

OPTIMHO
Distance Protection for Single Phase Electrified Railway Systems

# OPTIMHO <br> Distance Protection for Single Phase Electrified Railway Systems 

Figure 1:
Optimho (Type LFZP) relays

## Features

- Full scheme distance relays with 3 measuring units
- Single or multiple zones
- Independent settings for reactance and resistive reach for each zone
- Typical operating time: one cycle
- Optional fault location with data recording for post fault analysis and instrumentation functions


## Models Available

Two versions of the Optimho distance protection relay for single phase electrified railway systems are available:
LFZP141 50/60Hz
LFZP142 25 Hz

## Benefits

- Remote interrogation reduces need for site visits
- Precise fault type/location data reduces outage time

- Self diagnosis reduces maintenance costs
- Vertical case option eases retrofit problems
- Will interface with existing scheme logic
- Fulfils basic SCADA role at no extra cost


## Application

LFZP141/2 is part of the Optimho model range originally developed for 3 phase protection. It is used as main protection to detect short circuits on the catenary and other single phase traction feeder equipment, including the feeder wire for autotransformer-fed systems.
Applications are:

- main protection of catenary and other feeder equipment
- time delayed back-up for faults in adjacent sections
- booster and autotransformer-fed system protection


## Principles of Operation

Optimho is a full scheme distance relay which has a measuring element for each main zone of protection. Compared with the switched type of scheme, the full scheme system improves reliability by avoiding the need to rely on zone selection hardware or soffware, removing dependence on a single measuring unit. Full scheme distance relays are better able to copy with evolving faults.
The measuring element uses a microcontroller to produce a direct software equivalent of the hardware phase comparator used in Optimho's forerunners, Micromho and Quadramho. This phase comparator design is well tried, having accumulated nearly ten thousand relay years of successful operating experience over the last decade at locations throughout the world.

Many of the other hardware and soffware features of Quadramho have been retained and further enhanced in Optimho, ensuring the highest standards of reliability

| Summary chart |  |  |
| :---: | :---: | :---: |
| LFZP Model | 141 | 142 |
| Ground distance | * | * |
| Fault location | $\bigcirc$ | $\bigcirc$ |
| Railway | * | * |
| Operating frequency | $50 / 60 \mathrm{~Hz}$ | 25 Hz |
| No of distance elements | 3 | 3 |
| Independent zones | Z1 | Z1 |
|  | Z2 | Z2 |
|  | Z3 | Z3 |
|  | Z1X | Z1X |
|  | Z1Y |  |
| No of output contacts | 8 | 8 |
| Schemes |  |  |
| BASIC | * | * |
| Z1 EXTENSION | * | * |
| PUR | * | * |
| Distance characteristic |  |  |
| $\mathrm{Z} 1, \mathrm{Z} 1 \mathrm{X}, \mathrm{Z} 1 \mathrm{Y},$ <br> Z2 ground | q* | q* |
| Z3 ground | D* | D* |
| Overcurrent elements |  |  |
| Inst.overcurrent element |  | * |
| Overcurrent backup elements |  | * |
| * = standard, o = optional, <br> $\mathrm{q}=$ quadrilateral, <br> D = offset quadrilateral |  |  |

## Optimised Performance with Distorted Signals

The phase comparators and level detectors use logic processing to achieve immunity from maloperation due to noise, such as harmonic distortion, travelling wave effects and current transformer saturation. Operation of the phase comparators and level detectors can only occur if the input signals are dominated by power frequency components. Filters are used to ensure this dominance and to optimise operating times.

## Hardware Structure

The hardware uses multiple microcontrollers to perform as comparators, level detectors, etc. A main micro-controller uses the digital bus to read outputs from the subsidiary micro-controllers, read signals from the outside world via optically coupled isolators, communicate with the user interface and perform scheme logic, serial communications, monitoring and output contact functions.
Settings, indications and fault records are stored in a type of memory which is unaffected by loss of dc supply.


Figure 2:
Electrical structure


Figure 3:
Mechanical layout

The layout of the relay case follows the 'quiet region' arrangement introduced in Micromho and Quadramho, with measurement and control boards located in a screened compartment and fed with signals from the outside world via screened isolation devices and filters. See Figure 3.
A vertical aspect, panel mounted version can be used for replacing obsolescent distance relays in narrow panels, with the minimum of panel disturbance.

## Integral User Interface

All relay settings and records are accessible from the integral user interface shown in Figure 4.

The liquid crystal display (LCD) indicates how the relay initiated the latest trip. The faulty zone is indicated for trips initiated by the distance elements. The latest alarm condition is also indicated. If indications are present when the supply is lost, they are automatically reinstated when the supply is restored.

The date and time of the fault, location (if available), and more, are summoned by pressing READ. After the indications have been read, they can be cleared by pressing RESET and the READ key can then be used to step through all the relay settings displayed in sequence.
The cursor and SET keys, and the two test sockets, are only accessible after removing the transparent front cover. The keys are used to select from a menu of options displayed on the LCD in English, and to enter new settings into temporary memory. The menu has a simple structure, allowing rapid familiarisation.
The SET key is used to transfer temporary entries to the permanent memory which determines relay action. Accidental changes are prevented by allowing SET to be operative only at certain points in the menu after appropriate warnings have been displayed.

## Menu Options

The menu holds an extensive range of options, including:

- viewing records of the LCD indications from the last four faults
- printing records or settings on a portable printer plugged into the PARALLEL test socket
- entering a relay identification code for use on printouts
- comprehensive test options such as: monitoring test points on the PARALLEL socket; blocking output contacts (the relay inoperative alarm contact closes when the
output contacts are blocked); simplified on-load directional testing; and closing selected output contacts (for instance to carry out a circuit breaker test)
- setting up the baud rate and protocol for the serial communications




## Settings

The setting options allow the user to select functions to suit each application. They are:

- scheme type
- which distance zones are enabled (up to 5 zones)
- whether overcurrent elements (if fitted) are enabled
- whether START indications are required for remote faults which do not result in a trip
- eight independent groups of settings which are stored in the relay memory and are selectable from the menu.

The menu is adaptive; for example, if Zone 2 is not required and has been disabled, its time setting is automatically removed from the menu.

## Schemes Available

The scheme selection includes basic distance with up to 3 independent zones available, designated $\mathrm{Z1}, \mathrm{Z} 2$ and Z3. Additional zones 1 X and IY (if available) are obtained, if required, by stepping the reach of the Zone 1 elements after time delays started by the Zone 2 and/or Zone 3 elements.
Zone 1 extension and permissive underreach schemes are provided to enable fast tripping for faults in the last $20 \%$ of the line if required.

## Remote Communications

All the options available on the menu are also available from a local or remote terminal via an RS232C serial communications port. Sockets are provided on both the front and the rear of the relay for temporary or permanent connection respectively. The socket on the rear can also interface with a modem for communication over a suitable link, for instance a telephone line.
The facility to bulk transfer settings, event records and metering lif fault locator is fitted) is available using 'OPTICOM' soffware.

## Distance Characteristics

The relay has quadrilateral characteristics with independent settings for reactance and resistive reach. The resistive reach setting of each principal zone is independent of that of the other zones and can therefore be set to provide the maximum possible resistance coverage without the encroachment of load impedance.

This overcomes many of the problems associated with circular mho characteristics. These required blinder elements of characteristic shaping to stabilise the relay under peak load impedance. In addition, the mho characteristic has restricted resistive coverage when applied to short feeders.

## Polarising

The synchronous memory polarising signal is a square wave derived from a healthy phase reference and $16 \%$ of the amplitude of the prefault voltage. This wave is added to the faulty voltage and is for close-up fault conditions, to provide a clear directional reference during noise conditions.

Synchronous polarising is derived from prefault voltage and is available for 16 cycles after fault incidence to cover breaker failure protection time. Several cycles must elapse from system energisation before synchronous polarising is available, so switch-on-to-fault logic is arranged to provide protection for close-up faults during this initial period.

## Overcurrent Elements

(Not available on all models)
The overcurrent protection has 3 tripping elements selectable via the user interface:

- single instantaneous extra high set level detector.
- a backup time delayed overcurrent element.
- time delayed tripping, either definite time or inverse definite minimum time using a selection of built-in IEC or USA curves. See Figure 9.


## Fault Location, Fault Data Recording and Instrumentation

The fault locator, when fitted, works on the principle of calculating the reactance to the fault. Readout is in kilometres, miles or percent of line length, with reactive ohms, although these depend for their accuracy on the line reactance being linearly related to the distance to fault. This may not be true for all feeder arrangements.
The fault location board also computes prefault and fault voltages and currents. These values can be read out to allow analysis of the power system network as it was at the time of fault. The duration of the fault is also determined.

At any time under healthy live line conditions, the line voltage, current, watts and VArs can be calculated on demand. These values can be compared with other instrumentation for accuracy. As the fault location hardware is largely separate from that of the distance measuring elements, protection accuracy can be cross-checked with fault location accuracy during secondary injection tests.

All voltages and currents are given with phase angle relative to pre-fault voltage and rms amplitudes in primary or secondary terms.

## Contact Arrangements

There are three pre-programmed output contact arrangements which can be selected via the menu. See Table 1.

## Self-Monitoring and Voltage Transformer Fuse/MCB Supervision

Optimho has comprehensive continuous self-monitoring. If a failure occurs, an alarm is issued by closing the relay inoperative alarm contact and extinguishing the relay available LED. Diagnostic information is automatically displayed if the failure is such that it does not disable the main processor and LCD.


Figure 6:
50 Hz typical operating times (quadrilateral characteristic)



Figure 7:
60 Hz operating times (quadrilateral characteristic)


Figure 7:
25 Hz operating times (quadrilateral characteristic)

Monitoring of the analogue circuits includes (i) the dc supply and all internal dc power supply rails, and (ii) the ac supplies and internal analogue voltage and current circuits.

The VT supervising logic can be set to block relay operation in the event of failure of a VT or fuse. The VT supervision logic can be selected via the menu, to self reset or to remain sealed-in until the reset push button is pressed.

An optically coupled isolator monitors the auxiliary contact of a miniature circuit breaker if the VT supplies are protected by an MCB instead of fuses. Energising the optical isolator blocks the relay operation.

Monitoring of the digital circuits includes (i) bus communications (ii) checking of RAM and EEPROM and (iii) watchdog circuits for every micro-controller. In the event of failure, trip signals originating from the affected part of the relay are blocked.


Figure 9:
Overcurrent protection time delay trip times


Opto-isolator inputs when required

| CRX | Open contact from signalling channel |
| :--- | :--- |
| COX | Closed contact from signalling channel |
| RZIX | Open contact from auto-reclose relay |
| CBAUX | Closed circuit breaker contacts to indicate <br> pole open. Required with busbar vt. |
| MCB | Closed contact from miniature circuit breaker <br> required when no vt fuses are used. |
| RI | Open contact to reset visual indications <br> Inhibit VTs |
| IVTS | Inis |

Figure 10:
Case connection diagram

## Technical Data

## Ratings

AC voltage Vn :
100 to 120 V rms
AC current In:
1 A or 5A rms

Frequency fn:
The LFZP railway relay is available in two versions:

| Relay type | Frequency fn | Operative <br> frequency range |
| :--- | :--- | :--- |
| LFZP 141 | 50 Hz | 47 to 51 Hz |
| LFZP 142 | 60 HZ | 56.4 to 61.2 Hz |
|  | 25 Hz | 23.5 to 25.5 Hz |

For switched mode $\mathrm{dc} / \mathrm{ac} / \mathrm{dc}$ power supply unit, available in three versions:

| Nominal (V) | Operative <br> range (V) | Maximum <br> withstand (V) |
| :--- | :--- | :--- |
| $48 / 54$ | 37.5 to 60 | 64.8 |
| $110 / 125$ | 87.5 to 137.5 | 150 |
| $220 / 250$ | 175 to 275 | 300 |

There is negligible change of accuracy with change of voltage within the operative range of the relay.
$D C$ supply $V x(2)$ : For optically coupled isolators. Supply options are the same as $\mathrm{Vx}(1)$. External resistor box provided for 220/250V version (see Figure 12).

## Maximum overload ratings

AC voltage:

AC current:

## Burdens

AC voltage circuits
AC current circuits:

DC supply (1):

DC supply (2):
1.2 Vn for measuring accuracy
1.5 Vn continuous withstand 2.5 Vn withstand for 10 s
2.4In continuous withstand 100In withstand for $1 \mathrm{~s}(\mathrm{In}=1 \mathrm{~A})$ 80In withstand for $1 \mathrm{~s}(\mathrm{In}=5 \mathrm{~A})$

## Distance elements

Range of settings referred to line VT and CT secondaries:
All employed zones except reverse Zone 3:

Reach setting method is by digitally controlled analogue attenuators.
Attenuation factor KZPh operates on the current signal and is common to all zones. Attenuation factors KZ1, KZ1X, KZ1Y, KZ2, KZ3, and KZ3' operate on voltage signals and are specific to Zone 1, Zone 1 X, Zone 1Y, Zone 2, Zone 3 and Zone 3 offset respectively.
The reach for Zone 1 is given by:
Zone 1 = KZ1. KZPh.5/In for LFZP 141
Zone 1 = KZ1. KZPh.5/2In for LFZP 142
Either KZ1 or KZPh is set to unity. To obtain the formula for each of the other zones employed, replace KZ1 by the appropriate attenuation factor for the zone.

Quadrilateral resistive reach settings: Right-hand reach $=\mathrm{KR} .5 / \mathrm{In}$
Left-hand reach $=$ KR. $5 / \mathrm{In}$ where:
$K R=K R 1$ for Zone 1
$K R=K R 2$ for Zone 2
$K R=K R 3$ for Zone 3
Range of factors:

Characteristic angle settings:
KZPh 0.040 to 1.000 in steps of 0.001

KZ1
KZ1X
KZ1Y $\quad 1.00$ to 49.98
KZ2
KZ3 in steps of 0.02
KZ3
0.2 to 49.9 in steps of 0.1
$\left.\begin{array}{l}\text { KR1 } \\ \text { KR2 } \\ \text { KR3 }\end{array}\right\} 1$ to 30 in steps of 1
$\theta P h=\arg Z_{L}$ to nearest available setting
$\theta \mathrm{Ph}=45^{\circ}$ to $80^{\circ}$ in $5^{\circ}$ steps LFZP141
$\theta \mathrm{Ph}=40^{\circ}$ to $75^{\circ}$ in $5^{\circ}$ steps
LFZP142
Minimum operating values of the distance measuring elements for all types of fault:

Accuracy:
Voltage: zero
Current: 0.05In/KZPh
Reach: $\pm 5 \%$ at 2 In and $20^{\circ} \mathrm{C}$
Dynamic range up to 25In for fault locator instrumentation and distance protection.
Characteristic angle: $\pm 2^{\circ}$

## Resetting ratio:

105\%

Timer ranges:

Operating time

LFZP 141

LFZP 142

Reset time:

## Overcurrent elements (LFZP 142)

Instantaneous trip LD 1
Setting range:
Operating time:

Accuracy:
Time delayed trip LD2
Current range:
Timing range:
Accuracy:
Time delayed trip LD3
Current range:
Time curves:

Time multiplier:

Current:
Operating time:

Zone 1 X timer
Zone 1 Y timer
Zone 2 timer
Zone 3 timer
Timer accuracy $\pm 1 \%$ of setting and $\pm 3 \mathrm{~ms}$

Typical relay operating times for Zone 1 are shown in Figures 6-8

Quadrilateral characteristic:
50 Hz minimum: 16 ms
typical: 23 ms
60 Hz minimum: 15 ms
typical: 20 ms
25 Hz minimum: 23 ms typical: $\quad 42 \mathrm{~ms}$

The trip contacts are sealed in for 60 ms following the initial contact closure. Thereafter, the maximum reset time is 35 ms
0.1 In - 20In in steps of 0.05In min 6ms typical 10 ms
$\pm 5 \%$ at $\mathrm{fn}, 20^{\circ} \mathrm{C}$
0.1 In - 20In in steps of 0.05In
$0.1 s-9.98 \mathrm{~s}$ in steps of 0.05 s
+30ms $\pm 10 \mathrm{~ms}$ LFZP 142
0.1 In - 20In in steps of 0.05In

Eight curves shown in Figure 10 and three definite time ranges
${ }^{*} \mathrm{t}=0.025$ to 1.000 in steps of 0.025 accuracy at $\mathrm{fn}, 20^{\circ} \mathrm{C}$, ${ }^{*} \mathrm{t}=1$ $+10 \%-0 \%$
definite time $\pm 3 \%$ 2 Is to 31 Is
curves $1,2,4,5,6,7,8 \pm 5 \% 2$ Is to 31 Is
curve 3 $\pm 7.5 \%$ 2Is to 20Is

## Fault location and instrumentation (optional extra)

Fault location positive sequence settings referred to line VT and CT secondaries:

Range:
LFZP $141 \quad 0.2$ to $200 \Omega(\mathrm{In}=1 \mathrm{~A})$ 0.04 to $40 \Omega(\mathrm{In}=5 \mathrm{~A})$

LFZP 1420.1 to $100 \Omega(\mathrm{In}=1 \mathrm{~A})$ 0.02 to $20 \Omega(\mathrm{In}=5 \mathrm{~A})$

Setting: Zone $F=$ KZF KZPh.5/In LFZP 141 Zone F = KZF KZPh.5/2In LFZP 142

KZPh is common to the distance measuring elements
KZF range: $\quad 1.00$ to 40.00 in steps of 0.01
Line length setting (in miles, km , or \%, with reactive ohms):
0.00 to 99.99 in steps of 0.01
100.0 to 999.9 in steps of 0.1

Accuracy
$\pm 2 \%$ at $2 \mathrm{In}, \mathrm{fn}, 20^{\circ} \mathrm{C}$
Settings to allow for transformer ratios for instrumentation functions:
CT ratio: $1: 1$ or 10 to 2000:1
in 10:1 steps
VT ratio: $1: 1$ or 10 to $5000: 1$
in 10:1 steps

## Block or enable auto-reclose logic

A normally-open or normally-closed contact is supplied on most models to block or enable auto-reclose respectively
The menu allows the following choices of logic:

Auto-reclose blocked or enabled on:
Zone 1 X and/or Zone 1Y (LFZP141)
and/or Zone 2 time delayed trip
LFZP 142 only LD1 instantaneous and/or LD2 time delayed and/or LD3 time delayed
Channel out of service

## Voltage transformer (fuse fail) supervision

The voltage transformer supervision (VTS) operates when the ac voltage fails. A 15 s delay prevents a temporary depression of voltage giving an alarm, also the threshold level is such that traction load does not operate the alarm. The VTS does not limit the distance relay current sensitivity or operating times for line faults even when it is set to block relay tripping.

The blocking action of the VTS on distance comparators can be removed by menu selection via the user interface.

When the busbar supply is de-energised, alarms may be prevented by connecting the Inhibit VTS opto-isolator

## Switch-on-to-fault logic

Menu choices allow instantaneous trip and alarm and indication for faults occurring on line energisation, whether busbar or line voltage transformers are used:

SOTF enabled either 0.2 s or 110 s after line de-energised (110s prevents SOTF action on auto-reclosure)
SOTF trip via measuring elements SOTF trip via current and voltage level detectors

## Output contacts

The available arrangements are shown in Table 1
Ratings: Make and carry 7500VA for 0.2 s , maxima 30A, 300V, ac or dc

Carry continuously 5A ac or dc
Break
ac: 1250VA
maxima 5A,
dc: 50 W resistive $25 \mathrm{~W} L / R=0.04 \mathrm{~s}$ 300V

10,000 operations minimum 100,000 operations minimum.

Storage and transit $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Operating $-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$

Cold
Dry Heat

56 days at $93 \% \mathrm{RH}$ and $40^{\circ} \mathrm{C}$ IP50 (dust protected)

Mechanical environment
Vibration
IEC 60255-21-1:1988

## High voltage withstand

Dielectric withstand
IEC 60255-5:1977

2 kV rms for 1 minute between all case terminals connected together and the case earth terminal.

2 kV rms for 1 minute between all terminals of independent circuits, with terminals on each independent circuit connected together.
1.5 kV rms for 1 minute across normally open outgoing contact pairs.

High voltage impulse
High voltage impuls
IEC 60255-5:1977

## Electrical environment

High frequency disturbance IEC 60255-22-1:1988 Class III

Fast transient disturbance IEC 60255-22-4: 1992 Class IV

IEC 60801-4:1988 Level 4

Electrostatic discharge IEC 60255-22-2: 1989 Class III

IEC 801-2:1991 Level 3

EMC compliance
89/336/EEC

EN 50081-2:1994
EN 50082-2:1995
C Product Safety
73/23/EEC

EN 61010-1:1993/A2:1995
EN 60950:1992/A3:1995

Three positive and three negative impulses of 5 kV peak, $1.2 / 50 \mu \mathrm{~s}$, 0.5 J between all terminals of the same circuit (except output contacts), independent circuits, and all terminals connected together and case earth.
2.5 kV peak between independent circuits and between independent circuits and case earth.
1.0 kV peak across terminals of the same circuit (except metallic contacts).
$4 \mathrm{kV}, 25 \mathrm{kHz}$ applied directly to auxiliary supply.
$4 \mathrm{kV}, 25 \mathrm{kHz}$ applied directly to all inputs.

8 kV discharge in air with cover in place.

8 kV point contact discharge with cover removed.

Compliance with the European Commission Directive on EMC is claimed via the Technical Construction File route.

Generic Standards were used to establish conformity.

Compliance with the European Commission low voltage directive Compliance is demonstrated by reference to generic safety standards

Table 1. Standard output contact case terminal connections

|  | Contact configuration |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Terminal | 01 |  | 02 |  |  | 03 |
| $29-31$ | RIA | $97 Y$ | RIA | $97 Y$ | RIA | $97 Y$ |
| $29-33$ | VTS | $97 X$ | VTS | $97 X$ | VTS | $97 X$ |
| $29-35$ | Z1 | Z1 | Z1 | Z1 | Z1 | Z1 |
| $37-39$ | Z2T | Z2(T) | Time delay TR | $94 T$ | Time delay TR | $94 T$ |
| $41-43$ | SOTF | 98 | SOTF | 98 | SOTF | 98 |
| $45-47$ | Z3T | Z3(T) | Signal send | $85 X$ | BAR | 96 |
| $49-51$ | Any trip | 94 | Any trip | 94 | Any trip | 94 |
| $53-55$ | Trip | $94 T$ | Trip | $94 T$ | Trip | $94(T)$ |

Key to contact functions

| 85X | Signal send | Z1 | Zone 1 trip |
| :--- | :--- | :--- | :--- |
| 94 | Any trip | Z2(T) | Zone 2 time delay trip |
| 94 T | Trip | Z3(T) | Zone 3 time delay trip |
| 96 | Block auto-reclose |  |  |
| $97 Y$ | Relay inoperative alarm |  |  |
| $97 X$ | Voltage transformer supervision |  |  |
| 98 | Switch on to fault trip |  |  |
| Dimensions: |  |  |  |

For outline drawings see Figure 11
Weight: 12 kg

## Information Required <br> with Order

Whether fault location required
Nominal current rating In: 1A or 5A
Frequency fn:
$25 \mathrm{~Hz}, 50 \mathrm{~Hz}$ or 60 Hz
Voltage of dc supply $\mathrm{V} \times(1)$ :
$48 / 54 \mathrm{~V}, 110 / 125 \mathrm{~V}$ or $220 / 250 \mathrm{~V}$
Voltage of dc supply $\mathrm{V} \times(2)$
$48 / 54 \mathrm{~V}, 110 / 125 \mathrm{~V}$ or $220 / 250 \mathrm{~V}$
Mounting arrangements: rack, panel horizontal, panel vertical, semi projection
Whether the block auto-reclose contact 96 is to be a normally-open or normally-closed contact
Whether the signal send contact 85 X is to be a normally-open or normally-closed contact
Advice is available when the information requested above is difficult to specify
Requests for advice should include:

- current and voltage transformer ratios
- impedances of the protected feeder or full details of the feeder lengths and construction
- source impedances or fault levels for both minimum and maximum plant conditions


Figure 11a:
Arrangement and outline: Optimho panel mounting vertical


Figure 11b:
Arrangement and outline: Optimho panel mounting horizontal


Figure 11c:
Arrangement and outline: Optimho rack mounting


Figure 12:
External resistor box for 220/250V supplies

## ALSTOM

ALSTOM T\&D Protection \& Control Ltd St Leonards Works, Stafford, ST17 4LX England
Tel: 44 ( 0 ) 1785223251 Fax: 44 ( 0 ) 1785212232 Email: pcs.enquiries@tde.alstom.com Internet: www.alstom.com

