SIEMENS

MICROMASTER 430
 7.5 kW-250 kW

Operating Instructions (Compact)
Issue 10/06

Warnings, Cautions and Notes

The following Warnings, Cautions and Notes are provided for your safety and as a means of preventing damage to the product or components in the machines connected. Specific Warnings, Cautions and Notes that apply to particular activities are listed at the beginning of the relevant chapters and are repeated or supplemented at critical points throughout these sections. Please read the information carefully, since it is provided for your personal safety and will also help prolong the service life of your MICROMASTER 430 Inverter and the equipment you connect to it.

WARNING

$>$ This equipment contains dangerous voltages and controls potentially dangerous rotating mechanical parts. Non-compliance with Warnings or failure to follow the instructions contained in this manual can result in loss of life, severe personal injury or serious damage to property.
> Only suitable qualified personnel should work on this equipment, and only after becoming familiar with all safety notices, installation, operation and maintenance procedures contained in this manual. The successful and safe operation of this equipment is dependent upon its proper handling, installation, operation and maintenance.
> The DC link capacitors remain charged for five minutes after power has been removed. It is not permissible to open the equipment until 5 minutes after the power has been removed. The drive unit discharges itself during this time.
$>$ This equipment is capable of providing internal motor overload protection in accordance with UL508C section 42. Refer to P0610 and P0335, i^{2} t is ON by default. Motor overload protection can also be provided using an external PTC or KTY84.
$>$ This equipment is suitable for use in a circuit capable of delivering not more than 10,000 (Frame Size C) or 42,000 (Frame Sizes D to GX) symmetrical amperes (rms), for a maximum voltage of 460 V when protected by an H, J or K type fuse, a circuit breaker or self-protected combination motor controller (for more details see Operating Instructions Appendix F).
> Use Class $160 / 75^{\circ} \mathrm{C}$ copper wire only with the cross-sections as specified in the Operating Instructions.
> The mains input, DC and motor terminals, can carry dangerous voltages even if the inverter is inoperative. Always wait 5 minutes to allow the unit to discharge after switching off before carrying out any installation work.

NOTE

> Before installing and commissioning, please read these safety instructions and warnings carefully and all the warning labels attached to the equipment.
> Please ensure that all of the warning labels are kept in a condition so that they can be easily read and replace missing or damaged labels.
> Maximum permissible surrounding ambient temperature is $40^{\circ} \mathrm{C}$ at 100% permissible output current

Contents

1 Installation 5
1.1 Clearance distances for mounting 5
1.2 Mounting dimensions 5
2 Electrical Installation 6
2.1 Technical Specifications 6
2.2 Power terminals 9
2.3 Control terminals 16
$2.4 \quad$ Block diagram 17
3 Factory setting 18
3.1 50/60 Hz DIP switch 18
4 Communications 19
4.1 Establishing communications MICROMASTER $430 \Leftrightarrow$ STARTER 19
4.2 Bus interface (CB) 20
5 BOP-2 (Option) 21
5.1 Buttons and their Functions 21
5.2 Changing parameters using as an example P0004 "Parameter filter function" 22
6 Commissioning 23
6.1 Quick commissioning 23
6.2 Motor data identification 27
6.3 Commissioning the application 28
6.3.1 Serial Interface (USS) 28
6.3.2 Selection of command source 28
6.3.3 Digital input (DIN) 29
6.3.4 Digital outputs (DOUT) 30
6.3.5 Selection of frequency setpoint 31
6.3.6 Analog input (ADC) 32
6.3.7 Analog output (DAC) 33
6.3.8 Motor potentiometer (MOP) 34
6.3.9 Fixed frequency (FF) 34
6.3.10 Ramp function generator (RFG) 36
6.3.11 Reference/limit frequencies 37
6.3.12 Inverter protection 38
6.3.13 Motor protection 39
6.3.14 Encoder 40
6.3.15 V/f control 41
6.3.16 Inverter-specific Functions 43
6.3.16.1 Flying start 43
6.3.16.2 Automatic restart 43
6.3.16.3 Holding brake 44
6.3.16.4 DC brake 46
6.3.16.5 Compound braking. 47
6.3.16.6 Vdc controller 48
6.3.16.7 Bypass 48
6.3.16.8 Load torque monitoring 50
6.3.16.9 PID controller 52
6.3.16.10 Staging 53
6.3.16.11 Energy saving mode 56
6.3.16.12 Free function blocks (FFB) 58
6.3.17 Data sets 60
6.3.18 Diagnostic parameters 63
6.4 Series commissioning 65
6.5 Parameter reset of factory setting 65
7 Displays and messages 66
7.1 LED status display 66
7.2 Fault messages and Alarm messages 67

1 Installation

1.1 Clearance distances for mounting

The inverters can be mounted adjacent to each other. When mounting inverters one above the other, the specified environmental conditions must not be exceeded. Independent of this, these minimum distances must be observed.
> Frame Size C above and below 100 mm
> Frame Size D, E above and below 300 mm
> Frame Size F
> Frame Size FX, GX
above and below 350 mm
above 250 mm
below 150 mm
in front 40 mm (FX), 50 mm (GX)

1.2 Mounting dimensions

	Frame Size	Drilling Dimensions		Tightening Torque	
		$\stackrel{H}{\mathrm{~mm}} \text { (Inch) }$	$\stackrel{\mathrm{W}}{\mathrm{~mm}(\text { Inch })}$	Bolts	Nm (lbf.in)
	C	$\begin{gathered} 204 \\ (8.03) \end{gathered}$	$\begin{gathered} 174 \\ (6.85) \end{gathered}$	$4 \times \mathrm{M} 5$	$\begin{gathered} 2,5 \\ (22.12) \end{gathered}$
	D	$\begin{gathered} \hline 486 \\ (19.13) \end{gathered}$	$\begin{gathered} 235 \\ (9.25) \end{gathered}$	$4 \times \mathrm{M} 8$	$\begin{gathered} 3,0 \\ (26.54) \end{gathered}$
	E	$\begin{gathered} 616,4 \\ (24.27) \end{gathered}$	$\begin{gathered} 235 \\ (9.25) \end{gathered}$	$4 \times \mathrm{M} 8$	
	F	$\begin{gathered} 810 \\ (31.89) \end{gathered}$	$\begin{gathered} 300 \\ (11.81) \end{gathered}$	$4 \times \mathrm{M} 8$	
	FX	$\begin{aligned} & 1375,5 \\ & (54.14) \end{aligned}$	$\begin{gathered} 250 \\ (9.84) \end{gathered}$	$6 \times \mathrm{M} 8$	$\begin{gathered} 13,0 \\ (115.02) \end{gathered}$
	GX	$\begin{aligned} & 1508,5 \\ & (59.38) \end{aligned}$	$\begin{gathered} 250 \\ (9.84) \end{gathered}$	$6 \times \mathrm{M} 8$	$\begin{gathered} 13,0 \\ (115.02) \end{gathered}$

Fig. 1-1 Mounting dimensions

2 Electrical Installation

2.1 Technical Specifications

Input voltage range $3 \mathrm{AC} 380 \mathrm{~V}-480 \mathrm{~V}, \pm 10 \% \quad$ (with built in Class A Filter)

Order No.	6SE6430-	$\begin{gathered} \text { 2AD27- } \\ \text { 5CAO } \end{gathered}$	$\begin{aligned} & \text { 2AD31- } \\ & \text { 1CA0 } \end{aligned}$	$\begin{gathered} \text { 2AD31- } \\ \text { 5CA0 } \end{gathered}$	$\begin{aligned} & \text { 2AD31- } \\ & \text { 8DA0 } \end{aligned}$	$\begin{aligned} & \text { 2AD32- } \\ & \text { 2DAO } \end{aligned}$	$\begin{aligned} & \text { 2AD33- } \\ & \text { ODAO } \end{aligned}$
Frame Size		C			D		
Output Rating (VT)	[kW]	7,5	11,0	15,0	18,5	22,0	30,0
	[hp]	10,0	15,0	20,0	25,0	30,0	40,0
Output Power	[kVA]	10,1	14,0	19,8	24,4	29,0	34,3
VT-Input Current 1)	[A]	17,3	23,1	33,8	37,0	43,0	59
VT-Output Current max.	[A]	19,0	26,0	32,0	38,0	45,0	62,0
Fuse	[A]	20	32	35	50	63	80
ded		3807	3812	3814	3820	3822	3824
For UL specified	3NE	*	*	*	1817-0	1818-0	1820-0
Input Cable, min.	[mm^{2}]	2,5	4,0	6,0	10,0	10,0	16,0
	[AWG]	14	12	10	8	8	6
Input Cable, max.	[mm^{2}]	10,0	10,0	10,0	35,0	35,0	35,0
	[AWG]	8	8	8	2	2	2
Output Cable, min.	[mm^{2}]	2,5	4,0	6,0	10,0	10,0	16,0
	[AWG]	14	12	10	8	8	6
Output Cable, max.	[mm^{2}]	10,0	10,0	10,0	35,0	35,0	35,0
	[AWG]	8	8	8	2	2	2
Tightening torques for power terminals	[Nm]	2,25			10		
	[lbf.in]	20			89		
Required cooling air flow	[l/s]	54,9			$2 \times 54,9$		
Weight	[kg]	5,7	5,7	5,7	17,0	17,0	17,0
	[lbs]	12,5	12,5	12,5	37,0	37,0	37,0

Order No.	6SE6430-	$\begin{aligned} & \text { 2AD33- } \\ & \text { 7EA0 } \end{aligned}$	$\begin{aligned} & \text { 2AD34- } \\ & \text { 5EA0 } \end{aligned}$	$\begin{aligned} & \text { 2AD35- } \\ & \text { 5FA0 } \end{aligned}$	$\begin{gathered} \text { 2AD37- } \\ \text { 5FAO } \end{gathered}$	$\begin{aligned} & \text { 2AD38- } \\ & \text { 8FA0 } \end{aligned}$
Frame Size		E		F		
Output Rating (VT)	[kW]	37,0	45,0	55,0	75,0	90,0
	[hp]	50,0	60,0	75,0	100,0	120,0
Output Power	[kVA]	47,3	57,2	68,6	83,8	110,5
VT-Input Current 1)	[A]	72	87	104	139	169
VT-Output Current max.	[A]	75,0	90,0	110,0	145,0	178,0
Fuse	[A]	100	125	160	160	200
ded		3830	3832	3836	3140	3144
For UL specified	3NE	1021-0	1022-0	1224-0	1225-0	1227-0
Input Cable, min.	[mm^{2}]	25,0	25,0	35,0	70,0	70,0
	[AWG]	3	3	2	2/0	2/0
Input Cable, max.	[mm^{2}]	35,0	35,0	150,0	150,0	150,0
	[AWG]	2	2	300	300	300
Output Cable, min.	[mm^{2}]	25,0	25,0	50,0	70,0	95,0
	[AWG]	3	3	1/0	2/0	4/0
Output Cable, max.	[mm^{2}]	35,0	35,0	150,0	150,0	150,0
	[AWG]	2	2	300	300	300
Tightening torques for power terminals	[Nm]	10		50		
	[Ibf.in]	89		445		
Required cooling air flow	[l/s]	$2 \times 54,9$		150		
Weight	[kg]	22,0	22,0	75,0	75,0	75,0
	[lbs]	48,0	48,0	165,0	165,0	165,0

[^0][^1]Input voltage range 3 AC 380 V - 480 V, ± 10 \%
(Unfiltered)

Order No.	6SE6430-	$\begin{gathered} \text { 2UD27- } \\ \text { 5CA0 } \end{gathered}$	$\begin{aligned} & \text { 2UD31- } \\ & \text { 1CA0 } \end{aligned}$	$\begin{aligned} & \text { 2UD31- } \\ & \text { 5CA0 } \end{aligned}$	$\begin{aligned} & \text { 2UD31- } \\ & \text { 8DA0 } \end{aligned}$	$\begin{aligned} & \hline \text { 2UD32- } \\ & \text { 2DA0 } \end{aligned}$	$\begin{gathered} \hline \text { 2UD33- } \\ \text { ODA0 } \end{gathered}$
Frame Size		C			D		
Output Rating (VT)	[kW]	7,5	11,0	15,0	18,5	22,0	30,0
	[hp]	10,0	15,0	20,0	25,0	30,0	40,0
Output Power	[kVA]	10,1	14,0	19,8	24,4	29,0	34,3
VT-Input Current 1)	[A]	17,3	23,1	33,8	37,0	43,0	59
VT-Output Current max.	[A]	19,0	26,0	32,0	38,0	45,0	62,0
Fuse	[A]	20	32	35	50	63	80
Recommended	3NA	3807	3812	3814	3820	3822	3824
For UL specified	3NE	*	*	*	1817-0	1818-0	1820-0
Input Cable, min.	[mm^{2}]	2,5	4,0	6,0	10,0	10,0	16,0
	[AWG]	14	12	10	8	8	6
Input Cable, max.	[mm^{2}]	10,0	10,0	10,0	35,0	35,0	35,0
	[AWG]	8	8	8	2	2	2
Output Cable, min.	[mm^{2}]	2,5	4,0	6,0	10,0	10,0	16,0
	[AWG]	14	12	10	8	8	6
Output Cable, max.	[mm^{2}]	10,0	10,0	10,0	35,0	35,0	35,0
	[AWG]	8	8	8	2	2	2
Tightening torques for power terminals	[Nm]	2,25			10		
	[lbf.in]	20			89		
Required cooling air flow	[l/s]	54,9			$2 \times 54,9$		
Weight	[kg]	5,5	5,5	5,5	16,0	16,0	16,0
	[lbs]	12,1	12,1	12,1	35,0	35,0	35,0

Order No.	6SE6430-	$\begin{gathered} \text { 2UD33- } \\ \text { 7EA0 } \end{gathered}$	$\begin{aligned} & \text { 2UD34- } \\ & \text { 5EA0 } \end{aligned}$	$\begin{gathered} \text { 2UD35- } \\ \text { 5FA0 } \end{gathered}$	$\begin{gathered} \text { 2UD37- } \\ \text { 5FA0 } \end{gathered}$	$\begin{aligned} & \text { 2UD38- } \\ & \text { 8FA0 } \end{aligned}$
Frame Size		E		F		
Output Rating (VT)	[kW]	37,0	45,0	55,0	75,0	90,0
	[hp]	50,0	60,0	75,0	100,0	120,0
Output Power	[kVA]	47,3	57,2	68,6	83,8	110,5
VT-Input Current 1)	[A]	72	87	104	139	169
VT-Output Current max.	[A]	75,0	90,0	110,0	145,0	178,0
Fuse Recommended For UL specified	[A]	100	125	160	160	200
	3NA	3830	3832	3836	3140	3144
	3NE	1021-0	1022-0	1224-0	1225-0	1227-0
Input Cable, min.	[mm^{2}]	25,0	25,0	35,0	70,0	70,0
	[AWG]	3	3	2	2/0	2/0
Input Cable, max.	[mm^{2}]	35,0	35,0	150,0	150,0	150,0
	[AWG]	2	2	300	300	300
Output Cable, min.	[mm^{2}]	25,0	25,0	35,0	70,0	95,0
	[AWG]	3	3	2	2/0	4/0
Output Cable, max.	[mm^{2}]	35,0	35,0	150,0	150,0	150,0
	[AWG]	2	2	300	300	300
Tightening torques for power terminals	[Nm]	10		50		
	[Ibf.in]	89		445		
Required cooling air flow	[l/s]	$2 \times 54,9$		150		
Weight	[kg]	20,0	20,0	56,0	56,0	56,0
	[lbs]	44,0	44,0	123,0	123,0	123,0

1) Secondary conditions: Input current at the rated operating point - applies for the short-circuit voltage of the line supply $\mathrm{V}_{\mathrm{k}}=2 \%$ referred to the rated drive inverter power and a rated line supply voltage of 400 V without line commutating reactor.
[^2]Input voltage range
3 AC 380 V - 480 V, ± 10 \%
(Unfiltered)

Order No.	6SE6430-	2UD41-1FA0	2UD41-3FA0	2UD41-6GA0	2UD42-0GA0	2UD42-5GA0
Frame Size		FX		GX		
Output Rating (VT)	[kW]	110	132	160	200	250
	[hp]	150	200	250	300	333
Output Power	[kVA]	145,4	180	214,8	263,2	339,4
VT-Input Current 1)	[A]	200	245	297	354	442
VT-Output Current max.	[A]	205	250	302	370	477
Recommended Fuse	[A]	250	315	400	450	560
		3NE1227-0	3NE1230-0	3NE1332-0	3NE1333-0	3NE1435-0
Input Cable, min.	[mm^{2}]	$\begin{gathered} 1 \times 95 \text { or } \\ 2 \times 35 \end{gathered}$	$\begin{gathered} 1 \times 150 \text { or } \\ 2 \times 50 \end{gathered}$	$\begin{gathered} 1 \times 185 \text { or } \\ 2 \times 70 \end{gathered}$	$\begin{gathered} 1 \times 240 \text { or } \\ 2 \times 70 \end{gathered}$	2×95
	[AWG] or [kcmil]	$\begin{gathered} 1 \times 4 / 0 \text { or } \\ 2 \times 2 \end{gathered}$	$\begin{gathered} 1 \times 300 \text { or } \\ 2 \times 1 / 0 \end{gathered}$	$\begin{gathered} 1 \times 400 \text { or } \\ 2 \times 2 / 0 \end{gathered}$	$\begin{gathered} 1 \times 500 \text { or } \\ 2 \times 2 / 0 \end{gathered}$	$2 \times 4 / 0$
Input Cable, max.	[mm^{2}]	$\begin{gathered} 1 \times 185 \text { or } \\ 2 \times 120 \end{gathered}$	$\begin{gathered} 1 \times 185 \text { or } \\ 2 \times 120 \end{gathered}$	2×240	2×240	2×240
	[AWG] or [kcmil]	$\begin{gathered} 1 \times 350 \text { or } \\ 2 \times 4 / 0 \\ \hline \end{gathered}$	$\begin{gathered} 1 \times 350 \text { or } \\ 2 \times 4 / 0 \\ \hline \end{gathered}$	2×400	2×400	2×400
Output Cable, min.	[mm^{2}]	$\begin{gathered} 1 \times 95 \text { or } \\ 2 \times 35 \end{gathered}$	$\begin{gathered} 1 \times 150 \text { or } \\ 2 \times 50 \end{gathered}$	$\begin{gathered} 1 \times 185 \text { or } \\ 2 \times 70 \end{gathered}$	$\begin{gathered} 1 \times 240 \text { or } \\ 2 \times 70 \\ \hline \end{gathered}$	2×95
	[AWG] or [kcmil]	$\begin{gathered} 1 \times 4 / 0 \text { or } \\ 2 \times 2 \\ \hline \end{gathered}$	$\begin{gathered} 1 \times 300 \text { or } \\ 2 \times 1 / 0 \\ \hline \end{gathered}$	$\begin{gathered} 1 \times 400 \text { or } \\ 2 \times 2 / 0 \\ \hline \end{gathered}$	$\begin{gathered} 1 \times 500 \text { or } \\ 2 \times 2 / 0 \\ \hline \end{gathered}$	$2 \times 4 / 0$
Output Cable, max.	[mm^{2}]	$\begin{gathered} 1 \times 185 \text { or } \\ 2 \times 120 \end{gathered}$	$\begin{gathered} 1 \times 185 \text { or } \\ 2 \times 120 \end{gathered}$	2×240	2×240	2×240
	[AWG] or [kcmil]	$\begin{gathered} 1 \times 350 \text { or } \\ 2 \times 4 / 0 \end{gathered}$	$\begin{gathered} 1 \times 350 \text { or } \\ 2 \times 4 / 0 \end{gathered}$	2×400	2×400	2×400
Tightening torques for power terminals	[Nm]	25				
	[Ibf.in]	$(222,5)$				
Pipe cable shoe to DIN 46235	[mm]	10	10	10	10	10
Required cooling air flow	I/s	225	225	430	430	430
Weight	[kg]	110	110	190	190	190
	[lbs]	242	242	418	418	418

1) Secondary conditions: Input current at the rated operating point - applies for the short-circuit voltage of the line supply $\mathrm{V}_{\mathrm{k}} \geq 2.33 \%$ referred to the rated drive inverter power and a rated line supply voltage of 400 V without line commutating reactor.

2.2 Power terminals

You can gain access to the mains and motor terminals by removing the front covers.
> Frame Size C (Fig. 2-1)
\Rightarrow Frame sizes D and E (Fig. 2-2)
$>$ Frame Size F (Fig. 2-3)
$>$ Frame Sizes FX and GX (Fig. 2-4)
> Connection terminals for Frame Sizes C -F (Fig. 2-5)
$>$ Connection overview for Frame Size FX (Fig. 2-6)
> Connection overview for Frame Size GX (Fig. 2-7)

Frame Size C

Fig. 2-1 Removing front covers (Frame Size C)

Frame Sizes D and E

Fig. 2-2
Removing front covers (Frame Sizes D and E)

Frame Size F

Fig. 2-3
Removing front covers (Frame Size F)

Frame Sizes FX and GX

Fig. 2-4
Removing front covers (Frame Sizes FX and GX)

Access to the power supply and motor terminals is possible by removing the front covers.

Fig. 2-5
Connection terminals for Frame Sizes C- F

Fig. 2-6 Connection overview for Frame Size FX

Fig. 2-7 Connection overview for Frame Size GX

2.3 Control terminals

Possible cable diameter: 0.08-2.5 mm² (AWG: 28-12)

Terminal	Designation	Function	
1	-	Output +10 V	
2	-	Output 0 V	
3	ADC1+	Analog input 1 (+)	
4	ADC1-	Analog input 1 (-)	
5	DIN1	Digital input 1	
6	DIN2	Digital input 2	
7	DIN3	Digital input 3	
8	DIN4	Digital input 4	
9	-	Isolated output +24 V / max. 100 mA	
10	ADC2+	Analog input 2 (+)	
11	ADC2-	Analog input 2 (-)	1819202122.232
12	DAC1+	Analog output 1 (+)	165
13	DAC1-	Analog output 1 (-)	
14	PTCA	Connection for PTC / KTY84	
15	PTCB	Connection for PTC / KTY84	
16	DIN5	Digital input 5	
17	DIN6	Digital input 6	
18	DOUT1/NC	Digital output 1 / NC contact	
19	DOUT1/NO	Digital output 1 / NO contact	FFFFFFFFF
20	DOUT1/COM	Digital output 1 / Changeover contact	
21	DOUT2/NO	Digital output 2 / NO contact	
22	DOUT2/COM	Digital output 2 / Changeover contact	
23	DOUT3/NC	Digital output 3 / NC contact	
24	DOUT3/NO	Digital output 3 / NO contact	
25	DOUT3/COM	Digital output 3 / Changeover contact	
26	DAC2+	Analog output 2 (+)	
27	DAC2-	Analog output 2 (-)	
28	-	Isolated output $0 \mathrm{~V} / \mathrm{max} .100 \mathrm{~mA}$	
29	P+	RS485 port	
30	$\mathrm{N}-$	RS485 port	

Fig. 2-8 Control terminals of MICROMASTER 430

2.4 Block diagram

Fig. 2-9 Block diagram

3 Factory setting

The MICROMASTER 430 frequency inverter is set in the factory so that it can be operated without any additional parameterization. To do this, the motor parameters set in the factory (P0304, P0305, P0307, P0310), that correspond to a 4-pole 1LA7 Siemens motor, must match the rated data of the connected motor (refer to the rating plate).
Further factory setting:
$>$ Command sources P0700 $=2$ (Digital input, see Fig. 3-1)
> Setpoint source
P1000 = 2 (Analog input, see Fig. 3-1)
> Motor cooling P0335 = 0
> Motor current limit P0640 = 110 \%
$>$ Min. frequency P1080 $=0 \mathrm{~Hz}$
> Max. frequency P1082 = 50 Hz
> Ramp-up time $\mathrm{P} 1120=10 \mathrm{~s}$
> Ramp-down time P1121 = 10 s
> Control mode P1300 = 0

Fig. 3-1 Pre-assignment of the inputs

Input/Output	Terminals	Parameter	Function	
Digital input 1	5	P0701 $=1$	ON / OFF1	(I/O)
Digital input 2	6	P0702 $=12$	Reversing	(
Dig)				
Digital input 3 input 4	7	P0703 $=9$	Fault acknowledge	(Ack)
Digital input 5	8	P0704 $=15$	Fault acknowledge	
Digital input 6	16	P0705 $=15$	Fixed setpoint (direct)	
Digital input 7	17	P0706 $=15$	Fixed setpoint (direct)	
Digital input 8	Via ADC1	P0707 $=0$	Fixed setpoint (direct)	

3.1 $50 / 60 \mathrm{~Hz}$ DIP switch

The default motor base frequency of the MICROMASTER inverter is 50 Hz . For motors, which are designed for a base frequency of 60 Hz , the inverters can be set to this frequency using the DIP50/60 switch.
> OFF position:
European defaults (Rated motor frequency = 50 Hz , Power in kW etc.)

> ON position:
North American defaults
(Rated motor frequency $=60 \mathrm{~Hz}$, Power in hp etc.)

4 Communications

4.1 Establishing communications MICROMASTER $430 \Leftrightarrow$ STARTER

The following optional components are additionally required in order to establish communications between STARTER and MICROMASTER 430:
> PC <-> frequency inverter connecting set
$>$ BOP-2 if the USS standard values (refer to Section 6.3.1 "Serial Interface (USS)") are changed in the MICROMASTER 430 frequency inverter

NOTE

> The hardware must be carefully checked in order to ensure that it is correctly located and connected.
$>$ When in the error-free state, the orange and green LEDs are continuously lit (steady light) at the BOP link.
> The COM interface must be selected on a computer-for-computer basis (port COM2 should be selected for a field PG with I box).
> The baud rate test executed by the PC cannot always determine a baud rate that deviates from the factory setting; if necessary, this can be determined by changing the setting on the PC interface (PC port) side.
$>$ We recommend a BOP-2 in cases such as these so that parameters can be quickly and simply checked.

4.2 Bus interface (CB)

	DeviceNet	CANopen	PROFIBUS
P2041[0]	PZD length Status/actual value	Data transfer type from T_PD0_1, T_PD0_5	Setting is not required (only in special cases). Refer to the Operating Instructions "PROFIBUS option module"
P2041[1]	PZD length control/setpoint	Data transfer typeT_PDO_6 R_PDO_1 $^{-}$ R_PDO-5 R_PDO_6	
P2041[2]	Baud rate $0: 125 \mathrm{kbaud}$ $1: 250 \mathrm{kbaud}$ $2: 500 \mathrm{kbaud}$	Mapping CANopen <--> MM4	
P2041[3]	Diagnostics	Mapping CANopen <--> MM4	
P2041[4]	-	- response to communication errors - baud rate	

5 BOP-2 (Option)
5.1 Buttons and their Functions

Panell Button	Function	Effects
${ }^{10} \mathrm{r} 0000$	Indicates Status	The LCD displays the settings currently used by the inverter.
1	Start inverter	Pressing the button starts the inverter. This button is disabled by default. Activate the button: P0700 =1 or P0719 = 10 ... 16
0	Stop inverter	OFF1 Pressing the button causes the motor to come to a standstill at the selected ramp down rate. This button is disabled by default. Activate the button: see button "Start inverter" OFF2 Pressing the button twice (or once long) causes the motor to coast to a standstill. This function is always enabled (independent of P0700 or P0719).
	Manual mode	Manual operation is selected by pressing the button. The drive inverter is then controlled from the sources P0700[1] (command source) or P1000[1] (setpoint source). The following applies for the pre-setting: - Manual operation de-activated (CDS 2 de-activated) $\text { CDS } 2 \text { : P0700[1] = } 1 \text { (BOP-2) }$ $\mathrm{P} 1000[1]=1 \text { (MOP) }$
	Automatic mode	The automatic mode is selected by pressing the button. The drive inverter is then controlled from the sources P0700[0] (command source) or P1000[0] (setpoint source). The following applies for the pre-setting: - Automatic mode activated (CDS 1 activated) CDS 1: P0700[0] = 2 (terminals) P1000[0] $=2$ (ADC)
Fn	Functions	This button can be used to view additional information. It works by pressing and holding the button. It shows the following, starting from any parameter during operation: 1. $D C$ link voltage (indicated by $d-$ units V). 2. output current. (A) 3. output frequency (Hz) 4. output voltage (indicated by $\mathrm{o}-$ units V). 5. The value selected in P0005 (If P0005 is set to show any of the above (1-4) then this will not be shown again). Additional presses will toggle around the above displays. Jump Function From any parameter (rxxxx or Pxxxx) a short press of the Fn button will immediately jump to r0000, you can then change another parameter, if required. Upon returning to r0000, pressing the Fn button will return you to your starting point. Acknowledgement If alarm and fault messages are present, then these can be acknowledged by pressing key Fn.
P	Access parameters	Pressing this button allows access to the parameters.
-	Increase value	Pressing this button increases the displayed value.
θ	Decrease value	Pressing this button decreases the displayed value.

CAUTION

A MICROMASTER 430 can only be operated using the BOP-2.
If an attempt is made to use either a BOP or AOP, then ...-- is displayed.

5.2 Changing parameters using as an example P0004 "Parameter filter function"

St		Result on the display
1	Press \boldsymbol{P} in order to access the parameter	$\text { p(1) } r 0000$
2	Press until P0004 is displayed	${ }^{8(1)} 90004$
3	Press \boldsymbol{P} in order to reach the parameter value level	0
4	Press or in order to obtain the required value	7
5	Press P to acknowledge the value and to save the value	P0004
6	The user can only see the command parameters.	

6 Commissioning

6.1 Quick commissioning

The frequency inverter is adapted to the motor using the quick commissioning function and important technological parameters are set. The quick commissioning shouldn't be carried-out if the rated motor data saved in the frequency inverter (4-pole 1LA Siemens motor, star circuit configuration $\widehat{=}$ frequency inverter (FU)specific) match the rating plate data.
Parameters, designated with a * offer more setting possibilities than are actually listed here. Refer to the parameter list for additional setting possibilities.

P1300 =...	Control mode (enters the required control mode) 0 V/f with linear characteristic 1 V/f with FCC 2 V/f with parabolic characteristic 3 V/f with programmable characteristic $5 \mathrm{~V} / \mathrm{f}$ for textile applications 6 V/f with FCC for textile applications 19 V/f control with independent voltage setpoint
P1910 = ...	Select motor data identification * 0 Disabled
P3900 = 1	End of quick commissioning (start of the motor calculation) 0 No quick commissioning (no motor calculations) 1 Motor calculation and reset of all of the other parameters, which are not included in the quick commissioning (attribute "QC" = no), to the factory setting 2 Motor calculation and reset of the I/O settings to the factory setting 3 Only motor calculation. The other parameters are not reset. NOTE For P3900 $=1,2,3 \rightarrow \mathrm{P} 0340$ is internally set to 1 and the appropriate data calculated.
END	End of the quick commissioning/drive setting
	If additional functions must be implemented at the drive inverter, please use the Section "Commissioning the application" (refer to Section 6.3). We recommend this procedure for drives with a high dynamic response.

6.2 Motor data identification

6.3 Commissioning the application

An application is commissioned to adapt/optimize the frequency inverter - motor combination to the particular application. The frequency inverter offers numerous functions - but not all of these are required for the particular application. These functions can be skipped when commissioning the application. A large proportion of the possible functions are described here; refer to the parameter list for additional functions.

Parameters, designated with a * offer more setting possibilities than are actually listed here. Refer to the parameter list for additional setting possibilities.

6.3.1 Serial Interface (USS)

P2010 =...	USS baud rate Sets baud rate for USS communication	Possible Settings:	
	Sets baud rate for USS communication.	4	2400 Baud
P2011 =...	USS address Sets unique address for inverter.	5	4800 Baud
		7	19200 Baud
	USS PZD length 2	8	38400 Baud
P2012 =...	Defines the number of 16-bit words in PZD part of USS telegram.	9	57600 Baud
	USS PKW length 127	11	93750 Baud
	Defines the number of 16-bit words in PKW part of USS telegram.	12	115200 Baud

6.3.2 Selection of command source

P0700 =...

6.3.3 Digital input (DIN)

6.3.4 Digital outputs (DOUT)

6.3.5 Selection of frequency setpoint

6.3.6 Analog input (ADC)

6.3.7 Analog output (DAC)

6.3.8 Motor potentiometer (MOP)

Setpoint memory of the MOP				0
Saves last motor potentiometer setpoint (MOP) that was active before OFF command or power down.				d or
Inhibit negative MOP setpoints				1
0 Neg. MOP setpoint is allowed				
1 Neg. MOP setpoint inhibited				
Setpoint of the MOP Determines setpoint for motor potentiometer control.				
MOP ramp-up and ramp-down times are defined by the parameters P1120 and P1121.				
Possible parameter settings for the selection of MOP:				
	Selection	MOP up	MOP down	
DIN	$\begin{gathered} \mathrm{P} 0719=0, \mathrm{P} 0700=2, \mathrm{P} 1000=1 \\ \text { or } \\ \mathrm{P} 0719=1, \mathrm{P} 0700=2 \end{gathered}$	$\begin{gathered} \mathrm{P} 0702=13 \\ (\mathrm{DIN} 2) \end{gathered}$	$\begin{gathered} \mathrm{P} 0703=14 \\ (\text { DIN3) } \end{gathered}$	
BOP-2	$\begin{gathered} \mathrm{P} 0719=0, \mathrm{P} 0700=1, \mathrm{P} 1000=1 \\ \text { or } \\ \mathrm{P} 0719=1, \mathrm{P} 0700=1 \\ \text { or } \\ \mathrm{P} 0719=11 \end{gathered}$	UP button	DOWN button	
USS on BOP link	$\begin{gathered} \text { P0719 = 0, P0700 }=4, \mathrm{P} 1000=1 \\ \text { or } \\ \mathrm{P} 0719=1, \mathrm{P} 0700=4 \\ \text { or } \\ \mathrm{P} 0719=41 \end{gathered}$	USS control word r2032 Bit13	USS control r2032 Bit1	
USS on COM link	$\begin{gathered} \mathrm{P} 0719=0, \mathrm{P} 0700=5, \mathrm{P} 1000=1 \\ \text { or } \mathrm{P} 0719=1, \mathrm{P} 0700=5 \\ \text { or } \\ \mathrm{P} 0719=51 \end{gathered}$	USS control word r2036 Bit13	USS control r2036 Bit14	word
CB	$\begin{gathered} \text { P0719 = 0, P0700 }=6, \mathrm{P} 1000=1 \\ \text { or } \\ \text { P0719 }=1, \mathrm{P} 0700=6 \\ \text { or } \\ \text { P0719 }=61 \end{gathered}$	$\begin{aligned} & \text { CB control word } \\ & \text { r2090 Bit13 } \end{aligned}$	$\begin{aligned} & \text { CB control w } \\ & \text { r2090 Bit14 } \end{aligned}$	

6.3.9 Fixed frequency (FF)

The fixed frequencies (P1001-P1016) can be selected using the digital inputs (standard case), serial communication interfaces (ports) as well as using any BiCo parameter. For the digital inputs, the fixed frequencies can be selected using parameter P070x "function, digital input" (standard method) as well as also r0722 "status, digital inputs" (BiCo method).
When selecting fixed frequencies using digital inputs, the following applies:

- Standard method ==> P070x = 15, 16, 17

15 = direct selection (binary-coded)
In this particular mode, the appropriate digital input always selects the associated fixed frequency, e.g.:
Digital input $3=$ selects fixed frequency 3.
If several inputs are simultaneously active, then these are summed. An ON command is additionally required.
16 = Direct selection + ON command (binary-coded + On / Off1)
In this mode, the fixed frequencies are selected as for 15 , however these are combined with an ON command.
17 = Binary coded selection + ON command (BCD-coded + On/ Off1)
The BCD-coded operating mode is effective for digital inputs 1 to 6 .

- BiCo method ==> P070x = 99, P102x $=722 . x, P 1016=1,2,3$

6.3.10	Ramp function generato	RF	
P1091 =	Skip frequency 1 (entered in Hz) Defines skip frequency 1 , which avoids effects of mechanical resonance and suppresses frequencies within +/- p1101 (skip frequency bandwidth).		
P1092 = .	Skip frequency 2	0.00 Hz	
P1093 = ...	Skip frequency 3	0.00 Hz	
P1094 =	Skip frequency 4	0.00 Hz	
P1101 = ...	Skip frequency bandwidth (entered in Hz) 2.00 Hz		p1091 Skip frequency
P1120 = ...	Ramp-up time (enters the accelerating time in s)	10.00 s	p1082_f
P1121 = ...	Ramp-down time (enters the deceleration time in s)	10.00 s	
$\mathrm{P} 1130=.$	Rump-up initial rounding time (entered in s)	0.00 s	
			$\mathrm{f}_{2} \overbrace{}^{f}$
P1131 = ...	Ramp-up final rounding time (entered in s)	$0.00 \mathrm{~s}$	
P1132 = ...	Rump-down initial rounding time 0.00 s(entered in s)		
P1133 = ...	Ramp-down final rounding time (entered in s) 0.00 s 		
P1134 = ...	Rounding type 0 Continuous smoothing 1 Discontinuous smoothing	0	
			The rounding times are recommended as abrupt responses can be avoided therefore reducing stress and damage to the mechanical system. The ramp-up and ramp-down times are extended by the component of the rounding ramps.
P1135 = ...	OFF3 ramp-down time Defines ramp-down time from maximum frequency to standstill for OFF3 command.		

6.3.11 Referencellimit frequencies

Min. frequency (entered in Hz) Sets minimum motor frequency [Hz] at which motor will run irrespective of frequency setpoint. If the setpoint falls below the value of p1080, then the output frequency is set to p1080 taking into account the sign.	0.00 Hz
Max. frequency (entered in Hz) Sets maximum motor frequency [Hz] at which motor will run irrespective of the frequency setpoint. If the setpoint exceeds the value p1082, then the output frequency is limited. The value set here is valid for both clockwise and anticlockwise rotation.	

Reference frequency (entered in Hz)
50.00 Hz

The reference frequency in Hertz corresponds to a value of 100%.
This setting should be changed if a maximum frequency of higher than 50 Hz is required. It is automatically changed to 60 Hz if the standard 60 Hz frequency was selected using p0100.
NOTE
This reference frequency effects the setpoint frequency as both the frequency setpoints via USS as well as via PROFIBUS (FB100) (4000H hex $\widehat{=} 100 \% \hat{=} \mathrm{p} 2000)$ refer to this value.

Reference voltage (entered in V)	1000 V

The reference voltage in Volt (output voltage) corresponds to a value of 100%.
NOTE
This setting should only be changed if it is necessary to output the voltage with a different scaling.

Reference current (entered in A)	0.10 A

The reference current in Amps (output current) corresponds to a value of 100 \%. Factory setting $=200 \%$ of the rated motor current (P0305).
NOTE
This setting should only be changed if it is necessary to output the current with a different scaling.

Reference torque (entered in Nm)	0.12 Nm

The reference torque in Nm corresponds to a value of 100%. Factory setting = 200% of the rated motor torque at a constant motor torque determined from the appropriate motor data.
NOTE
This setting should only be changed if it is necessary to output the torque with a different scaling.

6.3.12 Inverter protection

Inverter overload reaction

Selects reaction of inverter to an internal over-temperature.
0 Reduce output frequency
Trip (F0004)
Reduce pulse frequency and output frequency
3 Reduce pulse frequency then trip (F0004)

Inverter temperature warning
Defines the temperature difference (in ${ }^{\circ} \mathrm{C}$) between the overtemperature trip threshold and the warning threshold of the inverter. The trip threshold is stored internally by the inverter and cannot be changed by the user.

Temperature warning threshold of inverter $T_{\text {warn }}$:
$\mathrm{T}_{\text {warn }}=\mathrm{T}_{\text {trip }}-$ P0292
Temperature shutdown threshold of inverter $T_{\text {trip }}$:

Temperature	MM430, Frame Size		
	C	D - E	F
Heat sink	$110^{\circ} \mathrm{C}$	$95^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$
IGBT	$140^{\circ} \mathrm{C}$	$145^{\circ} \mathrm{C}$	$145^{\circ} \mathrm{C}$

Delay, fan shutdown

This defines the delay time in seconds between powering down the frequency inverter and then powering-down the fan. A setting of 0 means that the fan is immediately shut down (powered-down).

6.3.13 Motor protection

In addition to the thermal motor protection, the motor temperature is also included in the adaptation of the motor equivalent circuit diagram data. For MM430 the motor temperature can only be measured using a KTY84 sensor. For the parameter setting P0601 $=0,1$, the motor temperature is calculated $/$ estimated using the thermal motor model.
If the frequency inverter is permanently supplied with an external 24 V voltage, then the motor temperature is also tracked/corrected using the motor temperature time constant - even when the line supply voltage is switched-out.

Motor cooling (Selects motor cooling system used)
0 Self-cooled: Using shaft mounted fan attached to motor
1 Force-cooled: Using separately powered cooling fan
2 Self-cooled and internal fan
3 Force-cooled and internal fan
Motor temperature sensor
Selects the motor temperature sensor.
0 No sensor
1 PTC thermistor (PTC)
2 KTY84

Alarm threshold, motor overtemperature
Defines the alarm threshold for the motor overtemperature protection. This threshold, where either a shutdown (trip) or Imax reduction is initiated (P0610) always lies 10% above the alarm threshold.

$$
\begin{array}{ll}
\vartheta_{\text {trip }}=1.1 \cdot \vartheta_{\text {warn }}=1.1 \cdot \mathrm{P} 0604 & \vartheta_{\text {warn }}: \text { Warning threshold (P0604) } \\
& \vartheta_{\text {trip }}: \text { Trip threshold (max. permissible temperature) }
\end{array}
$$

The alarm threshold should be at least $40^{\circ} \mathrm{C}$ greater than the ambient temperature P0625. P0604 \geq P0625 + $40^{\circ} \mathrm{C}$

Inverter temperature reaction			2
Defines reaction when motor temperature reaches warning threshold.			
0	No reaction, warning only		
1	Warning and $I_{\max }$ reduction (results in a lower output frequency)		
2	Warning and trip (F0011)		

Motor overload factor [\%] 150.0 \%
Defines motor overload current limit in [\%] relative to 00305 (rated motor current). Limited to maximum inverter current or to 400% of rated motor current (p 0305), whichever is the lower.

6.3.14 Encoder

Selects the encoder type. 0 Inhibited 1 Single-track pulse encoder 2 Two-track pulse encoder For hoisting gear applications (4-quadrant operation!), a 2-track encoder must be used.	The table shows the values of P 0400 as a function of the number of tracks:			
	Parameter	Terminal	Track	Encoder output
	P0400 $=1$	A		single ended
		A AN		differential
	P0400 $=2$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$		single ended
		A AN B BN		differential

In order to guarantee reliable operation, the DIP switches on the encoder module must be set as follows depending on the encoder type (TTL, HTL) and encoder output:

Type	Output	
	single ended	differential
TTL (e.g. 1XP8001-2)	111111	010101
HTL (e.g. 1XP8001-1)	101010	000000

Encoder pulses per revolution	1024

Specifies the number of encoder pulses per revolution.

$$
f_{\max }>f=\frac{p 0408 \times \mathrm{rpm}}{60}
$$

Allowed speed difference 10.00 Hz

Parameter P0492 defines the frequency threshold for the loss of the encoder signal (fault F0090).
CAUTION
p0492 = 0 (no monitoring function):
With p0492 $=0$, the loss of the encoder signal at high frequency as well as at a low frequency is de-activated. As a result, the system does not monitor for the loss of the encoder signal.

Delay speed loss reaction

P0492 is used to detect the loss of the encoder signal at low frequencies. If the motor speed is less than the value of P0492, the loss of the encoder signal is determined using an appropriate algorithm. P0494 defines the delay time between detecting the loss of the speed signal and initiating the appropriate response.

CAUTION

p0494 = 0 (no monitoring function):
With p0494 = 0, the loss of the encoder signal at low frequencies is de-activated. As a result, at these frequencies, a loss of the encoder signal is not detected (loss of the encoder signal at high frequency remains active as long as parameter p0492 >0).

6.3.15 V/f control

6.3.16 Inverter-specific Functions

6.3.16.1 Flying start

6.3.16.2 Automatic restart

P1210 = ...

Automatic restart 1
Configures automatic restart function.
0 Disabled
1 Trip reset after power on
2 Restart after mains blackout
3 Restart after mains brownout or fault
4 Restart after mains brownout
5 Restart after mains blackout and fault
6 Restart after mains brown/blackout or fault

6.3.16.3 Holding brake

> Series / commissioning for hazardous loads

- lower the load to the floor
- when replacing the frequency inverter, prevent (inhibit) the frequency inverter from controlling the motor holding brake (MHB)
- secure the load or inhibit the motor holding brake control (so that the brake cannot be controlled) and then - and only then - carry-out quick commissioning / parameter download using the PC-based tool (STARTER)
> Parameterize the weight equalization for hoisting gear applications
- magnetizing time P0346 greater than zero
- min. frequency P1080 should approximately correspond to the motor slip r0330 (P1080 \approx r0330)
Adapt the voltage boost to the load (P1310, P1311)
$>$ It is not sufficient to just select the status signal r0052 bit 12 "motor holding brake active" in P0731 - P0733. In order to activate the motor holding brake, in addition, parameter P1215 must be set to 1 .
$>$ It is not permissible to use the motor holding brake as operating brake. The reason for this is that the brake is generally only dimensioned/designed for a limited number of emergency braking operations.
$>$ The brake closing / opening times can be taken from the appropriate manual. The following typical values have been taken from Motor Catalog M11 2003/2004, Page 2/51:

Motor size	Brake type	Opening time [ms]	Closing time [ms]
63	2LM8 005-1NAxx	25	56
71	2LM8 005-2NAxx	25	56
80	2LM8 010-3NAxx	26	70
90	2LM8 020-4NAxx	37	90
100	2LM8 040-5NAxx	43	140
112	2LM8 060-6NAxx	60	210
132	2LM8 100-7NAxx	50	270
160	2LM8 260-8NAxx	165	340
180	2LM8 315-0NAxx	152	410
200	2 2LM8 400-0NAxx	230	390
225			

6.3.16.4 DC brake

6.3.16.5 Compound braking

6.3.16.6 Vdc controller

6.3.16.7 Bypass

Bypass is used to described the condition when a motor is ran alternatively between a mains supply and the inverter. For example, the bypass circuit can be used to switch over from the inverter to a mains supply when the inverter is faulty. This function can also be used to ramp-up a large rotation mass using the inverter and then, at the correct speed, switching over to the mains supply.

6.3.16.8 Load torque monitoring

This function monitors the transmission of force between a motor and driven load within a defined frequency range. Typical applications include, for example, detecting when a transmission belt breaks or detecting when a conveyor belt is in an overload condition.
For the load torque monitoring, the actual frequency/torque actual value is compared to a programmed frequency/torque characteristic (refer to P2182 P2190). Depending on P2181, the system monitors whether the permissible torque curve is either exceeded or fallen below. If the actual value lies outside the tolerance bandwidth, then after the delay time P2192 has expired, either alarm A0952 is output or fault F0452.

181	Belt failure detection mode 0
	Parameter P2181 activates or de-activates the load torque monitoring and defines the response to a load torque fault. 0 Belt failure detection disabled Warning: Low torque / frequency Warning: High torque / frequency Warning: High / low torque / frequency Trip: Low torque / frequency Trip: High torque / frequency 6 Trip: High / low torque / frequency
P2	Sets a frequency threshold 1 for comparing actual torque to torque the envelope for belt failure detection.
P2183	Belt threshold frequency 2 Sets a frequency threshold 2.
P2184	Belt threshold frequency 3 Sets a frequency threshold 3.
,	
P2185 =	Upper torque threshold 1 Upper limit threshold value 1 for comparing actual torque.
2185	
P2186 =	Lower torque threshold 1 Lower limit threshold value 1 for comparing actual torque.
P2187 =	Upper torque threshold 2 Upper limit threshold value 2 for comparing actual torque.
-	
P2188 =	Lower torque threshold 2 Lower limit threshold value 2 for comparing actual torque.
P2189 =	Upper torque threshold 3 Upper limit threshold value 3 for comparing actual torque.
P2190 =	Lower torque threshold 3 Lower limit threshold value 3 for comparing actual torque.
,	
P2192 =	Time delay for belt failure
	P2192 defines a delay before warning/trip becomes active. It is used to eliminate events caused by transient conditions. It is used for both methods of fault detection.

6.3.16.9 PID controller

Process values can be controlled via PID control (e.g. pressure, liquid level). The process setpoint (PID setpoint) can be a fixed setpoint (e.g. PID-FF) or an analog setpoint (e.g. analog input). The current value of the process is determined by a sensor, which is connected to the inverter via an analog input.

NOTE

- PID-FF or PID-MOP are build up like FF (refer to Section 6.3.9) or MOP (refer to Section 6.3.8).
- The parameters of PID-FF are in the parameter range P2201-P2228.
- For the PID-MOP parameters the range P2231-r2250 is valid.

P2200 =	BI: Enable PID controller PID mode Allows user to enable/disable the PID controller. Setting to 1 enables the PID controller. Setting 1 automatically disables normal ramp times set in P1120 and P1121 and the normal frequency setpoints.	
P2253 =...	CI: PID setpoint Defines setpoint source for PID setpoint input.	0.0
	CI: PID trim source Selects trim source for PID setpoint. This signal is multiplied by the trim gain and added to the PID setpoint.	
P2257 =...	Ramp-up time for PID setpoint Sets the ramp-up time for the PID setpoint.	1.00 s
	Ramp-down time for PID setpoint Sets ramp-down time for PID setpoint.	1.00 s
	CI: PID feedback Selects the source of the PID feedback signal.	755.0
	Max. value for PID feedback Sets the upper limit for the value of the feedback signal in [\%].	100.00 \%
P2268 =...	Min. value for PID feedback Sets lower limit for value of feedback signal in [\%].	0.00 \%
	CO: PID error	
P2274 =...	PID derivative time Sets PID derivative time. P2274 = 0: The derivative term does not have any effect (it applies a gain of 1).	0.000
	PID proportional gain Allows user to set proportional gain for PID controller.	3.000
P2280 =...		
P2285	PID integral time Sets integral time constant for PID controller.	0.000 s
P2285 =...		
	PID output upper limit Sets upper limit for PID controller output in [\%].	100.00%
P 22920 =...	PID output lower limit Sets lower limit for the PID controller output in [\%].	0.00 \%

PID controller structure

Example

Parameter	Parameter text	Example	
P2200	BI: Enable PID controller	P2200 = 1.0	PID controller active
P2253	CI: PID setpoint	P2253 = 2224	PID-FF1
P2264	CI: PID feedback	P2264 = 755	ADC
P2267	Max. PID feedback	P2267	Adapt to the application
P2268	Min. PID feedback	P2268	Adapt to the application
P2280	PID proportional gain	P2280	Determined by optimizing
P2285	PID integral time	P2285	Determined by optimizing
P2291	PID output upper limit	P2291	Adapt to the application
P2292	PID output lower limit	P2292	Adapt to the application

6.3.16.10 Staging

Motor staging allows the control of up to 3 additional staged pumps or fans, based on a PID control system. The complete system comprises a variable-speed pump/fan that is controlled by the drive inverter, and a maximum of 3 additional fixed-speed pumps/fans, that are controlled via contactors or motor starters. The contactors or motor starter are controlled by outputs from the inverter. The diagram below shows a typical pumping system. A similar system could be set up using fans and air ducts, instead of pumps and pipes.

6.3.16.11 Energy saving mode

When the inverter under PID control drops below energy saving setpoint, the energy saving timer P2391 is started. When the energy saving timer has expired, the inverter is ramped down to stop and enters energy saving mode.

P2390 = ...

6.3.16.12 Free function blocks (FFB)

FFB	Input parameters		Output parameters		Setting parameters	
AND1	P2810[2]	BI: AND 1	r2811	BO: AND 1		-
AND2	P2812[2]	BI: AND 2	r2813	BO: AND 2		-
AND3	P2814[2]	BI: AND 3	r2815	BO: AND 3		-
OR1	P2816[2]	BI: OR 1	r2817	BO: OR 1		-
OR2	P2818[2]	BI: OR 2	r2819	BO: OR 2		-
OR3	P2820[2]	BI: OR 3	r2821	BO: OR 3		-
XOR1	P2822[2]	BI: XOR 1	r2823	BO: XOR 1		-
XOR2	P2824[2]	BI: XOR 2	r2825	BO: XOR 2		-
XOR3	P2826[2]	BI: XOR 3	r2827	BO: XOR 3		-
NOT1	P2828	BI: NOT 1	r2829	BO: NOT 1		-
NOT2	P2830	BI: NOT 2	r2831	BO: NOT 2		-
NOT3	P2832	BI: NOT 3	r2833	BO: NOT 3		-
D-FF1	P2834[4]	BI: D-FF 1	$\begin{aligned} & \hline \text { r2835 } \\ & \text { r2836 } \end{aligned}$	$\begin{array}{r} \text { BO: Q D-FF } 1 \\ \text { BO: NOT-Q D-FF } 1 \end{array}$		-
D-FF2	P2837[4]	BI: D-FF 2	$\begin{array}{\|l\|l\|} \hline \text { r2838 } \\ \text { r2839 } \end{array}$	BO: Q D-FF 2 BO: NOT-Q D-FF 2		-
RS-FF1	P2840[4]	BI: RS-FF 1	$\begin{array}{\|l\|l\|} \hline \text { r2841 } \\ \text { r2842 } \end{array}$	BO: Q RS-FF 1 BO: NOT-Q RS-FF 1		-
RS-FF2	P2843[4]	BI: RS-FF 2	$\begin{aligned} & \hline \text { r2844 } \\ & \text { r2845 } \end{aligned}$	BO: Q RS-FF 2 BO: NOT-Q RS-FF 2		-
RS-FF3	P2846[4]	BI: RS-FF 3	$\begin{aligned} & \text { r2847 } \\ & \text { r2848 } \\ & \hline \end{aligned}$	BO: Q RS-FF 3 BO: NOT-Q RS-FF 3		-
Timer1	P2849	BI: Timer 1	$\begin{aligned} & \hline \text { r2852 } \\ & \text { r2853 } \end{aligned}$	BO: Timer 1 BO: NOT Timer 1	$\begin{aligned} & \hline \text { P2850 } \\ & \text { P2851 } \end{aligned}$	Delay time of Timer 1 Mode Timer 1
Timer2	P2854	BI: Timer 2	$\begin{aligned} & \hline \text { r2857 } \\ & \text { r2858 } \end{aligned}$	BO: Timer 2 BO: NOT Timer 2	$\begin{aligned} & \text { P2855 } \\ & \text { P2856 } \end{aligned}$	Delay time of Timer 2 Mode Timer 2
Timer3	P2859	BI: Timer 3	$\begin{aligned} & \text { r2862 } \\ & \text { r2863 } \end{aligned}$	BO: Timer 3 BO: NOT Timer 3	$\begin{aligned} & \text { P2860 } \\ & \text { P2861 } \\ & \hline \end{aligned}$	Delay time of Timer 3 Mode Timer 3
Timer4	P2864	BI: Timer 4	$\begin{aligned} & \text { r2867 } \\ & \text { r2868 } \end{aligned}$	BO: Timer 4 BO: NOT Timer 4	$\begin{aligned} & \text { P2865 } \\ & \text { P2866 } \end{aligned}$	Delay time of Timer 4 Mode Timer 4
ADD1	P2869[2]	CI: ADD 1	r2870	CO: ADD 1		-
ADD2	P2871[2]	CI: ADD 2	r2872	CO: ADD 2		-
SUB1	P2873[2]	CI: SUB 1	r2874	CO: SUB 1		-
SUB2	P2875[2]	CI: SUB 2	r2876	CO: SUB 2		-
MUL1	P2877[2]	CI: MUL 1	r2878	CO: MUL 1		-
MUL2	P2879[2]	CI: MUL 2	r2880	CO: MUL 2		-
DIV1	P2881[2]	CI: DIV 1	r2882	CO: DIV 1		-
DIV2	P2883[2]	CI: DIV 2	r2884	CO: DIV 2		-
CMP1	P2885[2]	CI: CMP 1	r2886	BO: CMP 1		-
CMP2	P2887[2]	Cl: CMP 2	r2888	BO: CMP 2		-
FSW1		-		-	P2889	CO: FSW 1 in [\%]
FSW2		-		-	P2890	CO: FSW 2 in [\%]

6.3.17 Data sets

For many applications, it is advantageous, if several parameter settings can be simultaneously changed during operation or during operational readiness using an external signal. By using indexing, different settings can be saved under one parameter. These are then activated when the data set is changed-over. The following data sets are available:
> CDS Command Data Set
> DDS Drive Data Set
The "Hand/Auto" mode (refer to Chapter 5)) is a sub-set of the command data set.

6.3.17.1 Command data set (Local/Remote)

Example for CDS changeover:

CDS1: Command source via terminals and setpoint source via analog input (ADC)
CDS2: Command source via BOP-2 and setpoint source via MOP
CDS changeover is realized using digital input 4 (DIN 4)
Steps:

1. Carry-out commissioning for CDS1 (P0700[0] = 2 and P1000[0] = 2)
2. Connect P0810 (P0811 if required) to the CDS changeover source (P0704[0] = 99, P0810 = 722.3)
3. Copy from CDS1 to CDS2 (P0809[0] = 0, P0809[1] = 1, P0809[2] = 2)
4. Adapt CDS2 parameters (P0700[1] = 1 and P1000[1] = 1)

6.3.17.2 Drive data set (DDS)

Example:

1. Commissioning steps with a motor:

- Carry-out commissioning at DDS1.
- Connect P0820 (P0821 if required) to the DDS changeover source (e.g. using DIN 4: P0704[0] = 99, P0820 = 722.3).
- Copy DDS1 to DDS2 (P0819[0] = 0, P0819[1] = 1, P0819[2] = 2).
- Adapt DDS2 parameters
(e.g. ramp-up / ramp-down times P1120[1] and P1121[1]).

2. Commissioning steps with 2 motors (motor 1 , motor 2):

- Commission motor 1; adapt the remaining DDS1 parameters.
- Connect P0820 (P0821 if required) to the DDS changeover source (e.g. via DIN 4: P0704[0] = 99, P0820 = 722.3).
- Changeover to DDS2 (check using r0051).
- Commission motor 2; adapt the remaining DDS2 parameters.

6.3.18 Diagnostic parameters

r0021

r0035

r0036

r0039

CO: Act. filtered frequency
Displays actual inverter output frequency (r0021) excluding slip compensation, resonance damping and frequency limitation.

Act. filtered rotor speed

Displays calculated rotor speed based on inverter output frequency [Hz] x 120 / number of poles. r0022 $[1 / \mathrm{min}]=\mathrm{r} 0021[\mathrm{~Hz}] \cdot \frac{60}{\mathrm{r} 0313}$

CO: Act. filtered power
Displays motor power (power output at the motor shaft).

$$
\begin{aligned}
& \text { Pmech }=\omega \cdot \mathrm{M}=2 \cdot \pi \cdot \mathrm{f} \cdot \mathrm{M} \\
& \Rightarrow \\
& \mathrm{r} 0032[\mathrm{~kW}]=\frac{1}{1000} \cdot 2 \cdot \pi \cdot \frac{\mathrm{r} 0022}{60}[1 / \mathrm{min}] \cdot \mathrm{r} 0031[\mathrm{Nm}] \\
& \mathrm{r} 0032[\mathrm{hp}]=0.75 \cdot \mathrm{r} 0032[\mathrm{~kW}]
\end{aligned}
$$

CO: Motor temperature

Displays the measured motor temperature in ${ }^{\circ} \mathrm{C}$.

CO: Frequency inverter utilization

Displays the frequency inverter utilization as a \% referred to the overload. In so doing, the value is calculated using the $I^{2} t$ model.
The $I^{2} t$ actual value relative to the maximum possible $I^{2} t$ value provides the level of utilization.

CO: Energy consumpt. meter [kWh]
Displays electrical energy used by inverter since display was last reset.
$\mathrm{r} 0039=\int_{0}^{\mathrm{t}_{\text {st }}} \mathrm{P}_{\mathrm{w}} \cdot \mathrm{dt}=\int_{0}^{\mathrm{t}_{\text {st }}} \sqrt{3} \cdot \mathrm{u} \cdot \mathrm{i} \cdot \cos \varphi \cdot \mathrm{dt}$

CO/BO: Act. status word 1

Displays the first active status word (ZSW) of the frequency inverter (bit format) and can be used to diagnose the inverter status.

Bit00	Drive ready	0	NO	1	YES
Bit01	Drive ready to run	0	NO	1	YES
Bit02	Drive running	0	NO	1	YES
Bit03	Drive fault active	0	NO	1	YES
Bit04	OFF2 active	0	YES	1	NO
Bit05	OFF3 active	0	YES	1	NO
Bit06	ON inhibit active	0	NO	1	YES
Bit07	Drive warning active	0	NO	1	YES
Bit08	Deviation setpoint / act. value	0	YES	1	NO
Bit09	PZD control	0	NO	1	YES
Bit10	Maximum frequency reached	0	NO	1	YES
Bit11	Warning: Motor current limit	0	YES	1	NO
Bit12	Motor holding brake active	0	NO	1	YES
Bit13	Motor overload	0	YES	1	NO
Bit14	Motor runs right	0	NO	1	YES
Bit15	Inverter overload	0	YES	1	NO

CO/BO: Control word 1
Displays the first control word (STW) of the frequency inverter and can be used to display the active commands.

Bit00	ON/OFF1	0	NO	1	YES
Bit01	OFF2: Electrical stop	0	YES	1	NO
Bit02	OFF3: Fast stop	0	YES	1	NO
Bit03	Pulse enable	0	NO	1	YES
Bit04	RFG enable	0	NO	1	YES
Bit05	RFG start	0	NO	1	YES
Bit06	Setpoint enable	0	NO	1	YES
Bit07	Fault acknowledge	0	NO	1	YES
Bit10	Control from PLC	0	NO	1	YES
Bit11	Reverse (setpoint inversion)	0	NO	1	YES
Bit13	Motor potentiometer MOP up	0	NO	1	YES
Bit14	Motor potentiometer MOP down	0	NO	1	YES
Bit15	CDS Bit 0 (Local/Remote)	0	NO	1	YES

CO: Actual frequency

Displays the actual frequency in Hz .

CO: Act. output current limit
Displays valid maximum output current of inverter.

CO: Freq. setpoint after dir. ctrl.
Displays the setpoint (reference) frequency in Hz after the function block to reverse the direction of rotation.

CO: : Frequency setpoint after RFG
Displays the total frequency setpoint (reference value) in Hz after the ramp-function generator.

6.4 Series commissioning

An existing parameter set can be transferred to a MICROMASTER 430 frequency inverter using STARTER or DriveMonitor (refer to Section 4.1 "Establishing communications MICROMASTER $430 \Leftrightarrow$ STARTER").

Typical applications for series commissioning include:

1. If several drives are to be commissioned that have the same configuration and same functions. A quick / application commissioning (first commissioning) must be carried-out for the first drive. Its parameter values are then transferred to the other drives.
2. When replacing MICROMASTER 430 frequency inverters.

6.5 Parameter reset of factory setting

The drive inverter carries-out a parameter reset (duration, approx. 10 s) and then automatically exits the reset menu and sets:

P0970 $=0:$	disabled
P0010 $=0:$	ready

7 Displays and messages

7.1 LED status display

7.2 Fault messages and Alarm messages

Fault	Significance
F0001	Overcurrent
F0002	Overvoltage
F0003	Undervoltage
F0004	Inverter Overtemperature
F0005	Inverter I't
F0011	Motor Overtemperature I ${ }^{2} t$
F0012	Inverter temp. signal lost
F0015	Motor temperature signal lost
F0020	Mains Phase Missing
F0021	Earth fault
F0022	HW monitoring active
F0023	Output fault
F0030	Fan has failed
F0035	Auto restart after n
F0041	Motor Data Identification Failure
F0051	Parameter EEPROM Fault
F0052	Power stack Fault
F0053	IO EEPROM Fault
F0054	Wrong IO Board
F0060	Asic Timeout
F0070	CB setpoint fault
F0071	USS (BOP-2 link) setpoint fault
F0072	USS (COM link) setpoint fault
F0080	ADC lost input signal
F0085	External Fault
F0090	Encoder feedback loss
F0101	Stack Overflow
F0221	PID Feedback below min. value
F0222	PID Feedback above max. value
F0450	BIST Tests Failure (Service mode only) F0452 Belt Failure Detected

Alarm	Significance
A0501	Current Limit
A0502	Overvoltage limit
A0503	Undervoltage Limit
A0504	Inverter Overtemperature
A0505	Inverter I ${ }^{2} \mathrm{t}$
A0511	Motor Overtemperature $\mathrm{I}^{2} \mathrm{t}$
A0522	I2C read out timeout
A0523	Output fault
A0541	Motor Data Identification Active
A0590	Encoder feedback loss warning
A0600	RTOS Overrun Warning
A0700	CB warning 1
\ldots	
A0709	CB warning 10
A0710	CB communication error
A0711	CB configuration error
A0910	Vdc-max controller de-activated
A0911	Vdc-max controller active
A0912	Vdc-min controller active
A0920	ADC parameters not set properly
A0921	DAC parameters not set properly
A0922	No load applied to inverter
A0952	Belt Failure Detected

Information about MICROMASTER 430 is also available from:

Regional Contacts

Please get in touch with your contact for Technical Support in your Region for questions about services, prices and conditions of Technical Support.

Central Technical Support

The competent consulting service for technical issues with a broad range of requirements-based services around our products and systems.

Europe I Africa

Tel:	$+49(0) 1805050222$
Fax:	$+49(0) 1805050223$
Email:	adsupport@siemens.com

America
Tel: \quad +1 4232622522
Fax: \quad +1 4232622589
Email: simatic.hotline@sea.siemens.com
Asia / Pacific
Tel: $\quad+861064757575$
Fax: \quad +86 1064747474
Email: adsupport.asia@siemens.com

Online Service \& Support

The comprehensive, generally available information system over the Internet, from product support to service \& support to the support tools in the shop.
http://www.siemens.com/automation/service\&support

Internet Address

Customers can access technical and general information under the following address: http://www.siemens.com/micromaster

[^0]: 1) Secondary conditions: Input current at the rated operating point - applies for the short-circuit voltage of the line supply $\mathrm{V}_{\mathrm{k}}=2 \%$ referred to the rated drive inverter power and a rated line supply voltage of 400 V without line commutating reactor.
[^1]: * UL listed fuses such as Class NON from Bussmann are required for use in America)

[^2]: * UL listed fuses such as Class NON from Bussmann are required for use in America)

