9000X Adjustable Frequency Drives

Technical Data

SVX9000 Open Drives SVX9000 Enclosed Drives

May 2005

Supersedes June 2004

Overview

With the combination of the MVX9000 series microdrive and the SVX9000 series sensorless vector control, Eaton's expanded Cutler-Hammer ${ }^{\circledR}$ drive offering now covers a complete line of PWM adjustable frequency (speed) drives in ratings from:
■ $208 \mathrm{~V}-3 / 4$ to 100 hp CT ; 1 to 100 hp VT

- $230 \mathrm{~V}-3 / 4$ to 100 hp CT ; 1 to 100 hp VT
- 480 V - 1 to 700 hp CT ; 1-1/2 to 800 hp VT
- $575 \mathrm{~V}-2$ to 700 hp CT ; 3 to 800 hp VT
A full range of enclosure types and options are available to meet a wide array of applications - from simple variable torque to more complex industrial applications such as conveyors, mixers and machine controls.

Application Description

Application Engineering

Proper selection and application of all drive system components is essential to assure that an adjustable frequency drive system will safely and reliably provide the performance required for any given application. The party responsible for the overall design and operation of the facility must make sure that qualified personnel are employed to select all components of the drive system, including appropriate safety devices. Eaton's Cutler-Hammer AF Drives Application Engineering Department is prepared to provide assistance to answer any questions about the technical capabilities of Cutler-Hammer drives.

Motor Selection

The basic requirement of motor selection is to match the torque vs. speed capability of the motor to the torque vs. speed requirement of the driven load.

Motor Torque vs. Speed Capability

As the speed of a motor is reduced below its 60 Hz base speed, motor cooling becomes less effective because of the reduced speed of the self-cooling fan. This limitation determines the maximum torque for continuous operation at any operating speed. The maximum intermittent operating torque is determined by the motor's torque vs. current characteristics and the output current capability of the adjustable frequency controller.

Multiple Motor Operation

A number of motors can be connected in parallel to a single controller. Since the frequency of the power supplied by the controller is the same for each motor, the motors will always operate at the same speed. Application Engineering assistance must be requested for all multiple motor applications to assure compliance with all controller design limitations.

Special Types of Motors

Standard NEMA Designs A and B threephase motors are the only motors recommended for use in the majority of applications, but other types of motors are occasionally used. If the existing motor used in the application or the motor proposed for use with the drive system is a type other than NEMA Design A or B, Application Engineering assistance must be requested to make certain that the drive is properly applied.

Controller Selection

The basic requirement of controller selection is to match the output current, voltage and frequency capabilities of the controller with the requirements of the connected motor.

Output Current

The controller must be selected and applied such that the average operating motor current and horsepower do not exceed the continuous current and horsepower ratings of the controller. The intermittent operating current must not exceed the intermittent current rating of the controller.

Contents

Description PageSVX9000 Open Drives
Product Description 3
Features 3
Technical Data andSpecifications.
4Catalog Number Selection
5Product Selection
Accessories6
10Dimensions
Spare Units \&
Replacement Parts 23
SVX9000 Enclosed Drives
Product Description 26
Features 26
Standards and
Certifications. 26
Technical Data and
Specifications 27
Options 28
Catalog Number Selection. 29
Product Selection 34
Dimensions 37

Motor Protection

Cutler-Hammer adjustable frequency drives include electronic motor overload protection circuits that are designed to meet the requirements of NEC article 430-2 provided that only one motor is connected to the output of the controller.

Output Voltage and Frequency

When they are shipped, AF controllers are adjusted to provide a maximum output voltage and frequency equivalent to the input line voltage and frequency. The controllers can be adjusted to operate above line frequency, but a hazard of personal injury or equipment damage may exist when the motor is operated above base speed. Before adjusting the drive to operate above line frequency, make sure that the motor and the driven machinery can safely be operated at the resulting speed.

Controller Features

Operator Control and Interface
 Requirements

Since there are many possible configurations and many ways of achieving a specific end result, it pays to consider the operator control and interface requirements carefully. A simplified and more economical drive package can often be achieved by selecting from standard product offerings rather than specifying a custom designed configuration.

Installation Compatibility

The successful application of an AC drive requires the assurance that the drive will be compatible with the environment in which it will be installed. In planning the installation, be sure to carefully consider the heat produced by the drive, the altitude and temperature limits and the need for clean cooling air. Other important considerations include acoustical noise, vibration, electromagnetic compatibility, power quality, controller input harmonic current and power distribution equipment requirements.

Auxiliary Equipment and Accessories

Adjustable drives are generally designed to have a motor directly connected to the controller output terminals with no other equipment connected in series or parallel. Motor starters, disconnect switches, surge absorbers, dv/dt suppression circuits, output chokes, output transformers and any other equipment under consideration for installation on the output of the controller should not be installed without first requesting Application Engineering assistance. Power factor correction capacitors must never, under any circumstances, be connected at the output of the controller. They would serve no useful purpose, and they may damage the controller.

Enclosure Definitions

- NEMA Type 1 - Enclosures are intended for indoor use primarily to provide a degree of protection against contact with enclosed equipment and provide a degree of protection against a limited amount of falling dirt in locations where unusual service conditions do not exist. Top or side openings in the NEMA Type 1 enclosure allow for the free exchange of inside and outside air while meeting the UL rod entry and rust resistance design tests.
- NEMA Type 12 - Enclosures are intended for indoor use primarily to provide a degree of protection against circulating dust, falling dirt and dripping noncorrosive liquids. To meet UL drip, dust and rust resistance tests, NEMA Type 12 enclosures have no openings to allow for the exchange of inside and outside air.
■ Chassis IP00 - Similar to Protected Chassis IP20 except power terminals are protected by plastic shielding only. Primarily intended to be mounted inside a surrounding protective enclosure.
- NEMA 3R - Similar in design to NEMA Type 12 except with more stringent design and test requirements.

Motor Protection

DV/DT and Peak Motor Voltage Solutions

Today's AFD products offer significantly improved performance, but at the potential cost of motor insulation stress. The fast switching time of the IGBT devices used in newer AFDs can
cause a transmission line effect in the output power leads to the motor, leading to possibly damaging voltage levels. To meet this need, NEMA has introduced a motor in MG1, Part 31, which provides an insulation system designed to maintain normal motor life in AFD applications. For existing motors, a motor protection scheme is required for longer cable runs. Eaton offers three standard solutions for existing systems.

- MotoR ${ }_{x}$

This patented Cutler-Hammer solution provides an energy recovery system which clamps the peak motor voltage to a safe level for standard motors. This option is used when the distance between a single motor and the drive is 600 feet or less.

■ Output Line Reactor

This option provides an output line reactor, reducing the DV/DT of the AFD output voltage and lessening the transmission line effect, to lower the peak voltage at the motor terminals.

Product Availability Codes

The product availability codes indicate the type of facility (warehouse, Mod Center or factory) that the product will ship from and, if it is not in stock, the number of working days needed to assemble the product from receipt of the order to shipment from the designated facility. Please note that this lead-time does not include any in-transit time from our facility to your facility.

Table 1. Product Availability Codes

Codes	Description
W	Warehouse stocked item. Shipped on customer request date. If item is backordered, please check Vista/VISTALINE or contact your Customer Support Center for product availability.
F1	Factory assemble-to-order. Shipped from factory within 1 working day after receipt of order on Vista.
FA	Factory assemble-to-order. Shipped from factory within $2-3$ working days after receipt of order on Vista.
FB	Factory assemble-to-order. Shipped from factory within $4-10$ working days after receipt of order on Vista.
FC	Factory assemble-to-order. Shipped from factory within $11-15$ working days after receipt of order on Vista.
FD	Factory assemble-to-order. Shipped from factory within $16-20$ working days after receipt of order on Vista.
FP	Factory assemble-to-order. Shipped from factory on negotiated promise date.
MA	Mod Center assemble-to-order. Shipped from Mod Center within 1 - 3 working days after receipt of order on Vista.
MB	Mod Center assemble-to-order. Shipped from Mod Center within 4-10 working days after receipt of order on Vista.
MP	Mod Center assemble-to-order. Shipped from Mod Center on negotiated promise date.

Product availability codes contained herein for a given product may be quantity sensitive and are subject to change without notice. For the most current information, refer to the Product Identification Inquiry (PIN) screen on Vista.

Cutler-Hammer

SVX9000 Open Drives

SVX9000 Open Drives

Product Description

Cutler-Hammer ${ }^{\circledR}$ SVX9000 Series Adjustable Frequency Drives from Eaton's electrical business are the next generation of drives specifically engineered for today's commercial and industrial applications. The power unit makes use of the most sophisticated semiconductor technology and a highly modular construction that can be flexibly adapted to the customer's needs.
The input and output configuration $(1 / O)$ is designed with modularity in mind. The I/O is compromised of option cards, each with its own input and output configuration. The control module is designed to accept a total of five of these cards. The cards contain not only normal analog and digital inputs but also fieldbus cards.
These drives continue the tradition of robust performance, and raise the bar on features and functionality, ensuring the best solution at the right price.

Features

■ Robust design - proven 500,000 hours MTBF

- Integrated 3\% line reactors standard on drives from FR4 through FR9
- EMI/RFI Filters H standard up to 200 hp CT 480V, 100 hp CT 230 V
- Simplified operating menu allows for typical programming changes, while programming mode provides control of everything
■ Quick Start Wizard built into the programming of the drive ensures a smooth start-up
- Keypad can display up to three monitored parameters simultaneously
- LOCAL/REMOTE operation from keypad
- Copy/Paste function allows transfer of parameter settings from one drive to the next
■ Standard NEMA Type 12 keypad on all drives
- The SVX can be flexibly adapted to a variety of needs using our preinstalled "Seven in One" Precision application programs consisting of:
- Basic
- Standard
- Local/Remote
- Multi Step Speed Control
- PID Control
- Multi-Purpose Control
- Pump and Fan Control with Auto Change
- Additional I/O and communication cards provide plug and play functionality
- I/O connections with simple quick connection terminals
- UL Listed
- Hand-Held Auxiliary 240 Power Supply allows programming/monitoring of control module without applying full power to the drive
- Control logic can be powered from an external auxiliary control panel, internal drive functions and fieldbus if necessary
- Brake Chopper standard from: $1-30 \mathrm{hp} / 380-500 \mathrm{~V}$ 3/4-15 hp/208-230V
- NEMA Type 1 and NEMA Type 12 enclosures available, Frame Sizes FR4 - FR9
- Open Chassis FR10 and greater
- Standard option board configuration includes an A9 I/O board and an A2 relay output board installed in slots A and B

Technical Data and Specifications

Table 2. SVX9000 Specifications

Description	Specification
Input Ratings	
Input Voltage ($\mathrm{V}_{\text {in }}$)	+10\% / -15\%
Input Frequency ($\mathrm{f}_{\text {in }}$)	$50 / 60 \mathrm{~Hz}$ (variation up to $45-66 \mathrm{~Hz}$)
Connection to Power	Once per minute or less (typical operation)
High Withstand Rating	100 kAIC
Output Ratings	
Output Voltage	0 to $V_{\text {in }}$
Continuous Output Current	Ambient temperature max. $+122^{\circ} \mathrm{F}\left(+50^{\circ} \mathrm{C}\right)$, CT 150\% 1 min. Ambient temperature max. $+104^{\circ} \mathrm{F}\left(+40^{\circ} \mathrm{C}\right)$, VT 110\% 1 min .
Overload Current (CT/VT)	150\% CT, 110\% VT for 1 min .
Output Frequency	0 to 320 Hz
Frequency Resolution	. 01 Hz
Initial Output Current (CT)	250\% for 2 seconds
Control Characteristics	
Control Method	Frequency Control (V/f) Open Loop: Sensorless Vector Control, Closed Loop: SPX9000 Drives Only
Switching Frequency Frame 4-6 Frame 7-12	Adjustable with Parameter 2.6.9 1 to 16 kHz ; default 10 kHz 1 to 10 kHz ; default 3.6 kHz
Frequency Reference	Analog Input: Resolution .1\% (10-bit), accuracy $\pm 1 \% \mathrm{~V} / \mathrm{Hz}$ Panel Reference: Resolution .01 Hz
Field Weakening Point	30 to 320 Hz
Acceleration Time	0 to 3000 sec .
Deceleration Time	0 to 3000 sec .
Braking Torque	DC brake: $30 \% \times \mathrm{T}_{\mathrm{n}}$ (without brake option)
Ambient Conditions	
Ambient Operating Temperature	$14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $122^{\circ} \mathrm{F}\left(+50^{\circ} \mathrm{C}\right) \mathrm{CT}$ $14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $104^{\circ} \mathrm{F}\left(+40^{\circ} \mathrm{C}\right) \mathrm{VT}$
Storage Temperature	$-40^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right)$ to $158^{\circ} \mathrm{F}\left(70^{\circ} \mathrm{C}\right)$
Relative Humidity	0 to 95% RH, noncondensing, non-corrosive, no dripping water
Air Quality	Chemical vapors: IEC 721-3-3, unit in operation, class 3C2; Mechanical particles: IEC 721-3-3, unit in operation, class 3S2
Altitude	100% load capacity (no derating) up to 3280 ft . (1000 m); 1\% derating for each 328 ft . $(100 \mathrm{~m})$ above 3280 ft . (1000 m); max. 9842 ft . (3000 m)
Vibration	EN 50178, EN 60068-2-6; 5 to 50 Hz, Displacement amplitude 1 mm (peak) at 3 to 15.8 Hz , Max. acceleration amplitude 1G at 15.8 to 150 Hz
Shock	EN 50178, EN 60068-2-27 UPS Drop test (for applicable UPS weights) Storage and shipping: max. 15G, 11 ms (in package)
Enclosure Class	NEMA 1/IP21 or NEMA 12/IP54, Open Chassis/IP20

$|$| Description | Specification |
| :--- | :--- |
| Standards | |
| Product | IEC 61800-2 |
| Safety | UL 508C |
| EMC (at default settings) | Immunity: Fulfills all EMC immunity
 requirements; Emissions: EN 61800-3,
 LEVEL H |

Control Connections

Analog Input Voltage	0 to $10 \mathrm{~V}, \mathrm{R}=200 \mathrm{k} \Omega(-10$ to 10 V joystick control) Resolution $.1 \% ;$ accuracy $\pm 1 \%$
Analog Input Current	$0(4)$ to $20 \mathrm{~mA} ; \mathrm{R}_{\mathrm{i}}-250 \Omega$ differential
Digital Inputs (6)	Positive or negative logic; 18 to 30 V DC
Auxiliary Voltage	$+24 \mathrm{~V} \pm 15 \%$, max. 250 mA
Output Reference Voltage	$+10 \mathrm{~V}+3 \%$, max. load 10 mA
Analog Output	$0(4)$ to $20 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}$ max. $500 \Omega ;$ Resolution 10 bit; Accuracy $\pm 2 \%$
Digital Outputs	Open collector output, $50 \mathrm{~mA} / 48 \mathrm{~V}$
Relay Outputs	2 programmable Form C relay outputs Switching capacity: $24 \mathrm{~V} \mathrm{DC} \mathrm{/} \mathrm{8A}$, 250 V AC / 8A, 125 V DC / 0.4A

Protections

Overcurrent Protection	Trip limit $4.0 \times$ I CT instantaneously
Overvoltage Protection	Yes
Undervoltage Protection	Yes
Earth Fault Protection	In case of earth fault in motor or motor cable, only the frequency converter is protected
Input Phase Supervision	Trips if any of the input phases are missing
Motor Phase Supervision	Trips if any of the output phases are missing
Overtemperature Protection	Yes
Motor Overload Protection	Yes
Motor Stall Protection	Yes
Motor Underload Protection	Yes
Short Circuit Protection	Yes (+24 V and +10 V Reference Voltages)

Table 3. Standard I/O Specifications

Description	Specification				
6 - Digital Input Programmable	$24 \mathrm{~V}:$ " 0 " $\leq 10 \mathrm{~V}, " 1 " \geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>5 \mathrm{k} \Omega$				
2 - Analog Input Configurable	Voltage: $0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>200 \mathrm{k} \Omega$ w/Jumpers				
Current: $0(4)-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250 \mathrm{k} \Omega$		$	$	- Digital Output Programmable	Form C Relays 250 V AC 2 Amp or 30 V DC2 Amp resistive
:---	:---				
1 - Digital Output Programmable	Open collector 48V DC 50 mA				
1 - Analog Output Programmable Configurable w/Jumper	$0-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}<500$ ohms, resolution 10 Bits $/ 0.1 \%$				

Cutler-Hammer

Catalog Number Selection

Table 4. Adjustable Frequency Drive Catalog Numbering System

(1) All 230 V Drives and 480V Drives up to 200 hp (CT) are only available with Input Option 1 (EMC level H). 480V Drives 250 hp (CT) or larger are only available with Input Option 2 (EMC level N). 575 V drives 200 hp (CT) or larger are only available with Input Option 2. 575 V drives up to 150 hp (CT) are only available with Input Option 4 (EMC level L).
(2) 480 V Drives up to 30 hp (CT) are only available with Brake Chopper Option B. 480 V Drives 40 hp (CT) or larger come standard with Brake Chopper Option N. 230 V Drives up to 15 hp (CT) are only available with Brake Chopper Option B. 230 V Drives 20 hp or larger come standard with Brake Chopper Option N. All 575 V drives come standard without Brake Chopper Option (N). Note: $\mathrm{N}=\mathrm{No}$ Brake Chopper.
(3) 480V Drives 250 hp (CT) or larger are only available with enclosure Style 0 (Chassis).
(4) Factory promise delivery. Consult Sales Office for availability.

Product Selection

230V SVX9000 Drives

Table 5. 208 - 240V, NEMA Type 1 Drive

Frame Size	Delivery Code	hp (CT)	Current (CT)	hp (VT)	Current (VT)	Catalog Number
FR4	W	$3 / 4$	3.7	1	4.8	SVXF07A1-2A1B1
		1	4.8	$1-1 / 2$	6.6	SVX001A1-2A1B1
		$1-1 / 2$	6.6	2	7.8	SVXF15A1-2A1B1
		2	7.8	3	11	SVX002A1-2A1B1
		3	11	-	12.5	SVX003A1-2A1B1
FR5	W	-	12.5	5	17.5	SVX004A1-2A1B1
		5	17.5	$7-1 / 2$	25	SVX005A1-2A1B1
		$7-1 / 2$	25	10	31	SVX007A1-2A1B1
FR6	W	10	31	15	48	SVX010A1-2A1B1
		15	48	20	61	SVX015A1-2A1B1
FR7	W	20	61	25	75	SVX020A1-2A1N1
		25	75	30	88	SVX025A1-2A1N1
		30	88	40	114	SVX030A1-2A1N1
FR8	W	40	114	50	140	SVX040A1-2A1N1
		50	140	60	170	SVX050A1-2A1N1
		60	170	75	205	SVX060A1-2A1N1
FR9	FP	75	205	100	261	SVX075A1-2A1N1
		100	261	-	-	SVX100A1-2A1N1

Table 6. 208 - 240V, NEMA Type 12 Drive

Frame Size	Delivery Code	hp (CT)	Current (CT)	hp (VT)	Current (VT)	Catalog Number
FR4	F1	$3 / 4$	3.7	1	4.8	SVXF07A2-2A1B1
		1	4.8	$1-1 / 2$	6.6	SVX001A2-2A1B1
		$1-1 / 2$	6.6	2	7.8	SVXF15A2-2A1B1
		2	7.8	3	11	SVX002A2-2A1B1
		3	11	-	12.5	SVX003A2-2A1B1
FR5	F1	-	12.5	5	17.5	SVX004A2-2A1B1
		5	17.5	$7-1 / 2$	25	SVX005A2-2A1B1
		$7-1 / 2$	25	10	31	SVX007A2-2A1B1
FR6	F1	10	31	15	48	SVX010A2-2A1B1
		15	48	20	61	SVX015A2-2A1B1
FR7	W	20	61	25	75	SVX020A2-2A1N1
		25	75	30	88	SVX025A2-2A1N1
		30	88	40	114	SVX030A2-2A1N1
FR8	FP	40	114	50	140	SVX040A2-2A1N1
		50	140	60	170	SVX050A2-2A1N1
		60	170	75	205	SVX060A2-2A1N1
FR9	FP	75	205	100	261	SVX075A2-2A1N1
		100	261	-	-	SVX100A2-2A1N1

480V SVX9000 Drives

Table 7.380 - 500V, NEMA Type 1 Drive

Frame Size	Delivery Code	hp (CT)	Current (CT)	hp (VT)	Current (VT)	Catalog Number

FR4	W	1	2.2	$1-1 / 2$	3.3	SVX001A1-4A1B1
		$1-1 / 2$	3.3	2	4.3	SVXF15A1-4A1B1
		2	4.3	3	5.6	SVX002A1-4A1B1
		3	5.6	5	7.6	SVX003A1-4A1B1
		5	7.6	-	9	SVX005A1-4A1B1
		-	9	$7-1 / 2$	12	SVX006A1-4A1B1
FR5	W	$7-1 / 2$	12	10	16	SVX007A1-4A1B1
		10	16	15	23	SVX010A1-4A1B1
		15	23	20	31	SVX015A1-4A1B1
FR6	W	20	31	25	38	SVX020A1-4A1B1
		25	38	30	46	SVX025A1-4A1B1
		30	46	40	61	SVX030A1-4A1B1
FR7	W	40	61	50	72	SVX040A1-4A1N1
		50	72	60	87	SVX050A1-4A1N1
		60	87	75	105	SVX060A1-4A1N1
FR8	W	75	105	100	140	SVX075A1-4A1N1
		100	140	125	170	SVX100A1-4A1N1
		125	170	150	205	SVX125A1-4A1N1
FR9	W	150	205	200	261	SVX150A1-4A1N1
		200	245	250	300	SVX200A1-4A1N1

Table 8. 380 - 500V, NEMA Type 12 Drive

Frame Size	Delivery Code	hp (CT)	Current (CT)	hp (VT)	Current (VT)	Catalog Number
FR4	F1	1	2.2	$1-1 / 2$	3.3	SVX001A2-4A1B1
		$1-1 / 2$	3.3	2	4.3	SVXF15A2-4A1B1
		2	4.3	3	5.6	SVX002A2-4A1B1
		3	5.6	5	7.6	SVX003A2-4A1B1
		5	7.6	-	9	SVX005A2-4A1B1
		-	9	$7-1 / 2$	12	SVX006A2-4A1B1
FR5	F1	$7-1 / 2$	12	10	16	SVX007A2-4A1B1
		10	16	15	23	SVX010A2-4A1B1
		15	23	20	31	SVX015A2-4A1B1
FR6	F1	20	31	25	38	SVX020A2-4A1B1
		25	38	30	46	SVX025A2-4A1B1
		30	46	40	61	SVX030A2-4A1B1
FR7	W	40	61	50	72	SVX040A2-4A1N1
		50	72	60	87	SVX050A2-4A1N1
		60	87	75	105	SVX060A2-4A1N1
FR8	W	75	105	100	140	SVX075A2-4A1N1
		100	140	125	170	SVX100A2-4A1N1
		125	170	150	205	SVX125A2-4A1N1
FR9	W	150	205	200	261	SVX150A2-4A1N1
		200	245	250	300	SVX200A2-4A1N1

Table 9. 480V 380-500, Open Chassis Drive

Frame Size	Delivery Code	hp (CT)	Current (CT)	hp (VT)	Current (VT)	Catalog Number
FR10 ${ }^{1}$ 1	W	250	330	300	385	SPX250A0-4A2N1
	300	385	-	460	SPX300A0-4A2N1	
	350	460	400	520	SPX350A0-4A2N1	
FR11	FP	400	520	500	590	SPX400A0-4A2N1
		500	590	-	650	SPX500A0-4A2N1
		-	650	600	730	SPX550A0-4A2N1
FR12	FP	600	730	-	820	SPX600A0-4A2N1
		-	820	700	920	SPX650A0-4A2N1
		700	920	800	1030	SPX700A0-4A2N1

(1) FR10 includes 3% line reactor, but it is not integral to chassis.

575V SVX9000 Drives

Table 10. 525 - 690V, NEMA Type 1 Drive

Frame Size	Delivery Code	hp (CT)	Current (CT)	hp (VT)	Current (VT)	Catalog Number
FR6	W	$\begin{aligned} & 2 \\ & 3 \\ & \hline 5 \\ & 7-1 / 2 \\ & 10 \\ & 15 \\ & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 3.33 \\ & 4.5 \\ & 5.5 \\ & 7.5 \\ & 10 \\ & 13.5 \\ & 18 \\ & 22 \\ & 27 \end{aligned}$	$\begin{aligned} & \frac{3}{5} \\ & 7-1 / 2 \\ & 10 \\ & 15 \\ & 20 \\ & 25 \\ & 30 \end{aligned}$	$\begin{gathered} 4.5 \\ 5.5 \\ 7.5 \\ 10 \\ 13.5 \\ 18 \\ 22 \\ 27 \\ 34 \end{gathered}$	SVX002A1-5A4N1 SVX003A1-5A4N1 SVX004A1-5A4N1 SVX005A1-5A4N1 SVX007A1-5A4N1 SVX010A1-5A4N1 SVX015A1-5A4N1 SVX020A1-5A4N1 SVX025A1-5A4N1
FR7	W	$\begin{aligned} & \hline 30 \\ & 40 \end{aligned}$	$\begin{aligned} & \hline 34 \\ & 41 \end{aligned}$	$\begin{aligned} & \hline 40 \\ & 50 \end{aligned}$	$\begin{aligned} & \hline 41 \\ & 52 \end{aligned}$	SVX030A1-5A4N1 SVX040A1-5A4N1
FR8	W	$\begin{aligned} & 50 \\ & 60 \\ & 75 \end{aligned}$	$\begin{aligned} & 52 \\ & 62 \\ & 80 \end{aligned}$	$\begin{array}{\|r\|} \hline 60 \\ 75 \\ 100 \end{array}$	$\begin{array}{\|r} \hline 62 \\ 80 \\ 100 \end{array}$	SVX050A1-5A4N1 SVX060A1-5A4N1 SVX075A1-5A4N1
FR9	W	$\begin{array}{\|l\|} \hline 100 \\ 125 \\ 150 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 100 \\ 125 \\ 144 \\ 170 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 125 \\ 150 \\ \frac{200}{} \end{array}$	$\begin{array}{\|l\|} \hline 125 \\ 144 \\ 170 \\ 208 \\ \hline \end{array}$	SVX100A1-5A4N1 SVX125A1-5A4N1 SVX150A1-5A4N1 SVX175A1-5A4N1

Table 11. 525 - 690V, NEMA Type 12 Drive

Frame Size	Delivery Code	hp (CT)	Current (CT)	hp (VT)	Current (VT)	Catalog Number
FR6	F1	2	3.33	3	4.5	SVX002A2-5A4N1
		3	4.5	-	5.5	SVX003A2-5A4N1
		5	5.5	5	7.5	SVX004A2-5A4N1
		$7-1 / 2$	10	10	10	SVX005A2-5A4N1
		10	13.5	15	18	SVX007A2-5A4N1
		15	18	20	22	SVX010A2-5A4N1
		20	22	25	27	SVX015A2-5A4N1
		25	27	30	34	SVX020A2-5A4N1
		30	34	40	41	SVX025A2-5A4N1
FR7	FP	40	41	50	52	SVX030A2-5A4N1
		50	52	60	62	SVX050A2-5A4N1
FR8	FP	60	62	75	80	SVX060A2-5A4N1
		75	80	100	100	SVX075A2-5A4N1
FR9		FP	100	100	125	125
		125	125	150	144	SVX100A2-5A4N1
		150	144	200	SVX125A2-5A4N1	
		-	170	200	SVX150A2-5A4N1	
					208	SVX175A2-5A4N1

Table 12. 525 - 690V, Open Chassis Drive

Frame Size	Delivery Code	hp (CT)	Current (CT)	hp (VT)	Current (VT)	Catalog Number
FR10	FP	200	208	250	261	SPX200A0-5A2N1
		250	261	300	325	SPX250A0-5A2N1
		300	325	400	385	SPX300A0-5A2N1
FR11	FP	400	385	450	460	SPX400A0-5A2N1
		450	460	500	502	SPX450A0-5A2N1
		500	502	-	590	SPX500A0-5A2N1
FR12	FP	-	590	600	650	SPX550A0-5A2N1
		600	650	700	750	SPX600A0-5A2N1
		700	750	800	820	SPX700A0-5A2N1

Cutler-Hammer

9000X Series Option Board Kits

The 9000X Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards (see Figure 1).

The 9000X Series factory installed standard board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A and B.

Figure 1. 9000X Series Option Boards

Table 13. Option Board Kits

Option Kit Description (2)	Allowed Slot Locations	Field Installed	Factory Installed	SVX Ready Programs						
		Catalog Number	Option Designator	Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC
Standard I/O Cards (See Figure 1)										
2 RO (NC/NO)	B	OPTA2	-	X	X	X	X	X	X	X
$\begin{aligned} & \hline 6 \mathrm{DI}, 1 \mathrm{DO}, 2 \mathrm{Al}, 1 \mathrm{AO}, \\ & 1 \text { +10V DC ref, } 2 \text { ext } \\ & +24 \mathrm{~V} \text { DC/ EXT +24V DC } \end{aligned}$	A	OPTA9	-	X	X	X	X	X	X	X

Extended I/O Card Options										
$\begin{aligned} & 6 \mathrm{DI}, 1 \mathrm{ext} \\ & +24 \mathrm{~V} \text { DC/EXT +24V DC } \end{aligned}$	B, C, D, E	OPTB1	B1	-	-	-	-	-	X	X
1 RO (NC/NO), 1 RO (NO), 1 Therm	B, C, D, E	OPTB2	B2	-	-	-	-	-	X	X
1 Al (mA isolated), 2 AO (mA isolated), 1 ext +24V DC/EXT +24V DC	B, C, D, E	OPTB4	B4	X	X	X	X	X	X	X
3 RO (NO)	B, C, D, E	OPTB5	B5	-	-	-	-	-	X	X
$\begin{aligned} & 1 \text { ext +24V DC/EXT }+24 \mathrm{~V} \text { DC, } \\ & 3 \text { Pt100 } \end{aligned}$	B, C, D, E	OPTB8	B8	-	-	-	-	-	-	-
$\begin{aligned} & 1 \text { RO (NO), } 5 \text { DI } \\ & 42-240 \mathrm{~V} \text { In } \end{aligned}$	B,C, D, E	OPTB9	B9	-	-	-	-	-	X	X

Communication Cards (3)

Modbus	D, E	OPTC2	C2	X	X	X	X	X	X	X
Johnson Controls N2	D, E	OPTC2	CA	-	-	-	-	-	-	-
Profibus DP	D, E	OPTC3	C3	X	X	X	X	X	X	X
LonWorks	D, E	OPTC4	C4	X	X	X	X	X	X	X
Profibus DP (D9 Connector)	D, E	OPTC5	C5	X	X	X	X	X	X	X
CanOpen (Slave) ${ }^{4}$	D, E	OPTC6	C6	X	X	X	X	X	X	X
DeviceNet	D, E	OPTC7	C7	X	X	X	X	X	X	X
Modbus (D9 Type Connector)	D, E	OPTC8	C8	X	X	X	X	X	X	X
RS-232 with D9 Connection	D, E	OPTD3	D3	X	X	X	X	X	X	X
Keypad										
9000X Series Local/ Remote Keypad (Replacement Keypad)	-	KEYPADLOC/REM	-	-	-	-	-	-	-	-
9000X Series Remote Mount Keypad Unit (Keypad not included, includes 10 ft . cable, keypad holder, mounting hardware)	-	$\begin{aligned} & \hline \text { OPTRMT } \\ & \text {-KIT- } \\ & \text { 9000X } \end{aligned}$	-	-	-	-	-	-	-	-

(1) Option card must be installed in one of the slots listed for that card. Slot indicated in Bold is the preferred location.
(2) $\mathrm{AI}=$ Analog Input; $\mathrm{AO}=$ Analog Output, $\mathrm{DI}=$ Digital Input, $\mathrm{DO}=$ Digital Output, $\mathrm{RO}=$ Relay Output
(3) OPTC2 is a multi-protocol option card.
(4) SPX9000 Drives only (FR10 and larger).

Accessories

Demo Drive and Power Supply

Table 17. Demo Drive and Power Supply

Description	Catalog Number
9000X Drive Demo	9000 XDEMO
Hand Held 24V Auxiliary Power Supply - used to supply power to the control module in order to perform keypad programming before the drive is connected to line voltage	9000 XAUX24V

NEMA Type 12 Conversion Kit

The NEMA Type 12 kit option is used to convert a NEMA Type 1 to a NEMA Type 12 drive. The NEMA Type 12 Kit consists of a metal drive shroud, fan kit for some frames, adaptor plate and plugs.

Table 18. NEMA Type 12 Conversion Kit

Frame Size	Delivery Code	Approximate Dimensions in Inches (mm)	Approximate Weight in Lb. (kg)	Catalog Number							
		Length						Width	Height	Weight	

Flange Kits

Flange Kit Type 12

The flange kit is utilized when the power section is mounted through the back panel of an enclosure. Includes flange mount brackets and NEMA Type 12 fan components. Metal shroud not included.

Table 19. Flange Kit Type 12 -
Frames 4, 5 and 6 ()

Frame Size	Delivery Code	Catalog Number
FR4	W	OPTTHRFR4
FR5	W	OPTTHRFR5
FR6	W	OPTTHRFR6

(5) For installation of an SVX9000 NEMA Type 1 drive into a NEMA Type 12 oversized enclosure.

Flange Kit Type 12

Flange kits for NEMA 12 enclosure drive rating are determined by rating of drive.

Table 21. Flange Kit Type 12 -
Frames 4-9 (8)

Frame Size	Delivery Code	Catalog Number
FR4	FP	OPTTHR4
FR5	FP	OPTTHR5
FR6	FP	OPTTHR6
FR7	FP	OPTTHR7
FR8	FP	OPTTHR8
FR9	FP	OPTTHR9

(7) For installation of an SVX9000 NEMA Type 12 drive into a NEMA Type 12 oversized enclosure.

Flange Kit Type 1

Flange kits for NEMA 1 enclosure drive rating are determined by rating of drive.

Table 20. Flange Kit Type 1 -
Frames 4-9 ©

Frame Size	Delivery Code	Catalog Number
FR4	FP	OPTTHR4
FR5	FP	OPTTHR5
FR6	FP	OPTTHR6
FR7	FP	OPTTHR7
FR8	FP	OPTTHR8
FR9	FP	OPTTHR9

(6) For installation of an SVX9000 NEMA Type 1 drive into a NEMA Type 1 oversized enclosure.

Field Installed	Factory Installed
Catalog Number	Option Designator
OPT_V ${ }^{4}$ (${ }^{3}$

${ }^{(2)}$ See Option Catalog Numbers on Page 9.
(3) Construct Catalog Numbers for factory installed per Table 4 on Page 5.
4) Replace "-_" with the correct Catalog Number from Page 9. Example: OPTC2V.
Table 16. Conformal Coated Board Kits (2)

Brake Chopper Options

The Brake Chopper Circuit option is used for applications that require dynamic braking. Dynamic Braking resistors are not included with drive purchase. Consult the factory for dynamic braking resistors which are supplied separately. Resistors are not UL Listed.
Table 14. Brake Chopper Circuit Option NEMA Type 1, NEMA Type 12, Chassis

$\begin{array}{\|l\|} \hline \mathrm{hp} \\ \text { (CT) } \end{array}$	208/230V	380-500V	525-690V
2	(Std.)	(Std.)	Option
3	(Std.)	(Std.)	Option
5 vt	(Std.)	(Std.)	Option
5 ct	(Std.)	(Std.)	Option
7-1/2vt	(Std.)	(Std.)	Option
7-1/2ct	(Std.)	(Std.)	Option
10	(Std.)	(Std.)	Option
15	(Std.)	(Std.)	Option
20	Option	(Std.)	Option
25	Option	(Std.)	Option
30	Option	(Std.)	Option
40	Option	Option	Option
50	Option	Option	Option
60	Option	Option	Option
75	Option	Option	Option
100	Option	Option	Option
125	-	Option	Option
150	-	Option	Option
200vt	-	-	Option
200ct	-	Option	Option
250	-	Option	Option
300	-	Option	Option
350	-	Option	- -
400	-	Option	Option
450	-	- -	Option
500	-	Option	Option
550	-	-	
600 vt	-	Option	(1)
600 ct	-	1	(1)
700vt	-	1	\bigcirc
700ct	-	(1)	(1)

(1) Contact sales office.

Table 15. Conformal (Varnished) Coating
Adder-208-240V, 380-500V, 525-690V
(See Catalog Number Description to order.)

Frame	Delivery Code
FR4	FP
FR5	FP
FR6	FP
FR7	FP
FR8	FP
FR9	FP
FR10	FP
FR11	FP
FR12	FP

Cutler-Hammer

Dimensions

Figure 2. NEMA Type 1 and NEMA Type 12 9000X Drive Dimensions, FR4, FR5 and FR6
Table 22. 9000X Drive Dimensions

Frame Size	Voltage	hp (CT)	Approximate Dimensions in Inches (mm)											Weight Lbs. (kg)	$\begin{array}{\|l\|} \hline \text { Knockouts @ Inches (mm) } \\ \hline \text { N1 (O.D.) } \\ \hline \end{array}$
			H1	H2	H3	D1	D2	D3	W1	W2	W3	R1 dia.	R2 dia.		
FR4	230 V	3/4-3	$\begin{array}{\|l\|} \hline 12.9 \\ (327) \end{array}$	$\begin{aligned} & \hline 12.3 \\ & (313) \end{aligned}$	$\begin{aligned} & \hline 11.5 \\ & (292) \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & (190) \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & (77) \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & (126) \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & (128) \end{aligned}$	$\begin{aligned} & \hline 3.9 \\ & (100) \end{aligned}$	-	$\begin{array}{\|l\|} \hline .5 \\ (13) \end{array}$	$\begin{aligned} & .3 \\ & (7) \end{aligned}$	$\begin{array}{\|l\|} \hline 11.0 \\ (5) \end{array}$	$\begin{aligned} & 3 \text { @ } 1.1 \\ & (28) \end{aligned}$
	480 V	1-5													
FR5	230 V	5-7-1/2	$\begin{aligned} & 16.5 \\ & (419) \end{aligned}$	$\begin{array}{\|l} \hline 16.0 \\ (406) \end{array}$	$\begin{aligned} & 15.3 \\ & (389) \end{aligned}$	$\begin{aligned} & \hline 8.4 \\ & (214) \end{aligned}$	$\begin{aligned} & 3.9 \\ & (100) \end{aligned}$	$\begin{aligned} & \hline 5.8 \\ & (148) \end{aligned}$	$\begin{aligned} & \hline 5.6 \\ & (143) \end{aligned}$	$\begin{aligned} & \hline 3.9 \\ & (100) \end{aligned}$	-	$\begin{aligned} & \hline .5 \\ & (13) \end{aligned}$	$\begin{aligned} & .3 \\ & \text { (7) } \end{aligned}$	17.9 (8)	$\begin{aligned} & 2 \text { @ } 1.5 \\ & (37) \\ & 1 @ 1.1 \\ & (28) \end{aligned}$
	480 V	7-1/2-15													
FR6	230 V	10-15	$\begin{aligned} & \hline 22.0 \\ & (558) \end{aligned}$	$\begin{array}{\|l\|} \hline 21.3 \\ (541) \end{array}$	$\begin{aligned} & \hline 20.4 \\ & (519) \end{aligned}$	$\begin{aligned} & \hline 9.3 \\ & (237) \end{aligned}$	$\begin{aligned} & \hline 4.2 \\ & (105) \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & (165) \end{aligned}$	$\begin{aligned} & \hline 7.6 \\ & (195) \end{aligned}$	$\begin{aligned} & \hline 5.8 \\ & (148) \end{aligned}$	-	$\begin{aligned} & \hline .6 \\ & (15.5) \end{aligned}$	$\begin{array}{\|l\|l\|} \hline .4 \\ (9) \end{array}$	$\begin{aligned} & \hline 40.8 \\ & (19) \end{aligned}$	$\begin{aligned} & \text { 3@ } 1.5 \\ & (37) \end{aligned}$
	480 V	20-30													
	575 V	2-25													

Figure 3. 9000X Dimensions, NEMA Type 1 and NEMA Type 12 with Flange Kit, FR4, FR5 and FR6
Table 23. Dimensions for 9000X, FR4, FR5 and FR6 with Flange Kit

Frame Size	Voltage	Approximate Dimensions in Inches (mm)									
		W1	W2	H1	H2	H3	H4	H5	D1	D2	Dia. A
FR4	230 V	$\begin{array}{\|l\|} \hline 5.0 \\ (128) \end{array}$	$\begin{aligned} & \hline 4.5 \\ & (113) \end{aligned}$	$\begin{array}{\|l\|} \hline 13.3 \\ (337) \end{array}$	$\begin{aligned} & \hline 12.8 \\ & (325) \end{aligned}$	$\begin{aligned} & \hline 12.9 \\ & (327) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.2 \\ (30) \end{array}$	$\begin{aligned} & \hline .9 \\ & (22) \end{aligned}$	$\begin{array}{\|l} \hline 7.5 \\ (190) \end{array}$	$\begin{array}{\|l\|} \hline 3.0 \\ \text { (77) } \end{array}$	$\begin{aligned} & \hline .3 \\ & \text { (7) } \end{aligned}$
	480 V										
FR5	230 V	$\begin{array}{\|l\|} \hline 5.6 \\ (143) \end{array}$	$\begin{aligned} & 4.7 \\ & (120) \end{aligned}$	$\begin{array}{\|l\|} \hline 17.0 \\ (434) \end{array}$	$\begin{array}{\|l\|} \hline 16.5 \\ (420) \end{array}$	$\begin{array}{\|l\|} \hline 16.5 \\ (419) \end{array}$	$\begin{array}{\|l\|} \hline 1.4 \\ (36) \end{array}$	$\begin{array}{\|l\|} \hline .7 \\ (18) \end{array}$	$\begin{array}{\|l\|} \hline 8.4 \\ (214) \end{array}$	$\begin{aligned} & \hline 3.9 \\ & (100) \end{aligned}$	$\begin{aligned} & \hline .3 \\ & (7) \end{aligned}$
	480 V										
FR6	230 V	$\left.\begin{array}{\|l\|} \hline 7.7 \\ \hline \end{array} 195\right)$	$\begin{aligned} & \hline 6.7 \\ & (170) \end{aligned}$	$\begin{array}{\|l\|} \hline 22.0 \\ (560) \end{array}$	$\begin{aligned} & \hline 21.6 \\ & (549) \end{aligned}$	$\begin{aligned} & \hline 22.0 \\ & (558) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.2 \\ (30) \end{array}$	$\begin{array}{\|l\|} \hline .8 \\ (20) \end{array}$	$\begin{array}{\|l\|} \hline 9.3 \\ (237) \end{array}$	$\begin{aligned} & \hline 4.2 \\ & (106) \end{aligned}$	$\begin{aligned} & \hline .3 \\ & \text { (7) } \end{aligned}$
	480 V										
	575 V										

Table 24. Dimensions for the Flange Opening, FR4 to FR6

Frame Size	Voltage	Approximate Dimensions in Inches (mm)							
		W3	W4	W5	H6	H7	H8	H9	Dia. B
FR4	230 V	$\begin{array}{\|l\|} \hline 4.8 \\ (123) \end{array}$	$\begin{aligned} & \hline 4.5 \\ & (113) \end{aligned}$	-	$\begin{aligned} & \hline 12.4 \\ & (315) \end{aligned}$	$\begin{aligned} & \hline 12.8 \\ & (325) \end{aligned}$	-	$\begin{array}{\|l} \hline .2 \\ (5) \end{array}$	$.3$ (7)
	480 V								
FR5	230 V	$\begin{array}{\|l\|} \hline 5.3 \\ (135) \end{array}$	$\begin{aligned} & \hline 4.7 \\ & (120) \end{aligned}$	-	$\begin{aligned} & \hline 16.2 \\ & (410) \end{aligned}$	$\begin{aligned} & \hline 16.5 \\ & (420) \end{aligned}$	-	$\begin{array}{\|l} \hline .2 \\ (5) \end{array}$	$\text { . } 3$ (7)
	480 V								
FR6	230 V	$\begin{array}{\|l\|} \hline 7.3 \\ \hline(185) \end{array}$	$\begin{aligned} & \hline 6.7 \\ & (170) \end{aligned}$	$\begin{aligned} & \hline 6.2 \\ & (157) \end{aligned}$	$\begin{aligned} & \hline 21.2 \\ & (539) \end{aligned}$	$\begin{aligned} & \hline 21.6 \\ & (549) \end{aligned}$	$\begin{aligned} & \hline .3 \\ & \text { (7) } \end{aligned}$	$\begin{aligned} & \hline .2 \\ & (5) \end{aligned}$.317
	480 V								
	575 V								

Figure 4. 9000X Dimensions, NEMA Type 1 and NEMA Type 12, FR7
Table 25. 9000X Drive Dimensions, FR7

Frame Size	Voltage	hp (CT)	Approximate Dimensions in Inches (mm)										Weight Lbs. (kg)	$\begin{array}{\|l\|} \hline \text { Knockouts @ Inches (mm) } \\ \hline \text { N1 (O.D.) } \\ \hline \end{array}$
			H1	H2	H3	D1	D2	D3	W1	W2	R1 dia.	R2 dia.		
FR7	230 V	20-30	$\begin{aligned} & \hline 24.8 \\ & (630) \end{aligned}$	$\begin{aligned} & \hline 24.2 \\ & (614) \end{aligned}$	$\begin{aligned} & \hline 23.2 \\ & (590) \end{aligned}$	$\begin{aligned} & \hline 10.1 \\ & (257) \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & (77) \end{aligned}$	$\begin{array}{\|l} \hline 7.3 \\ (184) \end{array}$	$\begin{array}{\|l\|} \hline 9.3 \\ (237) \end{array}$	$\begin{array}{\|l\|} \hline 7.5 \\ (190) \end{array}$	$\begin{array}{\|l\|} \hline .7 \\ (18) \end{array}$	$\begin{array}{\|l} \hline .4 \\ \text { (9) } \end{array}$	$\begin{aligned} & 77.2 \\ & (35) \end{aligned}$	3 @ 1.5 (37)
	480 V	40-60												
	575 V	30-40												

Figure 5. 9000X Dimensions, NEMA Type 1 and NEMA Type 12, FR8
Table 26. 9000X Drive Dimensions, FR8

Frame Size	Voltage	hp (CT)	Approximate Dimensions in Inches (mm)							
			D1	H1	H2	H3	W1	W2	R1 dia.	R2 dia.
FR8	230 V	40-60	13.5 (344)	30.1 (764)	28.8 (732)	28.4 (721)	11.5 (291)	10 (255)	. 7 (18)	. 4 (9)
	480 V	75-125								
	575 V	50-75								

Cutler-Hammer

Figure 6. 9000X Dimensions, NEMA Type 1 and NEMA Type 12, with Flange Kit, FR7 and FR8
Table 27. Dimensions for 9000X, FR7 and FR8 with Flange Kit

Frame Size	Voltage	Approximate Dimensions in Inches (mm)													
		W1	W2	W3	W4	H1	H2	H3	H4	H5	H6	H7	D1	D2	Dia. A
FR7	230 V	$\begin{array}{\|l\|} \hline 9.3 \\ (237) \end{array}$	$\begin{aligned} & \hline 6.8 \\ & (175) \end{aligned}$	$\begin{aligned} & \hline 10.6 \\ & (270) \end{aligned}$	$\begin{aligned} & \hline 10.0 \\ & (253) \end{aligned}$	$\begin{aligned} & \hline 25.6 \\ & (652) \end{aligned}$	$\begin{aligned} & \hline 24.8 \\ & (632) \end{aligned}$	$\begin{aligned} & \hline 24.8 \\ & (630) \end{aligned}$	$\begin{array}{\|l\|} \hline 7.4 \\ (189) \end{array}$	$\begin{aligned} & \hline 7.4 \\ & (189) \end{aligned}$	$\begin{aligned} & \hline .9 \\ & (23) \end{aligned}$	$\begin{array}{\|l\|} \hline \hline .8 \\ (20) \end{array}$	$\begin{aligned} & \hline 10.1 \\ & (257) \end{aligned}$	$\begin{aligned} & \hline 4.6 \\ & (117) \end{aligned}$	$\begin{array}{\|l} \hline .3 \\ (6) \end{array}$
	480V														
	575 V														
FR8	230 V	$\begin{array}{\|l\|} \hline 11.2 \\ (285) \end{array}$	-	$\begin{aligned} & \hline 14.0 \\ & (355) \end{aligned}$	$\begin{array}{\|l\|} \hline 13.0 \\ (330) \end{array}$	$\begin{array}{\|l\|} \hline 32.8 \\ (832) \end{array}$	-	$\begin{aligned} & \hline 29.3 \\ & (745) \end{aligned}$	$\begin{array}{\|l\|} \hline 10.2 \\ (258) \end{array}$	$\begin{array}{\|l\|} \hline 10.4 \\ (265) \end{array}$	$\begin{aligned} & \hline 1.7 \\ & (43) \end{aligned}$	$\begin{array}{\|l\|} \hline 2.2 \\ \text { (57) } \end{array}$	$\begin{array}{\|l\|} \hline 13.5 \\ (344) \end{array}$	$\begin{aligned} & \hline 4.3 \\ & (110) \end{aligned}$	$\begin{array}{\|l\|} \hline .4 \\ (9) \end{array}$
	480 V														
	575 V														

Table 28. Dimensions for the Flange Opening, FR7/FR8

Frame Size	Voltage	Approximate Dimensions in Inches (mm)									
		W5	W6	W7	H8	H9	H10	H11	H12	H13	Dia. B
FR7	230 V	$\begin{array}{\|l\|} \hline 9.2 \\ (233) \end{array}$	$\begin{array}{\|l\|} \hline 6.9 \\ (175) \end{array}$	$\begin{aligned} & 10.0 \\ & (253) \end{aligned}$	$\begin{aligned} & \hline 24.4 \\ & (619) \end{aligned}$	$\begin{aligned} & \hline 7.4 \\ & (189) \end{aligned}$	$\begin{aligned} & \hline 7.4 \\ & (189) \end{aligned}$	$\begin{aligned} & \hline 1.4 \\ & \text { (35) } \end{aligned}$	$\begin{array}{\|l\|} \hline 1.3 \\ (32) \end{array}$	$\begin{aligned} & \hline .3 \\ & (7) \end{aligned}$	$\begin{aligned} & \hline .3 \\ & (6) \end{aligned}$
	480 V										
	575 V										
FR8	230 V	$\begin{array}{\|l\|} \hline 11.9 \\ \hline(301) \end{array}$	-	$\begin{aligned} & 13.0 \\ & (330) \end{aligned}$	$\begin{array}{\|l} \hline 31.9 \\ (810) \end{array}$	$\begin{aligned} & \hline 10.2 \\ & (258) \end{aligned}$	$\begin{aligned} & 10.4 \\ & (265) \end{aligned}$	-	-	-	$\begin{array}{\|l} \hline .4 \\ \text { (9) } \end{array}$
	480 V										
	575 V										

Figure 7. 9000X Dimensions, NEMA Type 1 and NEMA Type 12, FR9
Table 29. 9000X Drive Dimensions, FR9

Frame Size	Voltage	hp (CT)	Approximate Dimensions in Inches (mm)								
			H1	H2	H3	D1	D2	W1	W2	R1 dia.	R2 dia.
FR9	230 V	75-100	$\begin{array}{\|l\|} \hline 45.3 \\ (1150) \end{array}$	$\begin{aligned} & 44.1 \\ & (1120) \end{aligned}$	$\begin{aligned} & 42.4 \\ & (1076) \end{aligned}$	$\begin{aligned} & \hline 13.4 \\ & (340) \end{aligned}$	$\begin{array}{\|l\|} \hline 14.3 \\ (362) \end{array}$	$\begin{array}{\|l\|} \hline 18.9 \\ (480) \end{array}$	$\begin{array}{\|l\|} \hline 15.7 \\ (400) \end{array}$	$\begin{array}{\|l} \hline .8 \\ (20) \end{array}$	$\begin{array}{\|l\|} \hline .4 \\ \hline(9) \end{array}$
	480	150-200									
	575	100-175									

Figure 8. 9000X Dimensions, NEMA Type 1 and NEMA Type 12 FR9
Table 30. Dimensions for 9000X, FR9

Frame Size	Voltage	Approximate Dimensions in Inches (mm)														
		W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	H6 ${ }^{1}$	D1	D2	D3	Dia.
FR9	230 V	$\begin{array}{\|l} \hline 18.9 \\ (480) \end{array}$	$\begin{aligned} & \hline 15.7 \\ & (400) \end{aligned}$	$\begin{array}{\|l\|} \hline 6.5 \\ (165) \end{array}$	$\begin{aligned} & \hline .4 \\ & (9) \end{aligned}$	$\begin{aligned} & \hline 2.1 \\ & (54) \end{aligned}$	$\begin{array}{\|l\|} \hline 45.3 \\ (1150) \end{array}$	$\begin{aligned} & \hline 44.1 \\ & (1120) \end{aligned}$	$\begin{aligned} & \hline 28.3 \\ & (721) \end{aligned}$	$\begin{array}{\|l\|} \hline 8.0 \\ (205) \end{array}$	$\begin{aligned} & \hline .6 \\ & (16) \end{aligned}$	$\begin{aligned} & \hline 7.4 \\ & (188) \end{aligned}$	$\begin{array}{\|l\|} \hline 14.2 \\ (361.5) \end{array}$	$\begin{array}{\|l\|} \hline 13.4 \\ (340) \end{array}$	$\begin{aligned} & \hline 11.2 \\ & (285) \end{aligned}$	$\begin{array}{\|l\|} \hline .8 \\ (21) \end{array}$
	480 V															
	575 V															

[^0]

Figure 9. 9000X Dimensions, NEMA Type 1 and NEMA Type 12 FR9 with Flange Kit
Table 31. Dimensions for 9000X, FR9 with Flange Kit

Frame Size	Voltage	Approximate Dimensions in Inches (mm)															
		W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	H6	H7	D1	D2	D3	Dia.
FR9	230 V	$\begin{aligned} & \hline 20.9 \\ & (530) \end{aligned}$	$\begin{array}{\|l} 20.0 \\ (510) \end{array}$	$\begin{aligned} & \hline 19.1 \\ & (485) \end{aligned}$	$\begin{aligned} & \hline 7.9 \\ & (200) \end{aligned}$	$\begin{aligned} & \hline .2 \\ & (5.5) \end{aligned}$	$\begin{array}{\|l\|} \hline 51.7 \\ (1312) \end{array}$	$\begin{array}{\|l\|} \hline 45.3 \\ \text { (1150) } \end{array}$	$\begin{aligned} & 16.5 \\ & (420) \end{aligned}$	$\begin{array}{\|l\|} \hline 3.9 \\ (100) \end{array}$	$\begin{aligned} & \hline 1.4 \\ & (35) \end{aligned}$	$\begin{array}{\|l} \hline .4 \\ (9) \end{array}$	$\begin{aligned} & .1 \\ & (2) \end{aligned}$	$\begin{array}{\|l} 24.9 \\ (362) \end{array}$	$\begin{array}{\|l\|} \hline 13.4 \\ (340) \end{array}$	$\begin{array}{\|l\|} \hline 4.3 \\ (109) \end{array}$	$\begin{aligned} & .8 \\ & (21) \end{aligned}$
	480 V																
	575 V																

Figure 10. 9000X Dimensions, FR10 Open Chassis
Table 32. Dimensions for 9000X, FR10 Open Chassis

Frame Size	Voltage	hp (CT)	Approximate Dimensions in Inches (mm)															
			W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	H6	H7	D1	D2	D3	D4
FR10	480 V	250-350	$\begin{aligned} & 19.7 \\ & (500) \end{aligned}$	$\begin{aligned} & \hline 16.7 \\ & (425) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.2 \\ (30) \end{array}$	$\begin{aligned} & \hline 2.6 \\ & \text { (67) } \end{aligned}$	$\begin{aligned} & \hline 12.8 \\ & (325) \end{aligned}$	$\begin{aligned} & \hline 45.9 \\ & (1165) \end{aligned}$	$\begin{array}{\|l} \hline 44.1 \\ (1121) \end{array}$	$\begin{array}{\|l\|} \hline 34.6 \\ (879) \end{array}$	$\begin{array}{\|l} \hline 33.5 \\ (850) \end{array}$	$\begin{array}{\|l\|} \hline .7 \\ (17) \end{array}$	$\begin{aligned} & \hline 24.7 \\ & (627) \end{aligned}$	$\begin{array}{\|l\|} \hline 10.8 \\ (275) \end{array}$	$\begin{aligned} & \hline 19.9 \\ & (506) \end{aligned}$	$\begin{aligned} & \hline 17.9 \\ & (455) \end{aligned}$	$\begin{aligned} & \hline 16.7 \\ & (423) \end{aligned}$	$\begin{aligned} & \hline 16.6 \\ & (421) \end{aligned}$
	575 V	200-300																

Note: 9000 X FR12 is built of two FR10 modules. Please refer to SPX9000 installation manual for mounting instructions.

Figure 11. 9000X Dimensions, FR11 Open Chassis
Table 33. Dimensions for 9000X, FR11 Open Chassis

Frame Size	Voltage	hp (CT)	Approximate Dimensions in Inches (mm)						
			W1	W2	W3	H1	H2	D1	D2
FR11	480 V	400-550	$\begin{aligned} & 27.9 \\ & \text { (709) } \end{aligned}$	$\begin{aligned} & \hline 8.86 \\ & (225) \end{aligned}$	$\begin{array}{\|l\|} \hline 2.6 \\ \text { (67) } \end{array}$	$\begin{aligned} & \hline 45.5 \\ & (1155) \end{aligned}$	$\begin{aligned} & \hline 33.5 \\ & (850) \end{aligned}$	$\begin{aligned} & 19.8 \\ & (503) \end{aligned}$	$\begin{aligned} & 18.4 \\ & (468) \end{aligned}$
	575 V	400-500							

Table 34. Choke Types

Catalog Number	Frame Size	Choke Type
Voltage Range 380-500V		
SPX 2504 SPX 3004 SPX 3504	$\begin{aligned} & \hline \text { FR10 } \\ & \text { FR10 } \\ & \text { FR10 } \end{aligned}$	$\begin{aligned} & \text { CHK0400 } \\ & \text { CHK0520 } \\ & \text { CHK0520 } \end{aligned}$
$\begin{aligned} & \hline \text { SPX } 4004 \\ & \text { SPX } 5004 \\ & \text { SPX } 5504 \end{aligned}$	$\begin{aligned} & \hline \text { FR11 } \\ & \text { FR11 } \\ & \text { FR11 } \end{aligned}$	$\begin{aligned} & 2 \times \text { CHKO400 } \\ & 2 \times \text { CHK0400 } \\ & 2 \times \text { CHK0400 } \end{aligned}$
$\begin{aligned} & \hline \text { SPX } 6004 \\ & \text { SPX } 6504 \\ & \text { SPX } 7004 \end{aligned}$	$\begin{aligned} & \hline \text { FR12 } \\ & \text { FR12 } \\ & \text { FR12 } \end{aligned}$	$\begin{aligned} & 2 \times \text { CHKO520 } \\ & 2 \times \text { CHK0520 } \\ & 2 \times \text { CHK0520 } \end{aligned}$
Voltage Range 525-690V		
$\begin{aligned} & \hline \text { SPX } 2005 \\ & \text { SPX } 2505 \\ & \text { SPX } 3005 \end{aligned}$	$\begin{aligned} & \hline \text { FR10 } \\ & \text { FR10 } \\ & \text { FR10 } \end{aligned}$	$\begin{aligned} & \text { CHK0261 } \\ & \text { CHK0400 } \\ & \text { CHK0400 } \end{aligned}$
$\begin{aligned} & \hline \text { SPX } 4005 \\ & \text { SPX } 4505 \\ & \text { SPX } 5005 \end{aligned}$	$\begin{aligned} & \hline \text { FR11 } \\ & \text { FR11 } \\ & \text { FR11 } \end{aligned}$	$\begin{aligned} & \hline \text { CHK0520 } \\ & \text { CHK0520 } \\ & 2 \times \text { CHK0400 } \end{aligned}$
$\begin{aligned} & \text { SPX } 5505 \\ & \text { SPX } 6005 \\ & \text { SPX } 7005 \end{aligned}$	$\begin{aligned} & \text { FR12 } \\ & \text { FR12 } \\ & \text { FR12 } \end{aligned}$	$\begin{aligned} & 2 \times \text { CHKO400 } \\ & 2 \times \text { CHK0400 } \\ & 2 \times \text { CHKO400 } \end{aligned}$

Figure 12. Dimensions of AC Choke CHKO520 in Inches (mm)

Figure 13. Dimensions of AC Choke CHKO400 in Inches (mm)

Figure 14. Dimensions of AC Choke CHK0261 in Inches (mm)

Cutler-Hammer

Spare Units \& Replacement Parts

Table 35. 9000X Spare Units - SVX9000, 208-590V, Frames 4-9

Description	Catalog Number
Control Unit - Includes the control board, blue base housing, installed SVX9000 software program and blue flip cover. Does not include any OPT boards or keypad. See Figure 1 and Table 13 (Page 9) for standard and option boards and keypad.	CSBS0000000000

Table 36. 9000X Series Replacement Parts - SVX9000 Drives, 208-240V

Frame:	4					5			6		7			Delivery Code	Catalog Number
hp (CT):	3/4	1	1-1/2	2		5VT ${ }^{(1)}$	5	7-1/2	10	15	20	25	30		
Power Board															
	1	1	1											FB	VB00308
				1	1									FB	VB00310
						1	1	1						FB	VB00313
									1	1				FB	VB00316
											1	1	1	FB	VB00319
Electrolytic Capacitors															
	2	2	2											W	PP01000
				2	2									W	PP01001
						2	2							W	PP01002
								2						W	PP01003
									2	2				W	PP01004
											2	2	2	W	PP01005
IGBT Module															
	1	1												W	CP01304
			1											W	CP01305
				1	1	1								W	CP01306
							1							W	CP01307
								1						W	CP01308
									1					W	PP01022
										1				W	PP01023
											1			W	PP01024
												1		W	PP01025
													1	W	PP01029
Rectifying Board															
											1	1	1	W	VB00242
Chopper/Rectifier															
									1					W	CP01367
										1				W	CP01368
	Diode/Thyristor Module														
											3	3	3	W	PP01035
	Control Board														
	1	1	1	1	1	1	1	1	1	1	1	1	1	W	VB00252

[^1]Table 37. 9000X Series Replacement Parts - SVX9000 Drives, 380 - 500V

Frame:	4						5			6				7			8			9		Delivery Code	Catalog Number
hp (CT):	1	1-1/2	2	3	5	7-1/2 VT ${ }^{(1)}$	7-1/2	10	15	20	25		30	40	50	60	75	100	125	150	200		
Power Board																							
	1																					FB	VB00205
		1																				FB	VB00206
			1																			FB	VB00207
				1																		FB	VB00208
					1																	FB	VB00209
						1																FB	VB00210
							1															FB	VB00211
								1														FB	VB00212
									1													FB	VB00213
										1												FB	VB00214
											1											FB	VB00215
												1	1									FB	VB00216
														1								FB	VB00217
															1							FB	VB00218
																1						FB	VB00219
																	1					FB	VB00220
																		1				FB	VB00221
																			1			FB	VB00236
Electrolytic Capacitors																							
	2	2	2	2																		W	PP01000
					2	2																W	PP01001
							2	2														W	PP01002
									2													W	PP01003
										2	2	2	2									W	PP01004
														2	2	2	4	4	4	8	8	W	PP01005
IGBT Module																							
	1	1	1																			W	CP01304
				1	1																	W	CP01305
						1	1															W	CP01306
								1														W	CP01307
									1													W	CP01308
										1												W	PP01020
											1											W	PP01022
												1	1									W	PP01023
														1								W	PP01024
															1							W	PP01025
																1						W	PP01029
																	1					W	PP01026
																		1	1			W	PP01027
Rectifying Board																							
														1	1	1						W	VB00242
																	1	1	1			W	VB00227
																				1	1	W	VB00459
	Chopper/Rectifier																						
										1	1											W	CP01367
												1	1									W	CP01368
	Diode/Thyristor Module																						
														3	3	3						W	PP01035
																	3	3	3			W	CP01268
																				3	3	W	PP01037
	Rectifying Module Sub-assembly																						
																				1	1	W	FR09810
	Power Module Sub-assembly																						
																				1		W	FR09800
																					1	W	FR09801
	Control Board																						
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	W	VB00252
																						W	VB00561

[^2]Table 38. 9000X Series Replacement Parts - SVX9000 Drives, 525 - 590V

SVX9000 Enclosed Drives

Enclosed 9000X Series Drive

Standards and Certifications

■ UL Listed
■ cUL Listed

Figure 15. Power Diagram for Bypass Options RB and RA

Product Description

- Standard Enclosed - covers a wide range of the most commonly ordered options. Pre-engineering eliminates the lead time normally associated with customer specific options.
■ Modified Standard Enclosed applies to specific customer requirements that vary from the Standard Enclosed offering, such as the need for an additional indicating light or minor modifications to drawings. Consult your Eaton representative for assistance in pricing and lead time.
- Custom Engineered - for those applications with more unique or complex requirements, these are individually engineered to the customer's needs. Consult your Eaton representative for assistance in pricing and lead time.

Features

■ NEMA Type 1 or Type 12 enclosures
■ Input Voltage: 208V, 230V, 480V and 575V (Future Release)
■ Complete range of control, network and power options
■ Horsepower range:

- 208 V - $3 / 4$ to 100 hp CT; 1 to 100 hp VT
- $230 \mathrm{~V}-3 / 4$ to 100 hp CT; 1 to 100 hp VT
- 480 V - 1 to 200 hp CT ; 1-1/2 to 250 hp VT
■ HMCP padlockable

Technical Data and Specifications

Table 39. Specifications

Feature Description	9000X Enclosed Products NEMA Type 1 or NEMA Type 12
Primary Design Features	
$45-66 \mathrm{~Hz}$ Input Frequency	Standard
Output: AC Volts Maximum	Input Voltage Base
Output Frequency Range: Hz	0-500
Initial Output Current (CT)	250\% for 2 seconds
Overload: 1 Minute (CT/VT)	150\%/110\%
Enclosure Space Heater	Optional
Oversize Enclosure	Standard
Output Contactor	Optional
Bypass Motor Starter	Optional
Listings	UL, cUL
Protection Features	
Incoming Line Fuses	Optional
AC Input Circuit Disconnect	Optional
Line Reactors	Standard
Phase Rotation Insensitive	Standard
EMI Filter	Standard
Input Phase Loss Protection	Standard
Input Overvoltage Protection	Standard
Line Surge Protection	Standard
Output Short Circuit Protection	Standard
Output Ground Fault Protection	Standard
Output Phase Protection	Standard
Overtemperature Protection	Standard
DC Overvoltage Protection	Standard
Drive Overload Protection	Standard
Motor Overload Protection	Standard
Programmer Software	Optional
Local/Remote Keypad	Standard
Keypad Lockout	Standard
Fault Alarm Output	Standard
Built-In Diagnostics	Standard
Input/Output Interface Features	
Setup Adjustment Provisions: Remote Keypad/Display Personal Computer	Standard Standard
Operator Control Provisions: Drive Mounted Keypad/Display Remote Keypad/Display Conventional Control Elements Serial Communications 115V AC Control Circuit	Standard Standard Standard Optional Optional
Speed Setting Inputs: Keypad 0-10V DC Potentiometer/Noltage Signal 4-20 mA Isolated 4-20 mA Differential 3-15 psig	Standard Standard Configurable Configurable Optional
Analog Outputs: Speed/Frequency Torque/Load/Current Motor Voltage Kilowatts 0 - 10V DC Signals 4-20 mA DC Signals Isolated Signals	Standard Programmable Programmable Programmable Configurable w/Jumpers Standard Optional

Feature Description	9000X Enclosed Products - NEMA Type 1 or NEMA Type 12
Input/Output Interface Features (Continued) Discrete Outputs: Standard Fault Alarm Standard Drive Running Programmable Drive at Set Speed 14 Optional Parameters 1 (2 Relays Form C) Dry Contacts 1 Open Collector Outputs Optional Additional Discrete Outputs Communications: Standard RS-232 Optional RS-422/485 Optional DeviceNet Optional Modbus RTU Optional CanOpen (Slave) Optional Profibus-DP Optional Lonworks Johnson Controls Metasys ${ }^{\text {TM }}$ N2 Optional	

Performance Features

Sensorless Vector Control	Standard
Volts/Hertz Control	Standard
IR and Slip Compensation	Standard
Electronic Reversing	Standard
Dynamic Braking	Optional ${ }^{1} 1$
DC Braking	Standard
PID Setpoint Controller	Programmable
Critical Speed Lockout	Standard
Current (Torque) Limit	Standard
Adjustable Acceleration/Deceleration	Standard
Linear or S Curve Accel/Decel	Standard
Jog at Preset Speed	Standard
Thread/Preset Speeds	7
Automatic Restart	Selectable
Coasting Motor Start	Standard
Coast or Ramp Stop Selection	Standard
Elapsed Time Meter	Optional
Carrier Frequency Adjustment	$1-16$ kHz
Stard	

Standard Conditions for Application and Service	
Operating Ambient Temperature	$0-40^{\circ} \mathrm{C}$
Storage Temperature	$-40-60^{\circ} \mathrm{C}$
Humidity (Maximum), Non-condensing	95%
Altitude (Maximum without Derate)	$3300 \mathrm{ft} .(1000 \mathrm{~m})$
Line Voltage Variation	$+10 /-15 \%$
Line Frequency Variation	$45-66 \mathrm{~Hz}$
Efficiency	$>96 \%$
Power Factor (Displacement)	.96

(1) Some horsepower units include dynamic braking chopper as standard - refer to individual drive sections.

Table 40. Standard I/O Specifications

Description	Specification
6 - Digital Input Programmable	$24 \mathrm{~V}: "^{\prime \prime} \leq 10 \mathrm{~V}, " 1 " \geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>5 \mathrm{k} \Omega$
2 - Analog Input Configurable w/Jumpers	Voltage: $0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>200 \mathrm{k} \Omega$ Current: $0(4)-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250 \mathrm{k} \Omega$
2 - Digital Output Programmable	Form C Relays 250 V AC 2 Amp or 30 V DC2 Amp resistive
1 - Digital Output Programmable	Open collector 48V DC 50 mA
1 - Analog Output Programmable Configurable w/Jumper	$0-20 \mathrm{~mA}$, impedance 500 ohms, resolution $106 \pm 3 \%$

Options

Control Panel Options

Table 41. Control Panel Factory Options

Description	Factory Installed	Field Installed
	NEMA Type 1	
	Option Code	Catalog Number
Local/Remote Keypad SVX9000 Control Panel - This option is standard on all drives and consists of an RS-232 connection, backlit alphanumeric LCD display with nine indicators for the RUN status and two indicators for the control source. The nine pushbuttons on the panel are used for panel programming and monitoring of all SVX9000 parameters. The panel is detachable and isolated from the input line potential. Include LOC/REM key to choose control location.		KEYPAD-LOC/REM
Keypad Remote Mounting Kit - This option is used to remote mount the SVX9000 keypad. The footprint is compatible to the SV9000 remote mount kit. Includes 10 ft. cable, keypad holder and mounting hardware.	-	OPTRMT-KIT-9000X

Table 42. Miscellaneous Options

Description	Catalog Number
9000XDrive - A PC-based tool for controlling and monitoring of the SVX9000. Features include: loading parameters that can be saved to a file or printed, setting references, starting and stopping the motor, monitoring signals in graphical or text form, and realtime display. To avoid damage to the drive or computer, SVDrivecable must be used.	9000XDRIVE
SVDrivecable - 6 ft . (1.8 m) RS-232 cable (22 gauge) with a 7-pin connector on each end. Should be used in conjunction with the 9000 X Drive option to avoid damage to the SVX9000 or computer. The same cable can be used for downloading specialized applications to the drive.	SVDRIVECABLE
External Dynamic Braking Resistors — Used with the Dynamic Braking Chopper Circuit to absorb motor regenerative energy for stopping the load and to dissipate the energy flowing back into the drive. Resistors are separated into Standard Duty and Heavy-Duty. Standard Duty is defined as 20% duty or less with 100% braking torque, while Heavy-Duty is defined as 50% duty or less with 150% braking torque. Consult factory.	(1)

(1) Consult factory.

Cutler-Hammer

Catalog Number Selection

Table 43. SVX9000 Enclosed NEMA Type 1/12 Drive Catalog Numbering System

(1) Future release.
2) Local/Remote keypad is included as the standard Control Panel.
${ }^{(3)}$ Brake Chopper is a factory installed option only, see drive option tables on Pages $\mathbf{3 4 - 3 6}$. Note: External dynamic braking resistors not included. Consult factory.
(4) Includes local/remote speed reference switch.
(5) Some options are voltage and/or horsepower specific. Consult your Eaton representative for details.

6 See Pages 30 and 31 for descriptions.
(7) See Pages 32 and 33 for complete descriptions.

Control/Communication Option Descriptions

Table 44. Available Control/Communications Options

Option	Description	Option Type
K1	Door-Mounted Speed Potentiometer - Provides the SVX9000 with the ability to adjust the frequency reference using a doormounted potentiometer. This option uses the 10 V DC reference to generate a $0-10 \mathrm{~V}$ signal at the analog voltage input signal terminal. When the HOA bypass option is added, the speed is controlled when the HOA switch is in the hand position. Without the HOA bypass option, a 2-position switch (labeled local/remote) is provided on the keypad to select speed reference from the Speed Potentiometer or a remote speed signal.	Control
K2	Door-Mounted Speed Potentiometer with HOA Selector Switch — Provides the SVX9000 with the ability to start/stop and adjust the speed reference from door-mounted control devices or remotely from customer supplied inputs. In HAND position, the drive will start and the speed is controlled by the door-mounted speed potentiometer. The drive will be disabled in the OFF position. When AUTO is selected, the run enable and speed reference are controlled from remote inputs. Speed reference can be either $0-10 \mathrm{~V}$ DC or $4-20 \mathrm{~mA}$. The drive default is $4-20 \mathrm{~mA}$, parameter is field programmable. Run enable is controlled by a dry contact closure. This option requires a customer supplied 115V power source.	Control
K3	3-15 psig Follower - Provides a pneumatic transducer which converts a 3-15 psig pneumatic signal to either 0-8V DC or a $1-9 V$ DC signal interface with the SVX9000. The circuit board is mounted on the inside of the front enclosure panel and connects to the user's pneumatic control system via 6 ft . (1.8 m) of flexible tubing and a $1 / 4$ inch (6.4 mm) brass tube union.	Control
KB	115V Control Transformer - 550 VA - Provides a fused control power transformer with additional 550 VA at 115V for customer use.	Control
KF	Bypass Test Switch for RB and RA - Allows the user to energize the AF drive for testing while operating the motor on the bypass controller. The Test Switch is mounted on the inside of the enclosure door.	Addl. Bypass
L2	Bypass Pilot Lights for RB, RA Bypass Options - A green light indicates when the motor is running in inverter mode and an amber light indicates when the motor is running in bypass mode. The lights are mounted on the enclosure door, above the switches.	Addl. Bypass
P1	Input Disconnect Assembly Rated to $\mathbf{1 0 0}$ kAIC - High Interrupting Motor Circuit Protector (HMCP) that provides a means of short circuit protection for the power cables between it and the SVX9000, and protection from high-level ground faults on the power cable. Allows a convenient means of disconnecting the SVX9000 from the line and the operating mechanism can be padlocked in the OFF position. This is factory mounted in the enclosure.	Input
P3	Input Line Fuses Rated to $\mathbf{2 0 0}$ kAIC - Provides high-level fault protection of the SVX9000 input power circuit from the load side of the fuses to the input side of the power transistors. This option consists of three 200 kA fuses, which are factory mounted in the enclosure.	Input
PE	Output Contactor - Provides a means for positive disconnection of the drive output from the motor terminals. The contactor coil is controlled by the drive's run or permissive logic. NC and NO auxiliary contacts rated at 10A, 600V AC are provided for customer use. Bypass Options RB and RA include an Output Contactor as standard. This option includes a low VA 115V AC fused Control Power Transformer and is factory mounted in the enclosure.	Output
PF	Output Filter - Used to reduce the transient voltage (DV/DT) at the motor terminals. The Output Filter is recommended for cable lengths exceeding 100 ft . 30 m) with a drive of 3 hp and above, for cable lengths of 33 ft . 10 m) with a drive of 2 hp and below, or for a drive rated at $525-690 \mathrm{~V}$. This option is mounted in the enclosure, and may be used in conjunction with a Brake Chopper Circuit.	Output
PG	MotoRx ($\mathbf{3 0 0} \mathbf{- 6 0 0} \mathrm{Ft}$.) $\mathbf{1 0 0 0} \mathrm{V} / \boldsymbol{\mu}$ S DV/DT Filter — Used to reduce transient voltage (DV/DT) and peak voltages at the motor terminals. This option is comprised of a $.5 \%$ line reactor, followed by capacitive filtering and an energy recovery/clamping circuit. Unlike the Output Filter (See option PF), the MotoRx recovers most of the energy from the voltage peaks, resulting in a lower voltage drop to the motor, and therefore conserving power. This option is used when the distance between a single motor and the drive is $300-600$ feet (91-183m). This option can not be used with the Brake Chopper Circuit. The Output Filter (option PF) should be investigated as an alternative.	Output
PH	Single Overload Relay - Uses a bimetallic overload relay to provide additional overload current protection to the motor on configurations without bypass options. It is included with the Bypass Configurations for overload current protection in the bypass mode. The Overload Relay is mounted within the enclosure, and is manually resettable. Heater pack included.	Output
PI	Dual Overload Relays - This option is recommended when a single drive is operating 2 motors and overload current protection is needed for each of the motors. The standard configuration includes two bimetallic overload relays, each sized to protect a motor with 50% of the drive hp rating. For example, a 100 hp drive would include two overload relays sized to protect two 50 hp motors. The relays are mounted within the enclosure, and are manually resettable. Heater packs not included.	Output
PN	Dual Overloads for Bypass - This option is recommended when a single drive is operating 2 motors in the bypass mode and overload current protection is needed for each of the motors. The standard configuration includes two bimetallic overload relays, each sized to protect a motor with 50% of the drive hp rating. For example, a 100 hp drive would include two overload relays sized to protect two 50 hp motors. The relays are mounted within the enclosure, and are manually resettable.	Addl. Bypass

Table 44. Available Control/Communications Options (Continued)

Option	Description	Option Type
RA	Manual HOA Bypass Controller - The Manual HAND/OFF/AUTO (HOA) - 3-contactor - bypass option provides a means of bypassing the SVX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. This option consists of an input disconnect, a fused control power transformer, and a full voltage bypass starter with a door mounted HOA selector switch and an INVERTER/BYPASS switch. The HOA switch provides the ability to start and stop the drive in the inverter mode. For applications up to 100 hp , a Freedom Series IEC input contactor, a Freedom Series IEC output contactor, and a Freedom Series IEC starter with a bimetallic overload relay is included. For applications above 100 hp , an Advantage input contactor, an Advantage output contactor and an Advantage starter with electronic overload protection is included. The contactors are mechanically and electrically interlocked (see power diagram on Page 26).	Bypass
RB	Manual IOB Bypass Controller - The Manual INVERTER/OFF/BYPASS (IOB) - 3-contactor - bypass option provides a means of bypassing the SVX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. This option consists of an input disconnect, a fused control power transformer, and a full voltage bypass starter with a door mounted IOB selector switch. For applications up to 100 hp , a Freedom Series IEC input contactor, a Freedom Series IEC output contactor, and a Freedom Series IEC starter with a bimetallic overload relay is included. For applications above 100 hp , an Advantage input contactor, an Advantage output contactor and an Advantage starter with electronic overload protection is included. The contactors are mechanically and electrically interlocked (see power diagram on Page 26).	Bypass
RC	Auto Transfer HOA Bypass Controller - The Manual HAND/OFF/AUTO (HOA) - 3-contactor - bypass option provides a means of bypassing the SVX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. The circuitry provides an automatic transfer of the load to "across the line" operation after a drive trip. This option consists of an input disconnect, a fused control power transformer, and a full voltage bypass starter with a door mounted HOA selector switch and an INVERTER/BYPASS switch. The HOA switch provides the ability to start and stop the drive in either mode. For applications up to 100 hp , a Freedom Series IEC input contactor, a Freedom Series IEC output contactor, and a Freedom Series IEC starter with a bimetallic overload relay is included. For applications above 100 hp , an Advantage input contactor, an Advantage output contactor and an Advantage starter with electronic overload protection is included. The contactors are mechanically and electrically interlocked (see power diagram on Page 26). Door mounted pilot lights are provided which indicate bypass or inverter operation. A green light indicates when the motor is running in inverter mode and an amber light indicates when the motor is running in bypass mode. WARNING: The motor may restart when the overcurrent relay is reset when operating in bypass, unless the IOB selector switch is turned to the OFF position.	Bypass
RD	Auto Transfer IOB Bypass Controller - The Auto INVERTER/OFF/BYPASS (IOB) - 3-contactor - bypass option provides a means of bypassing the SVX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. The circuitry provides an automatic transfer of the load to "across the line" operation after a drive trip. This option consists of an input disconnect, a fused control power transformer, and a full voltage bypass starter with a door mounted IOB selector switch. For applications up to 100 hp , a Freedom Series IEC input contactor, a Freedom Series IEC output contactor, and a Freedom Series IEC starter with a bimetallic overload relay is included. For applications above 100 hp , an Advantage input contactor, an Advantage output contactor and an Advantage starter with electronic overload protection is included. The contactors are mechanically and electrically interlocked (see power diagram on Page 26). Door mounted pilot lights are provided which indicate bypass or inverter operation. A green light indicates when the motor is running in inverter mode and an amber light indicates when the motor is running in bypass mode. WARNING: The motor may restart when the overcurrent relay is reset when operating in bypass, unless the IOB selector switch is turned to the OFF position.	Bypass
S5	Floor Stand 22" - Converts a Size 1 or 2, normally wall mounted enclosure to a floor standing enclosure with a height of 22" (558.8 mm).	Enclosure
S6	Floor Stand 12" - Converts a Size 2, normally wall mounted enclosure to a floor standing enclosure with a height of 12" (304.8 mm).	Enclosure
S7	10" Expansion - In a Size 5 enclosure, the extension allows for bottom cable entry and additional space for customer mounted components. NOTE: Enclosure expansion rated NEMA Type 1 only.	Enclosure
S8	20" Expansion - In a Size 5 enclosure, the extension allows for bottom cable entry and additional space for customer mounted components. When the Output Filter (option PF) is selected for a drive using a Size 5 enclosure, this expansion box is required and included in the option pricing. NOTE: Enclosure expansion rated NEMA Type 1 only.	Enclosure
S9	Space Heater - Prevents condensation from forming in the enclosure when the drive is inactive or in storage. Includes a thermostat for variable temperature control. A 200W heater is installed in enclosures 0 and 1, and a 400 W heater is installed in enclosures $2-5$. Requires a customer supplied 115 V remote supply source.	Enclosure

Note: For availability, see Product Selection for base drive voltage required.

9000X Series Option Board Kits

The 9000X Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards (see Figure 16).

The 9000X Series factory installed standard board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A and B.

Figure 16. 9000X Series Option Boards

Table 45. Option Board Kits

Option Kit Description (2)	Allowed Slot Locations ${ }^{1}$	Field Installed	Factory Installed	SVX Ready Programs						
		Catalog Number	Option Designator	Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC
Standard I/O Cards (See Figure 1)										
2 RO (NC/NO)	B	OPTA2	-	X	X	X	X	X	X	X
$\begin{aligned} & 6 \mathrm{DI}, 1 \mathrm{DO}, 2 \mathrm{Al}, 1 \mathrm{AO}, \\ & 1 \text { +10V DC ref, } 2 \text { ext } \\ & +24 \mathrm{~V} \text { DC/ EXT + } 24 \mathrm{~V} \text { DC } \end{aligned}$	A	OPTA9	-	X	X	X	X	X	X	X
Extended I/O Card Options										
$\begin{aligned} & 6 \mathrm{DI}, 1 \mathrm{ext} \\ & +24 \mathrm{~V} \text { DC/EXT +24V DC } \end{aligned}$	B, C, D, E	OPTB1	B1	-	-	-	-	-	X	X
$\begin{aligned} & 1 \text { RO (NC/NO), } 1 \text { RO (NO), } 1 \\ & \text { Therm } \end{aligned}$	B, C, D, E	OPTB2	B2	-	-	-	-	-	X	X
1 Al (mA isolated), 2 AO (mA isolated), 1 ext +24V DC/EXT +24V DC	B, C, D, E	OPTB4	B4	X	X	X	X	X	X	X
3 RO (NO)	B, C, D, E	OPTB5	B5	-	-	-	-	-	X	X
$\begin{aligned} & 1 \text { ext }+24 \mathrm{~V} \mathrm{DC} / \mathrm{EXT}+24 \mathrm{~V} \\ & \mathrm{DC}, 3 \mathrm{Pt} 100 \end{aligned}$	B, C, D, E	OPTB8	B8	-	-	-	-	-	-	-
1 RO (NO), 5 DI 42-240V AC Input	B,C, D, E	OPTB9	B9	-	-	-	-	-	X	X

Communication Cards ${ }^{(3)}$

Modbus	D, E	OPTC2	C2	X	X	X	X	X	X	X
Johnson Controls N2	D, E	OPTC2	CA	-	-	-	-	-	-	-
Profibus DP	D, E	OPTC3	C3	X	X	X	X	X	X	X
LonWorks	D, E	OPTC4	C4	X	X	X	X	X	X	X
$\begin{aligned} & \hline \text { Profibus DP } \\ & \text { (D9 Connector) } \end{aligned}$	D, E	OPTC5	C5	X	X	X	X	X	X	X
CanOpen (Slave)	D, E	OPTC6	C6	X	X	X	X	X	X	X
DeviceNet	D, E	OPTC7	C7	X	X	X	X	X	X	X
Modbus (D9 Type Connector)	D, E	OPTC8	C8	X	X	X	X	X	X	X
RS-232 with D9 Connection	D, E	OPTD3	D3	X	X	X	X	X	X	X

Keypad

9000X Series Local Remote Keypad	-	KEYPAD-LOC/REM	-	-	-	-	-	-
9000X Series Remote Mount Keypad Kit (Keypad not included)	-	OPTRMT -KIT- $9000 X$	-	-	-	-	-	-

(1) Option card must be installed in one of the slots listed for that card. Slot indicated in Bold is the preferred location.
(2) $\mathrm{AI}=$ Analog Input; $\mathrm{AO}=$ Analog Output, $\mathrm{DI}=$ Digital Input, $\mathrm{DO}=$ Digital Output, $\mathrm{RO}=$ Relay Output
(3) OPTC2 is a multi-protocol option card.

ModBus RTU Network Communications

The Modbus Network Card OPTC2 is used for connecting the SVX9000 as a slave on a Modbus network. The interface is connected by a 9-pin DSUB connector (female) and the baud rate ranges from 300 to 19200 baud. Other communication parameters include an address range from 1 to 247 ; a parity of None, Odd or Even; and the stop bit is 1 .

Johnson Controls Metasys ${ }^{\text {TM }}$ N2 Network Communications

The OPTC2 fieldbus board provides communication between the SVX9000 drive and a Johnson Controls Metasys ${ }^{\text {TM }}$ N2 network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. The N2 fieldbus is available as a factory installed option and as a field installable kit.

Profibus Network Communications

The Profibus Network Card OPTC3 is used for connecting the SVX9000 as a slave on a Profibus-DP network. The interface is connected by a 9-pin DSUB connector (female). The baud rates range from 9.6 K baud to 12 M baud, and the addresses range from 1 to 127 .

LonWorks Network Communications

The LonWorks Network Card OPTC4 is used for connecting the SVX9000 on a LonWorks network. This interface uses Standard Network Variable Types (SNVT) as data types. The channel connection is achieved using a FTT-10A Free Topology transceiver via a single twisted transfer cable. The communication speed with LonWorks is $78 \mathrm{kBits} / \mathrm{s}$.

Table 46. I/O Specifications for the Control/Communication Options

Description	Specifications
Analog voltage, input	$0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}} \geq 200 \mathrm{k} \Omega$
Analog current, input	0 (4) - $20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250 \Omega$
Digital Input	24 V : "0" ${ }^{\text {c }} 10 \mathrm{~V}$, " 1 " $\geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>5 \mathrm{k} \Omega$
Aux. voltage	24 V ($\pm 20 \%$), max. 50 mA
Reference voltage	$10 \mathrm{~V} \pm 3 \%$, max. 10 mA
Analog current, output Analog voltage, output	0 (4) $-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=500 \mathrm{k} \Omega$, resolution 10 bit, accuracy $\leq \pm 2 \%$ 0 (2) $-10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{k} \Omega$, resolution 10 bit, accuracy $\leq \pm 2 \%$
Relay output Max. switching voltage Max. switching load Max. continuous load	```300V DC, 250V AC 8A/24V DC, .4A/300V DC, 2 kVA/250V AC 2A rms```
Thermistor input	$\mathrm{R}_{\text {trip }}=4.7 \mathrm{k} \Omega$
Encoder input	$\begin{array}{\|l} 24 \mathrm{~V}: ~ " 0 " \leq 10 \mathrm{~V}, " 1 " \geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}=2.2 \mathrm{k} \Omega \\ 5 \mathrm{~V}: " 0 " \leq 2 \mathrm{~V}, " 1 " \geq 3 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}=330 \Omega \end{array}$

SVX Conversion Kit

Table 47. SVX Conversion Kit Frame 4-7

Frame Size	Enclosure Size	Catalog Number	Delivery Code
FR4	0	OPTCON-SVXFR4- SZ00	FB10
FR4	1	OPTCON-SVXFR4- SZ01	FB10
FR5	0	OPTCON-SVXFR5- SZ00	FB10
FR5	1	OPTCON-SVXFR5- SZ01	FB10
FR6	1	OPTCON-SVXFR6- SZ01	FB10
FR6	2	OPTCON-SVXFR6- SZ02	FB10
FR7	2	OPTCON-SVXFR7- SZ02	FB10

Note: The kit consists of a flange kit, adapter plate(s), hardware, remote keypad kit and SVX9000 decal.

Abstract

\section*{CanOpen (Slave) Communications}

The CanOpen (Slave) Network Card OPTC6 is used for connecting the OPTC6 is used for connecting the SVX9000 to a host system. According to ISO11898 standard cables to be to ISO11898 standard cables to be chosen for CAN bus should have a nominal impedance of 120Ω, and specific line delay of nominal $5 \mathrm{nS} / \mathrm{m}$. 120Ω line termination resistors required for installation.

\section*{DeviceNet Network Communications}

The DeviceNet Network Card OPTC7 is used for connecting the SVX9000 on a DeviceNet Network. It includes a on a DeviceNet Network. It includes a 5.08 mm pluggable connector. Transfer method is via CAN using a 2 -wire fer method is via CAN using a 2 -wire twisted shielded cable with 2-wire bus power cable and drain. The baud rates used for communication include 125 K baud, 250 K baud and 500 K baud.

 baud, 250 K baud and 500 k baud.
Product Selection

When Ordering

■ Select a Base Catalog Number that meets the application requirements - nominal horsepower, voltage and enclosure rating (the enclosed drive's continuous output amp rating should be equal to or greater than the motor's full load amp rating). The base enclosed package includes a standard drive, door mounted Local/Remote Keypad and enclosure.

- If Dynamic Brake Chopper or Control/Communication option is desired, change the appropriate code in the Base Catalog Number.
- Select Enclosed Options. Add the codes as suffixes to the Base Catalog Number in alphabetical and numeric order.
- Read all Footnotes.

208V Drives

Table 48. 208V AC Input Base Drive

Enclosure	hp	Current Size ${ }^{(1)}$	(A)	NEMA Type 1		NEMA Type 12
		Frame Size	Base Catalog Number (2)	Frame Size	Base Catalog Number (2)	

208V Constant Torque Drive and Enclosure

0	$3 / 4$	3.7	4	SVXF0711EA	4	SVXF0721EA
0	1	4.8	4	SVX00111EA	4	SVX00121EA
0	$1-1 / 2$	6.6	4	SVXF1511EA	4	SVXF1521EA
0	2	7.8	4	SVX00211EA	4	SVX00221EA
0	3	11	4	SVX00311EA	4	SVX00321EA
0	5	17.5	5	SVX00511EA	5	SVX00521EA
0	$7-1 / 2$	25	5	SVX00711EA	5	SVX00721EA
1	10	31	6	SVX01011EA	6	SVX01021EA
1	15	48	6	SVX01511EA	6	SVX01521EA
2	20	61	7	SVX02011DA	7	SVX02021DA
2	25	75	7	SVX02511DA	7	SVX02521DA
2	30	88	7	SVX03011DA	7	SVX03021DA
3	40	114	8	SVX04011DA	8	SVX04021DA
4	50	143	8	SVX05011DA	8	SVX05021DA
5	60	170	8	SVX06011DA	8	SVX06021DA
5	75	211	9	SVX07511DA	9	SVX07521DA
5	100	273	9	SVX10011DA	9	SVX10021DA

208V Variable Torque Drive and Enclosure

0	1	4.8	4	SVX00111BA	4	SVX00121BA
0	$1-1 / 2$	6.6	4	SVXF1511BA	4	SVXF1521BA
0	2	7.8	4	SVX00211BA	4	SVX00221BA
0	3	11	4	SVX00311BA	4	SVX00321BA
0	5	17.5	5	SVX00511BA	5	SVX00521BA
0	$7-1 / 2$	25	5	SVX00711BA	5	SVX00721BA
0	10	31	5	SVX01011BA	5	SVX01021BA
1	15	48	6	SVX01511BA	6	SVX01521BA
1	20	61	6	SVX02011BA	6	SVX02021BA
2	25	75	7	SVX02511AA	7	SVX02521AA
2	30	88	7	SVX03011AA	7	SVX03021AA
2	40	114	7	SVX04011AA	7	SVX04021AA
3	50	-	8	SVX05011AA	8	SVX05021AA
4	60	170	8	SVX06011AA	8	SVX06021AA
5	75	-	8	SVX07511AA	8	SVX07521AA
5	100	-	9	SVX10011AA	9	SVX10021AA

(1) Enclosure dimensions listed on Pages 37-44.
(2) Includes drive, Local/Remote Keypad and enclosure.

230V Drives

Table 49. 230V AC Input Base Drive

Enclosure Size ${ }^{(3)}$	hp	Current (A)	NEMA Type 1	Frame Size	Base Catalog Number (4)	Frame Size

230V Constant Torque Drive and Enclosure

0	$3 / 4$	3.7	4	SVXF0712EA	4	SVXF0722EA
0	1	4.8	4	SVX00112EA	4	SVX00122EA
0	$1-1 / 2$	6.6	4	SVXF1512EA	4	SVXF1522EA
0	2	7.8	4	SVX00212EA	4	SVX00222EA
0	3	11	4	SVX00312EA	4	SVX00322EA
0	5	17.5	5	SVX00512EA	5	SVX00522EA
0	$7-1 / 2$	25	5	SVX00712EA	5	SVX00722EA
1	10	31	6	SVX01012EA	6	SVX01022EA
1	15	48	6	SVX01512EA	6	SVX01522EA
2	20	61	7	SVX02012DA	7	SVX02022DA
2	25	75	7	SVX0212DA	7	SVX02522DA
2	30	88	7	SVX03012DA	7	SVX03022DA
3	40	114	8	SVX04012DA	8	SVX04022DA
4	50	140	8	SVX05012DA	8	SVX05022DA
5	60	170	8	SVX06012DA	8	SVX06022DA
5	75	205	9	SVX07512DA	9	SVX07522DA
5	100	261	9	SVX10012DA	9	SVX10022DA

230V Variable Torque Drive and Enclosure

0	1	4.8	4	SVX00112BA	4	SVX00122BA
0	$1-1 / 2$	6.6	4	SVXF1512BA	4	SVXF1522BA
0	2	7.8	4	SVX00212BA	4	SVX00222BA
0	3	11	4	SVX00312BA	4	SVX00322BA
0	5	17.5	5	SVX00512BA	5	SVX00522BA
0	$7-1 / 2$	25	5	SVX00712BA	5	SVX00722BA
0	10	31	5	SVX01012BA	5	SVX01022BA
1	15	48	6	SVX01512BA	6	SVX01522BA
1	20	61	6	SVX02012BA	6	SVX02022BA
2	25	75	7	SVX02512AA	7	SVX02522AA
2	30	88	7	SVX03012AA	7	SVX03022AA
2	40	114	7	SVX04012AA	7	SVX04022AA
3	50	140	8	SVX05012AA	8	SVX05022AA
4	60	170	8	SVX06012AA	8	SVX06022AA
5	75	205	8	SVX07512AA	8	SVX07522AA
5	100	261	9	SVX10012AA	9	SVX10022AA

[^3]
480V Drives

Table 50. 480V AC Input Base Drive

Enclosure Size ${ }^{(1)}$	CT hp	Current (A)	NEMA Type 1		NEMA Type 12	
			Base Catalog Number (2)	Frame Size	Base Catalog Number (2)	

0	1	2.2	4	SVX00114EA	4	SVX00124EA
0	$1-1 / 2$	3.3	4	SVXF1514EA	4	SVXF1524EA
0	2	4.3	4	SVX00214EA	4	SVX00224EA
0	3	5.6	4	SVX00314EA	4	SVX00324EA
0	5	7.6	4	SVX00514EA	4	SVX00524EA
0	$7-1 / 2$	12	5	SVX00714EA	5	SVX00724EA
0	10	16	5	SVX01014EA	5	SVX01024EA
0	15	23	5	SVX01514EA	5	SVX01524EA
1	20	31	6	SVX02014EA	6	SVX02024EA
1	25	38	6	SVX02514EA	6	SVX02524EA
1	30	46	6	SVX03014EA	6	SVX03024EA
2	40	61	7	SVX04014DA	7	SVX04024DA
2	50	72	7	SVX05014DA	7	SVX05024DA
2	60	87	7	SVX06014DA	7	SVX06024DA
3	75	105	8	SVX07514DA	8	SVX07524DA
3	100	140	8	SVX10014DA	8	SVX10024DA
4	125	170	8	SVX12514DA	8	SVX12524DA
5	150	205	9	SVX15014DA	9	SVX15024DA
5	200	245	9	SVX20014DA	9	SVX20024DA

Variable Torque Drive and Enclosure

0	$1-1 / 2$	3.3	4	SVXF1514BA	4	SVXF1524BA
0	2	4.3	4	SVX00214BA	4	SVX00224BA
0	3	5.6	4	SVX00314BA	4	SVX00324BA
0	5	7.6	4	SVX00514BA	4	SVX00524BA
0	$7-1 / 2$	12	4	SVX00714BA	4	SVX00724BA
0	10	16	5	SVX01014BA	5	SVX01024BA
0	15	23	5	SVX01514BA	5	SVX01524BA
0	20	31	5	SVX02014BA	5	SVX02024BA
1	25	38	6	SVX02514BA	6	SVX02524BA
1	30	46	6	SVX03014BA	6	SVX03024BA
1	40	61	6	SVX04014BA	6	SVX04024BA
2	50	72	7	SVX05014AA	7	SVX05024AA
2	60	87	7	SVX06014AA	7	SVX06024AA
2	75	105	7	SVX07514AA	7	SVX07524AA
3	100	140	8	SVX10014AA	8	SVX10024AA
4	125	170	8	SVX12514AA	8	SVX12524AA
4	150	205	8	SVX15014AA	8	SVX15024AA
5	200	261	9	SVX20014AA	9	SVX20024AA
5	250	300	9	SVX25014AA	9	SVX25024AA

Enclosure dimensions listed on Pages 37-44.
(2) Includes drive, Local/Remote keypad and enclosure.

Cutler-Hammer

Dimensions

Table 51. Approximate Dimensions and Shipping Weight — Enclosed Products

Enclosure Size	Dimensions in Inches (mm)												
	WideA	$\begin{aligned} & \hline \text { High } \\ & \text { B } \end{aligned}$	DeepC	Mounting							H	Min. Air Space	
				D	D1	E	E1	F	G	G1		J	K
0	$\begin{aligned} & \hline 19.9 \\ & (504) \end{aligned}$	$\begin{aligned} & \hline 29.0 \\ & (737) \end{aligned}$	$\begin{aligned} & \hline 16.4 \\ & (416) \end{aligned}$	$\begin{aligned} & \hline 18.3 \\ & (465) \end{aligned}$	-	-	-	$\begin{aligned} & \hline 27.4 \\ & (695) \end{aligned}$	-	-	$\begin{aligned} & \hline 25.4 \\ & (644) \end{aligned}$	$\begin{aligned} & \hline 4.0 \\ & (102) \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & (76) \end{aligned}$

Table 51. Approximate Dimensions and Shipping Weight - Enclosed Products (Continued)

Enclosure Size	Dimensions in Inches (mm)										Max. Approx. Ship. Wt. Lbs. (kg)
	Cable Entry					Door Clearance S	T	U	V	W	
	L	M	N	P	R						
0	$\begin{aligned} & \hline 5.0 \\ & (127) \end{aligned}$	-	-	$\begin{aligned} & \hline 6.0 \\ & (152) \end{aligned}$	$\begin{aligned} & \hline 9.6 \\ & (245) \end{aligned}$	$\begin{aligned} & 26.4 \\ & (669) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.5 \\ (38) \end{array}$	$\begin{aligned} & 6.3 \\ & (160) \end{aligned}$	$\begin{aligned} & \hline 4.3 \\ & (108) \end{aligned}$	$\begin{aligned} & 5.3 \\ & (134) \end{aligned}$	200 (91)

Figure 17. Approximate Dimensions

Table 52. Approximate Dimensions and Shipping Weight — Enclosed Products

Enclosure Size	Dimensions in Inches (mm)												
	WideA	HighB	DeepC	Mounting							H	Min. Air Space	
				D	D1	E	E1	F	G	G1		J	K
1	$\begin{aligned} & \hline 26.4 \\ & (669) \end{aligned}$	$\begin{aligned} & 36 \\ & (914) \end{aligned}$	$\begin{aligned} & 16.3 \\ & (414) \end{aligned}$	$\begin{aligned} & \hline 24.8 \\ & (630) \end{aligned}$	-	-	-	$\begin{aligned} & \hline 34.0 \\ & (864) \end{aligned}$	-	-	$\begin{aligned} & 32.4 \\ & (822) \end{aligned}$	$\begin{array}{\|l\|} \hline 4.0 \\ (102) \end{array}$	$\begin{array}{\|l\|} \hline 3.0 \\ \text { (76) } \end{array}$

Table 52. Approximate Dimensions and Shipping Weight — Enclosed Products (Continued)

Enclosure Size	Dimensions in Inches (mm)															
	Cable Entry					Door Clearance S	T	U	V	W	Floor Stand					
	L	M	N	P	R						X	Y	Z	AA	BB	CC
1	$\begin{aligned} & \hline 11.0 \\ & (279) \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & (152) \end{aligned}$	$\begin{aligned} & \hline 9.0 \\ & (229) \end{aligned}$	$\begin{array}{\|l\|} \hline 10.0 \\ (254) \end{array}$	$\begin{aligned} & \hline 6.5 \\ & (165) \end{aligned}$	$\begin{aligned} & \hline 26.4 \\ & (669) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.5 \\ \text { (38) } \end{array}$	$\begin{aligned} & \hline 4.3 \\ & (108) \end{aligned}$	-	-	$\begin{aligned} & 56.0 \\ & (1422) \end{aligned}$	$\begin{array}{\|l\|} \hline 4.3 \\ (108) \end{array}$	$\begin{aligned} & \hline 11.1 \\ & (281) \end{aligned}$	$\begin{aligned} & \hline 1.8 \\ & (46) \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & (19) \end{aligned}$	$\begin{aligned} & \hline 55.2 \\ & (1402) \end{aligned}$

Table 52. Approximate Dimensions and Shipping Weight - Enclosed Products (Continued)

Enclosure Size	Dimensions in Inches (mm)																Max. Approx. Ship. Wt. Lbs. (kg)
	Floor Stand											RR	SS	TT	UU	VV	
	DD	EE	FF	GG	HH	JJ	KK	LL	MM	NN	PP						
1	$\begin{aligned} & \hline 26.0 \\ & (660) \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & (90) \end{aligned}$	$\begin{aligned} & \hline 5.5 \\ & (141) \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & (76) \end{aligned}$	$\begin{array}{\|l\|} \hline 6.0 \\ (152) \end{array}$	$\begin{array}{\|l\|} \hline 2.0 \\ \text { (51) } \end{array}$	$\begin{aligned} & \hline 5.4 \\ & (136) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.1 \\ (28) \end{array}$	$\begin{aligned} & \hline 8.8 \\ & (224) \end{aligned}$	$\begin{aligned} & 5.4 \\ & (137) \end{aligned}$	-	-	-	-	-	-	230 (104)

Figure 18. Approximate Dimensions

Table 53. Approximate Dimensions and Shipping Weight - Enclosed Products

Enclosure Size	Dimensions in Inches (mm)												
	Wide A	HighB	Deep\mathbf{C}	Mounting							H	Min. Air Space	
				D	D1	E	E1	F	G	G1		J	K
2	$\begin{aligned} & \hline 26.4 \\ & (669) \end{aligned}$	$\begin{aligned} & 59.0 \\ & \text { (1499) } \end{aligned}$	$\begin{aligned} & 19.4 \\ & (492) \end{aligned}$	$\begin{aligned} & \hline 24.8 \\ & (630) \end{aligned}$	-	-	-	$\begin{array}{\|l\|} \hline 57.0 \\ (1448) \end{array}$	-	-	$\begin{array}{\|l\|} \hline 55.4 \\ (1406) \end{array}$	$\begin{aligned} & \hline 4.0 \\ & (102) \end{aligned}$	$\begin{aligned} & 3.0 \\ & (76) \end{aligned}$

Table 53. Approximate Dimensions and Shipping Weight — Enclosed Products (Continued)

Enclosure Size	Dimensions in Inches (mm)															
	Cable Entry					Door Clearance S	T	U	V	W	Floor Stand					
	L	M	N	P	R						X	Y	Z	AA	BB	CC
2	$\begin{aligned} & \hline 5.9 \\ & (149) \end{aligned}$	-	-	$\begin{aligned} & \hline 12.4 \\ & (315) \end{aligned}$	$\begin{aligned} & \hline 9.5 \\ & (241) \end{aligned}$	$\begin{aligned} & \hline 26.4 \\ & (669) \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & \text { (38) } \end{aligned}$	$\begin{aligned} & \hline 4.8 \\ & (121) \end{aligned}$	$\begin{aligned} & \hline 5.9 \\ & (151) \end{aligned}$	-	$\begin{aligned} & \hline 69.0 \\ & (1753) \end{aligned}$	$\begin{aligned} & \hline 4.8 \\ & (121) \end{aligned}$	$\begin{array}{\|l\|} \hline 13.6 \\ (344) \end{array}$	$\begin{aligned} & \hline 1.8 \\ & (46) \end{aligned}$	$\begin{array}{\|l\|} \hline .8 \\ \text { (19) } \\ \hline \end{array}$	$\begin{aligned} & \hline 68.2 \\ & (1732) \end{aligned}$

Table 53. Approximate Dimensions and Shipping Weight — Enclosed Products (Continued)

Enclosure Size	Dimensions in Inches (mm)																Max. Approx. Ship. Wt. Lbs. (kg)
	Floor Stand											RR	SS	TT	UU	VV	
	DD	EE	FF	GG	HH	JJ	KK	LL	MM	NN	PP						
2	$\begin{aligned} & \hline 26.0 \\ & (660) \end{aligned}$	$\begin{array}{\|l\|} \hline 4.8 \\ (121) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 6.8 \\ (172) \end{array}$	$\begin{array}{\|l\|} \hline 3.0 \\ \text { (76) } \end{array}$	$\begin{aligned} & \hline 6.0 \\ & (152) \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & \text { (51) } \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & (127) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.1 \\ \text { (28) } \\ \hline \end{array}$	$\begin{aligned} & \hline 11.3 \\ & (288) \end{aligned}$	$\begin{aligned} & \hline 79.0 \\ & (2007) \end{aligned}$	$\begin{array}{\|l\|} \hline 78.2 \\ (1986) \end{array}$	-	-	-	-	-	380 (173)

Figure 19. Approximate Dimensions

Table 54. Approximate Dimensions and Shipping Weight — Enclosed Products

Enclosure Size	Dimensions in Inches (mm)												
	WideA	$\begin{aligned} & \hline \text { High } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { Deep } \\ & \text { C } \end{aligned}$	Mounting							H	Min. Air Space	
				D	D1	E	E1	F	G	G1		J	K
3	$\begin{aligned} & 26.4 \\ & (671) \end{aligned}$	$\begin{aligned} & \hline 77.0 \\ & (1956) \end{aligned}$	$\begin{aligned} & 19.4 \\ & (493) \end{aligned}$	$\begin{aligned} & 19.5 \\ & (495) \end{aligned}$	$\begin{aligned} & 3.3 \\ & (83) \end{aligned}$	$\begin{aligned} & 23.0 \\ & (584) \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & \text { (38) } \end{aligned}$	$\begin{aligned} & 11.7 \\ & (298) \end{aligned}$	$\begin{aligned} & 5.5 \\ & (140 .) \end{aligned}$	$\begin{aligned} & .9 \\ & (24) \end{aligned}$	$\begin{aligned} & 76.4 \\ & \text { (1939) } \end{aligned}$	$\begin{array}{\|l\|} \hline 4.0 \\ (102) \end{array}$	$\begin{array}{\|l\|} \hline 3.0 \\ (76) \end{array}$

Table 54. Approximate Dimensions and Shipping Weight — Enclosed Products (Continued)

Enclosure Size	Dimensions in Inches (mm)															Max. Approx. Ship. Wt. Lbs. (kg)
	Cable Entry					Door Clearance S	T	U	V	W	RR	SS	TT	UU	VV	
	L	M	N	P	R											
3	$\begin{array}{\|l\|} \hline 5.3 \\ (133) \end{array}$	$\begin{aligned} & \hline 23.4 \\ & (594) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (254) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.3 \\ \text { (32) } \\ \hline \end{array}$	$\begin{aligned} & 12.9 \\ & (328) \end{aligned}$	$\begin{array}{\|l\|} \hline 26.4 \\ (669) \end{array}$	$\begin{array}{\|l\|} \hline 1.5 \\ \text { (38) } \end{array}$	$\begin{aligned} & 8.0 \\ & (203) \end{aligned}$	$\begin{array}{\|l\|} \hline 4.8 \\ (121) \end{array}$	$\begin{array}{\|l\|} \hline 6.8 \\ (173) \end{array}$	$\begin{array}{\|l\|} \hline 79.5 \\ (2018) \end{array}$	$\begin{array}{\|l\|} \hline 13.4 \\ (340) \end{array}$	$\begin{array}{\|l\|} \hline .8 \\ (19) \end{array}$	$\begin{array}{\|l\|} \hline 1.3 \\ \text { (32) } \\ \hline \end{array}$	$\begin{aligned} & \hline 26.0 \\ & (660) \end{aligned}$	690 (313)

NEMA Type 1, NEMA Type 12, Size 3 NEMA Type 12 Includes Cover Plates Over Louvers

For Reference Only,
 Dimensions Subject

 to Change.Figure 20. Approximate Dimensions

Table 55. Approximate Dimensions and Shipping Weight - Enclosed Products

Enclosure Size	Dimensions in Inches (mm)												
	WideA	$\begin{array}{\|l\|l} \hline \text { High } \\ \text { B } \end{array}$	$\begin{array}{\|l\|} \hline \text { Deep } \\ \text { C } \end{array}$	Mounting							H	Min. Air Space	
				D	D1	E	E1	F	G	G1		J	K
4	$\begin{aligned} & \hline 26.4 \\ & (671) \end{aligned}$	$\begin{aligned} & 90.0 \\ & (2286) \end{aligned}$	$\begin{array}{\|l\|} \hline 19.4 \\ \text { (493) } \end{array}$	$\begin{array}{\|l} \hline 19.5 \\ (495) \end{array}$	$\begin{array}{\|l\|} \hline 3.3 \\ \text { (83) } \\ \hline \end{array}$	$\begin{aligned} & \hline 23.0 \\ & (584) \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & \text { (38) } \end{aligned}$	$\begin{array}{\|l\|} \hline 11.7 \\ (298) \end{array}$	$\begin{array}{\|l} 5.5 \\ (140) \end{array}$	$\begin{array}{\|l\|} \hline .9 \\ \hline(24) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 89.4 \\ (2270) \end{array}$	$\begin{aligned} & \hline 4.0 \\ & (102) \end{aligned}$	$\begin{array}{\|l\|} \hline 3.0 \\ (76) \end{array}$

Table 55. Approximate Dimensions and Shipping Weight - Enclosed Products (Continued)

Enclosure Size	Dimensions in Inches (mm)															Max. Approx. Ship. Wt. Lbs. (kg)
	Cable Entry					Door Clearance S	T	U	V	W	RR	SS	TT	UU	VV	
	L	M	N	P	R											
4	$\begin{array}{\|l\|} \hline 5.3 \\ (133) \end{array}$	$\begin{array}{\|l} \hline 23.4 \\ (594) \end{array}$	$\begin{array}{\|l\|} \hline 13.8 \\ (351) \end{array}$	$\begin{array}{\|l\|} \hline 1.0 \\ \text { (25) } \end{array}$	$\begin{array}{\|l\|l} \hline 11.2 \\ (286) \end{array}$	$\begin{aligned} & \hline 26.4 \\ & (669) \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & \text { (38) } \end{aligned}$	$\begin{array}{\|l\|} \hline 8.0 \\ (204) \end{array}$	$\begin{aligned} & \hline 4.8 \\ & (121) \end{aligned}$	-	$\begin{aligned} & 92.5 \\ & \text { (2349) } \end{aligned}$	$\begin{array}{\|l\|} \hline .8 \\ (19) \end{array}$	$\begin{array}{\|l\|} \hline 1.3 \\ \text { (32) } \end{array}$	-	-	825 (375)

NEMA Type 1, NEMA Type 12, Size 4 NEMA Type 12 Includes Cover Plates Over Louvers

For Reference Only,
Dimensions Subject
Dimensions Subje
to Change.

Figure 21. Approximate Dimensions

Table 56. Approximate Dimensions and Shipping Weight - Enclosed Products ©

Enclosure Size	Dimensions in Inches (mm)												
	Wide A	High B	DeepC	Mounting							H	Min. Air Space	
				D	D1	E	E1	F	G	G1		J	K
5	$\begin{aligned} & 40.0 \\ & (1016) \end{aligned}$	$\begin{aligned} & 90.0 \\ & (2286) \end{aligned}$	$\begin{aligned} & 21.3 \\ & (541) \end{aligned}$	$\begin{aligned} & 36.0 \\ & (914) \end{aligned}$	$\begin{aligned} & 2.0 \\ & \text { (51) } \end{aligned}$	-	-	$\begin{aligned} & \hline 8.0 \\ & (203) \end{aligned}$	$\begin{aligned} & \hline 10.8 \\ & (273) \end{aligned}$	-	$\begin{aligned} & 84.4 \\ & (2143) \end{aligned}$	$\begin{array}{\|l\|} \hline 4.0 \\ (102) \end{array}$	-

Table 56. Approximate Dimensions and Shipping Weight — Enclosed Products (Continued)

Enclosure Size	Dimensions in Inches (mm)															Max. Approx. Ship. Wt. Lbs. (kg)
	Cable Entry					Door Clearance S	T	U	V	W	RR	SS	TT	UU	VV	
	L	M	N	P	R											
5	$\begin{array}{\|l\|} \hline 15.0 \\ (381) \end{array}$	$\begin{aligned} & 10.0 \\ & (254) \end{aligned}$	$\begin{array}{\|l\|} \hline 4.8 \\ (122) \end{array}$	$\begin{array}{\|l\|} \hline 2.0 \\ \text { (51) } \end{array}$	-	$\begin{array}{\|l\|} \hline 36.3 \\ (921) \end{array}$	$\begin{array}{\|l} \hline 20.0 \\ (508) \end{array}$	-	-	-	$\begin{array}{\|l\|} \hline 94.0 \\ (2387) \end{array}$	$\begin{array}{\|l\|} \hline 15.5 \\ (394) \end{array}$	-	-	-	1275 (579)

Figure 22. Approximate Dimensions
(1) Future release.

Table 57. Approximate Dimensions and Shipping Weight — Enclosed Products ${ }^{(1)}$

Enclosure Size	Dimensions in Inches (mm)												
	Wide A	$\begin{array}{\|l} \hline \text { High } \\ \text { B } \end{array}$	$\begin{aligned} & \text { Deep } \\ & \text { C } \end{aligned}$	Mounting							H	Min. Air Space	
				D	D1	E	E1	F	G	G1		J	K
5-1P	$\begin{array}{\|l\|} \hline 50.0 \\ (1270) \end{array}$	$\begin{array}{\|l\|} \hline 90.0 \\ (2286) \end{array}$	$\begin{aligned} & \hline 21.3 \\ & (541) \end{aligned}$	$\begin{array}{\|l} \hline 36.0 \\ (914) \end{array}$	$\begin{array}{\|l\|} \hline 2.0 \\ (51) \end{array}$	-	-	$\begin{array}{\|l\|} \hline 8.0 \\ \text { (203) } \end{array}$	$\begin{aligned} & 10.8 \\ & (273) \end{aligned}$	-	$\begin{array}{\|l\|} \hline 84.4 \\ (2143) \end{array}$	$\begin{array}{\|l\|} \hline 4.0 \\ (102) \end{array}$	-

Table 57. Approximate Dimensions and Shipping Weight — Enclosed Products (Continued)

Enclosure Size	Dimensions in Inches (mm)															Max. Approx. Ship. Wt. Lbs. (kg)
	Cable Entry					Door Clearance S	T	U	V	W	RR	SS	TT	UU	VV	
	L	M	N	P	R											
5-1P	$\begin{aligned} & 17.1 \\ & (435) \end{aligned}$	$\begin{array}{\|l\|} \hline 8.0 \\ \text { (203) } \end{array}$	$\begin{array}{\|l\|} \hline 1.3 \\ \text { (33) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1.0 \\ \text { (25) } \\ \hline \end{array}$	-	$\begin{aligned} & \hline 36.3 \\ & (921) \end{aligned}$	$\begin{aligned} & \hline 20.0 \\ & (508) \end{aligned}$	$\begin{array}{\|l\|} \hline 18.4 \\ (466) \end{array}$	$\begin{array}{\|l\|} \hline 1.3 \\ \text { (32) } \end{array}$	-	$\begin{array}{\|l} \hline 94.0 \\ (2387) \end{array}$	$\begin{aligned} & \hline 15.5 \\ & (394) \end{aligned}$	-	-	-	1375 (624)

Figure 23. Approximate Dimensions
(1) Future release.

Table 58. Approximate Dimensions and Shipping Weight — Enclosed Products ${ }^{(1)}$

Enclosure Size	Dimensions in Inches (mm)												
	Wide A	$\begin{array}{\|l} \hline \text { High } \\ \text { B } \end{array}$	Deep\mathbf{C}	Mounting							H	Min. Air Space	
				D	D1	E	E1	F	G	G1		J	K
5-2P	$\begin{aligned} & \hline 60.0 \\ & (1524) \end{aligned}$	$\begin{aligned} & 90.0 \\ & (2286) \end{aligned}$	$\begin{aligned} & 21.3 \\ & (541) \end{aligned}$	$\begin{aligned} & 36.0 \\ & (914) \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & \text { (51) } \end{aligned}$	-	-	$\begin{array}{\|l\|} \hline 8.0 \\ (203) \end{array}$	$\begin{aligned} & \hline 10.8 \\ & (273) \end{aligned}$	-	$\begin{aligned} & 84.4 \\ & (2143) \end{aligned}$	$\begin{array}{\|l\|} \hline 4.0 \\ (102) \end{array}$	-

Table 58. Approximate Dimensions and Shipping Weight — Enclosed Products (Continued)

Enclosure Size	Dimensions in Inches (mm)															Max. Approx. Ship. Wt. Lbs. (kg)
	Cable Entry					Door Clearance S	T	U	V	W	RR	SS	TT	UU	VV	
	L	M	N	P	R											
5-2P	$\begin{aligned} & \hline 17.0 \\ & (432) \end{aligned}$	$\begin{aligned} & \hline 18.0 \\ & (457) \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & \text { (38) } \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & (25) \end{aligned}$	$\begin{aligned} & .9 \\ & (23) \end{aligned}$	$\begin{aligned} & 36.3 \\ & (921) \end{aligned}$	$\begin{array}{\|l\|} \hline 20.0 \\ (508) \end{array}$	$\begin{array}{l\|l\|} \hline 18.4 \\ (466) \end{array}$	$\begin{array}{\|l\|} \hline 1.3 \\ \text { (32) } \\ \hline \end{array}$	-	$\begin{aligned} & 94.0 \\ & (2387) \end{aligned}$	$\begin{array}{\|l\|} \hline 15.5 \\ (394) \end{array}$	-	-	-	1585 (720)

Figure 24. Approximate Dimensions

(1) Future release.

Eaton Electrical Inc. 1000 Cherrington Parkway
Moon Township, PA 15108-4312
USA
tel: 1-800-525-2000
www.EatonElectrical.com

[^0]: (1) Brake resistor terminal box (H 6) included when brake chopper ordered.

[^1]: (1) 5 hp VT only has no corresponding CT rated hp rating.

[^2]: (1) $7-1 / 2 \mathrm{hp}$ VT only has no corresponding CT rated hp rating.
 (2) SPX9000 Drives only (FR10 and larger).

[^3]: (3) Enclosure dimensions listed on Pages 37-44.
 (4) Includes drive, Local/Remote Keypad and enclosure.

