A
 AREVA

MiCOM C232
 Compact Bay Unit for
 Control and Monitoring with Protection Functions
 Version -302-401/402/403/404-603

Technical Manual
C232/EN M/A23

3 Operation
 (continued)

3.18 Limit Value Monitoring (Function Group LIMIT)

Disabling or enabling limit value monitoring

Limit value monitoring can be disabled or enabled from the integrated local control panel.

The C232 offers the possibility of monitoring the following measured values to determine if they exceed a set upper limit value or fall below a set lower limit value:

- Maximum phase current
- Minimum phase current
\square Maximum phase-to-phase voltage
\square Minimum phase-to-phase voltage
\square Maximum phase-to-ground voltage
\square Minimum phase-to-ground voltage
If one of the measured values exceeds or falls below one of the set upper or lower limit values, respectively, then a signal is issued once a set time period has elapsed.

If only one voltage transformer is fitted, the C232 needs to be informed via the setting MAIN: M.v.asg. bay/station which voltage (phase-to-ground or phase-to-phase voltage) is connected. Depending on this setting, the triggers for the monitoring of the phase-to-ground or phase-to-phase voltages are enabled. If three current or voltage transformers are fitted then either the variables of one three-phase system can be monitored or, alternatively, single-pole monitoring of the current or voltage of different transformers is possible.

3 Operation

(continued)

3 Operation
 (continued)

3 Operation
 (continued)

Monitoring the neutraldisplacement voltage

The neutral-displacement voltage calculated from the three phase-to-ground voltages is monitored by two stages to determine whether it exceeds set thresholds. If the thresholds are exceeded, a signal is issued after the set timer stage has elapsed.

3 Operation
 (continued)

Monitoring the linearized measured $D C$ values

The direct current that is linearized by analog measured data input is monitored by two stages to determine if it exceeds or falls below set thresholds. If it exceeds or falls below the thresholds, a signal is issued once a set time period has elapsed.

3.19 Programmable Logic (Function Group LOGIC)

Programmable (or user-configurable) logic enables the user to link binary signals within a framework of Boolean equations.

Binary signals in the C232 can be linked by logical 'OR' or 'AND' operations or by additional 'NOT' operations by setting LOGIC: Fct. assignm. outp. n, where $\mathrm{n}=1$ to 32. The Boolean equations need to be defined without the use of brackets. The following rule applies to the operators: 'NOT' before 'AND' before 'OR'.

A maximum of 32 elements can be processed in one Boolean equation. In addition to the signals generated by the C232, initial conditions for governing the equations can be set from the local control panel, through binary signal inputs, or through the serial interfaces.

Logical operations can be controlled through the binary signal inputs in different ways. The binary input signals LOGIC: Input n EXT ($n=1$ to 16) have an updating function, whereas the input signals LOGIC: Set n EXT ($\mathrm{n}=1$ to 8) are stored. The logic can only be controlled from the binary signal inputs that are configured for LOGIC: Set n EXT if the corresponding reset input (LOGIC: Reset n EXT) has also been configured for a binary signal input. If only one or neither of the two functions is configured, then this is interpreted as 'Logic externally set'. If the input signals of the two binary signal inputs are implausible (such as when they both have a logic value of ' 1 '), then the last plausible state remains stored in memory.

3 Operation
 (continued)

3-97 Control of logic operations via setting parameters or stored input signals

The LOGIC: Trigger n signal is a 'triggering function' that causes a 100 ms pulse to be issued.

3 Operation

(continued)

3 Operation
 (continued)

The output signal of one equation can be processed as the input signal for another higher-order equation, and this makes it possible to have a sequence of interlinked Boolean equations. The equations are processed in the sequence defined by the order of each equation so that the end result of a sequence of interlinked Boolean equations is given by the highest-order equation.

The output signal of each equation is fed to a separate timer stage that has two timer elements and a choice of operating modes. This offers the possibility of assigning a freely configurable time characteristic to the output signal of each Boolean equation. In the Minimum time operating mode, the setting of timer stage t2 has no effect. Figures 3-99 to 3-103 show the time characteristics for the various timer stage operating modes.

Note: If the unit is set to "off-line", the equations are not processed and all outputs are set to a logic value of ' 0 '.

3 Operation
 (continued)

3-100 Operating mode 2: Operate-delay/pulse duration

3 Operation
 (continued)

3-102 Operating mode 4: Operate-delay/pulse duration, retriggerable

3-103 Operating mode 5: Minimum time

Through appropriate configuration, it is possible to assign the function of a binary input signal to each output of a logic operation. The output of the logic operation then has the same effect as if the binary signal input to which this function has been assigned were triggered.

3 Operation

(continued)

3 Operation
 (continued)

3.20 Control and Monitoring of Switchgear Units (Function Groups DEV01 to DEV10)

The C232 is designed for the control of up to 6 switchgear units. The topology of a switchbay with its switchgear units is defined by the bay type.

Defining the bay type
With the selection of the bay type, the user defines the following properties:
\square Manually operated switchgear units with position signals to be processed

- Switchgear units to be controlled and signaled by the C232
\square The bay interlock equations for the Open / Close control of the switchgear units, for operation with or without station interlock
\square Binary inputs required for switchgear units with direct motor control
\square Outputs required for switchgear units with direct motor control
When the bay type is selected, the binary inputs for the switchgear position signals and the output relays for the control commands are configured automatically if MAIN: Auto-assignment I/O is set to Yes. If set to No, the user will need to carry out this configuration. The list of bay types in the Appendix shows which binary inputs and output relays have been assigned signals or commands for control of the switchgear units in the case of automatic configuration.

The setting options for the C232 and the different possibilities for integrating a switchgear unit into the functional sequence of the C232 (processing position signals only or controlling and signaling) will be explained below, using one switchgear unit as an example. Function group DEV01 will be used throughout in this example. If a signal is identified in the function diagrams by function group "COMM1:" and a blank address [------], this means that it is a signal to or from the communication interface and that no address has been assigned to it. The signals listed in the function plans as 'signal 1' to 'signal n' are specified in the configuration tables of the Address List.

Switch truck

3.20.1 Processing of Position Signals for Manually Operated Switchgear

The position signals 'Open' and 'Closed' are assigned to binary signal inputs. The signals conditioned by debouncing and chatter suppression (see: 'Main Functions of the C232') are used for further processing. If no logic value of ' 1 ' is present at any of the two binary signal inputs, the running time monitoring is started. For the duration of the running time or until the switching device is back to a defined position - either 'Open' or 'Closed' - the signal 'Intermediate position' is issued.

If DEV01: Interm. pos. suppr. is set to Yes, the previous switching device position will continue to be signaled while the switching device is moving. Once the switching device has reached its new position, the updated position is signaled.

The signal 'Faulty position' is issued if the switching device does not return to the 'Open' or 'Closed' position once the running time monitoring has elapsed. If DEV01: Stat.ind.interm.pos. is set to yes, a delay time of 5 s is started. If there is no position signal once the timer stage has elapsed, the state actually present at the binary inputs will be signaled.

For switchgear units mounted on switch trucks with switch truck plugs, there is the possibility of configuring a single-pole signal as status signal from the switch truck plug. If such a configuration has been assigned, the position signal of the associated switching device is set to 'Open' while the input has a logic value of ' 1 '.

3 Operation
 (continued)

3 Operation
 (continued)

Local or remote control of external devices

Selection of the switching device to be controlled and generation of the switching request

3.20.2 Functional Sequence for Controllable Switchgear Units

Switchgear units can be controlled remotely or locally. The Selection of the Control Point is described in the section entitled "Configuration of the Bay Panel and of the Measured Value Panels; Selection of the Control Point (Function Group LOC)". Usually, remote control is effected via the communication interface, local control via the local control panel keys. Moreover, the switching devices can be controlled remotely via binary inputs configured appropriately (configuration via DEVxx: Inp .asg. el. ctrl. open or DEVxx: Inp. asg. el. ctr. close). The setting MAIN: Electrical control determines whether the inputs function as remote or local control points.

The switchgear unit to be controlled is selected and the switching command is sent to the selected switchgear unit. This can be effected via the local control panel using the selection key and pressing the 'Open' or 'Close' key to generate the switching request. For control via the binary inputs, the appropriate control inputs need to be configured for the switchgear units to be controlled. For control via the serial interface, the control command 'Open' or 'Close' also addresses the switchgear unit to be controlled.

3 Operation

(continued)

3 Operation

(continued)

Enabling of the switching commands

Before a switching command is executed, the C232 checks the interlocking equations defined in the interlocking logic to determine whether the switching command is permissible. Bay interlock equations for operation with or without station interlock can be defined. The assignment of the output of the interlocking logic to a switching command determines the interlocking equation that defines, for example, the conditions for the open command for operation without station interlock.

3 Operation
 (continued)

Bay interlock for operation with station interlock

For the station interlock equations to be interrogated, there needs to be communication with substation control level. If the C232 detects a communication error or if there is no communication interface, there will be an automatic switch to bay interlock without station interlock.

If there is to be a check on the bay and station interlock, the bay interlock will be checked first. If bay interlocking issues a switching enable, a switching request will be sent to substation control level. At substation control level, there will then be a check as to whether - taking into account the station interlock equations - it is permissible to switch. If substation control level also issues an enabling command, the switching operation is carried out provided that the enable from the bay interlock is still present. Optionally, the 'Open' or 'Close' switching operation can be carried out without checking the station interlock equations. In this case, the bay interlock equations defined for operation without station interlock equations will be consulted.

3-108 Enabling of the switching commands by the station interlock

Linking the protection commands to the switching commands

3 Operation

(continued)

For circuit breakers, the open command can be linked to the protection trip signal. The close command can be linked to the close command of the protection functions. The bay type defines which of the switchgear units are circuit breakers. The trip or close commands of the protection functions are executed directly without a check on the interlocking equations.

3 Operation
 (continued)

Issue of the switching commands

The operating mode set for the commands determines whether they are issued for the set times or whether are issued in accordance with time control.

Time control of the switching commands

As the switching command ends, the running time monitoring of the switching device is started. The C232 anticipates a status signal - 'Open' or 'Closed' to be issued by the switching device within the monitoring time. The status signal of the switchgear position comes in via appropriately configured binary inputs of the C232 where debouncing and chatter suppression can be set. (For a description of 'debouncing' and 'chatter suppression' see the section entitled "Main Functions of the C232 (Function Group MAIN)".) For the duration of the running time or until the switching device is back to a defined position - either 'Open' or 'Closed' - the signal 'Intermediate position' is issued.

If DEV01: Interm. pos. suppr. is set to Yes, the previous switching device position will continue to be signaled while the switching device is moving. Once the switching device has reached its new position, the updated position is signaled.
The signal 'Faulty position' is issued if the switching device does not return to the 'Open' or 'Closed' position once the running time monitoring has elapsed. If DEV01: Stat.ind.interm.pos. is set to yes, a delay time of 5 s is started. If there is no position signal once the timer stage has elapsed, the state actually present at the binary inputs will be signaled.
As soon as the status signal - 'Open' or 'Closed' is issued or at the end of the running time monitoring, the control command ends - once the set latching time has (see also Figure 3-106).

Switch truck
For switchgear units mounted on switch trucks with switch truck plugs, there is the possibility of configuring a single-pole signal as status signal from the switch truck plug. If such a configuration has been assigned, the position signal of the associated switching device is set to 'Open' while the input has a logic value of ' 1 '.

3 Operation

(continued)

3 Operation
 (continued)

The control sequence applied above applies to all switchgear units operated via an 'Open' - or 'Close' - contact. For bays with direct motor control of switch disconnectors, disconnectors or grounding switches, the following modified control sequence described below applies to the motor-operated switchgear units. The List of Bay Types shows which bay types are defined for direct motor control. In the chapter on 'Installation and Connection', an example for the connection of a bay with direct motor control is illustrated.

If a bay type with direct motor control is selected, a binary input for the status signal of the motor relay and one output relay each for triggering the motor relay and the shunt windings will be configured. In the example illustrated in Figure 3-112, the single-pole command CMD_1: Command C012 is defined for control of the motor relay, the single-pole command CMD_1: Command C011 is defined for control of the shunt windings. The single-pole signal SIG_1: Signal S012 (debounced and conditioned by chatter suppression) is defined for the status signal of the motor relay.

As the control command -'Open' or 'Close' - is transmitted, the output relays configured for 'motor relay' and 'shunt winding' are triggered. At the same time, the C232 starts a set monitoring time, during which the status signal of the motor relay needs to be issued. If this is not the case then the control command and the output relays configured for 'motor relay' and 'shunt winding' will be reset. Furthermore, a signal will be sent to substation control level.

If the status signal of the motor relay starts within the monitoring time, the running time monitoring of the switchgear unit is started with the status signal of the motor relay. The monitoring of the control command will then be carried out as for electromechanically operated switchgear units.

As soon as the status signal - 'Open' or 'Closed' is issued or at the end of the running time monitoring of the switchgear unit, the motor relay is reset - once the set latching time has elapsed (see also Figure 3-106). As the motor relay is reset, the monitoring time of the motor relay is restarted. Once this monitoring time has elapsed, the control commands 'Open' or 'Close' will be terminated.

3 Operation
 (continued)

Time control for direct motor control with external command termination

For bay types that are defined for direct motor control, it is possible to intervene in the control sequence of motor-operated switchgear units by way of external terminating contacts. To do so, the user must set the C232 by selecting 'Yes' at MAIN: W. ext. cmd. termin. and must configure binary signal inputs for connection to terminating contacts.

As the 'Open' or 'Close' control command is transmitted, the output relay configured for 'motor relay' will be triggered. At the same time, the C232 starts a set monitoring time, during which the status signal of the motor relay needs to be issued. If this is not the case then the control command and the output relays configured for 'motor relay' will be reset. Furthermore, a signal will be sent to substation control level.

If the status signal of the motor relay starts within the monitoring time, the running time monitoring of the switchgear unit is started with the status signal of the motor relay. The monitoring of the control command will then be carried out as for electromechanically operated switchgear units.

The motor relay is reset if the external termination command is issued while the switchgear unit's running time monitoring function is elapsing or during the latching time. Once the latching time has elapsed, the motor relay is reset in any case. As the motor relay is reset, the monitoring time of the motor relay is restarted. Once this monitoring time has elapsed, the control commands 'Open' or 'Close' will be terminated.

3 Operation

(continued)

3.21 Interlocking Logic (Function Group ILOCK)

The switching commands to the controllable switchgear units of the bay are not enabled until the interlock conditions have been checked. The interlocks are defined in the form of Boolean equations in the interlocking logic function.

The choice of the bay type automatically defines the bay interlock conditions (or equations) for the 'Open' and 'Close' operations of the individual switchgear units in the bay. Different conditions are defined for the bay interlock equations for operation with or without station interlock (see the section entitled "List of Bay Types" in the Appendix). These automatically defined interlock conditions - determined by the choice of bay type can be modified by the users at any time to fit their station requirements. For the bay interlock, the following signals acquired by the C232 are linked by logic operations:

ㅁ Function blocks 1 and 2

\square The programmable logic outputs
\square The signals from binary inputs after debouncing and chatter suppression
\square The position signals of the switchgear units after debouncing and chatter suppression
A maximum of 32 equations with 32 equation elements each are available for definition of the interlock conditions. The Boolean equations need to be defined without the use of brackets. The following rule applies to the operators: 'NOT' before 'AND' before 'OR'. The output signal of one equation can be processed as the input signal for another higher-order equation, and this makes it possible to have a sequence of interlinked Boolean equations.

3 Operation

(continued)

3 Operation

3.22 Single-Pole Commands (Function Group CMD_1)

Commands can be sent to the P139 through the communication interface. If the P139 receives the command, then the appropriately configured output relay is triggered and a signal is issued - provided that remote control has been enabled.

The user may select the operating mode for any single-pole command. The following settings are possible:

- Long command
\square Short command
- Persistent command

If the user selects either a long or a short command, then the output relay is only triggered for the time period set at MAIN: Cmd. dur. Iong cmd. or MAIN: Cmd. dur. short cmd.

The following figure shows the setting options and the functional sequence for command C001. Equivalent considerations apply to all other single-pole commands.

3.23 Single-Pole Signals (Function Group SIG_1)

Binary, single-pole signals from the station can be transmitted by the C232 to the control station through appropriately configured binary signal inputs.

The input signal is conditioned by debouncing and chatter suppression (see: 'Main Functions of the C232). The conditioned signal is then available as SIG_1: Logic signal $x x x$.

Signaling characteristics can be defined through the communication interface by setting the operating mode. The following settings are possible:
\square Without function:
\square Start/end signal

- Transient signal

If the setting is Without function, then no telegram is sent when there is a state change at the binary input. If the setting is Start/end signal then a telegram is sent each time there is a state change. The requirement for sending the 'start' signal is that the logic ' 1 ' signal be available for the set minimum time. If the setting is Transient signal, telegrams are only sent if there is a state change from logic ' 0 ' to logic ' 1 '.

The following figure shows the setting options and the functional sequence for signal S001. Equivalent considerations apply to all other single-pole signals.

3 Operation
 (continued)

3-115 Functional sequence for single-pole signals, illustrated for signal S001

3 Operation

3.24 Binary Counts (Function Group COUNT)

The C232 has one binary counter which counts the positive edges at an appropriately configured binary signal input. The signal to be counted can be debounced.

Enabling or disabling the counting function

The counting function can be disabled or enabled from the integrated local control panel.
Debouncing
The first positive pulse edge of the signal to be counted starts a timer stage running for the duration of the set debouncing time. Each positive pulse edge during the debouncing time retriggers the timer stage. If the signal is stable until the set debouncing time has elapsed, it is counted.

If the signal has not changed its state from the occurrence of the first pulse edge to the elapsing of the set debouncing time, it is not counted.

3 Operation
 (continued)

Counting function

Transmission of counts via the communication interface

Resetting the counter

The debounced signal is counted by a 16 bit counter. Each counter can be set to a specific count from the local control panel and through the serial interfaces (preload function). The count (counter reading) can be displayed on the LCD display and output via the PC and communication interfaces.

The count is transmitted through the communication interface by triggering an appropriately configured binary signal input, or by giving a trigger command from the local control panel, or at cyclic intervals in accordance with the set cycle time. If the count is transmitted at cyclic intervals, transmission will be synchronized provided that the ratio ($60 /$ set cycle time) is an integer. In all other cases, the count is transmitted at intervals determined by a free running internal clock.

The counter can be reset from the local control panel, through an appropriately configured binary signal input, or by the general reset function.

3 Operation

(continued)

3-117 Binary count

3 Operation
 (continued)

Acquisition of tap positions

Control of the tap changer

3.25 Tap Changer (Function Group TAPCH)

The transformer tap control function makes it possible to acquire data of one tap position and to output tap change commands for one tap changer. The functions and settings for the tap changer are described below.

Data on tap positions are acquired in BCD code with 6 bits maximum and one sign bit for positions in the range of -64 to +63 maximum. The input signals must be connected to the binary signal inputs in BCD code. The sequence of assignment of binary signal inputs at TAPCH: Input assign. TapCh 1 defines value in the tap position signal. The assignment sequence proceeds from the low-value bit to the higher value bit. Signals are assigned to the sign of the tap position signal by way of configuration parameter INP: Funct. assignm. V xxx and 'TAPCH: TapChg 1, sign'. If the 'tap change operating' signal is to be made available for evaluation in order to suppress the tap position signal while a tap change is in progress, then a binary signal input must be configured for "TAPCH: TapCh 1 operating". Starting and ending signals will be issued for this input. If there is a logic value of ' 1 ' at the input, then a change in tap position will not be transmitted. The tap position signal is not transmitted until there is a logic value of ' 0 '. If the unit is configured for suppression of the intermediate position, then the zero position is not transmitted while a tap change is in progress.

The transformer tap changer is controlled solely by remote control through the communication interface via single tap change operations triggered by the tap change commands HIGHER or LOWER. The effective command range can be set between the lowest position and the highest position. When the range limits are reached (set value in lowest or highest tap position), no change commands are issued. If no sign is defined, then only the positive range is effective, even if the lowest position is set for a negative value. If only a positive range is set, then a configured sign will not be effective. The operating mode for the change command can be set for time control, long command, or short command. As soon as the tap change command is issued, the output relay configured for the tap changer is triggered 'higher' or 'lower' for the set time period.

When command blocking is activated, the tap change command will be rejected at the communication interface. Command initiation is possible in both the 'remote' and 'local' states.

Note

Once the operating time monitoring period has elapsed, the current tap position will not be transmitted. Tap changer operation cannot be triggered by programmable logic. Output relays can be directly triggered by the control system. In this case, however, sequence control is handled by the control system itself.

3 Operation

(continued)

3 Operation
(continued)

4 Design

The C232 is mounted in an aluminum case. Connection is via threaded terminal ends. The case is suitable for either wall-surface mounting or flush panel-mounting. The mounting brackets adjust for flush mounting.

Figures 4-1 and 4-2 show the case dimensions and mounting dimensions. A cover frame is supplied for flush mounting (see Installation and Connection).

Regardless of model, the C232-like all other device types in the MiCOM Px30 system is equipped with the standard local control panel. The local control panel is covered with a tough film so that the specified degree of protection will be maintained. In addition to the essential control and display elements, a parallel display consisting of a total of 13 LED indicators is also incorporated into the local control panel. The meaning of the various LED indications is shown in plain text on a label strip. The label strip is located in a pocket accessible from the rear of the front panel. It can be replaced by userspecific labels.

The components located behind the front panel are energized. Therefore always turn off the supply voltage before opening the device.

The processor module with the local control module is attached to the reverse side of the removable front plate and connected to the combined I/O module via a ribbon cable. The I/O module incorporates the power supply, the optional input transformers, the output relays and optical couplers for binary input signals.

The secondary circuit of operating current transformers must not be opened. If the secondary circuit of an operating current transformer is opened, there is the danger that resulting voltages may injure personnel or damage the insulation.

The threaded terminal block for current transformer connection is not a shorting block. Therefore always short-circuit the current transformer before loosening the threaded terminals.

The front panel houses the -X6 serial interface for parameter setting by way of a PC. The optional communication interfaces (X7, X8 and X9 or X10) are located on the underside of the case.

4 Design

(continued)

4-1 Dimensional drawing of the wall-mounting case (-X7,-X8 and $-X 9$ or $-X 10$: communication interfaces, optional)

4 Design

(continued)

4-2 Dimensional drawing of the flush-mounting case (-X7,-X8 and $-X 9$ or $-X 10$: communication interfaces, optional)

5 Installation and Connection

5 Installation and Connection

5.1 Unpacking and Packing

All C232 units are packaged separately in their own cartons and shipped inside outer packaging. Use special care when opening cartons and unpacking units, and do not use force. In addition, make sure to remove from the inside carton the Supporting Documents and the type identification label supplied with each individual unit.

The design revision level of each module included in the unit when shipped can be determined from the list of components (assembly list). This list should be carefully saved.

After unpacking each unit, inspect it visually to make sure it is in proper mechanical condition.

If the C232 needs to be shipped, both inner and outer packaging must be used. If the original packaging is no longer available, make sure that packaging conforms to DIN ISO 2248 specifications for a drop height $\leq 0.8 \mathrm{~m}$.

5.2 Checking the Nominal Data and the Design Type

The nominal data and design type of the C232 can be determined by consulting the type identification label (see Figure 5-1) One type identification label is located under the upper covering flap of the front panel and another is on the inside of the unit. Another copy of the type identification label is affixed to the outside of the C232 packaging.

C232	C232-99XXXXX0-302-40x-456-92x-603							Diagram C232-302		xx.yy																	
$U_{\text {nom }} / \mathrm{NE}$, nom $=50 \ldots 130 \mathrm{~V}$		$\mathrm{I}_{\text {nom }}=$	A	$\mathrm{I}_{\text {E.nom }}=\mathrm{A}$		$\mathrm{I}_{\text {EP, nom }}=$	A		$\mathrm{f}_{\text {nom }}=50 / 60 \mathrm{~Hz}$																		
$U_{\text {H,nom }}=48-250$ VDC, $100-230$ VAC				$\mathrm{U}_{\mathrm{E}, \text { nom }}=24 \ldots 250 \mathrm{~V}$ DC																							
		$\begin{aligned} & \text { Specification } \\ & \text { EN 60255-6 / IEC 255-6 } \end{aligned}$					F6.123456.0		\|																		

The type identification label shows the nominal voltage and current $\mathrm{V}_{\text {nom }}$ (' $\mathrm{U}_{\text {nom }}$ ') and $\mathrm{I}_{\text {nom }}$, the nominal residual current $I_{N, n o m}$ (' $I_{E, n o m}$ '), the nominal auxiliary voltage $\mathrm{V}_{\mathrm{A}, \text { nom }}$ (' $\mathrm{U}_{\mathrm{H}, \text { nom }}$ '), the nominal star-point current $I_{*, n o m}$, the nominal input voltage $V_{\text {in,nom }}$ (' $U_{E, \text { nom }}$ '), the nominal displacement voltage $\mathrm{V}_{\mathrm{NG}, \mathrm{nom}}$ (' $\mathrm{U}_{\mathrm{NE}, \mathrm{nom}}$ ') and the nominal frequency $\mathrm{f}_{\text {nom }}$.

The C232 design version can be determined from the order number. A breakdown of the order number is given in Chapter 14 of this manual and in the Supporting Documents supplied with the unit.

5 Installation and Connection
 (continued)

Environmental Conditions

Mechanical conditions

Electrical conditions for auxiliary voltage for the power supply

5.3 Location Requirements

The C232 has been designed to conform to EN 60255-6. Therefore it is important when choosing the installation location to make sure that it provides the conditions specified in the chapter entitled 'Technical Data'. Several important conditions are listed below.

Ambient temperature:
$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left[+23^{\circ} \mathrm{F}\right.$ to $\left.+131^{\circ} \mathrm{F}\right]$
Air pressure: $\quad 800$ to 1100 hPa
Relative humidity: The relative humidity must not result in the formation of either condensed water or ice in the C232.

Ambient air:

Solar radiation: \quad Direct solar radiation on the front of the device must be avoided to ensure the readability of the LCD display.

Vibration stress:
Earthquake resistance:
5 to $8 \mathrm{~Hz}, 3.5 \mathrm{~mm} / 1.5 \mathrm{~mm}, 8$ to $35 \mathrm{~Hz}, 5 \mathrm{~m} / \mathrm{s}^{2}, 3 \times 1$ cycle

Operating range:
0.8 to $1.1 \mathrm{~V}_{\mathrm{A}, \text { nom }}$ with a residual ripple of up to $12 \% \mathrm{~V}_{\mathrm{A}, \text { nom }}$

Appropriate measures taken in substations must correspond to the state of the art (see, for example, the VDEW ring binder entitled "Schutztechnik" [Protective Systems], Section 8, June 1992 edition, which includes recommended measures for reducing transient overvoltage in secondary lines in high voltage substations).

5.4 Installation

The dimensions and mounting dimensions for surface-mounted cases are given in Chapter 4. When the C232 is surface-mounted on a panel, the leads to the C232 are normally run along the front side of the mounting plane. If the wiring is to be in back, an opening can be provided below the surface-mounted case, as shown in Figure 5-2.

Flush-mounted cases are designed to be flush-mounted in control panels. The dimensions and mounting dimensions are given in Chapter 4. When the C232 is mounted in a cabinet door, special sealing measures are necessary to provide the degree of protection required for the cabinet (IP 51). Figure 5-3 shows the required panel cutout for the flush-mounted case.

5 Installation and Connection

(continued)

5-3 Panel cutout for the flush-mounted case (dimensions in mm)

5 Installation and Connection
 (continued)

5-4 Installation of the $40 T$ case with cover frame)

5 Installation and Connection

(continued)

5.5 Protective and Operational Grounding

The unit must be reliably grounded to meet protective equipment grounding requirements. The case is grounded using the appropriate bolt and nut as the ground connection. The cross-sectional area of this ground conductor must also conform to applicable national standards. A minimum conductor cross section of $2.5 \mathrm{~mm}^{2}$ is required.

The grounding connection must be low-inductance, that is as short as possible.

5-5 Installing the PE terminal

5 Installation and Connection
(continued)

Power supply

Current-measuring inputs
Before connecting the auxiliary voltage V_{A} for the C 232 power supply, make sure that the nominal value of the auxiliary device voltage agrees with the nominal value of the auxiliary system voltage.

When connecting the system transformers, check to make sure that the secondary nominal currents of the system and the unit agree.

The secondary circuit of operating current transformers must not be opened. If the secondary circuit of an operating current transformer is opened, there is the danger that the resulting voltages will endanger people and damage the insulation.

The threaded terminal block for current transformer connection is not a shorting block. Therefore always short-circuit the current transformers before loosening the threaded terminals.

5 Installation and Connection
 (continued)

Connecting the timeovercurrent protection measuring circuits

C232 could be equipped with up to four current or voltage transformers. The applicable assignment of the terminal connections is described in the Appendix (E). The C232 model 4 (with time-overcurrent protection) is fitted with four current-measuring inputs as a standard.

The system current and voltage transformers must be connected in accordance with the standard schematic diagram shown in Figure 5-6. It is essential that the grounding configuration shown in the diagram be followed. If a connection is in opposition, this can be taken into account when making settings (see Chapter 7).

5 Installation and Connection
 (continued)

Connecting the binary
inputs and output relays

Connection of switchgear units having direct motor control

The binary inputs and output relays are freely configurable. When configuring these components it is important to note that the contact rating of the binary I/O modules (X) varies (see the Chapter on "Technical Data"). Once the user has selected a bay type, the C232 can automatically configure the binary inputs and outputs with function assignments for the control of switchgear units. The standard configuration of binary inputs and output relays for each bay type is given in the list of bay types found in the Appendix to this operating manual. Terminal assignment is shown in the terminal connection diagrams found in the Supporting Documents supplied with the unit or in the Appendix to this manual.

In the case of bay types having direct motor control, one binary input is configured for the status signal and one output relay is configured for triggering and resetting the motor relay. Configuration of appropriate output relays for triggering the armature and shunt windings of motors for switch disconnectors, disconnectors or grounding switches is in accordance with the 'List of Bay Types' (see Appendix). A connection example for direct motor control is shown in Figure 5-7.

5 Installation and Connection

(continued)

5-7 Connection example for direct motor control,

bay type No. 89 (A23.105.M04), feeder bay with circuit breaker, double busbar

5 Installation and Connection
 (continued)

5.6.2 Connecting the Serial Interfaces

PC interface
The PC interface is provided in order to operate the unit from a personal computer (PC).

Communication interface

The communication interface is provided for permanent connection of the unit to a control system for substations or to a central substation unit. The unit is connected either by a special fiber-optic connector or an RS 485 interface with twisted copper wires, depending on the type of communication interface.

The selection and assembly of a properly cut fiber-optic connecting cable requires special knowledge and expertise and is therefore not covered in this operating manual.

The fiber-optic interface may only be connected or disconnected when the supply voltage for the unit is shut off.

The RS 485 interface must be connected to other units is by a 2-pole twisted conductor cable. Additional instructions for connecting the communication interface can be found in the manual entitled 'Bus Technology'.

5 Installation and Connection
 (continued)

A communication link consisting of a communication master and several slaves can be established via the RS 485 interface. The communication master can be a control station, for example. The devices connected to the communication master, such as the C232, are the communication slaves.

The RS 485 interface of the C232 is designed electrically to permit full-duplex operation through a 4 -wire connection. However, communication through the RS 485 interface is always in the half-duplex mode of operation. The following connection instructions must always be followed:

- Always use twisted-pair shielded cables only, the kind used for telecommunications systems.
\square At least one symmetrically twisted core pair will be required.
- Strip cable cores and cable shield right at the connection point and connect properly in accordance with specifications.
\square Ground all shields at both ends (large-area grounding).
\square Ground free (unshielded) cores at one end only.
As another option, a 2 -wire or 4 -wire connection is also possible. For the 4 -wire connection, a cable with two symmetrically twisted core pairs is required. Figure 5-8 shows the 2 -wire connection and Figure 5-9 the 4 -wire connection, as illustrated for channel 2 of the communication module. If channel 1 of the communication module is designed as an RS 485 interface, then the same arrangement would apply.

2-wire connection:

Transmitter and receiver must be bridged in all devices that have a full-duplex interface as part of their electrical system - like the C232, for example. In the two devices that form the physical ends of the line, the pair of leads must be terminated by a $200-\mathrm{to}-220-\Omega$ resistor. In most AREVA devices, and also in the C232, a $220-\Omega$ resistor is integrated into the RS 485 interface and can be connected by means of a wire jumper. An external resistor is therefore not necessary.

4-wire connection:

Transmitter and receiver must be bridged in the device that forms one physical end of the line. The receivers of the slaves that have a full-duplex interface as part of their electrial system (like the C232, for example) are connected to the transmitter of the communication master, and the transmitters of the slaves are connected to the receiver of the master. Devices that only have a half-duplex interface are connected to the transmitter of the communication master. In the last physical participant (master or slave) of the communication link, the transmitter and receiver must each be terminated by a 200 -to- $220-\Omega$ resistor. In most AREVA devices, and also in the C232, a $220-\Omega$ resistor is integrated into the RS 485 interface and can be connected by means of a wire jumper. An external resistor is therefore not necessary. The second resistor must be connected to the device externally (see Chapter 13 for the resistor Order No.).

5 Installation and Connection (continued)

5-8 2-wire connection

5 Installation and Connection

19
120

6 Local Control Panel

6 Local Control Panel

Local control panel
The switchgear units of the bay can be controlled from the local control panel. In addition, all data required for operation of the unit C232 are entered here, and the data important for system management are read out here as well. The following tasks can be handled from the local control panel:
\square Controlling switchgear units

- Readout and modification of settings
\square Readout of cyclically updated measured operating data and logic state signals
\square Readout of operating data logs and of monitoring signal logs
\square Readout of event logs after short circuits in the power system
\square Device resetting and triggering of additional control functions used in testing and commissioning

Control is also possible through the PC interface. This requires a suitable PC and the operating program S\&R-103 for Windows.

6.1 Display and Keypad

Control and display elements

The local control panel includes an LCD display with a resolution of 128×128 pixels (divided semigraphically into 16 lines of 21 characters each), twelve function keys and 17 LED indicators.

6 Local Control Panel

(continued)

L/R

(1iI)

6 Local Control Panel

(continued)

Display levels
All data relevant for operation and all device settings are displayed on two levels. Data such as the switching status or the measured operating values are displayed at the Panel level and provide an up-to-date overview of the state of the bay. The menu tree level below the Panel level allows the user to select all data points (settings, signals, measured variables, etc.) and to change them, if appropriate. To access a selected event recording from either the Panel level or from any other point in the menu tree, press the READ key $\mathbb{(1 i l)}$.

6 Local Control Panel

(continued)

Display Panels

The following display Panels are available with the C232:

- Bay Panel
- Measured Value Panels, which are called up according to system conditions
- Signal Panel

The Bay Panel displays the up-to-date switching state of the selected bay in single-pole representation. Selected measured values are displayed on the Measured Value Panels. The system condition determines which particular Panel is called up (examples are the Operation Panel and the Fault Panel). Only the Measured Value Panels relevant for the particular design version of the given unit and its associated range of functions are actually available. The Operation Panel is always available. The Signal Panel displays the most recent events such as the opening of a switchgear unit.

Menu tree and data points
All data points (setting values, signals, measured values, etc.) are selected using a menu tree. As the user navigates through the menu tree, the first two lines of the LCD display always show the branch of the menu tree that is active, as selected by the user. The data points are found at the lowest level of a menu tree branch. They are displayed either with their plain text description or in numerically coded form, as selected by the user. The value associated with the selected data point, its meaning, and its unit of measurement are displayed in the line below.

List data points
List data points are a special category. In contrast to other data points, list data points generally have more than one value element associated with them. This category includes tripping matrices, programmable logic functions, and event logs. When a list data point is selected, the symbol ' \downarrow ' is displayed in the bottom line of the LCD display, indicating that there is another level below the displayed level. The individual value elements of a list data point are found at the lower level. In the case of a list parameter, the individual value elements are linked by operators such as 'OR'.

6 Local Control Panel
 (continued)

Keys

- 'Up’ and 'Down' Keys Panel Level:

The effect of using the 'up' and 'down' keys differs between the individual Panels.
Bay Panel: The 'up' and 'down' keys switch between the measured values selected for this Panel.
Measured Value Panel: The 'up' and 'down' keys switch between the pages of the Measured Value Panel.
Signal Panel: The 'up' and 'down' keys switch between events.

Menu Tree Level:

By pressing the 'up' and 'down' keys, the user can navigate up and down through the menu tree in a vertical direction. If the unit is in input mode, the 'up' and 'down' keys have a different function.

Input mode:

Parameter values can only be changed in the input mode, which is signaled by the LED indicator labeled EDIT MODE. By pressing the 'up' and 'down' keys, the user can then change the parameter value.
('Up' key: the next higher value is selected.
'Down' key: the next lower value is selected.)
With list parameters, the user can change the logic operator of the value element by pressing the 'up' and 'down' keys.

\square 'Left' and 'Right' Keys

 Panel Level:

Pressing the 'right'/'left' keys switches between Bay Panel and Measured Value Panel, for example.

Menu Tree Level:

By pressing the 'left' and 'right' keys, the user can navigate through the menu tree in a horizontal direction. If the unit is in input mode, the 'left' and 'right' keys have a different function.
Input mode:
Parameter values can only be changed in the input mode, which is signaled by the LED indicator labeled EDIT MODE. When the 'left' and 'right' keys are pressed, the cursor positioned below one of the digits in the change-enabled value moves to the next digit to the right or left.
('Left' key: the cursor moves to the next digit on the left. 'Right' key: the cursor moves to the next digit on the right.)
In the case of a list parameter, the user can navigate through the list of items available for selection by pressing the 'left' and 'right' keys.

ㅁ ENTER Key
 Panel Level:

By pressing the ENTER key at the Panel level, the user can go to the first menu tree level.

Menu Tree Level:

To enter the input mode, press the ENTER key. Press the ENTER key a second time to accept the changes as entered and leave the input mode. The LED indicator labeled EDIT MODE signals that the input mode is active.

6 Local Control Panel

(continued)

- CLEAR Key (C)

Press the CLEAR key to reset the LED indicators and clear all measured event data. The records in the recording memories are not affected by this action.

Panel Level:

Bay Panel:
If the reset key is pressed while selecting a switchgear unit on the Bay Panel then the selection of the switchgear unit is canceled. The LED indicators are not reset in this procedure.

Menu Tree Level:

Input mode:
Press the CLEAR key to reject the changes entered and leave the input mode.

- READ Key (1il)

Press the READ key to access a selected event recording from either the Panel level or from any other point in the menu tree.

ㅁ Local/Remote Key

The local/remote key is effective in the Bay Panel only unless a binary signal input has been configured for this function.
The local/remote key is the transfer switch between remote and local control (setting $R \leftrightarrow L$), or between remote\&local and local control (setting $R \& L \leftrightarrow L$). If the local/remote key is set to ($\mathrm{R} \leftrightarrow \mathrm{L}$), the transfer from remote to local control can only take place if the L/R password has been entered first. The transfer from local to remote control does not involve a password query.

- Page Key (5)

Panel Level:
Pressing the page key shows the next Panel.

Menu Tree Level:

Pressing the page key results in leaving the menu tree and switching to the Bay Panel.

- Selection Key ©

The selection key is effective only in the Bay Panel and only if local control is activated. If local control has been selected, pressing the selection key selects the switchgear unit to be controlled. The selected external device will be marked by an asterisk (*) - as long as no external device names are displayed. Otherwise the external device name will flash and will be displayed in the status line.

OPEN Key

The OPEN key is effective in the Bay Panel only.
Pressing the OPEN key controls the selected switchgear unit - taking into account the interlock equation - to assume the 'open' state.

- CLOSE Key (I)

The CLOSE key is effective in the Bay Panel only.
Pressing the CLOSE key controls the selected switchgear unit - taking into account the interlock equation - to assume the 'closed' state.

6 Local Control Panel
 (continued)

Jumping from the Panel level to the menu tree level

Jumping from the menu tree level to the Panel level

The following presentation of the individual control steps shows which displays can be changed in each case by pressing the keys. A small black square to the right of the enter key indicates that the "EDIT MODE" LED indicator is lit up. An underscored external device name in the Bay Panel indicates a selected switchgear unit. The examples used here are not necessarily valid for the unit type described in this manual; they merely serve to illustrate the control principles involved.

6.2 Changing between Display Levels

After start-up of the unit, the display is at the Panel level. The Bay Panel is displayed.

Jumping from the Panel level to the menu tree level	Control Step / Description	Control Action	Display
	O Example of a display after start-up of the unit. Note: When the unit is delivered, it is set for a dummy bay without switchgear units. Therefore only the name of the unit appears on the Bay Panel. The display shown in the example will not appear until a 'real' bay type has been selected.		
	1 Press the enter key to go from the Panel level to the menu tree level.	Θ	$\begin{aligned} & \mathrm{X} \text { YYY } \\ & \text { Parameters } \end{aligned}$
Jumping from the menu tree level to the Panel level	0 From the menu tree level, the user can go to the Panel level from any position within the menu tree.		Par/Func/Glob/MAIN Device on-line No (=off)
	1 Press the page key. Alternatively first press the 'up' key and hold it down while pressing the reset key. Note: It is important to press the 'up' key first and release it last in order to avoid unintentional resetting of stored data.		

After the set return time has elapsed (setting in menu tree: "Par/Conf/LOC"), the display will switch automatically to the Bay Panel.

6 Local Control Panel

(continued)

6.3 Illumination of the Display

If none of the control keys is pressed, the display illumination will switch off once the set 'return time illumination' (set in the menu tree at 'Par/Conf/LOC') has elapsed. Press any one of the control keys to turn the display illumination on again. The control action that is normally triggered by that key will not be executed. Reactivation of display illumination is also possible by way of a binary input.

If continuous illumination is desired, set the 'return time illumination' function to 'blocked'.

6.4 Control at the Panel Level

At the Panel level, the user can move from one Panel type to another by pressing the page key (in one direction only) or the 'left' and 'right' keys (in both directions).

6.4.1 Bay Panel

Information displayed on the Bay Panel

Figure 6-3 shows an example of a Bay Panel. The top line shows the unit type on the left and the current time of day on the right.

The bay shown below in single-pole representation is a function of the set bay type. The symbols shown in the table on the next page are used to represent the switchgear units and other external devices as well as the state of the switchgear units. The user can switch between character sets 1,2 , and 3 . Character set 3 is identical to character set 1 in as-delivered condition but can be replaced by a user-defined character set - by using a special ancillary tool. The symbols of character set 2 are used in the following description.

The fourth line from the bottom shows (in abbreviated form) whether a bay interlock is active. The third line from the bottom indicates whether remote or local control is permitted. In the example shown here, remote control is activated. The two lines at the bottom contain measured value data. The arrows to the right of the measured value data indicate that additional measured values can be called up by pressing the 'up' or 'down' keys.

6 Local Control Panel

(continued)

		Representation of the external devices with character set 1	
character set 2			

6 Local Control Panel

(continued)

Measured value display in the Bay Panel	Control Step / Description	Control Action	Display	
	O Measured values are shown one at a time. A configuration step determines whether the measured value will also be displayed in bar form. The position of the bar can also be set for horizontal or vertical (the setting applies to all measured values). The arrows under the bar indicate that additional measured values can also be displayed.			${ }^{10: 3322}$
	1 Press the 'up' or 'down' key to display the next measured value. In the example shown, no bar display has been configured for the measured value.	$\begin{aligned} & \stackrel{\Delta}{\text { or }} \\ & \stackrel{\rightharpoonup}{*} \end{aligned}$		

6 Local Control Panel
 (continued)

Switchgear units can be controlled from the local control panel, provided that the unit has been set for 'local control'. If the local/remote key is set to switch between remote and local control ($\mathrm{R} \leftrightarrow \mathrm{L}$), then the switch from 'remote' to 'local' operation requires a password.

The following example is based on the ($\mathrm{R} \leftrightarrow \mathrm{L}$) setting for the local/remote key and the factory-set L/R password. If the password has been changed by the user (see the section entitled 'Changing the Password'), the following description will apply analogously.

Control Step / Description	Control Action	Display
0 Select the Bay Panel.		
1 Press the 'local/remote' key (L/R) to switch the unit to local operation. The Bay Panel is no longer displayed. The unit type appears in the first line. Eight asterisks (*) appear in the fourth line as a prompt for entering the password.	(1®)	
2a Press the following keys in sequence: 'Left'		$\mathrm{X} \text { YYY } \quad 10: 33: 27$
‘Down’		$x^{X} \text { YYY } \quad 10: 33: 29$
'Right'		X YYY 10:33:31
The display will change as shown in the column on the right.		$\mathrm{X} \text { YYY } \quad 10: 33: 33$

Control Step / Description	Control Action	Display
Now press the enter key. If the correct password has been entered, the Bay Panel will re-appear. The third line from the bottom will display 'Local'. If an invalid password has been entered, the display shown above in Step 1 will appear.	Θ	
2b This control step can be canceled at any time by pressing the reset key before the enter key is pressed.	(c)	
3a Press the selection key to select a switchgear unit. Only switchgear units that are electrically controllable can be selected. The device designation for the selected switchgear unit -'Q0', for example - is displayed in flashing characters (underlined in the example to the right) and also appears in the bottom line of the display. If the display of external device designations has been disabled, the selected switchgear unit will be marked by a flashing asterisk (*). The designation of the selected external device appears in the bottom line of the display.	©	
3b If you wish to cancel the selection of a switchgear unit, press the reset key. Press the selection key to select a new switchgear unit.	(c)	

| Control Step / Description | Control
 Action | Display |
| :--- | :--- | :--- | :--- |
| 4 After selecting a switchgear unit, press the | | |
| keys | | |
| or | | |
| or | | |

6 Local Control Panel

Control Step / Description	Control Action	Display	
5 If a control action does not take place within a set time period after selection of a switchgear unit or if the return time for illumination has elapsed, then the selection is canceled.			
6 Press the local/remote key (L/R) to switch to remote control; this is accomplished without a password prompt.	(LR)		10:33:38

6.4.2 Measured Value Panels and Signal Panel

Measured Value Panels
The measured values that will be displayed on the Measured Value Panels can first be selected in the menu tree under Par/Conf/LOC. The user can select different sets of measured values for the Operation Panel, the Overload Panel, the Ground Fault Panel, and the Fault Panel. Only the Measured Value Panels relevant for the particular design version of the given unit and its associated range of functions are actually available. The selected set of values for the Operation Panel is always available. Please see the section entitled 'Setting a List Parameter' for instructions regarding selection. The measured value display can be structured by inserting a dummy or placeholder in the list of selected measured values. If the MAIN: Without function setting has been selected for a given Panel, then that Panel is disabled.

The Measured Value Panels are called up according to system conditions. If, for example, the unit detects an overload or a ground fault, then the corresponding Measured Value Panel will be displayed as long as the overload or ground fault situation exists. If the unit detects a fault, then the Fault Panel is displayed and remains active until the measured fault values are reset - by pressing the reset key (C), for example.

Control Step / Description	Control Action	Display
0 The uppermost line of the display indicates the type of measured values being displayed. In this example, the display shows measured operating values (abbreviated as 'Meas. values'). The time of day is shown at the upper right of the display. Up to six selected measured values can be displayed on the Panel simultaneously.		Meas. values 16:57:33 Voltage A-B prim. 20.7 kV Voltage B-C prim. 20.6 kV Voltage C-A prim. 20.8 kV Current A prim. 415 A Current B prim. 416 A Current C prim. 417 A $\downarrow \uparrow$
1 If more than 6 measured values have been selected, they can be viewed one page at a time by pressing the 'up' or 'down' keys.	$\begin{aligned} & \stackrel{\rightharpoonup}{o r} \\ & \stackrel{y}{c} \end{aligned}$	Meas. values $16: 57: 35$ Voltage $A-B$ norm. 0.7 Vnom Voltage B-C norm 0.6 Vnom Voltage C-A norm. 0.8 Vnom Current A norm. 1.5 Inom Current B norm. 1.6 Inom Current C norm. 1.7 Inom $\downarrow \uparrow$

6 Local Control Panel

(continued)

The Signal Panel shows the signals relevant for operation. Each signal is fully timetagged (date and time of day). A maximum of three signals are displayed.

Control Step / Description	Control Action	Display
0 The top line of the display shows the Panel designation and the current time of day. Below this line, the signals are shown in chronological order. The arrows at the bottom of the display area indicate the presence of additional signals.		Events 16:57:33 20.04.98 05:21:32.331 MAIN Trip command Start 05:21:35.501 MAIN Trip command End 21.04.98 00:03:57.677 MAIN Blocked/faulty Start $\downarrow \uparrow$
1 Press the 'up' or 'down' keys to display the signals one at a time.	$\begin{aligned} & \stackrel{\otimes}{\text { or }} \\ & \stackrel{\rightharpoonup}{*} \end{aligned}$	Events 16:57:35 05:21:35.501 MAIN Trip command End 21.04.98 0:03:57.677 MAIN Blocked/faulty End 08:10:59.688 MAIN Blocked/faulty End $\downarrow \uparrow$

6 Local Control Panel
 (continued)

6.5 Control at the Menu Tree Level

6.5.1 Navigation in the Menu Tree

Folders and function groups

All data points are grouped in function groups according to the function they are associated with and are also organized in different folders based on practical control requirements.

The menu tree begins with the device type at the top and then branches out below into the three main folders entitled Parameters, Operation, and Events, which form the first folder level. Below the first folder level are two more folder levels, so that the entire folder structure consists of three main branches and a maximum of three folder levels.

At the bottom of each branch of folders, below the folder levels, are the various function groups in which the individual data points are combined.

6.5.2 Switching Between Address Mode and Plain Text Mode

The display on the local control panel can be switched between address mode and plain text mode. In the address mode the display shows setting parameters, signals, and measured values in numerically coded form, that is, as addresses. In plain text mode the setting parameters, signals, and measured values are displayed in the form of plain text descriptions. In either case, control is guided by the menu tree. The active branch of the menu tree is displayed in plain text in both modes. In the following examples, the display is shown in only plain text mode.

Control Step / Description	Control Action	Display
0 In this example, the user switches from plain text mode to address mode.		Par/Func/Glob/MAIN Device on-line No (=off)
1 To switch from address mode to plain text mode or vice versa, press the CLEAR key (C) and either the 'left' key or the 'right' key simultaneously. This can be done at any point in the menu tree.	$\begin{aligned} & \text { c }+仓 \\ & \text { or } \\ & \text { c }+仓 \end{aligned}$	$\begin{aligned} & \text { Par/Func/Glob/MAIN } \\ & 003.030 \\ & 0 \end{aligned}$

6 Local Control Panel
 (continued)

6.5.3 Change-Enabling Function

Although it is possible to select any data point in the menu tree and read the associated value by pressing the keys, it is not possible to switch directly to the input mode. This safeguard prevents unintended changes in the settings.

There are two ways to enter the input mode.

Global change-enabling function

Selective change-enabling function
\square To activate the global change-enabling function, set the 'Param. change enabl.' parameter to 'Yes' (menu tree: 'Oper/CtrlTest/LOC').
The change can only be made after the password has been entered. Thereafter, all further changes - with the exception of specially protected control actions (see the section entitled 'Password-Protected Control Actions') - are enabled without entering the password.
\square Password input prior to any parameter change.
The password consists of a pre-defined sequential key combination entered within a specific time interval. The following example is based on the factory-set password. If the password has been changed by the user (see the section entitled 'Changing the Password'), the following description (next page) will apply analogously.

6 Local Control Panel

(continued)

Control Step / Description	Control Action	Display
\mathbf{O} In the menu tree 'Oper/CtrlTest/LOC' select the 'Param. change enabl.' parameter.		Oper/CtrlTest/LOC Param. change enabl. No
1 Press the ENTER key. Eight asterisks (*) appear in the fourth line of the display.	Θ	Oper/CtriTest/LoC Param. change enabl. No \qquad
2 Press the following keys in sequence: 'Left' 'Right' 'Up'		Oper/CtrlTest/LOC Param. change enabl. No Oper/CtrlTest/LOC Param. change enabl. No
'Down' The display will change as shown in the column on the right.		Oper/CtrlTest/LOC Param. change enabl. No
Now press the ENTER key. The LED indicator labeled EDIT MODE will light up. This indicates that the setting can now be changed by pressing the 'up' or 'down' keys. If an invalid password has been entered, the display shown in Step 1 appears.	$\Theta^{\prime \prime}$	Oper/CtrlTest/LOC Param. change enabl. No
3 Change the setting to 'Yes'.	$\stackrel{\Delta}{\Delta}$	Oper/CtrlTest/LOC Param. change enabl. Yes
4 Press the ENTER key again. The LED indicator will go out. The unit is enabled for further parameter changes.	Θ	$\begin{aligned} & \text { Oper/CtrlTest/LOC } \\ & \text { Param. change enabl. } \\ & \text { Yes } \end{aligned}$

The same procedure applies to any parameter change unless the global changeenabling function has been activated. This method is recommended for a single parameter change only. If several settings are to be changed, then the global changeenabling function is preferable. In the following examples, the global change-enabling function has been activated.

6 Local Control Panel
 (continued)

Automatic return
The automatic return function prevents the change-enabling function from remaining activated after a change of settings has been completed. Once the set return time (menu tree 'Par/Conf/LOC') has elapsed, the change-enabling function is automatically deactivated, and the display switches to a Measured Value Panel corresponding to the current system condition. The return time is restarted when any of the control keys is pressed.

Forced return
The return described above can be forced from the local control panel by first pressing the 'up' key and then holding it down while pressing the CLEAR key.

Note: It is important to press the 'up' key first and release it last in order to avoid unintentional deletion of stored data.

Even when the change-enabling function is activated, not all parameters can be changed. For some settings it is also necessary to disable the protective function (menu tree: Par/Func/Glob/MAIN, "Protection enabled"). Such settings include the configuration parameters, by means of which the device interfaces can be adapted to the system. The following entries in the "Change" column of the address list (see appendix) indicate whether values can be changed or not:
\square "on": The value can be changed even when the protective function is enabled.

- "off": The value can only be changed when the protective function is disabled.
- "-": The value can be read out but cannot be changed.

The device is factory-set so that the protective function is disabled.

6 Local Control Panel

(continued)

6.5.4 Changing Parameters

If all the conditions for a value change are satisfied (see above), the desired setting can be entered.

Control Step / Description	Control Action	Display
0 Example of a display. In this example the change-enabling function is activated and the protective function is disabled, if necessary.		Oper/Ctr1Test/LOC Param. change enabl. Yes
1 Select the desired parameter by pressing the keys.	$\Delta \stackrel{\Delta}{\Delta}$	Par/Conf/LOC Autom. return time 50000 s
2 Press the ENTER key. The LED indicator labeled EDIT MODE will light up. The last digit of the value is highlighted by a cursor (underlined).	${ }^{-}$	Par/Conf/LOC Autom. return time 50000 s
3 Press the 'left' or 'right' keys to move the cursor to the left or right.	$\Delta \underset{\Delta}{\Delta}$	Par/Conf/LOC Autom. return time 50000 s
4 Change the value highlighted by the cursor by pressing the 'up' and 'down' keys. In the meantime the device will continue to operate with the old value.	$\stackrel{\Delta}{\Delta}$	Par/Conf/LOC Autom. return time 50010 s
5 Press the ENTER key. The LED indicator labeled EDIT MODE will go out and the device will now operate with the new value. Press the keys to select another setting parameter for a value change.	Θ	Par/Conf/LOC Autom. return time 50010 s
6 If you wish to reject the new setting while you are still entering it (LED indicator labeled EDIT MODE is on), press the CLEAR key. The LED indicator will go out and the device will continue to operate with the old value. A further parameter can be selected for a value change by pressing the keys.	(c)	Par/Conf/LOC Autom. return time 50000 s

6.5.5 Setting a List Parameter

Using list parameters, the user is able to select several elements from a list in order to perform tasks such as defining a trip command or defining the measured values that will be displayed on Measured Value Panels. The maximum possible number 'm' that can be selected out of the total number ' n ' of the set is given in the address list in the 'Remarks' column. As a rule, the selected elements are linked by an 'OR' operator. Other operators (NOT, OR, AND, NOT OR and NOT AND) are available in the LOGIC function group for linking the selected list items. In this way binary signals and binary input signals can be processed in a Boolean equation tailored to meet user requirements. For the DNP 3.0 communication protocol, the user defines the class of a parameter instead of assigning operators. The definition of a trip command shall be used here as an example to illustrate the setting of a list parameter.

| Control Step / Description | Control
 Action | Display |
| :--- | :--- | :--- | :--- |
| $\mathbf{0}$ Select a list parameter (in this example, the | | |
| parameter 'Fct.assign.trip cmd.' at | | |
| 'Par/Func/Glob/ MAN' in the menu tree). The | | |
| down arrow ((\downarrow indicates that a list parameter | | |
| has been selected. | | |

6 Local Control Panel

(continued)

Control Step / Description	Control Action	Display
6 Press the ENTER key. The LED indicator will go out. The assignment has been made. The unit will now operate with the new settings. If no operator has been selected, the 'OR' operator is always assigned automatically when the ENTER key is pressed. There is no automatic assignment of classes.	(c)	$\begin{aligned} & \text { Par/Func/Glob/MAIN } \\ & \text { Fct.assign.trip cmd. } \quad \text { \#02 DIST } \\ & \text { OR } \\ & \text { Trip zone 4 } \end{aligned}$
7 Press the 'up' key to exit the list at any point in the list.	Qes	Par/Func/Glob/Main Fct.assign.trip cmd. \downarrow
8 If you wish to reject the new setting while you are still entering it (LED indicator labeled EDIT MODE is on), press the CLEAR key. The LED indicator will go out.	(c)	$\begin{aligned} & \text { Par/Func/Glob/MAIN } \\ & \text { Fct.assign.trip cmd. } \\ & \text { OR \#02 DIST } \\ & \text { Trip zone } 2 \text { \# } \end{aligned}$

If 'MAIN: Without function' is assigned to a given item, then all the following items are deleted. If this occurs for item \#01, everything is deleted.

6 Local Control Panel
 (continued)

6.5.6 Memory Readout

After a memory is entered, the memory can be read out at the entry point. It is not necessary to activate the change-enabling function or even to disable the protective function. Inadvertent clearing of a memory at the entry point is not possible.

The following memories are available:

- In the menu tree 'Oper/Rec/OP_RC': Operating data memory
\square In the menu tree 'Oper/Rec/MT_RC': Monitoring signal memory
- Event memories
- In the menu tree 'Events/Rec/FT_RC': Fault memories 1 to 8
- In the menu tree 'Events/Rec/OL_RC': Overload memories 1 to 8
- In the menu tree 'Events/Rec/GF_RC': Ground fault memories 1 to 8

Not all of these event memories are present in each unit. A given unit may contain only some of them or even none at all, depending on the device type.

6 Local Control Panel

(continued)

Readout of the operating data memory

The operating data memory contains stored signals of actions that occur during operation, such as the enabling or disabling of a device function. A maximum of 100 entries is possible, after which the oldest entry is overwritten.

Control Step / Description	Control Action	Display
0 Select the entry point for the operating data memory.		Oper/Rec/OP_RC Operat. data record. \downarrow
1 Press the 'down' key to enter the operating data memory. The latest entry is displayed.		Oper/Rec/OP_RC 01.01 .97 11:33 ARC Enabled USER No
2 Press the 'left' key repeatedly to display the entries one after the other in chronological order. Once the end of the operating data memory has been reached, pressing the 'left' key again will have no effect.	$\stackrel{\Delta}{\Delta}$	Oper/Rec/OP_RC 01.01.97 10:01 PSIG Enabled USER Yes
3 Press the 'right' key to display the previous entry.		Oper/Rec/OP_RC 01.01.97 11:33 ARC Enabled USER No
4 Press the 'up' key at any point within the operating data memory to return to the entry point.	$\stackrel{\Delta}{\Delta}$	Oper/Rec/OP_RC operat. data record. \downarrow

6 Local Control Panel
 (continued)

If the unit detects an internal fault in the course of internal self-monitoring routines or if it detects power system conditions that prevent flawless functioning of the unit, then an entry is made in the monitoring signal memory. A maximum of 30 entries is possible. After that an 'overflow' signal is issued.

Control Step / Description	Control Action	Display
\mathbf{O} Select the entry point for the monitoring		
signal memory.		

6 Local Control Panel

(continued)

There are eight event memories for each type of event. The latest event is stored in event memory 1 , the previous one in event memory 2 , and so forth.

Readout of event memories is illustrated using the fault memory as an example.

Control Step / Description	Control Action	Display
\mathbf{O} Select the entry point for the first fault		
memory, for example. If the memory contains		
entries, the third line of the display will show		
the date and time the fault began. If the third		
line is blank, then there are no entries in the		
fault memory.		

6.5.7 Resetting

All information memories - including the event memories and the monitoring signal memory - and also the LED indicators can be reset manually. In addition, the LED indicators are automatically cleared and initialized at the onset of a new fault - provided that the appropriate operating mode has been selected - so that they always indicate the latest fault.

The LED indicators can also be reset manually by pressing the CLEAR key, which is always possible in the standard control mode. This action also triggers an LED indicator test and an LCD display test. The event memories are not affected by this action, so that inadvertent deletion of the records associated with the reset signal pattern is reliably prevented.

Because of the ring structure of the event memories, the data for eight consecutive events are updated automatically so that manual resetting should not be necessary, in principle. If the event memories need to be cleared completely, however, as would be the case after functional testing, this can be done after selecting the appropriate parameter. The resetting procedure will now be illustrated using the fault memory as an example. In this example the global change-enabling function has already been activated.

Control Step / Description	Control Action	Display
0 Select the reset parameter. Line 3 of the display shows the number of faults since the last reset, 10 in this example.		Oper/CtrlTest/FT_RC Reset recording 10
1 Press the ENTER key. The LED indicator labeled EDIT MODE will light up.	${ }^{-1}$	Oper/CtrlTest/FT_RC Reset recording Don't execute
2 Press the 'up' or 'down' keys to change the setting to 'Execute'.		Oper/CtrlTest/FT_RC Reset recording Execute 10
3 Press the ENTER key. The LED indicator labeled EDIT MODE will go out. The value in line 3 is reset to ' 0 '.	\ominus^{-}	Oper/CtrlTest/FT_RC Reset recording 0
4 To cancel the intended clearing of the fault recordings after leaving the standard control mode (the LED indicator labeled EDIT MODE LED is on), press the CLEAR key. The LED indicator will go out, and the fault recordings remain stored in the device unchanged. Any parameter can be selected again for a value change by pressing the keys.	(c)	Oper/CtrlTest/FT_RC Reset recording 10

6 Local Control Panel

(continued)

6.5.8 Password-Protected Control Actions

Certain actions from the local control panel (such as a manual trip command for testing purposes) can only be carried out by entering a password. This setup is designed to prevent accidental output and applies even when the global change-enabling function has been activated.

The password consists of a pre-defined sequential key combination entered within a specific time interval. The following example illustrates the password-protected output of a manual trip command using the factory-set password. If the password has been changed by the user (see the section entitled 'Changing the Password'), the following description will apply analogously.

Control Step / Description	Control Action	Display
\mathbf{O} In the menu tree 'Oper/CtrITest/MAIN',		
select the parameter 'Man. trip cmd. USER'.		Oper/Ctr1Test/MAIN Man. trip cmd. Don't execute
1 Press the ENTER key. Eight asterisks (*)		
appear in the fourth line of the display.		

Control Step / Description	Control Action	Display
4 Press the ENTER key again. The LED indicator will go out. The unit will execute the command.	-	Oper/CtriTest/MARN Man. trip cmd. USER Don't execute
$\mathbf{5}$ As long as the LED indicator labeled EDIT MODE is on, the control action can be terminated by pressing the CLEAR key. The LED indicator will go out.	©	Oper/CtriTest/MAIN Man. trip cma. USER Don't execute

6.5.9 Changing the Password

The password consists of a combination of keys that must be entered sequentially within a specific time interval. The 'left','right', 'up' and 'down' keys may be used to define the password and represent the numbers 1, 2, 3 and 4, respectively:

6 Local Control Panel

(continued)

The password can be changed by the user at any time. The procedure for this change is described below. The starting point is the factory-set password.

Control Step / Description	Control Action	Display
$\mathbf{0}$ In the menu tree 'Par/Conf/LOC' select the		
parameter 'Password'.		

Control Step / Description	Control Action	Display
6 Re-enter the password.		Par/Conf/LOC Password ** \qquad \qquad ar/conf/LOC Password ** **
7a Press the ENTER key again. If the password has been re-entered correctly, the LED indicator labeled EDIT MODE goes out and the display appears as shown on the right. The new password is now valid. 7b If the password has been re-entered incorrectly, the LED indicator labeled EDIT MODE remains on and the display shown on the right appears. The password needs to be re-entered. It is also possible to cancel the change in password by pressing the CLEAR key (see Step 8).	Θ Θ^{\prime}	Par/Conf/LOC Password ******** \qquad Par/Conf/LOC Password **
8 The change in password can be canceled at any time before Step 7 by pressing the CLEAR key. If this is done, the original password continues to be valid.	(c)	$\begin{aligned} & \text { Par/Conf } / \text { LOOC } \\ & \text { Password } \\ & \text { ******** } \end{aligned}$

Operation from the local control panel without password protection is also possible. To select this option, immediately press the ENTER key a second time in steps 4 and 6 without entering anything else. This will configure the local control panel without password protection, and no control actions involving changes will be possible until the global change-enabling function has been activated (see the section entitled 'ChangeEnabling Function').

6 Local Control Panel

If the configured password has been forgotten, it can be called up on the LCD display as described below. The procedure involves turning the device off and then on again.

Control Step / Description	Control Action	Display
$\mathbf{0}$ Turn off the device.		
1 Turn the device on again. At the very beginning of device startup, press the four directional keys ('left', 'right', 'up' and 'down') at the same time and hold them down.		
$\mathbf{2}$ When this condition is detected during		
startup, the password is displayed.		

6 Local Control Panel
 (continued)

Changing and display of the L/R password

The L/R password must be entered to enable local control.

Control Step / Description	Control Action	Display
0 In the menu tree 'Par/Conf/LOC' select parameter 'Password L/R'.		Par/Conf/LOC Password L/R ********
1 Press enter key. Eight stars appear in the fourth line of the display.	${ }^{-1}$	Par/Conf/LOC Password I/R $\underset{\star \star \star \star \star \star \star \star}{* * * * * * *}$
2 Press the 'left' $/$ right' and 'up'/'down' keys to enter the valid general password. The display changes as shown.	Coses	Par/Conf/LOC Password L/R $\star \star \star \star * * * *$ \star Par/Conf/LOC Password L/R $* * * * * * * ~$ t Par/Conf/LOC Password L/R ******* Par/Conf/LOC Password L/R *******
3 Now press enter key. The "EDIT MODE" LED will light up. The third line shows the current L/R password.	${ }^{-}$	$\begin{aligned} & \text { Par/Conf/LOC } \\ & \text { Password L/R } \\ & 1423 \end{aligned}$
4 Enter the new password, using the 'up' key followed by the 'down' key for the shorter password in this example.		Par/Conf/LOC Password L/R * \qquad Par/Conf/LOC Password L/R **
5 Press enter key again. Stars appear in the third line; the enter prompt in the fourth line invites the user to enter the new L/R password once more.	${ }^{-1}$	$\left\lvert\, \begin{aligned} & \text { Par/Conf/LoC } \\ & \text { Password L/R } \\ & \text { ** } \\ & - \end{aligned}\right.$

Control Step / Description	Control Action	Display
6 Re-enter the L/R password.		
7a Press enter key once more. If the password has been repeated correctly, the "EDIT MODE" LED goes out and the display changes as illustrated. The new password is now valid.	Θ	Par/Conf/LOC Password L/R ********
7b If the L/R password has been repeated incorrectly, the "EDIT MODE" LED remains lit and the display to the right is shown. The L/R password needs to be re-entered. Alternatively, the password change can be aborted by pressing the reset key (see step 8)	Θ^{-}	Par/Conf/Loc Password L/R $\star \star$ -
8 Up to step 7, the password change can be aborted at any time by pressing the reset key. The original password continues to be valid in this case.	(c)	Par/Conf/LoC Password I/R $\star \star \star * * * * *$

7 Settings

7 Settings

7.1 Parameters

The C232 must be adjusted to the system and to the protected equipment by means of appropriate settings. This section gives instructions for determining the settings, which are located in the folder entitled 'Parameters' in the menu tree. The sequence in which the settings are listed and described in this chapter corresponds to their sequence in the menu tree. The 'Address List' in the Appendix lists all parameters, along with setting ranges and incrementation or selection tables.

The units are supplied with a factory-set configuration of default settings (underlined values in the 'Range of Values' column in the Address List). The default settings given in the Address List are activated after a cold restart. The C232 is blocked in that case. All settings must be re-entered after a cold restart.

All function groups and their parameters are contained in the Address List. All settings, signals, and control commands for controlling and monitoring a switchgear unit are included in one function group, DEVxx. The function group for the respective switchgear unit is given in the List of Bay Types (see Appendix).

7.1.1 Device Identification

The device identification settings are used to record the ordering information and the design version of the C232. They have no effect on the device functions. These settings should only be changed if the design version of the C232 is modified.

DVICE: Device type	000000
The device type is displayed. This display cannot be altered.	
DVICE: Software version	002120
Software version for the device. This display cannot be altered.	
DVICE: SW date	002122
Date the software was created. This display cannot be altered.	
DVICE: SW version communic. DVICE: Language version DVICE: Text vers.data model	002103 002123 002121
Using the 'text replacement tool' provided by the operating program, the user can change the parameter descriptors (plain text designations) and load them into the device. These customized data models contain an identifier defined by the user while preparing the data model. This identifier is displayed at this point in the menu tree. Standard data models have the identifier ' 0 ' (factory-set default).	
DVICE: F number	002124
The F number is the serial number of the device. This display cannot be altered.	
DVICE: Order No.	000001
Order number of the device. This number cannot be altered by the user.	
DVICE: Order ext. No. 1	000003
DVICE: Order ext. No. 2	000004
DVICE: Order ext. No. 3	000005
DVICE: Order ext. No. 4	000006
DVICE: Order ext. No. 5	000007
DVICE: Order ext. No. 6	000008
DVICE: Order ext. No. 7	000009
DVICE: Order ext. No. 8	000010
DVICE: Order ext. No. 9	000011
DVICE: Order ext. No. 10	000012
DVICE: Order ext. No. 11	000013
DVICE: Order ext. No. 12	000014
DVICE: Order ext. No. 13	000015
DVICE: Order ext. No. 14	000016
DVICE: Order ext. No. 15	000017
DVICE: Order ext. No. 16	000018
DVICE: Order ext. No. 17	000019
DVICE: Order ext. No. 18	000020
DVICE: Order ext. No. 19	000021
DVICE: Order ext. No. 20	000022
DVICE: Order ext. No. 21	000023
DVICE: Order ext. No. 22	000024
DVICE: Order ext. No. 23	000025
DVICE: Order ext. No. 24	000026
DVICE: Order ext. No. 25	000027

7 Settings
 (continued)

7 Settings

(continued)

Local control panel

7.1.2 Configuration Parameters

LOC: Language	003020
Language in which texts will be displayed on the local control panel.	
LOC: Decimal delimiter	003021
Character to be used as decimal delimiter on the local control panel.	
LOC: Password	003035
The password to be used for changing settings from the local control panel can be defined here. Further information on changing the password is given in Chapter 6.	
LOC: Password L/R	221040
The password to be entered on the local control panel for switching from remote to local control can be defined here. Further information on changing the password is given in Chapter 6.	
LOC: Displ. ext.dev.desig	221032 Fig. 3-2
This setting defines whether the external device designations shall be displayed on the Bay Panel.	
LOC: Display L/R	1070 Fig. 3-2
This setting defines whether the control site - local or remote - shall be displayed on the Bay Panel.	
LOC: Displ. interl. stat.	221071 Fig. 3-2
This setting defines whether the "Locked" or "Unlocked" status shall be displayed on the Bay Panel.	
LOC: Designation busbar LOC: Designation busbar 2 LOC: Designation busbar 3	$\begin{aligned} & 221033 \text { Fig. 3-2 } \\ & 221034 \\ & 221043 \end{aligned}$
Setting for the busbar designations to be displayed on the Bay Panel.	
LOC: Designat. bus sect. 1 LOC: Designat. bus sect. 2	$\begin{aligned} & 221035 \text { Fig. 3-2 } \\ & 221036 \end{aligned}$
Setting for the busbar section designations to be displayed on the Bay Panel.	
LOC: Character set	221038 Fig. 3-2
The user can choose between several character sets for representing switchgear units and their switching states on the Bay Panel. The symbols assigned to the character sets are shown in Chapter 6: Local Control Panel Note: Character set 3 is identical to character set 1 in the factory default setting, but can be replaced by a user-defined character set - by using a special S\&R-103 accessory tool.	
LOC: Fct. assign. L/R key	225208 Fig. 3-5
This setting determines whether the switching (using either the L/R key or the key switch) is between local and remote control ($L \leftrightarrow R$) or between local+remote and local control ($\mathrm{R} \& \mathrm{~L} \leftrightarrow \mathrm{~L}$).	
LOC: Assignment read key	080110
Selection of the event log th is pressed.	

7 Settings
 (continued)

LOC: Fct. Operation Panel 053007 Fig. 3-3

Definition of the values to be displayed on the Measured Value Panel referred to as the Operation Panel.
LOC: Fct. Fault Panel

Definition of the values to be displayed on the Fault Panel.
LOC: Fct.asg. num. displ. 22041 Fig. 3-2
Definition of the measured values to be displayed on the Bay Panel in numerical form.
LOC: Fct. asg. bar displ. 221042 Fig. 3-2
Definition of the measured values to be displayed on the Bay Panel in bar form.

Note:

Measured values to be displayed in bar form must also be selected for display as numerical measured values.
However, not all measured values that can be displayed in numerical form can also be displayed in bar form! In such cases, a dummy or placeholder must be included in the selection list for the bar display at the same point at which a measured value that cannot be displayed in bar form appears in the selection list for numerical measured values.
Example:
Current I_{B} is to be displayed. In this case, either the primary current I_{A} or the per-unit current I_{A} shall be selected for the numerical display. The perunit current I_{B} shall be entered at the same position in the selection list for the bar display.
LOC: Bar display type 221039 Fig. 3-2
Deactivation of the bar display or definition of the orientation of the bar for display of measured values on the Bay Panel.
LOC: Scal. bar display 1 .

Selection of the current for the 100% display.
LOC: Scal. bar display V

Selection of the voltage for the 100% display.

Enabling and disabling the scaling display.
LOC: Hold-time for Panels
Setting for the time period for which a panel is displayed before the unit switches to the next panel. This setting is only relevant if more values are selected for display than can be shown on the LCD display.

LOC: Autom. return time
 003014 Fig. 3-3

If the user does not press a key on the local control panel during this set time period, the change-enabling function is deactivated and the Bay Panel is called up.
LOC: Return time select. 221030 Fig. 3-3
If the user does not press a key on the local control panel during this set time period, then the selection of a switchgear unit is canceled.
LOC: Return time illumin.

If the user does not press a key on the local control panel during this set time period, then the backlighting of the LCD display is switched off, and any switchgear selection that might have been made is canceled.

7 Settings

(continued)

PC link

PC: Name of manufacturer	003183 Fig. 3-6
Setting for the name of the manufacturer. Note: This setting can be changed to ensure compatibility.	
PC: Bay address PC: Device address	$\begin{aligned} & 003068 \text { Fig. 3-6 } \\ & 003069 \end{aligned}$
Bay and device addresses are used to address the device in communication via the PC interface. An identical setting must be selected for both addresses.	
PC: Baud rate	003081 Fig. 3-6
Baud rate of the PC interface.	
PC: Parity bit	003181 Fig. 3-6
Set the same parity that is set at the interface of the PC connected to the C232.	
PC: Spontan. sig. enable	003187 Fig. 3-6
Enable for the transmission of spontaneous signals via the PC interface.	
PC: Select. spontan.sig.	003189 Fig. 3-6
Selection of signals transmitted via the communication interface, e.g. from private range of IEC 60870-5-103.	
PC: Transm.enab.cycl.dat	003084 Fig. 3-6
Enable for the cyclic transmission of measured values via the PC interface.	
PC: Cycl. data ILS tel.	003185 Fig. 3-6
Selection of the measured values that are transmitted in a user-defined telegram via the PC interface.	
PC: Delta V	003055 Fig. 3-6
A measured voltage value is transmitted via the PC interface if it differs by the set delta quantity from the last measured value transmitted.	
PC: Delta I	${ }^{003056 ~ F i g . ~ 3-6 ~}$
A measured current value is transmitted via the PC interface if it differs by the set delta quantity from the last measured value transmitted.	
PC: Delta P	003059 Fig. 3-6
The active power value is transmitted via the PC interface if it differs by the set delta quantity from the last measured value transmitted.	
PC: Delta f	003057 Fig. 3-6
The measured frequency value is transmitted via the PC interface if it differs by the set delta from the last measured value transmitted.	
PC: Delta meas.v.ILS tel	003155 Fig. 3-6
The telegram is transmitted if a measured value differs by the set delta quantity from the last measured value transmitted.	
PC: Delta t	003058 Fig. 3-6
All measured data are transmitted again through the PC interface after this time period has elapsed - provided that transmission has not been triggered by the other delta conditions.	
PC: Time-out	003188 Fig. 3-6
Setting for the time between the the activation of the second	

7 Settings

(continued)
"Logical" communication interface 1

COMM1: Function group COMM1	${ }^{056026}$
Canceling function group COMM1 or including it in the configuration. function group is cancelled from the configuration, then all associated settings and signals are hidden, with the exception of this setting.	
COMM1: General enable USER	003170 Fig. 3 -7
Disabling or enabling the communication interface.	
COMM1: Basic IEC870-5enable	003215 Fig. 3-7
Common settings for enabling all protocols based on IEC 870-5-xxx.	
COMM1: Addit. -101 enable	003216 Fig. 3-7
Enabling additional settings that are relevant for the protocol based on IEC 870-5-101.	
COMM1: Addit. ILS enable	003217 Fig. 3-7
Enabling additional settings that are relevant for the ILS protocol.	
COMM1: MODBUS enable	00320 Fig. 3-7
Enabling settings relevant for the MODBUS protocol.	
COMM1: DNP3 enable	003231 Fig. 3-7
Enabling settings relevant for the DNP 3.0 protocol.	
COMM1: Communicat. protocol	003167 Fig. 3-7
The setting defines the standard used as basis for the communication interface protocol.	
COMM1:-103 prot. variant	0^{003178} Fig. 3-8
The user may select either the AREVA D or the AREVA variant of the protocol.	
Note: This setting is hidden unless the IEC 870-5-xxx protocol is enabled.	
COMM1: MODBUS prot. variant	003214 Fig. 3-11
The user may select either the AREVA D or the AREVA variant of the MODBUS protocol.	
Note: This setting is hidden unless the MODBUS protocol is enabled.	
COMM1: Line idle state	$\begin{aligned} & 003365 \text { Fig. } 3-8,3-9, \\ & 3-10,3-11, \\ & 3-12 \end{aligned}$
Setting for the line idle state indication.	
COMM1: Baud rate	$\begin{aligned} & 003071 \text { Fig. 3-8, 3-9, } \\ & 3-10,3-11, \\ & 3-12 \end{aligned}$
Baud rate of the communication interface.	
COMM1: Parity bit	$\begin{aligned} & \text { Oos 171 Fig. Fig-8, 3-9, } \\ & 3-10,3-11, \\ & 3-12 \end{aligned}$
Set the same parity that is set at the interface of the control system connected to the C232.	
COMM1: Dead time monitoring	

The C232 monitors telegram transmission to make sure that no pause within a telegram exceeds 33 bits. This monitoring function can be disabled if it is not required.
Note:
This setting is only necessary for modem transmission.

COMM1: Mon. time polling	$\begin{aligned} & 003202 \text { Fig. 3-8, 3-9-9 } \\ & 3-10,3-11, \\ & 3-12 \end{aligned}$

The time between two polling calls from the communication master must be less than the time set here.
COMM1: Octet comm. address

The communication address and the ASDU address are used to identify the device in communication via the interface. An identical setting must be selected for both addresses.

Note:

The former designation for 'COMM1: Octet comm. address' was ILSA: Bay address.
(ASDU: Application Service Data Unit).
COMM1: Oct. 2 comm.addr.DNP3
In the DNP 3.0 protocol, a 16 bit address is used to identify devices. The address that can be set here is the higher-order octet, whereas the address set at COMM1: Octet comm. address is the lower-order octet of the DNP address.

Note:

This setting is hidden unless the DNP 3.0 protocol is enabled.

Setting for the address mode.

COMM1: Test monitor on	003166	$\begin{aligned} & 6 \text { Fig. 3-8, 3-9, } \\ & 3-10 \end{aligned}$
Setting specifying whether data shall be recorded for service activities.		
COMM1: Name of manufacturer	003161	$\begin{aligned} & 1 \text { Fig. 3-8, 3-9, } \\ & 3-10 \end{aligned}$

Setting for the name of the manufacturer.
Note:
This setting can be changed to ensure compatibility.
This setting is hidden unless an IEC 870-5 protocol is enabled.
COMM1: Octet address ASDU
The communication address and the ASDU address are used to identify the device in communication via the interface. An identical setting must be selected for both addresses.

Note:
The former designation for 'COMM1: Octet address ASDU' was
'ILSA: Device address'.
This setting is hidden unless an IEC 870-5 protocol is enabled.
(ASDU: Application Service Data Unit).
COMM1: Spontan. sig. enable

7 Settings
 (continued)

Enable for the transmission of spontaneous signals via the communication interface.

COMM1: Select. spontan.sig.	$\begin{aligned} & 003179 \text { Fig. .3-8, 3-9, } \\ & 3-10 \end{aligned}$
Selection of signals transmitted via the communication interface, e.g. from private range of IEC 60870-5-103.	
COMM1: Transm.enab.cycl.dat	$\begin{aligned} & 003074 \text { Fig. 3-8, 3-9, } \\ & 3-10 \end{aligned}$
Enabling of cyclic transmission of measured values via the communication interface.	
COMM1: Cycl. data ILS tel.	$\begin{aligned} & 003175 \text { Fig. 3-8, 3-9, } \\ & \text { 3-10 } \end{aligned}$
Selection of the measured values transmitted in a user-defined telegram via the communication interface.	
COMM1: Delta V	$\begin{aligned} & 003050 \text { Fig. 3-8, } 3-9, \\ & 3-10 \end{aligned}$

A measured voltage value is transmitted via the communication interface if it differs by the set delta quantity from the last measured value transmitted.

COMM1: Delta I	$\begin{aligned} & 003051 \text { Fig. 3-8, 3-9, } \\ & 3-10 \end{aligned}$
A measured current value is transmitted via the communication interface if it differs by the set delta quantity from the last measured value transmitted.	
COMM1: Delta P	$\begin{aligned} & 003054 \text { Fig. 3-8, 3-9, } \\ & 3-10 \end{aligned}$

The active power value is transmitted via the communication interface if it differs by the set delta quantity from the last measured value transmitted.

COMM1: Delta f	$\begin{aligned} & 003052 \begin{array}{l} \text { Fig. 3-8, } \\ \text { 3-10 } \end{array} \end{aligned}$
The measured frequency is transmitted via the communication interface if it differs by the set delta quantity from the last measured value transmitted.	
COMM1: Delta meas.v.ILS tel	$\begin{aligned} & 003150 \text { Fig. 3-8, 3-9, } \\ & 3-10 \end{aligned}$
The telegram is transmitted if a measured value differs by the set delta quantity from the last measured value transmitted.	
COMM1: Delta t	$\begin{aligned} & 003053 \text { Fig. 3-8, 3-9, } \\ & \text { 3-10 } \end{aligned}$
All measured data are transmitted again through the communication interface after this time period has elapsed - provided that transmission has not been triggered by the other delta conditions.	

COMM1: Delta t (energy)

The measured data for active energy and reactive energy are transmitted through the communication interface after this time has elapsed.
COMM1: Contin. general scan $\quad 000,1$

A continuous or background general scan means that the C232 transmits all settings, signals, and monitoring signals through the communication interface during slow periods when there is not much activity. This ensures that there will be data consistency with a connected control system. The time to be set defines the minimum time difference between two telegrams.
COMM1: Comm. address length

7 Settings
 (continued)

Setting for the communication address length.
Note:
This setting is hidden unless the IEC 870-5-101 protocol is enabled.
COMM1: Octet 2 comm. addr. $\quad 00320$ Fig. 3-9
Setting for the length of the higher-order communication address.

Note:

This setting is hidden unless the IEC 870-5-101 protocol is enabled.
COMM1: Cause transm. length $\quad 003192$ Fig. 3-9
Setting for the length of the cause of transmission.
Note:
This setting is hidden unless the IEC 870-5-101 protocol is enabled.
COMM1: Address length ASDU
Setting for the length of the common address for identification of telegram structures.

Note:
This setting is hidden unless the IEC 870-5-101 protocol is enabled.
(ASDU: Application Service Data Unit).
COMM1: Octet 2 addr. ASDU 003194 Fig. 3-9
Setting for the length of the common higher-order address for identification of telegram structures.
Note:
This setting is hidden unless the IEC 870-5-101 protocol is enabled. (ASDU: Application Service Data Unit).
COMM1: Addr.length inf.obj.
Setting for the length of the address for information objects.

Note:

This setting is hidden unless the IEC 870-5-101 protocol is enabled.
COMM1: Oct. 3 addr. inf.obj.
Setting for the length of the higher-order address for information objects.

Note:

This setting is hidden unless the IEC 870-5-101 protocol is enabled.
COMM1: Inf.No.<->funct.type
Setting specifying whether information numbers and function type shall be reversed in the object address.

Note:

This setting is hidden unless the IEC 870-5-101 protocol is enabled.
COMM1: Time tag length
Setting for the time tag length.
Note:
This setting is hidden unless the IEC 870-5-101 protocol is enabled.

7 Settings
 (continued)

COMM1: ASDU1 / ASDU20 conv.

Setting specifying whether telegram structure 1 or 20 shall be converted as a single signal or double signal.

Note:

This setting is hidden unless the IEC 870-5-101 protocol is enabled. (ASDU: Application Service Data Unit).
COMM1: ASDU2 conversion
Setting specifying whether telegram structure 2 shall be converted as a single signal or double signal.

Note:

This setting is hidden unless the IEC 870-5-101 protocol is enabled. (ASDU: Application Service Data Unit).

COMM1: Initializ. signal

Setting specifying whether an initialization signal shall be issued.

Note:

This setting is hidden unless the IEC 870-5-101 protocol is enabled.

COMM1: Balanced operation

Setting that determines whether communication takes place on a balanced basis (full duplex operation).

Note:

This setting is hidden unless the IEC 870-5-101 protocol is enabled.

COMM1: Direction bit	

Setting for the transmission direction. Normally this value will be set at ' 1 ' at the control center and at ' 0 ' at the substation.

Note:

This setting is hidden unless the IEC 870-5-101 protocol is enabled.

COMM1: Time-out interval

Setting for the maximum time that will elapse until the status signal for the acknowledgment command is issued.

Note:

This setting is hidden unless the IEC 870-5-101 protocol is set.
COMM1: Reg.asg. selec. cmds 0
MODBUS registers in the range 00301 to 00400 are assigned to the selected commands. Assignment is made in the order of selection. This means that the first command is given the register no. 00301, the second the register no. 00302, etc.

Note:

This setting is hidden unless the MODBUS protocol is enabled.
COMM1: Reg.asg. selec. sig.
MODBUS registers in the range 10301 to 10400 are assigned to the selected signals. Assignment is made in the order of selection. This means that the first signal is given the register no. 10301, the second the register no. 10302, etc.

Note:

This setting is hidden unless the MODBUS protocol is enabled.
COMM1: Reg.asg. sel. m.val.

7 Settings

(continued)

MODBUS registers in the range 30301 to 30400 are assigned to the selected measured values. Assignment is made in the order of selection. This means that the first measured value is given the register no. 30301, the second the register no. 30302, etc.

Note:
This setting is hidden unless the MODBUS protocol is enabled.
COMM1: Reg.asg. sel. param.
MODBUS registers in the range 40301 to 40400 are assigned to the selected parameters. Assignment is made in the order of selection. This means that the first parameter is given the register no. 40301, the second the register no. 40302, etc.

Note:

This setting is hidden unless the MODBUS protocol is enabled.
COMM1: Delta t (MODBUS)
All MODBUS registers are transmitted again through the communication interface after this time has elapsed.

Note:
This setting is hidden unless the MODBUS protocol is enabled.

7 Settings
 (continued)

COMM1: Autom.event confirm.

003249 Fig. 3-11
Setting specifying whether an event must be confirmed by the master in order for an event to be deleted from the 'event queue'.

Note:

This setting is hidden unless the MODBUS protocol is enabled.
COMM1: Phys. Charact. Delay
Number of bits that must pass between the receipt of the 'request' and the start of sending the 'response'.

Note:

This setting is hidden unless the DNP 3.0 protocol is enabled.
COMM1: Phys. Char. Timeout
Number of bits that may be missing from the telegram before receipt is terminated.

Note:

This setting is hidden unless the DNP 3.0 protocol is enabled.

COMM1: Link Confirm. Mode 003243 Fig. 3-12

Setting for the acknowledgment mode of the link layer.

Note:

This setting is hidden unless the DNP 3.0 protocol is enabled.

COMM1: Link Confirm. Timeout

Setting for the time period within which the master must acknowledge at the link layer.

Note:

This setting is hidden unless the DNP 3.0 protocol is enabled.

COMM1: Link Max. Retries

Number of repetitions that are carried out on the link layer if errors have occurred during transmission (such as failure to acknowledge).

Note:

This setting is hidden unless the DNP 3.0 protocol is enabled.
COMM1: Appl.Confirm.Timeout
Setting for the time period within which the master must acknowledge at the application layer.

Note:

This setting is hidden unless the DNP 3.0 protocol is enabled.
COMM1: Appl. Need Time Del.
Time interval within which the slave requests time synchronization cyclically from the master.

Note:

This setting is hidden unless the DNP 3.0 protocol is enabled.

COMM1: Ind./cl. bin. inputs

Selection of data points and data classes for object 1 - binary inputs.
Assignment of indices is made in the order of selection, beginning with 0.

Note:

This setting is hidden unless the DNP 3.0 protocol is enabled.

7 Settings

(continued)
"Logical" communication interface 2

COMM1: Ind./cl. bin.outputs
003233 Fig. 3-12
Selection of data points and data classes for object 10 - binary outputs.
Assignment of indices is made in the order of selection, beginning with 0.

Note:

This setting is hidden unless the DNP 3.0 protocol is enabled.
COMM1: Ind./cl. bin. count.
003234 Fig. 3-12
Selection of data points and data classes for object 20 - binary counters. Assignment of indices is made in the order of selection, beginning with 0.

Note:
This setting is hidden unless the DNP 3.0 protocol is enabled.
COMM1: Ind./cl. analog inp.
Selection of data points and data classes for object 30 - analog inputs.
Assignment of indices is made in the order of selection, beginning with 0 .
Note:
This setting is hidden unless the DNP 3.0 protocol is enabled.
COMM1: Ind./cl. analog outp 003236 Fig. 3-12

Selection of data points and data classes for object 40 - analog outputs.
Assignment of indices is made in the order of selection, beginning with 0 .
Note:
This setting is hidden unless the DNP 3.0 protocol is enabled.
COMM1: Delta meas.v. (DNP3)
003250 Fig. 3-12

Initialization value of threshold values for transmission of measured values
in object 30. The threshold values can be changed separately by the
master for each measured value by writing to object 34, 'analog input reporting deadband'.

Note:

This setting is hidden unless the DNP 3.0 protocol is enabled.
COMM1: Delta t (DNP3)
Cycle time for updating DNP object 30 (analog inputs).
Note:
This setting is hidden unless the DNP 3.0 protocol is enabled.

COMM2: Function group COMM2	056057
Canceling function group COMM2 or including it in the configuration. If the function group is cancelled from the configuration, then all associated settings and signals are hidden, with the exception of this setting.	
COMM2: General enable USER	103170 Fig. 3-14
Disabling or enabling "logical" communication interface 2.	
COMM2: Line idle state	103165 Fig. 3-14
Setting for the line idle state indication.	
COMM2: Baud rate	103071 Fig. 3-14
Baud rate of the communication interface.	
COMM2: Parity bit	103171 Fig. 3-14
Set the same parity that is set at the interface of the control system connected to the C232.	

7 Settings
 (continued)

COMM2: Dead time monitoring

The C232 monitors telegram transmission to make sure that no excessive pause occurs within a telegram. This monitoring function can be disabled if it is not required.

Note: \quad This setting is only necessary for modem transmission.
COMM2: Mon. time polling
The time between two polling calls from the communication master must be less than the time set here.

COMM2: Octet comm. address 103072 Fig. 3-14
The communication address and the ASDU address are used to identify the device in communication via the interface. An identical setting must be selected for both addresses.

The abbreviation ASDU stands for 'Application Service Data Unit'.

COMM2: Name of manufacturer

Setting for the name of the manufacturer.
Note: This setting can be changed to ensure compatibility.
COMM2: Octet address ASDU 103073 Fig. 3-14
The communication address and the ASDU address are used to identify the device in communication via the interface. An identical setting must be selected for both addresses.

The abbreviation ASDU stands for 'Application Service Data Unit'.

COMM2: Spontan. sig. enable

${ }_{103177}$ Fig. 3-14
Enable for the transmission of spontaneous signals via the communication interface.

Note: This setting is hidden unless an IEC 870-5 protocol is enabled.
COMM1: Select. spontan.sig.
Selection of signals transmitted via the communication interface, e.g. from private range of IEC 60870-5-103.
COMM2: Transm.enab.cycl.dat
103074 Fig. 3-14
Enabling of cyclic transmission of measured values via the communication interface.

COMM2: Cycl. data ILS tel.

Selection of the measured values transmitted in a user-defined telegram via the communication interface.
COMM2: Delta V
103050 Fig. 3-14
A measured voltage value is transmitted via the communication interface if it differs by the set delta quantity from the last measured value transmitted.

COMM2: Delta I
 103051 Fig. 3-14

A measured current value is transmitted via the communication interface if it differs by the set delta quantity from the last measured value transmitted.
COMM2: Delta P
103054 Fig. 3-14
The active power value is transmitted via the communication interface if it differs by the set delta quantity from the last measured value transmitted.

The measured frequency is transmitted via the communication interface if it differs by the set delta quantity from the last measured value transmitted.

7 Settings

(continued)

COMM2: Delta meas.v.ILS tel
The telegram is transmitted if a measured value differs by the set delta quantity from the last measured value transmitted.
COMM2: Delta t
All measured data are transmitted again through the communication interface after this time period has elapsed - provided that transmission has not been triggered by the other delta conditions.

7 Settings

(continued)

Binary inputs

The C232 has optical coupler inputs for processing binary signals from the system. The number and connection schemes for the available binary inputs are shown in the terminal connection diagrams. The Address List gives information about the configuration options for all binary inputs.

The C232 identifies the installed modules during startup. If any binary signal inputs are not included, the configuration addresses of the missing binary signal inputs are automatically shielded so that they do not appear in the menu tree.

When configuring binary inputs one should keep in mind that the same function can be assigned to several signal inputs. Thus one function can be activated from several control points having different signal voltages.

The configuration of C 232 will be changed with the selection of a new bay type! For C232 the assignement of designators to the binary inputs is given in the following table:

Model 1	Model 2	Model 3	Model 4	Model 4 with additional I/O	Binary inputs
U 201	U 2 A				
U 202	U 2B				
U 203	U 2C				
U 204	U 2D				
U 205	U 2E				
U 206	U 2 F				
U 213	U 207	U 207	U 213	U 207	U 2G
U 214	U 208	U 208	U 214	U 208	U 2 H
U 215	U 209	U 209	U 215	U 209	U 21
U 216	U 210	U 210	U 216	U 210	U 2 J
-	U 213	U 211	U 220	U 211	U 2 K
-	U 214	U 212	-	U 212	U 2 L
-	U 215	U 213	-	U 213	U 2M
-	U 216	U 214	-	U 214	U 2N
-	U 217	U 215	-	U 215	U 20
-	U 218	U 216	-	U 216	U 2P
-	U 219	U 217	-	U 217	U 2Q
-	-	U 218	-	U 218	U 2R
-	-	U 219	-	U 219	U 2 S
-	-	U 220	-	U 220	U 2 T

The configuration of binary inputs for each bay type is given in the List of Bay Types in the Appendix.

Note: Before selecting a new bay type, make sure that only functions of function groups DEVxx are configured for the binary inputs. Otherwise there will be an error message, and the new bay type will not be activated.

Note: Before selecting a new bay type, make sure that all binary inputs specified in the List of Bay types for the selected bay type are actually available in the device. Otherwise there will be an error message, and the new bay type will not be activated.

7 Settings

(continued)

The operating mode for each binary signal input can be defined. The user can specify whether the presence (active 'high' mode) or absence (active 'low' mode) of a voltage shall be interpreted as the logic ' 1 ' signal.

Note: \quad The operating mode of the binary inputs is automatically set to active 'high' when a new bay type is selected.

INP: Fct. assignm. U 201	178002 Fig. 3-16
INP: Fct. assignm. U 202	178006
INP: Fct. assignm. U 203	178010
INP: Fct. assignm. U 204	178014
INP: Fct. assignm. U 205	178018
INP: Fct. assignm. U 206	178022
INP: Fct. assignm. U 207	178026
INP: Fct. assignm. U 208	178030
INP: Fct. assignm. U 209	178034
INP: Fct. assignm. U 210	178038
INP: Fct. assignm. U 211	178042
INP: Fct. assignm. U 212	178046
INP: Fct. assignm. U 213	178050
INP: Fct. assignm. U 214	178054
INP: Fct. assignm. U 215	178058
INP: Fct. assignm. U 216	178062
INP: Fct. assignm. U 217	178066
INP: Fct. assignm. U 218	178070
INP: Fct. assignm. U 219	178074
INP: Fct. assignm. U 220	178078
Assignment of functions to binary signal inputs.	
INP: Oper. mode U 201	178003 Fig. 3-16
INP: Oper. mode U 202	178007
INP: Oper. mode U 203	178011
INP: Oper. mode U 204	178015
INP: Oper. mode U 205	178019
INP: Oper. mode U 206	178023
INP: Oper. mode U 207	178027
INP: Oper. mode U 208	178031
INP: Oper. mode U 209	178035
INP: Oper. mode U 210	178039
INP: Oper. mode U 211	178043
INP: Oper. mode U 212	178047
INP: Oper. mode U 213	178051
INP: Oper. mode U 214	178055
INP: Oper. mode U 215	178059
INP: Oper. mode U 216	178063
INP: Oper. mode U 217	178067
INP: Oper. mode U 218	178071
INP: Oper. mode U 219	178075
INP: Oper. mode U 220	178079
Selection of operating mode for binary signal inputs.	

7 Settings

(continued)

Measured data input
MEASI: Function group MEASI

056030

Canceling function group MEASI or including it in the configuration. If the function group is cancelled from the configuration, then all associated settings and signals are hidden, with the exception of this setting.
MEASI: General enable USER $\quad 011100$ Fig. 3-17

Disabling or enabling analog measured data input.
MEASI: Enable IDC p.u. $\quad 037$ 190 Fig. 3-20
Setting for the minimum current that must flow in order for the C232 to display a measured value > 0 (zero suppression).
MEASI: IDC < open circuit $\quad 037191$ Fig. 3-20
If the input current falls below the set threshold, the C232 will issue an 'open circuit' signal.
MEASI: IDC 10
MEASI: IDC 2 087 152 Fig. 3-20
MEASI: IDC 3 037154 Fig. 3-20
MEASI: IDC 4 077156 Fig. 3-20
MEASI: IDC $5 \quad 037158$ Fig. 3-20
MEASI: IDC $6 \quad 037160$ Fig. 3-20
MEASI: IDC 7 © 87162 Fig. 3-20
MEASI: IDC 8 037164 Fig. 3-20
MEASI: IDC 9 077166 Fig. 3-20
MEASI: IDC $10 \quad 037168$ Fig. 3-20
MEASI: IDC 11 037 170 Fig. 3-20
MEASI: IDC $12 \quad 037172$ Fig. 3-20
MEASI: IDC $13 \quad 037174$ Fig. 3-20
MEASI: IDC 14 037176 Fig. 3-20
MEASI: IDC $15 \quad 007178$ Fig. 3-20
MEASI: IDC 16
037180 Fig. 3-20
MEASI: IDC 17
037182 Fig. 3-20
MEASI: IDC 18
037184 Fig. 3-20
MEASI: IDC 19
037186 Fig. 3-20
MEASI: IDC 20
037188 Fig. 3-20
Setting for the input current that will correspond to a linearized value that has been set accordingly.

7 Settings

(continued)

MEASI: IDC,lin 1	037151	Fig. 3-20
MEASI: IDC,lin 2	037153	Fig. 3-20
MEASI: IDC,lin 3	037155	Fig. 3-20
MEASI: IDC, lin 4	037157	Fig. 3-20
MEASI: IDC,lin 5	037159	Fig. 3-20
MEASI: IDC,lin 6	037161	Fig. 3-20
MEASI: IDC,lin 7	037163	Fig. 3-20
MEASI: IDC,lin 8	037165	Fig. 3-20
MEASI: IDC,lin 9	037167	Fig. 3-20
MEASI: IDC, in 10	037169	Fig. 3-20
MEASI: IDC, in 11	037171	Fig. 3-20
MEASI: IDC, in 12	03773	Fig. 3-20
MEASI: IDC, in 13	037175	Fig. 3-20
MEASI: IDC, in 14	03717	Fig. 3-20
MEASI: IDC, in 15	037179	Fig. 3-20
MEASI: IDC, in 16	037181	Fig. 3-20
MEASI: IDC, in 17	037183	Fig. 3-20
MEASI: IDC, in 18	03785	Fig. 3-20
MEASI: IDC, in 19	037187	Fig. 3-20
MEASI: IDC, lin 20	037189	Fig. 3-20

Setting for the linearized current that will correspond to an input current that has been set accordingly.
MEASI: Scaled val. IDC,lin1
037192 Fig. 3-21
Setting for the scaled value of IDC, lin 1.
MEASI: Scaled val.IDC,lin20 037 193 Fig. 3-21
Setting for the scaled value of IDC, lin 20.

7 Settings

The C232 has output relays for the output of binary signals. The number and connection schemes for the available output relays are shown in the terminal connection diagrams. The Address List gives information about the configuration options for all binary outputs.

The C232 identifies the fitted modules during startup. If a given binary output is not installed, the configuration addresses is automatically hidden in the menu tree.

The contact data for the all-or-nothing relays permits them to be used either as command relays or as signal relays. One signal can also be assigned to several output relays simultaneously for the purpose of contact multiplication.

Note that the configuration will be changed by the selection of a new bay type!

Leistungsklasse 1	Leistungsklasse 2	Leistungsklasse 3	Leistungsklasse 4	Leistungsklasse 4 mit Erw.	Ausgangsrelais
K 201	K2A				
K202	K 202	K 202	K 202	K 202	K2B
-	K 203	K203	K 207	K 203	K2C
-	K 204	K204	K 208	K 204	K2D
-	K 205	K 205	K 209	K 205	K2E
-	K206	K 206	K210	K 206	K2F
-	-	K207	K211	K 207	K2G
-	-	K208	K212	K 208	K2H
-	-	K 209		K 209	K21
-	-	K210		K 210	K2J
-	-	K211		K 211	K2K
-	-	K212		K 212	K2L

The configuration of output relays for each bay type is given in the List of Bay Types in the Appendix.

Note: Before selecting a new bay type, make sure that only functions of function groups DEVxx are configured for the output relays. Otherwise there will be an error message, and the new bay type will not be activated.

Note: Before selecting a new bay type, make sure that all output relays specified in the List of Bay types for the selected bay type are actually available in the device. Otherwise there will be an error message, and the new bay type will not be activated.

An operating mode can be defined for each output relay. Depending on the selected operating mode, the output relay will operate in either an energize-on-signal mode ('open-circuit principle') or a normally-energized mode ('closed-circuit principle') and in either a latching or non-latching mode. For output relays operating in latching mode, the operating mode setting also determines when latching will be canceled.

Note: \quad The operating mode for the output relays will automatically be set to ES updating (ES: energize-on-signal mode) when a new bay type is selected.

7 Settings

(continued)

7 Settings

(continued)

LED indicators
The C232 has a total of 13 LED indicators for parallel display of binary signals. The Address List in the Appendix gives information about the configuration options for all LED indicators. The following table provides an overview.

LED indicator	Description on the label strip as supplied	Configuration
H 1	'HEALTHY'	Not configurable. H 1 signals the operational readiness of the device (supply voltage present).
H 17	'EDIT MODE'	Not configurable. H 17 signals the fact that the user is in the 'EDIT MODE'. In this mode, parameter values can be changed. (See the section entitled 'Display and Keypad' in Chapter 6.)
H 2	'OUT OF SERVICE'	Permanently assigned to the function MAIN: Blocked/faulty.
H 3	'ALARM'	Permanently assigned to the function SFMON: Warning (LED).
H 4	'TRIP'	The factory-set configuration is shown in the Terminal Connection Diagrams. These diagrams are found in the appendix to this manual or in the Supporting Documents shipped with the device.
H 5 to H 12	-----	The user has the option of assigning functions to these LED indicators.

The arrangement of the LED indicators on the local control panel is illustrated in the dimensional drawings of Chapter 4.

An operating mode can be defined for each LED indicator. Depending on the selected operating mode, the output relay will operate in either energize-on-signal (ES) mode ('open-circuit principle') or normally-energized (NE) mode ('closed-circuit principle') and in either latching or non-latching mode. For LED indicators operating in latching mode, the operating mode setting also determines when latching will be canceled.

LED: Fct. assignm. H 2

Display of the function assigned to LED indicator H 2 ('OUT OF SERVICE').
The MAIN: Blocked/faulty function is permanently assigned to this LED.

LED: Fct. assignm. H 3 085004
Display of the function assigned to LED indicator H 3 ('ALARM').
The SFMON: Warning (LED) function is permanently assigned to this LED.

| LED: Fct. assignm. H 4 | |
| :--- | :--- | :--- |
| LED: Fct. assignm. H 5 | 085007 |
| LED: Fct. assignm. H 6 | 085010 |
| LED: Fct. assignm. H 7 | 085016 |
| LED: Fct. assignm. H 8 | 085019 |
| LED: Fct. assignm. H 9 | 085022 |
| LED: Fct. assignm. H 10 | 085025 |
| LED: Fct. assignm. H 11 | 085028 |
| LED: Fct. assignm. H 12 | 085031 |
| Assignment of functions to LED indicators. | |

7 Settings

(continued)

| LED: Operating mode H 2 | 085002 Fig. 3-24 |
| :--- | :--- | :--- |
| LED: Operating mode H 3 | 085005 |
| LED: Operating mode H 4 | 085008 |
| LED: Operating mode H 5 | 085011 |
| LED: Operating mode H 6 | 085014 |
| LED: Operating mode H 7 | 085017 |
| LED: Operating mode H 8 | 085020 |
| LED: Operating mode H 9 | 085023 |
| LED: Operating mode H 10 | 085026 |
| LED: Operating mode H 11 | 085029 |
| LED: Operating mode H 12 | 085032 |
| Selection of operating mode for LED indicators. | |

Main funcions

Fault recording

Canceling a function

MAIN: Chann.assign.COMM1/2	003169 Fig. 3-60
Assigment of the "logical" communication interface to the physical communication port.	
MAIN: Type of bay	220000 Fig. 3-28
Configuration of a bay type.	
MAIN: Customized bay type	221062 Fig. 3-28
If a user-specific (customized) bay type has been loaded, ist bay will be displayed. If no customized bay type has been loaded, the '0' will be displayed.	

FT_RC: Rec. analog chann. 1	035160
FT_RC: Rec. analog chann. 2	035161
FT_RC: Rec. analog chann. 3	035162
FT_RC: Rec. analog chann. 4	035163
FT_RC: Rec. analog chann. 7	035166

The user specifies the channel on which each physical variable is recorded.

The user can adapt the device to the requirements of a particular high- or mediumvoltage system by including the relevant functions in the device configuration and canceling all others (removing them from the device configuration).

The following conditions must be met before canceling a function:
\square The function in question must be disabled.
\square None of the functions of the function to be canceled may be assigned to a binary input.
\square None of the signals of the function may be assigned to a binary output or an LED indicator.
\square None of the signals of the function may be linked to other signals by way of an 'm out of n' parameter.

The function to which a parameter, a signal, or a measured value belongs is defined by the function group descriptor (example: 'LIMIT').

7 Settings

(continued)

Definite-time overcurrent protection

Inverse-time overcurrent protection

Limit value monitoring

DTOC: Function group DTOC 056008
Canceling function group DTOC or including it in the configuration. If the function group is cancelled from the configuration, then all associated settings and signals are hidden, with the exception of this setting.

IDMT: Function group IDMT 056009

Canceling function group IDMT or including it in the configuration. If the function group is cancelled from the configuration, then all associated settings and signals are hidden, with the exception of this setting.
LIMIT: Function group LIMIT
Canceling function group LIMIT or including it in the configuration. If the
function group is cancelled from the configuration, then all associated
settings and signals are hidden, with the exception of this setting.

Canceling function group LIMIT or including it in the configuration. If the function group is cancelled from the configuration, then all associated settings and signals are hidden, with the exception of this setting.

Logic

LOGIC: Function group LOGIC 056017

Canceling function group LOGIC or including it in the configuration. If the function group is cancelled from the configuration, then all associated settings and signals are hidden, with the exception of this setting.

7 Settings

(continued)

External devices 01 to 10

DEV01: Function group DEV01	210047
DEV02: Function group DEV02	210097
DEV03: Function group DEV03	210147
DEV04: Function group DEV04	210197
DEV05: Function group DEV05	210247
DEV06: Function group DEV06	211047
DEV07: Function group DEV07	211097
DEV08: Function group DEV08	21147
DEV09: Function group DEV09	21197
DEV10: Function group DEV10	211247
Canceling function groups DEV01 to DEV10 or including them in the configuration. If the function group is cancelled from the configuration, then all associated settings and signals are hidden, with the exception of this setting.	
DEV01: Funct. type, signal	210034
DEV02: Funct. type, signal	210084
DEV03: Funct. type, signal	210134
DEV04: Funct. type, signal	210184
DEV05: Funct. type, signal	210234
DEV06: Funct. type, signal	211034
DEV07: Funct. type, signal	211084
DEV08: Funct. type, signal	21134
DEV09: Funct. type, signal	21184
DEV10: Funct. type, signal	211234
Setting for the function type of the signal.	
Note: If the IEC 870-5-101 communication protocol has been set, then the 'low address' of the information object will be defined by this setting. If the ILS-C protocol has been set, then this setting will correspond to DN2.	
DEV01: Inform. No., signal	210035
DEV02: Inform. No., signal	210085
DEV03: Inform. No., signal	210135
DEV04: Inform. No., signal	210185
DEV05: Inform. No., signal	210235
DEV06: Inform. No., signal	211035
DEV07: Inform. No., signal	211085
DEV08: Inform. No., signal	211135
DEV09: Inform. No., signal DEV10: Inform. No., signal	211185 211235
DEV10. Inform. No., signal	
Setting for the information number of the signal.	
If the IEC 870-5-101 communication protocol has been set, then the 'high' address' of the information object will be defined by this setting. If the ILS-C protocol has been set, then this setting will correspond to DN3.	

7 Settings
 (continued)

Single-pole commands

DEV01: Funct. type, command	210032
DEV02: Funct. type, command	210082
DEV03: Funct. type, command	210132
DEV04: Funct. type, command	210182
DEV05: Funct. type, command	210232
DEV06: Funct. type, command	211032
DEV07: Funct. type, command	211082
DEV08: Funct. type, command	211132
DEV09: Funct. type, command	21182
DEV10: Funct. type, command	211232
Setting for the function type of the command.	
Note: If the IEC 870-5-101 communication protocol has been set, then the 'low address' of the information object will be defined by this setting. If the ILS-C protocol has been set, then this setting will correspond to DN2.	
DEV01: Inform. No., command	210033
DEV02: Inform. No., command	210083
DEV03: Inform. No., command	210133
DEV04: Inform. No., command	210183
DEV05: Inform. No., command	210233
DEV06: Inform. No., command	211033
DEV07: Inform. No., command	211083
DEV08: Inform. No., command	211133
DEV09: Inform. No., command	211183
DEV10: Inform. No., command	211233
Setting for the information number of the signal.	
Note: If the IEC 870-5-101 communication protocol has been set, then the 'high' address' of the information object will be defined by this setting. If the ILS-C protocol has been set, then this setting will correspond to DN3.	

CMD_1: Function group CMD_1	249252
Canceling function group CMD1 or including it in the configuration. If the function group is cancelled from the configuration, then all associated settings and signals are hidden, with the exception of this setting.	
CMD_1: Command C001 config. CMD_1: Command C002 config. CMD_1: Command C003 config. CMD_1: Command C004 config. CMD_1: Command C005 config. CMD_1: Command C006 config. CMD_1: Command C007 config. CMD_1: Command C008 config. CMD_1: Command C009 config. CMD_1: Command C010 config. CMD_1: Command C011 config. CMD_1: Command C012 config.	$\begin{aligned} & 200004 \\ & 200009 \\ & 200014 \\ & 200019 \\ & 200024 \\ & 200029 \\ & 200034 \\ & 200039 \\ & 200044 \\ & 200049 \\ & 200054 \\ & 200059 \end{aligned}$
Canceling commands C001 to C026 or including them in the configuration. If a command is cancelled, then all associated settings and signals are hidden, with the exception of this setting.	

7 Settings

(continued)

Single-pole signals

SIG_1: Function group SIG_1	249250
Canceling function group SIG_1 or including it in the configuration. If the function group is cancelled from the configuration, then all associated settings and signals are hidden, with the exception of this setting.	
SIG_1: Signal S001 config.	220007 Fig. 3-115
SIG_1: Signal S002 config.	226015
SIG_1: Signal S003 config.	226023
SIG_1: Signal S004 config.	226031
SIG_1: Signal S005 config.	226099
SIG_1: Signal S006 config.	226047
SIG_1: Signal S007 config.	226055
SIG_1: Signal S008 config.	${ }^{220063}$
SIG_1: Signal S009 config.	226071
SIG_1: Signal S010 config.	226079
SIG_1: Signal S011 config.	226087
SIG_1: Signal S012 config.	226095
SIG_1: Signal S013 config.	226103
SIG_1: Signal S014 config.	22611
SIG_1: Signal S015 config.	226119
SIG_1: Signal S016 config.	226127
SIG_1: Signal S017 config.	226135
SIG_1: Signal S018 config.	226143
SIG_1: Signal S019 config.	226151
SIG_1: Signal S020 config.	226159
Canceling signals S001 to S040 or including them in the configuration. If a signal is cancelled, then all associated settings and signals are hidden, with the exception of this setting.	
TAPCH: Function group TAPC	249235
Canceling function group TAPCH or including it in the configuration. If the function group is cancelled from the configuration, then all associated settings and signals are hidden, with the exception of this setting.	
TAPCH: TapCh 1 config.	249119 Fig. 3-118
Canceling TAPCH functions or including them in the configuration. If the function is cancelled from the configuration, then all associated settings and signals are hidden, with the exception of this setting.	
COUNT: Function group COUN	217
Canceling function group COUNT or including it in the configuration. If the function group is cancelled from the configuration, then all associated settings and signals are hidden, with the exception of this setting.	

7 Settings
 (continued)

PC link
"Logical" communication
interface 1
"Logical" communication interface 2

7.1.3 Function Parameters

7.1.3.1 Global

PC: Command blocking
When command blocking is activated, commands are rejected at the PC
interface.
PC: Sig./meas.val.block.
When signal and measured value blocking is activated, no signals or measured data are transmitted through the PC interface.

COMM1: Command block. USER	003 172 Fig. 3-7
When command blocking is activated, commands are rejected at the	
communication interface.	
COMM1: Sig./meas.block.USER	
When signal and measured value blocking is activated, no signals or measured data are transmitted through the communication interface.	

COMM2: Command block. USER	103172 Fig. 3-14
When command blocking is activated, commands are rejected at the communication interface.	
COMM2: Sig./meas.block.USER	103076 Fig. 3-14
When signal and measured value blocking is activated, no signals or measured data are transmitted through the communication interface.	

OUTP: Outp.rel.block USER	021014 Fig. 3-22
When this blocking is activated, all output relays are blocked.	

MAIN: Device on-line	003030 Fig. 3-37
Switching the device off-line or on-line. Parameters marked 'off' in the Address List can only be changed when the device is off-line.	
MAIN: Test mode USER	003012 Fig. 3-61
When the test mode is activated, signals or measured data for PC and communication interfaces are labeled 'test mode'.	
MAIN: Nominal frequ. fnom	0100
Setting for the nominal frequency of the protected system.	
MAIN: Rotary field	010049 Fig. 3-88
Setting for the rotary field direction, either clockwise or anti-clockwise.	
MAIN: Inom C.T. prim.	$\begin{aligned} & 010001 \text { Fig. 3-34, } \\ & 3-68 \end{aligned}$
Setting for the primary nominal current of the main current transformers for measurement of phase currents.	
MAIN: Vnom V.T. prim.	010002 Fig. 3-34
Setting for the primary nominal voltage of the system transformer for measurement of phase-to-ground and phase-to-phase voltages.	

7 Settings

(continued)

7 Settings

(continued)

AIN: Cmd. dur. short cmd	${ }^{221231} \underset{3-114}{ }$ Fig. 3-1
Setting for the command duration of a short command.	
MAIN: Inp.asg.interl.deact	221007 Fig. 3-54
Definition of the binary signal used to deactivate interlocking of the control commands of the switchgear units.	
MAIN: Inp.asg. L/R key sw.	221008 Fig. 3-5
Definition of the binary signal used to switch from remote control to local control.	
MAIN: Auto-assignment I/O	221065 Fig. 3-28
Once the user has selected a bay type, the binary inputs and outputs are automatically configured with function assignments for the control of switchgear units.	
MAIN: Electrical control	22061 Fig. 3-106
This setting determines whether the binary inputs that are configured to control the switchgear units will be active with remote control or local control.	
MAIN: W. ext. cmd. termin.	221003 Fig. 3-112
This setting applies to bay types defined for direct motor control and determines whether intervention in the control sequence of motor-operated switchgear units will be by way of external terminating contacts.	
MAIN: Inp.assign. tripping	21010 Fig. 3-53
Definition of the binary signal used to signal the tripping of an external protection device. This signal is used to form the CB trip signal.	
MAIN: Prot.trip>CB tripped	21012 Fig. 3-53
Selection of the protection function trip command that will be used to form the $C B$ trip signal.	
MAIN: Inp. asg. CB trip	21013 Fig. 3-53
Definition of the binary signal used by the C 232 to signal the ' CB open' position signal.	
MAIN: Sig. asg. CB closed	021020 Fig. 3-44
Definition of the binary signal used by the C232 to evaluate the ' CB closed' position signal.	
MAIN: Inp.asg.CB tr.en.ext	2101050 Fig. 3-53
Definition of the binary signal used to enable the CB trip signal of an external device.	
MAIN: Inp.asg. CB trip ext	21024 Fig. 3-53
Definition of the binary signal used to carry the CB trip signal of an external device.	
MAIN: Inp.asg. mult.sig. 1 MAIN: Inp.asg. mult.sig. 2	$\begin{aligned} & 221051 \text { Fig. } 3-46 \\ & 22052 \text { Fig. 3-46 } \end{aligned}$
Definition of the function that will be interpreted as a multiple signal (group signal).	
MAIN: Fct. assign. fault	021031 Fig. 3-43
Selection of the signals whos signal and in the activation of SERVICE'. Signals that lead and always result in the abov	

7 Settings
 (continued)

Parameter subset selection

Self-monitoring

Fault data acquisition

Fault recording
PSS: Control via USER 003 100 Fig. 3-62

If parameter subset selection is to be handled from the integrated local control panel rather than via the binary signal inputs, choose the 'Yes' setting.
PSS: Param.subs.sel. USER 003000 Fig. 3-62
Selection of the parameter subset from the local control panel.
PSS: Keep time
00303 Fig. 3-62
The setting of this timer stage is relevant only if parameter subset selection is carried out via the binary signal inputs. Any voltage-free pause that may occur during selection is bridged. If, after this time period has elapsed, no binary signal input has yet been set, then the parameter subset selected from the local control panel shall apply.

SFMON: Fct. assign. warning

Selection of the signals whose appearance shall result in the signals 'Warning (LED)' and 'Warning (relay) and in the activation of the LED indicator labeled 'ALARM'. Signals caused by faulty hardware and leading to blocking of the device are not configurable. They always result in the above signals and indication.

FT_DA: Start data acquisit.

010011 Fig. 3-67
This setting determines at what point during a fault the acquisition of fault data should take place.

FT_RC: Fct. assig. trigger

003055 Fig. 3-69
This setting defines the signals that will trigger fault recording and fault data acquisition.
FT_RC:1> 017005 Fig. 3 .69

This setting defines the threshold value of the phase currents that will trigger fault recording and fault data acquisition.
FT_RC: Pre-fault time

Setting for the time during which data will be recorded before the onset of a fault (pre-fault recording time).
FT_RC: Post-fault time 003079 Fig. 3-70
Setting for the time during which data will be recorded after the end of a fault (post-fault recording time).
FT_RC: Max. recording time 000075 Fig. 3-71
Setting for the maximum recording time per fault. This includes pre-fault and post-fault recording times.

7 Settings

(continued)

Main function

Definite-time overcurrent protection

Inverse-time overcurrent protection

Limit value monitoring

7.1.3.2 General Functions

MAIN: Hold time dyn.param.	018009 Fig. 3-39
Setting for the hold time of the "dynamic parameters". After switching to the "dynamic" thresholds, the latter will remain active in place of the "normal" thresholds during this period.	
MAIN: Syst.IN enabled USER	018008 Fig. 3-38
Enable/disable the DTOC or IDMT residual current stages.	
MAIN: Block tim.st. IN,neg	017015 Fig. 3-47
This setting defines whether a blocking of the residual current stages should take place for single-pole or multi-pole phase current startings.	
MAIN: Gen. starting mode	7027 Fig. 3-48
This setting defines whether the triggering of the residual current stages $I_{N}>$, $I_{\text {ref, }, ~}>, I_{N \gg}$ or $I_{\text {ref }} \ggg$ as well as the negative-sequence current stage $I_{\text {ref,neg }}>$ should result in the formation of the general starting signal. If the setting is $\mathrm{t}_{\text {ref,neg> }}$ are automatically excluded from the formation of the trip command.	
MAIN: Op. mode rush restr.	017097 Fig. 3-40
Setting the operating mode of the inrush stabilization function.	
MAIN: Rush restr. active MAIN: Rush I(2*fn)/I(fn)	$\begin{aligned} & 017093 \text { Fig. 3-40 } \\ & 017098 \end{aligned}$
Setting for the operate value of inrush stabilization.	
MAIN: I> lift rush restr.	017095 Fig. 3-40
Setting the current threshold for inactivation of inrush stabilization.	
MAIN: Suppress start. sig.	017054
Setting of the timer stage for the suppression of the phase-selective startings and of the residual and negative-sequence system starting.	
MAIN: tGS	017005 Fig. 3-48
Setting for the time delay of the general starting signal.	

DTOC: General enable USER	022075 Fig. 3-72
Disabling or enabling the definite-time overcurrent protection function.	

IDMT: General enable USER	017098 Fig. 3-81
Disabling or enabling the inverse-time overcurrent protection function.	

LIMIT: General enable USER	014010 Fig. 3-93
Disabling or enabling limit value monitoring.	
LIMIT: $1>$	014004 Fig. 3-93
Setting for the operate value of the first overcurrent stage of limit value monitoring.	
LIMIT: \|>>	014020 Fig. 3-93
Setting for the operate value of the second overcurrent stage of limit value monitoring.	

7 Settings
 (continued)

IMIT: tl>	${ }^{014031}$ Fig. 3-93
Setting for the operate delay of the first overcurrent stage of limit value monitoring.	
LIMIT: $1 \gg$	014032 Fig. 3 -93
Setting for the operate delay of the second overcurrent stage of limit value monitoring.	
LIMIT: K	014021 Fig. 3-93
Setting for the operate value of the first undercurrent stage of limit value monitoring.	
LIMIT: $1 \ll$	014022 Fig. 3 -93
Setting for the operate value of the second undercurrent stage of limit value monitoring.	
LIMIT: ti<	014038 Fig. 3-93
Setting for the operate delay of the first undercurrent stage of limit value monitoring.	
LIMIT: t <<	014034 Fig. $3-93$
Setting for the operate delay of the second undercurrent stage of limit value monitoring.	
LIMIT: VPG>	014023 Fig. 3 -94
Setting for the operate value of overvoltage stage VPG> of limit value monitoring.	
LIMIT: VPG>>	014024 Fig. 3 -94
Setting for the operate value of overvoltage stage VPG>> of limit value monitoring.	
LIMIT: tVPG>	014035 Fig. 3-94
Setting for the operate delay of overvoltage stage VPG> of limit value monitoring.	
LIMIT: tVPG>>	014036 Fig. 3 -94
Setting for the operate delay of overvoltage stage VPG>> of limit value monitoring.	
LIMIT: VPG<	014025 Fig. 3-94
Setting for the operate value of undervoltage stage VPG< of limit value monitoring.	
LIMIT: VPG<<	014026 Fig. 3-94
Setting for the operate value of undervoltage stage VPG<< of limit value monitoring.	
LIMIT: tVPG<	0.14037 Fig. 3 -94
Setting for the operate delay of undervoltage stage VPG< of limit value monitoring.	
LIMIT: tVPG <<	014038 Fig. 3 -94
Setting for the operate delay of undervoltage stage $\mathrm{VPG} \ll$ of limit value monitoring.	
LIMIT: VPP>	014027 Fig. 3 -94
Setting for the operate value of overvoltage stage VPP> of limit value monitoring.	

7 Settings
 (continued)

7 Settings

(continued)

LIMIT: IDC, lin<<	014115 Fig. 3-96
Setting for operate value IDC, lin << for monitoring the linearized direct current.	
LIMIT: tIDC, lin<	014116 Fig. 3-96
Setting for the operate delay of undercurrent stage IDC,lin<.	
LIMIT: IIDC,İin<<	014117 Fig. 3 -96
Setting for the operate delay of undercurrent stage IDC, lin<<.	

Logic

LOGIC: General enable USER	031099 Fig. 3-98
Disabling or enabling the logic function.	
LOGIC: Set 1 USER	034030 Fig. 3-97
LOGIC: Set 2 USER	$0^{9403931}$
LOGIC: Set 3 USER	${ }^{034032}$
LOGIC: Set 4 USER	${ }^{134033}$
LOGIC: Set 5 USER	${ }^{134} 434$
LOGIC: Set 6 USER	${ }^{244055}$
LOGIC: Set 7 USER	${ }^{1044036}$
LOGIC: Set 8 USER	${ }^{304037}$
These settings define the static input conditions for the logic function.	
LOGIC: Fct.assignm. outp. 1	000000 Fig. 3-98
LOGIC: Fct.assignm. outp. 2	${ }^{030004}$
LOGIC: Fct.assignm. outp. 3	030008
LOGIC: Fct.assignm. outp. 4	030012
LOGIC: Fct.assignm. outp. 5	030016
LOGIC: Fct.assignm. outp. 6	030020
LOGIC: Fct.assignm. outp. 7	${ }^{300} 024$
LOGIC: Fct.assignm. outp. 8	030028
LOGIC: Fct.assignm. outp. 9	030032
LOGIC: Fct.assignm. outp. 10	${ }^{130036}$
LOGIC: Fct.assignm. outp. 11	030040
LOGIC: Fct.assignm. outp. 12	030044
LOGIC: Fct.assignm. outp. 13	180048
LOGIC: Fct.assignm. outp. 14	0^{30052}
LOGIC: Fct.assignm. outp. 15	056
LOGIC: Fct.assignm. outp. 16	${ }^{1030060}$
LOGIC: Fct.assignm. outp. 17	190064
LOGIC: Fct.assignm. outp. 18	${ }^{230088}$
LOGIC: Fct.assignm. outp. 19	030072
LOGIC: Fct.assignm. outp. 20	${ }^{103076}$
LOGIC: Fct.assignm. outp. 21	030080
LOGIC: Fct.assignm. outp. 22	0300
LOGIC: Fct.assignm. outp. 23	${ }^{030088}$
LOGIC: Fct.assignm. outp. 24	O092
LOGIC: Fct.assignm. outp. 25	${ }^{130098}$
LOGIC: Fct.assignm. outp. 26	0310
LOGIC: Fct.assignm. outp. 27	003004
LOGIC: Fct.assignm. outp. 28	031008
LOGIC: Fct.assignm. outp. 29	03012

7 Settings

(continued)

LOGIC: Fct.assignm. outp. 30 LOGIC: Fct.assignm. outp. 31 LOGIC: Fct.assignm. outp. 32	031016 031020 031024
These settings assign functions to the outputs.	
LOGIC: Op. mode t output 1 LOGIC: Op. mode t output 2 LOGIC: Op. mode t output 3 LOGIC: Op. mode t output 4 LOGIC: Op. mode t output 5 LOGIC: Op. mode t output 6 LOGIC: Op. mode t output 7 LOGIC: Op. mode t output 8 LOGIC: Op. mode t output 9 LOGIC: Op. mode t output 10 LOGIC: Op. mode t output 11 LOGIC: Op. mode t output 12 LOGIC: Op. mode t output 13 LOGIC: Op. mode t output 14 LOGIC: Op. mode t output 15 LOGIC: Op. mode t output 16 LOGIC: Op. mode t output 17 LOGIC: Op. mode t output 18 LOGIC: Op. mode t output 19 LOGIC: Op. mode t output 20 LOGIC: Op. mode t output 21 LOGIC: Op. mode t output 22 LOGIC: Op. mode t output 23 LOGIC: Op. mode t output 24 LOGIC: Op. mode t output 25 LOGIC: Op. mode t output 26 LOGIC: Op. mode t output 27 LOGIC: Op. mode t output 28 LOGIC: Op. mode t output 29 LOGIC: Op. mode t output 30 LOGIC: Op. mode t output 31 LOGIC: Op. mode t output 32	030001 Fig. 3-98 030005 030009 030013 030017 030021 030025 030029 030033 030037 030041 030045 030049 030053 030057 030061 030065 030069 030073 030077 030081 030085 030089 030093 030097 031001 031005 031009 031013 031017 031021 031025
These settings define the operating modes for the output timer stages.	
LOGIC: Time t1 output 1 LOGIC: Time t1 output 2 LOGIC: Time t1 output 3 LOGIC: Time t1 output 4 LOGIC: Time t1 output 5 LOGIC: Time t1 output 6 LOGIC: Time t1 output 7 LOGIC: Time t1 output 8 LOGIC: Time t1 output 9 LOGIC: Time t1 output 10 LOGIC: Time t1 output 11 LOGIC: Time t1 output 12 LOGIC: Time t1 output 13 LOGIC: Time t1 output 14 LOGIC: Time t1 output 15	030002 Fig. 3-98 030006 030010 030014 030018 030022 030026 030030 030034 030038 030042 030046 030050 030054 030058

7 Settings

(continued)

7 Settings

(continued)

LOGIC: Time t2 output 30	031019
LOGIC: Time t2 output 31	031023
LOGIC: Time t2 output 32	031027

Settings for timer stage t 2 of the respective outputs.
Note:
This setting has no effect in the 'minimum time' operating mode.

LOGIC: Sig.assig. outp. 1	044000 Fig. 3-104
LOGIC: Sig.assig. outp. 2	044002
LOGIC: Sig.assig. outp. 3	044004
LOGIC: Sig.assig. outp. 4	044006
LOGIC: Sig.assig. outp. 5	044008
LOGIC: Sig.assig. outp. 6	044010
LOGIC: Sig.assig. outp. 7	044012
LOGIC: Sig.assig. outp. 8	044014
LOGIC: Sig.assig. outp. 9	044016
LOGIC: Sig.assig. outp. 10	044018
LOGIC: Sig.assig. outp. 11	044020
LOGIC: Sig.assig. outp. 12	044022
LOGIC: Sig.assig. outp. 13	044024
LOGIC: Sig.assig. outp. 14	044026
LOGIC: Sig.assig. outp. 15	044028
LOGIC: Sig.assig. outp. 16	044030
LOGIC: Sig.assig. outp. 17	044032
LOGIC: Sig.assig. outp. 18	044034
LOGIC: Sig.assig. outp. 19	044036
LOGIC: Sig.assig. outp. 20	044038
LOGIC: Sig.assig. outp. 21	044040
LOGIC: Sig.assig. outp. 22	044042
LOGIC: Sig.assig. outp. 23	044044
LOGIC: Sig.assig. outp. 24	044046
LOGIC: Sig.assig. outp. 25	044048
LOGIC: Sig.assig. outp. 26	044050
LOGIC: Sig.assig. outp. 27	044052
LOGIC: Sig.assig. outp. 28	044054
LOGIC: Sig.assig. outp. 29	044056
LOGIC: Sig.assig. outp. 30	044058
LOGIC: Sig.assig. outp. 31	044060
LOGIC: Sig.assig. outp. 32	044062
These settings assign the function of a binary input signal to the output of the logic equation.	
LOGIC: Sig.assig.outp. 1(t)	044001 Fig. 3-104
LOGIC: Sig.assig.outp. 2(t)	044003
LOGIC: Sig.assig.outp. 3(t)	044005
LOGIC: Sig.assig.outp. 4(t)	044007
LOGIC: Sig.assig.outp. 5(t)	044009
LOGIC: Sig.assig.outp. 6(t)	044011
LOGIC: Sig.assig.outp. 7(t)	044013
LOGIC: Sig.assig.outp. 8(t)	044015
LOGIC: Sig.assig.outp. 9(t)	044017
LOGIC: Sig.assig.outp.10(t)	044019
LOGIC: Sig.assig.outp.11(t)	044021

7 Settings

(continued)

LOGIC: Sig.assig.outp.12(t)	044023
LOGIC: Sig.assig.outp.13(t)	044025
LOGIC: Sig.assig.outp.14(t)	044027
LOGIC: Sig.assig.outp.15(t)	044029
LOGIC: Sig.assig.outp.16(t)	044031
LOGIC: Sig.assig.outp.17(t)	044033
LOGIC: Sig.assig.outp.18(t)	044035
LOGIC: Sig.assig.outp.19(t)	044037
LOGIC: Sig.assig.outp.20(t)	044039
LOGIC: Sig.assig.outp.21(t)	044041
LOGIC: Sig.assig.outp.22(t)	044043
LOGIC: Sig.assig.outp.23(t)	044045
LOGIC: Sig.assig.outp.24(t)	044047
LOGIC: Sig.assig.outp.25(t)	044049
LOGIC: Sig.assig.outp.26(t)	044051
LOGIC: Sig.assig.outp.27(t)	044053
LOGIC: Sig.assig.outp.28(t)	044055
LOGIC: Sig.assig.outp.29(t)	044057
LOGIC: Sig.assig.outp.30(t)	044059
LOGIC: Sig.assig.outp.31(t)	044061
LOGIC: Sig.assig.outp.32(t)	044063

These settings assign the function of a binary input signal to the output of the logic equation.

7 Settings

(continued)

Single-pole commands

CMD_1: Design. command C001	200000
CMD_1: Design. command C002	200005
CMD_1: Design. command C003	200010
CMD_1: Design. command C004	200015
CMD_1: Design. command C005	200020
CMD_1: Design. command C006	200025
CMD_1: Design. command C007	200030
CMD_1: Design. command C008	200035
CMD_1: Design. command C009	200040
CMD_1: Design. command C010	20045
CMD_1: Design. command C011	200050
CMD_1: Design. command C012	200055
Selection of the command designation.	
CMD_1: Oper. mode cmd. C001	200002 Fig. 3-114
CMD_1: Oper. mode cmd. C002	200007
CMD_1: Oper. mode cmd. C003	200012
CMD_1: Oper. mode cmd. C004	200017
CMD_1: Oper. mode cmd. C005	200022
CMD_1: Oper. mode cmd. C006	200027
CMD_1: Oper. mode cmd. C007	200032
CMD_1: Oper. mode cmd. C008	200037
CMD_1: Oper. mode cmd. C010	200047
CMD_1: Oper. mode cmd. C009	200042
CMD_1: Oper. mode cmd. C011	200052
CMD_1: Oper. mode cmd. C012	200057
Selection of the command operating mode.	

7 Settings

(continued)

Single-pole signals

7 Settings

(continued)

SIG_1: Gr.asg. debounc.S011	226083
SIG_1: Gr.asg. debounc.S012	226091
SIG_1: Gr.asg. debounc.S013	226099
SIG_1: Gr.asg. debounc.S014	226107
SIG_1: Gr.asg. debounc.S015	226115
SIG_1: Gr.asg. debounc.S016	226123
SIG_1: Gr.asg. debounc.S017	226131
SIG_1: Gr.asg. debounc.S018	226139
SIG_1: Gr.asg. debounc.S019	226147
SIG_1: Gr.asg. debounc.S020	226155
Group assignment for the debouncing time and the chatter suppression.	
SIG_1: Min. sig. dur. S001	226002
SIG_1: Min. sig. dur. S002	226010
SIG_1: Min. sig. dur. S003	226018
SIG_1: Min. sig. dur. S004	226026
SIG_1: Min. sig. dur. S005	226034
SIG_1: Min. sig. dur. S006	226042
SIG_1: Min. sig. dur. S007	226050
SIG_1: Min. sig. dur. S008	226058
SIG_1: Min. sig. dur. S009	226066
SIG_1: Min. sig. dur. S010	226074
SIG_1: Min. sig. dur. S011	226082
SIG_1: Min. sig. dur. S012	226090
SIG_1: Min. sig. dur. S013	098
SIG_1: Min. sig. dur. S014	226106
SIG_1: Min. sig. dur. S015	226114
SIG_1: Min. sig. dur. S016	226122
SIG_1: Min. sig. dur. S017	6130
SIG_1: Min. sig. dur. S018	226138
SIG_1: Min. sig. dur. S019	226146
SIG_1: Min. sig. dur. S020	2261
The logic '1' signal must be available for this minimum time setting for a telegram to be sent in the Start/end signal mode.	

7 Settings

(continued)

Tap changers

Binary counters

TAPCH: Designation TapCh 1	249100 Fig. 3-118
Assignment of a name to the tap changer.	
TAPCH: Inp.assign. TapCh 1	299101 Fig. 3-118
Assignment of the tap changer position signal to the binary signal inputs in BCD code. The assignment sequence proceeds from the low-value bit to the higher value bit.	
TAPCH: Lowest tap TapCh 1	249111 Fig. 3-118
Setting for the lowest tap position for which control commands will be operative.	
TAPCH: Highest tap TapCh 1	249112 Fig. 3-118
Setting for the highest tap position for which control commands will be operative.	
TAPCH: Oper. time TapCh 1	249109 Fig. 3-118
Setting for the operating time for control commands.	
TAPCH: Int.pos.suppr.TapCh1	249116 Fig . 3-118
If suppression of the intermediate position is activated, then the zero position is not transmitted while a tap change is in progress.	
TAPCH: Debounce time TapCh1	249102 Fig. 3-118
Setting for the debouncing time.	
TAPCH: TapCh 1, sign	249110 Fig. 3-118
Consideration of the sign of the tap changer.	
TAPCH: Op. mode cmd. TapCh1	249115 Fig. 3-118
The operating mode for the tap changer command can be set for long command, short command, or time control.	
TAPCH: l.asg.e.TapCh1.lower	249117 Fig. 3-118
Assignment of the tap changing command lower to an output relay.	
TAPCH: l.asg.e.TapCh1.raise	249118 Fig. 3-118
Assignment of the tap changing command upper to an output relay.	

COUNT: General enable USER	
Enabling or disabling the counting function.	217000 Fig. 3-117
COUNT: Debounce t. count. 1	
Setting for the debounce time of the binary signal to be counted.	
COUNT: Cycle t.count transm	
Setting for the cycle time for the periodic transmission of the counts.	

7 Settings
 (continued)

Definite-time overcurrent protection

7.1.3.3 Parameter Subsets

Setting for the operate value of the first overcurrent stage in dynamic mode (phase current stage). This operate value is effective only while the timer stage MAIN: Hold-time dyn. param. is elapsing.

Caution!

The range of setting values includes operate values that are not permitted as continuous current values (see 'Technical Data’).
DTOC: $1 \gg$ PSx 017001073008074008075008 Fig. 3-73

Setting for the operate value of the second overcurrent stage (phase current stage).

Caution!

The range of setting values includes operate values that are not permitted as continuous current values (see 'Technical Data’).
DTOC: |>> dynamic PSx $017084073033074033075033 \quad$ Fig. 3-73

Setting for the operate value of the second overcurrent stage in dynamic mode (phase current stage). This operate value is effective only while the timer stage MAIN: Hold-time dyn. param. is elapsing.

Caution!

The range of setting values includes operate values that are not permitted as continuous current values (see ‘Technical Data’).

Setting for the operate value of the third overcurrent stage (phase current stage).

Caution!

The range of setting values includes operate values that are not permitted as continuous current values (see 'Technical Data').

	DTOC: \|>>> dynamic		017085073034074034075034	Fig. 3-73
	DTOC. $1 \ggg$ dynamic	PSx	(1005 073034 074034 075094	

Setting for the operate value of the third overcurrent stage in dynamic mode (phase current stage). This operate value is effective only while the timer stage MAIN: Hold-time dyn. param. is elapsing.

Caution!

The range of setting values includes operate values that are not permitted as continuous current values (see 'Technical Data’).

Setting for the operate delay of the first overcurrent stage.

7 Settings
 (continued)

DTOC: $\mathrm{tl} \gg$	PSx	017006073020074020075020	Fig. 3-73
Setting for the operate delay of the second overcurrent stage.			
DTOC: $\mathrm{tl} \ggg$	PSx	017007073021074021075021	Fig. 3-73
Setting for the operate delay of the third overcurrent stage.			
DTOC: IN>	PSx	017003073015074015075015	Fig. 3-76

Setting for the operate value of the first overcurrent stage (residual current stage).

Caution!

The range of setting values includes operate values that are not permitted as continuous current values (see 'Technical Data').
DTOC: IN > dynamic PSX

Setting for the operate value of the first overcurrent stage in dynamic mode (residual current stage). This operate value is effective only while the timer stage MAIN: Hold-time dyn. param. is elapsing.

Caution!

The range of setting values includes operate values that are not permitted as continuous current values (see 'Technical Data').
DTOC: IN>> PSX $\quad 017009073016074016075016$ Fig. 3-76

Setting for the operate value of the second overcurrent stage (residual current stage).

Caution!

The range of setting values includes operate values that are not permitted as continuous current values (see 'Technical Data').
DTOC: IN>> dynamic PSX $\quad 017086073036074036075036 \quad$ Fig. 3-76

Setting for the operate value of the second overcurrent stage in dynamic mode (residual current stage). This operate value is effective only while the timer stage MAIN: Hold-time dyn. param. is elapsing.

Caution!

The range of setting values includes operate values that are not permitted as continuous current values (see 'Technical Data’).
DTOC: IN>> PSX $\quad 017018073017074017075017$ Fig. 3-76

Setting for the operate value of the third overcurrent stage (residual current stage).

Caution!

The range of setting values includes operate values that are not permitted as continuous current values (see 'Technical Data').

Setting for the operate value of the third overcurrent stage in dynamic mode (residual current stage). This operate value is effective only while the timer stage MAIN: Hold-time dyn. param. is elapsing.

Caution!

The range of setting values includes operate values that are not permitted as continuous current values (see 'Technical Data').

DTOC: tIN>	PSx	017008073027074027075027	Fig. 3-76

Setting for the operate delay of the first overcurrent stage (residual current stage).

7 Settings

(continued)

Inverse-time overcurrent protection

DTOC: tIN>> PSx	017010073028074028075028	Fig. 3-76
Setting for the operate delay of the second overcurrent stage (residual current stage).		
DTOC: tIN>>> PSx	017019073029074029075029	Fig. 3-76
Setting for the operate delay of the third overcurrent stage (residual current stage).		
DTOC: Puls.prol.IN>,intPSx	017055073042074042075042	Fig. 3-78
Setting for the pulse prolongation time of the hold-time logic for intermittent ground faults.		
DTOC: tIN,interm. PSx	7056073038074038075038	Fig. 3-78
Setting for the tripping time of the hold-time logic for intermittent ground faults.		
DTOC: Hold-t. tIN>,intmPSx	017057073039074039075039	Fig. 3-78
Setting for the hold-time for		

IDMT: Enable PSx	072070073070074070075070	Fig. 3-81
This setting defines the parameter subset in which IDMT protection is enabled.		
IDMT: Iref,P PSx	072050073050074050075050	Fig. 3-86
Setting for the reference current (phase current system).		
IDMT: Iref,P dynamic PSx	7200307300307400307500	Fig. 3-86
Setting for the reference current in dynamic mode (phase current system). This operate value is effective only while the timer stage MAIN: Holdtime dyn. param. is elapsing.		
IDMT: Characteristic P PSx	072056073056074056075056	Fig. $3-86$
Setting for the tripping characteristic (phase current system).		
IDMT: Factor kt,P PSx	072053073053074053075053	Fig. 3-86
Setting for factor kt, P of the starting characteristic (phase current system).		
IDMT: Min. trip time P PSx	072077073071074077075077	Fig. 3-86
Setting for the minimum trip time (phase current system). As a rule, this value should be set as for the first DTOC stage (l>).		
IDMT: Hold time P PSx	072071073071074071075071	Fig. 3-86
Setting for the holding time for intermittent short circuits (phase current system).		
IDMT: Release P PSx	072059073059074059075059	Fig. 3-86
Setting for the release or reset characteristic (phase current system).		
IDMT: Iref,neg PSx	072051073051074051075051	Fig. 3-88
Setting for the reference current (negative-sequence current system).		
IDMT: Iref,neg dynamic PSx	072004073004074004075004	Fig. 3-88
Setting for the reference current in dynamic mode (negative-sequence current system). This operate value is effective only while the timer stage MAIN: Hold-time dyn. param. is elapsing.		
IDMT: Character. neg. PSx	072057073057074057075057	Fig. 3-88
Setting for the tripping characteristic (negative-sequence current system).		

7 Settings

(continued)

DMT: Factor kt,neg PSx	-88
Setting for factor kt,neg of the starting characteristic (negative-sequence current system).	
IDMT: Min.trip time negPSx ${ }^{\text {arman }}$	Fig. 3-88
Setting for the minimum trip time (negative-sequence current system). As a rule, this value should be set as for the first DTOC stage (l>).	
IDMT: Hold time neg PSx 0	Fig. 3-88
Setting for the holding time for intermittent short circuits (negative-sequence current system).	
IDMT: Release neg. PSx O72060 073060074000075050	Fig. 3-88
Setting for the release characteristic (negative-sequence current system).	
IDMT: Iref,N PSx ${ }^{\text {a }}$	Fig. 3-90
Setting for the reference current (residual current system).	
IDMT: Iref,N dynamic PSx ${ }^{\text {a }}$	Fig. 3-90
Setting for the reference current in dynamic mode (residual current system). This operate value is effective only while the timer stage MAIN: Holdtime dyn. param. is elapsing.	
IDMT: Characteristic N PSx	Fig. 3-90
Setting for the tripping characteristic (residual current system).	
	Fig. 3-90
Setting for the tripping characteristic (residual current system).	
IDMT: Min. trip time N PSx ${ }^{\text {a }}$	Fig. 3-90
Setting for the minimum trip time (residual current system). As a rule, this value should be set as for the first DTOC stage ($\mathrm{IN}>$).	
IDMT: Hold time N PSx 070	Fig. 3-90
Setting for the holding time for intermittent short circuits (residual current system).	
IDMT: Release N PSx 0720061073061074061075061	Fig. 3-90
Setting for the release characteristic (residual current system).	

7 Settings

(continued)

7.1.3.4 Control

Main functions

MAIN: BI active USER
Enabling the bay interlocking function from the local control panel.
MAIN: SI active USER
Enabling the station interlocking function from the local control panel.
MAIN: Inp.asg. fct.block. 1
MAIN: Inp.asg. fct.block. 2

7 Settings

(continued)

External devices 01 to10

DEV01: Designat. ext. dev.	210000 Fig. 3-2
DEV02: Designat. ext. dev.	210050
DEV03: Designat. ext. dev.	210100
DEV04: Designat. ext. dev.	210150
DEV05: Designat. ext. dev.	210200
DEV06: Designat. ext. dev.	211000
DEV07: Designat. ext. dev.	211050
DEV08: Designat. ext. dev.	211100
DEV09: Designat. ext. dev.	21150
DEV10: Designat. ext. dev.	211200
Setting for the designation of the respective external device.	
Note: This setting is only active if the external device designations are displayed on the Bay Panel.	
DEV01: Op.time switch. dev.	$\begin{aligned} & \text { 210004 Fig. 3-105, } \\ & 3-111 \end{aligned}$
DEV02: Op.time switch. dev.	210054
DEV03: Op.time switch. dev.	210104
DEV04: Op.time switch. dev.	210154
DEV05: Op.time switch. dev.	210204
DEV06: Op.time switch. dev.	211004
DEV07: Op.time switch. dev.	211054
DEV08: Op.time switch. dev.	211104
DEV09: Op.time switch. dev.	211154
DEV10: Op.time switch. dev.	211204
Setting for the operating time of the switchgear unit (switching device).	
DEV01: Latching time	210005 Fig. 3-106
DEV02: Latching time	210055
DEV03: Latching time	210105
DEV04: Latching time	210155
DEV05: Latching time	210205
DEV06: Latching time	211005
DEV07: Latching time	211055
DEV08: Latching time	21105
DEV09: Latching time	211155
DEV10: Latching time	211205
Setting for the time that a control command persists after a switchgear position signal - Open or Closed - has been received.	
DEV01: Gr. assign. debounc.	$\begin{aligned} & \text { 210011 Fig. 3-105, } \\ & 3-111 \end{aligned}$
DEV02: Gr. assign. debounc.	210061
DEV03: Gr. assign. debounc.	210111
DEV04: Gr. assign. debounc.	210161
DEV05: Gr. assign. debounc.	210211
DEV06: Gr. assign. debounc.	211011
DEV07: Gr. assign. debounc.	211061
DEV08: Gr. assign. debounc.	211111
DEV09: Gr. assign. debounc.	21161
DEV10: Gr. assign. debounc.	211211
Assign the external device to one of eight groups for debouncing and chatter suppression.	

7 Settings

(continued)

DEV01: Interm. pos. suppr.	210012	$\begin{aligned} & \text { Fig. 3-105, } \\ & 3-111 \end{aligned}$
DEV02: Interm. pos. suppr.	210062	
DEV03: Interm. pos. suppr.	210112	
DEV04: Interm. pos. suppr.	210162	
DEV05: Interm. pos. suppr.	210212	
DEV06: Interm. pos. suppr.	211012	
DEV07: Interm. pos. suppr.	211062	
DEV08: Interm. pos. suppr.	211112	
DEV09: Interm. pos. suppr.	211162	
DEV10: Interm. pos. suppr.	211212	
This setting determines whether the 'intermediate position' signal will be suppressed or not while the switchgear unit is operating.		
DEV01: Stat.ind.interm.pos.	210027	$\begin{aligned} & \text { Fig. 3-105, } \\ & 3-111 \end{aligned}$
DEV02: Stat.ind.interm.pos.	210077	
DEV03: Stat.ind.interm.pos.	210127	
DEV04: Stat.ind.interm.pos.	210177	
DEV05: Stat.ind.interm.pos.	210227	
DEV06: Stat.ind.interm.pos.	211027	
DEV07: Stat.ind.interm.pos.	21107	
DEV08: Stat.ind.interm.pos.	211127	
DEV09: Stat.ind.interm.pos.	21117	
DEV10: Stat.ind.interm.pos.	211227	
This setting determines whether the actual status will be signaled with a 5 s delay after the 'Faulty position'signal is issued.		
DEV01: Oper. mode cmd.	210024	Fig. 3-110
DEV02: Oper. mode cmd.	210074	
DEV03: Oper. mode cmd.	210124	
DEV04: Oper. mode cmd.	210174	
DEV05: Oper. mode cmd.	210224	
DEV06: Oper. mode cmd.	211024	
DEV07: Oper. mode cmd.	211074	
DEV08: Oper. mode cmd.	21124	
DEV09: Oper. mode cmd.	21174	
DEV10: Oper. mode cmd.	211224	
Select from long command, short command or time control for the operating mode of the command.		
DEV01: Inp.asg. sw.tr. plug	210014	$\begin{aligned} & \text { Fig. 3-105, } \\ & 3-111 \end{aligned}$
DEV02: Inp.asg. sw.tr. plug	210064	
DEV03: Inp.asg. sw.tr. plug	210114	
DEV04: Inp.asg. sw.tr. plug	210164	
DEV05: Inp.asg. sw.tr. plug	210214	
DEV06: Inp.asg. sw.tr. plug	211014	
DEV07: Inp.asg. sw.tr. plug	211064	
DEV08: Inp.asg. sw.tr. plug	211114	
DEV09: Inp.asg. sw.tr. plug	21164	
DEV10: Inp.asg. sw.tr. plug	211214	
Definition of the binary signal used to signal the position (plugged-in / unplugged) of the switch truck plug.		

7 Settings

(continued)

DEV01: With gen. trip cmd. 1	210021	Fig. 3-109
DEV02: With gen. trip cmd. 1	210071	
DEV03: With gen. trip cmd. 1	210121	
DEV04: With gen. trip cmd. 1	210171	
DEV05: With gen. trip cmd. 1	210221	
DEV06: With gen. trip cmd. 1	211021	
DEV07: With gen. trip cmd. 1	211071	
DEV08: With gen. trip cmd. 1	21121	
DEV09: With gen. trip cmd. 1	21171	
DEV10: With gen. trip cmd. 1	211221	
This setting specifies whether the circuit breaker will be opened by "general trip command 1" of the protection function.		
Note: This setting is only visible (active) for external devices that are defined as 'circuit breakers'. This definition is included in the bay type definitions.		
DEV01: With gen. trip cmd. 2	210022	Fig. 3-109
DEV02: With gen. trip cmd. 2	210072	
DEV03: With gen. trip cmd. 2	210122	
DEV04: With gen. trip cmd. 2	210172	
DEV05: With gen. trip cmd. 2	21022	
DEV06: With gen. trip cmd. 2	211022	
DEV07: With gen. trip cmd. 2	211072	
DEV08: With gen. trip cmd. 2	21122	
DEV09: With gen. trip cmd. 2	21172	
DEV10: With gen. trip cmd. 2	21122	
This setting specifies whether the circuit breaker will be opened by "general trip command 2" of the protection function.		
Note:		
This setting is only visible (active) for external devices that are defined as 'circuit breakers'. This definition is included in the bay type definitions.		
DEV01: With close cmd./prot	210023	Fig. 3-109
DEV02: With close cmd./prot	210073	
DEV03: With close cmd./prot	210123	
DEV04: With close cmd./prot	210173	
DEV05: With close cmd./prot	210223	
DEV06: With close cmd./prot	211023	
DEV07: With close cmd./prot	211073	
DEV08: With close cmd./prot	211123	
DEV09: With close cmd./prot	21173	
DEV10: With close cmd./prot	211223	
This setting specifies whether the circuit breaker will be closed by the "close command" of the protection function.		
Note:		
This setting is only visible (active) for external devices that are defined as 'circuit breakers'. This definition is included in the bay type definitions.		

7 Settings

(continued)

DEV01: Inp.asg.el.ctrl.open	210019 Fig. 3-106
DEV02: Inp.asg.el.ctrl.open	210069
DEV03: Inp.asg.el.ctrl.open	210119
DEV04: Inp.asg.el.ctrl.open	210169
DEV05: Inp.asg.el.ctrl.open	210219
DEV06: Inp.asg.el.ctrl.open	211019
DEV07: Inp.asg.el.ctrl.open	211069
DEV08: Inp.asg.el.ctrl.open	211119
DEV09: Inp.asg.el.ctrl.open	21169
DEV10: Inp.asg.el.ctrl.open	211219
This setting defines the binary signal that will be used as the control signal to move the switchgear unit to the open position.	
Note:	
Only signals that are defined in the DEVxx function groups can be selected.	
DEV01: Inp.asg.el.ctr.close	210020 Fig. 3-106
DEV02: Inp.asg.el.ctr.close	210070
DEV03: Inp.asg.el.ctr.close	210120
DEV04: Inp.asg.el.ctr.close	210170
DEV05: Inp.asg.el.ctr.close	210220
DEV06: Inp.asg.el.ctr.close	211020
DEV07: Inp.asg.el.ctr.close	211070
DEV08: Inp.asg.el.ctr.close	211120
DEV09: Inp.asg.el.ctr.close	21170
DEV10: Inp.asg.el.ctr.close	211220
This setting defines the binary signal that will be used as the control signal to move the switchgear unit to the closed position.	
Note:	
Only signals that are defined in the DEVxx function groups can be selected.	
DEV01: Inp. asg. end Open	210015 Fig. 3-112
DEV02: Inp. asg. end Open	210065
DEV03: Inp. asg. end Open	210115
DEV04: Inp. asg. end Open	210165
DEV05: Inp. asg. end Open	210215
DEV06: Inp. asg. end Open	2110
DEV07: Inp. asg. end Open	2110
DEV08: Inp. asg. end Open	211115
DEV09: Inp. asg. end Open	211165
DEV10: Inp. asg. end Open	211215
This setting defines the binary signal that will be used to terminate the 'Open' command.	
Note:	
This setting is only visible (active) for bay types that are defined for 'direct motor control'.	

7 Settings

(continued)

DEV01: Inp. asg. end Close	210016 Fig. 3-112
DEV02: Inp. asg. end Close	210066
DEV03: Inp. asg. end Close	210116
DEV04: Inp. asg. end Close	210166
DEV05: Inp. asg. end Close	210216
DEV06: Inp. asg. end Close	211016
DEV07: Inp. asg. end Close	211066
DEV08: Inp. asg. end Close	211116
DEV09: Inp. asg. end Close	21116
DEV10: Inp. asg. end Close	211216
This setting defines the binary signal that will be used to terminate the 'Close' command.	
Note: This setting is only visible (active) for bay types that are defined for 'direct motor control'.	
DEV01: Open w/o stat.interl	210025 Fig. 3-108
DEV02: Open w/o stat.interl	210075
DEV03: Open w/o stat.interl	210125
DEV04: Open w/o stat.interl	210175
DEV05: Open w/o stat.interl	210225
DEV06: Open w/o stat.interl	211025
DEV07: Open w/o stat.interl	211075
DEV08: Open w/o stat.interl	21125
DEV09: Open w/o stat.interl	21175
DEV10: Open w/o stat.interl	211225
This setting specifies whether switching to open position is permitted without a check by the station interlock function.	
DEV01: Close w/o stat. int.	210026 Fig. 3-108
DEV02: Close w/o stat. int.	210076
DEV03: Close w/o stat. int.	210126
DEV04: Close w/o stat. int.	210176
DEV05: Close w/o stat. int.	210226
DEV06: Close w/o stat. int.	211026
DEV07: Close w/o stat. int.	211076
DEV08: Close w/o stat. int.	211126
DEV09: Close w/o stat. int.	21176
DEV10: Close w/o stat. int.	211226
This setting specifies whether switching to closed position is permitted without a check by the station interlock function.	

DEV01: Fct.assig.BiwSI open	210039 Fig. 3-107
DEV02: Fct.assig.BiwSI open	210089
DEV03: Fct.assig.BiwSI open	210139
DEV04: Fct.assig.BiwSI open	210189
DEV05: Fct.assig.BiwSI open	210239
DEV06: Fct.assig.BiwSI open	211039
DEV07: Fct.assig.BiwSI open	21089
DEV08: Fct.assig.BiwSI open	211139
DEV09: Fct.assig.BiwSI open	211189
DEV10: Fct.assig.BiwSI open	211239
This setting defines which output will issue the 'Open' enable to the	
interlocking logic when there is 'bay interlock with substation interlock'.	
Note:	
The interlock conditions for bay interlock with station interlock are included	
in the bay type definitions (see List of Bay Types in the Appendix). If the	
interlock condition is to be modified, this is possible by modifying the	
corresponding Boolean equation in the interlocking logic or by defining a	
new interlocking logic equation. Only in the last case is it necessary to	
change the function assignment.	

EV01: Fct.assig.BlwSI clos	0040
DEV02: Fct.assig.BlwSI clos	210090
DEV03: Fct.assig.BlwSI clos	210140
DEV04: Fct.assig.BlwSI clos	210190
DEV05: Fct.assig.BlwSI clos	10240
DEV06: Fct.assig.BlwSI clos	211040
DEV07: Fct.assig.BlwSI clos	211090
DEV08: Fct.assig.BlwSI clos	211
DEV09: Fct.assig.BlwSI clos	11
DEV10: Fct.assig.BlwSI clos	2112
This setting defines which output will issue the 'Close' enable to the interlocking logic when there is 'bay interlock with substation interlock'.	
Note:	
The interlock conditions for bay interlock with station interlock are included	ded
interlock condition is to be modified, this is possible by modifying the	
corresponding Boolean equation in the interlocking logic or by defining a	new interlocking logic equation. Only in the last case is it necessary to change the function assignment.

7 Settings

(continued)

7 Settings

(continued)

Interlocking logic

ILOCK: Fct.assignm. outp. 1	250000 Fig. 3-113
ILOCK: Fct.assignm. outp. 2	250001
ILOCK: Fct.assignm. outp. 3	250002
ILOCK: Fct.assignm. outp. 4	250003
ILOCK: Fct.assignm. outp. 5	250004
ILOCK: Fct.assignm. outp. 6	250005
ILOCK: Fct.assignm. outp. 7	250006
ILOCK: Fct.assignm. outp. 8	250007
ILOCK: Fct.assignm. outp. 9	250008
ILOCK: Fct.assignm. outp.10	250009
ILOCK: Fct.assignm. outp.11	250010
ILOCK: Fct.assignm. outp.12	250011
ILOCK: Fct.assignm. outp.13	250012
ILOCK: Fct.assignm. outp.14	250013
ILOCK: Fct.assignm. outp.15	250014
ILOCK: Fct.assignm. outp.16	250015
ILOCK: Fct.assignm. outp.17	250016
ILOCK: Fct.assignm. outp.18	250017
ILOCK: Fct.assignm. outp.19	250018
ILOCK: Fct.assignm. outp.20	250019
ILOCK: Fct.assignm. outp.21	250020
ILOCK: Fct.assignm. outp.22	250021
ILOCK: Fct.assignm. outp.23	250022
ILOCK: Fct.assignm. outp.24	250023
ILOCK: Fct.assignm. outp.25	250024
ILOCK: Fct.assignm. outp.26	250025
ILOCK: Fct.assignm. outp.27	250026
ILOCK: Fct.assignm. outp.28	250027
ILOCK: Fct.assignm. outp.29	250028
ILOCK: Fct.assignm. outp.30	250029
ILOCK: Fct.assignm. outp.31	250030
ILOCK: Fct.assignm. outp.32	250031
Definition of the interlock conditions.	

8 Information and Control Functions

8 Information and Control Functions

C232 generates a large number of signals, processes binary input signals, and acquires measured data during fault-free operation of the protected object as well as fault-related data. A number of counters are maintained for statistical purposes. This information can be read out from the integrated local control panel. All this information can be found in the 'Operation' and 'Events' folders in the menu tree.

8.1 Operation

8.1.1 Cyclic Values

8.1.1.1 Measured Operating Data

Measured data input

MEASI: Current IDC	004134 Fig. 3-20
Display of the input current.	
MEASI: Current IDC p.u.	004135 Fig. 3-20
Display of the input current referred to $\mathrm{I}_{\mathrm{DC}, \text { nom }}$.	
MEASI: Curr. IDC,lin. p.u.	$\begin{aligned} & 004136 \text { Fig. 3-20, } \\ & 3-21 \end{aligned}$
Display of the linearized input current referred to $\mathrm{I}_{\mathrm{DC}, \text { nom }}$.	
MEASI: Scaled value IDC, lin	004180
Display of the scaled linearized value.	

Main function

8 Information and Control Functions
 (continued)

8 Information and Control Functions
 (continued)

MAIN: Active power P prim.	000050 Fig. 3-34
Display of the updated active power value as a primary quantity.	
MAIN: Reac. power Q prim.	000052 Fig. 3-34
Display of the updated reactive power value as a primary quantity.	
MAIN: Act.energy outp.prim	005061 Fig. 3-36
Display of the updated active energy output as a primary quantity.	
MAIN: Act.energy inp. prim	005082 Fig. 3-36
Display of the updated active energy input as a primary quantity.	
MAIN: React.en. outp. prim	005038 Fig. 3-36
Display of the updated reactive energy output as a primary quantity.	
MAIN: React. en. inp. prim	005004 Fig. 3-36
Display of the updated reactive energy input as a primary quantity.	
MAIN: Current IP,max p.u.	005051 Fig. 3-30
Display of the maximum phase current referred to $\mathrm{I}_{\text {nom }}$.	
MAIN: IP,max p.u.,delay	005037 Fig. 3-30
Display of the delayed maximum phase current referred to $\mathrm{I}_{\text {nom }}$.	
MAIN: IP,max p.u.,stored	005035 Fig. 3-30
Display of the delayed stored maximum phase current referred to $\mathrm{I}_{\text {nom }}$.	
MAIN: Current IP,min p.u.	005056 Fig. 3-30
Display of the minimum phase current referred to $\mathrm{I}_{\text {nom }}$.	
MAIN: Current A p.u.	005041 Fig. 3-30
Display of phase current A referred to $\mathrm{I}_{\text {nom }}$.	
MAIN: Current B p.u.	006041 Fig. 3-30
Display of phase current B referred to $\mathrm{I}_{\text {nom }}$.	
MAIN: Current C p.u.	007041 Fig. 3-30
Display of phase current C referred to $\mathrm{I}_{\text {nom }}$.	
MAIN: Current $\sum(\mathrm{IP})$ p.u.	005011 Fig. 3-30
Display of the calculated resultant current referred to $I_{\mathrm{N}, \text { nom }}$.	
MAIN: Voltage VPG, max p.u.	${ }^{1080043}$ Fig. $3-33$
Display of the maximum phase-to-ground voltage referred to $\mathrm{V}_{\text {nom }}$.	
MAIN: Voltage VPG,min p.u.	000033 Fig. 3-33
Display of the minimum phase-to-ground voltage referred to $\mathrm{V}_{\text {nom }}$.	
MAIN: Voltage A-G p.u.	005043 Fig. 3-33
Display of the updated value for phase-to-ground voltage A-G referred to $V_{\text {nom. }}$	
MAIN: Voltage B-G p.u.	006033 Fig. 3-33
Display of the updated value for phase-to-ground voltage B-G referred to $\mathrm{V}_{\text {nom. }}$.	
MAIN: Voltage C-G p.u.	007033 Fig. 3-33
Display of the updated value for phase-to-ground voltage C-G referred to $V_{\text {nom }}$.	
MAIN: Volt. $\Sigma(\mathrm{VPG}) / \sqrt{3}$ p.u.	005013 Fig. 3-33
Display of the calculated neutral-displacement voltage referred to $\mathrm{V}_{\text {nom }}$.	

8 Information and Control Functions
 (continued)

Binary counts

8 Information and Control Functions

(continued)

8.1.1.2 Physical State Signals

Binary inputs

8 Information and Control Functions

(continued)

Binary outputs

OUTP: State K 201	157001
OUTP: State K 202	157005
OUTP: State K 203	157009
OUTP: State K 204	157013
OUTP: State K 205	157017
OUTP: State K 206	157021
OUTP: State K 207	157025
OUTP: State K 208	157029
OUTP: State K 209	157033
OUTP: State K 210	157037
OUTP: State K 211	157041
OUTP: State K 212	157045
OUTP: State K 213	157049
OUTP: State K 214	157053

The state of the output relays is displayed as follows:
\square Without function: No functions are assigned to the output relay.
\square Low: The output relay is not energized.
High: The output relay is energized.
This display appears regardless of the operating mode set for the output relay.

LED indicators

LED:	State H 2	085000
LED:	State H 3	085003
LED:	State H 4	085006
LED:	State H 5	085009
LED:	State H 6	085012
LED:	State H 7	085015
LED:	State H 8	085018
LED:	State H 9	085021
LED:	State H 10	085024
LED:	State H 11	085027
LED: State H 12	085030	

The state of the LED indicators is displayed as follows:
\square Inactive: The LED indicator is not energized.
\square Active: The LED indicator is energized.

8 Information and Control Functions

(continued)
Local control panel interface 1

Measured data input

Binary outputs

8.1.1.3 Logic State Signals

LOC:	Illumination on EXT
LOC:	Loc.acc.block.active
LOC:	Rem.acc.block.active

COMM1: Command block. EXT	003 173 Fig. 3-7, 3-8,
	$3-9,3-10$,
	$3-11$
COMM1: Sig./meas. block EXT	037074 Fig. 3-8,
COMM1: Command blocking	$3-9.3-10$
	003174 Fig. 3-7, 3-8,
	$3-9,3-10$,
COMM1: Sig./meas.val.block.	$3-11,3-12$
	037075 Fig. 3-8,
COMM1: IEC 870-5-103	$3-9-3-10$
COMM1: IEC 870-5-101	003219 Fig. 3-8
COMM1: IEC 870-5,ILS	003218 Fig. 3-9
COMM1: MODBUS	00322 Fig. 3-10
COMM1: DNP3	00322 Fig. 3-11

MEASI: Enabled	035008 Fig. 3-17
MEASI: Overload 20mA input	040191 Fig. 3-20
MEASI: Open circ. 20mA inp.	040192 Fig. 3-30

OUTP: Block outp.rel. EXT	040014 Fig. 3-22
OUTP: Reset latch. EXT	040015 Fig. 3-22
OUTP: Outp. relays blocked	021015 Fig. 3-22
OUTP: Latching reset	040088 Fig. 3-22

MAIN: Enable protect. EXT	003027 Fig. 3-37
MAIN: Disable protect. EXT	003026 Fig. 3-37
MAIN: System IN enable EXT	040130 Fig. 3-38
MAIN: Syst. IN disable EXT	040131 Fig. 3-38
MAIN: Test mode EXT	037070 Fig. 3-61
MAIN: Blocking 1 EXT	040060 Fig. 3-42
MAIN: Blocking 2 EXT	040061 Fig. 3-42
MAIN: Reset latch.trip EXT	040138 Fig. 3-50
MAIN: Trip cmd. block. EXT	036045 Fig. 3-50
MAIN: Switch dyn.param.EXT	036033 Fig. 3-39
MAIN: CB closed sig. EXT	036051 Fig. 3-45
MAIN: Man.cl.cmd.enabl.EXT	041023 Fig. 3-45
MAIN: Manual close EXT	036047
MAIN: Man. close cmd. EXT	041022 Fig. 3-45
MAIN: Man. trip cmd. EXT	037018 Fig. 3-51
MAIN: Reset indicat. EXT	065001 Fig. 3-59
MAIN: Min-pulse clock EXT	060060 Fig. 3-58
MAIN: Prot. ext. enabled	003028 Fig. 3-37
MAIN: Prot. ext. disabled	038046 Fig. 3-37
MAIN: Gen. trip signal	036251 Fig. 3-50
MAIN: Syst.IN ext/user en.	040132 Fig. 3-38
MAIN: System IN enabled	040133 Fig. 3-38
MAIN: System IN disabled	040134 Fig. 3-38
MAIN: Device not ready	004060 Fig. 3-43

8 Information and Control Functions

(continued)

MAIN: Enable control	221058 Fig. 3-54
MAIN: Test mode	037071 Fig. 3-61
MAIN: Blocked/faulty	004065 Fig. 3-43
MAIN: Trip emd. blocked	021013 Fig. 3-50
MAIN: Latch. trip c. reset	040139 Fig. 3-50
MAIN: Manual trip signal	034017 Fig. 3-51
MAIN: Man. close command	037068 Fig. 3-45
MAIN: Gen. trip command	035071 Fig. 3-50
MAIN: Gen. trip signal 1	036005 Fig. 3-50
MAIN: Gen. trip signal 2	036023 Fig. 3-50
MAIN: Gen. trip command 1	036071 Fig. 3-50
MAIN: Gen. trip command 2	036022 Fig. 3-50
MAIN: Close command	037009 Fig. 3-45
MAIN: Close aft.man.cl.rqu	037012
MAIN: Dynam. param. active	040090 Fig. 3-39
MAIN: General starting	040000 Fig. 3-48
MAIN: tGS elapsed	040009 Fig. 3-48
MAIN: Starting A	040005 Fig. 3-47
MAIN: Starting B	040006 Fig. 3-47
MAIN: Starting C	040007 Fig. 3-47
MAIN: Starting GF	040008 Fig. 3-47
MAIN: Starting Ineg	040105 Fig. 3-47
MAIN: Rush restr. A trig.	41027 Fig. 3-40
MAIN: Rush restr. B trig.	041028 Fig. 3-40
MAIN: Rush restr. C trig.	041029 Fig. 3-40
MAIN: TripSig. $\mathrm{tl}>/$ tIrefP>	040042 Fig. 3-49
MAIN: TripSig tiN>/tlrefN>	040043 Fig. 3-49
MAIN: Bay interlock. act.	221001 Fig. 3-54
MAIN: Subst. interl. act.	221000 Fig. 3-54
MAIN: Fct. block. 1 active	221015 Fig. 3-41
MAIN: Fct. block. 2 active	221023 Fig. 3-41
MAIN: Mon. mot. drives tr.	221056 Fig. 3-56
MAIN: Interlock equ. viol.	221018 Fig. 3-55
MAIN: CB trip internal	221006 Fig. 3-53
MAIN: CB tripped	221016 Fig. 3-53
MAIN: Mult. sig. 1 active	221017 Fig. 3-46
MAIN: Mult. sig. 1 stored	221054 Fig. 3-46
MAIN: Mult. sig. 2 active	221053 Fig. 3-46
MAIN: Mult. sig. 2 stored	221055 Fig. 3-46
MAIN: Communication error	221019 Fig. 3-57
MAIN: Auxiliary address	038005
MAIN: Dummy entry	004129
MAIN: Without function	060000
MAIN: Without function	061000

8 Information and Control Functions

(continued)

Parameter subset selection

PSS: Control via user EXT	036101 Fig. 3-62
PSS: Activate PS 1 EXT	065002 Fig. 3-62
PSS: Activate PS 2 EXT	065003 Fig. 3-62
PSS: Activate PS 3 EXT	065004 Fig. 3-62
PSS: Activate PS 4 EXT	065005 Fig. 3-62
PSS: Control via user	036102 Fig. 3-62
PSS: Ext.sel.param.subset	003061 Fig. 3-62
PSS: PS 1 activated ext.	036094 Fig. 3-62
PSS: PS 2 activated ext.	036095 Fig. 3-62
PSS: PS 3 activated ext.	036096 Fig. 3-62
PSS: PS 4 activated ext.	036097 Fig. 3-62
PSS: Actual param. subset	003062 Fig. 3-62
PSS: PS 1 active	036090 Fig. 3-62
PSS: PS 2 active	036091 Fig. 3-62
PSS: PS 3 active	036092 Fig. 3-62
PSS: PS 4 active	036093 Fig. 3-62

Self-monitoring

SFMON: Warning (LED)	036070 Fig. 3-63
SFMON: Warning (relay)	036100 Fig. 3-63
SFMON: Warm restart exec.	041202
SFMON: Cold restart exec.	041201
SFMON: Cold restart	093024
SFMON: Cold rest./SW update	093025
SFMON: Blocking/ HW failure	090019
SFMON: Relay Kxx faulty	041200
SFMON: Hardware clock fail.	093040
SFMON: Invalid SW d.loaded	096121
SFMON: Invalid type of bay	096122
SFMON: +15V supply faulty	093081
SFMON: +24V supply faulty	093082
SFMON: -15V supply faulty	093080
SFMON: Wrong module slot 1	096100
SFMON: Wrong module slot 2	096101
SFMON: Wrong module slot 3	096102
SFMON: Defect.module slot 1	097000
SFMON: Defect.module slot 2	097001
SFMON: Defect.module slot 3	097002
SFMON: Error K 201	097038
SFMON: Error K 202	097039
SFMON: Error K 203	097040
SFMON: Error K 204	097041
SFMON: Error K 205	097042
SFMON: Error K 206	097043
SFMON: Error K 207	097044
SFMON: Error K 208	097045
SFMON: Error K 209	097200
SFMON: Error K 210	097201
SFMON: Error K 211	097202
SFMON: Error K 212	097203
SFMON: Error K 213	097204
SFMON: Error K 214	097205
SFMON: Undef. operat. code	093010

8 Information and Control Functions

(continued)

Fault data acquisition
Fault recording

Definite-time overcurrent protection

SFMON: Invalid arithm. op.	093011
SFMON: Undefined interrupt	093012
SFMON: Exception oper.syst.	093013
SFMON: Data acquis. failure	090021
SFMON: Checksum error param	090003
SFMON: Clock sync. error	093041
SFMON: Overflow MT_RC	090012 Fig. 3-65
SFMON: Semaph. MT_RC block.	093015
SFMON: Inval. SW vers.COMM1	093075
SFMON: Invalid scaling IDC	093116 Fig. 3-20
SFMON: Overload 20 mA input	098025 Fig. 3-20
SFMON: Open circ. 20mA inp.	098026 Fig. 3-20
SFMON: Output 30	098053
SFMON: Output 30 (t)	098054
SFMON: Output 31 (t)	098056
SFMON: Output 32 (t)	098058
SFMON: Output 31	098055
SFMON: Output 32	098057

FT_DA: Trigger EXT
036088 Fig. 3-67

FT_RC: Trigger EXT	036089 Fig. 3-69
FT_RC: Trigger	037076 Fig. 3-69
FT_RC: $>$ triggered	040063 Fig. 3-69
FT_RC: Record. in progress	035000 Fig. 3-69
FT_RC: System disturb. runn	035004 Fig. 3-69
FT_RC: Fault mem. overflow	035001 Fig. 3-70
FT_RC: Faulty time tag	035002

DTOC: Blocking tl> EXT	041060 Fig. 3-73
DTOC: Blocking tl>> EXT	041061 Fig. 3-73
DTOC: Blocking tl>>> EXT	041062 Fig. 3-73
DTOC: Enabled	040120 Fig. 3-72
DTOC: Blocking tIN> EXT	041063 Fig. 3-75
DTOC: Starting l>	040036 Fig. 3-79
DTOC: Blocking tIN>> EXT	041064 Fig. 3-76
DTOC: Starting \|>>	040029 Fig. 3-79
DTOC: Blocking tIN>>> EXT	041065 Fig. 3-76
DTOC: Starting l>>>	039075 Fig. 3-79
DTOC: Starting IN>	040077 Fig. 3-76
DTOC: Starting IN>>	040041 Fig. 3-76
DTOC: Starting IN>>>	039078 Fig. 3-76
DTOC: tl> elapsed	040010 Fig. 3-79
DTOC: tl>> elapsed	040033 Fig. 3-79
DTOC: tl>>> elapsed	040012 Fig. 3-79
DTOC: Trip signal tl>	041020 Fig. 3-74
DTOC: Trip signal tl>>	040011 Fig. 3-74
DTOC: Trip signal tl>>>	040076 Fig. 3-74
DTOC: $1>$ rush. stab. enab.	04136
DTOC: $1 \gg$ rush.stab. enab.	041137
DTOC: $1 \ggg$ rush.stab. enab	041138
DTOC: tIN> elapsed	040013 Fig. 3-76

8 Information and Control Functions

(continued)

Inverse-time overcurrent protection

Limit value monitoring

DTOC: tIN>> elapsed	040121 Fig. 3-76
DTOC: $\mathrm{tIN} \ggg$ elapsed	039079 Fig. 3-76
DTOC: Trip signal tIN>	041021 Fig. 3-77
DTOC: Trip signal tIN>>	040028 Fig. 3-77
DTOC: Trip signal tIN>>>	040079 Fig. 3-77
DTOC: H.-time tIN $>$,i. runn	040086 Fig. 3-78
DTOC: tIN>,interm. elapsed	040099 Fig. 3-78
DTOC: Trip sig. $\mathrm{tIN}>$,intm.	039073 Fig. 3-78
DTOC: IN> rush.stab. enab.	041139
DTOC: IN>> rush.stab. enab	04140
DTOC: IN >>> rush.stab. en.	041141

IDMT: Block. tlref,P> EXT	040101 Fig. 3-86
IDMT: Block. tlref,neg>EXT	040102 Fig. 3-88
IDMT: Block. tlref,N> EXT	040103 Fig. 3-90
IDMT: Enabled	040100 Fig. 3-81
IDMT: Starting Iref,P>	040080 Fig. 3-88
IDMT: tlref,P> elapsed	040082 Fig. 3-88
IDMT: Trip signal tlref,P>	040084 Fig. 3-87
IDMT: Hold time P running	040053 Fig. 3-86
IDMT: Memory P clear	040110 Fig. 3-86
IDMT: Iref,P rush.stab.en.	04145
IDMT: Starting Iref,neg>	040107 Fig. 3-88
IDMT: tlref,neg> elapsed	040109 Fig. 3-88
IDMT: Trip sig. tlref,neg>	040108 Fig. 3-88
IDMT: Hold time neg runn.	040113 Fig. 3-88
IDMT: Memory neg clear	040111 Fig. 3-88
IDMT: Starting Iref,N>	040081 Fig. 3-96
IDMT: tlref,N> elapsed	040083 Fig. 3-96
IDMT: Trip signal tiref,N>	040085 Fig. 3-96
IDMT: Hold time N running	040054 Fig. 3-96
IDMT: Memory N clear	040112 Fig. 3-96
IDMT: Iref,N rush.stab.en.	04146

LIMIT: Enabled	040074 Fig. 3-93
LIMIT: tl> elapsed	040220 Fig. 3-93
LIMIT: tl>> elapsed	04022 Fig. 3-93
LIMIT: tl< elapsed	040222 Fig. 3-93
LIMIT: tl<< elapsed	040223 Fig. 3-93
LIMIT: tVPG> elapsed	040224 Fig. 3-94
LIMIT: tVPG>> elapsed	040225 Fig. 3-94
LIMIT: tVPG< elapsed	040226 Fig. 3-94
LIMIT: tVPG<< elapsed	040227 Fig. 3-94
LIMIT: tVPP> elapsed	040228 Fig. 3-94
LIMIT: tVPP>> elapsed	040229 Fig. 3-94
LIMIT: tVPP< elapsed	040230 Fig. 3-94
LIMIT: tVPP<< elapsed	040231 Fig. 3-94
LIMIT: tVNG> elapsed	040168 Fig. 3-95
LIMIT: tVNG>> elapsed	040169 Fig. 3-95
LIMIT: Starting IDC,lin>	040180 Fig. 3-96
LIMIT: Starting IDC,lin>>	040181 Fig. 3-96

8 Information and Control Functions

(continued)

LIMIT: tIDC,lin> elapsed	040182 Fig. 3-96
LIMIT: tIDC,lin>> elapsed	040183 Fig. 3-96
LIMIT: Starting IDC,lin<	040184 Fig. 3-96
LIMIT: Starting IDC,lin<<	040185 Fig. 3-96
LIMIT: tIDC,lin< elapsed	040186 Fig. 3-96
LIMIT: tIDC,lin<< elapsed	040187 Fig. 3-96

Logic

LOGIC: Input 1 EXT	034000 Fig. 3-98
LOGIC: Input 2 EXT	034001
LOGIC: Input 3 EXT	034002
LOGIC: Input 4 EXT	034003
LOGIC: Input 5 EXT	034004
LOGIC: Input 6 EXT	034005
LOGIC: Input 7 EXT	034006
LOGIC: Input 8 EXT	034007
LOGIC: Input 9 EXT	034008
LOGIC: Input 10 EXT	034009
LOGIC: Input 11 EXT	034010
LOGIC: Input 12 EXT	034011
LOGIC: Input 13 EXT	034012
LOGIC: Input 14 EXT	034013
LOGIC: Input 15 EXT	034014
LOGIC: Input 16 EXT	034015
LOGIC: Set 1 EXT	034051 Fig. 3-97
LOGIC: Set 2 EXT	034052
LOGIC: Set 3 EXT	034053
LOGIC: Set 4 EXT	03454
LOGIC: Set 5 EXT	034055
LOGIC: Set 6 EXT	034056
LOGIC: Set 7 EXT	034057
LOGIC: Set 8 EXT	034058
LOGIC: Reset 1 EXT	034059 Fig. 3-97
LOGIC: Reset 2 EXT	034060
LOGIC: Reset 3 EXT	034061
LOGIC: Reset 4 EXT	034062
LOGIC: Reset 5 EXT	034063
LOGIC: Reset 6 EXT	034064
LOGIC: Reset 7 EXT	034065
LOGIC: Reset 8 EXT	03066
LOGIC: 1 has been set	034067 Fig. 3-97
LOGIC: 2 has been set	034068
LOGIC: 3 has been set	034069
LOGIC: 4 has been set	034070
LOGIC: 5 has been set	034071
LOGIC: 6 has been set	034072
LOGIC: 7 has been set	034073
LOGIC: 8 has been set	034074
LOGIC: 1 set externally	034075 Fig. 3-97
LOGIC: 2 set externally	034076
LOGIC: 3 set externally	034077
LOGIC: 4 set externally	034078
LOGIC: 5 set externally	034079
LOGIC: 6 set externally	034080

8 Information and Control Functions

(continued)

LOGIC: 7 set externally	034081
LOGIC: 8 set externally	034082
LOGIC: Enabled	034046 Fig. 3-98
LOGIC: Output 1	042032 Fig. 3-98
LOGIC: Output 2	042034
LOGIC: Output 3	042036
LOGIC: Output 4	042038
LOGIC: Output 5	042040
LOGIC: Output 6	042042
LOGIC: Output 7	042044
LOGIC: Output 8	042046
LOGIC: Output 9	042048
LOGIC: Output 10	042050
LOGIC: Output 11	042052
LOGIC: Output 12	042054
LOGIC: Output 13	042056
LOGIC: Output 14	042058
LOGIC: Output 15	042060
LOGIC: Output 16	042062
LOGIC: Output 17	042064
LOGIC: Output 18	042066
LOGIC: Output 19	042068
LOGIC: Output 20	042070
LOGIC: Output 21	042072
LOGIC: Output 22	042074
LOGIC: Output 23	042076
LOGIC: Output 24	042078
LOGIC: Output 25	042080
LOGIC: Output 26	042082
LOGIC: Output 27	042084
LOGIC: Output 28	042086
LOGIC: Output 29	042088
LOGIC: Output 30	042090
LOGIC: Output 31	042092
LOGIC: Output 32	042094
LOGIC: Output 1 (t)	042033 Fig. 3-98
LOGIC: Output 2 (t)	042035
LOGIC: Output 3 (t)	042037
LOGIC: Output 4 (t)	042039
LOGIC: Output 5 (t)	042041
LOGIC: Output 6 (t)	042043
LOGIC: Output 7 (t)	042045
LOGIC: Output 8 (t)	042047
LOGIC: Output 9 (t)	042049
LOGIC: Output 10 (t)	042051
LOGIC: Output 11 (t)	042053
LOGIC: Output 12 (t)	042055
LOGIC: Output 13 (t)	042057
LOGIC: Output 14 (t)	042059
LOGIC: Output 15 (t)	042061
LOGIC: Output 16 (t)	042063
LOGIC: Output 17 (t)	042065
LOGIC: Output 18 (t)	042067

8 Information and Control Functions

(continued)

External devices 01 to 10

LOGIC: Output 19 (t)	042069
LOGIC: Output 20 (t)	042071
LOGIC: Output 21 (t)	042073
LOGIC: Output 22 (t)	042075
LOGIC: Output 23 (t)	042077
LOGIC: Output 24 (t)	042079
LOGIC: Output 25 (t)	042081
LOGIC: Output 26 (t)	042083
LOGIC: Output 27 (t)	042085
LOGIC: Output 28 (t)	042087
LOGIC: Output 29 (t)	042089
LOGIC: Output 30 (t)	042091
LOGIC: Output 31 (t)	042093
LOGIC: Output 32 (t)	042095

DEV01: Open signal EXT	210030 Fig. 3-111
DEV02: Open signal EXT	210080
DEV03: Open signal EXT	210130
DEV04: Open signal EXT	210180
DEV05: Open signal EXT	210230
DEV06: Open signal EXT	211030
DEV07: Open signal EXT	211080
DEV08: Open signal EXT	211130
DEV09: Open signal EXT	211180
DEV10: Open signal EXT	211230
DEV01: Closed signal EXT	210031 Fig. 3-111
DEV02: Closed signal EXT	210081
DEV03: Closed signal EXT	210131
DEV04: Closed signal EXT	210181
DEV05: Closed signal EXT	210231
DEV06: Closed signal EXT	211031
DEV07: Closed signal EXT	211081
DEV08: Closed signal EXT	211131
DEV09: Closed signal EXT	211181
DEV10: Closed signal EXT	211231
DEV01: Control state	210018 Fig. 3-111
DEV02: Control state	210068
DEV03: Control state	210118
DEV04: Control state	210168
DEV05: Control state	210218
DEV06: Control state	211018
DEV07: Control state	211068
DEV08: Control state	211118
DEV09: Control state	211168
DEV10: Control state	211218
DEV01: Switch. device open	210036
DEV02: Switch. device open	210086 Fig. 3-111
DEV03: Switch. device open	210136
DEV04: Switch. device open	210186
DEV05: Switch. device open	210236
DEV06: Switch. device open	211036
DEV07: Switch. device open	211086

8 Information and Control Functions

(continued)

Interlocking logic

DEV08: Switch. device open	211136
DEV09: Switch. device open	211186
DEV10: Switch. device open	211236
DEV01: Switch.device closed	210037 Fig. 3-111
DEV02: Switch.device closed	210087
DEV03: Switch.device closed	210137
DEV04: Switch.device closed	210187
DEV05: Switch.device closed	210237
DEV06: Switch.device closed	211037
DEV07: Switch.device closed	211087
DEV08: Switch.device closed	211137
DEV09: Switch.device closed	21187
DEV10: Switch.device closed	211237
DEV01: Sw. dev. interm.pos.	210038 Fig. 3-111
DEV02: Sw. dev. interm.pos.	210088
DEV03: Sw. dev. interm.pos	210138
DEV04: Sw. dev. interm.pos.	210188
DEV05: Sw. dev. interm.pos.	210238
DEV06: Sw. dev. interm.pos.	211038
DEV07: Sw. dev. interm.pos.	211088
DEV08: Sw. dev. interm.pos.	211138
DEV09: Sw. dev. interm.pos.	211188
DEV10: Sw. dev. interm.pos.	211238
DEV01: Open command	$\begin{gathered} 210028 \text { Fig. 3-110, } \\ 3-111 \end{gathered}$
DEV02: Open command	210078
DEV03: Open command	210128
DEV04: Open command	210178
DEV05: Open command	210228
DEV06: Open command	211028
DEV07: Open command	211078
DEV08: Open command	211128
DEV09: Open command	21178
DEV10: Open command	211228
DEV01: Close command	$\begin{aligned} & \text { 210029 Fig. 3-110, } \\ & 3-111 \end{aligned}$
DEV02: Close command	210079
DEV03: Close command	210129
DEV04: Close command	210179
DEV05: Close command	210229
DEV06: Close command	211029
DEV07: Close command	211079
DEV08: Close command	211129
DEV09: Close command	21179
DEV10: Close command	211229
ILOCK: Output 1	250032 Fig. 3-113
ILOCK: Output 2	250033
ILOCK: Output 3	250034
ILOCK: Output 4	250035
ILOCK: Output 5	250036
ILOCK: Output 6	250037
ILOCK: Output 7	250038

8 Information and Control Functions

(continued)

Single-pole commands

Single-pole signals

ILOCK: Output 8	250039
ILOCK: Output 9	250040
ILOCK: Output 10	250041
ILOCK: Output 11	250042
ILOCK: Output 12	250043
ILOCK: Output 13	250044
ILOCK: Output 14	250045
ILOCK: Output 15	250046
ILOCK: Output 16	250047
ILOCK: Output 17	250048
ILOCK: Output 18	250049
ILOCK: Output 19	25050
ILOCK: Output 20	250051
ILOCK: Output 21	250052
ILOCK: Output 22	250053
ILOCK: Output 23	250054
ILOCK: Output 24	250055
ILOCK: Output 25	250056
ILOCK: Output 26	250057
ILOCK: Output 27	250058
ILOCK: Output 28	250059
ILOCK: Output 29	250060
ILOCK: Output 30	250061
ILOCK: Output 31	250062
ILOCK: Output 32	250063

CMD_1: Command C001	200001 Fig. 3-114
CMD_1: Command C002	200006
CMD_1: Command C003	200011
CMD_1: Command C004	200016
CMD_1: Command C005	200021
CMD_1: Command C006	200026
CMD_1: Command C007	200031
CMD_1: Command C008	200036
CMD_1: Command C009	200041
CMD_1: Command C010	200046
CMD_1: Command C011	200051
CMD_1: Command C012	200056

SIG_1: Signal S001 EXT	226004 Fig. 3-115
SIG_1: Signal S002 EXT	226012
SIG_1: Signal S003 EXT	226020
SIG_1: Signal S004 EXT	226028
SIG_1: Signal S005 EXT	226036
SIG_1: Signal S006 EXT	226044
SIG_1: Signal S007 EXT	226052
SIG_1: Signal S008 EXT	226060
SIG_1: Signal S009 EXT	226068
SIG_1: Signal S010 EXT	226076
SIG_1: Signal S011 EXT	226084
SIG_1: Signal S012 EXT	226092
SIG_1: Signal S013 EXT	226100

8 Information and Control Functions

(continued)

Tap changer

Binary counts

SIG_1: Signal S014 EXT	226108
SIG_1: Signal S015 EXT	226116
SIG_1: Signal S016 EXT	226124
SIG_1: Signal S017 EXT	226132
SIG_1: Signal S018 EXT	226140
SIG_1: Signal S019 EXT	226148
SIG_1: Signal S020 EXT	226156
SIG_1: Logic signal S001	226005
SIG_1: Logic signal S002	226013
SIG_1: Logic signal S003	26021
SIG_1: Logic signal S004	26029
SIG_1: Logic signal S005	6037
SIG_1: Logic signal S006	226045
SIG_1: Logic signal S007	226053
SIG_1: Logic signal S008	226061
SIG_1: Logic signal S009	226069
SIG_1: Logic signal S010	26077
SIG_1: Logic signal S011	22085
SIG_1: Logic signal S012	26093
SIG_1: Logic signal S013	26101
SIG_1: Logic signal S014	226109
SIG_1: Logic signal S015	226117
SIG_1: Logic signal S016	226125
SIG_1: Logic signal S017	226133
SIG_1: Logic signal S018	226141
SIG_1: Logic signal S019	26149
SIG_1: Logic signal S020	226157

TAPCH: Tap / TapCh 1	249105 Fig. 3-118
TAPCH: TapCh 1 operating	249114 Fig. 3-118
TAPCH: Cmd. TapCh 1, down	249106 Fig. 3-118
TAPCH: Cmd. TapCh 1, up	249107 Fig. 3-118

COUNT: Set counter 1 EXT	217130 Fig. 3-117
COUNT: Transmit counts EXT	217009 Fig. 3-117
COUNT: Reset EXT	217004 Fig. 3-117
COUNT: Enabled	217001 Fig. 3-117
COUNT: Transmit counts	217010 Fig. 3-117
COUNT: Reset	217005 Fig. 3-117

8 Information and Control Functions
 (continued)

Device
Local control panel
"Logical" communication interface 1
"Logical" communication interface 2

Binary outputs

8.1.2 Control and Testing

DVICE: Service info 031080	031080

LOC: Param. change enabl.	003010
Setting the enable for changing values from the local control panel.	

COMM1: Sel.spontan.sig.test	003180 Fig. 3-13
COMM1: Test spont.sig.start	003184 Fig. 3-13
COMM1: Test spont.sig. end	003186 Fig. 3-13

COMM2: Sel.spontan.sig.test	103180 Fig. 3-15
COMM2: Test spont.sig.start	103184 Fig. 3-15
COMM2: Test spont.sig. end	103186 Fig. 3-15

OUTP: Reset latch. USER	021009 Fig. 3-22
Reset of latched output relays from the local control panel.	
OUTP: Relay assign. f.test	003042 Fig. 3-23
Selection of the relay to be tested.	
OUTP: Relay test	003043 Fig. 3-23
The relay selected for testing is triggered for the set time (OUTP: Holdtime for test).	
This control action is password-protected (see section entitled 'PasswordProtected Control Operations' in Chapter 6).	
OUTP: Hold-time for test	003044 Fig. 3-23
Setting for the time period for functional testing.	d for

Main function

\|MAIN: Enable syst. IN USER	003142 Fig. 3-38
Enabling the residual current stages of the DTOC/IDMT protection.	
MAIN: Disable syst.IN USER	003141 Fig. 3-38
Disabling the residual current stages of the DTOC/IDMT protection.	
MAIN: General reset	003002 Fig. 3-59

8 Information and Control Functions
 (continued)

Reset of the following memories:
All counters
\square LED indicators
\square Operating data memory

- All event memories
- Event counters
- Fault data
- Measured overload data
$\square \quad$ Recorded fault values
This control action is password-protected (see section entitled 'PasswordProtected Control Operations' in Chapter 6).
MAIN: Reset indicat. USER $\quad 021010$ Fig. 3-59
Reset of the following displays:
\square LED indicators
- Fault data

MAIN: Rset.latch.trip USER 021005 Fig. 3-50
Reset of latched trip commands from the local control panel.
MAIN: Reset c. cl./trip c. ${ }_{0} 03007$ Fig. 3-52
The counters for counting the trip commands are reset.
MAIN: Reset IP,max,stored
The display for the stored maximum phase current is reset.
MAIN: Reset meas.v. energy
The display for active and reactive energy output and input is reset.
MAIN: Man. trip cmd. USER
A trip command is issued from the local control panel for 100 ms . This setting is password-protected (see section entitled 'Password-Protected Control Operations' in Chapter 6).

Note:

The command is only executed if the manual trip command has been configured as trip command 1 or 2.
MAIN: Man. close cmd. USER
018033 Fig. 3-45
A close command is issued from the local control panel for the set reclose command time. This setting is password-protected (see section entitled 'Password-Protected Control Operations' in Chapter 6).
MAIN: Warm restart
A warm restart is carried out. The device functions as it does when the power supply is turned on.
MAIN: Cold restart

A cold restart is executed. This setting is password-protected (see section entitled 'Password-Protected Control Operations' in Chapter 6). A cold restart means that all settings and recordings are cleared. The values with which the device operates after a cold restart are the underlined default settings given in the 'Range of Values' column in the Address List. They are selected so as to block the device after a cold restart.

8 Information and Control Functions
 (continued)

Operating data recording

Monitoring signal recording

Fault recording

Logic

Binary counts

Operating data recording

OP_RC: Reset recording	100001 Fig. 3-64
The operating data memory and the counter for operation signals are reset.	

MT_RC: Reset recording 003008 Fig. 3-65
Reset of the monitoring signal memory.

FT_RC: Trigger USER	
Fault recording is enabled from the local control panel for 500 ms.	
FT_RC: Reset recording	
Reset of the following memories:	
\square	LED indicators
\square	Fault memory
\square	Fault counter
\square	Fault data
\square	Recorded fault values

LOGIC: Trigger 1	034038 Fig. 3-98
LOGIC: Trigger 2	030039 Fig. 3-98
LOGIC: Trigger 3	034040 Fig. 3-98
LOGIC: Trigger 4	034041 Fig. 3-98
LOGIC: Trigger 5	034022 Fig. 3-98
LOGIC: Trigger 6	034043 Fig. 3-98
LOGIC: Trigger 7	034044 Fig. 3-98
LOGIC: Trigger 8	034045 Fig. 3-98
Intervention in the	

COUNT: Transmit counts USER
Count transmission. COUNT: Reset USER Count reset.

8.1.3 Operating Data Recording

OP_RC: Operat. data record.	003024 Fig. 3-64
Point of entry into the operating data log.	

Point of entry into the operating data log.

| MT_RC: Mon. signal record. |
| :--- | :--- |
| Point of entry into the monitoring signal log. Fig. 3-65 |

8 Information and Control Functions

(continued)

Main functions

Operating data recording

Monitoring signal recording
MT_RC: No. monit. signals
004019 Fig. 3-65
Number of signals stored in the monitoring signal memory.

Fault recording

FT_RC: No. of faults	00420 Fig. 3-69
Number of faults.	
FT_RC: No. system disturb.	040
Number of system disturbances.	

8 Information and Control Functions

(continued)

Fault data acquisition

8.2.2 Measured Fault Data

FT_DA: Fault duration	008010 Fig. 3-66
Display of the fault duration.	
FT_DA: Running time	004021 Fig. 3-66
Display of the running time.	
FT_DA: Fault current P p.u.	004025 Fig. 3-68
Display of the fault current referred to $\mathrm{I}_{\text {nom }}$.	
FT_DA: Fault curr. N p.u.	004049 Fig. 3-68
Display of the ground fault current referred to $\mathrm{I}_{\mathrm{N}, \text { nom }}$.	

8.2.3 Fault Data Acquisition

FT_RC: Fault recording 1	003000 Fig. 3-70
FT_RC: Fault recording 2	133001 Fig. 3-70
FT_RC: Fault recording 3	133002 Fig. 3-70
FT_RC: Fault recording 4	${ }_{0} \mathbf{3} 0003$ Fig. 3-70
FT_RC: Fault recording 5	03304 Fig. 3-70
FT_RC: Fault recording 6	133005 Fig. 3-70
FT_RC: Fault recording 7	033006 Fig. 3-70
FT_RC: Fault recording 8	033007 Fig. 3-70
Point of entry into the faul	

9 Commissioning

9 Commissioning

9.1 Safety Instructions

The device must be reliably grounded before auxiliary voltage is turned on.
The surface-mounted case is grounded using the appropriate bolt and nut as the ground connection. The flush-mounted case must be grounded in the area of the rear sidepieces at the location provided. The cross-sectional area of this ground conductor must also conform to applicable national standards. A minimum conductor cross section of $2.5 \mathrm{~mm}^{2}$ is required.

In addition, a protective ground connection at the terminal contact on the power supply module (identified by the letters "PE" on the terminal connection diagram) is also required for proper operation of the unit. The cross-sectional area of this ground conductor must also conform to applicable national standards. A minimum cross section of $1.5 \mathrm{~mm}^{2}$ is required.

Before working on the device itself or in the space where the device is connected, always disconnect the device from the supply.

The secondary circuit of operating current transformers must not be opened. If the secondary circuit of an operating current transformer is opened, there is the danger that the resulting voltages will endanger people and damage the insulation.

The threaded terminal block for current transformer connection is not a shorting block. Therefore always short-circuit current transformers before loosening the threaded terminals.

The fiber-optic interface may only be connected or disconnected when the supply voltage for the unit is shut off.

The PC interface is not designed for permanent connection. Consequently the socket does not have the extra insulation from circuits connected to the system that is required per VDE 0106 Part 101. Therefore when connecting the connecting cable make sure that you do not touch the socket contacts.

Application of analog signals to the measuring inputs must be in compliance with the maximum permissible rating of the measuring inputs (see chapter entitled 'Technical Data').

9 Commissioning
 (continued)

9.2 Commissioning Tests

After the C232 has been installed and connected as described in Chapter 5, the commissioning procedure can begin.

Before turning on the power supply voltage, the following items must be checked again:
\square Is the device connected to the protective ground at the specified location?
\square Does the nominal voltage of the battery agree with the nominal auxiliary voltage of the device?
\square Are the current and voltage transformer connections, grounding, and phase sequences correct?

After the wiring work is completed, check the system to make sure it is properly isolated. The conditions given in VDE 0100 must be satisfied.

Once all checks have been made, the power supply voltage may be turned on. After voltage has been applied, the device starts up. During startup, various startup tests are carried out (see section entitled 'Self-Monitoring' in Chapter 3). The LED indicator labeled 'HEALTHY' (H1) and the LED indicator labeled 'OUT OF SERVICE' (H2) will light up. (The LED indicator H2 is coupled to the signal MAIN: Blocked/faulty.) After approximately 15 s , the C 232 is ready for operation. In initial, factory-set condition or after a cold restart, the device type 'C232' and the time of day will be displayed in the first line of the LCD display. If a bay type has already been set, the bay will be displayed in single-pole representation.

Once the change-enabling command has been issued (see the Section ChangeEnabling Function in Chapter 6), all settings can be entered. The procedure for entering settings from the integrated local control panel is described in Chapter 6.

Note: \quad First set the desired bay type (MAIN: Type of bay in the "Par/Conf/" folder). When the bay type is set, the binary signal inputs and output relays are automatically configured to conform to the definitions specified for the bay type (see List of Bay Types) - provided that the automatic configuration is enabled at MAIN: Auto-assignment I/O.

After the enter key (E) is pressed to confirm the 'Type of bay' setting parameter, the 'Initializing bay' signal is displayed for 20 s . The "EDIT MODE" LED will light up. Local control actions are not possible during this time.

9 Commissioning
 (continued)

If either the PC interface or the communication interface will be used for setting the C232 and reading out event records, then the following settings must first be made from the integrated local control panel.

- 'Par/DvID/' folder:
- DVICE: Device password 1
- DVICE: Device password 2
- 'Par/Conf/' folder:
- PC: Name of manufacturer
- PC: Bay address
- PC: Device address
- PC: Baud rate
- PC: Parity bit
- COMM1: Function group COMM1
- COMM1: General enable USER
- COMM1: Name of manufacturer
- COMM1: Line idle state
- COMM1: Baud rate
- COMM1: Parity bit
- COMM1: Communicat. protocol
- COMM1: Octet comm. address
- COMM1: Octet address ASDU
- 'Par/Func/Glob/' folder:
- PC: Command blocking
- PC: Sig./meas.val.block
- COMM1: Command block. USER
- COMM1: Sig./meas.block.USER

Instructions on these settings are given in Chapters 7 and 8.
Note: The settings given above apply to the IEC 60870-5-103 communication protocol. If another protocol is being used for the communication interface, additional settings may be necessary. See Chapter 7 for further details.

9 Commissioning
 (continued)

After the settings have been made, the following checks should be carried out again before blocking is canceled:
\square Has the appropriate bay type been configured?
\square Does the function assignment of the binary signal inputs agree with the terminal connection diagram?
\square Has the correct operating mode been selected for the binary signal inputs?
\square Does the function assignment of the output relays agree with the terminal connection diagram?
\square Has the correct operating mode been selected for the output relays?
\square Have the interlocking equations and the external interlocking inputs been configured correctly?
\square Have all settings been made correctly?
Now the blocks can be cleared as follows ('Par/Func/Glob/' folder):

- OUTP: Outp.rel.block USER
\square MAIN: Trip cmd.block USER
\square MAIN: Device on-line "Yes (on)"
\square MAIN: Syst.IN Enabeld USER "Yes (on)"
Tests
By using the signals and displays generated by the C232, it is possible to determine whether the C232 is correctly set and properly interconnected with the station. Signals are signaled by output relays and LED indicators and entered into the event memory. In addition, the signals can be checked by selecting the appropriate signal in the menu tree.

If the user does not wish to operate the circuit breaker during the protection functions test, the trip commands can be blocked through MAIN: Trip cmd. block. USER ('Par/Func/Glob/' folder) or an appropriately configured binary signal input. If circuit breaker testing is desired, it is possible to issue a trip command for 100 ms through MAIN: Man. trip cmd. USER ('Oper/CtrITest' folder) or an appropriately configured binary signal input. Selection of the trip command from the integrated local control panel is password-protected (see Section Password-Protected Control Actions in Chapter 6).

Note: \quad The manual trip command is only executed if it has been configured for trip command 1 or 2.

If the C232 is connected to substation control level, it is advisable to activate the test mode via MAIN: Test mode USER ('Par/Func/Glob/' folder) or an appropriately configured binary signal input. The telegrams are then identified accordingly (cause of transmission: test mode).

9 Commissioning
 (continued)

Checking the binary signal inputs

By selecting the corresponding state signal ('Oper/Cycl/Phys' folder), it is possible to determine whether the input signal that is present is recognized correctly by the C232. The values displayed have the following meanings:
\square Low: Not energized.

- High: Energized.
\square Without function: No functions are assigned to the binary signal input.
This display appears regardless of the binary signal input mode selected.
Checking the output relays
It is possible to trigger the output relays for a settable time period for test purposes (time setting at OUTP: Hold-time for test in 'Oper/CtrlTest/' folder). First select the output relay to be tested (OUTP: Relay assign. f.test, 'Oper/CtrlTest/' folder). Test triggering then occurs via OUTP: Relay test (Oper/CtrlTest/' folder). It is password-protected (see the section entitled 'Password-Protected Control Operations' in Chapter 6).

Before starting the test, open any triggering circuits for external devices so that no inadvertent switching operations will take place.

Checking the currentmeasuring inputs

By applying appropriate analog signals as 'measuring variables' to the measuring inputs, the user can check via the operating data displays (see Chapter 'Information and Control Functions') whether the protection and control unit detects the analog signals with the specified accuracy (folder 'Oper/Cycl/Data/').
\square MAIN: Current A p.u.: Display of the updated phase current A referred to the nominal device current $I_{\text {nom }}$
\square MAIN: Current B p.u.: Display of the updated phase current B referred to the nominal device current $\mathrm{I}_{\text {nom }}$
\square MAIN: Current C p.u.: Display of the updated phase current C referred to the nominal device current $I_{\text {nom }}$

Application of analog signals to the measuring inputs must be in compliance with the maximum permissible rating of the measuring inputs (see the Chapter on Technical Data).

9 Commissioning
 (continued)

Checking the protection function

Testing the definite-time overcurrent protection function

Four parameter subsets are stored in the C232, one of which is activated. Before checking the protective function, the user should determine which parameter subset is activated. The activated parameter subset is displayed at PSS: Actual param. subset ('Oper/Cycl/Log/" folder).

Testing of the definite-time overcurrent protection function can only be carried out if the following conditions are met:
\square DTOC protection is enabled. This may be interrogated at the logic state signal DTOC: Enabled ('Oper/Cycl/Log/' folder).
\square The function MAIN: Block tim.st. IN, neg is set to No (folder Par/Func/Gen).
\square The function MAIN: Gen. starting mode is set to 'Starting IN, Ineg' (folder Par/Func/Gen).

By applying appropriate measuring variables, the overcurrent stages and the associated timer stages can be tested.

Application of analog signals to the measuring inputs must be in compliance with the maximum permissible rating of the measuring inputs (see the Chapter on Technical Data).

Testing the inverse-time overcurrent protection function

Testing of the inverse-time overcurrent protection function can only be carried out if the following conditions are met:
\square IDMT protection is enabled. This may be interrogated at the logic state signal IDMT: Enabled (folder 'Oper/Cycl/Log/').
\square The function MAIN: Block tim.st. IN, neg is set to No (folder Par/Func/Gen).
\square The function MAIN: Gen. starting mode is set to 'Starting IN, Ineg' (folder Par/Func/Gen).

By applying appropriate measuring variables, the overcurrent stages and the associated time delays can be tested.

Application of analog signals to the measuring inputs must be in compliance with the maximum permissible rating of the measuring inputs (see the Chapter on Technical Data).

9 Commissioning
 (continued)

The trip times for the inverse-time overcurrent protection function as a function of the set tripping characteristics are shown in the following table:

No.	Tripping	Formula for the		Constants		Formula for the	
	$k=0.01$ to 10.00		a	b	c		R
0	Definite Time	$t=k$					
	Per IEC 255-3	$t=k \cdot \frac{a}{\left(\frac{1}{I_{\text {ref }}}\right)^{b}-1}$					
1	Standard Inverse		0.14	0.02			
2	Very Inverse		13.50	1.00			
3	Extremely Inverse		80.00	2.00			
4	Long Time Inverse		120.00	1.00			
	Per IEEE C37.112	$t=k \cdot\left(\frac{a}{\left(\frac{l}{I_{\text {ref }}}\right)^{b}-1}+c\right)$				$t_{r}=k \cdot \frac{R}{\left(\frac{1}{I_{\text {ref }}}\right)^{2}-1}$	
5	Moderately Inverse		0.0515	0.0200	0.1140		4.85
6	Very Inverse		19.6100	2.0000	0.4910		21.60
7	Extremely Inverse		28.2000	2.0000	0.1217		29.10
	Per ANSI	$t=k \cdot\left(\frac{a}{\left(\frac{l}{I_{\text {ref }}}\right)^{b}-1}+c\right)$				$t_{r}=k \cdot \frac{R}{\left(\frac{1}{I_{\text {ref }}}\right)^{2}-1}$	
8	Normally Inverse		8.9341	2.0938	0.17966		9.00
9	Short Time Inverse		0.2663	1.2969	0.03393		0.50
10	Long Time Inverse		5.6143	1.0000	2.18592		15.75
11	RI-Type Inverse	$t=k \cdot \frac{1}{0.339-\frac{0.236}{\left(\frac{1}{I_{\text {ref }}}\right)}}$					
	RXIDG-Type Inverse	$t=k \cdot\left(5.8-1.35 \cdot \ln \frac{l}{l_{\text {ref }}}\right)$					

9 Commissioning
 (continued)

Testing the control
functions
The selected bay type is displayed on the Bay Panel. The activation of the Bay Panel display is described in Chapter 6. If the position signals of the switchgear units are connected correctly to the C232, then the updated switching status of the switchgear units will be displayed on the bay panel. If the switching status is not displayed correctly, the user can check the physical state signals of the binary inputs to determine whether the status signals in the C232 are correct (this can be checked at INP: State U xxx, 'Oper/Cycl/Phys').

Switching from local to remote control

Local control

Remote control

Switchgear unit not responding

Switchgear units can be controlled locally using the keys on the local control panel, remotely through the communication interface, or through appropriately configured binary signal inputs. The control point - Local or Remote - is selected either by means of the L/R key on the local control panel or via an appropriately configured binary signal input. If a binary signal input has been configured, then the L/R key has no effect. Switching from Remote to Local using the L/R key on the local control panel is only possible if the L/R password has been entered first (see additional instructions in Chapter 6). The selected control point is displayed on the Bay Panel.

The switchgear unit to be controlled is selected by pressing the Selection key on the local control panel and then controlled by pressing the Open or Close key. If the switchgear units are to be controlled through binary signal inputs, then the appropriate signal input must be triggered.

The switchgear units can be controlled via the communication interface or appropriately configured binary signal inputs.

If a switchgear unit does not respond to a switching command, it could be due to the following factors:
\square The general control enable - if configured - has not been set. (configuration at MAIN: Inp.asg. ctrl.enabl., 'Par/Func/Glob' folder)
\square Interlocking has been triggered.
(This can be checked at MAIN: Interlock equ. viol., 'Oper/Cycl/Log/'.)
\square For bays with direct motor control only:
Motor monitoring has been triggered.
(This can be checked at MAIN: Mon. mot. drives tr., 'Oper/Cycl/Log/'.)

To determine which interlocks are activated, check as follows:

- For bay interlock (BI) check:

MAIN: Bay interlock. act., 'Oper/Cyc//Log/' folder

- For substation interlock (SI) check:

MAIN: Subst. interl. act., 'Oper/Cycl/Log/' folder

- For local control:

It is possible to deactivate the interlock through an appropriately configured binary signal input.
Configuration through MAIN: Inp.asg.interl.deact, 'Oper/Func/Glob' folder)
Note: Substation interlocking is only active when there is communication with the substation control level through the communication interface. In the event of a communication error, the unit will switch automatically to 'bay interlock without station interlock'. To determine if there is a communication error, check at MAIN: Communication error, 'Oper/Cycl/Log/' folder.

Substation interlocking can be deactivated selectively for each switchgear unit and each control direction - Open or Close.
(This can be checked at DEVxx: Open w/o stat.interl or DEVxx: Close w/o stat. int., 'Oper/Cyc//Log/' folder.)

9 Commissioning

(continued)

Before the C232 is released for operation, the user should make sure that the following steps have been taken:
\square All memories have been reset.
(Reset at MAIN: General reset (password-protected) and MT_RC: Reset recording, both in 'Oper/CtrlTest/ folder.)
\square Blocking of output relays has been canceled. (OUTP: Outp.rel.block USER in 'Par/Func/Glob/' folder, setting 'No')
\square Blocking of the trip command has been canceled. (MAIN: Trip cmd.block.USER, 'Par/Func/Glob/' folder, setting 'No')
\square The C232device is on-line.
(MAIN: Device on-line, 'Par/Func/Glob/' folder, setting 'Yes (on)')
\square The residual current stages of the protection functions are enabled (on). (MAIN: Syst.IN enabled USER ,'Par/Func/Gen/' folder, setting 'Yes (on)')
\square The correct control point - Local or Remote - is activated.
\square The desired interlocking conditions are activated.
After completion of commissioning, only the green LED indicator signaling 'Operation' (H1) should be on.

10 Troubleshooting

10 Troubleshooting

This chapter describes problems that might be encountered, their causes, and possible methods for eliminating them. It is intended as a general orientation only, and in cases of doubt it is better to return the C232 to the manufacturer. Please follow the packaging instructions in the section entitled 'Unpacking and Packing' in Chapter 5 when returning equipment to the manufacturer.

Problem:

Lines of text are not displayed on the local control panel.

- Check to see whether there is supply voltage at the device connection points.

■ Check to see whether the magnitude of the auxiliary voltage is correct. The C232 is protected against damage resulting from polarity reversal.

Before checking further, disconnect the C232 from the power supply.

The local control panel is connected to I/O module by a plug-in connecting cable. Make sure the connector position is correct. Do not bend the connecting cable.
\square The C232 issues a 'Warning' signal on LED H3. (H3 is labeled 'ALARM', it is coupled to the signal SFMON: Warning (LED).)

Identify the specific problem by reading out the monitoring signal memory (see the section entitled 'Monitoring Signal Memory Readout' in Chapter 6). The table below lists possible monitoring or warning indications (provided that a configuration setting has been entered at SFMON: Fct. assign. warning), the faulty area, the C232 response, and the mode of the output relay configured for 'Warning' and 'Blocked/faulty'.

Key	
-:	No reaction and/or no output relay triggered.
Yes:	The corresponding output relay is triggered.
Updating:	The output relay configured for 'Warning' starts only if the monitoring signal is still present.
${ }^{1)}$:	The 'Blocked/faulty' output relay only operates if the signal has been configured at MAIN: Fct. assignm. fault.
${ }^{2)}$:	The 'Warning' output relay only operates if the signal has been configured at SFMON: Fct. assignm. warning.

10 Troubleshooting
 (continued)

10 Troubleshooting
 (continued)

SFMON: +24V supply faulty		098082
The +24 V internal supply voltage has dro 1st device reaction / 2nd device reaction: 'Warning' output relay: 'Blocked/faulty' output relay:	ped below a minimum v Warm restart / Device Yes/Yes Yes / Yes	
SFMON: -15V supply faulty		098380
The -15 V internal supply voltage has dro 1st device reaction / 2nd device reaction: 'Warning' output relay: 'Blocked/faulty' output relay:	ed below a minimum va Warm restart / Device Yes/Yes Yes/Yes	king
SFMON: Wrong module slot 1 SFMON: Wrong module slot 2 SFMON: Wrong module slot 3		
Module in wrong slot. 1st device reaction / 2nd device reaction: 'Warning' output relay: 'Blocked/faulty' output relay:	Warm restart / Device Yes / Yes Yes / Yes	
SFMON: Defect.module slot 1 SFMON: Defect.module slot 2 SFMON: Defect.module slot 3		$\begin{aligned} & 097000 \\ & 097001 \\ & 097002 \end{aligned}$
Defective module in slot x. 1st device reaction / 2nd device reaction: 'Warning' output relay: 'Blocked/faulty' output relay:	- / - Updating / Updating Yes / Yes ${ }^{11}$	
SFMON: Error K 201		097038
SFMON: Error K 202		097039
SFMON: Error K 203		097940
SFMON: Error K 204		041
SFMON: Error K 205		097042
SFMON: Error K 206		097043
SFMON: Error K 207		097044
SFMON: Error K 208		097045
SFMON: Error K 209		097200
SFMON: Error K 210		097
SFMON: Error K 211		097202
SFMON: Error K 212		203
SFMON: Error K 213		097204
SFMON: Error K 214		097205
Output relay K xxx defective.		
1st device reaction / 2nd device reaction: 'Warning' output relay: 'Blocked/faulty' output relay:	- / - Updating / Updating Yes / Yes ${ }^{11}$	

10 Troubleshooting
 (continued)

SFMON: Undef. operat. code	093010
Undefined operation code, i.e. software error.	
1st device reaction / 2nd device reaction:	Warm restart / Device blocking Yes/Yes
'Warning' output relay:	
'Blocked/faulty' output relay:	Yes / Yes
SFMON: Invalid arithm. op.	
Invalid arithmetic operation, i.e. software error.	
1st device reaction / 2nd device reaction:	Warm restart / Device blockingYes / Yes
'Warning' output relay:	
'Blocked/faulty' output relay:	Yes / Yes
SFMON: Undefined interrupt	093012
Undefined interrupt, i.e. software error.	
1st device reaction / 2nd device reaction 'Warning' output relay:	Warm restart / Device blocking Yes/Yes
'Blocked/faulty' output relay:	Yes / Yes
SFMON: Exception oper.syst.	093013
Interrupt of the operating system.	
1st device reaction / 2nd device reaction:	Warm restart / Device blocking Yes / Yes
'Warning' output relay:	
'Blocked/faulty' output relay:	Yes / Yes
SFMON: Data acquis. failure	
Watchdog is monitoring the periodic start of protection routines. It has detected an error.	
1st device reaction / 2nd device reaction:	Warm restart / Device blocking Yes/Yes
'Warning' output relay:	
'Blocked/faulty' output relay:	Yes/Yes
SFMON: Checksum error param	
A checksum error involving the parameters in the memory (NOVRAM) has been detected.	
1st device reaction / 2nd device reaction:	Warm restart / Device blocking Yes/Yes
'Warning' output relay:	
'Blocked/faulty' output relay:	Yes/Yes
SFMON: Clock sync. error	098041
In 10 consecutive clock synchronization telegrams, the difference between the time of day given in the telegram and that of the hardware clock is greater than 10 ms .	
1st device reaction / 2nd device reaction:	
'Warning' output relay:	Yes / Yes
'Blocked/faulty' output relay:	

10 Troubleshooting
 (continued)

10 Troubleshooting

(continued)

Maintenance procedures in the power supply area

Routine functional testing

11 Maintenance

The C232 is a low-maintenance device. The components used in the units are selected to meet exacting requirements. Recalibration is not necessary.

Electrolytic capacitors are installed in the power supply area because of dimensioning requirements. The useful life of these capacitors is significant from a maintenance standpoint. When the equipment is operated continuously at the upper limit of the recommended temperature range $\left(+55^{\circ} \mathrm{C}\right.$ or $\left.131^{\circ} \mathrm{F}\right)$, the useful life of these components is 80,000 hours, or more than 9 years. Under these conditions, replacement of the electrolytic capacitors is recommended after a period of 8 to 10 years. Component drift follows the '10-degree rule'. This means that the useful life is doubled for each 10 K reduction in temperature. When the operating temperatures inside the devices are lower, the required maintenance intervals are increased accordingly.

Replacement of the maintenance-related components named above is not possible without soldering. Maintenance work must be carried out by AREVA service personnel only.

The C232 is used as a safety device and must therefore be routinely checked for proper operation. The first functional tests should be carried out approximately 6 to 12 months after commissioning. Additional functional tests should performed at intervals of 2 to 3 years -4 years at the maximum.

The C232 incorporates in its system a very extensive self-monitoring function for hardware and software. The internal structure guarantees, for example, that communication within the processor system will be checked on a continuing basis.

Nonetheless, there are a number of subfunctions that cannot be checked by the selfmonitoring feature without running a test from the device terminals. The respective device-specific properties and setting parameters must be observed in such cases.

In particular, none of the control and signaling circuits that are run to the device from the outside are checked by the self-monitoring function.

Analog input circuits

The analog measured variables are fed through an analog preprocessing feature (antialiasing filtering) to a common analog-to-digital converter. In conjunction with the selfmonitoring function, the measuring-circuit monitoring function that is available for the device's general functions can detect deviations in many cases, depending on the parameter settings for sensitivity. However, it is still necessary to test from the device terminals in order to make sure that the analog measuring circuits are functioning correctly.

The best way to carry out a static test of the analog input circuits is to check the primary measured operating data using the operating data measurement function or to use a suitable testing instrument. A "small" measured value (such as the nominal current in the current path) and a "large" measured value (such as the nominal voltage in the voltage path) should be used to check the measuring range of the A / D converter. This makes it possible to check the entire control range.

The accuracy of operating data measurement is $<1 \%$. An important factor in evaluating device performance is long-term performance based on comparison with previous measurements.

11 Maintenance

(continued) phase relation of the current transformers and the anti-aliasing filter.
A dynamic test is not absolutely necessary, since it only checks the stability of a few less passive components. Based on reliability analysis, the statistical expectation is that only one component in 10 years in 1000 devices will be outside the tolerance range.

Additional analog testing is not necessary, in our opinion, since information processing is completely numerical and is based on the measured analog current and voltage values. Proper operation was checked in conjunction with type testing.

Binary inputs

Binary outputs
The binary inputs are not checked by the self-monitoring function. However, a testing function is integrated into the software so that the trigger state of each input can be read out ('Oper/Cycl/Phys' folder). This check should be performed for each input being used and can be done, if necessary, without disconnecting any device wiring.

With respect to binary outputs, the integrated self-monitoring function includes even twophase triggering of the relay coils of all the relays. External contact circuits are not monitored. In this case, relays must be triggered by way of device functions or integrated test functions. For these testing purposes, triggering of the output circuits is integrated into the software through a special control function ('Oper/CtrlTest/’ folder).

Before starting testing, open any triggering circuits for external devices so that no inadvertent switching operations will take place.

The integrated self-monitoring function for the PC or communication interface also includes the communication module. The complete communication system, including connecting link and fiber-optic module (if applicable), is always totally monitored as long as a link is established through the control program or the communication protocol.

12 Storage

Devices must be stored in a dry and clean environment. A temperature range of $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$ must be maintained during storage (see the Chapter on Technical Data). The relative humidity must be controlled so that neither condensation nor ice formation will result.

If the units are stored without being connected to auxiliary voltage, then the electrolytic capacitors in the power supply area need to be reformed every 4 years. Reform the capacitors by connecting auxiliary voltage to the C232 for approximately 10 minutes.

13 Accessories and Spare Parts

13 Accessories and Spare Parts

The C232 is supplied with standard labeling for the LED indicators. User-specific labeling for non-standard configurations of the LED's can be printed on the blank label strips packed with the device. The label strip can then be glued to the front panel area reserved for this purpose.

The label strip can be filled in using an overhead projector pen, waterproof type. Example: Stabilo brand pen, OH Pen 196 PS.

Description	Order No.
S\&R-103 operating program (for Windows)	On request

14 Order Information

C232

Acceptance test certificate	
according to EN10204-2.1/DIN 50049-2.1	to be ordered in plain text

<1> Must be ordered prior to device production

```
Region Your Contact:
```

```
South East Asia
Tel. : +65 67 49 07 77
Fax : +65 68419555
```

```
Pacific
Tel. : +65 67 49 07 77
Fax: +65 68461795
China | |
Tel. : +86 1064 106288
Fax : +86 1064106264
India
Tel. : +9144 24317100
Fax : +9144 24341297
```

North America
Tel. : +1 (484) 766-8100
Fax : +1 (484) 766-8650
Central America
Tel. : +52 5511011000
Fax : +52 5526240493
South America
Tel. : +55 1134917469
Fax : +55 1134917476
France
Tel. : +33 (0)1 40896600
Fax : +33 (0)1 40896719
British Isles
Tel. : +44 (0) 1785274108
Fax : +44 (0) 1785274574

```
Northern Europe
Tel. : +49 6966 32 1151
Fax : +496966 32 2154
```

Central Europe \& Western Asia
Tel. : +48 228509696
|Fax : +48 226545588
Near \& Middle East
Tel. : +971-6-556 0559
Fax : +971-6-556 5133
Mediterranean, North \& West Africa
Tel. : +33 (0) 141498838
Fax : +33 (0)1 41492423
Southern \& Eastern Africa
Tel. : +27 118205111
Fax : +27 118205220

