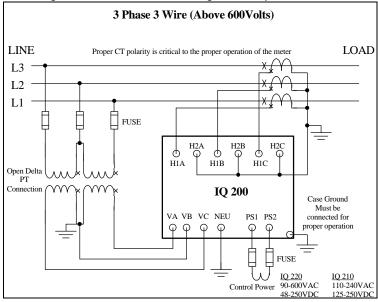


Figure 3.6 3 Phase 3 Wire Configuration (Above 600 Volts)

Page 18 TD 17558A

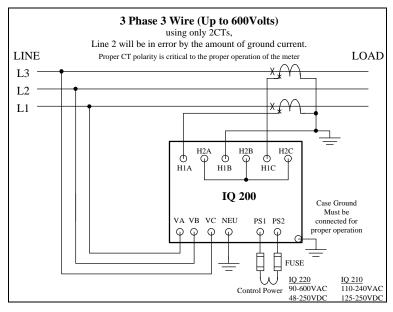


Figure 3.7 3 Phase 3 Wire, 2 CT Configuration (Up to 600 Volts)

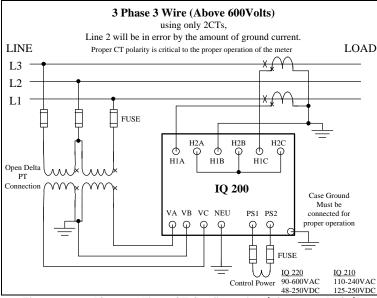


Figure: 3.8 3 Phase 3 Wire, 2CT Configuration (Above 600 Volts)

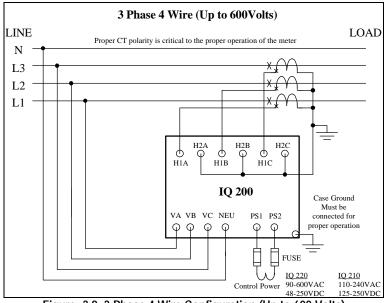


Figure: 3.9 3 Phase 4 Wire Configuration (Up to 600 Volts)

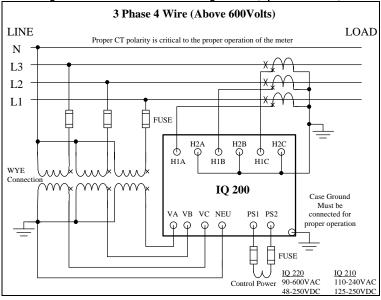


Figure 3.10 3 Phase 4 Wire Configuration (Above 600 Volts)

Page 20 TD 17558A

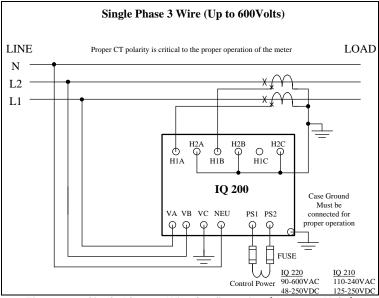


Figure 3.11 Single Phase 3 Wire Configuration (Up to 600 Volts)

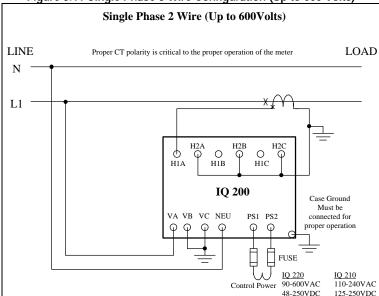


Figure 3.12 Single Phase 2 Wire Configuration (Up to 600 Volts)

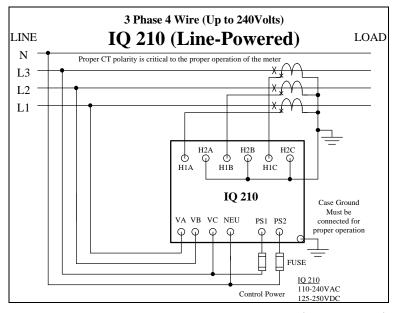


Figure 3.13 Typical IQ 210 Line-Powered Configuration (Up to 240 Volts)

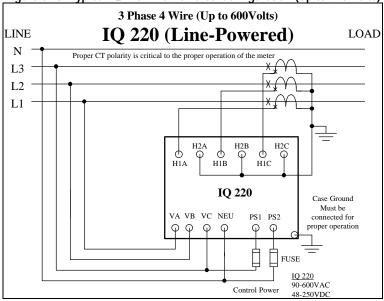


Figure 3.14 Typical IQ 220 Line-Powered Configuration (Up to 600 Volts)

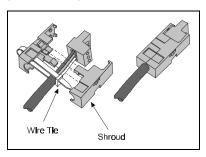
Page 22 TD 17558A

3.3.3 PowerNet Communications (IQ 220 Base Module Only)

Note: To satsify proper Wiring Specifications use only Belden 9463 or 3072F, or Culter-Hammer IMPCABLE shielded twisted pair cable or equivalent, according to system requirements. SEE TD17513, IMPACC WIRING SPECIFICATIONS BASE RULES for more detailed information.

Connect the IQ220 to the PowerNet network by connecting the twisted pair communication cable to the INCOM™ port located on the rear face of the IQ 220 Base Module. The polarity of the twisted pair is not important.

Tie the communication cable shield to ground only once at the INCOM $^{\text{TM}}$ master device. If there are more than one remote INCOM $^{\text{TM}}$ compatible devices (such as the IQ 220) cabled to the master device, tie the communication cable shields together but *do not* connect to ground.


Care must be taken in stripping wire due to close proximity of terminals.

CAUTION

PREPARE THE CABLE FOR ATTACHMENT TO THE INCOM™ JACK TO AVOID SHORTING CABLE SHEILD TO POWER INPUT TERMINALS.

Carefully strip the end of the communication wire as described in TD 17513. Install the INCOM™ jack onto the prepared cable. Place the cable and jack assembly into the recess in the side of the shroud component of the supplied Phoenix Contact Cable Housing that includes a supplied wire tie as shown in figure 3.15. Ensure that the supplied wire tie passes through the holes in the shroud so the ends of the tie flank the cable, as shown in figure 3.15. Tighten the wire tie to secure the cable to the shroud.

3.15. Securing INCOM™ Cable to Shroud

3.3.4 KYZ Pulse Initiator (IQ 220 Base Module Only)

The KYZ Pulse Initiator output can be wired to a 2-wire (K-Y terminals) or 3 wire (K-Y-Z terminals) pulse receiver. These terminal configurations and the resulting pulse trains are shown in figures 3.15 and 3.16. The energy represented by each pulse can be specified by the user as: *apparent (VAh)*; *forward* or *reverse real*

(±Wh); or reactive (±varh). The procedure for specifying the energy per pulse is described in section 4.10.9.

Each pulse that arrives at the pulse counter indicates that the specified energy has been consumed by the monitored system. The frequency and spacing of these pulses represent the energy consumption pattern of the monitored system.

Because the energy represented corresponds to the energy at the *secondary* winding of the PTs and CTs, the CT and PT ratios must be taken into account when specifying the *energy per pulse* value. An example of how to specify the *energy per pulse* value is given below.

Example:

System Configuration

CT = 1400:5PT = 2:1

Desired value to monitor

Watt-hours

System parameters

Assume the IQ 220 is monitoring a constant system power of 16,800 Watts.

Step 1: Calculate the CT and PT ratios

CT ratio = 1400/5 = 280PT ratio = 2/1=2

Step 2: Calculate the power at the secondary of the CTs and PTs

power at secondaries = 16,800 Watts / (CT ratio x PT ratio)

power at secondaries = 16,800 Watts / (280 x 2)

power at secondaries = 16,800 Watts / 560

power at secondaries = 30 Watts (or 30 Watt-hours in 1 hour)

Step 3: Specify the energy per pulse as desired

Specify secondary energy per pulse = 1 Watt-hour per pulse; then, each pulse represents system energy of:

(1400/5) x (2/1) x 1; or 560 Watt-hours per pulse

or

Specify secondary energy per pulse = 7 Watt-hours per pulse; then, each pulse represents system energy of:

(1400/5) x (2/1) x 7; or 3,920 Watt-hours per pulse

Page 24 TD 17558A

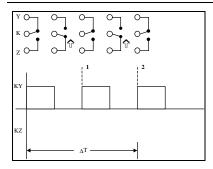


Figure 3.16 2-Terminal (K-Y)
Configuration

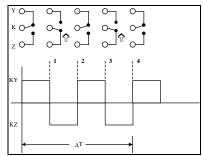


Figure 3.17 3-Terminal (K-Y-Z) Configuration

SECTION 4: OPERATION

4.1 GENERAL

The IQ 200 Display Module provides both local display of system values and a method of assigning an INCOM address to the IQ 220 to enable communications.

The IQ 200 Display Module allows the user to view information and to specify or change the functions of the IQ 200 system. These items include system and phase data, min/max data, setpoints, and screen contrast.

It also provides a method of assigning a network address and communication baud rate to the IQ 220 Base variation, should it be networked to a PowerNet master device.

All functions of the IQ 200 are available through *menus* visible on the screen of the IQ 200 Display Module Operator Panel. Choice of menu and selection of menu options is accomplished by pressing the buttons on the face of the Operator Panel.

The menus provide access to the following values and functions:

System Data

Phase Data

Min/Max Data

View Setpoints

Edit Setpoints (with optional password protection)

Reset Values (with optional password protection)

Contrast Adjust

Diagnostics

Fxit Menu

4.2 BUTTONS

There are four buttons on the Operator Panel: *Menu*, up and down *Scroll*, and *Enter*. Their functions are described in the following table.

Button	Function
Menu	Displays the nine different screen menus; displays the immediately preceding screen
Scroll	Navigates the on-screen <i>selection arrow</i> (υ) through menu items <i>and</i> through system values to be displayed
Enter	Confirms the option, value, or screen currently selected

Page 26 TD 17558A

4.3 CONTRAST

The contrast of the screen can be adjusted without entering the Contrast Adjust menu by holding in the *Enter* button while pressing the S*croll* up arrow button (to decrease contrast) or the *Scroll* down arrow button (to increase contrast).

4.4 DISPLAYED SIGN CONVENTIONS

The IQ 200 not only displays system values, but also indicates whether factors are lagging or leading by displaying the following symbols:

Display	Indication
Lg	lagging (inductive)
Ld	leading (capacitive)

The IQ 200 is shipped with lagging vars and power factor represented by negative values at the load, conforming to the *mathematical sign convention*. The IQ 220 allows the user the ability to change to the *power engineer convention*, which assumes positive values at the load. The convention can be changed in the IQ 220 via the INCOM communications interface. The IQ 220 must be connected to a PowerNet network and programmed accordingly. Only the mathematical convention is available when using the IQ 210 Base.

The following relationships apply:

Convention	Load	var Values	Power Factor Values
Mathematic	inductive	negative	negative (lagging PF)
Mathematic	capacitive	positive	positive (leading PF)
Power Engineer	inductive	positive	positive (lagging PF)
Power Engineer	capacitive	negative	negative (leading PF)

The relationships among system power values are shown schematically in figure 4.1.

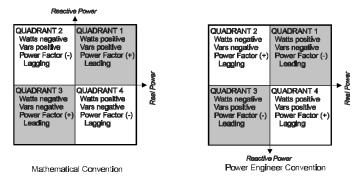


Figure 4.1 System Power Values Relationships

4.5 USING THE OPERATOR PANEL

When the IQ 200 is first powered on, the Operator Panel screen displays a brief initialization message identifying the product and version. The screen then displays the System Power screen. (At this point, pressing the *Scroll* arrows will display system data as described in *section 4.6 System Data Display Mode.*)

Press the *Menu* button to proceed. The *main menu items* display four at once, as shown in figure 4.2. Every menu item can be displayed by using the *Scroll* button arrows. The item currently selected is indicated by the selection arrow to its left.

The presence of additional items is indicated by and/or at the right edge of the screen.

Figure 4.2 Main Menu

Keep in mind that the *values* displayed under several menu items depend on whether the system being monitored is 3 or 4 wire, and require that the appropriate configuration be selected under the Edit Setpoints menu. Menu descriptions cover both 3 and 4 wire systems where appropriate.

Note: the lagging or leading indicator and any signs may be the opposite of that shown in the sample screens.

Page 28 TD 17558A

4.6 SYSTEM DATA DISPLAY MODE

The System Data menu provides access to System information monitored by the IQ 200.

Press *Menu* to display the list of available items.

Position the selection arrow next to the System Data *menu* item and press *Enter*. The screens shown in figure 4.3 display as the *Scroll* down arrow is pressed.

4.6.1 3 Wire System and 4 Wire System

System Data screens, figure 4.3, are the same for 3 and 4 wire systems.

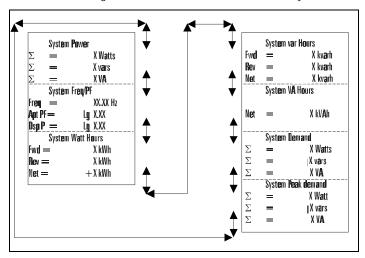


Figure 4.3 System Display 3 and 4 Wire Systems

4.7 PHASE DATA DISPLAY MODE

The Phase Data menu provides access to all Phase information monitored by the IQ 200.

Press *Menu* to display the list of available items.

Position the selection arrow next to the Phase Data menu item and press *Enter*.

4.7.1 3 Wire System

The *four screens* shown in figure 4.4 display as the *Scroll* down arrow is pressed.

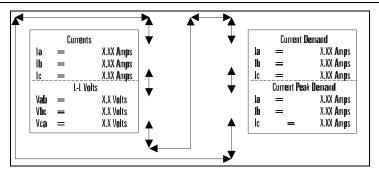


Figure 4.4 Phase Display 3 Wire Systems

4.7.2 4 Wire System

The 10 screens shown in figure 4.5 display as the Scroll down arrow is pressed.

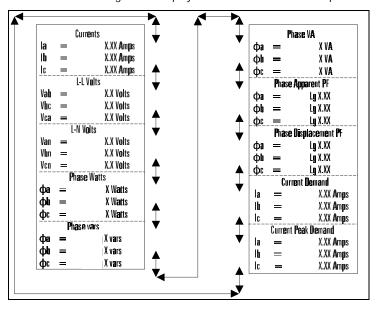


Figure 4.5 Phase Display 4 Wire Systems

4.8 MIN/MAX DATA DISPLAY MODE

4.8.1 3 Wire System

These screens, shown in figure 4.6, display the minimums and maximums of values monitored by the IQ 200.

Page 30 TD 17558A

Press *Menu* to display the list of available items.

Position the selection arrow next to Min/Max Data and press Enter.

The *ten screens* shown below display as the *Scroll* down arrow is pressed.

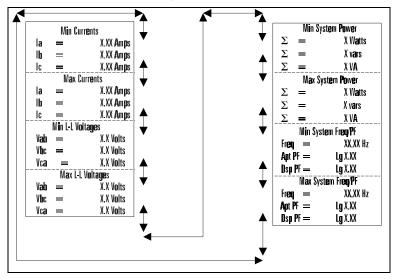


Figure 4.6 Min/Max Data Display, 3 Wire System

4.8.2 4 Wire System

These screens, shown in figure 4.7, display the minimums and maximums of values monitored by the IQ 200.

Press *Menu* to display the list of available items.

Position the selection arrow next to Min/Max Data and press Enter.

The 10 screens shown below display as the Scroll down arrow is pressed.

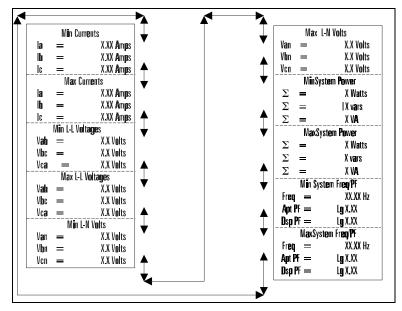


Figure 4.7 Min/Max Data Display, 4 Wire System

4.9 VIEW SETPOINTS (3 and 4 wire systems)

This *menu* selection permits the user to *view* but *not change* all of the IQ 200 setpoints and system parameters. To *change* these values, proceed to *section 4.10 Edit Setpoints*.

Press Menu to display the list of available items.

Position the selection arrow next to View Setpoints and press Enter.

The following screens display:

4.9.1 View All

This *menu* item displays all of the setpoints described in *sections 4.9.2 through 4.9.10*. To view only one setpoint, follow the steps under the appropriate section. Selecting the View All *menu* item displays the *10 screens* shown below as the *Enter* button is pressed.

Position the selection arrow next to View AII and press Enter.

4.9.2 Password Setup

Position the selection arrow next to Password Setup and press *Enter*. One of two screens will display.

Page 32 TD 17558A

One screen, figure 4.7, indicates that *no password* is necessary to change the IQ 200 setpoints or system parameters. The other screen, figure 4.8, indicates that *a password is required* to change setpoints or system parameters.

Figure 4.8 No Password Required

Figure 4.9 Password Required

4.9.3 INCOM™ Setup (IQ 220 Base Module only)

Position the selection arrow next to INCOM™ Setup and press *Enter*.

This screen, shown in figure 4.10, indicates the baud rate at which the IQ 220 will communicate over the PowerNet network, and indicates the network address (in hexadecimal) assigned to the IQ 220. The baud

Figure 4.10 INCOM™ Setup

rate and the address must be set to the values required by the PowerNet network for network communication to occur.

4.9.4 System Frequency

Position the selection arrow next to System Frequency and press Enter.

This screen, shown in figure 4.11, indicates the frequency selected as the frequency of the system being monitored. The screen will display *either* 50 Hz or 60 Hz. If the frequency displayed is *not* correct, proceed to *section 4.10 Edit Setpoints*.

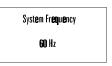


Figure 4.11 System Frequency

4.9.5 Wiring Configuration

Position the selection arrow next to Wiring Configuration and press *Enter*.

This screen, shown in figure 4.12, indicates the wiring configuration selected as the configuration of the system being monitored. The screen will display *either* 3 Wire or 4 Wire. If the wiring configuration displayed is *not* correct, proceed to *section* 4.10 Edit Setpoints.

Figure 4.12 Wiring Configuration

4.9.6 CT Ratio

Position the selection arrow next to CT Ratio and press *Enter*.

This screen, shown in figure 4.13, indicates the current transformer ratio selected as the ratio of the current transformers being used with the IQ 200. If the ratio displayed is *not* correct, proceed to *section 4.10 Edit Setpoints*.

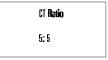


Figure 4.13 CT Ratio

4.9.7 PT Ratio

Position the selection arrow next to PT Ratio and press Enter.

This screen, shown in figure 4.14, indicates the potential transformer ratio selected as the ratio of the potential transformers being used with the IQ 200. If the ratio displayed is *not* correct, proceed to *section 4.10 Edit Setpoints*.

Figure 4.14 PT Ratio

4.9.8 Demand Window

Position the selection arrow next to Demand Window and press Enter.

This screen, shown in figure 4.15, indicates the time window over which demand parameters are measured. If the time displayed is *not* correct, proceed to *section 4.10 Edit Setpoints*.

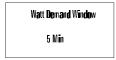


Figure 4.15 Demand Window

4.9.9 KYZ Setup (IQ 220 Base Module only)

Position the selection arrow next to KYZ Setup and press *Enter*.

This screen, shown in figure 4.16, indicates the system value which the IQ 220 will monitor, or Track. It also indicates the *energy per pulse* Rate over which energy demand (consumption) is measured. If the values displayed are *not* correct, proceed to *section 4.10 Edit Setpoints*.

Figure 4.16 KYZ Setup

4.9.10 Exit

Pressing Enter when this menu item is selected returns the display to the main menu.

Page 34 TD 17558A

4.10 EDIT SETPOINTS (3 and 4 wire systems)

This *menu* selection permits the user to *change* all of the IQ 200 setpoints and system parameters.

Press *Menu* to display the list of available items.

Position the selection arrow next to Edit Setpoints and press *Enter*.

If the *Password* option has been enabled, the system requests the password via the screen shown in figure 4.17.

To enter the password, press *Enter* to move the underline to the desired digit. Then use the *Scroll* up arrow to increase the digit or the *Scroll* down arrow to decrease the digit. When the desired choice is displayed, press *Enter* to lock in the selection.

Figure 4.17 Password Entry

▶ 00000

If an incorrect password is entered, the message *Password Incorrect* displays. Press *Menu* to return to the previous screen showing *Edit Setpoints* selected. Press *Enter* to retry entering the password.

If the correct password is entered, or if the *Password* option is not enabled, the following screens display:

4.10.1 Edit All

This *menu* item displays all of the setpoints described in *sections 4.10.2 through 4.10.10*. To edit only one setpoint, follow the steps under the appropriate section. Selecting the *Edit All menu* item displays the screens shown below as the *Scroll* down arrow is pressed. (Note: the lagging or leading indicator and any signs may be the opposite of that shown in the sample screens.)

Position the selection arrow next to Edit AII and press *Enter*.

The following screens display:

4.10.2 Password Setup

Position the selection arrow next to Password Setup and press *Enter*.

This screen, shown in figure 4.18, allows the user to specify if a password is required to change the IQ 200 setpoints or system parameters and what the password is or would be if it were in use.

The screen initializes with Use Password selected and the current choice displayed. To

Figure 4.18 Password Setup

specify if a password is required, press either of the *Scroll* arrows to toggle between *y* and *n*. When the desired choice is displayed, press *Enter* to lock in the selection.

The screen changes to show New Password selected and the first digit of the current password underlined. To change any digit of the password, first select it by pressing *Enter* to move the underline to the desired digit. Then use the *Scroll* up arrow to increase the digit or the *Scroll* down arrow to decrease the digit. When the desired choice is displayed, press *Enter* to lock in the selection.

If the procedure completes successfully, Download Accepted appears briefly. The display then returns to the previous screen.

If an error occurs in the New Password selection process, an error message displays. Press *Enter* to return to the previous screen, and repeat the attempt.

4.10.3 INCOM™ Setup (IQ 220 Base Module only)

Note: A display is required to configure the INCOM[™] address.

To set these values on IQ 220 Base modules installed without a permanently connected IQ 200 display module, temporarily connect an IQ 200 display module and follow the procedure below.

Position the selection arrow next to INCOM™ Setup and press *Enter*.

This screen, shown in figure 4.19, displays the baud rate at which the IQ 220 will communicate over the PowerNet network, and indicates the network address (in hexadecimal) currently assigned to the IQ 220.

The screen initializes with Baud Rate selected and the current value displayed. To select a baud rate at which the IQ 220 will communicate over the PowerNet network, press either of the *Scroll* arrows to step through the choices 9600 or 1200 baud. When the desired choice is displayed, press *Enter* to lock in the selection.

INCOM™ Setup Baud Rate = XXXX Address = XXX Hex

Figure 4.19 INCOM™ Setup

The screen changes to show Address selected and the first digit of the current network address (in hexadecimal) assigned to the IQ 220 underlined. To change any digit of the address, first select it by pressing *Enter* to move the underline to the desired digit. Then use the *Scroll* up arrow to increase the digit or the *Scroll* down arrow to decrease the digit. When the desired choice is displayed, press *Enter* to lock in the selection.

If the procedure completes successfully, Download Accepted appears briefly. The display then returns to the previous screen.

Page 36 TD 17558A

4.10.4 System Frequency

Position the selection arrow next to System Frequency and press *Enter*.

This screen, shown in figure 4.20, displays the electrical system frequency in Hz.

System Fr**eq**uency **60** Hz

Figure 4.20 System Frequency

This screen initializes with the frequency of the system being monitored selected and displayed. The screen will display either 60 Hz or 50 Hz.

To specify the frequency of the system being monitored, press either of the *Scroll* arrows to toggle between 60 Hz and 50 Hz. When the desired choice is displayed, press *Enter* to lock in the selection.

If the procedure completes successfully, Download Accepted appears briefly. The display then returns to the previous screen.

4.10.5 Wiring Configuration

Position the selection arrow next to Wiring Configuration and press *Enter*.

This screen displays the current wiring configuration of the system being monitored.

This screen, shown in figure 4.21, initializes with the wiring configuration of the system being monitored selected and displayed. The screen will display *either* 3 Wire or 4 Wire.

Figure 4.21 Wiring Configuration

To specify the wiring configuration of the system being monitored, press either of the *Scroll* arrows to toggle between 3 Wire and 4 Wire. When the desired choice is displayed, press *Enter* to lock in the selection.

4.10.6 CT Ratio

Note: See table 2.4 for data ranges before specifying the CT ratio.

Position the selection arrow next to CT Ratio and press Enter.

This screen, shown in figure 4.22, displays the ratios of the current transformers connected to the IQ 200. This screen initializes with the ratio of the current transformers being used with the IQ 200 selected and displayed.

To specify the ratio of the current transformers being



Figure 4.22 CT Ratio

used with the IQ 200, press either of the *Scroll* arrows repeatedly to step through the choices individually, or press and hold either of the *Scroll* arrows to step through the choices rapidly. There are 256 choices from 5 to 8000, displayed as follows:

- 5 to 110 in increments of 5
- 110 to 1000 in increments of 10
- 1000 to 1250 in increments of 25
- 1250 to 8000 in increments of 50

When the desired choice is displayed, press *Enter* to lock in the selection.

If the procedure completes successfully, Download Accepted appears briefly. The display then returns to the previous screen.

4.10.7 PT Ratio

Note: See table 2.4 for data ranges before specifying the PT ratio.

Position the selection arrow next to PT Ratio and press *Enter*.

This screen, shown in figure 4.23, displays the ratio of the potential transformers connected to the IQ 200.

This screen initializes with the ratio of the potential transformers being used with the IQ 200 selected and displayed.

PT Ratio 1.0: 1

Figure 4.23 PT Ratio

To specify the potential transformer ratio of the potential transformers being used with the IQ 200, press either of the *Scroll* arrows repeatedly to step through the choices individually, or press and hold either of the *Scroll* arrows to step through the choices rapidly. There are 256 choices from 1.0 to 1690, displayed as follows:

- 1.0 to 6 in increments of 0.1
- 6 to 20 in increments of 1
- 20 to 260 in increments of 5
- 260 to 1690 in increments of 10

Note: If no potential transformers are being used, set the PT ratio to 1.0 to 1.

If the procedure completes successfully, Download Accepted appears briefly. The display then returns to the previous screen.

Page 38 TD 17558A

4.10.8 Demand Window

Position the selection arrow next to Demand Window and press *Enter*.

This screen, shown in figure 4.24, displays the current value of the demand time window.

Figure 4.24 Demand Window

The screen initializes with the time window over which demand (parameters) are measured, selected, and displayed.

To specify Demand Window, press either of the *Scroll* arrows to step through the choices. There are 8 choices from 5 minutes to 60 minutes, displayed as follows:

- 5 min. to 30 min. in increments of 5 min.
- 45 min.
- 60 min.

When the desired choice is displayed, press *Enter* to lock in the selection.

If the procedure completes successfully, Download Accepted appears briefly. The display then returns to the previous screen.

The Demand Window is a *fixed* period of time over which average system parameters are calculated. For example, setting the Demand Window to 15 instructs the IQ 200 to calculate the average current or power over the past 15 minutes and to update that calculation every 15 minutes.

If multiple IQ 200 units exist on a PowerNet network, all their Demand Windows can be simultaneously reset and synchronized using INCOM™ communication.

4.10.9 KYZ Setup (IQ 220 Base Module Only)

Position the selection arrow next to KYZ Setup and press *Enter*. This screen, shown in figure 4.25, displays the system value communicated by the KYZ pulse train.

KYZ Output Setup Track: None Rate: 1

This screen initializes with the system value which the IO 220 will Track selected.

Figure 4.25 KYZ Setup

To select a system value (±kWh, ±kvarh, kVAh) which the IQ 220 will Track, press either of the *Scroll* arrows repeatedly to step through the choices individually, or press and hold either of the *Scroll* arrows to step through the choices rapidly. There are up to 32 choices from 1/32 to 100 displayed as follows: (*NOTE*: some rates are available only in IQ 220 firmware version 1.02 and greater.)

Version 1.01 and earlier
1 through 10 in increments of 1
20, 40, 50, 60, 80, 100

Version 1.02 and greater 1/32, 1/16, 1/8, 1/4, 3/8, 1/2, 5/8, 3/4 1 through 15 in increments of 1 20 through 100 in increments of 10

When the desired choice is displayed, press *Enter* to lock in the selection.

The screen changes to show the *energy per pulse* Rate selected. To change the rate, press either of the *Scroll* arrows to step through the choices. When the desired choice is displayed, press *Enter* to lock in the selection. See *3.3.4 KYZ Pulse Initiator* for details about choosing Track and Rate.

If the procedure completes successfully, Download Accepted appears briefly. The display then returns to the previous screen.

4.10.10 Exit

Pressing *Enter* when this menu item is selected returns the display to the Main Menu

4.11 RESET VALUES

This *menu* item allows the user to reset to zero or to default IQ 200 system values and parameters.

Press *Menu* to display the list of available items.

Position the selection arrow next to Reset Values and press *Enter*.

The screen, shown in figure 4.26, displays the Reset Values choices four at once. Every choice can be displayed by using the *Scroll* button arrows. The item currently selected is indicated by an arrow to its left. If Rst All Min/Max is chosen, *all* the Min/Max values (Amps, Volts, Power, Freq, PF) will be reset.

Figure 4.26 Reset Values

To select a choice, position the selection arrow next to it and press *Enter*.

For all choices selected, a screen similar to figure 4.27 displays. For other choices, Reset Amps Min/Max is replaced by the description of the choice.

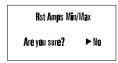


Figure 4.27 Reset Amps Min/Max

Page 40 TD 17558A

Pressing *Enter* while No is selected returns to the Reset Values screen.

To change the selection to Yes, press either of the *Scroll* arrows to toggle between No and Yes. When Yes is displayed as selected, press *Enter* to lock in the selection. If the procedure completes successfully, Download Accepted appears briefly. The display then returns to the previous screen.

4.12 CONTRAST ADJUST

This screen, shown in figure 4.28, allows the user to adjust the appearance of the display for best viewing.

Press Menu to display the list of available items.

Position the selection arrow next to Contrast Adjust and press Enter.

Press either of the *Scroll* arrows repeatedly to see the contrast change slowly, or press and hold either of the *Scroll* arrows to see the contrast change rapidly. Press the *Menu* button to exit and return to the *main menu*.

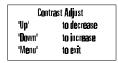


Figure 4.28 Contrast Adjust

Alternatively, the contrast of the screen can be adjusted *without* entering the Contrast Adjust menu by holding in the *Enter* button while pressing the S*croll* up arrow button (to decrease contrast) or the *Scroll* down arrow button (to increase contrast).

4.13 DIAGNOSTICS

This *menu* item is reserved for the use of Cutler-Hammer service personnel. There are no user-accessible functions on this screen.

4.14 FXIT MENU

Press *Enter* to return to the previous menu; then pressing *Enter* or *Menu* will return to the System Data menu. (See figure 4.3 in Section 4.6)

SECTION 5: TROUBLESHOOTING AND MAINTENANCE

5.1 GENERAL

5.1.1 Level of Repair

These troubleshooting procedures will determine only if the IQ 200 Display Module or the IQ 200 Base Module is the cause of the malfunction. They will not permit troubleshooting of components within the IQ 200 Modules. If an IQ 200 Module is determined to be at fault, replace it with a spare and return the malfunctioning Module to Cutler-Hammer for repair.

5.1.2 Maintenance and Care

The IQ 200 is designed to be a self-contained and maintenance-free unit. The printed circuit boards are calibrated and conformally coated at the factory. They are intended to be serviced by factory trained personnel only.

<u>Never</u> clean the IQ 200 with system or IQ 200 power on. Clean the IQ 200 using only a clean, dry cloth. Do not use water or solvents of any kind.

Operate the IQ 200 Base Module in an environment within the temperature range of -20°C to 50°C and the display unit within a range of 0°C to 50°C. The environment should also be free of excess humidity.

If you have spare units, store them in the original packing material and container. The base unit storage environment temperature range should be -30°C to 85°C and -20°C to 60°C for the display module.

5.2 REMOVAL AND REPLACEMENT

WARNING

ALL MAINTENANCE PROCEDURES MUST BE PERFORMED ONLY BY QUALIFIED PERSONNEL WHO ARE FAMILIAR WITH THE IQ 200 AND ITS USES. FAILURE TO OBSERVE THIS WARNING COULD RESULT IN SERIOUS INJURY, DEATH, AND/OR EQUIPMENT DAMAGE.

TROUBLESHOOTING PROCEDURES MAY INVOLVE WORKING ON EQUIPMENT IN AREAS WITH EXPOSED ENERGIZED (LIVE) ELECTRICAL WIRING AND/OR PARTS WHERE THE HAZARD OF FATAL ELECTRIC SHOCK IS PRESENT. PERSONNEL MUST EXERCISE EXTREME CARE TO AVOID INJURY OR DEATH. ALWAYS DISCONNECT, LOCK OUT, AND TAG THE CURRENT AND VOLTAGE SOURCES AND THE CONTROL POWER SUPPLY CIRCUIT BEFORE TOUCHING THE CONNECTIONS OR COMPONENTS ON THE REAR FACE OF THE IQ 200 BASE UNIT.

Page 42 TD 17558A

5.2.1 General Safety Precautions

 Turn off, lock out, and tag all sources of system power to the IQ 200 Base Module.

- Temporarily install a short circuit between the output legs of each current transformer connected to the IQ 200 Base Module, and tag.
- Turn off, lock out, and tag the IQ 200 Base Module power supply circuit.

5.2.2 IQ 200 Display Module

Perform the following steps to replace the IQ 200 Display Module.

- Disconnect the Category 5 cable from the IQ 200 Base Module, and mark it for later reconnecting.
- If the IQ 200 Base Module is attached to the IQ 200 Display Module, detach it by removing the four #10 screws that secure the Base to the mounting brackets.
- Grasp the IQ 200 Display Module to prevent it from falling and remove the hex nuts and washers that secure the mounting brackets, gasket, and Display Module to the panel.
- Withdraw the IQ 200 Display Module and gasket (if in use).
- To reinstall or to replace the IQ 200 Display Module, reverse the above steps, or consult the installation section 3.2.

5.2.3 IQ 200 Base Module

Perform the following steps to replace the IQ 200 Base Module.

- Disconnect the Category 5 cable from the IQ 200 Base Module, and mark it for later reconnecting.
- Disconnect the INCOM™ cable, if used, and mark it for later reconnecting.
- Disconnect all system voltage and current leads, and mark them for reconnecting. Making a simple sketch of the connections may be helpful during reinstallation.
- Remove the ground connection and mark it for reconnecting.
- If the IQ 200 Base Module is attached to the IQ 200 Display Module, detach it by removing the four #10 screws that secure the Base to the mounting brackets.
- If the IQ 200 Base Module is mounted using the DIN clip, remove it by disengaging the DIN clip mounted on the IQ 200 Base Module from the DIN rail on the mounting surface.
- If the IQ 200 Base Module is mounted using an L-bracket or other device, remove any attachments between the IQ 200 Base Module and the mounting device. Identify and retain all attachments for reinstallation.
- To reinstall the IQ 200 Base Module, reverse the above steps or consult the installation section 3.2.

5.3 GENERAL TROUBLESHOOTING PROCEDURES

These procedures cover the IQ 200 only, and can only indicate or eliminate the IQ 200 as a cause of the malfunction. Because these procedures are not exhaustive, the user must be aware that other system components may be causing or contributing to system malfunctions.

To use the following troubleshooting guide, first identify the *symptom* of the malfunction in the first column. Then note the corresponding *probable cause* listed in the second column. Attempt one or more of the corresponding *possible solutions* in the third column. If following this general troubleshooting guide fails to correct the malfunction, contact the plant maintenance department or contact Cutler-Hammer Power Management Applications Support at 1-800-809-2772, option 1.

IQ 200 Troubleshooting Guide		
Symptom	Probable Cause	Possible Solution
One or more	Incorrect PT ratio	Check PT ratio using the View
voltage phases read		Setpoints screen of the display module.
incorrectly		Adjust if incorrect using the edit
		setpoints screen.
Incorrect or zero	Incorrect CT ratio	Check CT ratio using the View
current readings		Setpoints screen of the display module.
		Adjust if incorrect using the edit
Incorrect Power	Incorrect phasing of	Setpoints screen.
	Incorrect phasing of	Check phasing and verify connections
readings	voltage and (or) currents	with wiring diagrams.
Unit fails to	Wrong or conflicting	Check the address of the IQ 220 base
communicate over	address set for	unit via a display module and verify that
PowerNet network	IO 220	the software is addressing the proper
	1 = ===	unit.
	Incorrect baud rate	Check the baud rate set for the base
	set for the IQ 220	unit via a display module and verify that
		it is the same as the system rate.
	Communication	Verify that wiring conforms to proper
	wiring error	wiring base rules. (see TD 17513)
Display module	Contrast is set too	Press and hold the ENTER button the
I CD screen is blank	low	press and hold the "down" scroll button
EOD SCICCITIS DIGIIK	1011	to adjust the contrast.
	Power to display	Check Category 5 cable connection to
	module is absent	display module and base unit. Check
		control power fuses, wiring connections,
		and voltage level.
	l	

Page 44 TD 17558A

5.4 TECHNICAL ASSISTANCE

For information, technical assistance, or referral to an authorized distributor, contact Cutler-Hammer Power Management Applications Support at 1-412-490-6714, 1-800-809-2772 option 1, or connect to our website at www.cutlerhammer.eaton.com.

5.5 RETURN PROCEDURE

This troubleshooting guide is intended to help service personnel determine if an observed malfunction is caused by the IQ 200 or by other external circumstances. If the malfunction is determined to be within the IQ 200, return the IQ 200 to Cutler-Hammer for repair or replacement. To return the IQ 200, contact the local authorized Cutler-Hammer distributor for specific instructions.

NOTES:

NOTES:

NOTES:

Cutler-Hammer

Power Management Products 240 Vista Park Pittsburgh, PA 15205 1-800-809-2772 www.cutlerhammer.eaton.com