SELECTION AND **APPLICATION** **OF** K-DON CURRENT LIMITING LOW VOLTAGE **POWER CIRCUIT BREAKERS** 1-T-E CIRCUIT BREAKER COMPANY Printed in U. S. A. NEW Distribution—Lists 26 and 48.1 **DECEMBER 1, 1960** - # SELECTION OF K-DON CIRCUIT BREAKERS The following step by step procedure is to be used as a guide for proper circuit breaker and fuse selection. ## A. CIRCUIT BREAKER SELECTION - 1 Determine the system short circuit capacity in symmetrical RMS amperes. - 2 Determine from Table 1 columns 3, 4 and 5 respectively the approximate continuous current rating and the time delay and instantaneous overcurrent trip settings. - 3 Select from Table II columns 1, 2, 3 and 4 respectively the proper coil rating, frame size, time delay and instantaneous settings as follows: - (a) The coil rating should be equal to or greater than the value determined in Table I column 3. - (b) When there is a choice of breaker frame size the larger will provide maximum flexibility in case of load growth. - (c) Time delay setting should be set at a value nearest to that determined in Table I column 4. - (d) Instantaneous setting should be set at a value nearest to that determined in Table I column 5. However, this value may have to be adjusted downward to coordinate with Amp-trap to be selected in step B. | TAB | LE I | 2. | ジ | 4- | 5 | |---------------------------|--|--|--|---|---| | type of | | purpose of circuit breaker | continuous
current
rating of | settings of overcurrent trip device | | | - ap | plication | | circuit breaker | time delay | instantaneous | | • | Service
ntrance
general) | To protect source transformer windings from overheating, due to overload or fault current flow. To protect circuit conductors from effects of avercurrent flow. To provide safe and rapid means for connecting and disconnecting of load circuit. | Based upon 125% of the transformer current ratifig Based upon 115% of estimated load current | 125% of the
transformer
current rating | 1000% of
circuit breaker
current rating | | 1 | Service
feeder
jeneral) | (a) To protect circuit conductors from effects of overcurrent flow. (b) To protect connected electrical equipment from effects of fault current flow. | | 115% of
estimated
load current | 1000% of
circuit breaker
current rating | | | Individual
motor
circuit | To protect motor windings from overheating due to overcurrent or fault current flow. To protect circuit conductors and other connected electrical equipment from overload or fault current flow. To provide safe and rapid means of connecting and disconnecting motor circuit. | Based upon
115% of
rated full
load current
of motor | 115% of
rated full
load current
of motor | 1000% of
circuit breaker
current rating | | BRANCH CIRCUITS (GENERAL) | Group
motor
circuit | (a) To protect circuit conductors from overheating. (b) To protect circuit conductors, motor windings and other connected electrical equipment from fault current flow. (c) To provide safe and rapid means of connecting and disconnecting common motor circuit from supply source. | \$ased upon
115% of
largest motor
full load current
plus sum of
other motor
currents | 100% of
circuit breaker
current rating | 1000% of
circuit breaker
current rating | | | Combined
motor and
lighting
circuit | (a) To protect circuit conductors from overheating. (b) To protect circuit conductors, motor windings and other connected electrical equipment from fault current flow. (c) To provide safe and ropid means of connecting and disconnecting common load circuit from supply source. | Based upon
115% of
largest motor
full load current
plus sum of
other motor
and lighting
load currents | 100% of circuit breaker current rating | 1000% of circuit breaker current rating | | | Lighting circuit | (a) To protect circuit conductors from effects of overload or fault current flow. (b) To provide safe and rapid means of connecting and disconnecting lighting circuit from supply source. | Based upon
125% of
estimated
maximum
lighting current | 100% of
circuit breaker
current rating | 1000% of circuit breaker current rating | ## **B. AMP-TRAP SELECTION** 1 When all equipment protected by the breaker has a short circuit withstand rating equal to or greater than the breaker selected in step A,† the maximum fuse size in Table II column 5 may be used. This assures maximum coordination and flexibility of instantaneous breaker settings with minimum fuse blowing. However, where economy over-rules maximum flexibility any lower rated fuse size down to the one directly to the right of the instantaneous trip setting selected from column 4 may be chosen. Fuse sizes below this value will not coordinate with trip setting. 2 When the equipment to be protected by the breaker has a short circuit withstand rating less than the breaker,† Figure 1 must be used to determine maximum fuse size to adequately protect this equipment. Two values must be known. - (a) System short circuit capacity—symmetrical RMS amperes (this value was determined in step A-1). - (b) Peak amperes—this value is determined by multiplying the short circuit withstand rating of the equipment in symmetrical RMS amperes by 2.3. Select a maximum fuse size from Figure 1 which lies equal to or below the intersection of the short circuit ampere and peak ampere coordinates. Check this maximum fuse size against the instantaneous setting selected in Table II column 4. If the instantaneous setting is to high to coordinate with this fuse the instantaneous setting must be adjusted downward to insure coordination. #### NOTE Common applications such as Protection of Molded-Case Breakers and Bus Duct have been tabulated and appear in Tables III and IV. † K-Don-600, 42,000 Amp. Sym.; K-Don-1600, 65,000 Amp. Sym. Typical Breaker Amp-trap coordination curve TABLE IL | | 3 | +/ | | |--------------------------|--|--|---| | BREAKER
FRAME
SIZE | TRIP DEVICE
LONG-TIME
SETTINGS | TRIP DEVICE
Instantaneous
Settings | COORDINATING
FUSE
SIZE® | | K-Don
-600 | 20
25
30
40
50 | 150
250
400
600 | 400
400
400
400-1200 | | K-Don
-600 | 40
50
60
70
90 | 250
500
750
1100 | 400
400
400
400-1200 | | K-Don
-600 | 70
90
100
125
160 | 450
800
1200
1900 | 400
400
400
600-1200 | | K-Don
-600 | 120
150
175
200
225
285 | 750
1500
2400
3400 | 400
400
600
800-2000 | | K-Don
-600 | 200
250
300
350
400
500 | 1250
2000
4000
6000 | 400
600
1200
1600-2000 | | K-Don
-600 | 400
500
600
750 | 2500
4000
6000
9000 | 800
1 200
1 600
2000 | | K-Don
-1600 | 120
150
175
200
225
285 | 750
1500
2400
3400 | 400
400
600
800-2000 | | K-Don
-1600 | 200
250
300
350
400
500 | 1250
2000
4000
6000 | 400
800
1200
1600-2000 | | K-Don
-1600 | 400
500
600
800
1000 | 2500
5000
7500
10,000 | 800
1600
2000
3000 | | K-Don
-1600 | 800
1000
1200
1600
2000 | 5000
10,000
15,000
20,000 | 3000
3000
a | | | ## BREAKER FRAME SIZE K-Don | BREAKER FRAME SIZE | BREAKER FRAME TRIP DEVICE INSTANTANEOUS SETTINGS SETTINGS | a. 3000 Amp. fuse will not coordinate with these instantaneous settings. ^{*}Minimum fuse size which will coordinate with instantaneous breaker setting directly to left in column 4. PAGE 4 JANUARY 2, 1962 - # FIG I # **AMP-TRAP LET THRU CURVES** DECEMBER 1, 1960 # TABLE III #### PROTECTION OF MOLDED CASE CIRCUIT BREAKERS IN SWITCHBOARDS, MOTOR CONTROL CENTERS AND PANELBOARDS 100,000 AMPERES* MOLDED CASE K-Don - 600 K-Don - 1600 CIRCUIT BRKR. Coil Amp-trap Coil Amp-trap Rating Rating Type Rating Rating Rating Max. Max. Max. Max. 15-50 400 400 70-100 600 600 70-125 600 1200 1200 1000 1200 150-225 600 1600 1600 70-125 JK 600 1200 1000 1200 JK 150-225 600 1600 1200 1600 1200 1000 JKL 125 600 1200 JKL 150-400 600 1600 1200 1600 LM 125 600 1200 1000 1200 LM 150-400 600 1600 1200 1600 ĹM 500-800 1600 2000 # **TABLE IV** | PROTECTION OF BUS DUCT SYSTEMS
100,000 AMPERES* | | | | | | | | | | | |--|----------------|----------------------------|------------------------|--------------------|--|--|--|--|--|--| | BUS DUCT | K-Dor | - 600 | K-Don - 1600 - | | | | | | | | | Ampere
Rating | Coil
Rating | Amp-trap
Rating
Max. | Coil
Rating
Max. | Amp-trap
Rating | | | | | | | | Plug-In Type | Max. | | | Max. | | | | | | | | 225 | 400 | 800 | _ | | | | | | | | | 400 | 600 | 1200 | i — | | | | | | | | | 600 | 600 | 1600 | 800 | 1600 | | | | | | | | 800 | _ | | 1600 | 2000 | | | | | | | | 1000 | l — | <u> </u> | 1600 | 3000 | | | | | | | | 1250 | · | | 1600 | 3000 | | | | | | | | 1500 | | | 1600 | 3000 | | | | | | | | LO-X Type | | | | | | | | | | | | 600 | 600 | 2000 | 800 | 2000 | | | | | | | | 800 | _ | | 1600 | 2500 | | | | | | | | 1000 | _ | | 1600 | 3000 | | | | | | | | 1350 | _ | | 1600 | 3000 | | | | | | | | 1600 | | | 1600 | 3000 | | | | | | | | 2000 | _ | | | | | | | | | | | 2500 | _ | | | | | | | | | | | 3000 | ~ | | | | | | | | | | | 4000 | | | | | | | | | | | f^* For available fault currents above 100,000 Amperes symmetrical, consult the factory.