Modular units

SM6-36

Catalogue

2008

Schneider
 Electric

A new path for achieving your electrical installations

A comprehensive offer

The SM6-36 range is part of a comprehensive offer of products that are perfectly coordinated to meet all medium and low voltage electrical distribution requirements. All of these products have been designed to work together: electrical, mechanical and communication compatibility.
The electrical installation is thus both optimised and has improved performance:

- better service continuity,
- increased personnel and equipment safety, - guaranteed upgradeability, \square efficient monitoring and control.
You therefore have all the advantages at hand in terms of knowhow and creativity for achieving optimised, safe, upgradeable and compliant installations.

Tools for facilitating the design and installation

With Schneider Electric, you have a complete range of tools to help you get to know and install the products whilst complying with current standards and good working practices. These tools, technical sheets and guides, design software, training courses, etc. are regularly updated.

Schneider Electric is associating itself with your know-how and your creativity to produce optimised, safe, upgradeable and compliant installations

For a real partnership with you

A universal solution doesn't exist because each electrical installation is specific. The variety of combinations on offer allows you to truly customise the technical solutions.
You are able to express your creativity and put your know-how to best advantage when designing, manufacturing and exploiting an electrical installation.

Contents

Presentation 6
Field of application 9
Units for all functions 10
Operating conditions 13
Main characteristics 14
Description 15
SF6 switchgear 18
Safety of people 20
A range of FPIs for underground networks 22
Description of the control/monitoring and protection functions 23
Unit selection 24
Operating mechanisms 33
Auxiliaries selection 36
Instrument transformers 37
Interlocks 38
Fuses selection 40
Connections 41
Installation 42
Order form 45

The Schneider Electric group's experience extends over forty years in factory-built cubicles and over twenty five years in SF6 technology for Medium Voltage switchgear.
This experience means that today Schneider Electric can propose internal arc cubicles 16 kA 1 s to reinforced the safety of people.
This gives you the advantage of unique experience, that of a world leader, with over half a million SF6 Medium Voltage units installed throughout the world.

Putting this experience at your service and remaining attentive to your requirements is the spirit of active partnership that we want to develop in offering you the SM6-36 range.

The modular SM6-36 range is a range of harmonised cubicles equipped with SF6 technology switchgear.
These cubicles allow you to produce all your Medium Voltage substation requirements from 25 kV to 36 kV by superposing their various functions.
The result of in-depth analysis of your requirements, both now and in the future, SM6-36 cubicles mean that you can take advantage of all the features of both a modern and proven technology.

Ease and safe to operate

SM6-36, a proven range
■ a three position switch to block incorrect switching

- the earthing disconnector has full closing capacity
- positive breaking of position indicators
- internal arcing withstand in the cable and switchgear compartments
- clear and animated display diagrams
- switching lever with an "anti-reflex" function
- compartmented cubicles.

SM6-36: a range designed with telecontrol in mind

SM6-36 switchgear is perfectly adapted to telecontrol applications.
Motorised, either when installed or at a later date on-site without any interruption in service, SM6-36 combines with the remote control interface. You, therefore, benefit from a ready-to connect unit that is easy to incorporate providing guaranteed switchgear operation.

SM6-36: a range with adapted protection devices

With the SM6-36, Schneider Electric proposes solutions for protection and energy management; the Sepam and VIP or relay ranges protect installations, providing continuity of electrical supply and reducing downtime.

A major advantage

Schneider Electric has integrated a functional organisation into each of its units. The main mission of this organisation is to check the quality and the compliance with standards.

This procedure is:
■ uniform throughout all departments

- recognised by many customers and approved organisations.

But it is above all its strict application that has enabled recognition to be obtained by an independent organisation: The French Quality Assurance Association (FQAA).

The quality system for the design and manufacture of SM6-36 units has been certified in conformity with the requirements of the ISO 9001-2000 quality assurance system.

Meticulous and systematic controls

During manufacture, each SM6-36 is subject to systematic routine testing which aims to check the quality and conformity

- sealing testing
- filling pressure testing
- opening and closing rate testing
- switching torque measurement
- dielectric testing
- conformity with drawings and plans.

The results obtained are written and reported on the test certificate for each device by the quality control department.

The environmental management system adopted by Schneider Electric production sites that produce the SM6-36 have been assessed and judged to be in conformity with requirements in the ISO 14001 standard.

Unit definitions

Below is the list of SM6-36 range units used in MV/LV transformer substations and industrial distribution substations:
■ IM, IMC, IMB switch

- PM fused switch
- QM fuse-switch combination
- DM1-A, DM1-D, single-isolation SF6 type circuit breaker
- DM2 double-isolation SF6 type circuit breaker

■ CM, CM2 voltage transformers

- GBC-A, GBC-B current and/or voltage
measurements
- GIM intermediate bus unit
- GBM connection unit

■ GAM2, GAM incoming cable connection unit

- SM disconnector
- other units, consult us.

Field of application

The SM6-36 is made up of modular units containing fixed metal - enclosed SF6
switchgear, using sulphur hexafluoride (SF6).

- switch - disconnector
- SF1 circuit breaker
- disconnector.

SM6-36 units are used for the MV section in MV/LV transformer substations in public distribution systems and MV consumer or distribution substations from 25 kV to 36 kV.

MV / LV transformer substations

MV consumer substation
(MV metering)

Connection to the networks

Incoming or outgoing unit IM (750 mm)

Incoming or outgoing unit IMC (750 mm)

Switch unit with earthing right outgoing line IMB (750 mm)

SF6 circuit-breaker protection

[^0]Single-isolation circuit breaker unit

Fuse-switch unit PM (750 mm)

Fuse-switch combination unit QM (750 mm)
 right outgoing line DM1-D (1000 mm)

SF6 circuit-breaker protection

Double-isolation circuit breaker unit
right outgoing line
DM2 (1500 mm)

MV metering

Voltage transformers for mains with earthed neutral system CM (750 mm)

Current and / or voltage measurement unit right outgoing line GBC-A (750 mm)

Voltage transformers for mains with insulated neutral system CM2 (750 mm)

[^1]

Connection unit right or left outgoing line GBM (750 mm)

Incoming cable - connection unit GAM2 (750 mm)

Intermediate bus unit GIM (250 mm)

Incoming cable - connection unit GAM (750 mm)

page

Other function

Disconnector unit

In addition to its technical characteristics, SM6-36 meets requirements concerning protection of life and property as well as ease of installation, operation and protecting the environment.

SM6-36 units are designed for indoor installations (IP2XC).
Their compact dimensions are:

- 750 mm to 1500 mm wide
- 2250 mm high
- 1400 mm deep...
... this makes for easy installation in small rooms or prefabricated substations.
Cables are connected via the front.
All control functions are centralised on a front plate, thus simplifying operation. The units may be equipped with a number of accessories (relays, toroids, instrument transformers, surge arrestor, telecontrol, etc.).

Standards

SM6-36 units meet all the following recommendations, standards and specifications.

Recommendations IEC:

- 60694: Common specifications for high-voltage switchgear and controlgear standard
- 62271-200: A.C. metal-enclosed switchgear and controlgear for rated voltage above 1 kV and up to including 52 kV
- 60265-1: Switches for rated voltages above 1 kV and less than 52 kV
- 62271-105: Alternating current switch-fuse combinations
- 62271-100: High-voltage alternating current circuit breakers
- 62271-102: High-voltage alternating current disconnectors and earthing switches.

Designation

SM6-36 units are identified by a code including:

- an indication of the function, i.e. the electrical diagram code: IM, QM, DM1-A, CM,

DM2, etc

- the rated current: 400-630-1250 A
- the rated voltage: 36 kV

■ the maximum short-time withstand current values: $12.5-16-20-25 \mathrm{kA} 1 \mathrm{~s}$

- the colour is of RAL 9002 type (frosted satin white).

Example for a unit designated: IM 400-36-12.5
■ IM indicates an "incoming" or "outgoing" unit

- 400 indicates the rated current is 400 A
- 36 indicates the rated voltage is 36 kV
- 12.5 indicates the short-time withstand current is 12.5 kA 1 s .

The hereunder values are for working temperatures from $-5{ }^{\circ} \mathrm{C}$ up to $+40^{\circ} \mathrm{C}$ and for a setting up at an altitude below 1000 m.

Maximum breaking capacity			
Rated voltage (kV)		36	
Insulation level			
$50 \mathrm{~Hz}, 1 \mathrm{mn}$	insulation	70	
(kV rms)	isolation	80	
1.2/50 $\mu \mathrm{s}$	insulation	170	
(kV peak)	isolation	195	
Breaking capacity			
Transformer off load (A)		16	
Cables off load (A)		50	
Short-time withstand current (kA/1s)		16	630-1250 A
		20	630-1250 A
		25	1250 A

The making capacity is equal to 2.5 times the short-time withstand current.

General characteristics

Maximum breaking capacity	
Rated voltage (kV)	36
Units	630 A
IM, IMC, IMB	20 kA
QM, PM	$20-25 \mathrm{kA}$
DM1-A, DM1-D, DM2	
Ioss of service continuity category: LSC2A	
\square parition class: PI.	

Temperatures:

The cubicles must be stored in a dry area free from dust and with limited temperature variations.

- for stocking: from $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- for working: from $-5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
- other temperatures, consult us.

Endurance

Internal arc withstand:
■ standard: 16 kA . 1 s .
Protection index:
■ units: IP2XC
■ between compartments: IP2x.

Units	Mechanical endurance	Electrical endurance
IM, IMC, IMB	IEC 60265	IEC 60265
PM		
QM $^{(1)}$	1000 operations class M1	100 breaks at In, p.f. $=0.7$ class E3
SF6 circuit breaker range		
DM1-A, DM1-D, DM2	IEC 62271-100	IEC 62271-100
	10000 operations	40 breaks at 20 kA 10000 breaks at In, p.f. $=0.7$

(1) as per recommendation IEC 60420, three breakings at p.f. $=0.2$

- 800 A at 36 kV

Switch cubicles

1 Switchgear: switch-disconnector and earthing switch in an enclosure filled with SF6 and satisfying
"sealed pressure system" requirements.
2 Busbars: all in the same horizontal plane, thus enabling later switchboard extensions.
3 Connection: accessible through front, connection to the lower switch-disconnector and earthing switch terminals (IM cubicle) or the lower fuseholders (QM cubicle).
This compartment is also equipped with an earthing switch downstream from the MV fuses for the transformer protection units (QM cubicle).
4 Operating mechanism: contains the elements used to operate the switch-disconnector and earthing switch and actuate the corresponding indications (positive break). The operating functions may be motorized (optional).
5 Low voltage: installation of a terminal block (if motor option installed), LV fuses and compact relay devices.

Circuit breaker cubicle

1 Switchgear: disconnector(s) and earth switch(es) in an enclosure filled with SF6 and satisfying "sealed pressure system" requirements.
2 Busbars: all in the same horizontal plane, thus enabling later switchboard extensions.
3 Connection and switchgear: accessible through front, connection to the downstream terminals of the SF1 circuit breaker.
4 Operating mechanism: contains the elements used to operate the disconnector(s), the circuit breaker and the earthing switch and actuate the corresponding indications. The circuit breaker operating functions may be motorized (optional).
5 Low voltage: installation of compact relays devices and test terminal boxes. If more space is required, an additional enclosure may be added on top of the cubicle.

Cubicles are made up of five compartments separated by metal or insulating partitions.

Switchgear compartment

This compartment is separated from the busbar compartment and the connection compartment by the enclosure surrounding the switch, and the earthing switch.

Busbar compartment

The three insulated busbars are parallel-mounted. Connection is made to the upper pads of the enclosure. Rating 630-1250 A.

Connection compartment
The network cables are connected to the terminals of the switch, of the circuit breaker and the earthing switch. Transformer cables are connected to the lower fuse holder.

Cables may have either:

- simplified terminations for dry-type one-core cables - heat-shrink ends for dry-type or paper-insulated cables. With basic equipment, the maximum allowable crosssection for cables is:
■ $240 \mathrm{~mm}^{2}$ for incoming or outgoing cubicles
- $95 \mathrm{~mm}^{2}$ for transformer protection cubicles incorporating fuses.
The earthing switch must be closed before the cubicle may be accessed. The reduced depth of the cubicle makes for easy connection of all phases.
A stud incorporated in the field distributor makes it possible to position and secure the cable-end lug with a single hand.

Operating-mechanism compartment
This compartment contains the various operating functions for the switch, the circuit breaker, the earthing switch and the voltage indicators.
The operating-mechanism compartment for the switch, earthing switch may be accessed with the cables and busbars energised and without isolating the substation. It also enables easy installation of padlocks, locks and standard LV accessories (auxiliary contacts, trip units, motors, etc.).

If the switch operating mechanism is motorised, this compartment is equipped with a terminal block and LV fuses.
These compartment may be accessed with the cables and busbars energised and without isolating the substation.

1 Enclosure.
2 Cover.
3 Operating shaft.
4 Fixed contact.
5 Moving contact.
6 Seal.

Switch and earthing switch

The three rotating contacts are placed in an enclosure filled with gas to a relative pressure of $1.5 \operatorname{bar}(1500 \mathrm{hPa})$.
This system offers maximum operating reliability.
■ gas tightness
The enclosure filled with SF6 gas satisfies "sealed pressure system" requirements and seal tightness is always checked in the factory.

■ operating safety

- the switch may be in one of three positions: "closed", "open" or "earthed", representing a natural interlocking system that prevents incorrect operation. Moving-contact rotation is driven by a fast-acting mechanism that is independent of the action of the operator
\square the device combines the breaking and disconnection functions
- the earthing switch placed in the SF6 has a short-circuit making capacity, in compliance with standards
\square any accidental over-pressures are eliminated by the opening of the safety membrane, in which case the gas is directed toward the back of the unit, thus avoiding projection or other related phenomena in front.

■ breaking principle

The exceptional qualities of SF6 gas are used to extinguish the electrical arc. To increase cooling of the arc, a rotative movement is created between the arc and the gas. The arc appears when the fixed and moving contacts separate.
The combination of the current and a magnetic field created by a permanent magnet provokes arc rotation around the fixed contact, resulting in arc extension and cooling unit it is extinguished at current zero.
The distance between the fixed and moving contacts is then sufficient to withstand the recovery voltage.
This system is both simple and sure and also provides improved electrical endurance due to very low wear on contacts.

SF6, the switchgear manufacturer's gas

SM6-36 switch-disconnectors and earthing switches use sulphur hexafluoride gas (SF6) for insulation and breaking. The active parts are placed in an insulating enclosure in accordance with the definition of IEC 56/Appendix EE (1987 edition) for sealed pressure systems.
SM6-36 devices offer remarkable characteristics:

- long service life
- maintenance-free active parts
- high electrical endurance
- very low over-voltage level
- operating safety.

2 Bottom cover.
3 Operating shaft.
4 Main moving contact
5 Moving arcing contact.
6 Fixes arcing contact.
7 Compression chamber.
9 Moving piston.
10 Valves.
11 Insulating nozzle.

SF1 circuit breaker

The SF1 circuit breaker is made up of three separate pole mounted on a structure supporting the operating mechanism. Each pole-unit houses all the active elements in an insulating enclosure filled with gas to a relative pressure of 2 max bar.
This system offers maximum operating reliability:

- gas tightness

The enclosure filled with SF6 gas satisfies "sealed pressure system" requirements and seal tightness is always checked in the factory.

■ operating safety

As for switch-units, accidental over-pressures are eliminated by the opening of the safety membrane.

- breaking principle

The circuit breaker is based on the SF6 gas autocompression principle.
The inherent qualities of SF6 and the soft break resulting from this technique reduce switching over-voltages.

- precompression

When the contacts begin to open, the piston slightly compresses the SF6 gas in the pressure chamber.

■ arcing period

The arc then forms between the arcing contacts and the piston continues its downward movement. A small quantity of gas, directed by the insulating nozzle, is injected into the arc.
The cooling of the arc is thus achieved through forced convection for the interruption of low currents, however, during the interruption of high currents, thermal expansion is responsible for the transfer of the hot gases toward the cold parts of the pole unit. Toward current zero, the distance between the two arcing contacts is sufficient for final interruption of the current due to the dielectric properties of the SF6 gas.

■ sweeping over-stroke

The moving parts finish their travel whereas the cold gas injection continues until the contacts are completely open.

Reliable operating mechanism

Switchgear status indicator

Fitted directly to the mobile equipment's shaft, these give a definite indication of the switchgear's position (appendix A of standard IEC 60129).

Operating lever

This is designed with an anti-reflex device that stops any attempt to re-open the device immediately after closing the switch or the earthing disconnector.

Locking device

Between one and three padlocks enable the following to be locked:
■ access to the switching shaft of the switch or the circuit breaker

- access to the switching shaft of the earthing disconnector
- operating of the opening release push-button.

Simple and effortless switching

Mechanical and electrical controls are side by side on the front fascia, on a panel including the schematic diagram indicating the device's status (closed, open, earthed).

Closed:

the mobile equipment is operated via a quick acting mechanism, independent of the operator. No energy is stored in the switch, apart from when switching operations are taking place.
For combined switch fuses, the opening mechanism is armed at the same time as the contacts are closed.

Opening:

the switch is opened using the same quick acting mechanism, operated in the opposite direction.
For circuit breakers and the combined switch fuses, opening is controlled by:

- a push-button
- a fault.

Earthing:

a specific control shaft enables the opening or closing of the earthing contacts. Access to this shaft is blocked by a cover that can be slid back if the switch is open but which remains locked in place if it is closed.

Voltage presence indicator

This device has integrated VPIS (Voltage Presence Indicating System) type lights, in conformity with IEC standard 61958, enabling the presence (or absence) of voltage to be checked on the cables.

Switch-disconnector and earthing switch

Insensitivity to the environment

■ an internal sealed enclosure, contains the active parts of the switchgear (switch, earthing disconnector). It is filled with SF6 in accordance with the definitions in
IEC recommendation 60298 for "sealed pressure systems"

- sealing is systematically checked in the factory.
- parts are designed in order to obtain optimum electrical field distribution - the metallic structure of cubicles is designed to withstand and aggressive environment and to make it impossible to access any energised part when in operation.

Standard IEC 60298 appendix AA indicates a method for testing switchgear in metal enclosures under internal arcing conditions. The aim of this test is to show that an operator present in front of a switchboard would be protected against the effects of an internal fault.

Case of an SM6-36 switchboard installed against the wall exhaust: 1-side internal arc protection

To enhance the safety of people, it is desirable to provide as high a degree of protection as possible by evacuating the effects of internal arcing using:
■ evacuation systems which direct gases towards the top or the bottom of the switchboard enabling over pressure to be limited in the case of an internal fault in the compartments

- channelling and evacuating hot gases towards an external area, which is not hazardous for the operator
■ materials which are non-inflammable for the cubicle
- reinforced panels.

Consequently

The SM6-36 is designed to offer a good level of safety:
■ control of the architecture:

- compartment type enclosure

■ technological control:
\square electrotechnical: modelling of electrical fields
a mechanical: parts produced using CAD systems
■ use of reliable components:
\square choice of materials
\square earthing switch with closing capacity
\square devices for total operating safety:
\square voltage presence indicator on the front face
\square natural reliable interlocking
\square locking using keys or padlocks.

Internal arc withstand of the cubicles

■ 1 version is available:
■ basic version: 16 kA 1s.

SM6-36 internal arc (in conformity with IEC 60298 appendix AA)

In its internal arc version, the SM6-36 range has successfully passed all of the type testing relative to standard IEC 60298 (6 acceptance criteria).
The materials used meet the constraints for which the SM6-36 is designed.
The thermal and mechanical forces that an internal arc can produce are perfectly absorbed by the enclosure.
An operator present in the front of the SM6-36 switchboard during an internal fault will not be exposed to the effects of arcing.

SM6-36 proposes one option to install an internal arc switchboard

- 1-side internal arc protection

Case of an SM6-36 switchboard positioned against the wall, access to the rear of the cubicles is impossible, internal arc protection on one side are sufficient.

Way of exhaust
 ■ sidewards exhaust

Civil engineering with an adequate volume is necessary.

A range of FPls for underground networks

A range for the tracking of permanent faults on MV underground networks.

Easergy F250 electronic detector unit.

The Easergy FPI range completes the expertise and leadership of Schneider Electric in the MV field.
It is the widest range available on the market place and covers all types of MV networks with their neutral grounding arrangements. Holding several key patents in this technology, Schneider Electric's Easergy directional or ammeter FPIs are available for both overhead and underground MV lines, with various power supplies and packages. Backed by Schneider Electric international organization and experience of 40 years in Medium Voltage applications, Easergy puts its know how at the service of utilities striving for a better quality.

Usage

The Easergy range is designed for the tracking of permanent faults on MV cable networks. Thanks to an ammeter or directional fault detection scheme it covers the needs of all types of MV networks. Available in weatherproof or non-weatherproof enclosures, LV battery back, DC, or battery-only power supplies, the Easergy range is very versatile and offers more than 15 versions.

Benefits

Thanks to its programmability, the lineman is sure to be able to select the tripping parameters (current reset, timer reset, Low Voltage reset, manual reset) that match the one of the protection devices on a given feeder.

Easergy standard features

■ 16 3lo, 4 Imax trip values
■ 8 timer reset values, (3 reset modes).
This is of paramount importance for tripping reliability.

MV telecontrol system

All members of the Easergy family come equipped with a dry contact output for connection to a Remote Terminal Unit as Easergy T200 I Schneider Electric, capable of tele-signalling the passage of the fault current. In addition, a cost-effective tele-signalling device is available.

The Sepam range of protection and metering is designed for the operation of machines and electrical distribution networks of industrial installations and utility substations for all levels of voltage. It consists of complete, simple and reliable solutions, suited to following 3 families:
■ Sepam series 20

- Sepam series 40

■ Sepam series 80 .

Sepam protection relay

A range adapted at your application

- protection of substation (incoming, outgoing line and busbars)
- protection of transformers
- protection of motors, and generators.

Accurate measurement and detailed diagnosis

■ measuring all necessary electrical values
■ monitoring switchgear status: sensors and trip circuit, mechanical switchgear status
■ disturbance recording

- Sepam self-diagnosis and watchdog.

Simplicity

Easy to install

- light, compact base unit
- optional modules fitted on a DIN rail, connected using prefabricated cords
- user friendly and powerful PC parameter and protection setting software to utilize all of Sepam's possibilities.
User-friendly
■ intuitive User Machine Interface, with direct data access.
- local operating data in the user's language.

Flexibility and evolutivity

■ enhanced by optional modules to evolve in step with your installation
■ possible to add optional modules at any time

- simple to connect and commission via a parameter setting procedure.

Sepam	Characteristics		Protections	Applicat	ons			
		Basic Specific		Substation	Transformer	Rotation	Generator	Busbars
Sepam series 20 For common applications	10 logic inputs and 8 relay outputs 1 Modbus communication port	Current protection		S20	T20	M20		
		Voltage and frequency protection						B21
		Loss of mains (ROCOF)						B22
Sepam series 40 For demanding applications	```10 logic inputs \\ 8 relay outputs \\ 1 Modbus communication port \\ ■ Logic equations editor```	Current voltage and frequency protection		S40	T40		G40	
			Directional earth fault	S41		M41		
			Directional earth fault and phase overcurrent	S42	T42			
Sepam series 80 For complete applications	42 logic inputs and 23 relay outputs - 2 Modbus communication port - Logic equations editor - Removal memory cartridge - Battery to save event logging data	Current voltage and frequency protection		S80				
			Directional earth fault	S81	T81	M81		
			Directional earth fault and phase overcurrent	S82	T82		G82	

For connection to the networks

Electrical characteristics

Basic equipment

Switch and earthing switch
Three-phase busbars
CIT operating mechanism
Voltage indicators
Connection pads for dry-type single-core or three-core cables
| Three CTs

Version

Manual or motorised operating mechanism Cl 1 or Cl 2 with opening and closing shunt trips.
Optional accessories
Motor for operating mechanism
Auxiliary contacts
Key-type interlocks
150 W heating element
Phase comparator
Fault indicators
Additional enclosure or connection enclosure for cabling from above with voltage indicators
Release units
Connection pads for two dry-type single-core cables
Surge arrester

For connection to the networks

IMB (750 mm)

Switch with earthing switch
Right outgoing

Electrical characteristics

Basic equipment

Switch and earthing switch
Three-phase busbars
CIT operating mechanism
Voltage indicators
Three-phase bottom busbars for outgoing lines (right)
Version
Cl1 operating mechanism
C12 operating mechanism

Optional accessories

Motor for operating mechanism

Auxiliary contacts
Key-type interlocks
150 W heating element
Additional enclosure or connection enclosure for cabling from above with voltage indicators
Release units

Electrical characteristics

Basic equipment

Switch and earthing switch
Three-phase busbars
Voltage indicators
Equipment for three DIN fuses
Mechanical indication system for blow fuses
Connection pads for dry-type single-core
Cables
Downstream earthing switch
Cl1 operating mechanism
Cl 2 operating mechanism

Cl1 operating mechanism

Optional accessories

Motor for operating mechanism with opening shunt trips
Auxiliary contacts
Key-type interlocks
150 W heating element
Auxiliary contact for blow fuses
DIN striker fuse
Opening shunt trip release
Additional enclosure or connection enclosure for cabling from above with voltage indicator Release units

For transformer protection

DM1-A (1000 mm)
Single-isolation circuit breaker

DM1-D (1000 mm)
Single-isolation circuit breaker, outgoing line on right

Electrical characteristics

For transformer protection
 DM2 (1500 mm)

Double-isolation circuit breaker outgoing
line on right

Electrical characteristics

Basic equipment

SF1 circuit breaker
Three-phase busbars
Circuit breaker operating mechanism RI
Three CTs
Auxiliary contacts on circuit breaker
Disconnector and earth switch
Disconnector operating mechanism CS

Optional accessories

Cubicle

Auxiliary contacts on the disconnector
Additional enclosure
Protection using Statimax relays or Sepam
Programable electronic unit
Key-type interlocks
150 W heating element
Additional enclosure or connection enclosure
For cabling from above with voltage Indicators
Circuit breaker
Motor for operating mechanism
Low-energy Mitop or undervoltage opening
Release
Opening and closing shunt trips
Operation counter on manual operating
Mechanism

For MV metering

CM (750 mm)
Voltage transformers for mains with earthed neutral system

CM2 (750 mm)

Voltage transformer for mains with insulated neutral system

Electrical characteristics

Basic equipment
Disconnector and earth switch
Three-phase busbars
Operating mechanism CS
LV circuit isolating switch
LV fuses
Three 6.3 A fuses
Three voltage transformers (phase-to-earth)

Optional accessories

Auxiliary contacts
Additional enclosure
150 W heating element
Additional enclosure or connection enclosure for cabling from above with voltage indicators

For MV metering

GBC-A (750 mm) outgoing line on right

GBC-B (750 mm)

Current and/or voltage measurements

Electrical characteristics

Basic equipment

Three CTs
Connection bars
Three-phase busbars
Optional accessories
Additional enclosure
Three voltage transformers (phase-to-earth)
150 W heating elements
Additional enclosure or connection enclosure for cabling from above with voltage indicators

Functions required by private networks

Electrical characteristics

Basic equipment

Basic equipment	Three-phase busbars			
	Disconnector and earthing switch			
Optional accessories	$\begin{array}{l}\text { Voltage indicators } \\ \hline\end{array}$			
		$]$	Auxiliary contacts	
:---	:---			
	Key-type interlocks			
150 W heating element				
Phase comparator				
	Fault indicators			
	Additional enclosure or connection enclosure for cabling from above with voltage indicators			
	Release units			
	Connection pads for two dry-type single-core cables			
	Surge arrester			

For functions required by private networks

Electrical characteristics

Basic equipment

Connection bars	Three-phase busbars	
Three-phase busbars for outgoing lines (right or left)	Voltage indicators	
	Connection pads for dry-type single core cables	
	Connection bars	
Optional accessories		
150 W heating elements		
	Additional enclosure or connection enclosure for cabling from above with voltage indicators	
	Surge arrester	Operating mechanism CS1
		Earthing switch
		Auxiliary contacts
		Key-type interlocks

Operating mechanisms

The control devices required for the unit operating mechanisms are centralised on the front panel. The different types of operating mechanism are presented in the table opposite.
Operating speeds do not depend on the operator, except for the CS. For the interlocks, consult the table pages 32/33 according to concerned cubicles.

Units	Type of operating mechanism					
	Switch/disconnector					Circuit breaker
	CIT	Cl1	Cl2	CS	CC	
IM, IMC	\square	\square	\square			
PM	\square	\square	\square			
QM		\square	\square			
CM, CM2, GAM				\square		
DM1-A, DM1-D, DM2				\square		■
SM				■		
provided as standard - other possibility						

Double-function operating mechanism CIT

Switch function

Independent-operation opening or closing by lever or motor.

Earthing-switch function

Independent-operation opening or closing by lever.
Operating energy is provided by a compressed spring which, when released, provokes closing or opening of the contacts.

Auxiliary contacts

■ switch (2 O + 2 C)
■ switch $(2 \mathrm{O}+3 \mathrm{C})$ and earthing switch (1 O + 1 C)
■ switch (1 C) and earthing switch (1 O + 1 C) if motor option.
Mechanical indications
Fuses blown in unit PM.

Motor option

Double-function operating mechanism Cl1

Switch function

■ independent-operation closing by lever or motor.
Operating energy is provided by a compressed spring which, when released, provokes closing of the contacts

- independent-operation opening by push-button (O) or trip units.

Earthing-switch function

Independent-operation closing and opening by lever.
Operating energy is provided by a compressed spring which, when released, provokes closing or opening of the contacts.
Auxiliary contacts
■ switch (2 O + 2 C)
■ switch $(2 \mathrm{O}+3 \mathrm{C})$ and earthing switch (1O+1C)

- switch (1 C) and earthing switch (1 O + 1 C) if motor option
- fuses blown (1 C).

Mechanical indications

Fuses blown in units PM, QM.

Opening releases

- shunt trip
- undervoltage for unit QM.

Motor option

Double-function operating mechanism Cl 2

Switch function

■ independent-operation closing in two steps:

- 1 - operating mechanism recharging by lever or motor,
$\square 2$ - stored energy released by push-button (I) or trip unit.
■ independent-operation opening by push-button (O) or trip unit.

Earthing-switch function

Independent-operation closing and opening by lever.
Operating energy is provided by a compressed spring which, when released, provokes closing or opening of the contacts.

Auxiliary contacts

■ switch (2 O + 2 C)
■ switch (2 O + 3 C) and earthing switch (1 O + 1 C)

- switch (1 C) and earthing switch (1 O + 1 C) if motor option.

Opening release shunt trip
Closing release shunt trip
Motor option

Double-function operating mechanism CS

Switch and earth switch functions

Dependent-operation opening and closing by lever.
Auxiliary contacts

- disconnector (2 O + 2 C) for units DM1-A, DM1-D, DM1-W, DM2 and CRM
without VT
■ disconnector $(2 \mathrm{O}+3 \mathrm{C})$ and earthing switch $(1 \mathrm{O}+1 \mathrm{C})$ for units DM1-A, DM1-D,
DM1-W, DM2 and CRM without VT
- disconnector $(1 \mathrm{O}+2 \mathrm{C})$ for units CM, CM2, TM, DM1-A, DM1-D, DM2
and CRM with VT.
Mechanical indications
Fuses blown in units CM and CM2.

Operating mechanisms

Single-function operating mechanism RI for the SF circuit breaker

Circuit-breaker function
■ independent-operation closing in two steps.
First operating mechanism recharge by motor or lever, then release of the stored energy by push-button (I) or trip unit
■ independent-operation opening by push-button (O) or trip units.
Auxiliary contacts

- circuit breaker ($4 \mathrm{O}+4 \mathrm{C}$)
- mechanism charged (1 C).

Mechanical indications

- operation counter.

Opening releases
■ mitop (low energy)

- shunt trip
- undervoltage.

Closing release
■ shunt trip.
Motor option (option and installation at a later date possible)

Possible combinations between opening releases

	SF1					
Release type	Combinations					
	1	2	3	4	5	6
Mitop (low energy)	\square	\square	-			
Shunt trip		\square		\square	\square	
Undervoltage			-		\square	-

Auxiliaries selection

Motor option and releases for switch-units

The operating mechanisms CIT, Cl1 and Cl2 may be motorised.
The motor option can be installed on the site "switch open" without replacement the operating mechanism.

			DC				AC	
Un Power supply		(V)	24	48	110	125	120	$230(50 \mathrm{~Hz})^{(1)}$
Motor option								
		(W)			200			
		(VA)						200
		(s)			<5			< 5
Opening releases								
Mitop (low energy)		(W)			3			
Shunt trip		(W)	200	250	300	300		
		(VA)					400	600
Undervoltage	pick-up	(W)			160			
		(VA)					280	550
	hold	(W)			4			
		(VA)					50	40
Closing release								
Shunt trip		(W)			30			
		(VA)						60

(1) Please consult us for other frequencies.

Motor option and releases
 for circuit breakers

Operating mechanism RI may be equipped with the motor option for the recharging function.

Un			DC				AC	
Power supply		(V)	24	48	110	125	120	$230(50 \mathrm{~Hz})^{(1)}$
Motor option								
		(W)			390			
		(VA)						390
		(s)			<15			<15
Opening releases								
Mitop (low energy)		(W)			3			
Shunt trip		(W)			85			
		(VA)						180
Undervoltage	pick-up	(W)			160			
		(VA)					280	550
	hold	(W)			10			
		(VA)					50	40
Closing release								
Shunt trip		(W)			85			
		(VA)						180
Possible combinations between opening releases								
			SF1					
Mitop (low energy)			\square	-	■			
Shunt trip				-		\square	-	
Undervoltage					\square		\square	\square

(1) Please consult us for other frequencies.

Current transformers

For units DM1-A, DM1-D, DM2, IMC, GBC-A, GBC-B
Transformer ARM6N2
■ double primary
■ double secondary winding for measurement and protection.

Short-time withstand current Ith (kA)

11 n (A)		50-100	75-150	100-200	150-300	200-400	300/600	1000/1250
lth (kA)		16-20						25
t (s)		1						1
Meas. and protection	5A	7.5 VA - 15 VA - class 0.5						30 VA class 0.5
	5A	2.5VA-5VA-5P20						$\begin{aligned} & 10 \mathrm{VA}- \\ & 5 \mathrm{P} 20 \end{aligned}$

Voltage transformers

For units CM, GBC-A, GBC-B

Transformers VRF3n/S2 (phase-to-earth)
■ single primary winding

- double secondary.

Rated voltage (kV)	36	$33 / \sqrt{3}$	
Primary voltage (kV)	$30 / \sqrt{3}$	$100 / \sqrt{3}$ or $110 / \sqrt{3}$	
Secondary voltage (V)	$100 / \sqrt{3}$	3 P	
Thermal power (VA)	450		
Accuracy class	0.5	30	
Rated output for			
Single primary winding (VA)	$30-50$		

For unit CM2

Transformers VRC3/S1 (phase-to-phase)
■ single primary winding

- single secondary.

Rated voltage (kV)	36	33
Primary voltage (kV)	30	100 or 110
Secondary voltage (V)	100	
Thermal power (VA)	700	
Accuracy class	0.5	
Rated output for single primary winding (VA)	$50-100$	

Switch units

■ the switch can be closed only if the earthing switch is open and the access panel is in position

- the earthing switch can be closed only if the switch is open
- the access panel for connections can be opened only if the earthing switch is closed
- the switch is locked in the open position when the access panel is removed. The earthing switch may be operated for tests

Circuit-breaker units

- the disconnector(s) can be closed only if the circuit breaker is open and the access panel is in position
- the earth switch(es) can be closed only if the disconnector(s) is/are open
- the access panel for connections can be opened only if:
- the circuit breaker is locked open
\square the disconnector(s) is/are open
\square the earth switch(es) is/are closed.
Note: it is possible to lock the disconnector(s) in the open position for no-load operations with the circuit breaker.

A1 type

A5 type

Functional interlocks

These comply with IEC recommendation 60298 and EDF specification HN 64-S-41.
In addition to the functional interlocks, each disconnector and switch include:
■ built-in padlocking capacities (padlocks not supplied)
■ four knock-outs that may be used for keylocks (supplied on request) for mechanism locking functions.

Unit interlock										
Units	Interlock									
	A1	A3	A4	A5	C1	C4	P1	P2	P3	P5
IM, IMC		\square	■				\square			
PM, QM, DM1-A, DM1-D	\square				-	\square				
SM								-	\square	
GAM				\square				\square	\square	

Key-type interlocks

Outgoing units

Aim:

■ to prevent the closing of the earthing switch on a transformer protection unit unless the LV circuit breaker is locked in "open" or "disconnected" position.

■ to prevent the access to the transformer if the earthing switch for transformer protection has not first been closed.

■ to prevent the closing of the earthing switch on a transformer protection unit unless the LV circuit breaker is locked in "open" or "disconnected" position - to prevent the access to the transformer if the earthing switch for transformer protection has not first been closed.
to prevent the closing of the earthing switch of the casing unit unless the downstream and the upstream switches are locked in the "open" position.

A4 type

Ring units

Aim:

- to prevent the closing of the earthing switch of a load-side cubicle unless the lineside switch is locked "open".
- to prevent the simultaneous closing of two switches.

■ to prevent the closing of an earthing switch if the switch of the other unit has not been locked in the "open" position.

■ to prevent on-load operation of the disconnector unless the switch is locked "open" - to prevent the closing of the earthing switches unless the disconnector and the switch are locked "open".

■ to prevent on-load operation of the disconnector unless the switch is locked "open" \square to prevent the closing of the earthing switches with the unit energised, unless the disconnector and the switch are locked "open"
■ to allow off-load operation of the switch.

- to prevent the closing of the earthing switch of the incoming unit unless the disconnector and the switch is locked "open".

Fuses selection

Transformer protection

Fuse ratings for SM6-36 protection units such as the PM, QM, depend among other things, on the following criteria:
■ service voltage

- transformer rating
- fuse technology (manufacturer).

Different types of fuses with medium loaded striker may be installed.
Fusarc CF fuses as per DIN dimensions 43-625.

Example:

For the protection of a 400 kVA transformer at 33 kV , select Fusarc CF fuses rated 25 A.

Please consult us on installation of fuses from other manufacturers.

Dimensions of fuses
Fusarc CF (DIN standards)

Rated voltage (kV)	Rating (A)	\mathbf{L} (mm)	$\boldsymbol{\varnothing}$ (mm)	Weight (kg)
36	$10-16$	537	50.5	1.8
	25	537	57	2.6
	$31.5-40$	537	78.5	4.7
	$50-63$	537	86	6.4

Selection table of fuses ${ }^{(2)}$

Rating in A-no overload, $-5^{\circ} \mathrm{C}<0<40^{\circ} \mathrm{C}^{(1)}$

Service voltage (kV)	Tran 160	sform	ner ra	ating 400	kVA) 500	630	800	1000	1250	1600	2000	Rated voltage (kV)
For dry type transformers												
Fusarc CF												
30	10	10	16	20	25	31.5	31.5	50	50	63	63	36
31.5	10	10	16	20	25	25	31.5	50	50	63	63	36
33	6.3	10	16	25	25	25	31.5	40	50	50	63	36
34.5	6.3	10	16	20	25	25	31.5	40	50	50	63	36

For oil immersed type transformers

Fusarc CF

30	10	10	16	20	25	31.5	31.5	40	40	50	63	36
31.5	10	10	16	20	25	31.5	31.5	40	40	50	63	36
33	10	10	16	25	25	25	31.5	31.5	40	40	50	36
34.5	10	10	16	20	25	25	31.5	31.5	40	40	50	36

(1) Please consult us for overloads and operation over $40^{\circ} \mathrm{C}$.
(2) This selection table has been prepared according to the technical characteristics of France Transfo.
The characteristics of transformers and fuses may change according to manufactures and standards.

Access to fuses

Access via the front with the front panel removed. Fuses may be removed without tools by simply pulling them forward. The field deflector pivots and automatically returns to its position.

Replacement of fuses

When fault clearance results in one or two blown fuses, it is still common practice to replace only the blown fuses.
However, though the remaining fuse(s) may apparently be in good condition, their operating characteristics are generally reduced due to the short-circuit. If non-blown fuses remain in service, they may blow even at very low over-current values. In systems where continuity of service is of importance, it is recommended to replace all three fuses, in compliance with IEC recommendation 282.1.

Connections

Connections with dry-type cables

Dry-type cables connect via short simplified terminations (EUIC):
■ with a field deflector or a linear voltage distributor for type HN 33-S-22 single-core copper or aluminium cables
■ with a linear voltage distributor for type HN 33-S-23 single-core or three-core cables.
The termination lug must be connected to the integrated stud on the field deflector, using a torque wrench set to 50 mN .

Single-core cables		Units 630 A	
Cable-section (mm^{2})	Bending radius (mm)	IM, IMC, QM,	PM, DM1-A, GAM2, SM
		Depth P (mm) P1	P2
1×35	525	350	550
1×50	555	380	580
1×70	585	410	610
1×95	600	425	625
1×120	630	455	655
1×150	645	470	670
1×185	675	500	700
1×240	705	530	730

Cabling from below

All units through trenches
■ the trench depth P is given in the table opposite for commonly used types of cables.

Note: the unit and the cables requiring the greatest depth must be taken into account when determining the depth P for singletrench installations. In double-trench installations must be taken into account to each type of unit and cable orientations.

Trench diagrams

Cable entry or exit through right or left side

Rear entry or exit with conduits

Front entry or exit with conduits

Required dimensions (mm)
(1) 200 mm for internal arc version.
(2) 400 mm for internal arc version.

Cable-connection height

IM/SM unit

QM, PM units
*IMC 583 mm

DM1-A unit

GAM2 unit

Floor preparation

Units may be installed on ordinary concrete floors, with or wihout trenches depending on the type and cross-section of cables.
Required civil works are identical for all units.

Dimensions and weights
(1) The depth measures are given for the floor surface.
(2) The depth in these units are 1615 mm with the enlarged low voltage compartment.
(3) The depth in these units are 1500 mm with the standard low voltage compartment.

Unit type	Height (mm)	Width (mm)	Depth ${ }^{(1)}$ (mm)	Weight (kg)
	2250	750	$1400^{(3)}$	310
IM, SM	2250	750	$1400^{(2)}$	420
IMC, IMB	2250	750	$1400^{(3)}$	330
QM, PM	2250	1000	$1400^{(2)}$	600
DM1-A	2250	1000	$1400^{(2)}$	560
DM1-D	2250	250	1400	90
GIM	2250	1500	$1400^{(2)}$	900
DM2	2250	750	$1400^{(2)}$	460
CM, CM2	2250	750	$1400^{(3)}$	420
GBC-A, GBC-B	2250	750	$1400^{(3)}$	260
GBM	2250	750	$1400^{(3)}$	250
GAM2	2250	750	$1400^{(3)}$	295
GAM				

Fixing of units

With each other
The units are simply bolted together to form the MV switchboard (bolts supplied). Busbar connections are made using a torque wrench set to 28 mN .

On the floor

■ for switchboards comprising up to three units, the four corners of the switchboard must be secured to the floor using:
\square bolts (not supplied) screwed into nuts set into the floor using a sealing pistol - screw rods grouted into the floor

- for switchboards comprising more than three units, the number and position of fixing points depends on local criteria (earthquake withstand capacities, etc.) - position of fixing holes depends on the width of units.

Cubicles	A(mm)	B (mm)
IM, IMC, IMB, QM, PM, SM, CM, CM2 GBC-A, GBC-B, GBM, GAM2, IMB, GAM	750	650
DM1-A, DM1-D	1000	900
DM2	1500	1400
GIM	250	150

Dimensions

IM, SM, IMC, QM, PM, IMB, GBM,
GAM, GAM2, GBC-A,GBC-B units,

DM1-A, DM1-D, DM2 units

CM, CM2 units

Conventional masonry substation

(bottom view dimensions)

Minimum required dimensions (mm).
(1) 200 mm for internal arc version.
(2) 5400 mm for internal arc version.
(3) 3530 mm for internal arc version. (4) 2650 mm for internal arc version

Order form
SM6 36
Connection to the network

Fuse switch protection
Calculation zone

Only one of the boxes (ticked \square or filled \square by the needed value) have to be considered between each horizontal line.
Orange box \square corresponds to none priced functions.

Order form
SM6 36
Circuit breaker protection

Calculation zone

Only one of the boxes (ticked considered between each horizontal line.
Orange boxcorresponds to none priced functions.

Basic cubicle		Quantity		
Rated voltage Ur		(kV)		
Short-circuit current Isc		(kA)		
Rated current Ir		(A)		
Type of cubicle DM1-A 1000	DM2 right 1500	DM1-D right 1000		
Internal arc version 16 kA 1 s (not possible with "top incomer" option)				
Position number in the switchboard (from left to right)				
Voltage of the auxiliaries $48 / 60 \mathrm{~V}$ DC	$\begin{array}{r} 110 / 125 \text { or } 220 / 250 \mathrm{~V} \mathrm{DC} \\ 110 / 130 \text { or } 220 / 240 \mathrm{~V} \mathrm{AC}(50 \mathrm{~Hz}) \end{array}$			
Voltage of signaling $\quad 48 / 60 \mathrm{~V} \mathrm{DC}$	100/125 V DC	220/250 V DC		
		220/240 V AC (50 Hz)		
Options				
Top incomer (single core, cable maxi $240 \mathrm{~mm}^{2}$, with voltage indicator)				
Cable connection by the bottom (for DM1-A 630 A only) $3 \times$ single core cable maxi $240 \mathrm{~mm}^{2}$ \square $6 \times$ single core cable maxi $240 \mathrm{~mm}^{2}$				
Interlocking	RonisA1	Profalux		
Not applicable on DM2 C4		C1		
Current transformers and voltage transformers	See specific order form			
$\begin{array}{rr}\text { Signaling contact } \\ & 20 \& 3 \mathrm{Con} \\ 10 \&\end{array}$	2 O \& 2 Con SW (not applicable with VT's)			
	and 1O\& 1 C on ES	applicable with VT's)		
	on SW (available	n cubicle with VT's)		
Heating element				
SF1 circuit breaker		See specific order form		
Sepam relay protection		See specific order form		
Replacement of 630 A busbar by 1250 A (only DM1-A))				

Order form
SM6 36
MV metering

Calculation zone

Only one of the boxes (ticked \square or filled considered between each horizontal line.
Orange box \square corresponds to none priced functions.

Order form

SM6 36
Casing

Calculation zone

Only one of the boxes (ticked \square or filled \square by the needed value) have to be considered between each horizontal line.
Orange box \square corresponds to none priced functions.

Basic cubicle	Quantity	
Rated voltage Ur	(kV)	
Short-circuit current Isc	(kA)	
Rated current Ir	(A)	
Type of cubicle GAM2 750	GBM	
Internal arc version 16 kA 1 s (not possible with "top incomer" opt		
Position number in the switchboard (from left to right)		
Direction of lower busbars for GBM left (impossible on the first cubicle of the switchboard)	right	
Options		
Top incomer (single core, cable maxi $240 \mathrm{~mm}^{2}$, with voltage indicatar		
Heating element		
Replacement of 630 A busbar by 1250 A (only GAM2)		

Notes

Notes

As standards, specifications and designs change from time to time, please ask for confirmation of the information given in this publication.

B Printed on recycled paper.

Design: Ameg
Publication: Schneider Electric
Printing:

[^0]: Single-isolation circuit breaker unit DM1-A (1000 mm)

[^1]: Current and / or voltage
 30 measurement unit GBC-B (750 mm)

