Instructions for Retrofit Kit AK-2A-100 Retrofit Kit Styles 8186A52G28 8186A52G29 I.L. 33-851-4A # NOTICES FOR COMMERCIAL GRADE COMPONENTS The descriptions and specifications for the products described herein are provided for general commercial use and are not applicable for use in a nuclear power plant. Additional certification may be available upon specific request to qualify these products for use in safety-related applications in a nuclear facility. # **GENERAL INFORMATION** The retrofit kit which you have received contains all the necessary parts to convert your AK breaker from a device using an electro-mechanical tripping system to one which will have solid-state tripping. To understand the transition, one should be acquainted with the basic components and their functions. The circuit breaker is tripped on fault conditions by combined operation of three components: - (a) Sensors Quantity of Three - (b) RK Solid-State Trip Unit Quantity of One - (c) Actuator Quantity of One Schematically this can be shown in Figs. 1 and 2. This makes a very flexible system covering a wide range of tripping characteristics, due to the adjustable RK unit and the range of sensors available. All necessary tripping energy is derived from the load current flowing through the sensors, no separate power source is required. The tripping characteristics for a specific breaker rating, as established by the sensor rating, are determined by the continuously variable settings of the RK static trip unit. This unit supplies a pulse of tripping current to the actuator which trips the breaker. # **SENSORS** The sensors produce an output proportional to the load current, so the breaker continuous current rating within the frame size can be changed simply by changing the tap setting or the sensors. Proper polarities must be maintained. It is the sensor rating (or tap) that determines the actual current for one (1) per unit current on the RK. All sensors are mounted on the upper studs on the back of the breaker base. # WARNING High voltages are present in a circuit breaker and associated accessories. Before working on a circuit breaker or accessories installed in an electrical system, make sure the circuit breaker is OPEN and there is no voltage present where work is to be performed. The voltages in energized equipment can cause serious injury or death. Before closing a circuit breaker, make sure that no work is being carried out by personnel on equipment serviced by the circuit breaker. The voltages from energized circuit breakers can cause serious injury or death. Fig. 1. Schematic of Solid-State Tripping Fig. 2. Actuator Diagram # **ACTUATOR** When the actuator receives a tripping current from the RK, it releases a mechanical force to trip the breaker. The actuator is made up of a permanent magnet and a spring (see Fig. 2). When the breaker is open, the cross bar pushes the reset lever. The reset lever moves the plunger out, and the plunger then compresses the spring and pulls the keeper until it contacts the pole pieces of the magnet. Although the magnet cannot pull and reset the keeper against the force of the spring acting on the plunger, it can hold the spring force when the keeper is in contact with the magnet. A tripping current from the RK unit counteracts the effects of the permanent magnet allowing the spring to separate the keeper from the magnet and move the plunger to actuate the trip lever. #### **RK UNIT** The Westinghouse RK unit is a solid-state device that provides adjustable overcurrent tripping for the retrofitting of AK breakers. Only one unit is required per breaker; it receives all its energy from a set of sensors — one mounted on each pole of the breaker. It develops an output for its associated trip actuator when preselected conditions of current magnitude and duration are exceeded. Fig. 3 RK Unit The RK is supplied in two (2) models of a combination of three (3) independent continuously adjustable overcurrent tripping functions: Long delay (L), Short delay (S), and Instantaneous. The combination of RK unit are: LS - Long Delay and Short Delay LSI - Long Delay, Short Delay and Instantaneous #### Adjustments: There are a maximum of eight (8) adjustable controls on the RK with LSI and seven (7) on the LS, all adjustable with a screwdriver after removal of the protective cover. - Continuous Current Setting (Cont. Adj.) 0.5x to 1.0x External Sensor Rating. - (2) Long Delay Current Pickup (Cont. Adj.) 0.5x to 1.0x Cont. Current Rating. - (3) Long Delay Time (Discreet Adj.) 2.5, 5.0 12.5 and 27.0 Sec. @ 6x - (4) High Current Alarm Pickup (Relay Contact) (Closure of Form C Contacts Min. of 40% Sensor Rated Current Required) - (5) High Current Alarm Time (30-90 Sec. Delay) - (6) Short Delay Current Pickup (Cont. Adj.) 2x to 10x - (7) Short Delay Time (Cont. Adj.) 0.18 Sec. to 0.5 Sec. @ 6x - (8) Instantaneous Current Pickup (Cont. Adj.) 2x to 12x In addition to the standard LSI and LS settings the RK unit has several other added features. - (A) High Load Alarm Contact, which closes after a selected delay time of 30-90 sec. when the High Current Alarm pickup current reaches a predetermined value and resets when the current recedes below the setpoint. Adjustable from 0.75 to 1.1 of the long delay pickup, it provides an early warning of a possible trip out. - (B) I2t Switch provides options in I2t slope in fixed short time delay or short-time delay of 0.085 sec. @ 6x. - (C) LED Indicators for overload and short circuit fault trip indication, lithium battery powered. - (D) Reset Button for LED indicator and battery check. #### MAKING CURRENT RELEASE (DISCRIMINATOR) All RK trip units which do not have an instantaneous trip function, (LS version) are provided with a "making current release" which is referred to as a "Discriminator". This is a circuit in the trip unit which determines at the time of a fault whether or not there has been any current flow in the primary circuit previous to the fault. If there has been no measurable current flow previous to the fault, indicating that the circuit breaker is just being closed (or possibly that a switching device ahead of the breaker has just been closed) and if the primary current flow exceeds approximately twelve times the sensor rating, the trip unit will function instantaneously. If the "Discriminator" circuit determines that there has been a measurable current flow prior to the fault, the instantaneous operation will not occur and the normal short time delay element will take over to delay tripping. The purpose of this unique tripping concept is that selectivity and continuity of service in un-faulted sections of the system can be maintained if there is any need, but if there is no previously operating load on the circuit, the instantaneous function takes over to limit extensive damage which might occur due to a delayed tripping operation. #### **SERVICING OF THE RK** The RK unit is the intelligence of the overcurrent protection provided by the breaker. It is made up of many solid-state components: the only moving parts are for setpoint adjustments. All internal components, including the printed circuit board are coated to give effective environmental protection. Each RK unit includes two (2) test pin terminals for field checking of operation and calibration. A specially designed portable test device with a plug to match the receptacle on the front of the unit is available and recommended for verifying the functional operation of the RK unit. The tester can be plugged into any 120V, 60 HZ outlet and can provide enough current to check any pickup and time calibration. If there is any reason to suspect that the RK unit is not operating correctly, it should not be tampered with: tampering can result in loss of vital overcurrent protection. If the unit is questionable it should be substituted with a new unit and returned to the factory for service. NOTE: RK UNITS ARE NOT FIELD REPAIRABLE. # REQUIREMENTS Before proceeding with the conversion the following should be noted. - 1. Items on hand: Ratchet (%") socket set with ½", %", ½" sockets, straight edge, scriber, center punch, file, screwdriver, hammer. Electric drill, ¼", ¾", ½" twist drill and tap for .190-32 screw. 28 Vdc source. Test apparatus, RK Unit Tester S#1232C08G01. - Check items received against bill of material as listed for each type of breaker and for proper style numbered kit. - Operate the actuator a few times. Alternately pull back on the reset lever (see Fig. 2) and then trip by applying 28 Vdc (be sure to use correct polarity) to the terminals. NOTE: Arm must be manually reset after each operation. Review the procedure for each type of breaker involved and the sensor tap connections for the various current ratings. # **PLACEMENT OF THE ACTUATOR** - Viewing the breaker from the left side, position and assemble trip paddle on breaker trip bar using .25-20 x .75 carriage bolt, trip bar finger, washer and nut. Do not tighten this assembly. See Figs. 8 and 9. - Attach the two leads to the terminal board on the actuator, the leads should be to the left of the actuator housing. - 3. Locate the two (2) .50 holes on the left side of the breaker frame – See Fig. 9. Attach the actuator base to the left side using .375-16 x 1.0 hex bolt, lockwasher, flat washer and nut. The two (2) actuator leads should be located between the left inside frame and the actuator housing. - 4. Move the trip paddle assembly so that the paddle is located under the left side of the flange nut (viewing from the front) and secure the trip assembly to the bar. See Fig. 9. - 5. Viewing the breaker from the front, remove the .375-16 x 1.5 hex bolt located on the far left side of the cross bar. Place the reset arm between the bolt head and lockwasher (Fig. 9), tighten the bolt being positive that the locking clip is in its previous position. - If you did not complete steps 8, 9 and 10 in the sensor and harness placement, do so at this time. - Use a 28 Vdc source close breaker, check tripping and resetting functions of actuator, repeat numerous times for verification. It may be necessary to bend reset arm for positive resetting of actuator, Fig. 9. #### **TEST** NOTE: The amptector test sets identified by style 140D481G02 or 140D481G03 should not be used to check calibration of the RK trip units. These test units are not regulated well enough to provide an undistorted wave form to the trip unit. All timing values will not be consistent with the time/current curve. Fig. 9 Left Side View Using the RK test kit S#1232C08G01: - Check operation of the RK unit/actuator system sufficient number of times to insure proper operation. - 2. Set the RK dials to the required settings and verify that the RK is in calibration. - 3. Record the settings on the side of the RK unit for permanent record. #### WARNING Circuit breakers applied in systems with available fault currents in excess of their interrupting/withstand capabilities can cause severe personal injury or death. To avoid misapplication, the interrupting/withstand rating of the breaker together with the maximum possible settings of the trip unit used, must equal or exceed the maximum fault current available in the applied system. Fig. 10 Tapped Current Sensor for GE. AK-2A-100 D.O. Breaker - Review the photographs to acquaint yourself with the items and location, especially the right and left side view of the breaker Figs. 5, 6, 8 and 9. - Arc chutes need not be removed and breaker should be worked on in the upright position. # **RETROFIT KIT** All retrofit kits are style numbered and contain the parts necessary to fulfill your requirements, therefore check to see that you have received the styles as ordered. Remove items from box and check against bill of material for appropriate parts. **AK-2A-100 RETROFIT KIT BILL OF MATERIAL** | Quantity
per
Breaker | Description | Style
Number | |----------------------------|-----------------------|-----------------| | 1 | RK Unit LSI | 1375D25G04 | | or 1 | RK Unit LS | 1375D25G03 | | 1 | Actuator | 693C365G01 | | 3 | Sensors 4000 Amperes | 8257A69H01 | | 1 | RK Mounting Bracket | 6502C12H01 | | 1 | "L" Reinforcing Brace | 8187A11H01 | | 1 | Wiring Harness | 6502C13G04 | | *1 | Hardware Kit | 8186A53G08 | ^{*}Note: Kits contain more hardware than required due to multipurpose use, check right side and left side views Figs. 4 to 9 for number and size of hardware. # **PROCEDURE** After you have read the requirements and you are familiar with all details, proceed in the following manner: Remove the three electro-magnetic trip units, no copper jumpers required. # MOUNTING THE RK UNIT Viewing the breaker from the right side locate the main spring slotted slide hole which is 1" x 3" and located on the side of the front middle frame. Using the inner edge of the hole as a guide scribe a line 5.94 inches from the top of the frame (See Fig. 4) to locate a centerline. Fig. 4 Middle Frame Right Side View - 2. From this centerline locate a point 2.0 inches above and 2.0 inches below, drill two .438 holes, Fig. 4. - 3. Viewing the breaker from the top, locate a starting point at the junction of the top of the front frame and the middle side frame. From this point measure 4.22 inches along the front frame and .25 inches in to locate the first hole (See Fig. 5), measure another .50 inches over and .25 inches in to locate the second hole. Drill two (2) .25 holes. - 4. Line up the RK unit with the four (4) holes on the bracket and secure to the top using .190-32 x 1.0 fil. hd. screw (invert screw), lockwasher, flat washer, "L" brace and nut (See Fig. 6), now secure the bottom of RK unit to the bracket, using .190-32 x 1.0 fil. hd. screw, flat washer, lockwasher and nut. Note: The RK unit will be in a vertical position after being completely mounted. - Mount the top of the "L" brace to the front frame using .190-32 x .75 fil. hd. screw, flat washer, lockwasher and nut, do not secure tightly, let the "L" brace be loose (See Figs. 5 and 6). Fig. 5 Right Front Top View Fig. 6 Front View of Breaker - Secure the complete assembly to the right side of the front frame (See Fig. 6) using .375-16 x 1.0 hex bolt, flat washer, lockwasher and nut. - Now secure the "L" brace to the front frame, the RK unit is now completely mounted and secured, Fig. 6. # **HARNESS AND SENSORS** - 1. Acquaint yourself with the wiring scheme, Fig. 7. - Check each lug on the harness to ensure that they are properly secured to the wires. - 3. Connect the wires to the RK unit per wiring diagram. - 4. Facing the front of the breaker remove the bolt on the right side holding the retainer bar which holds the arc quencher. Place the nylon connector of the harness on the bolt and reinstall. CAUTION: DO NOT OVERTIGHTEN BOLT. Fig. 7 - 5. Directly downward about five (5) inches from the retainer bar and to the right you will locate a ¾6" hole on the side frame. Attach both the ground lead and the harness at this point using .190-32 x .75 fil. head screw, nylon clamp, washer and nut. This now grounds the sensor star point. Fig. 8. - Place a grommet in the .50 hole located in the lower end of the right hand side of the rear frame. - Thread the sensor end of the harness through the grommet. If you have difficulty with getting the harness through .50 hole, remove enough harness cover to make the connections to sensors. - 8. Remove the finger clusters from the top studs. - 9. Mount the sensors on the studs. See Figs. 8 and 10. - 10. Connect the harness wiring to the sensors, and reinstall the finger clusters. NOTE: It may be desirable to complete steps 8, 9 and 10 after the actuator is mounted and operating properly. - 11. The two leads going to the actuator are brought down under the motor housing and over to the hole which secures the motor leads, using a nylon tie attach the harness to the motor leads. - 12. Bring the leads directly under the bottom front of the breaker, with a nylon tie attach the leads to the welded clete. Continue with the actuator end of harness under the left side of the breaker to a position half way between the left side frame and the middle frame. At this point you will find a ¾6" hole on the bottom brace, attach the leads using .190-32 x .75 fil. head screw, nylon wire clamp, washers and nut. - DO NOT ATTACH THE ACTUATOR LEADS at this time to the actuator terminal board. See Placement of the Actuator, paragraph 7. Fig. 8 Left Inside View of Breaker Looking Through from Right Side #### PLACEMENT OF THE ACTUATOR - Viewing the breaker from the left side, position and assemble trip paddle on breaker trip bar using .25-20 x .75 carriage bolt, trip bar finger, washer and nut. Do not tighten this assembly. See Figs. 8 and 9. - Attach the two leads to the terminal board on the actuator, the leads should be to the left of the actuator housing. - 3. Locate the two (2) .50 holes on the left side of the breaker frame – See Fig. 9. Attach the actuator base to the left side using .375-16 x 1.0 hex bolt, lockwasher, flat washer and nut. The two (2) actuator leads should be located between the left inside frame and the actuator housing. - Move the trip paddle assembly so that the paddle is located under the left side of the flange nut (viewing from the front) and secure the trip assembly to the bar. See Fig. 9. - 5. Viewing the breaker from the front, remove the .375-16 x 1.5 hex bolt located on the far left side of the cross bar. Place the reset arm between the bolt head and lockwasher (Fig. 9), tighten the bolt being positive that the locking clip is in its previous position. - If you did not complete steps 8, 9 and 10 in the sensor and harness placement, do so at this time. - Use a 28 Vdc source close breaker, check tripping and resetting functions of actuator, repeat numerous times for verification. It may be necessary to bend reset arm for positive resetting of actuator, Fig. 9. #### **TEST** NOTE: The amptector test sets identified by style 140D481G02 or 140D481G03 should not be used to check calibration of the RK trip units. These test units are not regulated well enough to provide an undistorted wave form to the trip unit. All timing values will not be consistent with the time/current curve. Fig. 9 Left Side View Using the RK test kit S#1232C08G01: - Check operation of the RK unit/actuator system sufficient number of times to insure proper operation. - 2. Set the RK dials to the required settings and verify that the RK is in calibration. - Record the settings on the side of the RK unit for permanent record. #### WARNING Circuit breakers applied in systems with available fault currents in excess of their interrupting/withstand capabilities can cause severe personal injury or death. To avoid misapplication, the interrupting/withstand rating of the breaker together with the maximum possible settings of the trip unit used, must equal or exceed the maximum fault current available in the applied system. Fig. 10 Tapped Current Sensor for GE. AK-2A-100 D.O. Breaker