

3WN1 Circuit-Breakers for AC

3-pole Fixed-Mounted Version up to 4000 A

[^0]
3WN1 Circuit-Breakers for AC 3-pole Withdrawable Version up to 6300 A

Select guide frame according to page 7/16.

3WN1 Circuit-Breakers for AC

4-pole Fixed-Mounted Version up to 3200 A
Selection and ordering data

[^1] (Z=F09).

3WN1 Circuit-Breakers for AC 4-pole Withdrawable Version up to 5000 A

Select guide frame according to page 7/17.

3WN1 Non-Automatic Circuit-Breakers for AC

 3-pole Fixed-Mounted Version up to 4000 A

[^2]
3WN1 Non-Automatic Circuit-Breakers for AC 3-pole Withdrawable Version up to 6300 A

Selection and ordering data					
Version without solid-	e overcurre	lease system	Order No. supplement	Order No. 3 WN 1 \square 71 - \square A \square	Basic price
Size/rated current I_{n} I_{n}	Size $1 / 1$ 80 kA $\left.^{1}\right)$ $1 / 2$ 11 $\frac{11 / 1}{11 / 2}$ IV	Rated current I_{n} 630 A 800 A 1000 A 1250 A 1600 A 2000 A 2500 A 3200 A 4000 A 6300 A	$\begin{array}{lll} \hline 0 & W \\ \hline 1 & W \\ \hline 2 & W \\ \hline 3 & W \\ \hline 3 & W \\ \hline 4 & W \\ \hline 5 & W \\ \hline 6 & W \\ \hline 7 & W \\ \hline 8 & W \\ \hline 9 & W \\ \hline 9 & T \end{array}$		$\left\lvert\, \begin{aligned} & \times \\ & \times \end{aligned}\right.$
Rated voltage U_{e}	AC 690 V AC 1000 Size I/1 Size I/2 Size II Size III		$\frac{2}{5}$		Additional price none $\begin{aligned} & \times \\ & \times \\ & \times \\ & \times \end{aligned}$
				3 W N $1 \square 7$ 1- $\square \square$ A $\square \square-\square \square \square \square$ For the 11th to 16 th position of the Order No., see pages 7/10 and 7/11.	$x=$ available

Select guide frame according to page 7/16.

3WN1 Non-Automatic Circuit-Breakers for AC 4-pole Fixed-Mounted Version up to 3200 A

Selection and ordering data					
Version without solid-s	over	lease system	Order No. supplement	Order No. $3 \text { W N } 1 \square \square 3 \text { - } \square \text { W A } \square \square-\square \square \square \square$	Basic price
Size/rated current I_{n} I_{n}	Size 1 $1 / 1$ $1 / 2$	Rated current I_{n} 800 A 1000 A 1250 A 1600 A 2000 A 2500 A 3200 A	$\begin{aligned} & 1 \\ & \hline \mathbf{2} \\ & \hline 3 \\ & \hline 4 \\ & \hline 4 \\ & \hline 5 \\ & \hline 6 \\ & \hline 7 \end{aligned}$	\square	$\begin{aligned} & \times \\ & \hline \end{aligned}$
Main connections \square 1	Conn Size Size Size Size Conn Size Size Size Size Conn Size Size Size Size Conn Size Size Size Size	rs: top and bottom vertical, 1-hole 000 A 600 A rs: top vertical, bottom horizontal 000 A 600 A rs: bottom vertical, top horizontal 000 A 600 A rs: top and bottom horizontal 000 A 600 A	3 4 5 6	\square	Additional prices \times none none none none
Rated voltage U_{e}			$\begin{aligned} & \hline \mathbf{2} \\ & 5 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { none } \\ & \times \end{aligned}$
				$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$ 3 W N $1 \square \square 3$ - \square W A $\square \square-\square \square \square \square$ For the 11th to 16th position of the Order No., see pages $7 / 10$ and 7/11.	$x=$ available

3WN1 Non-Automatic Circuit-Breakers for AC 4-pole Withdrawable Version up to 5000 A

Selection and ordering data					
Version without solid	overc	lease system	Order No. supplement	Order No. $3 \text { W N } 1 \square 7 \text { 3- W A } \square \square-\square \square \square \square$	Basic price
Size/rated current I_{n} I_{n}	Size । $11 / 1$ $1 / 2$ $11 / 1$ $11 / 2$	Rated current I_{n} 800 A 1000 A 1250 A 1600 A 2000 A 2500 A 3200 A 4000 A 5000 A	1 2 3 4 5 6 7 8 9	\square	$\begin{array}{\|l} x \\ \times \\ \hline \end{array}$
Rated voltage U_{e}	$\frac{A C 69}{A C 10}$		$\frac{2}{5}$	\square	Additional price none \times
				$3 \text { W N } 1 \square 7 \text { 3- W A } \square \square-\square \square \square \square$ For the 11th to 16 th position of the Order No., see pages $7 / 10$ and $7 / 11$.	$x=$ available

Select guide frame according to page 7/17.

3WN1 (Non-Automatic) Circuit-Breakers for AC

3- and 4-pole up to 6300 A
Selection and ordering data

3WN1 (Non-Automatic) Circuit-Breakers for AC
 3- and 4-pole up to 6300 A

3WN1 Circuit-Breakers for AC
 3 - and 4-pole up to 6300 A

Further versions for 3WN1 and 3WS1

For ordering the following circuit-breaker versions, add "-Z" to the complete Order No. and indicate the appropriate order code(s).

			Order code	$\begin{aligned} & \text { Order No. with "-Z" } \\ & \text { 1234567-89101112 } 13141516 \\ & \text { 3WN1....-.....-.....--Z } \\ & \text { and additional order code(s) } \end{aligned}$		Add. price	Add weight approx. kg	
				Identification code for Further versions "- Z"				
For fixed-mounted circuit-breakers only								
With extended connecting bars ${ }^{1}$)	Holes in the bar ends for the connection of conductor bars acc. to DIN 43673 (see page 7/48)	for size I/1 and I/2, 3-pole for size I, 4-pole for size II, 3-pole for size II/1, 4-pole for size II/2, 4-pole for size III/1, 3-pole	B\|0	1	$\square \square$			$\begin{aligned} & 1.1 \\ & 1.6 \\ & 1.7 \\ & \\ & 2.1 \end{aligned}$

For fixed-mounted and withdrawable circuit-breakers

Further versions for 3WN1 and 3WS1

3WN1 Circuit-Breakers

3 - and 4-pole up to 6300 A

Supplementary devices for 3WN1 and 3WS1

Item		Rated control supply voltage/ Rated operational voltage		For circuitbreaker size	Quantity required per circuitbreaker	Per 1 set or 1 item	
		AC $50 / 60 \mathrm{~Hz}$	DC			Order No. Price	Wgt. appr. kg
DP/3WN1, 3WS1 interface	for 3WN1 and 3WS1 circuit-breakers. Including connector lead to circuit-breaker (3 m long), 3.5" diskette with GSD file, type files for COM-PROFIBUS and STEP 7 for bus configuration.		-	I, II, III, IV	1 item	3RK1 002-0BB00-0AA0	
PROFIBUS connector	for connecting the interface to PROFIBUS-DP		-	I, II, III, IV	1 item	6ES7 972-0BB20-0XAO	
System manual \square	Communication connection of 3VF, 3WN6, 3WN1/3WS1 circuitbreakers to PROFIBUS-DP		-	I, II, III, IV	1 item	E20001-P285-A644-V1	
Delay device	for undervoltage releases with delay Rated control supply voltage must be identical to that of the undervoltage release " r "	$\begin{aligned} & \text { delay } \\ & 1,2 \text { or } 3 \mathrm{~s} \text {; fixed } \\ & 110-127 \mathrm{~V} \\ & 220-240 \mathrm{~V} \\ & 380-415 \mathrm{~V} \\ & \text { delay } \\ & 0.3 \text { to } 3.5 \mathrm{~s} \text {; stepless } \\ & 110-115 \mathrm{~V} \\ & 220-230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 110 \mathrm{~V} \\ & 220-250 \mathrm{~V} \\ & \\ & 110-115 \mathrm{~V} \\ & 220-230 \mathrm{~V} \end{aligned}$	I, II, III, IV	1 item	3WX31 56-3JG00 3WX31 56-3JJ00 3WX31 56-3JM00 3WX31 56-3JG10 3WX31 56-3JJ10	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & \\ & \\ & 0.5 \\ & 0.5 \end{aligned}$
Storage device	for shunt releases Rated control supply voltage must be identical to that of the shunt release (15th position of the breaker Order No. "J" or "L")	$\begin{aligned} & 120-127 \mathrm{~V} \\ & 220-240 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 110-125 \mathrm{~V} \\ & 220-250 \mathrm{~V} \end{aligned}$	I, II, III, IV	1 item	$\begin{aligned} & \text { 3WX31 56-1JG01 } \\ & \text { 3WX31 56-1JJ01 } \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$
Signalling unit for overcurrent release	for overcurrent release versions 2, 4 and 7 5 and 8 6	$\begin{aligned} & 110-127 / 220-240 \mathrm{~V} \\ & 110-127 / 220-240 \mathrm{~V} \\ & 110-127 / 220-240 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 24 \mathrm{~V} \\ & 24 \mathrm{~V} \\ & 24 \mathrm{~V} \end{aligned}$	I, II, III, IV	1 item	3WX31 47-0JA00 3WX31 47-1JA00 3WX31 47-2JA00	$\begin{aligned} & 1.2 \\ & 1.2 \\ & 1.2 \end{aligned}$
Function tester for overcurrent release	for release versions 1 to 8 Also suitable for overcurrent release of 3WN6 circuit-breakers.	110-127/220-240 V	-	I, II, III, IV	1 item	3WX36 47-5JA01	1.35

Accessories for fixed-mounted and withdrawable 3WN1 and 3WS1 circuit-breakers

For retrofitting					
Item	For circuitbreaker size	Quantity required per circuitbreaker	For 1 set or 1 item Order No.	Price	Wgt. appr kg
Sealing cap over OFF button against unauthorized opening	I, II, III, IV	1 item	3WX31 63-1JK01		0.01
Sealing cap over electrical ON button against unauthorized closing	I, II, III, IV	1 item	3WX31 63-3JK00		0.01

3WN1 Circuit-Breakers for AC 3- and 4-pole up to 6300 A

Accessories for fixed-mounted and withdrawable 3WN1 and 3WS1 circuit-breakers

For retrofitting

Item				For circuitbreaker size	Quantity required per circuitbreaker	For 1 set or 1 item Order No.	Price	Wgt. appr. kg
Locking device against unauthorized closing of the breaker	either	$\begin{aligned} & \text { Safety lock } \\ & \text { (3SB1) } \\ & \text { instead of } \\ & \text { OFF pushbutton }{ }^{1} \text {) } \end{aligned}$	```CES type Standard closure No. SSG }1 BKS type Standard closure No. S1 IKON type Standard closure No. 360012 K1```	I, II, III, IV	1 item	3WX31 63-1JA01 ${ }^{4}$) 3WX31 63-1JB01 ${ }^{4}$) 3WX31 63-1JC014)		$\begin{aligned} & 0.12 \\ & 0.12 \\ & 0.13 \end{aligned}$
	or	Locking facility for up to 4 padlocks (4 to 8 mm shackle diameter) ${ }^{2}$)		I, II, III, IV	1 item	3WX36 63-1JG00		0.2
		Safety lock (3SB1) instead of mechanical ON pushbutton ${ }^{1}$)	CES type Standard closure No. SSG 10 BKS type Standard closure No. S1 IKON type Standard closure No. 360012 K1	I, II, III, IV	1 item	3WX31 63-2JA01 ${ }^{4}$) 3WX31 63-2JB01 ${ }^{4}$) 3WX31 63-2JC01 ${ }^{4}$)		$\begin{aligned} & 0.12 \\ & 0.12 \\ & 0.13 \end{aligned}$
		Assembly kit ${ }^{3}$) fo Locks to be obtai CASTELL lock (F FORTRESS lock	TELL lock or FORTRESS lock om the manufacturer: $\stackrel{r}{\text { RH/AC }} 90^{\circ} /$ Standard)	I, II, III, IV	1 set	3WX31 63-6JE00		0.1

Item	Rated control supply voltage of the closing solenoid (Y1) integrated in the circuit-breaker		For 12th position of the breaker Order No., see Order No. plate on the breaker control panel $3 W N . . .-1 \ldots-\ldots$	For 1 item Order No.	Price	Add. weight appr. kg
Ready-to-close signalling contact (A3) For breaker mechanisms with stored-energy-features: - Manual mechanism with stored-energy feature with electrical and mechanical closing - Motorized/manual mechanism with stored-energy feature, as of Jan. 89 (Ident.-No. 09010100) If the module is retrofitted to the breaker, the Order No. on the rating plate at the breaker control panel has to be supplemented following the installation instructions.	$\begin{aligned} & 42 \\ & 110 \\ & 120-127 \\ & 220-240 \end{aligned}$	- - -	3 6 7 8	$\begin{aligned} & \text { 3WX31 36-1JD00 } \\ & \text { 3WX31 36-1JG00 } \\ & \text { 3WX31 36-1JG00 } \\ & \text { 3WX31 36-1JJ00 } \end{aligned}$		0.1
	-	$\begin{gathered} \hline 24 \\ 48 \\ 60 \\ 110-125 \\ 220-250 \end{gathered}$	$\begin{aligned} & 1 \\ & 4 \\ & 5 \\ & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { 3WX31 36-1JB00 } \\ & \text { 3WX31 36-1JD00 } \\ & \text { 3WX31 36-1JF00 } \\ & \text { 3WX31 36-1JGG00 } \\ & \text { 3WX31 36-1JJ00 } \end{aligned}$		0.1
N -conductor current transformer (only for 3-pole) for earth-fault protection (individual mounting) only for overcurrent release versions 6 and 8 (The size and rated current of the N -conductor curre transformer must correspond to the current transform in the respective circuit-breaker)	Rated primary current		For circuit-breaker size			
	$\begin{aligned} & \left.315 A^{5}\right) \\ & \left.400 A^{5}\right) \\ & \left.500 A^{5}\right) \\ & 630 A \\ & 800 A \\ & 1000 A \\ & 1250 A \\ & 1600 A \end{aligned}$		I	$\begin{aligned} & \text { 3WX31 43-1CA00 } \\ & \text { 3WX31 43-1CB00 } \\ & \text { 3WX31 43-1CC00 } \\ & \text { 3WX31 43-1CD00 } \\ & \text { 3WX31 43-1CE00 } \\ & \text { 3WX31 43-1CF00 } \\ & \text { 3WX31 43-1CG00 } \\ & \text { 3WX31 43-1CH00 } \end{aligned}$		2.15
	$\begin{aligned} & 1200 A^{5} \\ & \left.1600 A^{5}\right) \\ & 2000 A \\ & 2500 A \end{aligned}$		II	$\begin{aligned} & \text { 3WX31 43-1DG00 } \\ & \text { 3WX31 43-1DH00 } \\ & \text { 3WX31 43-1DJ00 } \\ & \text { 3WX31 43-1DK00 } \end{aligned}$		2.87
	$\begin{aligned} & \left.1600 A^{5}\right) \\ & \left.2000 A^{5}\right) \\ & \left.2500 A^{5}\right) \\ & \left.3200 A^{5}\right) \\ & \left.4000 A^{5}\right) \end{aligned}$		III	3WX31 43-1EH00 3WX31 43-1EJ00 3WX31 43-1EK00 3WX31 43-1EM00 3WX31 43-1EP00		3.9
	$\begin{aligned} & \left.4000 A^{5}\right) \\ & 5000 A^{5} \\ & \left.6300 A^{5}\right) \end{aligned}$		IV	$\begin{aligned} & \text { 3WX31 43-1RP00 } \\ & \text { 3WX31 43-1RQ00 } \\ & \text { 3WX31 43-1RS00 } \end{aligned}$		5.1

Accessories for fixed-mounted 3WN1 and 3WS1 circuit-breakers

Item	For circuitbreaker size	Quantity required per circuitbreaker	For 1 set or 1 item Order No. Price	Wgt. appr. kg
Support brackets including breaker fixing bolts	I, II, III	1 set	3WX31 81-0JA00	4.8
Door sealing frame	I, II, III	1 item	3WX31 86-0JA01	1
Auxiliary supply connector for spare part or retrofitting	I, II, III	For required number see page 7/18.	3WX36 25-1JC00	
Locking device ${ }^{6}$) against opening the cubicle door with the circuit-breaker closed	I, II, III (3-pole)	1 item	3WX31 67-2JA01	0.7

1) Safety locks with special closure should be ordered by the customer according to "Controls and Distribution", Part 9.
2) The locking facility for padlocks cannot be used together with a safety lock instead of the OFF button
3) Can be retrofitted to circuit-breakers delivered since Nov. 91 (from Ident. No. 9111 01).
4) Can be retrofitted to circuit-breakers delivered since July 90 (from Ident. No. 9007 01).
5) Not possible with

3WS1 vacuum circuit-breakers.
6) Can only be retrofitted for circuit-breakers manufactured as of Nov. 88 (with Ident.-No. 08110100).

3WN1 Circuit-Breakers for AC

3-pole

3WN1 Circuit-Breakers for AC

3 - and 4-pole

Further versions of guide frames for 3WN1 and 3WS1

For ordering the following guide frame versions, add " $-Z$ " to the complete Order No. and indicate the appropriate order code(s):

	Order code	Order No. with "-Z" $1234567 \quad 89101112 \quad 13141516$ 3WX 3183 - - . . . 3 -Z and additional order code(s) Order No. with "-Z" $1234567 \quad 89101112 \quad 13141516$ 3WX6118-8....- . . . 3 -Z and additional order code(s)	Add. price
		Identification code for "Further versions" - Z	
Communication - Bus connecting lead between guide frame and connecting lead to DP/3WN1, 3WS1 interface	R/3/9		

Accessories for guide frames for 3WN1 and 3WS1

Item		Order No.	Price	Weight appr. kg
Auxiliary supply connector	for spare part or retrofitting	3WX36 27-1JA00		0.160
Door sealing frame	Quantity required 1 item	3WX31 86-0JA01		1
Coding device	to prevent mistaking withdrawable circuit-breakers with same size in a switchboard ${ }^{1}$)	3WX31 62-1JE00		0.2
Hinged rails for maintenance pos.	Quantity required 1 set (1 set = 2 items)	3WX31 84-4JA01		1.4

Accessories for fixed-mounted and withdrawable 3WN1 and 3WS1 circuit-breakers

Size I, II and III (3-pole only) size I and II (4-pole only) Mutual mechanical interlocking consisting of receiver module and transmitter module as well as the required number of Bowden wires (2 m in length)					
Version/ Circuit diagram	For fixed-mounted circuit-breakers Order No. Order code	Additional price per circuitbreaker	For withdrawable circuit breakers/ guide frames Order No./ Order No. supplement	Additional price per circuitbreaker/ guide frame	Additiona weight approx. kg
			Circuit-breakers Order No. with "-Z" $1234567 \quad 8910111213141516$ 3WN 1 . . . - - -Z and additional order code S52 Guide frame Change the 15th position of the Order No. acc. to the table below 3WX31 83- 8 - . . $\square 3$		0.3
1 One circuit-breaker can only be closed if the other is switched off.	A, B S50		A, B G A with locking device (1) K B with locking device (1)		$\begin{aligned} & 0.5 \\ & 0.8 \end{aligned}$
2 Any two circuit-breakers can be closed, while the third is locked.	$\mathrm{A}, \mathrm{B}, \mathrm{C} \quad$ S541)		A, B, C A with locking device B with locking device C with locking device		$\begin{aligned} & 0.7 \\ & 1.0 \end{aligned}$
3 If one circuit-breaker is closed, the other two circuit-breakers cannot be closed.	A, B, C S55 ${ }^{\text { }}$		A, B, C A with locking device B with locking device C with locking device		$\begin{aligned} & 0.7 \\ & 1.0 \end{aligned}$
4 Two circuit-breakers (A1, A2) can be closed and opened independently. The third one (B) is ready to be closed, if the other two circuit-breakers remain in the OFF position. If the third circuit-breaker (B) is closed, the other two are locked.	A1, A2 S50 B $\mathbf{S 5 5}^{1}$)		A1, A2 G B J A1 with locking device (1) K A2 with locking device (1) B with locking device (1) M		$\begin{aligned} & 0.5 \\ & 0.7 \\ & 0.8 \\ & 1.0 \end{aligned}$

3WN1 Circuit-Breakers for AC

3 - and 4-pole

Spare parts for fixed-mounted and withdrawable 3WN1 circuit-breakers

Item	For circuit-breaker					Quantity required per circuitbreaker	For 1 set or 1 item	
	Size, number of poles	Rated operational voltage	Type		Rated current		Order No. Price	Weight appr. kg
Contacts	Main contacts are also arcing contacts					3 sets	for circuit-breakers produced until 09/96: 3WY31 12-2AA00 for circuit-breakers produced since 10/96: 3WY31 12-1MA00	0.45
	$\begin{aligned} & \text { l/1, } \\ & 3 \text {-pole } \end{aligned}$	up to AC 1000 V	3WN1 3WN1	031 to 3WN1 231 071 to 3WN1 271	up to 1250 A			
	Arcing contacts only					3 sets		0.35
	$\begin{aligned} & 1 / 2, \\ & 3 \text {-pole } \end{aligned}$	up to AC 1000 V	3WN1 3WN1	331 to 3WN1 431 371 to 3WN1 471	1250 and 1600 A		3WY31 12-1MA00	
	$\begin{aligned} & \text { I.pole } \\ & \text { 4-p } \end{aligned}$	up to AC 1000 V	3WN1 3WN1	133 to 3WN1 433	up to 1600 A	4 sets	3WY31 12-1MA00	0.45
	II, 3-pole	up to AC 1000 V	3WN1 3WN1	531 and 3WN1 631 571 and 3WN1 671	2000 and 2500 A	3 sets	3WY31 12-1MA00	0.35
	$\begin{aligned} & \text { I/1/, } \\ & \text { 4-pole } \end{aligned}$	up to AC 690 V	3WN1 3WN1	533 and 3WN1 633 573 and 3WN1 673	2000 and 2500 A	4 sets	3WY31 12-1MA00	0.35
	$\underset{4 \text {-pole }}{11 / 2}$	up to AC 690 V	3WN1 3WN1	$\begin{aligned} & 733 \\ & 773 \end{aligned}$	3200 A	$\begin{aligned} & 3 \text { sets + } \\ & 1 \text { set } \end{aligned}$	$\begin{aligned} & \text { 3WY31 12-1EAOO } \\ & \text { 3WY31 12-1MA00 } \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.35 \end{aligned}$
	$\begin{aligned} & \text { III/1, } \\ & 3 \text {-pole } \end{aligned}$	$\begin{aligned} & \text { up to } \\ & \text { AC } 1000 \mathrm{~V} \end{aligned}$	3WN1 3WN1		3200 A	3 sets	3WY31 12-1EA00	0.6
	$\begin{aligned} & \text { III/2, } \\ & \text { 3-pole } \end{aligned}$	up to AC 1000 V	3WN1 3WN1	$\begin{aligned} & 831 \\ & 871 \end{aligned}$	4000 A	6 sets	3WY31 12-1MA00	0.35
	III, 4-pole	up to AC 690 V	3WN1 8	873 and 3WN1 973	4000 and 5000 A	$6 \text { sets }+$ $1 \text { set }$	3WY31 12-1MA00 3WY31 12-1MA00	$\begin{aligned} & 0.35 \\ & 0.35 \end{aligned}$
	IV, 3-pole	up to AC 690 V	3WN1 9	971	5000 and 6300 A	9 sets	3WY31 12-1MA00	0.35
Arc chute ${ }^{1}$) without arc chute extension up to AC 690 V	$\begin{aligned} & \text { I and II, } \\ & \text { 3-pole, } \end{aligned}$		3WN1 3WN1	031-1 to 3WN1 631-1 071-1 to 3WN1 671-1	up to 2500 A	3 items	3WY31 11-0NA00	2.7
	4.-pole		3WN1 3WN1	133-1 to 3WN1 433-1 173-1 to 3WN1 473-1	up to 1600 A	4 items	3WY31 11-ONA00	2.7
	$\begin{aligned} & \text { II/1, } \\ & \text { 4-pole } \end{aligned}$		3WN1 3WN1	533-1 and 3WN1 633-1 573-1 and 3WN1 673-1	2000 and 2500 A	4 items	3WY31 11-0NA00	2.7
	$\begin{aligned} & 11 / 2, \\ & 4 \text {-pole } \end{aligned}$		3WN1 3WN1	$\begin{aligned} & 733-1 \\ & 773-1 \end{aligned}$	3200 A	$\begin{aligned} & 3 \text { items + } \\ & 1 \text { items } \end{aligned}$	3WY31 11-OPAOO 3WY31 11-0NA00	$\begin{aligned} & 5.0 \\ & 2.7 \end{aligned}$
	$\begin{aligned} & \text { III, } \\ & 3 \text {-pole } \end{aligned}$		3WN1 3WN1	731-1 and 3WN1 831-1 771-1 and 3WN1 871-1	3200 and 4000 A	3 items	3WY31 11-0GA00	5.8
Arc chute with arc chute extension fitted up to AC 690 V	$\begin{aligned} & \text { I and II, } \\ & \text { 3-pole } \end{aligned}$		3WN1 3WN1	031 to 3WN1 631 071 to 3WN1 671	up to 2500 A	3 items	3WY31 11-1NA00	3.2
	$\begin{aligned} & \text { I,pole } \\ & \text { 4-p } \end{aligned}$		3WN1 3WN1	133 to 3WN1 433 173 to 3WN1 473	up to 1600 A	4 items	3WY31 11-1NA00	3.2
	$\begin{aligned} & \text { II/1, } \\ & \text { 4-pole } \end{aligned}$		3WN1 3WN1	533 and 3WN1 633 573 and 3WN1 673	2000 and 2500 A	4 items	3WY31 11-1NA00	3.2
	$\begin{aligned} & \text { II/2, } \\ & \text { 4-pole } \end{aligned}$		3WN1 3WN1	$\begin{aligned} & 733 \\ & 773 \end{aligned}$	3200 A	$\begin{aligned} & 3 \text { items + } \\ & 1 \text { items } \end{aligned}$	3WY31 11-1PA00 3WY31 11-1NA00	$\begin{aligned} & 5.8 \\ & 3.2 \end{aligned}$
	$\begin{aligned} & \text { III, } \\ & 3 \text {-pole } \end{aligned}$		3WN1 3WN1	731 and 3WN1 831 771 and 3WN1 871	3200 and 4000 A	3 items	3WY31 11-1GA00	6.8
	$\begin{aligned} & \text { III, } \\ & \text { 4-pole } \end{aligned}$		3WN1 8	873 and 3WN1 973	4000 and 5000 A	$\begin{aligned} & 3 \text { items + } \\ & 1 \text { item } \end{aligned}$	3WY31 11-1TA00 3WY31 11-1NA00	$\begin{aligned} & 6.8 \\ & 3.2 \end{aligned}$
	IV, 3-pole		3WN1 971		5000 and 6300 A	3 items	3WY31 11-1RA00	10.4
Arc chute with arc chute extension fitted (special design) up to AC 1000 V	$\begin{aligned} & \text { I and III, } \\ & \text { 3-pole } \end{aligned}$		3WN1 031-5 to 3WN1 631-5 3WN1 071-5 to 3WN1 671-5		up to 2500 A	3 items	3WY31 11-2NA10	3.5
	$\begin{aligned} & \text { I, } \\ & \text { 4-pole } \end{aligned}$		3WN1 133-5 to 3WN1 433-5 3WN1 173-5 to 3WN1 473-5		up to 1600 A	4 items	3WY31 11-2NA10	3.5
	$\begin{aligned} & \text { III, } \\ & 3 \text {-pole } \end{aligned}$		3WN1 731-5 3WN1 771-5 and 3WN1 871-5		$\begin{aligned} & 3200 \mathrm{~A} \\ & 3200 \text { and } 4000 \mathrm{~A} \end{aligned}$	3 items	3WY31 11-2GA10	7.4

[^3]
3WN1 Circuit-Breakers for AC 3- and 4-pole

Spare parts for fixed-mounted and withdrawable 3WN1 and 3WS1 circuit-breakers							
Item	For circuit-breaker Size			Quantity required per circuit breaker	For 1 set or 1 item Order No.	Price	Weight appr. kg
Communicationcapable overcurrent releases, see summary of functions on page 7/34.		Version 5 Version 8		1 item	3WX31 41-5JC12 3WX31 41-6JE12		
Communication Bus connecting lead		for fixed-mounted circuit-breakers or guide frames between circuit-breaker and connecting lead to DP/3WN1, 3WS1 interface		1 item	3WX31 44-1JA00		
Auxiliary releases and electrical closing lockout ${ }^{1}$)		Rated contro AC $50 / 60 \mathrm{~Hz}$ V	voltage DC V				
Shunt release " f " for 1st and 2nd auxiliary release (F1 and F2) and closing solenoid	I to IV	$\begin{aligned} & \hline-\overline{2} \\ & 410 \\ & 120-127 \\ & 220-240 \\ & 380-415 \end{aligned}$	$\begin{array}{r} 24-27 \\ - \\ 48-55 \\ 60-68 \\ 110-125 \\ 220-250 \end{array}$	1 item	3WX31 51-1JB00 3WX31 51-1JD00 3WX31 51-1JG00 3WX31 51-1JH00 3WX31 51-1JJ00 3WX31 51-1JL00		0.12
Undervoltage release "r" (F3)	Ito IV	$\begin{aligned} & \hline \overline{\overline{2}} \\ & - \\ & \overline{-} \\ & 110 \\ & 120-127 \\ & 220-230 \\ & 240 \\ & - \\ & 380-400 \\ & 455 \\ & 440 \\ & 480-500 \end{aligned}$	$\begin{gathered} 24-27 \\ \overline{48-}-55 \\ 60-68 \\ \overline{-} 0-125 \\ \overline{110} \\ 220-250 \\ 250-286 \\ - \\ - \\ - \\ - \end{gathered}$	1 item	3WX31 53-1JB00 3WX31 53-1JD00 3WX31 53-1JE00 3WX31 53-1JF00 3WX31 53-1JG00 3WX31 53-1JH00 3WX31 53-1JJ00 3WX31 53-1JK00 3WX31 53-1JL00 3WX31 53-1JM00 3WX31 53-1JN00 3WX31 53-1JP00 3WX31 53-1JR00		0.5
Electrical closing lockout "fd" (F4)	I to IV	$\begin{aligned} & \hline \overline{4} \\ & - \\ & \overline{2} \\ & 110 \\ & 120-127 \\ & 220-230 \\ & 240 \\ & - \end{aligned}$	$\begin{array}{r} 24-27 \\ \overline{48}-55 \\ 60-68 \\ \overline{110-125} \\ \overline{-}-20-250 \\ 250-286 \end{array}$	1 item	3WX31 52-1JB00 3WX31 52-1JD00 3WX31 52-1JE00 3WX31 52-1JF00 3WX31 52-1JG00 3WX31 52-1JH00 3WX31 52-1JJ00 3WX31 52-1JK00 3WX31 52-1JL00		0.5
Hinged rails for maintenance position	I to III, 3-pole I and II, 4-pole	for guide frames supplied until Dec. 89 for guide frames supplied since Jan. 90		1 set (1 set = 2 items)	3WX31 84-4JA00 3WX31 84-4JA01		$\begin{aligned} & 1.5 \\ & 1.4 \end{aligned}$
Bowden wire for mutual mechanical interlocking	I to III, 3-pole I and II, 4-pole	Length 2 m		1 item	3WX31 84-8JA00		0.25

3WN1 Circuit-Breakers for AC
 3- and 4-pole up to 6300 A

Accessories for 3WN1 and 3WS1

	For size 3-pole	4-pole	Quantity required per circuit-breaker	Order No.	Price
For fixed-mounted and withdrawable 3WN1 and 3WS1 circuit-breakers					
Auxiliary switch with wiring without connecting element 1. Auxiliary switch block S4/S5 2 NO + 2 NC Connection to connecting element X1 2. Auxiliary switch block S1/S4 2 NO +2 NC Connection to connecting element X4	$\begin{aligned} & \text { I/1, I/2 } \\ & \text { II } \\ & \text { III } \\ & \text { IV } \\ & \text { I/1, } 1 / 2 \\ & 11 \\ & \text { III } \\ & \text { IV } \end{aligned}$	$\begin{aligned} & -\overline{1} \\ & \text { II } \\ & \text { III } \\ & \text { I } \\ & \text { III } \end{aligned}$	1 item	3WX31 16-1CB00 3WX31 16-1GB00 3WX31 16-1RB00 3WX31 16-1CC00 3WX31 16-1DC00 $3 W \times 31$ 16-1GC00 $3 W \times 3116-1 R C 00$ 3WX31 16-1RC00	
For fixed-mounted 3WN1 circuit-breakers					
Connecting bars for front connection vertical 1-hole bar $6^{\text {th }}$ position of the circuit-breaker Order No: " 3 ", " 4 " or " 5 " vertical 2-hole bar $6^{\text {th }}$ position of the circuit-breaker Order No: " 3 ", + "-Z" + order code "B01" horizontal bar $6^{\text {th }}$ position of the circuit-breaker Order No: " 6 "	I/1, I/2 II III/1 III/2 I/1, I/2 II III/1 I/1, I/2 II III/1	II/2 - II/1 11/2	$\begin{aligned} & \left.1 \text { set }=1 \text { item }^{1}\right) \\ & \left.1 \text { set }=1 \text { item }^{1}\right) \\ & \left.1 \text { set }=1 \text { item }{ }^{1}\right) \\ & 1 \text { set }=6 \text { items } \\ & 1 \text { set }=3+1 \text { item } \\ & 1 \text { set }=3+1 \text { item } \end{aligned}$ $\begin{aligned} & \left.1 \text { set }=1 \text { item }^{1}\right) \\ & \left.1 \text { set }=1 \text { item }^{1}\right) \\ & \left.1 \text { set }=1 \text { item }^{1}\right) \\ & 1 \text { set }=3+1 \text { item } \\ & 1 \text { set }=3+1 \text { item } \end{aligned}$ 1 set $=1$ item ${ }^{1}$) 1 set $=1$ item ${ }^{1}$) 1 set $=3+1$ item 1 set $=3+1$ item 1 set = 1 item ${ }^{1}$)	3WX31 21-1BB00 3WX31 21-1DB00 3WX31 21-1EB00 3WX31 21-1FC00 3WX31 21-1KF00 3WX31 21-1PF00 3WX31 21-1BB20 3WX31 21-1DB20 3WX31 21-1EB20 3WX31 21-1KF20 3WX31 21-1PF20 3WX31 21-2BB00 3WX31 21-2DB00 3WX31 21-2KF00 3WX31 21-2PF00 3WX31 21-2EB00	

For guide frames for 3WN1 and 3WS1

T-connecting pieces (direct connection to the terminal flanges)	$\begin{aligned} & - \\ & \text { II } \\ & - \\ & - \\ & \text { III/1 } \end{aligned}$	$\begin{aligned} & \overline{1} \\ & \overline{1 \\| / 1} \\ & \\| / 2 \end{aligned}$	1 set $=3$ items 1 set $=4$ items 1 set $=3$ items 1 set $=3+1$ item 1 set $=3+1$ item 1 set $=3$ items	3WX31 23-1CA00 3WX31 23-1CD00 3WX31 23-1DA00 3WX31 23-1KF00 3WX31 23-1PF00 3WX31 23-1GA00
Position signalling contact for remote signalling of the circuit-breaker position			1 set	
	$\begin{aligned} & 1, ~ I I, ~ I I I, ~ I I I ~ \\ & l i l \end{aligned}$	I, III		3WX31 84-1JA01 3WX31 84-1JA21
		$\begin{aligned} & 1,11 \\ & 1, i l \end{aligned}$		3WX31 84-1JB01 3WX31 84-1JB21
Locking device to prevent the cubicle door from being opened in the connected and test position to prevent the circuit-breaker from moving when the cubicle door is open	$\begin{aligned} & \text { I, II, III } \\ & \text { iv, } \\ & \text { I, II, III } \end{aligned}$		1 item	3WX31 67-2JB01 3WX31 67-3JA00 3WX31 67-3RA00
Crank handle	I, II, III, IV	I, II, III	1 item	3WX31 84-0JA00
Shutter Protection against shock-hazard from live withdrawable contacts	$\begin{aligned} & \mathrm{I} / 1, \mathrm{I} / 2 \\ & - \\ & \mathrm{II} \\ & - \\ & \mathrm{III/1}, \mathrm{III} / 2 \\ & \text { IV } \end{aligned}$	$\begin{aligned} & \hline-\bar{\prime} \\ & \overline{I I} / 1, \mathrm{II} / 2 \\ & \overline{\text { III }} \\ & \hline \end{aligned}$	1 item	3WX31 84-3CA00 3WX31 84-3CB00 3WX31 84-3DA00 3WX31 84-3DB00 3WX31 84-3GA00 3WX31 84-3GB00 3WX31 84-3RA00

[^4]
3WN1 Circuit-Breakers for AC
 3-pole up to 6300 A

Technical data

1) If the rated primary current I_{N} of the current trans-
former is less than the rated current of the circuitbreaker, then $I_{\mathrm{n}}=I_{\mathrm{N}}$.
2) According to the marine classification societies BV, GL, LRS and DNV
3) The temperatures refer to the air space around the upper one third of the circuit-breaker.
4) Values according to sinusoidal current at $50 / 60 \mathrm{~Hz}$. Heating and losses will rise due to harmonics and highher frequencies.
5) Per set of contacts. Disconnecting rated current I_{n}.
6) For fixed-mounted versions: $3 \times 120 \times 10 \mathrm{~mm}$.
7) Screws and clamping spacers are not supplied. Required spacers have an inside diamete of 12 mm acc. to DIN 6769-Fst.

3WN1 Circuit-Breakers for AC

4-pole up to 5000 A

For footnotes, see page 7/25.

3WN1 Circuit-Breakers for AC
 4-pole up to 5000 A

Size			II/1		II/2	III/1 3WN1 8	$\begin{array}{\|l\|} \hline I I I / 2 \\ \hline \text { 3WN1 } 9 \\ \hline \end{array}$
Type			3WN1 5	3WN1 6	$\text { 3WN1 } 7$		
Rated current $I_{\mathrm{n}}{ }^{1}$) at $40^{\circ} \mathrm{C}$, at $50 / 60 \mathrm{~Hz}$	Main conductors N conductor	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 2000 \\ & 1600 \end{aligned}$	$\begin{aligned} & 2500 \\ & 1600 \end{aligned}$	$\begin{aligned} & 3200 \\ & 1600 \end{aligned}$	$\begin{aligned} & 4000 \\ & 2500 \end{aligned}$	$\begin{aligned} & 5000 \\ & 2500 \end{aligned}$
Current transformer rated primary current I_{N}		A	2000 2500 up to 690		3200	4000	5000
Rated operational voltage $\boldsymbol{U}_{\mathrm{e}}$ at $50 / 60 \mathrm{~Hz}$		AC V	$\text { up to } 690$				
Rated impulse withstand voltage $U_{\text {imp }}$	Main conducting paths ${ }^{7}$) Auxiliary circuits	$\begin{aligned} & \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & 8 \\ & 4 \end{aligned}$				
Utilization category			B				
Rated short-circuit making capacity $I_{c m}$ (peak value)	Main conductors/N conductor up to AC $500 \mathrm{~V}\left(440 \mathrm{~V}^{2}\right)$) up to AC 690 V up to AC 1000 V	$\begin{aligned} & \text { kA } \\ & \text { kA } \\ & \text { kA } \end{aligned}$	$\begin{aligned} & 176 / 176 \\ & 132 / 132 \end{aligned}$		$\begin{aligned} & 176 / 176 \\ & 132 / 132 \end{aligned}$	$\begin{aligned} & 220 / 176 \\ & 176 / 132 \end{aligned}$	$\begin{aligned} & 220 / 176 \\ & 176 / 132 \end{aligned}$
Rated service short-circuit breaking capacity $I_{\text {cs }}$ (ms value)	Main conductors/N conductor up to AC $500 \mathrm{~V}\left(440 \mathrm{~V}^{2}\right)$) up to AC 690 V up to AC 1000 V	$\begin{aligned} & \text { kA } \\ & \text { kA } \\ & \text { kA } \end{aligned}$	$\begin{array}{r} 80 / 80 \\ 60 / 60 \\ -\quad \end{array}$		$\begin{array}{r} 80 / 80 \\ 60 / 60 \\ -\quad \end{array}$	$\begin{array}{r} 100 / 80 \\ 80 / 60 \\ -\quad \end{array}$	$\begin{array}{r} 100 / 80 \\ 80 / 60 \\ -\quad \end{array}$
Rated ultimate short-circuit breaking capacity $I_{\text {cu }}$ (ms value)	Main conductors/N conductor up to AC 500 V up to AC 690 V up to AC 1000 V	$\begin{aligned} & \text { kA } \\ & \text { kA } \\ & \text { kA } \end{aligned}$	$\begin{array}{r} 80 / 80 \\ 60 / 60 \\ -\quad \end{array}$		$\begin{array}{r} 80 / 80 \\ 60 / 60 \\ -\quad \end{array}$	$\begin{array}{r} 100 / 80 \\ 80 / 60 \end{array}$	$\begin{array}{r} 100 / 80 \\ 80 / 60 \\ -\quad \end{array}$
Permissible ambient temperature	Operation Storage		$\begin{aligned} & -20 \text { to }+7 \\ & -40 \text { to }+7 \end{aligned}$	$\text { bove }+40$	reduced	rating	
Rated short-time withstand current I_{cw} at $50 / 60 \mathrm{~Hz}$	Main conductors/N conductor Circuit-breakers for rated operational voltages up to AC 690 V	$\begin{array}{lr} 0.5 & \text { s kA } \\ 1 & \text { s kA } \\ 2 & \text { s kA } \\ 3 & \text { s kA } \end{array}$	$\begin{array}{ll} 80 / 80 \\ 80 / 80 \\ 70 / 70 \\ 60 / 60 \end{array}$		$\begin{aligned} & 80 / 80 \\ & 80 / 80 \\ & 80 / 80 \\ & 80 / 80 \end{aligned}$	$\begin{array}{r} 100 / 80 \\ 100 / 80 \\ 80 / 70 \\ 80 / 60 \end{array}$	$\begin{array}{r} 100 / 80 \\ 100 / 80 \\ 90 / 70 \\ 80 / 60 \end{array}$
Permissible continuous loading of fixed-mounted and withdrawable circuit-breakers with internal cubicle temperature $\left.{ }^{3}\right)^{4}$)	Main conductors at $40^{\circ} \mathrm{C}$ at $50^{\circ} \mathrm{C}$ at $60^{\circ} \mathrm{C}$ at $70^{\circ} \mathrm{C}$	A A A A	$\begin{aligned} & 2000 \\ & 2000 \\ & 2000 \\ & 1950 \end{aligned}$	$\begin{aligned} & 2500 \\ & 2450 \\ & 2250 \\ & 2000 \end{aligned}$	$\begin{aligned} & 3200 \\ & 3000 \\ & 2750 \\ & 2470 \end{aligned}$	$\begin{aligned} & 4000 \\ & 4000 \\ & 3650 \\ & 3220 \end{aligned}$	$\begin{aligned} & 5000 \\ & 4600 \\ & 4100 \\ & 3600 \end{aligned}$
	N conductor at $40^{\circ} \mathrm{C}$ at $50^{\circ} \mathrm{C}$ at $60^{\circ} \mathrm{C}$ at $70^{\circ} \mathrm{C}$	A A A A	$\begin{aligned} & 1600 \\ & 1500 \\ & 1400 \\ & 1250 \end{aligned}$		$\begin{aligned} & 1600 \\ & 1500 \\ & 1400 \\ & 1250 \end{aligned}$	$\begin{aligned} & 2500 \\ & 2450 \\ & 2250 \\ & 2000 \end{aligned}$	$\begin{aligned} & 2500 \\ & 2450 \\ & 2250 \\ & 2000 \end{aligned}$
Rated rotor operational voltage		V	2000				
Power loss at I_{n} with 3-phase balanced load (without conductor bars and metal components) ${ }^{4}$)	Fixed-mounted circuit-breaker Withdrawable circuit-breaker incl. guide frame	W	370 550	$\begin{aligned} & 620 \\ & 900 \end{aligned}$	$\begin{aligned} & 790 \\ & 1150 \end{aligned}$	1450	1800

Footnotes to pages 7/24 and 7/25:

1) If the rated primary current I_{N} of the current trans former is less than the rated current of the circuitbreaker, then $I_{\mathrm{n}}=I_{\mathrm{N}}$.
2) According to the marine classification societies BV, GL, LRS and DNV.
3) The temperatures refer to the air space around the upper one third of the circuit-breaker
4) Values according to sinusoidal current at $50 / 60 \mathrm{~Hz}$ Heating and losses will rise due to harmonics and higher frequencies.
5) Per set of contacts. Disconnecting the rated current I_{n}.
6) The screws and clamping spacers are not supplied Suitable spacers have an inside diameter of 12 mm acc to DIN 6769-Fst
7) Rated insulation voltage $U_{i}=A C 1000 \mathrm{~V}$.

3WN1 Circuit-Breakers for AC

4-pole up to 5000 A

Technical data								
Size				II/1		II/2	III/1	III/2
Type				3WN1 5	3WN1 6	3WN17	3WN1 8	3WN19
Current transformer rated primary current I_{N} A				2000	2500	3200	4000	5000
Durability	Mechanical Electrical ${ }^{1}$) at I_{n} and cos		Operating cycles	$\begin{aligned} & \hline 5000 \\ & 1000 \end{aligned}$			$\begin{aligned} & \hline 5000 \\ & 1000 \end{aligned}$	$\begin{array}{r} 5000 \\ 500 \end{array}$
Switching frequency $1 / \mathrm{min}$				1				
Minimum interval between circuit-breaker opening and the next closing command				120				
Mounting position								
Degree of protection				Circuit-breaker IP 00, control panel with door sealing frame IP 54				
Min. cross-sections of main conductors for phase currents L1, L2, L3	Copper bars blank		$\begin{gathered} \text { Qty. } \\ \mathrm{mm}^{2} \end{gathered}$	$\begin{aligned} & 2 \times \\ & 100 \times 10 \end{aligned}$	$\begin{aligned} & 3 \times \\ & 100 \times 10 \end{aligned}$	$\begin{aligned} & 3 \times \\ & 120 \times 10 \end{aligned}$	-	-
	Copper bars painted black		$\begin{aligned} & \text { Qty. } \\ & \mathrm{mm}^{2} \end{aligned}$	$\begin{aligned} & 2 \times \\ & 80 \times 10 \end{aligned}$	$\begin{aligned} & 2 \times \\ & 100 \times 10 \end{aligned}$	$\begin{aligned} & 3 \times \\ & 100 \times 10 \end{aligned}$	$\begin{aligned} & 4 \times \\ & 120 \times 10 \end{aligned}$	$\begin{aligned} & 5 \times \\ & 120 \times 10 \end{aligned}$
N conductorof main conductors for N conductor current	Copper bars blank		$\begin{gathered} \text { Qty. } \\ \mathrm{mm}^{2} \end{gathered}$	$\begin{aligned} & 2 \times \\ & 60 \times 10 \end{aligned}$	$\begin{aligned} & 2 \times \\ & 60 \times 10 \end{aligned}$	$\begin{aligned} & 2 \times \\ & 60 \times 10 \end{aligned}$	-	-
	Copper bars painted black		$\begin{gathered} \text { Qty } \\ \mathrm{mm}^{2} \end{gathered}$	$\begin{aligned} & 2 \times \\ & 50 \times 10 \end{aligned}$	$\begin{aligned} & 2 \times \\ & 50 \times 10 \end{aligned}$	$\begin{aligned} & 2 \times \\ & 50 \times 10 \end{aligned}$	$\begin{aligned} & 2 \times \\ & 120 \times 10 \end{aligned}$	$\begin{aligned} & 2 \times \\ & 120 \times 10 \end{aligned}$
Protective conductor	Screw-type terminals			M 12				
	Stranded copper conductors with cable lugs mm^{2}			2×240				
	Copper bars		mm^{2}	40×10				
Main conductor connections	Screw-type terminals			M 12 with clamping washers ${ }^{2}$)				
	Tightening torque		Nm	70				
	Strength of screws			8.8 acc. to DIN 267				
Auxiliary connecting leads (Copper)	Max. number of Auxiliary connecting leads \times cross-section	solid finely stranded with end sleeves						
Weights	Fixed-mounted circuit-b Withdrawable circuit-br Guide frame	aker	appr. kg appr. kg appr. kg	$\begin{aligned} & 108 \\ & 106 \\ & 62 \end{aligned}$		$\begin{gathered} 148 \\ 146 \\ 91 \end{gathered}$	$\begin{aligned} & \hline- \\ & 196 \\ & 97 \end{aligned}$	$\begin{aligned} & \hline- \\ & 198 \\ & 102 \end{aligned}$

1) Per set of contacts. Disconnecting the rated current I_{n}.
2) The screws and clamping spacers are not supplied. Suitable spacers have an inside diameter of 12 mm acc. to DIN 6769-Fst.

3WN1 Circuit-Breakers for AC 3 - and 4-pole up to 6300 A

Technical data

Operating mechanisms

	Size	13 -pole	14-pole	II	III	IV
Manual operating mechanism with stored-energy feature with mechanical closing						
Closing/Charging	Max. operating force required on handle Number of handle strokes required for charging	$\begin{aligned} & \hline 200 \\ & \text { approx. } 16 \end{aligned}$	$\begin{aligned} & 200 \\ & \text { approx. } 6 \end{aligned}$			
Manual operating mechanism with stored-energy feature with mechanical and electrical closing						
Charging storage spring		see "Manual operating mechanism with stored-energy feature with mechanical closing"				
Closing	Coil voltage tolerance	0.85 to $1.1 \times U_{\text {s }}$				
	Extended coil voltage tolerance for at DC $24 \mathrm{~V}, \mathrm{DC} 48 \mathrm{~V}$, battery operation') $\mathrm{DC} 60 \mathrm{~V}, \mathrm{DC} 110 \mathrm{~V}$,	0.7 to $1.26 \times U_{\text {s }}$				
	Power consumption including control	AC 600 VA ; DC 200 to 260 W				
	Min. command duration at $U_{\text {s }}$ for closing solenoid ms	40				
	Total closing time at U_{s} after command signal for closing solenoid ms	≤ 50				
	Minimum interval between circuit-breakers opening and ms the next closing command (e.g. by means of a time relay)	130				
	Short-circuit protection Smallest permitted DIAZED fuse (utilization category gL)/ at $U_{\mathrm{s}} \leq 60 \mathrm{~V}$ m.c.b. with C characteristic at $U_{\mathrm{s}}>60 \mathrm{~V}$	6 A TDz(time lag)/ 6 A 2 A TDz(time lag)/ 4 A				
	Largest permitted DIAZED fuse (utilization category gL)/ m.c.b. with C characteristic	10 A TDz (time lag)/10 A				

Motorized/manual with stored-energy feature with mechanical and electrical closing

[^5]
3WN1 Circuit-Breakers for AC

3 - and 4-pole up to 6300 A

Technical data

Auxiliary release and electrical closing lockout

		Size	I to IV
Shunt release "f"	With energy storage device comprising " f " release and 3WX31 56-1J... capacitor storage device	Rated control supply voltage U_{s}	AC $50 / 60 \mathrm{~Hz} 42,110-127,220-240 \mathrm{~V}$ DC 110-125, 220-250 V
		Coil voltage tolerance	0.8 to $1.1 \times U_{\text {s }}$
		Power consumption	AC 1 VA, DC 1 W
		Charging time ${ }^{1}$) at $U_{s} /$ Recharging time ${ }^{2}$) at U_{s}	max. $5 \mathrm{~min} / \mathrm{min} .5 \mathrm{~s}$
		Opening time of the circuit-breaker, Short circuit protection	see "Connection directly to auxiliary power supply"
Undervoltage release "r"	Without delay for continuous excitation	Response values $\begin{aligned} & \text { pickup } \\ & \text { dropout }\end{aligned}$	$\geq 0.85 \times U_{\mathrm{s}}$ (circuit-breaker can be closed) (0.35 to 0.7) $\times U_{s}$ (breaker trips)
		Coil voltage tolerance	0.85 to $1.1 \times U_{\text {s }}$
		Rated control supply voltage U_{s}	AC $50 / 60 \mathrm{~Hz} 42,110,120-127,220-230$, $240,380-400,415 \mathrm{~V}$ DC $24,48,60,110-125,220-250,250 \mathrm{~V}$
		Power consumption $\begin{aligned} & \text { pickup } \\ & \text { continuous }\end{aligned}$	AC 110 VA, DC 110 W AC $5 \mathrm{VA}, \mathrm{DC} 5 \mathrm{~W}$
		Opening time of circuit-breaker at $U_{s}=0 \quad$ with AC/DC	$\leq 60 \mathrm{~ms}$
		Short-circuit protection	
		Smallest permitted DIAZED fuse (utilization category gL)/ m.c.b. with C characteristic	2 A TDz(time lag)/ 2 A
		Largest permitted DIAZED fuse (utilization category gL)/ m.c.b. with C characteristic	10 A TDz (time lag)/10 A
	With delay comprising " r " release and 3WX31 56-3J. 00 delay device Delay time: 1,2 or 3 s ; fixed	Response values $\begin{aligned} & \text { pickup } \\ & \text { dropout }\end{aligned}$	$\begin{aligned} & \geq 0.85 \times U_{\mathrm{s}} \text { (breaker can be closed) } \\ & (0.35 \text { to } 0.7) \times U_{\mathrm{s}} \text { (breaker trips) } \\ & \hline \end{aligned}$
		Coil voltage tolerance	0.85 to $1.1 \times U_{\text {s }}$
		Rated control supply voltage U_{s} of the delay device	AC $50 / 60 \mathrm{~Hz}$ 110-127, 220-240, 380-415 V DC 110-125, 220-250 V
		Power consumption	pickup: 8 W ; continuous: 6 W
		Short-circuit protection	
		Smallest permitted DIAZED fuse (utilization category gL)/ m.c.b. with C characteristic	2 A TDz (time lag)/ 1 A
		Largest permitted DIAZED fuse (utilization category gL)/ m.c.b. with C characteristic	10 A TDz (time lag)/10 A
	With delay comprising " r " release and 3WX31 56-3J. 10 delay device Delay time: 0.3 to 3.5 s ; adjustable	Response values $\begin{aligned} & \text { pickup } \\ & \text { dropout }\end{aligned}$	$\geq 0.85 \times U_{\mathrm{s}}$ (circuit-breaker can be closed) (0.4 to 0.7) $\times U_{\mathrm{s}}$ (time delay is activated)
		Coil voltage tolerance	0.85 to $1.1 \times U_{\text {s }}$
		Rated control supply voltage U_{s} of the delay device of the delay device	$\begin{aligned} & \text { AC 50/60 Hz 110-115, 220-230 V } \\ & \text { DC 110-115, 220-230 V } \end{aligned}$
		Power consumption	pickup: 8 W ; continuous: 6 W
		Short-circuit protection	
		Smallest permitted DIAZED fuse (utilization category gL)/ m.c.b. with C characteristic	2 A TDz (time lag)/ 1 A
		Largest permitted DIAZED fuse (utilization category gL)/ m.c.b. with C characteristic	10 A TDz (time lag)/10 A
Electrical closing lockout "fd"	For continuous energizing	Response values pickup	$\geq 0.85 \times U_{\text {s }}$ (breaker can be closed)
		Coil voltage tolerance	0.85 to $1.1 \times U_{\text {s }}$
		Rated control supply voltage U_{s}	AC $50 / 60 \mathrm{~Hz} 42,110,120-127,220-230,240 \mathrm{~V}$ DC 24, 48, 60, 110-125, 220-250, 250 V
		Power consumption	pickup: 8 W ; continuous: 8 W
		Time from beginning to activation of lockout	$\leq 100 \mathrm{~ms}$
		Short-circuit protection	
		Smallest permitted DIAZED fuse (utilization category gL)/ m.c.b. with C characteristic	2 A TDz (time lag)/ 1 A
		Largest permitted DIAZED fuse (utilization category gL)/ m.c.b. with C characteristic	10 A TDz (time lag)/10 A

1) Storage time = maximum time, after failure of the auxiliary power supply, for which safe tripping by the storage device was fully charged.
2) Recharging time $=$ minimum time for recharging of the storage device after tripping by the shunt release.

3WN1 Circuit-Breakers for AC
 3 - and 4-pole up to 6300 A

Technical data

Contact-position-driven auxiliary switches, signalling contacts for stored-energy status

Position signalling switches on the guide frame

Contacts		Signalling: "Circuit-breaker in connected position" "Circuit-breaker in test position" "Circuit-breaker in disconnected position"		3 NO 2 1 1		$\begin{aligned} & 0+1 \\ & 0+1 \\ & 0+1 \end{aligned}$	
Rated insulation vo	ge U_{i}			AC	415	400 V	
Rated operational	age $U_{\text {e }}$			AC	DC		
Switching capacity	AC, $50 / 60 \mathrm{~Hz}$	Rated operational voltage U_{e} Rated operational current $I_{\mathrm{e}} /$ AC-1 $I_{\mathrm{e}} / \mathrm{AC}-15$	$\begin{aligned} & \text { V } \\ & \text { A } \\ & \text { A } \end{aligned}$	up to 8 1			
	DC	```Rated operational voltage \(U_{\mathrm{e}}\) Rated operational current \(I_{e} / \mathrm{DC}-1\) \(I_{\mathrm{e}}\) /DC-13 (\(L / R=50 \mathrm{~ms}\))```	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{array}{r} \hline 24 \\ 8 \\ 6 \end{array}$	48 8 5	$\begin{gathered} 110 \\ 8 \\ 1.2 \end{gathered}$	$\begin{aligned} & 220 \\ & 1 \\ & 0.15 \end{aligned}$
Short-circuit protection ${ }^{1}$)		Largest permitted DIAZED fuse (utilization category gL) Largest permitted m.c.b. with C characteristic		$\begin{aligned} & 8 \mathrm{~A} \text { TDz (time lag) } \\ & 8 \mathrm{~A} \end{aligned}$			

Signalling unit for overcurrent releases

Rated operational voltage $U_{\text {e }}$				$\left.\begin{array}{l}\text { AC } 50 / 60 \mathrm{~Hz} \text { 110-127, 220-240 V } \\ \text { DC } 24 \mathrm{~V}\end{array}\right\}$ reconnectable with external series resistor also for higher DC voltages					
				DC	Required series resistor	Power loss	Recommended rating of the series resistor		
				$\begin{aligned} & 48 \mathrm{~V} \\ & 60 \mathrm{~V} \\ & 110 \mathrm{~V} \\ & 220 \mathrm{~V} \end{aligned}$	330Ω 1200Ω 2700Ω 2700Ω	2 W 3 W 8 W 17 W	4 W 8 W 25 W 100 W		
Coil voltage tolerance				0.85 to $1.1 \times U_{\text {e }}$					
Power consumption				6 VA with AC, 2 W with DC (without series resistor)					
Short-circuit protection for main connection DIAZED fuse/m.c.b. with C characteristic				$4 \mathrm{~A} \mathrm{Dz} \mathrm{(quick-response)/4} \mathrm{~A}$					
Permitted ambient temperature at signalling device				-20 to $+70^{\circ} \mathrm{C}$					
Output relay contacts	Rated operational voltage U_{e}			AC $250 \mathrm{~V}, \mathrm{DC} 250 \mathrm{~V}$					
	Switching capacity				$\begin{gathered} 110-127 \\ 4 \end{gathered}$				
	AC, $50 / 60 \mathrm{~Hz}$	Rated operational voltage $U_{\text {e }}$	v	42					
		Rated operational current $I_{\mathrm{e}} / \mathrm{AC}-1, I_{\mathrm{e}} / \mathrm{AC}-11$	A	4					
	DC	Rated operational voltage $U_{\text {e }}$	V	24	48	60	110	220	
		Rated operational current $I_{\mathrm{e}} /$ DC-1, $I_{\mathrm{e}} /$ DC-11	A	2	1	0.8	0.4	0.2	
	Short-circuit protection ${ }^{1}$) Largest permitted DIAZED fuse (utilization category gL) Largest permitted m.c.b. with C characteristic			$\begin{aligned} & 4 \mathrm{~A} \mathrm{Dz} \text { (quick-response) } \\ & 4 \mathrm{~A} \end{aligned}$					
S24, S25, S27 mechanically tripped signalling contacts (acc. to DIN VDE 0630)									
Switching capacity	AC, $50 / 60 \mathrm{~Hz}$	Rated operational voltage $U_{\text {e }}$	V	1100.14		$\begin{gathered} 220 \\ 0.1 \end{gathered}$			
		Rated operational current $I_{\text {e }}$	A						
	DC	Rated operational voltage $U_{\text {e }}$	V	$\begin{gathered} \hline 24 \\ 0.2 \end{gathered}$		$\begin{gathered} 220 \\ 0.1 \end{gathered}$			
		Rated operational current I_{e}	A						
Short-circuit protection ${ }^{1}$)		Largest permitted DIAZED fuse (utilization category gL)		$2 \mathrm{~A} \mathrm{Dz} \mathrm{(quick-response)}$					
Signal duration after tripping				```S24:15 ms S25 and S27: continuous until reset```					

[^6]
Description

Application

3WN1 circuit-breakers can be used

- as incoming and outgoing circuitbreakers in three-phase AC distribution systems
- for controlling and protecting motors, generators, transformers and capacitors
- as main switches for all kinds of machines; the user must comply with the appropriate regulations governing enclosure, installation and operating mechanism (DIN VDE 0113)
- as EMERGENCY STOP devices complying with DIN VDE 0113, when the circuit-breakers are fitted with an undervoltage release and are used in conjunction with an EMERGENCY STOP control device
- for switchgear installations with selective short-circuit protection by time grading or "short-time grading control ZSS". For this, the circuit-breakers must be fitted with short-time-delay overcurrent releases ("azn" or "azng" releases)
- as meshed-system switches in low-voltage networks having several high-voltage feeders, in conjunction with meshed system relays for monitoring the direction of power flow
- for installations requiring earth-fault monitoring.

Standards

DIN VDE 0660, IEC 60 947¹).
For marine classification approvals, see Appendix.

The SCR31 delay device, type 7VH1313 should be used for the undervoltage release when the circuit breaker is used for generator protection.

Operating conditions

3WN1 circuit-breakers are climateproof. They are intended for use in enclosed areas, where excessive operating conditions do not occur.
For use in dusty or damp rooms appropriate enclosures must be provided. If the ambient air contains noxious gases (for ex. hydrogen sulphide), you should take care of sufficient supply with fresh air.
The max. admissible ambient temperatures and the admissible rated current as for various ambient temperatures are given in the Technical data (pages 7/23 to 7/29).

Designs

Breaking capacity: $\quad 80 / 100 \mathrm{kA}$
Rated oper. current: 630 to 6300 A
Rated oper. voltage: AC 690/1000 V

Fig. 7/1 3WN1 withdrawable circuit-breaker, size I, 3-pole

3WN1 circuit-breakers are supplied fully equipped with overcurrent releases, operating mechanism and auxiliary contacts and, if required, with auxiliary releases.

Non-automatic circuit-breakers are always supplied without overcurrent release system.

Mounting

Fixed-mounted or withdrawable version

Operating mechanisms

The circuit-breakers can be supplied with different operating mechanisms:

- Manual operating mechanism with snap-action closing
- Manual operating mechanism with sto-red-energy and mechanical closing
- Manual operating mech. with storedenergy, mechanical and electrical closing
- Manual/motorized operating mechanism with mechanical and electrical closing.
The operating mechanisms with electrical closing are also suitable for synchronization.

Overcurrent releases

The solid-state, microprocessor-controlled overcurrent release system does not depend on a separate power supply and permits the various protection requirements of distribution systems, motors, transformers and generators to be taken into account.

Contact position indicator and storedenergy status indicator

The contact position is indicated visually on circuit-breakers with stored-energy mechanism:
white display field : stored-energy not charged,
black display field : stored-energy charged.

Control panel

The control panel is supplied as standard in anthracite color.

For engineering details with a further description of design, operation, mounting and retrofitting, please refer to the manual "3WN1 Circuit-Breakers and 3WS1 Vacuum Circuit-Breakers", Order No. E20001-P285-A534-X-7600.

[^7]
Description

Safety and reliability

- High degree of protection with door sealing frame for full on site operation of the circuit-breaker
- Additional arcing spaces substantially reduce safety clearance above the circuit-breaker
- Easy to maintain; eroded contacts can be easily changed
- Feed-in to either top or bottom
- Standard locking of withdrawable circuitbreaker to prevent it from being moved
- Standard locking of guide frame when the circuit-breaker is removed
- Clear position indicator with auxiliary switch for signalling
- Signalling switch for overload and shortcircuit trip with mechanical reclosing lockout

Opening, closing and interlocking devices

ON and OFF switches

"Mechanical ON" button
In its standard form, the mechanically operated ON switch is a pushbutton switch. When it is operated with electrical closing, the "mechanical ON" switch is fitted with a sealing cap. A safety lock (CES, BKS, IKON) is also available instead of the pushbutton switch. If the key is removed in the " 0 " position, the circuitbreaker can no longer close mechanically.

No-load switching

If the "Mechanical ON" button is actuated although the conditions for closing have not been met. The stored energy mechanism will discharge, but the main and auxiliary contacts of the circuit-breaker remain open; they will not move or touch each other.

To prevent no-load switching, the conditions for readiness to close must prevail (see page 7/36).

"Electrical ON" button

The electrically operating ON switch is a pushbutton switch intended for closing under field conditions. External electrical locking devices can be mounted simply using the "electrical ON" button. A sealing cap is also available for this pushbutton.

"Mechanical OFF" button

In its standard form, the mechanically operating OFF switch is a pushbutton switch. An additional sealing cap protects the switch from unauthorized use.
The following can be supplied instead of this OFF switch:

Safety lock
(CES, BKS, IKON)
If the key is removed in the OFF position, the circuit-breaker can no longer close. This key can then be used to unlock another circuit-breaker.

EMERGENCY STOP pushbutton to DIN VDE 0113

This mushroom-shaped pushbutton latches in the OFF position when it is operated, and the circuit-breaker cannot be closed again until the pushbutton has been unlatched by rotating the mushroom head.

Locking facility

A protrusion in the flap of the locking facility covers the "electrical ON" button and retains the "mechanical OFF" button in the OFF position. The locking facility can be secured with up to 4 padlocks.

CASTELL or FORTRESS lock

These locking devices can be prepared with an assembly kit. The lock must be obtained from the manufacturer. When the lock is actuated, the circuit-breaker is blokked and cannot close.

Auxiliary releases and

electrical closing lockout
Up to two auxiliary releases can be installed in the circuit-breaker. The following are available:

	1 shunt release
or	1 undervoltage release
or	1 electrical closing lockout
or	2 shunt releases
or	1 shunt release
+	1 undervoltage release
or	1 shunt release
+	1 electrical closing lockout

Shunt release " f "

The shunt releases " f " are used for the remote tripping of the circuit-breakers.
The coil of the shunt release is only rated for short-time duty and is not suitable for interlocking against closing.
An external storage device for shunt releases allows opening of the circuit-breaker after disconnection of the control supply.

Electrical closing lockout "fd"

The closing lockout can block closing of the circuit-breaker with a sustained signal. The closing lockout is unsuitable for remote tripping; for this the circuit-breaker must be fitted with a shunt release.

Instantaneous undervoltage release " r "

The undervoltage release is used for remote tripping, for voltage monitoring and for interlocking of the circuit-breaker.

The circuit-breaker can only be closed when the undervoltage release is energized.

If the undervoltage release is used in conjunction with a separately installed EMERGENCY STOP control device (e.g. a mushroom-head pushbutton), this circuit-breaker can be used as an EMERGENCY STOP unit.

Delayed undervoltage release

A delayed undervoltage release together with a delay device can be used in order to prevent the circuit-breaker from being tripped by the undervoltage release in response to brief voltage drops lower than 70% of the rated control supply voltage U_{s}.

The delay device must be mounted separately from the circuit-breaker
Delay device versions:

- Delay time fixed at 1,2 , or 3 s
- Delay time adjustable steplessly from
0.3 to 3.5 s by means of a twistable knob.

If the power is not restored within the preset time lag following a failure, the circuit-breaker will be tripped.

Trip-free mechanism

3WN1 circuit-breakers have a trip-free mechanism which prevents the operating mechanism from interfering with the tripping or opening action

Mutual mechanical interlocking

The mutual mechanical interlocking for two or three circuit-breakers is available for the following circuit-breaker sizes:
3-pole: Sizes I, II, III
4-pole: Sizes I, II
The fixed-mounted and withdrawable circuit-breakers are fully compatible and can be used in the same system. The circuit-breakers can be mounted side by side or above each other; the distance between them is only determined by the length of the Bowden wire.

The Bowden wires are supplied in 2 m standard lengths and can be shortened if required. Interlocking signals are transferred via the wires. With withdrawable circuit-breakers, the interlocking is only effective in the connected position.

Fig. 7/2 Guide frames with mutual mechanical interlocking

Overcurrent release system

Depending on the design, the overcurrent release system consists of:

- 3 or 4 current transformers: The 4th current transformer (N -conductor) of the 4-pole circuit-breakers with integrated 4th current transformer is effective only for the earth fault protection (" g ") but not for the overcurrent protection of the N -conductor.

The current transformers perform 2 functions:
Measured-value acquisition and power supply to the overcurrent release system. No auxiliary power supply is needed for the overcurrent release system.

- Overcurrent release
- Tripping solenoid
- Mechanical reclosing lockout and/or "tripped" signalling contact

Overload protection

The inverse-time delayed overload release "a" is used to protect against overloading (1, 2 or 3-phase) of loads and lines.

"Thermal" memory

The overcurrent release versions 5, 7 and 8 have a switchable "thermal" memory which simulates cooling of a bimetal release without an external auxiliary power supply after the circuit-breaker has tripped. With immediate reclosing (overload is still present), an overload trip occurs with current-dependent decreased response time.

Phase-failure sensitivity
This function is available with overcurrent release versions 7 and 8 . If the operating current of the lowest loaded phase is 50% less than the load current of the highest loaded phase, the set current I_{r} is reduced to 80% automatically.

Short-circuit protection

Depending on the version of overcurrent release, short-circuit protection can be short-time-delayed or released instantaneously.

Instantaneous short-circuit release " n "

1) Overcurrent-release-Version 2

- Inrush insensitivity

The release has a fixed delay time of 10 ms so that it is not activated by temporary events such as the inrush when starting a motor.
2) Overcurrent-release-Version 4 and 8

The instantaneous release can be deactivated by setting the switch to the position marked ∞. Then, short-circuit protection is only provided by the definite-time delay release " z ".
The instantaneous release must be set so that its operating value I_{i} is greater than the normal operating current of the connected load.

Short-time delay short-circuit release "z"
Only on overcurrent release versions 4 to 8 .

The lowest delay step of 10 ms (or 10-3050 ms for versions 7 and 8) can be used for single motor feeders: These steps prevent the inrush starting current of a motor from activating the release.

- Short-time-delay short-circuit release with definite-time delay
Only on overcurrent release versions 4 to 8.

The time grading of time-graded shortcircuit protection is obtained by using delayed releases which are independent of the magnitude of the short-circuit current.

- Short-time-delay short-circuit release with I^{2}-dependent delay
($I^{2} t=$ constant)
Only on overcurrent release versions 5 and 8.
The selector switch enables the shorttime delay release to be changed over from definite-time delay to I^{2}-dependent delay.
The I^{2}-dependent delay provides better discrimination to downstream fuses.

3WN1 Circuit-Breakers for AC

Overcurrent release system

- Short-circuit protection with shorttime grading control ("ZSS")

Only on overcurrent release versions 5,7 and 8 (5 and 8 switchable, 7 with fixed output signal)

Short-time grading control (ZSS) offers full discrimination with the very short delay tzss $=50 \mathrm{~ms}$, regardless of the number of grading levels and regardless of where the short-circuit occurs in the distribution system.
This reduction in the break time by "ZSS" considerably reduces the stresses in the switchgear and subsequent damage when a short-circuit occurs.

Earth-fault protection

Earth-fault release " g "
The earth-fault release " g " detects fault currents which flow through earth and could cause fires in the system. Several circuitbreakers connected in series can be given time-graded discrimination by means of the adjustable delay operating time.
Vectorial summation with current transformer in the N conductor

The earth-fault current is calculated by means of vectorial addition of the three phase currents and the N -conductor current.

In the case of 4-pole circuit-breakers, the 4th current transformer in the N conductor is installed internally.
The earth-fault releases can be used in different modes:
a) Earth-fault protection with definite-time delay

The delayed earth-fault release, which is independent of the magnitude of the earthfault current, is used for the time grading of time discriminating earth-fault protection.

Also, the delay prevents the circuit-breaker from being tripped by transient earth faults.

For applications where the regulations specify a limit on the maximum setting of operating current, the release can be supplied with a restricted setting range with the higher settings blocked. (Please state when ordering)
The earth-fault release can be disabled by setting the switch to another position marked ∞.
b) Earth-fault protection with I^{2}-dependent delay $\left(I^{2} t=\right.$ constant $)$

Version 8 only.
The earth-fault release can be changed over from definite-time delay to I^{2}-dependent delay by means of the selector switch.
c) Earth-fault protection with "short-time grading control" (ZSS)

Version 8 only.
This supplementary function is linked to the "ZSS" function of the short-time-delay release " z ". The "ZSS" function is operates similar to the earth-fault protection for short-circuit protection.

Switching on the function selector switch reduces the delay time t_{g} of the earth fault tripping to 100 ms , regardless of whether a higher value is set on the scale.

Short-time grading control works only when the function " $t g$-dependent delay" is not simultaneously switched on.

Tripping of microprocessor fault

Overcurrent release versions 1 to 4,6 and 7 trip without delay in the event of a microprocessor fault.
For the overcurrent release versions 5 and 8 , the operation of the overcurrent release in the event of a microprocessor fault is described on page 7/36 under "Solid-state tripped and fault display and signalling".

Fig. 7/3 3-pole circuit-breakers

Communication (Z = F01)

Overcurrent release versions 5 and 8 include the communication capability function. (Order No. suffix "Z", order code "F01")
Data are transferred to an external DP/3WN1, 3WS1 interface (see page $7 / 14$) via a connector lead (3 m length). The interface converts the data for PROFIBUS-DP.
Depending on the overcurrent release version, the following data are available:

- Analog measured-values:

Phase currents $I \mathrm{~L} 1, I \mathrm{~L} 2, I \mathrm{~L} 3, I \mathrm{Lmax}$,

- Event signalling:

Type of last tripping ($\mathrm{a}, \mathrm{n} / \mathrm{z}, \mathrm{g}$),
$\mu \mathrm{P}$ fault, temperature alarm Phase unbalance, overload
By installing a supplementary ET 200 unit (minimum configuration 3E/2A) the following functions become available via bus:

- Reading off operational status:

Contacts switched on/off
Ready-to-close signalling Storage spring charged

- Remote control

Switch circuit-breaker on/off, if it is equipped with electrical closing and shunt release.
For further information on ET 200 unit, please refer to the Catalog "SIMATIC, Components for fully integrated automation", ST 70, Order No. E86060-K4670-A101-A6.

For further information on communication capable circuit-breakers 3WN1 refer to part 3.

3WN1 Circuit-Breakers for AC

Overcurrent release system

Function overview

$I \mathrm{~N}=$ Rated primary current of the current transformer.
O Standard function

1) During hard starting of motors or when solid-stat motor controls are used (e.g. SIKOSTART), the time setting $T_{c}=10 \mathrm{~s}$ can be incufficient. In such cases an overcurrent release, version 4, 5, 7 or 8 should be used.
2) Accessory, to be indicated when ordering the circuit-breaker (see "Further versions" on page $7 / 13$).
3) Only with order supplement $Z=F 01$.

Setting and display panel for overcurrent releases

Fig. 7/4 Release "an" Version 2

Fig. 7/5 Release "azn"
Version 4

Fig. 7/8 Release "azn" Version 7

Fig. 7/9 Release "azng" Version 8

Solid-state tripped and fault display and signalling

The following possibilities are available for indication and signalling of tripping or a fault warning:

1. Individual signalling (signal-capable overcurrent release + signalling unit)

Fig. 7/10 Individual signalling

An overcurrent release with signal capability (Versions 2 and 4 to 8) combined with a signalling unit or a programmable logic controller (SIMATIC ${ }^{1}$)) converts the signals in the event of a fault (e.g. overload or short-circuit trip) into individual messages.
Overcurrent release versions 2 and 4 to 8 incorporate light-emitting diodes (LEDs) to indicate the cause of an overcurrent trip, depending on the version:

- Overload ("a" release)
- Short-circuit ("z/n" release)
- Earth-fault (" g " release)

In addition, versions 5 and 8 have fault indicators in the event of:

- Overtemperature in the overcurrent release
If the temperature in the overcurrent release exceeds the limit of $90^{\circ} \mathrm{C}$, overtemperature is signalled.
- Phase imbalance

If the operational current of the lowest loaded phase is 50% lower then the operational current of the highest loaded phase, phase imbalance is signalled

- Microprocessor fault

If on overcurrent release versions 5 and 8 there is a microprocessor fault, a warning is signalled. In the event of a short-circuit current greater than $20 \times I_{\mathrm{N}}$, a short-timedelayed short-circuit tripping of the circuitbreaker occurs with the aid of a bypass circuit.

The trips and faults can also be signalled remotely.

Overcurrent releases, Versions 2 and 4 to 8 , incorporate optocouplers for tripped and fault signals.

Signalling units

The signalling units consist of a power supply unit with storage capability, relays for signal input and contact multiplication ($1 \mathrm{NO}+1 \mathrm{NC}$) and an output for the tripped and microprocessor fault indicators (LEDs) on the overcurrent release. Tripped signals remain stored in the signalling unit until they are cancelled by pressing the "Signal RESET" button on the solid-state overcurrent release.

2. Group signalling


```
Tripping
Circuit-Breaker
```

i

Fig. 7/11 Group signalling

A tripped signalling contact can be used for common signalling of all trips.

After tripping, the tripped signalling contact S24 sends out a brief signal; the tripped signalling contacts S25 and S27 give a mantained signal.

If the circuit-breaker has tripped, this can be seen at the protruding "RESET" button Thus, the tripped signal can also be seen at the circuit-breaker. The tripped signal remains indicated until the RESET button is pressed

LCD operational current display

Versions 5 and 8 have a digital LCD display with phase selector switch. The power is supplied from the current transformers. The measured current values can be transmitted via a serial bus.

Readiness to close

A state of readiness to close exists when a circuit-breaker fulfils the following conditions:

- Circuit-breaker in OFF position
- Stored-energy mechanism charged
- Undervoltage release active
- Electrical closing lockout must not be activated.
- OFF button must not be locked in the OFF position
- Mechanical reclosing lockout must be released
- Mutual mechanical interlocking must not be active
- The draw-out circuit-breaker must be in one of the three positions (connected, test, or disconnected).

If all these conditions have been met, the circuit-breaker can be closed

For ready-to-close signalling contact A3 (1 NO, Order No. suffix "-Z", order code M10) can be used for remote tripping.

[^8]
3WN1 Circuit-Breakers for AC

Auxiliary and signalling switches, operating cycle counter, PLC control

Auxiliary switches

The 3WN1 circuit-breakers can be ordered with 1 or 2 contact-position-driven auxiliary switches with 2 NO and 2 NC (S1/2 and S4/5).

Signalling switches

Circuit-breakers with:

- manual operating mechanism with sto-red-energy feature with electrical and mechanical closing
- motorized/manual operating mechanism with stored-energy feature
are supplied with a stored-energy status indicator S9 (1 NO + 1 NC). A ready-to-close signalling contact A3 (1 NO) can be fitted.

Operating cycle counter

A 5-digit operating cycle counter is available for the circuit-breakers. The display is incremented by " 1 " as soon as the storage is fully charged.

PLC control

Coupling elements or auxiliary contactors (relays) must be used for control.

Mechanical reclosing lockout, function testers

Mechanical reclosing lockout (W02 and W05)

3WN1 circuit-breakers can be supplied with mechanical reclosing lockouts W02 or W05.

These lockouts can be combined with a tripped signalling contact (version K02 or K05).

After tripping, the circuit breaker cannot be reclosed until the RESET pushbutton has been pressed.

Functional testing units

To test the functions of the overcurrent release there is the 3WX36 47-5JA01 function tester. It produces a test current which simulates three times the secondary cur-
rent of the current transformers. The operational capability of the overcurrent release is tested by way of the circuit-breaker being tripped by the test current. The current transformers are continuity-tested in the same way.

Fixed-mounted and withdrawable circuit-breakers, space above the arc chute

Fixed-mounted and withdrawable circuit-breakers

Protection against switching gases

When there are other items of switchgear above or behind the circuit-breaker, which remain live after it has been tripped (e.g. recovery voltage on the supply side of the circuit-breaker or at other non-tripped parts of the installation), covers for the space above the arc chute shown in the dimension drawings (page 7/54) should be provided.
The design of the required arcing spaces depends on the rated operational voltage U_{e} of the circuit-breakers.

- Rated operational voltage U_{e} up to 690 V AC
For circuit-breakers with a rated operational voltage up to $660 / 690 \mathrm{~V} \mathrm{AC}$, the necessary arcing space is stated with or without arc chute extension. The height of the arching space may be lower if the cir-cuit-breakers are fitted with the arc chute extension.
The circuit-breakers of size IV (3-pole) and III (4-pole) are always supplied with arc chute extensions.
- Rated operational voltage U_{e} up to 1000 V AC
The circuit-breakers with a rated operational voltage up to 1000 V AC are always supplied with fitted arc chute extensions for 1000 V AC.

If there are control systems or similar items mounted above the circuit-breaker, the cover should be used for protection against switching gases penetrating into the control devices, even when no recovery or interference voltage occurs.
To prevent the ingress of switching gases between the main plug contacts of the guide frame and the withdrawable circuit-breaker, a shutter should be fitted (see page 7/40).
Guide frames of withdrawable circuitbreakers with a rated voltage up to 1000 V AC and power supply from the top must be equipped with shutter always.
Even if a cover is not necessary, the spaces above the arc chutes specified on page $7 / 54$ must be free of any equipment.
It must also be ensured that there is adequate heat dissipation from the cir-cuit-breaker despite the covers. But the ventilation apertures must not be directly in line with the gas discharge (see "L" on page 7/54). Constructional elements which can remain live after short-circuit tripping must not be located above the ventilation apertures.

Control panel

The control panel is designed in such a way that it can project through a cutout in the cubicle door so that all the control devices and indicators remain accessible when the door is closed.

Door sealing frame

The door sealing frame must be used to prevent breaker gases from escaping through the gap between the control panel and the door cutout when a short-circuit is being cleared. The sealing frame has an additional rubber flap for covering the crank hole of withdrawable circuit-breakers. On fixed-mounted circuit-breakers, this flap has to be cut off. With this frame, degree of protection IP 54 is obtained for the door cutout.

Fig. 7/12 Door sealing frame

3WN1 Circuit-Breakers for AC

Fixed-mounted circuit-breakers

Assembly

Fixed-mounted circuit-breakers are mounted horizontally or vertically using support brackets.

Auxiliary connections

Single connecting leads can be used.

Main connections

On fixed mounted circuit-breakers up to 3200 A, the main connections are arranged horizontally at the rear as a standard. This enables the unit to be connected to busbars on the system side.
Other connection types:

- busbars above or below, vertical
- busbars above and below, vertical, for connection accessible from the front, single-hole

Fig. 7/13 Fixed-mounted circuit-breaker, size I installation on supporting brackets

- busbars above and below, vertical, for connection accessible from the front, double-hole (holes to DIN 43 673)

Fig. 7/14 Fixed-mounted circuit-breakers, main connections vertical, for connection accessible from the front, single hole

Blocking devices

In order to protect the operating personne and switchgear, the fixed-mounted circuitbreakers can be equipped with a blocking device which prevents the cubicle door from being opened when the circuitbreaker is closed.

Withdrawable circuit-breakers

The withdrawable version comprises a withdrawable circuit-breaker and a guide frame. The main conductors are connected to the guide frame. Other complements such as position signalling switches, shutters, hinged rails, blocking and interlocking devices are available.

Auxiliary connections

The auxiliary plug connector system automatically contacts (in the connected or test position) or opens (in the disconnected position) when the circuit-breaker is moved.

Main connections

For sizes I to III there are 3 methods of connecting the conductor bars

- Directly to the flanges of the guide frame
- By means of T-pieces (except size III/2 (3-pole), IV (3-pole) and III (4-pole)).
- Extended conductor bars (terminal screws accessible from the front; bar end holes are designed for connecting the busbars in accordance with DIN 43 673).

The method of connection can be chosen to suit requirements, i.e. the arrangement of conductor bars can be adapted to the switchgear design.
For sizes IV (3-pole) and III (4-pole), the guide frame is supplied with horizontal rear connections.

Fig. 7/15 Guide frame
Main connections above with T-pieces for horizontal connection. Bottom connection to vertical busbars

Circuit-breaker positions in the guide frame

There are 3 positions behind the closed cubicle door for withdrawable circuit- breakers in the cubicle:

- Connected position
- Test position
- Disconnected position

The circuit-breaker is moved from one position to another using a crank handle and a spindle drive.

In the disconnected position, the main and auxiliary circuits of the withdrawable circuitbreaker comply with the "Conditions for an isolator".

Fig. 7/16 Guide frame
Main connections with extended busbars, for connection accessible from the front

The disconnected (or connected) position is reached when the circuit-breaker is moved as far as the end stop.

Mechanical interlocking ensures that the cir-cuit-breaker is in the OFF position before it is moved. There is a similar interlocking to prevent the circuit-breaker from being closed at any intermediate point between the 3 positions (see also Readiness to close, page 7/36).

Maintenance position

Hinged extension rails allow the circuitbreaker to be drawn out into a maintenance position.

3WN1 Circuit-Breakers for AC

Withdrawable circuit-breakers

Fig. 7/17 Guide frame, size I (with hinged rails)
Left: Position signalling switch operated by draw-out mechanism
Right: Position signalling switch operated by withdrawable circuit-breaker

Indication of the circuit-breaker positions inside the guide frame

The connected, test and disconnected positions of the circuit-breaker are shown by a strip indicator (Fig. 7/17).

- With the cubicle door closed, the circuitbreaker position can be seen through an inspection window.
- With the cubicle door open, the circuitbreaker position can be seen directly on the strip indicator.

Position signalling switches

The position signalling switches are available in 2 basic versions, with different in the operating mechanisms:

- Actuation by draw-out mechanism (not for sizes IV (3-pole) and III (4-pole)): With this version, the position of the withdrawable circuit-breaker is signalled only when the breaker is in one of the positions. This version is not suitable for interlock circuits with other protective devices.
- Actuation by withdrawable circuit-breaker:
This version is suitable for interlock circuits with other protective devices. The position signalling switches are actuated by the withdrawable circuit-breaker via an additional mechanism. Not only the position, but also the presence of the circuit-breaker in the guide frame is indicated.

Fig. 7/18 Schematic sketch of 3WN1 withdrawable circuit-breaker

Coding system

In order to avoid confusion of several samesize circuit-breakers on a switch-board when they are inserted into the guide frame, the withdrawable circuit-breakers and guide frames can be equipped with a
coding system. This coding system is available as a set consisting of 8 coding pins, screws and nuts. 36 codes are possible.

3WN1 Circuit-Breakers for AC

Withdrawable circuit-breakers

Shock protection against touching live contacts of the guide frame: Shutter

The unintentional touching of currentcarrying contacts or busbars is prevented by a shutter which is mounted to the rear part of the guide frame (see page $7 / 39$, Fig. 7/17).

The shutter is made of insulating material and has cutouts for the isolating blades of the circuit-breaker. The apertures are automatically covered by a slide, also made of insulating material, as soon as the circuitbreaker is moved to the disconnected position. The shutter closes automatically. It is automatically opened when the circuitbreaker is inserted.

To prevent unauthorized opening of the closed shutter, when if the breaker is removed, the shutter can be fitted with up to 2 padlocks.

Interlocking

For the protection of the operating personnel and the switchgear installation, the withdrawable circuit-breakers can be equipped with the following interlocks:

- Interlock to prevent opening of the cubicle door when the circuit-breaker is in the connected or test position.
- Interlock to prevent the circuit-breaker from being moved (Connected position \leftrightarrow Test position \leftrightarrow Disconnected position) when the cubicle door is open.
- Interlock to prevent the withdrawable circuit-breaker from being racked in with the shutter down: see Shock protection against touching live contacts of the guide frame: Shutter.
- Interlock to prevent the withdrawable circuit-breaker from being moved e.g. from the test position into the connected position.
Fitting of the crank and moving the cir-cuit-breaker can be prevented by a padlock (not on sizes IV (3-pole) and III (4-pole)).

Signalling switches for circuit-breaker positions in the guide frame

3WN1 Circuit-Breakers for AC

Tripping characteristics

These characteristic curves show the reaction of the overcurrent release when it is activated by a current that is already flowing before the circuit-breaker trips. If overcurrent tripping occurs immediately af-
ter closing the circuit-breaker, when the overcurrent release has not yet been activated, the opening time will be longer (by 3 to 10 ms , depending on the overcurrent). In order to ascertain the break-times of the cir-
cuit-breaker, about 15 ms (for earth-fault tripping about 20 ms) should be added to the opening times shown to allow for arc duration.
Tolerances according to IEC 60947

Tripping characteristics "an"

Fig. 7/19 Tripping characteristics of overcurrent release version 2
Inverse-time-delay overload release "a"
$I_{\mathrm{r}} \quad$ Current setting
Instantaneous short-circuit release " n "
$I_{\mathrm{i}} \quad$ Operating current (settable)

Tripping characteristics " g ": definite-time delayed

Fig. 7/21 Tripping characteristics of overcurrent release versions 6 and 8
I_{N} Current transformer rated primary current

Earth-fault release "g"
I_{g} Operating current (settable)
$t_{g} \quad$ Delay time (settable)

1) With current transformer rated primary currents $I_{\mathrm{N}}=315 \mathrm{~A}$ and $I \mathrm{~N}=400 \mathrm{~A}$ currents $I N=315 A$ and $I_{N}=400 A$
see page $7 / 34$ for response current see page

Tripping characteristics " a " and " z ": " z " = is definite-time delayed

Fig. 7/20 Tripping characteristics of overcurrent release versions 4 to 8

Inverse-time-delay
overload release "a"
$I_{r_{r}}$ Current setting
T_{c} Time-lag class (settable
fixed at 10 s on version 6)

Tripping characteristics " n "

Fig. 7/22 Tripping characteristics of overcurrent release versions 4 to 8
I_{N} Current transformer rated primary curren
Instantaneous short-circuit release "n"
$I_{\mathrm{i}} \quad$ Operating current (settable)

3WN1 Circuit-Breakers for AC

Example of a full circuit diagram

3WN1 Circuit-Breakers for AC
 3- and 4-pole

Terminal diagrams for circuit-breaker signalling unit for overcurrent release versions 2 and 4

3WN1 Circuit-Breakers for AC

3- and 4-pole

Circuit diagrams for supplementary devices

Delay device 3WX31 56-3J. 00 for undervoltage release with delay

3WX31 56-3JG10 and 3WX31 56-3JJ10 delay devices for undervoltage release with delay

3WN1 Circuit-Breakers for AC

Fixed-mounted 3WN1 circuit-breakers, 3- and 4-pole

Horizontal connecting bars
(1) Connecting piece for auxiliary contacts

(2) Arc chute extension \begin{tabular}{l|l|l|l}

\hlineU_{e} \& e \& f \& | Arc chute |
| :--- |
| extension |

\hline 690 V AC \& 466 \& 32 \& | is supplied |
| :--- |
| is supplied |

\hline 1000 V AC \& 500 \& 66
\end{tabular}

(3) Cubicle door
(4) Central line of circuit-breaker

Supporting bracket (option)

Thickness of connecting bars "X"	
Size	X
3-pole	
I, II, III/1	10
III/2	20
4-pole	10

Vertical connecting bars
Size III/2 only with vertical connecting bars above and below

Fixing holes for supporting bracket

Size	c	d
3-pole		
I	300	360
II	420	480
III	600	660
4-pole		
I	420	480
II	600	660

3WN1 Circuit-Breakers for AC

Fixed-mounted 3WN1 circuit-breakers, 3- and 4-pole

3-pole (horizontal connecting bars)

Sizes I/1 and I/2

Size II

Size III/1

Size III/2

4-pole (horizontal connecting bars)

Size I

Size II/1

Size III2

The distance between connecting point P and support of busbars can be max. 250 mm .
(4) Central line of circuit-breaker

3WN1 Circuit-Breakers for AC

Fixed-mounted 3WN1 circuit-breakers, 3- and 4-pole

Size II

Size III/1

Size III/2

4-pole (vertical connecting bars)

Size I

Size II/1

Size II/2

The distance between connecting point P and support of busbars can be max. 250 mm .
(4) Central line of circuit-breaker

3WN1 Circuit-Breakers for AC

Fixed-mounted 3WN1 circuit-breakers, 3- and 4-pole

With extended connecting bars (terminal holes of bars for connection of busbars in accordance with DIN 43 673)

Thickness of connecting bars " x "	
Size	x
3-pole	
$\begin{aligned} & \mathrm{I} / 1 \\ & \mathrm{I} / 2, \mathrm{II}, \mathrm{III} / 1 \end{aligned}$	5 until delivery date 30/04/98 10 from delivery date 01/05/98
4-pole	
I, II	10

(1) Arc chute extension
(2) Central line of circuit-breaker

The distance between connecting point P and support of busbars can be max. 250 mm .

3-pole
Size I/1 and I/2

4-pole
Size I

Size II

Size II/1

Size III/1

Size II/2

3WN1 Circuit-Breakers for AC

Withdrawable 3WN1 circuit-breaker, 3- and 4-pole
With extended connecting bars for connection accessible from the front (terminal holes of bars for connection of busbars in accordance with DIN 43 673)

Sizes I, II/1, II/2 and III/1

Sizes III/2 (3-pole) and II/2 (4-pole)

Thickness of connecting bars " x "

Size	x		
3-pole			
$\mathrm{I} / 1, I_{\mathrm{n}} \leq 1000 \mathrm{~A}$	10		
$\mathrm{I} / 2, I_{\mathrm{n}} \leq 1600 \mathrm{~A}$	20		
$\mathrm{II}, I_{\mathrm{n}} \leq 1600 \mathrm{~A}$	10		
$\mathrm{II}, I_{\mathrm{n}} \leq 2500 \mathrm{~A}$	20		
$\mathrm{III} / 1, I_{\mathrm{n}} \leq 2500 \mathrm{~A}$	20		
4-pole			
$\mathrm{I}, I_{\mathrm{n}} \leq 1000 \mathrm{~A}$	10		
$\mathrm{I}, I_{\mathrm{n}} \leq 1600 \mathrm{~A}$	20		
$\mathrm{II} / 1, I_{\mathrm{n}} \leq 2500 \mathrm{~A}$	20		(1) Arc chute extension
:---			
(2) Central line of circuit-breaker			
The distance between connecting point P and			
support of busbars may be max. 210 mm.			
e The mutual support for extended			
connecting bars is supplied.			
Y Voltage carrying part,			
Keep away			

3 -pole

3WN1 Circuit-Breakers for AC

Withdrawable 3WN1 circuit-breakers, 3- and 4-pole

Size	a	b	c
3-pole			
II	300	360	320
III	420	480	440
III	600	660	620
4-pole			
II	420	480	440
Disconnected position			
b Test position			
c Connected position			

(1) Arc chute extension

U_{e}	e	f	Arc chute extension
690 V AC	515	32	is supplied is supplied

(2) Connecting piece for auxiliary contacts
(3) Guide frame
(5) Bushing for signalling and control leads
(5) Shutter (option)
© Cubicle door
(7) Central line of circuit-breaker

3-pole

Sizes I/1 and I/2

4-pole

Size I

Size II/1

Sizes III/1 and III/2

Size II/2

[^9]
3WN1 Circuit-Breakers for AC

Withdrawable 3WN1 circuit-breakers, 3- and 4-pole

Size IV, 3-pole

Size III/1 and III/2, 4-pole

Size IV, 3-pole

Sizes III/1 and III/2, 4-pole

Connection of bars
(The connecting pieces are fixed-mounted on the guide frame)

Connection with 5000 A
013,5

Connection with 6300 A

Connection of bars

(The connecting pieces are fixed-mounted on the guide frame) Size III/1 Size III/2
L1, L2, L3
\sim

With both horizontal and vertical installation of connecting bars the support d has to be used

Main contacts (3-pole)

Sizes I/1 and I/2

nst
horizontion option
horizontal or vertical

Size II

Size III/1

Horizontal installation only

No T-connecting pieces can be used with size III/2.

Main contacts (4-pole)

Size I

Installation optional
horizontal or vertical

Size II/1

Size II/2

3WN1 Circuit-Breakers for AC

3WN1 circuit-breakers, 3- and 4-pole

Possible methods for mounting the cover for the space above the arc chute with withdrawable circuit-breakers
(see the side views of withdrawable 3WN1 circuit-breakers, pages 7/50 and 7/51)

Door cutout for 3WX31 86-0JA01 door sealing frame
for sizes I to III (sizes III only 3-pole)

for sizes IV (3-pole) and III (4-pole)

Locking device for
"electrical ON"- and

Door cutout with edge protection Cutout after mounting the edge protection for sizes I to III (size III only 3-pole)

Mounting level	a	b
Fixed-mounted version	16.5	20
Withdrawable version	46.5	50

Size	C	d	$\stackrel{\sim}{\sim}$	$\varnothing 5,5$
Fixed-mounted version, 3-pole				
1	91	265		

(1) Opening
or crank handle
for spindle drive
Holes for
blocking device
3) Holes and
cutout for
cutout or
*) Door cutout
for edge protection:
330 instead of 339 mm ,
274 instead of 283 mm ,
R8 instead of R4.

3WN1 Circuit-Breakers for AC

Fixed-mounted 3WN1 circuit-breakers, 3- and 4-pole

Cover for the space above the arc chute (not supplied)

Size	Number of poles	A $\widehat{=}$ Cubicle with	C	Safety distance D with arc chute extensions	E	F
690 V AC						
$\begin{aligned} & I / 1 \\ & I / 2 \\ & I I \\ & I I I / 1, I I I / 2 \\ & I \\ & I I / 1, I I / 2 \end{aligned}$	3 3 3 3 4 4	$\begin{aligned} & 490 \\ & 550 \\ & 550 \\ & 800 \\ & 550 \\ & 800 \end{aligned}$	$\begin{aligned} & 320 \\ & 320 \\ & 320 \\ & 320 \\ & 320 \\ & 320 \end{aligned}$	$\begin{aligned} & 185 \\ & 185 \\ & 245 \\ & 285 \\ & 185 \\ & 285 \end{aligned}$	$\begin{aligned} & 93 \\ & 93 \\ & 93 \\ & 93 \\ & 93 \\ & 93 \end{aligned}$	$\begin{aligned} & 270 \\ & 270 \\ & 390 \\ & 570 \\ & 390 \\ & 570 \end{aligned}$

Minimum dimensions are indicated.
Ventilation openings (L) are necessary for heat dissipation. They must not be in line with direct blow out direction.
Up to 440 V AC a smaller space above the arc chute is tolerable with sizes I and III: D=200 mm.

Withdrawable 3WN1 circuit-breakers, 3- and 4-pole
Cover for the space above the arc chute (not supplied)

Minimum dimensions are indicated.
Ventilation openings (L) are necessary for heat dissipation. They must not be in line with direct blow out direction.
Up to 440 V AC a smaller space above the arc chute is tolerable with sizes II and III: $\mathrm{D}=167 \mathrm{~mm}$.

[^0]: 1) For further data see Technical data, page 7/23.
 2) Not available with line filter (Z=F09).
[^1]: 1) Not available with line filter
[^2]: 1) For further data see

 Technical data, page 7/23

[^3]: 1) Please check if arc chute extensions are required. Arc chute extensions have to be used for circuit-breakers sizes IV (3-pole) and III (4-pole).
[^4]: 1) Please determine the number of connecting bars needed on your own.
[^5]: 1) The coil voltage tolerance is only admissible for given rated voltages and corresponds to the battery voltage.
[^6]: 1) Absolutely weld-free contacts only at $I_{k} \leq 1 \mathrm{kA}$ according to DIN VDE 0660 Part 200.
[^7]: 1) Not suitable for networks over 500 V where double earth-faults can occur (Load and Line).
[^8]: 1) For further information, see Manual (page 7/30).
[^9]: * Thread M 12: Screw hole depth 18 ... 24 mm Torque $70 \pm 2 \mathrm{Nm}$

