ST INVERTER ADJUSTABLE-FREQUENCY AC DRIVE (DRIVE CODE AF-3090)
 THEORY OF OPERATION
 FOR 4-, 10-, AND 20-KVA UNITS

General (3) Electric

TABLE OF CONTENTS

Page
Power-unit Block Diagram 1
Start-up Circuit 1
Control Power Supplies and Reference Input Circuit 3
Timed Acceleration and Deceleration Control Circuit 3
DC Voltage Regulator Circuit 4
Frequency Control Circuit 5
Firing Circuit 6
Blanking Circuit 7
Gating Circuit for Commutation SCR's 8
Ring Counter Circuit 8
Inverter Bridge 10
Commutation Circuit 11
Current Limit Circuit 12
Instantaneous Overcurrent Trip Circuit 14
Under Voltage Trip Circuit 15

ST INVERTER ADJUSTABLE FREQUENCY AC DRIVE

NOTE: REFER TO GEK-22958 FOR INSTALLATION, OPERATION, AND TROUBLESHOOTING INSTRUCTIONS.

THEORY OF OPERATION

A brief description of circuit operation for the basic power unit will be presented in this section. In order to simplify the description, the complete circuit will be divided according to the function performed. A partial elementary diagram for each division will be used to describe that portion of the circuit. The complete circuit is shown on the elementary diagram supplied with the equipment.

It is the purpose of this section to provide a basic understanding of circuit operation which should be helpful in the operation and maintenance of ST-INVERTER drives.

POWER UNIT BLOCK DIAGRAM

(Figure 1)
The ST-INVERTER power unit will convert 30 AC
line power to adjustable voltage DC and invert the DC to adjustable voltage frequency AC power. The simpliffed block diagram of Figure 1 shows the major circuit sections required to perform this function.

Three phase AC power is converted to adjustable voltage DC by half-wave phase controlled rectifiers. This DC is then converted to adjustable frequency AC by controlled switching of the rectifiers in a $3 \emptyset$ inverter bridge. A single speed reference signal is supplied through a timed acceleration and deceleration circuit to both the voltage regulator and frequency control circuits. The voltage regulator controls the DC voltage supplied to the inverter and the frequency control circuit sets the inverter SCR switching sequence, thus controlling the volts per hertz ratio of power supplied to the load. A separate commutation circuit controlled by the frequency control circuit will turn off the inverter SCR's at the proper time.

START-UP CIRCUIT (Figure 2)

When the start button is pressed relay 2CR will pick up through 18D, 19D, and the normally closed contact of 1 CR . Relay 2 CR will seal in through contact 2 CR 3 , release the reference voltage set on the speed potentiometer and apply voltage to the control circuit of 1 CR

Figure 1. Power Unit Block Diagram

[^0]through contacts 2CR1 and 2CR2. The resulting current flow through resistor 5 R and into the base of transistor 3 Q will cause 3 Q to conduct and pick up relay $1 C R$. When both relays are picked up the power unit output frequency and voltage will start to increase.

Pressing the stop button will drop out relay 2CR only causing the voltage and frequency to start decreasing.

You will note that the coil circuit of relay 1 CR is still connected to the 18 volt buss through contact 1 CRI. Base current for transistor 3 Q to keep relay 1CR picked up is maintained through resistors $2 \mathrm{R}, 4 \mathrm{R}$ and $5 R$ from the adjustable voltage DC buss. When the voltage and frequency decreases to a very low level, transistor 3 Q will stop conducting causing relay 1 CR to drop out. This completes the normal stopping sequence for the power unit.

SPEED

Figure 2. Start-Up Circuit

CONTROL POWER SUPPLIES AND REFERENCE INPUT CIRCUIT (Figure 3)

Power for the three control voltage power supplies is obtained directly from the input lines through half wave rectifiers $1 \mathrm{D}, 2 \mathrm{D}$, and 3D. The voltage for the startup relays is zener-regulated at 18.6 volts DC $\pm 10 \%$ by 3,4 and 5 BD . Voltage-dropping resistor 8 R limits the current in the zener diodes and filtering is provided by capacitor 5C. Transistor $2 Q$ regulates the voltage supply for the firing circuits by controlling the current through voltage-dropping resistors $10 \mathrm{R}, 11 \mathrm{R}$, and 99 R . The regulating point of transistor 2 Q is set at 44 volts $\mathrm{DC} \pm 10 \%$ by zener diodes 1 BD and 2BD. Transistor 1Q operates as a switch to turn $2 Q$ full on, which will essentially short the 44 volt buss to zero. The operation of transistor $1 Q$ is controlled by the I. O. C. trip circuit that is described in another section.

Voltage for the control circuitry is zener-regulated at 24.8 volts $\mathrm{DC} \pm 10 \%$ by $9,10,11$, and 12 BD . The voltage-dropping resistor 9 R limits the current in the zener diodes and filtering is provided by capacitor 18 C .

The input reference voltage at circuit point 43 , which
controls both output frequency and voltage, can be adjusted between 0 and 12 volts by changing the slider position on potentiometer 2P. Resistor 42R forms a divider circuit with $2 P$ so that the reference voltage available across the potentiometer will be approximately 12 volts. The normally closed contact of relay 2 CR holds the input voltage at zero, regardless of the setting of potentiometer $2 P$ until relay $2 C R$ is energized by pressing the start button. Diode 25D and resistor 43 R provide a fixed diode drop so that the voltage at 44 will be slightly positive when the voltage at 43 is zero. This is necessary to insure that the inverter starts with a minimum delay after the start button is pressed. Diode 100D will limit the reference voltage at 43 to approximately 13 volts.

TTMED ACCELERATION AND DECELERATION CONTROL CIRCUIT (Figure 4)

The DC voltage level at circuit point 45 will control both the DC power bus level and the output frequency. This voltage will be the same as the voltage at point 44 which was set by potentiometer 2P. However, the voltage at point 45 will increase and decrease at a linear timed rate determined by the constant current charging and discharging of capacitor 11 C through transistors 13Q and 14Q. The current in 13Q and 14Q

Figure 3. Control Voltage Power Supplies and Reference Input Circuit

Figure 4. Timed Acceleration and Deceleration Control Circuit
is set by the voltage across divider resistors 44 R and 46 R and the value of emitter resistance. These values of resistance are identical and the time will normally be adjusted for approximately 20 seconds. This will be the time required to charge 11 C from 0 to 12 volts or discharge from 12 volts to 0 , even though the voltage at point 44 may cover this range instantaneously. Other times may be set by adjusting rheostats 5 P and 6 P . The diode bridge provides decoupling which will allow capacitor 11C to charge through 13Q and 28D or discharge through 29D and 14Q depending on whether the voltage at 44 is higher or lower than the voltage at 45.

DC VOLTAGE REGULATOR CIRCUIT (Figure 5)

The reference voltage at point 45 will have the same magnitude as the voltage at point 43 which has been set by potentiometer 2P. Feedback voltage from the DC buss is developed across resistor 54R. The ratio of reference voltage to DC bus voltage is determined by the ratio of 54 R to the total resistance of $2 \mathrm{R}, 49 \mathrm{R}$ $1 \mathrm{P}, 124 \mathrm{R}$, and 54 R . This ratio is normally set by adjusting $1 P$ so that 12 volts on the base of $15 Q$ will correspond to 128 volts on the DC buss. The current in transistor $15 Q$ will be proportional to the difference in feedback and reference voltage. This current signal is proportional to the error voltage and will be supplied to the phase control circuits through an emitter follower circuit consisting of transistor 16Q and resistors $52 \mathrm{R}, 53 \mathrm{R}$, and 55 R . Stablizing is provided by resistor 50 R , capacitor 10 C , and resistor 52R. Diode 30D and the divider consisting of resistors 126 R and 127 R is provided to decrease the re-
sponse time of the regulator when fast deceleration is required.

A means for adjusting the voltage boost at low frequency, which is normally required with most AC motors, is provided by the circuit consisting of $123 \mathrm{R}, 3 \mathrm{P}, 53 \mathrm{Q}$, and 125R. Adjusting 3P clockwise will cause transistor $53 Q$ to conduct diverting a small portion of the feedback current from the normal path causing the DC buss voltage to increase. This adjustment is effective mainly at the low frequency end of the constant volts per hertz curve.

The operation of only one phase control circuit will be covered since these are identical for each of the controlled rectifiers (1SCR, 2SCR, and 3SCR) in the $3 \emptyset$ input circuit. Transistor 17Q will turn the gating pulses supplied to 1 SCR off and on at the proper time during each positive half cycle of the line 1 to neutral voltage. These gating pulses are generated in the firing circuit which will be described later. When transistor 17 Q turns on, gating pulses will also be turned on. Thus, the point at which 1SCR turns on during each positive half cycle of line to neutral voltage is directly related to the operation of 17 Q .

In order to synchronize the operation of $17 Q$ with the line 1 to neutral voltage and provide smooth phase control, a portion of this voltage is shifted approximately 95° leading and supplied to the base. The RC circuit consisting of resistor A and capacitor 12C shifts the voltage 90° and the additional 5° shift is provided by resistor B and 13C.

Figure 5. DC Voltage Regulator Circuit

The point that $17 Q$ turns on during the half cycle is determined by the amount of current supplied to the base from the voltage regulator circuit. For example, if the reference voltage at point 45 is increased, there will be a proportional increase in current through $15 Q$ and 16 Q resulting in more current being supplied to the base of 17 Q through 31D and resistor C. This increase in current will cause the transistor and 1SCR to turn on earlier in the half cycle increasing the DC buss voltage: A decrease in feedback voltage would have the same effect. Of course a decrease in reference voltage or an increase in feedback voltage would have the opposite effect. A signal from the IOC trip circuit through resistor F will bypass the phase control circuit and turn off the gating pulses to 1 SCR.

The three SCR's will control the current supplied to 1 C during each positive half cycle of the line 1,2 , and 3 to neutral voltage. Reactor 1X limits the peak current in the capacitor and diode 4D will prevent the SCR cathode voltage from going negative at the low end of the adjustable voltage range and reduce the ripple.

Fuse 1FU will protect the input SCR's in the event of a short circuit in the DC circuit. This fuse will not
protect the inverter bridge SCR's The normally closed contact of 1 CR will discharge capacitor 1 C through 2 R and 19D.

FREQUENCY CONTROL CIRCUIT (Figure 6)

Frequency control for the inverter portion of the circuit is provided by the oscillator consisting of 2 FL , $57 \mathrm{R}, 19 \mathrm{C}, 20 \mathrm{Q}, 4 \mathrm{P}, 58 \mathrm{R}$, and 2X. The operation of this oscillator is as follows. Capacitor 19C will charge through 20Q, 4D and 58R until the breakover voltage of 2 FL is reached. At this point 2 FL will change from the ${ }^{\text {b }}$ blocking state to a very low impedance conducting state discharging 19C through 57R and 2X. When 19C has discharged, the current in 2 X will continue to flow, momentarily reversing the voltage on 19 C which causes 2FL to revert back to the blocking state, and the cycle repeats. Each time 2 FL conducts, transistor 21 Q will turn on causing the voltage at point 80 to drop. The negative going pulses produced at this point are supplied to the ring counter which will be discussed later.

The rate at which pulses occur depends upon the charging current for 19C which is controlled by 20Q. This current is governed by the voltage signal delivered to

Figure 6. Frequency Control Circuit
the base of the darlington amplifier 20 Q which converts this voltage signal into a proportional current. The 20Q base voltage signal is in turn obtained from the same basic reference voltage which establishes the level of the DC voltage buss. The charging current for 19 C is therefore directly proportional to the DC buss voltage. This provides a constant ratio of volts to frequency as the reference voltage is increased and decreased. Such a constant "volts per hertz" ratio is required in the operation of AC motors.

Rheostat 4P provides a means of adjusting the volts per cycle ratio to match the motor design.

FIRING CIRCUIT (Figure 7)

The firing circuits used on ST-100 drives produce a train of steep wave front high energy pulses suitable for firing conventional and inverter type SCR's. Circuit operation will be as follows:

When power is initially applied, current flows from the 47 volt bus through FC2R into the base of transistor FC2Q, thereby causing FC2Q to conduct and to apply voltage to the primary winding of transformer FC1T. Voltage appearing at secondary winding S1 is positive at terminal 3 with respect to terminal 4 . This

Figure 7. Firing Circuit
voltage will cause more base current to flow in FC2Q turning if fully on. It can be seen that the connection of secondary winding S1 of FC1T in the circuit is regenerative and causes FC2Q to switch on.

The voltage applied to the primary winding will be the supply voltage minus the voltage across resistor FC1R and the saturated transistor voltage. The voltage across FC1R is caused by the flow of transformer load current and exciting current. With time the voltage across FC1R will increase as exciting current increases. Thus, the voltage across the primary winding will decrease, causing a proportional decrease in the voltage developed across secondary S1. Both of these actions are in the direction to eventually cause FC2Q to turn off.

Once transistor FC2Q starts to turn off, the process is regenerative in that direction also. Because of exciting current flowing in the primary winding at the time of turn off, the voltages on all windings will reverse in an attempt to find a path for the ampere turns flowing in the primary. The path is provided by FC1D and FC1BD. The energy trapped in the exciting impedance is eventually delivered at constant voltage (the voltage of zener diode FC1BD) to FC1D and FC1BD. During this time the voltages on all transformer windings are maintained at predetermined values. Also during this time the starting current supplied through FC2R is diverted from the base of FC2Q, thereby providing additional assurance that $F C 2 Q$ is completely turned off.

After all of the exciting energy has been dissipated, the voltages across all windings go to zero. As a result, the starting current begins to flow through FC2R, into the base of FC2Q and the process starts all over again.

Control of the oscillator is obtained by turning transistor FC1Q on or off. It can be seen that by turning FC1Q on, the feedback path from secondary $S 1$ is shorted out and oscillations will stop even if supply voltage is still present. When transistor FC1Q is turned off, oscillation will start again immediately.

Secondary winding S2 supplies voltage through FC2D, and FC3R to the gate of the SCR. Diode FC2D also prevents the gate to cathode of the SCR from being reverse biased when the voltage on winding $\$ 2$ reverses.

BLANKING CIRCUIT (Figure 8)

The firing pulses supplied to the gates of the six $\mathrm{SCR}^{\prime} \mathrm{s}$ in the output bridge, will be blanked out for a short period of time following each pulse of the frequency control oscillator. The purpose of this blanking period will be explained in the discussion of operation of the commutation circuit.

Operation of the blanking circuit is initiated by a voltage pulse from the oscillator at point 75 and supplied to the base of 22 Q through $61 \mathrm{R}, 34 \mathrm{D}$ and 62 R . Prior to a pulse from the oscillator, $23 Q$ will be biased on by current through resistor 64R. When voltage is supplied to the base of 22 Q , it will turn on, thus turning 23Q off. The time period, after each pulse from the oscillator that 22 Q remains on and $23 Q$ is held off, will be determined by the values of $21 \mathrm{C}, 62 \mathrm{R}$ and 63 R . This time will be approximately 90 microseconds. While $23 Q$ is off, current will be supplied to the firing circuit control transistors turning off the firing pulses to all SCR's in the output bridge. This current is supplied from the control voltage buss through 65R and the resistors connected to the firing circuit control point.

Figure 8. Blanking Circuit

GATING CIRCUIT FOR COMMUTATION SCR'S
 (Figure 9)

This circuit will supply turn-on pulses alternately at 60° intervals, to commutating SCR's 10SCR and 11SCR. It is necessary to coordinate the firing of the commutating SCR's with the gating signals supplied to the inverter bridge SCR's. This coordination is provided by the ring counter circuit.

You will note that capacitors 22C and 24C are each connected through a diode and resistor to the collectors of three transistors in the ring counter. The relationships between ring counter collectors and gating pulses at points 31 and 32 are shown graphically in Figure 10. It can be seen that there will always be one of two conducting collectors in each group. Also, in each group the number of conducting collectors will alternate at 60° intervals between one conducting and two conducting. In addition, when the number of conducting collectors goes from one to two in the first group, the second group will go from two to one.

Normally $24 Q$ and $27 Q$ are conducting and $25 Q$ and $26 Q$ are non-conducting. When the group of ring counter transistors comnected to 22 C change from one conducting to two conducting, point 89 will receive a negative increment of voltage. This will cause 24 Q to turn off and 25Q to turn on delivering a pulse to the gate of 11 SCR . The pulse width is limited by means of the current through $R B$ which quickly restores the voltage of the right hand side of 22 C to its original, slight-
ly positive, level, turning 24Q on and 25Q off. The next 60° transisition point will cause 26 Q to deliver a pulse to the gate of 10 SCR . These gating pulses will alternate between the two commutating SCR's every 60° as shown in Figure 10. When the current trip circuit operates circuit point 87 goes positive, turning on transistor 52 Q . This will pull the collector voltage of $25 Q$ and 26 Q down near zero, cutting off the firing pulses to the commutation SCR's.

RING COUNTER CIRCUIT

(Figure 11)
The ring counter consists of three triggered flip-flops steered from one to another in such a way that successive trigger pulses at circuit point 80 causes the counter to advance from one condition to the next. Steering is such that only six of the eight possible combinations of the flip-flops are used. When each trigger pulse is received, only one of the flip-flops changes state and changes the steering such that when the next pulse is received, another of the flip-flops will change state. Receipt of six pulses brings the counter back to its starting condition. Trigger pulses arrive every 60° of the desired inverter operating frequency. Components $48 \mathrm{D}, 49 \mathrm{D}, 50 \mathrm{D}, 75 \mathrm{R}$, and 76 R are used to prevent the counter from starting in either of the two unwanted combinations. The following table shows the sequence of operation of the six collectors in which a logic 0 designation is applied to a conducting transistor and a logic 1 is applied to a non-conducting transister. This same relationship is shown graphically in Figure 10.

Figure 9. Gating Circuit for Commutation SCR's

Figure 10. Voltage-Time Relationships
TABLE 1

	TIME	28 Q	29 Q	30 Q	31 Q	32 Q	33 Q
START	0	1	0	1	0	1	0
	60°	1	0	1	0	0	1
	120°	1	0	0	1	0	1
	180°	0	1	0	1	0	1
	240°	0	1	0	1	1	0
REPEAT	300°	0	1	1	0	1	0
	360°	1	0	1	0	1	0

The collectors of the ring counter transistors control the gating signals to the inverter SCR's. Each transistor collector controls one of the SCR's such that when the transistor is conducting, it permits the blocking oscillator firing circuit to supply gating pulses to the SCR it controls.

Figure 11. Ring Counter Circuit

INVERTER BRIDGE (Figure 12)

The output power circuit consisting of $S C R$'s $4 S C R$, 5 SCR , $6 \mathrm{SCR}, 7 \mathrm{SCR}$, 8 SCR and 9 SCR , diodes $8 \mathrm{D}, 9 \mathrm{D}$, $10 \mathrm{D}, 11 \mathrm{D}, 12 \mathrm{D}$, and 13 D , and secondary windings of commutating transformers 2 T and 3 T is a three phase inverter bridge operating from an adjustable DC volt-
age. Power diodes 8 D through 13 D are connected in inverse parallel with each SCR and make it possible for the inverter to supply lagging loads by providing paths for reverse current flow. Each of the bridge SCR's is operated in synchronism and in phase with its controlling transistor in the ring counter circuit. The following table shows the sequence of transistor operation in the ring counter circuit.

TABLE 2

TIME	4 SCR	5 SCR	6SCR	7 SCR	8SCR	9SCR	TOP ROW	BOTTOM ROW
0	OFF	ON	OFF	ON	OFF	ON	1	2
60°	OFF	ON	ON	ON	OFF	OFF'	2	1
120°	OFF	OFF	ON	ON	ON	OFF	1	2
180°	ON	OFF	ON	OFF	ON	OFF	2	1
240°	ON	OFF	OFF	OFF	ON	ON	1	2
300°	ON	ON	OFF	OFF	OFF	ON	2	1
360°	OFF	ON	OFF	ON	OFF	ON	1	2

Also shown in Table 2 is the number of SCR's that are conducting at any one time in the top and bottom rows of $S C R$'s. It will be noted that the total number of SCR's conducting at any one time is three and that these SCR's are always so distributed that there are two conducting in one row and one conducting in the other row. The "two-on" condition alternates be-
tween the bottom and top rows at successive switching points.

In addition, at each switching point, only one SCR is required to change from conducting to non-conducting and only one from non-conducting to conducting. Also, the SCR that goes from conducting to non-conducting

Figure 12. Inverter Bridge
is always one of the two in the same row that have been conducting. Therefore, it is not necessary to turn off all SCR's that are conducting in order to be sure to turn off the one that is actually required to turn off.

It will be necessary to turn off only that row in which two SCR's happen to be conducting. This is accomplished by applying a commutation puise to only one row of SCR's at one switching point and to the other row of SCR's at the next switching point and so on. These pulses are coordinated with the gating sequence of the SCR's by the ring counter.

The output line to line voltage will be a "quasi-square" wave having a voltage-time relationship as shown in Figure 13. Such a wave has no harmonic voltage below the fifth. The RMS fundamental component (superimposed) will be 0.78 times the peak which is deter-
mined by the adjustable DC voltage supplied to the inverter.

COMMUTATION CIRCUIT (Figure 14)

Diodes 1D, 2D, and 3D supply current directly from the line through current limiting resistor 7R to charge capacitor 35 C . The voltage across 35 C will have a magnitude nearly equal to the peak of the input AC voltage. This provides a fixed DC voltage to supply the commutating circuit which consists of $4 \mathrm{~T}, 36 \mathrm{C}$, $2 \mathrm{~T}, 3 \mathrm{~T}, 15 \mathrm{D}, 10 \mathrm{SCR}$ and 11SCR. During a typical commutation cycle current will flow through reactor 4 T and diode 14D to charge capacitor 36C. With no charge on 36 C at the beginning of the charge cycle, the full 150 volts will initially appear across reactor 4 T . When capacitor 36 C is charged up to 150 volts, the energy stored in reactor 4 T will keep the current flowing until the capacitor is charged to approximately

Figure 13. Inverter Output Line to Line Voltage

Figure 14. Commutation Circuit

300 volts. Diode 14D prevents the capacitor from discharging back through the reactor.

Capacitor 36C will be discharged through either transformer 2TP and 10SCR or transformer 3TP and 11SCR. You will note in the inverter bridge circuit that the secondary winding of $2 T S$ connects the top row of SCR's to the top buss and 3TS connects the bottom row of SCR's to the bottom buss. Gating on 10SCR will cause a positive voltage to appear at the dotted ends of the primary and secondary windings of transformer 2 T and a negative voltage at the undotted ends. This voltage on winding 2TS will put a reverse voltage on the top row of SCR's. The magnitude of reverse voltage will be 300 volts minus the adjustable DC bus voltage.

When 11SCR is gated on, the same magnitude of reverse voltage will appear across the bottom row of SCR's. The required sequence for gating on commutation SCR's is given in the description of the inverter bridge circuit.

When commutation is initiated, the load current flowing in secondary winding 2TS is transferred to primary winding 2TP. This initial current in 2TP is replaced by the flow of discharge current from capacitor 36 C . As the voltage across 36 C decreases, the voltages across windings 2TP and 2TS decrease accordingly. At some point the anode to cathode voltage on the top row of SCR's will become positive again. If gating is withheld from these SCR's at this time, they will not conduct and current will not flow in winding 2TS.

When the voltage across capacitor 36C reaches zero, the voltage across winding 2TP will reverse and charge 36 C in the negative direction. This reverse charge on capacitor 36 C turns off 10 SCR .

Diode 15D limits the negative voltage on 36 C to the voltage level at the top of reactor 4 T and pumps the excess energy back into the supply. For diode 15D to be effective in returning energy to the supply, it is necessary to prevent the top row of SCR's from being gated on immediately after commutation. This function is provided by the blanking circuit.

When the energy in winding 2TP is exhausted, the current will go to zero and the recharge cycle starts over again. Gating on 11SCR will initiate the next commutation cycle.

CURRENT LIMIT CIRCUIT (Figure 15)

The current limit circuit will operate to reduce the output voltage and frequency when the DC current to the inverter bridge exceeds a preset level. This level, which is the current limit point, is fixed at approximately 150% of the power unit continuous rating.

A voltage signal proportional to current in the DC power circuit is developed across a calibrated shunt. This small voltage signal is amplified by the circuit consisting of transistors $9 Q$ and 10Q and resistors $32 R, 33 R, 34 R$, and 100 R . Transistor 11 Q is connected to operate as a diode and with the current flowing through resistor 35 R provides a bias voltage

Figure 15. Current Limit Circuit
that will closely match the base to emitter drop of transistor 10Q. An additional bias voltage on the emitter of 10 Q from the voltage divider consisting of 100 R and 34 R will insure that the amplified voltage at the collector of $9 Q$ tracks the signal voltage starting at zero.

The signal voltage from the shunt will appear across capacitor 8 C and cause the base voltage of 10 Q to raise by the same amount. This will cause transistor $10 Q$ to conduct providing base drive for transistor 9 Q . The resulting current flow from 9 Q through resistors $32 R$ and $34 R$ will cause the emitter voltage of 10 Q to equal the signal voltage on the base.

The amplifier output voltage at the collector of $9 Q$ is equal to the voltage drop across both resistors 32 R and 34 R . It can be seen that the amplification of the signal voltage will be equal to the ratio of 32 R to 34 R plus one. For example, the typical average signal voltage from the shunt to initiate current limit
on 10 KVA inverters will be approximately 0.6 volt and the value of 32 R and 34 R is 22 K and 1.5 K . This means that the signal voltage will be amplified by a factor of approximately 15 resulting in an output voltage of 9 volts.

The signal voltage from the shunt has a sawtooth waveshape and a frequency that is 6 times the inverter output frequency. The average value of a portion of the amplified signal voltage will appear across capacitor 9 C on the base of transistor 12 Q . When the base voltage of $12 Q$ exceeds the bias voltage on the emitter, determined by the value of resistors 41R and 40R, transistor $12 Q$ will start to conduct. This will draw current from the timing circuit through diodes 24D and 29D causing the voltage across capacitor 11C and resistor 51R to decrease. The inverter output voltage and frequency will also decrease since the voltage across 11C and 51R is the reference voltage for the voltage regulator and frequency control circuits. The output voltage and frequency will continue
to decrease as long as the load increases.

INSTANTANEOUS OVERCURRENT TRIP CIRCUIT (Figure 16)

The IOC circuit will shut down the inverter power unit and protect the bridge $S \mathrm{SR}^{\prime} \mathrm{S}$ when the peak current in the DC power circuit exceeds a preset level. This level, which is the trip point, will normally be set
slightly below the commutation capability of the inverter.

When the trip point is exceeded the IOC circuit will perform the following functions instantly.

1. Turn the input SCR's off.
2. Turn all bridge $S C R$'s on.
3. Drop out the start relays 1 CR and 2 CR .
4. Remove firing pulses from the commutation SCR's.

The DC power buss capacitor 1C (see Figure 5) immediately discharges through the bridge SCR's and the inverter shuts down. Since the discharge current of capacitor 1 C is shared by the SCR^{\prime} s in the three legs of the bridge they will not be damaged. Without the IOC circuit the discharge current of capacitor 1C would probably be carried by only one leg of the bridge resulting in SCR damage. Since the operation of the IOC circuit is instantaneous the bridge SCR's will be protected from damage that would normally result from a commutation failure or line to line short on the output.

The IOC circuit will operate when the peak current in the calibrated shunt results in a voltage at the collector of 9 Q that exceeds the breakover voltage of zener diode, 7BD. (Operation of the DC amplifier circuit $9 Q$ and $10 Q$ is described in the current limit section.) Normally $8 Q$ is off and $7 Q$ is held on by current through resistor 28 R causing 6 Q to remain off. When current flows through 30 R and 7BD transistor $8 Q$ will turn on. This will cause $7 Q$ to turn off and 6 Q to turn on. The voltage at circuit points 214 and 201 will immediately increase to a level near the 25 volt buss voltage. The voltage at 201 will cause current flow through resistors F1, F2, and F3 turning off the firing circuits that supply gating to the input SCR's, 1SCR, 2SCR and 3SCR. This voltage will also cause current to flow through zener 14BD supplying base current to transistor 34 Q through resistor 69R. Transistor $34 Q$ will turn on forcing the fixing circuit to supply gate pulses continuously to $4 S C R$ in the inverter bridge. This operation is duplicated at each of the remaining five firing circuits (by transistors $35 Q$ to 39 Q) that supply gating to the bridge SCR's. Voltage is also supplied to resistor 119R and transistor 52Q (see Figure 9) in the commutation SCR firing circuit turning off the gate pulses to $10 S C R$ and $11 S C R$.

The conditions described above will remain as long as 6 Q is conducting.

As stated earlier, the start relays $1 C R$ and $2 C R$ will also drop out when the IOC circuit operates. This is accomplished by turning on transistor $4 Q$ which pulls the relay supply voltage down to near zero, causing the relays to drop out. Transistor $4 Q$ is
turned on by base current supplied from point 214 through resistor 18R.

When the IOC circuit operates the voltage at 214 will cause capacitor 7C to charge with polarity shown through resistor 29 R. This charging current will hold transistor 8 Q on which also holds 6 Q on for a fixed period of time to insure that all functions of the IOC circuit are completed.

After the IOC circuit operates the inverter will remain off until the start button is pressed.

UNDER VOLTAGE TRIP CIRCUIT (Figure 17)

The under voltage trip circuit will safely shut down the inverter power unit when the input line voltage is momentarily lost or drops below approximately 80% of normal. Operation of the under voltage circuit is initiated by a drop in the fixed DC buss level which is supplied directly from the input line voltage.

The divider network consisting of $22 \mathrm{R}, 23 \mathrm{R}$ and 24 R provides a portion of the DC buss voltage across 24 R. This voltage will normally exceed the zener voltage of 6 BD and hold transistor 5Q on. When transistor $5 Q$ is on transistors $4 Q$ and $1 Q$ will be off.
If the fixed DC buss level drops to a point where the voltage across 24 R is below the zener voltage of 6 BD transistor $5 Q$ will turn off. When $5 Q$ turns off current will flow through $16 R$ and $17 R$ into the base of $4 Q$ and through 12 R into the base of 1 Q turning both transistors on. The conduction of transistor 1Q will cause 2 Q to turn full on essentially shorting the 45 volt buss. Since this buss supplies all firing circuits, gating pulses will be removed from both the input and bridge SCR's. Transistor 4Q will short the relay supply buss 105 causing relays 1 CR and 2 CR to drop out which immediately shuts down the power unit.
Although the drop in voltage across resistor 24 R may be momentary, the normal voltage polarity on capacitor 6C, as shown, will hold transistor 5Q off for a sufficient length of time to insure that the above functions are completed. The power unit will remain off after an under voltage condition until the start button is pressed.

Figure 17. Under Voltage Trip Circuit

GENERAL ELECTRIC COMPANY SPEED VARIATOR PRODUCTS DEPARTMENT ERIE, PENNSYLVANIA 16501

[^0]: These instructions do not purport fo cover ofl defals or varrations in equipment nor to provide for every possible contingency to be met in connection with installotion, operotion or maintenonce. Should further information be desired or should particular problems arse which are not covered sufficiently for the purchaser's purposes, the matter should be referred to the General Electric Company.

