# 745 <br> TRANSFORMER MANAGEMENT RELAY™ Instruction Manual 

Firmware Revision: 250.000
Manual P/N: 1601-0070-B1 (GEK-106292)
Copyright © 2000 GE Power Management


GE Power Management
215 Anderson Avenue, Markham, Ontario Canada L6E 1B3
Tel: (905) 294-6222 Fax: (905) 294-8512 Internet: http://www.GEindustrial.com/pm


Manufactured under an ISO9001 Registered system.

These instructions do not purport to cover all details or variations in equipment nor provide for every possible contingency to be met in connection with installation, operation, or maintenance. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purpose, the matter should be referred to the General Electric Company.
To the extent required the products described herein meet applicable ANSI, IEEE, and NEMA standards; but no such assurance is given with respect to local codes and ordinances because they vary greatly.

1. PRODUCT OVERVIEW
1.1 INTRODUCTION
1.1.1 DESCRIPTION ..... 1-1
1.1.2 SUMMARY OF PROTECTION FEATURES ..... 1-2
1.1.3 ORDER CODES ..... 1-4
1.2 TECHNICAL SPECIFICATIONS
1.2.1 APPLICABILITY. ..... 1-5
1.2.2 INPUTS ..... 1-5
1.2.3 PROTECTION ELEMENTS ..... 1-6
1.2.4 OUTPUTS ..... 1-9
2. GETTING STARTED
2.1 USING THE FRONT PANEL DISPLAY
2.1.1 MANEUVERING ..... 2-1
2.2 CHANGING SETPOINTS
2.2.1 DESCRIPTION ..... 2-3
2.2.2 INSTALLING THE SETPOINT ACCESS JUMPER ..... 2-3
2.2.3 NUMERICAL SETPOINTS ..... 2-3
2.2.4 ENUMERATION SETPOINTS ..... 2-4
2.2.5 TEXT SETPOINTS ..... 2-5
2.3 SECURITY
2.3.1 INSTALLATION ..... 2-6
2.3.2 PASSCODE SECURITY SETUP ..... 2-6
a CHANGING THE PASSCODE ..... 2-6
b DISABLING/ENABLING PASSCODE SECURITY ..... 2-7
3. INSTALLATION
3.1 DRAWOUT CASE
3.1.1 CASE DESCRIPTION ..... 3-1
3.1.2 PANEL CUTOUT ..... 3-1
3.1.3 CASE MOUNTING ..... 3-2
3.1.4 UNIT WITHDRAWAL AND INSERTION ..... 3-2
a RELAY WITHDRAWAL ..... 3-2
b RELAY INSERTION ..... 3-3
c DRAWOUT SEAL ..... 3-3
3.2 TYPICAL WIRING
3.2.1 DESCRIPTION ..... 3-4
3.2.2 REAR TERMINAL LAYOUT ..... 3-4
3.2.3 REAR TERMINAL ASSIGNMENTS ..... 3-5
3.2.4 TYPICAL WIRING DIAGRAMS ..... 3-6
3.2.5 PHASE SEQUENCE AND TRANSFORMER POLARITY ..... 3-8
3.2.6 AC CURRENT TRANSFORMER INPUTS ..... 3-8
3.2.7 AC VOLTAGE INPUT ..... 3-8
3.2.8 CONTROL POWER ..... 3-9
3.2.9 LOGIC INPUTS ..... 3-9
3.2.10 ANALOG INPUT ..... 3-10
3.2.11 TAP POSITION INPUT ..... 3-10
3.2.12 RTD DRIVER/SENSOR ..... 3-10
3.2.13 OUTPUT RELAYS ..... 3-11
3.2.14 SOLID STATE TRIP OUTPUT ..... 3-11
3.2.15 ANALOG OUTPUTS ..... 3-11
3.2.16 RS485 / RS422 COMMUNICATION PORTS ..... 3-12
3.2.17 RS232 FRONT PANEL PROGRAM PORT ..... 3-13
3.2.18 IRIG-B ..... 3-14

## 4. FRONT PANEL OPERATION

4.1 FRONT PANEL
4.1.1 DESCRIPTION ..... 4-1
4.2 DISPLAY, INDICATORS, AND FRONT PORT
4.2.1 DISPLAY ..... 4-2
4.2.2 LEDS ..... 4-2
4.2.3 745 STATUS INDICATORS ..... 4-2
a IN SERVICE ..... 4-2
b SELF-TEST ERROR ..... 4-2
c TEST MODE ..... 4-2
d DIFFERENTIAL BLOCKED ..... 4-3
e LOCAL ..... 4-3
f MESSAGE ..... 4-3
4.2.4 SYSTEM STATUS INDICATORS ..... 4-3
a TRANSFORMER DE-ENERGIZED ..... 4-3
b TRANSFORMER OVERLOAD ..... 4-3
c LOAD-LIMIT REDUCED ..... 4-3
d SETPOINT GROUP 1 ..... 4-3
e SETPOINT GROUP 2 ..... 4-3
f SETPOINT GROUP 3 ..... 4-3
g SETPOINT GROUP 4 ..... 4-3
4.2.5 CONDITION INDICATORS ..... 4-4
a TRIP ..... 4-4
b ALARM ..... 4-4
c PICKUP ..... 4-4
d PHASE A $(B / C)$ ..... 4-4
e GROUND ..... 4-4
4.2.6 PROGRAM PORT ..... 4-4
4.3 KEYPAD
4.3.1 SETPOINT KEY ..... 4-5
4.3.2 ACTUAL KEY ..... 4-5
4.3.3 ESCAPE KEY ..... 4-5
4.3.4 ENTER KEY ..... 4-5
4.3.5 MESSAGE UP/DOWN KEY ..... 4-5
4.3.6 VALUE UP/DOWN KEY ..... 4-5
4.3.7 NUMBER KEYS ..... 4-6
4.3.8 HELP KEY ..... 4-6
4.3.9 RESET KEY. ..... 4-6
4.3.10 NEXT KEY ..... 4-6
5. SETPOINTS
5.1 OVERVIEW
5.1.1 SETPOINT GROUPS ..... 5-1
5.1.2 SETPOINT ENTRY ..... 5-2
5.1.3 SETPOINT WRITE ACCESS ..... 5-2
5.2 AUTO-CONFIGURATION
5.2.1 DESCRIPTION ..... 5-3
5.2.2 A TYPICAL POWER TRANSFORMER ..... 5-3
5.2.3 DYNAMIC CT RATIO MISMATCH CORRECTION ..... 5-3
a PROBLEM 1:USE OF STANDARD CT RATIOS ..... 5-3
b PROBLEM 2: ONLOAD TAP CHANGER ..... 5-4
5.2.4 PHASE SHIFTS ON THREE-PHASE TRANSFORMERS ..... 5-6
5.2.5 PHASE ANGLE CORRECTION ..... 5-8
5.2.6 ZERO-SEQUENCE COMPONENT REMOVAL ..... 5-9
5.2.7 TRANSFORMER TYPES TABLE ..... 5-10
5.2.8 TABLE OF PHASE SHIFTS ..... 5-23
5.3 S1 745 SETUP
5.3.1 DESCRIPTION ..... 5-24
5.3.2 PASSCODE ..... 5-24
5.3.3 PREFERENCES ..... 5-25
5.3.4 COMMUNICATIONS ..... 5-26
5.3.5 DNP COMMUNICATIONS ..... 5-27
5.3.6 RESETTING ..... 5-28
5.3.7 CLOCK ..... 5-28
5.3.8 DEFAULT MESSAGES ..... 5-29
a ADDING DEFAULT MESSAGES ..... 5-29
b REMOVING DEFAULT MESSAGES ..... 5-29
5.3.9 SCRATCHPAD ..... 5-30
5.3.10 INSTALLATION ..... 5-30
5.3.11 745 OPTIONS ..... 5-31
5.3.12 UPGRADE OPTIONS ..... 5-32
5.4 S2 SYSTEM SETUP
5.4.1 DESCRIPTION ..... 5-33
5.4.2 TRANSFORMER ..... 5-33
5.4.3 WINDING 1 (2/3) ..... 5-35
5.4.4 ONLOAD TAP CHANGER ..... 5-36
5.4.5 HARMONICS ..... 5-37
5.4.6 FLEXCURVES ..... 5-37
5.4.7 VOLTAGE INPUT ..... 5-38
5.4.8 AMBIENT TEMPERATURE ..... 5-39
5.4.9 ANALOG INPUT ..... 5-40
5.4.10 DEMAND METERING ..... 5-41
5.4.11 ANALOG OUTPUTS ..... 5-42
5.5 SETPOINTS S3 LOGIC INPUTS
5.5.1 DESCRIPTION ..... 5-43
5.5.2 LOGIC INPUTS ..... 5-43
5.5.3 VIRTUAL INPUTS ..... 5-44
5.6 S4 ELEMENTS
5.6.1 DESCRIPTION ..... 5-45
5.6.2 INTRODUCTION TO ELEMENTS ..... 5-45
5.6.3 SETPOINT GROUP. ..... 5-46
5.6.4 DIFFERENTIAL ..... 5-46
a PERCENT DIFFERENTIAL ..... 5-46
b HARMONIC INHIBIT ..... 5-49
c ENERGIZATION INHIBIT ..... 5-49
d ENERGIZATION SENSING ..... 5-50
e 5TH HARMONIC INHIBIT ..... 5-51
5.6.5 INSTANTANEOUS DIFFERENTIAL ..... 5-52
5.6.6 PHASE OVERCURRENT ..... 5-52
a WINDING 1 (2/3) PHASE TIME OVERCURRENT ..... 5-52
b WINDING $1(2 / 3)$ PHASE INSTANTANEOUS OVERCURRENT 1 ..... 5-54
c WINDING 1 (2/3) PHASE INSTANTANEOUS OVERCURRENT 2 ..... 5-54
5.6.7 NEUTRAL OVERCURRENT ..... 5-55
a WINDING 1 (2/3) NEUTRAL TIME OVERCURRENT ..... 5-55
b WINDING $1(2 / 3)$ NEUTRAL INSTANTANEOUS OVERCURRENT 1 ..... 5-56
c WINDING 1 (2/3) NEUTRAL INSTANTANEOUS OVERCURRENT 2 ..... 5-56
5.6.8 GROUND OVERCURRENT ..... 5-57
a WINDING 1 (2/3) GROUND TIME OVERCURRENT ..... 5-57
b WINDING $1(2 / 3)$ GROUND INSTANTANEOUS OVERCURRENT 1 ..... 5-58
c WINDING 1 (2/3) GROUND INSTANTANEOUS OVERCURRENT 2 ..... 5-58
5.6.9 RESTRICTED GROUND (DIFFERENTIAL GROUND) ..... 5-59
a WINDING 1 (2/3) RESTRICTED GROUND FAULT ..... 5-59

## TABLE OF CONTENTS

b RESTRICTED GROUND FAULT SETTINGS EXAMPLE ..... 5-61
c SETPOINTS ..... 5-62
5.6.10 NEGATIVE SEQUENCE OVERCURRENT ..... 5-63
a WINDING 1 (2/3) NEGATIVE SEQUENCE TIME OVERCURRENT ..... 5-63
b WINDING 1 (2/3) NEG. SEQ. INSTANTANEOUS OVERCURRENT ..... 5-64
5.6.11 FREQUENCY ..... 5-65
a UNDERFREQUENCY 1 (2) ..... 5-65
b FREQUENCY DECAY ..... 5-66
c OVERFREQUENCY ..... 5-67
5.6.12 OVEREXCITATION ..... 5-68
a 5TH HARMONIC LEVEL ..... 5-68
b VOLTS-PER-HERTZ 1 (2) ..... 5-69
5.6.13 HARMONICS ..... 5-70
a WINDING $1(2 / 3)$ THD LEVEL ..... 5-70
b WINDING 1 (2/3) HARMONIC DERATING ..... 5-71
5.6.14 INSULATION AGING / LOSS OF LIFE FEATURE ..... 5-72
a DESCRIPTION ..... 5-72
b HOTTEST-SPOT LIMIT ..... 5-72
c INSULATION AGING SETPOINTS ..... 5-73
5.6.15 AGING FACTOR LIMIT ..... 5-74
5.6.16 LOSS OF LIFE LIMIT ..... 5-75
5.6.17 ANALOG INPUT ..... 5-76
a ANALOG LEVEL 1 (2) ..... 5-76
5.6.18 CURRENT DEMAND ..... 5-77
5.6.19 TRANSFORMER OVERLOAD ..... 5-77
5.6.20 TAP CHANGER FAILURE ..... 5-78
5.7 S5 OUTPUTS
5.7.1 DESCRIPTION ..... 5-79
5.7.2 INTRODUCTION TO FLEXLOGIC ${ }^{\text {TM }}$ ..... 5-79
5.7.3 FLEXLOGIC ${ }^{\text {TM }}$ RULES ..... 5-81
a AN EXAMPLE ..... 5-81
5.7.4 OUTPUT RELAYS ..... 5-83
5.7.5 TRACE MEMORY ..... 5-84
5.7.6 VIRTUAL OUTPUTS ..... 5-84
5.7.7 TIMERS ..... 5-85
5.8 S6 TESTING
5.8.1 DESCRIPTION ..... 5-86
5.8.2 OUTPUT RELAYS ..... 5-86
5.8.3 ANALOG OUTPUTS ..... 5-86
5.8.4 SIMULATION ..... 5-87
5.8.5 PREFAULT VALUES ..... 5-88
5.8.6 FAULT VALUES ..... 5-89
5.8.7 FACTORY SERVICE ..... 5-89
5.9 TIME OVERCURRENT CURVES
5.9.1 NOTE ..... 5-90
5.9.2 ANSI CURVES ..... 5-90
5.9.3 DEFINITE TIME CURVE ..... 5-92
5.9.4 IEC CURVES ..... 5-92
5.9.5 IAC CURVES ..... 5-94
5.10 INVERSE VOLTS-PER-HERTZ CURVES
5.10.1 INVERSE CURVE 1 ..... 5-96
5.10.2 INVERSE CURVE 2 ..... 5-97
5.10.3 INVERSE CURVE 3 ..... 5-98

## 6. ACTUAL VALUES

6.1 OVERVIEW
6.1.1 DESCRIPTION ..... 6-1
6.1.2 ACTUAL VALUES ORGANIZATION ..... 6-1
6.2 A1 STATUS
6.2.1 DESCRIPTION ..... 6-2
6.2.2 DATE AND TIME ..... 6-2
6.2.3 LOGIC INPUTS ..... 6-2
6.2.4 VIRTUAL INPUTS ..... 6-2
6.2.5 OUTPUT RELAYS ..... 6-2
6.2.6 VIRTUAL OUTPUTS ..... 6-3
6.2.7 SELF-TEST ERRORS ..... 6-3
6.3 A2 METERING
6.3.1 DESCRIPTION ..... 6-4
6.3.2 CURRENT ..... 6-4
a WINDING 1/2/3 CURRENTS ..... 6-4
b POSITIVE SEQUENCE CURRENTS ..... 6-5
c NEGATIVE SEQUENCE CURRENTS ..... 6-5
d ZERO SEQUENCE CURRENTS ..... 6-5
e DIFFERENTIAL CURRENT ..... 6-6
f RESTRAINT CURRENT ..... 6-6
g GROUND DIFFERENTIAL CURRENT ..... 6-6
6.3.3 HARMONIC CONTENT ..... 6-7
a HARMONIC SUB-COMPONENTS ..... 6-7
b TOTAL HARMONIC DISTORTION (THD) ..... 6-7
c HARMONIC DERATING FACTOR ..... 6-8
6.3.4 FREQUENCY ..... 6-8
6.3.5 TAP CHANGER ..... 6-8
6.3.6 VOLTAGE ..... 6-9
6.3.7 DEMAND ..... 6-9
a DEMAND DATA CLEAR ..... 6-9
b CURRENT DEMAND ..... 6-10
6.3.8 AMBIENT TEMPERATURE ..... 6-10
6.3.9 LOSS OF LIFE ..... 6-10
6.3.10 ANALOG INPUT ..... 6-11
6.3.11 POWER ..... 6-11
6.3.12 ENERGY ..... 6-12
a ENERGY DATA CLEAR ..... 6-12
b W1/W2/W3 ENERGY ..... 6-12
6.4 A3 EVENT RECORDER
6.4.1 DESCRIPTION ..... 6-13
6.4.2 EVENT DATA RESET ..... 6-13
6.4.3 EVENT RECORDS ..... 6-13
6.5 A4 PRODUCT INFO
6.5.1 DESCRIPTION ..... 6-17
6.5.2 TECHNICAL SUPPORT ..... 6-17
6.5.3 REVISION CODES ..... 6-17
6.5.4 CALIBRATION ..... 6-18
6.6 TARGET MESSAGES
6.6.1 DESCRIPTION ..... 6-19
6.7 SELF-TEST ERRORS
6.7.1 DESCRIPTION ..... 6-21
6.7.2 MAJOR SELF-TEST ERRORS ..... 6-21
6.7.3 MINOR SELF-TEST ERRORS ..... 6-21
6.8 FLASH MESSAGES
6.8.1 DESCRIPTION ..... 6-23
7. SCHEME LOGIC
7.1 INTRODUCTION
7.1.1 DESCRIPTION .....  7-1
7.1.2 SETPOINTS. ..... 7-1
7.1.3 MEASUREMENT UNITS ..... 7-1
7.1.4 TIME DELAYS ..... 7-1
7.1.5 LED INDICATORS ..... 7-1
7.1.6 LOGIC ..... 7-1
7.2 BLOCK DIAGRAMS
7.2.1 DIFFERENTIAL SCHEME LOGIC ..... 7-2
7.2.2 OVERCURRENT SCHEME LOGIC ..... 7-8
7.2.3 FREQUENCY LOGIC ..... 7-20
8. COMMUNICATIONS
8.1 OVERVIEW
8.1.1 PROTOCOLS ..... 8-1
8.1.2 PHYSICAL LAYER ..... 8-1
8.2 MODBUS PROTOCOL
8.2.1 DESCRIPTION ..... 8-2
8.2.2 GE POWER MANAGEMENT MODBUS PROTOCOL ..... 8-2
8.2.3 ELECTRICAL INTERFACE ..... 8-2
8.2.4 DATA FRAME FORMAT AND RATE ..... 8-2
8.2.5 DATA PACKET FORMAT ..... 8-3
8.2.6 CRC-16 ALGORITHM ..... 8-4
8.2.7 MESSAGE TIMING ..... 8-4
8.2.8 SUPPORTED FUNCTION CODES ..... 8-5
8.2.9 FUNCTION CODE 03H/04H: READ ACTUAL VALUES/SETPOINTS ..... 8-6
8.2.10 FUNCTION CODE 05H: EXECUTE OPERATION ..... 8-7
8.2.11 FUNCTION CODE 06H: STORE SINGLE SETPOINT ..... 8-8
8.2.12 FUNCTION CODE 10H: STORE MULTIPLE SETPOINTS ..... 8-9
8.2.13 EXCEPTION RESPONSES ..... 8-10
8.2.14 READING THE EVENT RECORDER ..... 8-11
8.2.15 READING TRACE MEMORY ..... 8-11
8.2.16 ACCESSING DATA VIA THE USER MAP ..... 8-12
8.2.17 FUNCTION CODE SUBSTITUTIONS ..... 8-15
a FUNCTION CODE 03H AND 04 SUBSTITUTIONS ..... 8-15
b FUNCTION CODE 05H SUBSTITUTION ..... 8-15
c FUNCTION CODE 06H SUBSTITUTION ..... 8-16
8.2.18 MEMORY MAP ORGANIZATION ..... 8-16
8.3 MODBUS MEMORY MAP
8.3.1 745 MEMORY MAP ..... 8-17
8.3.2 MEMORY MAP DATA FORMATS ..... 8-74
8.4 DNP COMMUNICATIONS
8.4.1 DEVICE PROFILE DOCUMENT ..... 8-93
8.4.2 IMPLEMENATION TABLE ..... 8-95
8.5 POINT LISTS
8.5.1 POINT LIST TABLES. ..... 8-97

### 9.1 OVERVIEW

9.1.1 DESCRIPTION ..... 9-1
9.1.2 HARDWARE \& SOFTWARE REQUIREMENTS ..... 9-2
9.1.3 MENU SUMMARY ..... 9-2
9.1.4 TOOLBAR ..... 9-3
9.1.5 HARDWARE CONFIGURATION ..... 9-3
9.2 INSTALLATION \& CONFIGURATION
9.2.1 745PC INSTALLATION ..... 9-5
9.2.2 STARTUP \& COMMUNICATIONS CONFIGURATION ..... 9-6
9.3 USING 745PC
9.3.1 SAVING SETPOINTS TO A FILE ..... 9-7
9.3.2 745 FIRMWARE UPGRADES ..... 9-8
9.3.3 LOADING SETPOINTS FROM A FILE ..... 9-9
9.3.4 ENTERING SETPOINTS ..... 9-9
9.3.5 VIEWING ACTUAL VALUES ..... 9-11
10.1 GENERAL
10.1.1 INTRODUCTION ..... 10-1
10.1.2 TESTING PHILOSOPHY ..... 10-1
10.1.3 SAFETY PRECAUTIONS ..... 10-2
10.1.4 CONVENTIONS ..... 10-2
10.2 TEST EQUIPMENT
10.2.1 TEST SETUP ..... 10-3
10.3 GENERAL PRELIMINARY WORK
10.3.1 DESCRIPTION ..... 10-4
10.3.2 DIELECTRIC STRENGTH TESTING ..... 10-5
10.4 LOGIC INPUTS \& OUTPUT RELAYS
10.4.1 LOGIC INPUTS ..... 10-6
a PROCEDURE ..... 10-6
10.4.2 OUTPUT RELAYS ..... 10-7
a PROCUDURE. ..... 10-7
10.5 DISPLAY, METERING, COMMUNICATIONS, ANALOG OUTPUTS
10.5.1 DESCRIPTION ..... 10-8
10.5.2 CURRENT INPUTS ..... 10-8
10.5.3 VOLTAGE INPUT ..... 10-9
10.5.4 TRANSFORMER-TYPE SELECTION ..... 10-9
a AUTOMATIC TRANSFORMATION PERFORMED IN THE 745 ..... 10-9
b EFFECTS OF ZERO-SEQUENCE COMPONENT REMOVAL ..... 10-10
10.5.5 AMBIENT TEMPERATURE INPUT ..... 10-11
a BASIC CALIBRATION OF RTD INPUT ..... 10-11
b DETAILED CALIBRATION OF RTD INPUT ..... 10-11
c AMBIENT TEMPERATURE BY MONTHLY AVERAGES ..... 10-13
10.5.6 ANALOG OUTPUTS ..... 10-13
10.5.7 TAP POSITION ..... 10-13
10.6 PROTECTION SCHEMES
10.6.1 WARNING ..... 10-14
10.6.2 HARMONIC RESTRAINED PERCENT DIFFERENTIAL ..... 10-14
a MINIMUM PICKUP ..... 10-14
b VERIFICATION OF LOCAL RESET MODE ..... 10-15
c VERIFICATION OF REMOTE RESET MODE ..... 10-15
d VERIFICATION OF SOLID STATE OUTPUT. ..... 10-15
e BASIC OPERATING TIME ..... 10-16
f SLOPE MEASUREMENTS ..... 10-16
g SLOPE KNEEPOINT ..... 10-17
h 2nd HARMONIC RESTRAINT ..... 10-18
i 5th HARMONIC RESTRAINT ..... 10-18
j ENERGIZATION DETECTION SCHEME ..... 10-19
10. COMMISSIONING
k TARGET, OUTPUT CONTACT, \& DISPLAY OPERATION ..... 10-20
। BLOCKING FROM LOGIC INPUTS ..... 10-20
10.6.3 INSTANTANEOUS DIFFERENTIAL PROTECTION ..... 10-20
a MINIMUM PICKUP ..... 10-20
b OPERATING TIME ..... 10-20
c TARGET, OUTPUT CONTACT, \& DISPLAY OPERATION ..... 10-21
d BLOCKING FROM LOGIC INPUTS ..... 10-21
10.6.4 PHASE TIME OVERCURRENT ..... 10-21
a WINDING \#1 ELEMENTS ..... 10-21
b PICKUP LEVEL ..... 10-22
c OPERATING TIME ..... 10-22
d RESET TIME ..... 10-22
e PHASE B AND C ELEMENTS ..... 10-22
f WINDING \#2 AND \#3 ELEMENTS ..... 10-23
10.6.5 PHASE INSTANTANEOUS OVERCURRENT 1 ..... 10-23
a WINDING \#1 ELEMENTS ..... 10-23
b PICKUP LEVEL ..... 10-23
c OPERATING TIME ..... 10-23
d PHASE B AND C ELEMENTS ..... 10-23
e WINDING \#2 AND \#3 ELEMENTS ..... 10-24
10.6.6 PHASE INSTANTANEOUS OVERCURRENT 2 ..... 10-24
10.6.7 NEUTRAL TIME OVERCURRENT ..... 10-24
a WINDING \#1 ELEMENT ..... 10-24
b PICKUP LEVEL ..... 10-24
c OPERATING TIME ..... 10-25
d RESET TIME ..... 10-25
e WINDING \#2 OR WINDING \#3 ELEMENTS ..... 10-25
10.6.8 NEUTRAL INSTANTANEOUS OVERCURRENT 1 ..... 10-26
a WINDING \#1 ELEMENT ..... 10-26
b PICKUP LEVEL ..... 10-26
c OPERATING TIME ..... 10-26
d WINDING 2 AND 3 ELEMENTS ..... 10-26
10.6.9 NEUTRAL INSTANTANEOUS OVERCURRENT 2 ..... 10-27
10.6.10 GROUND TIME OVERCURRENT ..... 10-27
a WINDING 1 ELEMENT ..... 10-27
b PICKUP LEVEL ..... 10-27
c OPERATING TIME ..... 10-28
d RESET TIME ..... 10-28
e WINDING 2 OR 3 ELEMENTS ..... 10-28
10.6.11 GROUND INSTANTANEOUS OVERCURRENT 1 ..... 10-28
a WINDING 1 ELEMENT ..... 10-29
b PICKUP LEVEL ..... 10-29
c OPERATING TIME ..... 10-29
d WINDING 2 OR ELEMENT ..... 10-29
10.6.12 GROUND INSTANTANEOUS OVERCURRENT 2. ..... 10-29
10.6.13 RESTRICTED GROUND FAULT ..... 10-30
a WINDING \#1 ELEMENT ..... 10-30
b PICKUP LEVEL ..... 10-30
c OPERATING TIME ..... 10-31
d SLOPE ..... 10-31
e WINDING 2 OR 3 ELEMENTS ..... 10-31
10.6.14 NEGATIVE SEQUENCE TIME OVERCURRENT ..... 10-31
a WINDING \#1 ELEMENT ..... 10-32
b PICKUP LEVEL ..... 10-32
c OPERATING TIME ..... 10-32
d RESET TIME ..... 10-33
e WINDINGS 2 AND 3 ELEMENTS ..... 10-33
10.6.15 NEGATIVE SEQUENCE INSTANTANEOUS OVERCURRENT ..... 10-33
a WINDING 1 ELEMENT ..... 10-33
b PICKUP LEVEL ..... 10-33
c OPERATING TIME ..... 10-34
d WINDING 2 AND 3 ELEMENTS ..... 10-34
10.6.16 FREQUENCY ELEMENTS ..... 10-34
10.6.17 UNDERFREQUENCY 1 ..... 10-35
a PRELIMINARIES ..... 10-35
b VOLTAGE INPUT FUNCTION (VOLTAGE INPUT ENABLED) ..... 10-35
c CURRENT INPUT FUNCTION (VOLTAGE INPUT DISABLED) ..... 10-36
10.6.18 UNDERFREQUENCY 2 ..... 10-37
10.6.19 OVERFREQUENCY ..... 10-37
a PRELIMINARIES ..... 10-37
b VOLTAGE INPUT FUNCTION (VOLTAGE INPUT ENABLED) ..... 10-37
c CURRENT INPUT FUNCTION (VOLTAGE INPUT DISABLED) ..... 10-38
10.6.20 FREQUENCY DECAY RATE 1 ..... 10-39
a PRELIMINARIES ..... 10-39
b VOLTAGE INPUT FUNCTION (VOLTAGE INPUT ENABLED) ..... 10-39
c CURRENT INPUT FUNCTION (VOLTAGE INPUT DISABLED) ..... 10-40
d FREQUENCY DECAY RATE $2,3, \& 4$ ..... 10-40
10.6.21 VOLTS-PER-HZ 1(2) ..... 10-41
10.6.22 5TH HARMONIC SCHEME ..... 10-41
10.6.23 INSULATION AGING ..... 10-42
a PRELIMINARIES ..... 10-42
b HOTTEST SPOT LIMIT ..... 10-42
c AGING FACTOR LIMIT ..... 10-42
d LOSS-OF-LIFE LIMIT ..... 10-42
10.6.24 TAP MONITOR FAILURE ..... 10-42
10.7 AUXILIARY PROTECTION/MONITORING FUNCTIONS
10.7.1 THD LEVEL SCHEME ..... 10-43
a MINIMUM PICKUP ..... 10-43
b OPERATING TIME ..... 10-43
c MINIMUM OPERATING CURRENT ..... 10-43
d OTHER THD ELEMENTS ..... 10-43
10.7.2 HARMONIC DERATING FUNCTION ..... 10-44
a OPERATING LEVEL ..... 10-44
b OPERATING TIME ..... 10-44
10.7.3 TRANSFORMER OVERLOAD ..... 10-45
a OPERATING LEVEL ..... 10-45
b OPERATING TIME ..... 10-45
10.8 PLACING RELAY INTO SERVICE
10.8.1 DESCRIPTION ..... 10-46
11.1 COMMISSIONING SUMMARY
11.1.1 S1 745 SETUP ..... 11-1
11.1.2 S2 SYSTEM SETUP ..... 11-2
11.1.3 FLEXCURVES ..... 11-4
11.1.4 S3 LOGIC INPUTS ..... 11-5
11.1.5 S4 ELEMENTS ..... 11-6
11.1.6 S5 OUTPUTS ..... 11-18
11. SETPOINT TABLES
A. FIGURES AND TABLES

## B. EU DECLARATION OF CONFORMITY

A. 1 FIGURES AND TABLES
A.1.1 LIST OF FIGURES A-1
A.1.2 LIST OF TABLES ..... A-2

## TABLE OF CONTENTS

C. WARRANTY

## C. 1 WARRANTY INFORMATION

C.1.1 WARRANTY

C-1

The 745 is a high speed, multi-processor based, 3-phase, two or three winding, Transformer Management Relay ${ }^{\text {TM }}$ intended for the primary protection and management of small, medium and large power transformers.
The 745 combines Percent Differential, Overcurrent, Frequency and Overexcitation protection elements along with monitoring of individual harmonics, and THD in one economical package.
The relay provides a variety of adaptive relaying features:

- Adaptive Harmonic Restraint which addresses the problem of false tripping during inrush
- Adaptive Time Overcurrent Elements which will adjust their pickup settings based on the calculated transformer capability when supplying load currents with high harmonic content
- Multiple Setpoint Groups which allow the user to enter and dynamically select from up to four groups of relay settings to address the protection requirements of different power system configurations
- Dynamic CT Ratio Mismatch Correction which monitors the on-load tap position and automatically corrects for CT ratio mismatch
- FlexLogic ${ }^{\top \mathrm{M}}$ which allows PLC style equations based on logic inputs \& protection elements to be assigned to any of the 745 outputs.
The 745 also includes a powerful testing and simulation feature. This allows the protection engineer the ability to test the relay operation based on captured or computer generated waveform data which can be converted to a digitized format and downloaded into the 745's simulation buffer for "playback".

The 745 also provides its own Waveform Capture function which will record waveform data for fault, inrush or alarm conditions.

The Auto-Configuration function eliminates the need for any special CT connections by having all CTs connected in wye.

| SYMBOL | COMMON PROTECTION ELEMENT |
| :---: | :---: |
| 59/81-1 | Volts-Per-Hertz 1 |
| 59/81-2 | Volts-Per-Hertz 2 |
| 81U-1 | Underfrequency 1 |
| 81U-2 | Underfrequency 2 |
| 81U-R1 | Frequency Decay Rate 1 |
| 81U-R2 | Frequency Decay Rate 2 |
| 81U-R3 | Frequency Decay Rate 3 |
| 81U-R4 | Frequency Decay Rate 4 |
| 81-H5 | 5th Harmonic Level |
| 810 | Overfrequency |
| 87 | Differential (Percent) |
| 50/87 | Instantaneous Differential |
| AN-1 <br> AN-2 | Analog Input Level 1 |
|  | Analog Input Level 2 |
|  | Insulation Aging <br> - Aging Factor <br> - Hottest Spot Limit <br> - Total Accumulated Life |
|  | Tap Changer Monitor |


| SYMBOL | COMMON PROTECTION ELEMENT |
| :---: | :---: |
| $\begin{aligned} & \hline 250 / 46 \\ & 251 / 46 \end{aligned}$ | Negative Sequence Instantaneous O/C Negative Sequence Time O/C |
| $\begin{aligned} & 250 \mathrm{P} 1 \\ & 250 \mathrm{P} 2 \\ & 250 \mathrm{~N} 1 \\ & 250 \mathrm{~N} 2 \\ & 250 \mathrm{G} 1 \\ & 250 \mathrm{G} 2 \end{aligned}$ | Phase Instantaneous O/C 1 <br> Phase Instantaneous O/C 2 <br> Neutral $\left(3 I_{0}\right)$ Instantaneous O/C 1 <br> Neutral (3I) Instantaneous O/C 2 <br> Ground Instantaneous O/C 1 <br> Ground Instantaneous O/C 2 |
| $\begin{aligned} & 251 \mathrm{P} \\ & 251 \mathrm{~N} \\ & 251 \mathrm{G} \end{aligned}$ | Phase Time O/C <br> Neutral ( $3 \mathrm{I}_{0}$ ) Time O/C <br> Ground Time O/C |
| 287TG | Ground Differential (Restricted Ground Fault) |
| $\begin{aligned} & 2 T H D \\ & 2 A D \end{aligned}$ | Total Harmonic Distortion Level Current Demand |


| SYMBOL | WINDING 1 PROTECTION ELEMENT |
| :---: | :---: |
| $\begin{aligned} & 150 / 46 \\ & 151 / 46 \end{aligned}$ | Negative Sequence Instantaneous O/C Negative Sequence Time O/c |
| 150P1 150P2 150N1 150N2 150G1 150G2 | Phase Instantaneous O/C 1 <br> Phase Instantaneous O/C 2 <br> Neutral $\left(31_{0}\right)$ Instantaneous O/C 1 <br> Neutral (3I) Instantaneous O/C 2 <br> Ground Instantaneous O/C 1 <br> Ground Instantaneous O/C 2 |
| $\begin{aligned} & \hline 151 \mathrm{P} \\ & 151 \mathrm{~N} \\ & 151 \mathrm{G} \end{aligned}$ | Phase Time O/C <br> Neutral ( $3 \mathrm{I}_{0}$ ) Time O/C <br> Ground Time O/C |
| 187TG | Ground Differential (Restricted Ground Fault) |
| $\begin{aligned} & 1 \mathrm{THD} \\ & 1 \mathrm{AD} \end{aligned}$ | Total Harmonic Distortion Level Current Demand |


| SYMBOL | WINDING 3 PROTECTION ELEMENT |
| :---: | :---: |
| $\begin{aligned} & \hline 350 / 46 \\ & 351 / 46 \end{aligned}$ | Negative Sequence Instantaneous O/C Negative Sequence Time O/c |
| 350P1 350P2 350N1 350N2 | Phase Instantaneous O/C 1 <br> Phase Instantaneous O/C 2 <br> Neutral ( $3 \mathrm{I}_{0}$ ) Instantaneous O/C 1 <br> Neutral (3I) Instantaneous O/C 2 |
| $\begin{aligned} & 351 \mathrm{P} \\ & 351 \mathrm{~N} \\ & 351 \mathrm{G} \end{aligned}$ | Phase Time O/C <br> Neutral ( $3 \mathrm{I}_{0}$ ) Time O/C <br> Ground Time O/C |
| 387TG | Ground Differential (Restricted Ground Fault) |
| 3THD 3AD | Total Harmonic Distortion Level Current Demand |



Figure 1-1: SINGLE LINE DIAGRAM


| CONTROL POWER |
| :--- |
| $\mathrm{LO}=24-60 \mathrm{Vdc}$ |
|  |
| $\mathrm{HI}=90-48 \mathrm{Vac} @ 48-62 \mathrm{~Hz}$ |
| $70-300 \mathrm{Vdc}$ |
| $70-265 \mathrm{Vac} @ 48-62 \mathrm{~Hz}$ |



Figure 1-2: 745 ORDER CODES

Transformers:
Frequency:

2 Winding or 3 Winding
50 or 60 Hz nominal
(frequency tracking allows operation from 2 to 65 Hz )

## CONTROL POWER (POWER SUPPLY)

Options:
LO Range:
HI Range:
Power:
Fuse (not accessible):

LO/HI (specified when ordering)
$D C=20$ to 60 V ; $\mathrm{AC}=20$ to $48 \mathrm{~V} @ 48-62 \mathrm{~Hz}$.
$D C=90$ to 300 V ; $\mathrm{AC}=70$ to $265 \mathrm{~V} @ 48-62 \mathrm{~Hz}$.
30 VA nominal, 40 VA maximum
Hi-Volt: $\quad$ Current rating: 3.15A
Type: $5 \times 20 \mathrm{~mm}$ Slow-Blow Littelfuse, High Breaking Capacity Model\#: 2153.15
Low-Volt: $\quad$ Current rating: 3.15A
Type: $5 \times 20 \mathrm{~mm}$ Slow-Blow Littelfuse, High Breaking Capacity Model\#: 2153.15

1 to 50000 A primary / 1 or 5 A secondary
1 A or 5 A (specified when ordering)
Less than 0.2 VA at rated load per phase
0.02 to $46 \times$ CT
at $<4 \times$ CT: $\quad \pm 0.25 \%$ of $4 \times$ CT $( \pm 0.01 \times$ CT $)$
at $\geq 4 \times$ CT: $\quad \pm 0.5 \%$ of $46 \times C T( \pm 0.2 \times C T)$
1 second @ 80 times rated current
2 seconds @ 40 times rated current continuous @ 3 times rated current

## GROUND CURRENT INPUT

Source CT:
Relay Input:
Burden:
Conversion Range:
Accuracy:
Overload Withstand:

## VOLTAGE INPUT

Source VT:
Source VT Ratio:
Relay Input:
Burden:
Max. Continuous:
Accuracy:

## LOGIC INPUTS (16)

Dry Contacts:
Wet Contacts:

1 to 50000 A primary / 1 or 5 A secondary
1 A or 5 A (specified when ordering)
Less than 0.2 VA at rated load
0.02 to $46 \times \mathrm{CT}$
at $<4 \times \mathrm{CT}: \quad \pm 0.25 \%$ of $4 \times \mathrm{CT}( \pm 0.01 \times \mathrm{CT})$
at $\geq 4 \times$ CT: $\quad \pm 0.5 \%$ of $46 \times \mathrm{CT}( \pm 0.2 \times \mathrm{CT})$
1 second @ 80 times rated current
2 seconds @ 40 times rated current continuous @ 3 times rated current

2 to $600 \mathrm{kV} / 60$ to 120 V
1 to 5000 in steps of 1
60 V to 120 V phase-neutral
Less than 0.025 VA at 120 V
273 V
$\pm 1 \%$ of $2 \times \mathrm{VT}( \pm 0.02 \times \mathrm{VT})$
$1000 \Omega$ maximum ON resistance (32 V DC @ 2 mA provided by 745)
Inputs 1 to 16: 30 to 300 V DC @ 1.5 mA

## ANALOG INPUT

```
DC mA
0-1 mA, 0-5 mA, 0-10 mA, 0-20 mA, or 4-20 mA (programmable)
375\Omega\pm10%
0 to 21 mA
\pm1% of full scale (based on input range)
```

resistance (ohms)
0 to $500 \Omega$ or 0.5 to $5.0 \mathrm{k} \Omega$
1 mA or 10 mA (based on input range)
$\pm 1 \%$ of full scale (based on input range)
Type: 3 wire
RTD Type

IRIG-B INPUT
Amplitude-Modulated:
DC Shift:
Input Impedance
Ranges:
Input Impedance:
Conversion Range:
Accuracy:
TAP POSITION
Type:
Range:
Bias Current:
Accuracy:

## RTD <br> RTD

Type:
RTD Type

3 wire
$100 \Omega$ Platinum (DIN.43760)
$100 \Omega$ Nickel
$120 \Omega$ Nickel
1.0 to $10 \mathrm{~V} \mathrm{p}-\mathrm{p}$

TTL
70 to $100 \mathrm{k} \Omega$

## PERCENT DIFFERENTIAL PROTECTION

Operating Current Pickup: $\quad 0.05$ to 1.00 in steps of $0.01 \times$ CT
Dropout Level:
SLOPE-1 Range:
SLOPE-2 Range:
KP (SLOPE-1 Kneepoint):
Harmonic Restraint:
Operate Time:

97 to $98 \%$ of Pickup
$15 \%$ to $100 \%$ in steps of 1
$50 \%$ to $200 \%$ in steps of 1
1.0 to 20.0 in steps of $0.1 \times$ CT
$0.1 \%$ to $65.0 \%$ in steps of 0.1
Solid State Output: Pickup < $1 \times$ CT: 42 to 52 ms
$1 \times$ CT < Pickup < $1.1 \times$ kneepoint: 34 to 44 ms
Pickup > $1.1 \times$ kneepoint: 26 to 36 ms
Relay Outputs 2-5: Pickup < $1 \times$ CT: 46 to 56 ms
$1 \times$ CT < Pickup < $1.1 \times$ kneepoint: 38 to 48 ms
Pickup > $1.1 \times$ kneepoint: 30 to 40 ms

## INSTANTANEOUS DIFFERENTIAL OVERCURRENT

Pickup Level:
Dropout Level:
Level Accuracy:
Operate Time:
3.00 to 20.00 in steps of $0.01 \times$ CT

97 to $98 \%$ of Pickup
Per current input
Solid State Output: at $1.2 \times$ pickup: 22 to 30 ms at $2.0 \times$ pickup: 18 to 26 ms at $4.0 \times$ pickup: 11 to 19 ms
Relay Outputs 2-5: at $1.2 \times$ pickup: 28 to 36 ms at $2.0 \times$ pickup: 24 to 32 ms at $4.0 \times$ pickup: 17 to 25 ms

PHASE / NEUTRAL / GROUND / NEGATIVE SEQUENCE TIME OVERCURRENT

Pickup Level:
Dropout Level:
Curve Shape:

Curve Multiplier Time Dial:
Reset Type:
Level Accuracy:
Timing Accuracy:
PHASE / NEUTRAL / GROUND AND NEGATIVE SEQUENCE INSTANTANEOUS OVERCURRENT
Pickup Level:
Dropout Level:
Time Delay:
Level Accuracy:
Operate Time:
0.05 to 20.00 in steps of $0.01 \times$ CT

97 to $98 \%$ of Pickup
ANSI Extremely/Very/Moderately/Normally Inverse;
Definite Time ( 0.1 s base curve);
IEC Curve A/B/C and Short;
FlexCurve ${ }^{T M} A / B / C$ (programmable curves);
IAC Extreme/Very/Inverse/Short
0.5 to 30 for ANSI, IAC \& FlexCurves ${ }^{\text {TM }}$ in steps of 0.1 s ; 0.05 to 1.00 for IEC curves in steps of 0.01

Instantaneous or Linear
Per current input
at $\geq 1.03 \times$ pickup: $\pm 3 \%$ of trip time or $\pm 20 \mathrm{~ms}$ (whichever is greater)

## UNDERFREQUENCY (2 ELEMENTS)

Operating Current Pickup:
Operating Voltage Pickup
Pickup Level:
Dropout Level:
Time Delay:
Signal Source:
Level Accuracy:
Operate Time:
0.05 to 20.00 in steps of $0.01 \times$ CT

97 to $98 \%$ of Pickup
0 to 60000 in steps of 1 ms
Per current input
Solid State Output: at $1.2 \times$ pickup: 22 to 30 ms at $2.0 \times$ pickup: 18 to 26 ms at $4.0 \times$ pickup: 11 to 19 ms
Relay Outputs 2-5: at $1.2 \times$ pickup: 28 to 36 ms at $2.0 \times$ pickup: 24 to 32 ms at $4.0 \times$ pickup: 17 to 25 ms

## FREQUENCY RATE OF CHANGE (4 ELEMENTS)

Operating Current Pickup:
Operating Voltage Pickup
Pickup Level:
Dropout Level:
Rate 1/2/3/4:
Dropout Level:
Signal Source:
Level Accuracy:
Operate Time:
0.05 to 1.00 in steps of $0.01 \times \mathrm{CT}$
0.10 to 0.99 in steps of $0.01 \times \mathrm{VT}$
45.00 to 59.99 in steps of 0.01 Hz

Pickup +0.03 Hz
0.00 to 600.00 s in steps of 0.01 s

Winding 1 phase A current / voltage
$\pm 0.02 \mathrm{~Hz}$
Solid State Output: at 3\% beyond pickup: 120 to 150 ms Relay Outputs 2-5: at 3\% beyond pickup: 125 to 155 ms (Delay set at 0.0 s )
0.05 to 1.00 in steps of $0.01 \times \mathrm{CT}$
0.10 to 0.99 in steps of $0.01 \times$ VT
45.00 to 59.99 in steps of 0.01 Hz

Pickup +0.03 Hz
0.1 to 5.0 in steps of $0.1 \mathrm{~Hz} / \mathrm{sec}$.

Pickup $+0.07 \mathrm{~Hz} /$ sec.
Winding 1 phase A current / voltage
$\pm 0.02 \mathrm{~Hz}$
The operate time of the frequency trend element is variable and is dependent on the decay rate setting and the supervision frequency level.

## OVERFREQUENCY (1 ELEMENT)

Operating Current Pickup: $\quad 0.05$ to 1.00 in steps of $0.01 \times$ CT
Operating Voltage Pickup $\quad 0.10$ to 0.99 in steps of $0.01 \times$ VT
Pickup Level:
Dropout Level:
50.01 to 65.00 in steps of 0.01 Hz

Time Delay:
Signal Source:
Level Accuracy:
Operate Time:
Pickup - 0.03 Hz
0.00 to 600.00 s in steps of 0.01 s

Winding 1 phase A current / voltage
$\pm 0.02 \mathrm{~Hz}$
Solid State Output: at 3\% beyond pickup: 120 to 150 ms
Relay Outputs 2-5: at 3\% beyond pickup: 125 to 155 ms (delay set to 0.0 s )
OVEREXCITATION ON VOLTS/HZ (2 ELEMENTS)
Operating Voltage Pickup:
0.10 to 0.99 in steps of $0.01 \times$ VT

Pickup Level:
1.00 to 4.00 in steps of $0.01 \mathrm{~V} / \mathrm{Hz}$

Curve Shape:
Definite Time ( 0.1 s base curve);
IEC Curve A/B/C
Time Delay:
Reset Delay:
0.00 to 600.00 s in steps of 0.01 s
0.0 to 6000.0 s in steps of 0.1 s

Signal Source:
Voltage
Range: $\quad 10$ to 65 Hz
Level Accuracy:
Operate Time:

$$
\pm 0.02 \mathrm{~V} / \mathrm{Hz}
$$

Solid State Output: at $1.10 \times$ pickup: 165 to 195 ms
Relay Outputs 2-5: at $1.10 \times$ pickup: 170 to 200 ms (delay set to 0.0 s )

## OVEREXCITATION ON 5TH HARMONIC LEVEL

| Operating Current Pickup: | 0.03 to 1.00 in steps of $0.01 \times \mathrm{CT}$ |
| :---: | :---: |
| Pickup Level: | 0.1 to 99.9 in steps of 0.1\% |
| Dropout: | 95\% of pickup |
| Time Delay: | 0 to 60000 s in steps of 1 s |
| Signal Source: | All phase currents |
| Operate Time: | Solid State Output: at $1.10 \times$ pickup: 20 to 120 ms <br> Relay Outputs 2-5: at $1.10 \times$ pickup: 25 to 125 ms (delay set at 0.0 s ) |

## INSULATION AGING / HOTTEST-SPOT LIMIT

Pickup Level: $\quad 50$ to 300 in steps of $1{ }^{\circ} \mathrm{C}$
Delay: $\quad 0$ to 60000 in steps of 1 min .

## INSULATION AGING / AGING FACTOR LIMIT

Pickup Level: $\quad 1.1$ to 10.0 in steps of 0.1
Delay: $\quad 0$ to 60000 in steps of 1 min .

## INSULATION AGING / LOSS OF LIFE LIMIT

Pickup Level:
0 to 20000 in steps of $1 \times 10 \mathrm{~h}$

## ANALOG OUTPUTS (7)

Output Range:
Maximum Load:

Isolation:
Accuracy:

## SOLID STATE OUTPUT

Maximum Ratings:

## OUTPUT RELAYS

Configuration:

Contact Material:
Max Ratings:
0-1 mA, 0-5 mA, 0-10 mA, 0-20 mA or 4-20 mA
$0-1 \mathrm{~mA}$ :
4-20 mA:
$10 \mathrm{k} \Omega$
$600 \Omega$
Fully isolated
$\pm 1 \%$ of full scale

Make \& Carry 15 A @ 250 V DC for 500 ms

2-5 TRIP: Form A (breaker trip rated)
6-8 AUXILIARY: Form C
9 SELF-TEST: Form C
silver alloy
300 V AC, 250 V DC, 15 A, 1500 VA

| RELAYS: 2-5 TRIP |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VOLTAGE |  | MAKE/CARRY CONTINUOUS | MAKE/ CARRY 0.2s | BREAK | $\begin{aligned} & \text { MAX } \\ & \text { LOAD } \end{aligned}$ |
| DC Resistive | 30 V DC | 20 A | 40 A | 10 A | 300 W |
|  | 125 V DC | 20 A | 40 A | 0.8 A | 300 W |
|  | 250 V DC | 20 A | 40 A | 0.4 A | 300 W |
| DC <br> Inductive <br> $\mathrm{L} / \mathrm{R}=40 \mathrm{~ms}$ | 30 V DC | 20 A | 40 A | 5 A | 150 W |
|  | 125 V DC | 20 A | 40 A | 0.3 A | 150 W |
|  | 250 V DC | 20 A | 40 A | 0.2 A | 150 W |
| AC Resistive | 120 V AC | 20 A | 80 A | 20 A | 5000 VA |
|  | 240 V AC | 20 A | 80 A | 20 A | 5000 VA |
| AC Inductive PF $=0.4$ | 120 V AC | 20 A | 80 A | 8 A | 5000 VA |
|  | 240 V AC | 20 A | 80 A | 7 A | 5000 VA |


| RELAYS: 6-8 AUXILIARY, 9 SELF-TEST |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VOLTAGE |  | MAKE/CARRY CONTINUOUS | MAKE/ <br> CARRY 0.2s | BREAK | $\begin{aligned} & \text { MAX } \\ & \text { LOAD } \end{aligned}$ |
| DC Resistive | 30 V DC | 10 A | 30 A | 10 A | 300 W |
|  | 125 V DC | 10 A | 30 A | 0.5 A | 62.5 W |
|  | 250 V DC | 10 A | 30 A | 0.3 A | 75 W |
| DC <br> Inductive <br> $\mathrm{L} / \mathrm{R}=40 \mathrm{~ms}$ | 30 V DC | 10 A | 30 A | 5 A | 150 W |
|  | 125 V DC | 10 A | 30 A | 0.25 A | 31.3 W |
|  | 250 V DC | 10 A | 30 A | 0.15 A | 37.5 W |
| AC Resistive | 120 V AC | 10 A | 30 A | 10 A | 2770 VA |
|  | 240 V AC | 10 A | 30 A | 10 A | 2770 VA |
| AC Inductive$\mathrm{PF}=0.4$ | 120 V AC | 10 A | 30 A | 4 A | 480 VA |
|  | 240 V AC | 10 A | 30 A | 3 A | 750 VA |

## COMMUNICATIONS

All Ports:

## CLOCK

Resolution:
Accuracy

Backup Battery Life:

## HARMONICS

Individual

THD

300 to 19200 baud, programmable parity, Modbus RTU protocol, DNP

1 ms
with IRIG-B: $\quad \pm 1 \mathrm{~ms}$
without IRIG-B: $\quad \pm 1$ minute/month
10 years continuous use

Range: $\quad 0.00$ to $99.9 \%$
Accuracy: $\quad \pm 1 \%$ of Full Scale @ $0.5 \times$ CT
Range: $\quad 0.00$ to $99.9 \%$
Accuracy: $\quad \pm 1 \%$ of Full Scale @ $0.5 \times$ CT

## OPERATING ENVIRONMENT

Operating Temperature Range:
Ambient Storage Temperature:
Humidity:
Altitude:
Pollution degree:
$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
up to $90 \%$ non-condensing
2000 m
II

## CASE

Fully drawout unit (automatic CT shorts); Seal provision; Dust tight door; Panel or 19" rack mount
Weight (case \& relay): $18 \mathrm{lbs} ., 6 \mathrm{oz}$.
IP class:
X0

## PRODUCTION TESTS

Thermal:
Dielectric Strength:
Operational test at ambient then increasing to $60^{\circ} \mathrm{C}$
Per IEC 255-5 and ANSI/IEEE C37.90
On CT inputs, VT inputs, Control Power inputs, Switch inputs, and Relay outputs ( 2 kV for 1 second)

## TYPE WITHSTAND TESTS

Fast Transient:
Insulation Resistance:
Dielectric Strength:
Surge Withstand Capability:

Electrostatic Discharge:
Impulse Voltage:
Current Withstand:
RFI:

## APPROVALS

CSA:
CE:

## UL:

ISO:
per ANSI/IEEE C37.90.1
per IEC 255-5 (500 V DC, $2000 \mathrm{M} \Omega$ )
per IEC 255-5 and ANSI/IEEE C37.90 (2 kV @ 60 Hz for 1 minute)
per IEC 255-22-1 and 255-4 Class 3
(fast transient common mode 2.5 kV , differential modes 1 kV )
Per IEC 255-4 and ANSI/IEEE C37.90.1
( 2.5 kV @ $1 \mathrm{MHz}, 400 / \mathrm{sec}$. for 2 sec ., $\mathrm{Ri}=200 \Omega$ )
per IEC 801.2 Class $4(15 \mathrm{kV}, 150 \mathrm{pF}, 150 \Omega)$
per IEC 255-5 ( 5 kV @ $1.2 \times 50 \mu \mathrm{~s}, 0.5 \mathrm{~J}, \mathrm{Ri}=500 \Omega$ common and differential modes)
per ANSI/IEEE C37.90 ( $40 \times$ rated A for 2 sec., $80 \times$ rated A for 1 s )
50 MHz , 15 W mobile transmitter @ 25 cm

CSA approved
Conforms to EN55011/CISPR 11, EN50082-2, IEC 947-1, 1010-1
UL approved
Manufactured under ISO9001 registered program

It is recommended that all 745 relays be powered up at least once per year to avoid deterioration of electrolytic capacitors in the power supply.
note
Specifications subject to change without notice.

The following procedure describes how to maneuver through the 745 setpoints and actual values.


When powered on successfully, the SELF-TEST ERROR and MESSAGE indicators will be on with this message on the display. It indicates that the 745 is in the Not Programmed state and safeguards against the installation of a relay whose setpoints have not been entered. This message will remain until the relay is explicitly put in the Programmed state.
|| Actual values II A1 status

Press any front panel key once and the header for the first actual values page appears. This page contains system and relay status information. Repeatedly press the Actual key to display the 2nd, 3rd and 4th actual values page headers. Press the actual key once more to return to the 1st actual values page header. There are 4 actual values pages in all, numbered from A1 (the 'A' prefix indicating that it is an actual values page) to A4. Actual values page headers, as with setpoint page headers, have double scroll bars on the left side of the message.


Press the sifpoulit key and the header for the first page of setpoints appears. This page contains setpoints to configure the 745 relay.


Press the stipoint key to move to the next setpoints page. This page contains setpoints for entering the characteristics of the power transformer being protected. Repeatedly press the stipoint key to display the 3rd, 4th, 5th and 6th page headers and then back to the first setpoints page header. As you have discovered, there are 6 setpoint pages in all, numbered from S1 (the 'S' prefix indicating that it is a setpoint page) to S6.


From the page one header of setpoints, press the MESSAGE key once to display the first sub-header. Setpoints under this sub-header are related to passcode security. Note that the lower line of every sub-header message reads [ENTER] for more and that there is a single scroll bar on the left side.


Press the MEssage messages in this page. The last message appears as shown.

## | PREFERENCES <br> |[ENTER] for more

## BEEPER:

Enabled

## DEFAULT MESSAGE

INTENSITY:25\%

By pressing the MESSA6E $\triangle$ key repeatedly, move to the second sub-header message. Setpoints under this sub-header message allow the user to specify keypad and display operation preferences.

Press ESCAPE to display the first setpoint under the preferences sub-header. All setpoint and actual value messages have two parts. The first part (BEEPER:), is displayed in uppercase and followed by a colon. This is the name or description of the data. The second part (Enabled), either starts with an uppercase character followed by lowercase characters or is a number followed by units. This second part is the present value of the data.

To view the remaining setpoints associated with the preferences sub-header, repeatedly press the message $\nabla$ key. The last message appears as shown.

### 2.1 USING THE FRONT PANEL DISPLAY

Let us review how we got to this last message.

1. First, we started at the setpoints page header S1 745 SETUP.
2. We then moved to the second sub-header message under page S 1 , which is PREFERENCES, and we pressed the ENTER key.
3. We then moved to the last message in this group.

2
A path can be used as a means of specifying where a message is located in the 745 relay. For this last message, the path would be S1 745 SETUP / PREFERENCES / DEFAULT MESSAGE INTENSITY. For the purposes of this manual, we will refer to messages in this manner. Press the ESCAPE key to return to the preferences sub-header message. Pressing the ESCAPE key from any of the messages under a sub-header will return the display to that sub-header message. From a sub-header message, the repeated pressing of message $\Delta$ moves the display through the list of sub-header messages to the page header. As an alternative, you could press the SETPOINT key and move directly to the next page.

There are several different classes of setpoints, distinguished by the way their values are displayed and edited. Now that we have become more familiar with maneuvering through messages, we can learn how to edit the values used by all setpoint classes.

### 2.2.2 INSTALLING THE SETPOINT ACCESS JUMPER

Hardware and passcode security features are designed to provide protection against unauthorized setpoint changes. Since we will be programming new setpoints using the front panel keys, a hardware jumper must be installed across the setpoint access terminals (D9 and D10) on the back of the relay case. A keyswitch may also be used across these terminals to enable setpoint access. Attempts to enter a new setpoint via the front panel without this connection will be unsuccessful.

### 2.2.3 NUMERICAL SETPOINTS

Each numerical setpoint has its own minimum, maximum, and increment value associated with it. These parameters define what values are acceptable for a setpoint.
NOMINAL VT SECONDARY
VOLTAGE: 120.0 v

Select the S2 SYSTEM SETUP / VOLTAGE INPUT /
VOLTAGE: 120.0 V


Press the HELP key and the following context sensitive flash messages will sequentially appear for several seconds each. For the case of a numerical setpoint message, the HELP key displays the minimum, maximum, and step value.

```
|IN STEPS OF:
| 0.1
```

```
|PRESS (0)-(9) OR
| VALUE
```

|| PRESS [ENTER] TO
I| STORE NEW VALUE
| END OF PAGE S1
I

Two methods of editing and storing a numerical setpoint value are available.

1. $\mathbf{0}$ to 9 and the decimal key: The relay numeric keypad works the same as that of any electronic calculator. A number is entered one digit at a time. The leftmost digit is entered first and the rightmost digit is entered last. Pressing the ESCAPE key, before the ENTER key, returns the original value to the display.
2. value and value $\square$ : The value key increments the displayed value, by the step value, up to the maximum value allowed. While at the maximum value, pressing the VALUE key again will allow setpoint selection to continue from the minimum value. The VALUE key decrements the displayed value, by the
step value, down to the minimum value. Again, continuing to press the ValuE key while at the minimum value will continue setpoint selection from the maximum value.
```
NOMINAL VT SECONDARY
VOLTAGE
```



As an example, let's set the nominal VT secondary voltage setpoint to 69.3 V . Press the appropriate numeric keys in the sequence '69.3'. The display message will change as the digits are being entered.

Editing changes are not registered until the ENTER key is pressed. Press the ENTER key to store the new value in memory. This flash message momentarily appears to confirmation the storing process. If 69.28 were entered, the value is automatically rounded to 69.3, since the step value for this setpoint is 0.1 .

### 2.2.4 ENUMERATION SETPOINTS

Enumeration setpoints have data values which are part of a set, whose members are explicitly defined by a name. A set is comprised of two or more members.

| Phase SEQUENCE <br> ABC | Move to message S2 SYSTEM SETUP / TRANSFORMER / PHASE SEQUENCE. |
| :--- | :--- |



Press the HELP key and the following context sensitive flash messages will sequentially appear for several seconds each. For the case of an enumeration setpoint message, the HELP key displays the number of selections in the enumeration.

## || PRESS [ENTER] TO <br> || Store new value

|| FOR FURTHER HELP
|| Refer to manual

Enumeration type values are changed using the VALUE and VALUE keys. The VALUE $\triangle$ key displays the next selection while the value key displays the previous selection.

```
INPUT 1 FUNCTION:
ENABLED
```

|| NEW SETPOINT
\| HAS BEEN STORED

As an example we may need to set the phase sequence to ACB. Press Value $\triangle$ or value until the proper selection is displayed.

Editing changes are not registered until ENTER is pressed. Pressing ENTER stores the new value in memory. This flash message momentarily appears to confirm the storing process.

Text setpoints have data values which are fixed in length, but user defined in character. They may be comprised of upper case letters, lower case letters, numerals, and a selection of special characters.

```
OUTPUT 3 NAME:
Trip 2
```

```
| PRESS [ENTER] TO
|| begin text EDIt
```

```
|| PRESS [VALUE㐱] TO
| CHANGE CHARACTER
```

```
||PRESS [ENTER] TO
STORE CHARACTER
```

```
|| AND ADVANCE To
NEXT POSITION
```

```
||FOR FURTHER HELP
|| REFER TO MANUAL
```

The editing and storing of a text value is accomplished with the use of the enter, value value $\square$, and ESCAPE keys.

OUTPUT 2 NAME:
Trip 2

```
OUTPUT 3 NAME:
INST DIFF TRIP
```

Move to the S5 OUTPUTS \OUTPUT RELAYS \OUTPUT RELAY $3 \backslash$ OUTPUT 3 NAME setpoints message. The name of the OUTPUT 3 relay is going to be changed in this section.

Press the HELP key and the following context sensitive flash messages will sequentially appear for several seconds each. For the case of a text setpoint message, the HELP key displays how to edit and store a new value.

Note that the relay is defaulted to the Setpoints Not Programmed state before it leaves the factory. This safeguards against the installation of a relay whose setpoints have not been entered. In addition, a relay in the Not Programmed state blocks signaling of any output relay, and turns off the IN SERVICE indicator.

745 SETPOINTS:
Not Programmed

Move to the $\mathbf{S 1} \mathbf{7 4 5}$ SETUP $\backslash$ INSTALLATION $\backslash 745$ SETPOINTS message. To put the relay in the Programmed state, press the VALIE or VALUE $\rightarrow$ key once and press ENTER. Enter Yes for the ARE YOU SURE? message. The front panel IN SERVICE indicator will now turn on.
2.3.2 PASSCODE SECURITY SETUP

To guarantee that the relay settings cannot be tampered with, the user may setup the passcode security feature.
a) CHANGING THE PASSCODE


Move to the S1 745 SETUP $\backslash$ PASSCODE $\backslash$ SETPOINT ACCESS message. This message cannot be edited directly. It simply indicates whether passcode security is enabled (SETPOINT ACCESS: Read Only), or passcode security is disabled (SETPOINT ACCESS: Read \& Write). Each relay is shipped from the factory with setpoint access allowed. The passcode is also defaulted to ' 0 ', which disables the passcode security feature entirely.


Press the ENTER key to begin the procedure of changing the passcode. The displayed message will change as shown. The current passcode is ' 0 ', so press the ' 0 ' numeric key. The relay will acknowledge the key press by displaying 'z'.

```
PLEASE ENTER A NEW
PASSCODE: PASSCODE:
```

```
```

PLEASE ENTER A NEW

```
```

PLEASE ENTER A NEW
PASSCODE:||

```
```

PASSCODE:||

```
```

```
```

PLEASE RE-ENTER NEW

```
```

PLEASE RE-ENTER NEW
PASSCODE:

```
```

PASSCODE:

```
```

```
NEW PASSCODE
HAS BEEN STORED
```

Press the ENTER key.

For this example change the passcode to '123'. Press the appropriate numeric keys in the '123'sequence. The message will change as the digits are entered, with the end result being as shown.

Press the ENTER key to store the new passcode and a confirmation message appears. As a safety measure, the relay requires you to enter a new passcode twice. This ensures the passcode has been entered correctly.

After pressing the appropriate numeric keys in the sequence '123', press ENTER. This flash message appears momentarily on the display and confirms the new passcode is stored in memory.

CHANGE PASSCODE?
No

ALLOW ACCESS TO SETPOINTS? No

After a few seconds, the original display returns.

## b) DISABLING/ENABLING PASSCODE SECURITY

Suppose at some time in the future you want to alter a setpoint. In order to do this, you must first disable passcode security, make the setpoint change, and then re-enable the passcode security.

Move to message $\mathbf{S 1} 745$ SETUP $\backslash$ PASSCODE $\backslash$ ALLOW ACCESS TO SETPOINTS?. It is from here that we will disable passcode security. Please note that this message is hidden, when the passcode security feature is disabled by entering a passcode of ' 0 '.

Press the VALUE or value key once to select 'Yes', and press enter. The displayed message will change as shown.

Enter the current passcode and press the ENTER key. This flash message indicates that the keyed in value was accepted and that passcode security is now disabled.

This message will appear after a few seconds. Now that setpoint access is enabled, the 'ALLOW ACCESS TO SETPOINTS?' message has been replaced by the 'RESTRICT ACCESS TO SETPOINTS' message. The relay's setpoints can now be altered and stored. If no front panel keys are pressed for longer than 30 minutes, setpoint access will automatically become restricted again.

To disable setpoint access, immediately after setpoint editing, move back to message S1 745 SETUP $\backslash$ PASSCODE $\backslash$ RESTRICT ACCESS TO SETPOINTS? and


PLEASE ENTER CURRENT PASSCODE:
|| SETPOINT ACCESS
|| IS NOW ALLOWED

```
RESTRICT ACCESS TO
SETPOINTS? No
RESTRICT ACCESS TO SETPOINTS? No
```

PLEASE ENTER CURRENT
PASSCODE:

PLEASE ENTER CURRENT PASSCODE:

Press the MESSAGE key. As soon as a non-zero passcode is entered, setpoint access will automatically become restricted. enter 'Yes'. Key the current passcode into the shown message.

## || SETPOINT ACCESS <br> || IS NOW RESTRICTED

Press the ENTER key and this message will flash on the display. It indicates that passcode security is now enabled.

ALLOW ACCESS TO SETPOINTS? No

The 745 is packaged in the standard SR series arrangement, which consists of a drawout relay and a companion case. The case provides mechanical protection for the drawout portion, and is used to make permanent electrical connections to external equipment. Where required, case connectors are fitted with mechanisms, such as automatic CT shorting, to allow the safe removal of the relay from an energized panel. There are no electronic components in the case.


Figure 3-1: CASE DIMENSIONS

A 745 can be mounted alone or adjacent to another SR series unit on a standard 19" rack panel. Panel cutout dimensions for both conditions are as shown. When planning the location of your panel cutout, ensure provision is made for the front door to swing open without interference to or from adjacent equipment.


Figure 3-2: SINGLE AND DOUBLE SR RELAY PANEL CUTOUT

### 3.1.3 CASE MOUNTING

Before mounting the SR unit in the supporting panel, remove the relay portion from its case, as described in this chapter's relay withdrawal and insertion section. From the front of the panel, slide the empty case into the cutout. To ensure the case's front bezel sits flush with the panel, apply pressure to the bezel's front while bending the retaining tabs 90 degrees. These tabs are located on the sides and bottom of the case and appear as shown in the illustration. After bending all tabs, the case will be securely mounted so that its relay can be inserted. The SR unit is now ready for panel wiring.


Figure 3-3: CASE MOUNTING

### 3.1.4 UNIT WITHDRAWAL AND INSERTION

## $\xrightarrow{\wedge}$

TURN OFF CONTROL POWER BEFORE DRAWING OUT OR RE-INSERTING THE RELAY TO PREVENT MALOPERATION!
a) RELAY WITHDRAWAL

1. Open the door by pulling from the center of its right side. It will rotate to the left about its hinges.
2. Press upward on the locking latch, which is located below the handle, and hold in its raised position. The tip of a small screwdriver may prove helpful in this operation.
3. With the latch raised, pull the center of the handle outward. Once disengaged, continue rotating the handle up to the stop position.


Press Latch Up and Pull Handle


Rotate Handle to Stop Position
4. The locking mechanism releases when the stop position is reached. The relay now slides out of the case when pulled from its handle. To free the relay, it may be necessary to adjust the handle position slightly.


## b) RELAY INSERTION

Any 745 can be installed in any 745 case, but cannot be inserted into the case of another product in the SR series. For instance, you cannot place an 745 relay into a 735 case.

If an attempt is made to install a relay into a non-matching case, the case configuration pin will prevent full insertion. Applying a strong force in this instance will result in damage to the relay and case.

Even though a relay may be inserted into a case, one should make sure the model number on the left side of the relay matches the requirements of the installation.

1. With the relay's handle raised, align and slide both rolling guide pins into the case guide slots. Each rolling guide pin is found near the hinges of the relay's handle.
2. Once fully inserted, grasp the handle from its center and rotate it down from the raised position towards the bottom of the relay.
3. As the handle is fully inserted, the latch will be heard to click, locking the handle in the final position. The unit is mechanically held in the case by the handle's rolling pins, which cannot be fully lowered to the locked position until the electrical connections are completely mated.

## c) DRAWOUT SEAL

To prevent unauthorized removal of the drawout relay, a wire lead seal can be installed through the slot in the middle of the locking latch. The relay cannot be removed from the case with this seal in place. Even though a passcode or setpoint access jumper can be used to prevent entry of setpoints and still allow monitoring of actual values, access to the front panel controls may still need to be restricted. As such, a separate seal can be installed on the outside of the door to prevent it from being opened.


Figure 3-5: DRAWOUT SEAL

Due to the many features built into the 745 relay, a broad range of applications are available to the user. As such, it is not possible to present connections for all possible schemes. The information in this section will cover the important aspects of interconnections, in the general areas of instrument transformer inputs, other inputs, outputs, communications and grounding.
3.2.2 REAR TERMINAL LAYOUT


814776A5.DWG
Figure 3-6: REAR TERMINAL LAYOUT

### 3.2.3 REAR TERMINAL ASSIGNMENTS

| ANALOG INTERFACE |  | OUTPUTS \& GROUND CT N2 |  |
| :---: | :---: | :---: | :---: |
| A1 | ANALOG INPUT + | E1 | OUTPUT 1 - SOLID STATE TRIP (+) |
| A2 | ANALOG INPUT - | E2 | OUTPUT 2 - TRIP RELAY (N/O) |
| A3 | TAP POSITION (+) | E3 | OUTPUT 3 - TRIP RELAY (N/O) |
| A4 | TAP POSITION (-) | E4 | OUTPUT 4 - TRIP RELAY (N/O) |
| A5 | ANALOG OUTPUT (Common) | E5 | OUTPUT 5 - TRIP RELAY (N/O) |
| A6 | ANALOG OUTPUT 1 (+) | E6 | OUTPUT 6-AUXILIARY RELAY (N/O) |
| A7 | ANALOG OUTPUT 2 (+) | E7 | OUTPUT 6 - AUXILIARY RELAY (N/C) |
| A8 | ANALOG OUTPUT 3 (+) | E8 | OUTPUT 7 - AUXILIARY RELAY (N/O) |
| A9 | ANALOG OUTPUT 4 (+) | E9 | OUTPUT 8 - AUXILIARY RELAY (N/O) |
| A10 | ANALOG OUTPUT 5 (+) | E10 | OUTPUT 8 - AUXILIARY RELAY (N/C) |
| A11 | ANALOG OUTPUT 6 (+) | E11 | OUTPUT 9 - SERVICE RELAY (Common) |
| A12 | ANALOG OUTPUT 7 (+) | E12 | GROUND - WINDING 2/3 CT $\quad$ |
| COMMUNICATIONS \& RTD INPUTS |  | OUTPUTS \& GROUND CT N2 |  |
| B1 | COMPUTER RS485 (+) / RS422 (Rx +) | F1 | OUTPUT 1 - SOLID STATE TRIP (-) |
| B2 | COMPUTER RS485 (-) / RS422 (Rx -) | F2 | OUTPUT 2 - TRIP RELAY (Common) |
| B3 | COMPUTER RS485 (Com) / RS422 (Com) | F3 | OUTPUT 3 - TRIP RELAY (Common) |
| B4 | RS422 (Tx + ) | F4 | OUTPUT 4 - TRIP RELAY (Common) |
| B5 | RS422 (Tx - ) | F5 | OUTPUT 5 - TRIP RELAY (Common) |
| B6 | EXTERNAL RS485 (+) | F6 | OUTPUT 6 - AUXILIARY RELAY (Common) |
| B7 | EXTERNAL RS485 (-) | F7 | OUTPUT 7 - AUXILIARY RELAY (N/O) |
| B8 | IRIG-B + | F8 | OUTPUT 7 - AUXILIARY RELAY (N/C) |
| B9 | IRIG-B - | F9 | OUTPUT 8 - AUXILIARY RELAY (Common) |
| B10 | RTD 1 HOT | F10 | OUTPUT 9 - SERVICE RELAY (N/O) |
| B11 | RTD 1 COMPENSATION | F11 | OUTPUT 9 - SERVICE RELAY (N/C) |
| B12 | RTD 1 RETURN | F12 | GROUND - WINDING 2/3 CT |
| LOGIC INPUTS 9-16 \& VT TNPUT |  | CTINPUTS \& 745 GROUNDING |  |
| C1 | LOGIC INPUT 9 (+) | G1 | PHASE A - WINDING 1 CT |
| C2 | LOGIC INPUT 10 (+) | G2 | PHASE B - WINDING 1 CT |
| C3 | LOGIC INPUT 11 (+) | G3 | PHASE C - WINDING 1 CT |
| C4 | LOGIC INPUT 12 (+) | G4 | PHASE A - WINDING 2 CT |
| C5 | LOGIC INPUT 13 (+) | G5 | PHASE B - WINDING 2 CT |
| C6 | LOGIC INPUT 14 (+) | G6 | PHASE C - WINDING 2 CT |
| C7 | LOGIC INPUT 15 (+) | G7 | PHASE A - WINDING 3 CT |
| C8 | LOGIC INPUT 16 (+) | G8 | PHASE B - WINDING 3 CT |
| C9 | RESERVED | G9 | PHASE C - WINDING 3 CT |
| C10 | RESERVED | G10 | GROUND - WINDING 1/2 CT $\quad$ |
| C11 | VT INPUT ■ | G11 | 745 FILTER GROUND |
| C12 | VT INPUT | G12 | 745 SAFETY GROUND |
| LOGIC INPUTS 1-8 \& DEDICATED INPUTS |  | CT and VT INPUTS / POWER |  |
| D1 | LOGIC INPUT 1 (+) | H1 | PHASE A - WINDING 1 CT $\square$ |
| D2 | LOGIC INPUT 2 (+) | H2 | PHASE B - WINDING 1 CT $\quad$ |
| D3 | LOGIC INPUT 3 (+) | H3 | PHASE C - WINDING 1 CT |
| D4 | LOGIC INPUT 4 (+) | H4 | PHASE A - WINDING 2 CT |
| D5 | LOGIC INPUT 5 (+) | H5 | PHASE B - WINDING 2 CT |
| D6 | LOGIC INPUT 6 (+) | H6 | PHASE C - WINDING 2 CT $\quad$ - |
| D7 | LOGIC INPUT 7 (+) | H7 | PHASE A - WINDING 3 CT |
| D8 | LOGIC INPUT 8 (+) | H8 | PHASE B - WINDING 3 CT |
| D9 | SETPOINT ACCESS (+) | H9 | PHASE C - WINDING 3 CT |
| D10 | SETPOINT ACCESS (-) | H10 | GROUND - WINDING 1/2 CT |
| D11 | LOGIC POWER OUT (+) | H11 | CONTROL POWER (-) |
| D12 | LOGIC POWER OUT (-) | H12 | CONTROL POWER (+) |

$\square$ indicates high side of CT and VT terminals


Figure 3-7: TYPICAL WIRING DIAGRAM


Figure 3-8: TYPICAL WIRING DIAGRAM FOR GENERATOR STEP-UP

### 3.2.5 PHASE SEQUENCE AND TRANSFORMER POLARITY

For the correct operation of many relay features, the phase sequence and instrument transformer polarities shown on the typical wiring diagram must be followed. Note the markings shown with all instrument transformer connections. When the connections adhere to this drawing, the relay will operate properly.

### 3.2.6 AC CURRENT TRANSFORMER INPUTS

The 745 has eight or eleven channels for AC current inputs, each with an isolating transformer and an automatic shorting mechanism that acts when the relay is withdrawn from its case. There are no internal ground connections on the current inputs. Current transformers with 1 to 50000 A primaries may be used.

Verify that the relay's nominal current of 1 A or 5 A matches the secondary rating of the connected CTs. Unmatched CTs may result in equipment damage or inadequate protection.
CAUTION
The exact placement of a zero-sequence CT so that ground fault current will be detected is shown below. Twisted pair cabling on the zero-sequence CT is recommended.


Figure 3-9: ZERO-SEQUENCE (CORE BALANCE) CT INSTALLATION


IMPORTANT: The relay will correctly measure up to 46 times the current input nominal rating. Time overcurrent curves become horizontal lines for currents above the $\mathbf{4 6} \times$ CT rating.

NOTE
3.2.7 AC VOLTAGE INPUT

The 745 has one voltage divider type input for AC voltages. There are no internal fuses or ground connections. Voltage transformers up to a maximum 5000:1 ratio may be used. The nominal secondary voltage must be in the 60 to 120 V range.

Control power supplied to the relay must match the installed power supply range. If the applied voltage does not match, damage to the unit may occur.
WARNING
The label found on the left side of the relay specifies its order code or model number. The installed power supply operating range will be one of the following.

LO: 25 to 60 V DC or 20 to 48 V AC
HI: 88 to 300 V DC or 70 to 265 V AC
Ensure the applied control voltage matches the requirements of the relay's switching power supply. For example, the HI power supply will work with any DC voltage from 88 to 300 V , or any AC voltage from 70 to 265 V . The internal fuse may blow if the applied voltage exceeds this range.


Figure 3-10: CONTROL POWER CONNECTION

### 3.2.9 LOGIC INPUTS

Correct polarity must be observed for all logic input connections or equipment damage may result.

External contacts can be connected to the 16 logic inputs. As shown, these contacts can be either dry or wet. It is also possible to use a combination of both contact types.

A dry contact has one side connected to terminal D11. This is the +32 V DC voltage rail. The other side of the dry contact is connected to the required logic input terminal. When a dry contact closes, a current of 2.2 mA will flow through the associated circuit.

A wet contact has one side connected to the positive terminal of an external DC power supply. The other side of this contact is connected to the required logic input terminal. In addition, the negative side of the external source must be connected to the relay DC NEGATIVE rail at terminal D12. The maximum external source voltage for this arrangement is 300 V DC.


Figure 3-11: DRY AND WET CONTACT CONNECTIONS
3.2.10 ANALOG INPUT

Terminals $\mathrm{A} 1(+)$ and $\mathrm{A} 2(-)$ are provided for the input of a current signal, from one of the following: 0-1 mA, $0-$ $5 \mathrm{~mA}, 0-20 \mathrm{~mA}$, or 4-20 mA transducer outputs. This current signal can represent any external quantity, such as temperature, current or voltage. Be sure to observe polarity markings for correct operation. Both terminals are clamped to within 36 volts of ground with surge protection. As such, common mode voltages should not exceed this limit. Shielded wire, with only one end of the shield grounded, is recommended to minimize noise effects. The A2 (-) terminal must be connected to the A5 (ANALOG OUTPUT COM) terminal at the 745.

### 3.2.11 TAP POSITION INPUT

Terminals A3 (+) and A4 (-) are provided to monitor the position of an Onload Tap Changer from a steppedresistance position indicator device. Terminal A3 is connected internally to a 4.3 mA current source. This current is used to measure the value of the external resistance. The 745 uses the measured resistance value to calculate the Tap Position.

### 3.2.12 RTD DRIVER/SENSOR

Terminals B10 (RTD HOT), B11 (RTD COMP) and B12 (RTD RET) provide for the connection of various types of RTD devices. This connection may be made using two or three wires to the RTD. Terminal B10 is connected internally to a 5 mA current source for energizing the RTD. Terminal B11 is connected internally to a 5 mA current source for the purpose of cancelling out the resistance of the wires connecting the RTD to the 745. Terminal B12 is the return path for the two current sources.

In the three-wire connection scheme, the connection from terminal B11 to B12 is made at the RTD. The threewire connection scheme compensates for the resistance of the wiring between the 745 and the RTD.

In the two-wire connection scheme, the connection from terminal B11 to B12 is made at the terminal block on the rear of the 745 . This connection must not be omitted. The two-wire connection scheme does not compensate for the resistance of the wiring between the 745 and the RTD.

Eight output relays are provided with the 745 . Output Relays 2 through 5 have Form A contacts while Output Relays 6 to 8 and the SELF-TEST relay have Form C contacts. Since Output Relays 2 to 5 are intended for operating a breaker trip coil, the Form A contacts have higher current ratings than the Form C contacts. Note that the operating mode of the SELF-TEST relay is fixed, while the other relays can be programmed by the user via the FlexLogic ${ }^{\text {TM }}$ feature.
3.2.14 SOLID STATE TRIP OUTPUT

A high-speed solid state (SCR) output is also provided. This output is intended for applications where it is necessary to key a communications channel.
3.2.15 ANALOG OUTPUTS

The 745 provides 7 analog output channels whose full scale range can be set to one of the following ranges.
0 to $1 \mathrm{~mA} ; 0$ to $5 \mathrm{~mA} ; 0$ to $10 \mathrm{~mA} ; 0$ to $20 \mathrm{~mA} ; 4$ to 20 mA
Each analog output channel can be programmed to represent one of the parameters measured by the relay. For details, see the setpoints chapter.
As shown in the typical wiring diagram, the analog output signals originate from terminals A6 to A12 and share A5 as a common return. Output signals are internally isolated and allow connection to devices which sit at a different ground potential. Each analog output terminal is clamped to within 36 V of ground. To minimize the effects of noise, external connections should be made with shielded cable and only one end of the shield should be grounded.

If a voltage output is required, a burden resistor must be connected at the input of the external measuring device. Ignoring the input impedance, $\mathrm{R}_{\text {LOAD }}=\mathrm{V}_{\text {FULL SCALE }} / I_{\text {MAX }}$.

- If a 5 V full scale output is required with a 0 to 1 mA output channel, $\mathrm{R}_{\mathrm{LOAD}}=5 \mathrm{~V} / 0.001 \mathrm{~A}=5 \mathrm{~K} \Omega$.
- For a 0 to 5 mA channel this resistor would be $1 \mathrm{~K} \Omega$.
- For a 0 to 10 mA channel, this resistor would be $500 \Omega$.
- For a 4 to 20 mA channel this resistor would be $250 \Omega$.


Figure 3-12: ANALOG OUTPUT CONNECTION

The 745 provides the user with two rear communication ports which may be used simultaneously. Both implement a subset of the AEG Modicon Modbus protocol as outlined in the communication chapter.
The first port, COM1, can be used in the two wire RS485 mode or the four wire RS422 mode, but will not operate in both modes at the same time. In the RS485 mode, data transmission and reception are accomplished over a single twisted pair with transmit and receive data alternating over the same two wires. These wires should be connected to the terminals marked RS485. The RS422 mode uses the COM1 terminals designated as RS485 for receive lines, and the COM1 terminals designated as RS422 for transmit lines. The second port, COM2, is intended for the two wire RS485 mode only. Through the use of these ports, continuous monitoring and control from a remote computer, SCADA system or PLC is possible.

To minimize errors from noise, the use of shielded twisted-pair wire is recommended. Correct polarity should also be observed. For instance, the relays must be connected with all B1 terminals (labeled COM1 RS485+) connected together, and all B2 terminals (labeled COM1 RS485-) connected together. Terminal B3 (labeled COM1 RS485 COM) should be connected to the common wire inside the shield. To avoid loop currents, the shield should be grounded at one point only. Each relay should also be daisy-chained to the next in the link. A maximum of 32 relays can be connected in this manner without exceeding driver capability. For larger systems, additional serial channels must be added. It is also possible to use commercially available repeaters to include more than 32 relays on a single channel. Star or stub connections should be avoided entirely.
Lightning strikes and ground surge currents can cause large momentary voltage differences between remote ends of the communication link. For this reason, surge protection devices are internally provided at both communication ports. An isolated power supply with an optocoupled data interface also acts to reduce noise coupling. To ensure maximum reliability, all equipment should have similar transient protection devices installed.


Figure 3-13: RS485 CONNECTION


Figure 3-14: RS422 CONNECTION

### 3.2.17 RS232 FRONT PANEL PROGRAM PORT

A 9 pin RS232C serial port is located on the front panel for programming through a PC. This port uses the same Modbus protocol as the two rear ports. The 745PC software required to use this interface is included with the relay. Cabling for the RS232 port is shown below for both 9 pin and 25 pin connectors.


Figure 3-15: RS232 CONNECTION

IRIG-B is a standard time code format that allows stamping of events to be synchronized among connected devices within 1 millisecond. The IRIG time code formats are serial, width-modulated codes which can be either DC level shifted or amplitude modulated (AM). Third party equipment is available for generating the IRIG-B signal; this equipment may use a GPS satellite system to obtain the time reference so that devices at different geographic locations can also be synchronized.


Figure 3-16: IRIG-B FUNCTION

### 3.2.19 DIELECTRIC STRENGTH TESTING

Dielectric strength test was performed on the 745 relay at the manufacturer. It is not necessary to perform this test again at the customer site. However, if you wish to perform this test, follow instructions outlined in Section 10.3.2: DIELECTRIC STRENGTH TESTING on page 10-5


No special ventilation requirements need to be observed during the installation of the unit. The unit does not have to be cleaned.

Hazard may result if the product is not used for its intended purpose.

The front panel provides a local operator interface with a vacuum fluorescent display, LED status indicators, control keys, and program port. The display and status indicators update alarm and status information automatically. The control keys are used to select the appropriate message for entering setpoints or displaying measured values. The RS232 program port is also provided for connection with a computer running the 745PC Program.


Figure 4-1: 745 FRONT PANEL

All messages are displayed in English on the 40-character vacuum fluorescent display, which is visible under varied lighting conditions. When the keypad and display are not actively being used, the screen sequentially displays up to 30 user-selected default messages providing system information. These messages appear after a time of inactivity that is programmable by the user. Pressing any key after default messages have appeared will return the display to the last message displayed before the default messages appeared. Trip and alarm condition messages automatically override default messages. All display pixels are illuminated briefly during power up self-testing, and can be energized by pressing NEXT when no trips or alarms are active.
4.2.2 LEDS

Front panel indicators are grouped in three columns: RELAY STATUS, which provides information about the state of the 745 ; SYSTEM STATUS, which provides information about the state of the transformer and the power system; and CONDITIONS, which provides details about abnormal conditions that have been detected. The color of each indicator conveys information about its importance:

GREEN (G) indicates a general condition
AMBER (A) indicates an alert condition
RED (R) indicates a serious alarm or warning
All indicators can be tested by pressing $\underset{\sim}{ }$ wext while no conditions are active.
4.2.3 745 STATUS INDICATORS

a) IN SERVICE

The IN SERVICE indicator is on when relay protection is operational.
The indicator is on only if all of the following conditions are met:

- S1 745 SETUP / INSTALLATION / 745 SETPOINTS = Programmed
- $\quad$ S6 TESTING / OUTPUT RELAYS / FORCE OUTPUT RELAYS FUNCTION = Disabled
- S6 TESTING / SIMULATION / SIMULATION SETUP / SIMULATION FUNCTION = Disabled
- No self-test errors which have an effect on protection have been detected
- code programming mode is inactive
- factory service mode is disabled


## b) SELF-TEST ERROR

The SELF-TEST ERROR indicator is on when any of the self-diagnostic tests, performed either at power-on or in the background during normal operation, has detected a problem with the relay.

## c) TEST MODE

The TEST MODE indicator is on when any of the 745 testing features has been enabled.
The indicator is on if any of the following conditions are met:

- S6 TESTING/OUTPUT RELAYS/FORCE OUTPUT RELAYS FUNCTION: Enabled
- S6 TESTING/ANALOG OUTPUTS/FORCE ANALOG OUTPUTS FUNCTION: Enabled
- S6 TESTING/SIMULATION/SIMULATION SETUP/SIMULATION FUNCTION: Prefault Mode / Fault Mode / Playback Mode
- factory service mode is enabled
d) DIFFERENTIAL BLOCKED

The DIFFERENTIAL BLOCKED indicator is on when the restrained differential protection feature is enabled but is being blocked from operating by any of the harmonic restraint features.

The indicator is on if the following condition is met:

- S4 ELEMENTS / DIFFERENTIAL / HARMONIC RESTRAINT is blocking any phase (see scheme logic)
e) LOCAL

The LOCAL indicator is on when the 745 is in local mode, i.e. the front panel RESET key is operational.

## f) MESSAGE

The MESSAGE indicator is on when any element has picked up, operated, or is now in a latched state waiting to be reset. With this indicator on, the front panel display is sequentially displaying information about each element that has detected an abnormal condition.
4.2.4 SYSTEM STATUS INDICATORS


814766A9.DWG

## a) TRANSFORMER DE-ENERGIZED

The TRANSFORMER DE-ENERGIZED indicator is on when the energization inhibit feature has detected that the transformer is de-energized.

The indicator is on if the S4 ELEMENTS/DIFFERENTIAL/ENERGIZATN INHIBIT feature is detecting the transformer as de-energized
b) TRANSFORMER OVERLOAD

The TRANSFORMER OVERLOAD indicator is on when S4 ELEMENTS/XFORMER OVERLOAD has operated.
c) LOAD-LIMIT REDUCED

The LOAD-LIMIT REDUCED indicator is on when the adaptive harmonic factor correction feature is detecting enough harmonic content to reduce the load rating of the transformer. The indicator is on if S2 SYSTEM SETUP/HARMONIC DERATING/HARMONIC DERATING ESTIMATION is Enabled and the harmonic derating function is below 0.96.

## d) SETPOINT GROUP 1

The SETPOINT GROUP 1 indicator is on when the active setpoint group is 1 . This indicator flashes when this setpoint group is being edited.

## e) SETPOINT GROUP 2

The SETPOINT GROUP 2 indicator is on when the active setpoint group is 2 . This indicator flashes when this setpoint group is being edited.

## f) SETPOINT GROUP 3

The SETPOINT GROUP 3 indicator is on when the active setpoint group is 3 . This indicator flashes when this setpoint group is being edited.

## g) SETPOINT GROUP 4

The SETPOINT GROUP 4 indicator is on when the active setpoint group is 4 . This indicator flashes when this setpoint group is being edited.

## CONDITIONS

[. TRIPALARMPICKUPPHASE APHASE BPHASE CGROUND
814763A6.DWG

## a) TRIP

The TRIP indicator is on when any output relay selected to be of the Trip type has operated.
b) ALARM

The ALARM indicator is on when any output relay selected to be of the Alarm type has operated.
c) PICKUP

The PICKUP indicator is on when any element has picked up. With this indicator on, the front panel display is sequentially displaying information about each element that has picked up.
d) PHASE A (B/C)

The PHASE $A(B / C)$ indicator is on when phase $A(B / C)$ is involved in the condition detected by any element that has picked up, operated, or is now in a latched state waiting to be reset.

## e) GROUND

The GROUND indicator is on when ground is involved in the condition detected by any element that has picked up, operated, or is now in a latched state waiting to be reset.

Use the front panel program port for RS232 communications with the 745. As described in the installation chapter, all that is required is a connection between the relay and a computer running the 745PC program. For continuous monitoring of multiple relays, either the COM1 RS485/RS422 port or the COM2 RS485 port should be used.

PROGRAM PORT


Figure 4-2: PROGRAM PORT

Setpoints are arranged into groups of related messages called setpoint pages. Each time SETPOINT is pressed, the display advances to the first message of the next setpoints page. Pressing sETPoint while in the middle of a setpoints page advances the display to the beginning of the next setpoint page. Pressing SETPOINT while in the middle of an actual values page returns the display to the last setpoint message viewed. If the display has timed out to the default messages, pressing SETPOINT returns the display to the last viewed setpoint message. The MESSAGE / MESSAGE keys move between messages within a page.

### 4.3.2 ACTUAL KEY

Measured values and collected data messages are arranged into groups of related messages called actual values pages. Each time ACTUAL is pressed, the display advances to the first message of the next actual values page. Pressing ACTUAL while in the middle of an actual values page advances the display to the beginning of the next page. Pressing actual while in the middle of a setpoints page returns the display to the last actual values message viewed. If the display has timed out to the default messages, pressing ACTUAL returns the display to the last viewed actual values message. The MESSAGE / MESSAGE keys move between messages within a page.

The ESCAPE key is context-sensitive. The response depends on the message displayed and the relay status. If a value is edited incorrectly during programming, pressing ESCAPE before pressing ENTER restores the original setpoint value. In other situations, ESCAPE moves the display to the next higher header message. This continues until the current sub-header is reached.
4.3.4 ENTER KEY

The context-sensitive ENTER key response depends on the displayed message and the relay status. While displaying a sub-header whose lower line reads [ENTER] for more, press ENTER to enter the group of messages associated with the upper line. After editing setpoints numerically or with value $A$ / Value $\square$, press enter to store a new value in memory. Setpoint access must be allowed for this operation to succeed. The current message can also be made a default message by pressing the key sequence: [ . ] ENTER ENTER
4.3.5 MESSAGE UP/DOWN KEY

The MESSAGE / MESSAGE keys move through messages within a page. MESSAGE scrolls upward through a list of messages while MESSAGE scrolls downward through the list.

### 4.3.6 VALUE UP/DOWN KEY

Setpoint values are entered using VALUE / VALUE or the numeric keys. It is generally easier to enter numeric values using the number keys and multiple choice selections with value $\triangle$ / Value $\nabla$. When a setpoint calls for a yes/no response, pressing VALUE or VALUE toggles the value between yes and no. For multiple choice selections, pressing VALUE or VALUE displays the next choice. For numeric setpoints, pressing Value increases the value by its step increment. When the maximum value is reached, setpoint selection continues from the minimum value. Each time vaLUE is pressed, the value decreases by its step increment. When the minimum value is reached, setpoint selection continues from the maximum value. Press and hold the value keys down to rapidly change values.

Number keys are used for direct entry of numeric setpoint values. Thus, enter 27.3 as 2, 7, ., 3. Each key toggles the display between the corresponding number and a hyphen.

### 4.3.8 HELP KEY

Press HELP to display a sequence of context-sensitive help messages that automatically advance every few seconds. After the last message is displayed, the screen returns to the originally displayed message. Press HELP during the sequence to immediately display the next message. Any other key returns to the normally displayed message.

### 4.3.9 RESET KEY

This key is operational when the 745 is in local mode. In local mode, Reset puts all latched relays to the nonoperated state and clears latched targets if initiating conditions are no longer present.
4.3.10 NEXT KEY

If a target becomes active, a diagnostic message overrides the displayed message and the MESSAGE indicator flashes. If there is more than one target active, Nexi scrolls through the messages. Pressing any other key returns to the normally displayed messages. While viewing the normally displayed messages, the MESSAGE indicator continues to flash if any diagnostic message is active. To return to the diagnostic messages from the normally displayed messages, press the Next key.

Note that diagnostic messages for self-resetting targets disappear with the condition, but diagnostic messages for latched targets remain until they are cleared. When no targets are active, Next illuminates all front panel indicators for approximately 5 seconds.

### 5.1.1 SETPOINT GROUPS

The 745 relay has a considerable number of programmable settings (setpoints) which makes it extremely flexible. The setpoints have been grouped into a number of pages as shown below. If using the 745PC program and not connected to a relay, you may have to select the File > Properties menu item and set the correct options for your relay.


### 5.1.2 SETPOINT ENTRY

Prior to commissioning the 745 relay, setpoints defining transformer characteristics, inputs, output relays, and protection settings must be entered, via one of the following methods:

- Front panel, using the keypad and display.
- Front RS232 or rear terminal RS485/RS422 communication ports, and a portable computer running the 745PC program or a SCADA system running user-written software.

Any of these methods can be used to enter the same information. A computer, however, makes entry much easier. Files can be stored and downloaded for fast, error free entry when a computer is used. Settings files can be prepared and stored on disk without the need to connect to a relay.

All setpoint messages are illustrated and described in blocks throughout this chapter. The 745 relay leaves the factory with setpoints programmed to default values, and it is these values that are shown in all the setpoint message illustrations. Some of these factory default values can be left unchanged.
There are many 745 setpoints that must be entered for the relay to function correctly. In order to safeguard against installation when these setpoints have not been entered, the 745 does not allow signaling of any output relay. In addition, the IN SERVICE indicator is off and the SELF-TEST ERROR indicator on until the setpoint S1 745 SETUP/INSTALLATION/745 SETPOINTS is set to Programmed. This setpoint is defaulted to Not Programmed when the relay leaves the factory. The following diagnostic message appears until the 745 is put in the programmed state:

```
| SETPOINTS HAVE NOT
|BEEN PROGRAMMED
```

Messages may vary somewhat from those illustrated because of installed options. Also, some messages associated with disabled features (or optional features which have not been ordered) are hidden. These messages are shown with a shaded message box.

- KEYPAD ENTRY: See Section 2.1: USING THE FRONT PANEL DISPLAY on page 2-1 for details on maneuvering through the messages, viewing actual values, and changing setpoints.
- COMPUTER ENTRY: Setpoint values are grouped together on a screen in the 745PC software. The data is organized in a system of menus. See the Chapter 10: 745PC SOFTWARE for details.
- SCADA ENTRY: Details of the complete communication protocol for reading and writing setpoints are given in Chapters 8 and 9. A programmable SCADA system connected to the RS485/RS422 terminals can make use of communication commands for remote setpoint programming, monitoring, and control.


### 5.1.3 SETPOINT WRITE ACCESS

The 745 design incorporates hardware and passcode security features to provide protection against unauthorized setpoint changes.
A hardware jumper must be installed across the setpoint access terminals on the back of the relay to program new setpoints using the front panel keys. When setpoint programming is via a computer connected to the communication ports, no setpoint access jumper is required.

Passcode protection may also be enabled. When enabled, the 745 requests a numeric passcode before any setpoint can be entered. As an additional safety measure, a minor self-test error is generated when the passcode is entered incorrectly three times in a row.

For transformer differential protection, it is necessary to correct the magnitude and phase relationships of the CT secondary currents for each winding, in order to obtain near zero differential currents under normal operating conditions. Traditionally, this has been accomplished using interposing CTs or tapped relay windings and compensating CT connections at the transformer.
The 745 simplifies CT configuration issues by having all CTs connected Wye (polarity markings pointing away from the transformer). All phase angle and magnitude corrections, as well as zero-sequence current compensation, are performed automatically based upon user entered setpoints.

This section describes the process of auto-configuration by means of a specific example, showing how CT ratios, transformer voltage ratios, and the transformer phase shifts are used to generate correction factors. These correction factors are applied to the current signals to obtain extremely accurate differential currents.

### 5.2.2 A TYPICAL POWER TRANSFORMER

Consider a WYE-DELTA power transformer with the following data:
Connection: $\quad \mathrm{Y} / \mathrm{d} 30^{\circ}$ (i.e. DELTA winding phases lag corresponding WYE winding phases by $30^{\circ}$ )
Winding 1: 100/133/166 MVA, 220 kV nominal, 500/1 CT ratio
Winding 2: 100/133/166 MVA, 69 kV nominal, 1500/1 CT ratio onload tap changer: 61 to 77 kV in 0.5 kV steps ( 33 tap positions)
Aux. Cooling: two stages of forced air

### 5.2.3 DYNAMIC CT RATIO MISMATCH CORRECTION

## a) PROBLEM 1:USE OF STANDARD CT RATIOS

- Standard CT ratios: $\mathrm{CT}_{2} / \mathrm{CT}_{1}=V_{1} / V_{2}$
- Tapped relay windings / interposing CTs (inaccurate/expensive)


## Solution:

- WxNom Voltage, Wx rated Load, Wx CT primary setpoints
- Automatic correction for mismatch: $\left(\mathrm{CT}_{2} \times V_{2}\right) /\left(\mathrm{CT}_{1} \times V_{1}\right)<16$


## Example:

Even ignoring the onload tap changer, the 1500/1 CT on Winding 2 does not perfectly match the $500 / 1$ CT on Winding 1. A perfectly matched Winding 2 CT ratio (at nominal Winding 2 voltage) is calculated as follows:

$$
\mathrm{CT}_{2} \text { (ideal) }=\mathrm{CT}_{1} \times \frac{V_{1}}{V_{2}}=\frac{500}{1} \times \frac{220 \mathrm{kV}}{69 \mathrm{kV}}=\frac{1594.2}{1}
$$

where $\mathrm{CT}_{1}=$ Winding 1 CT ratio
$V_{1}=$ Winding 1 nominal voltage
$\mathrm{CT}_{2}=$ Winding 2 CT ratio
$V_{2}=$ Winding 2 nominal voltage
Thus, for any load, the Winding 2 CT secondary current is higher (per unit) than the Winding 1 CT secondary current. The mismatch factor is $1594.2 / 1500=1.063$.

## 745 Solution:

The transformer type is entered as the setpoint S2 SYSTEM SETUP/TRANSFORMER/TRANSFORMER TYPE. The 745 calculates and automatically corrects for CT mismatch to a maximum mismatch factor of 16 . The following information is entered as setpoints:

Under S2 SYSTEM SETUP / WINDING 1:

```
WINDING 1 NOM Ф-Ф
VOLTAGE: 220.0 kV
```

```
WINDING 1 RATED
```

LOAD: 100 MVA

```
WINDING 1 PHASE CT
PRIMARY: 500:1 A
```

Under S2 / SYSTEM SETUP / WINDING 2:
WINDING 2 NOM $\Phi-\Phi$
VOLTAGE: 69.0 kV

WINDING 2 RATED
LOAD: 100 MVA

WINDING 2 PHASE CT
PRIMARY: 1500:1 A

For a 3-winding transformer, the setpoints under S2 SYSTEM SETUP/WINDING 3 must also be set.
b) PROBLEM 2: ONLOAD TAP CHANGER

- Onload tap changer

5

- Variable voltage ratio
- $\mathrm{CT}_{2} / \mathrm{CT}_{1}=V_{1} / V_{2}$
- Lower sensitivity on differential element


## Solution:

- Tap position monitoring

$$
V_{2}=V_{\text {min }}+(n-1) V_{\text {incr }}
$$

## Example:

The onload tap changer changes the Winding 2 voltage, resulting in an even greater CT mismatch. A perfectly matched Winding 2 CT ratio (based on the tap changer position) is calculated as follows:

$$
\mathrm{CT}_{2} \text { (ideal) }=\mathrm{CT}_{1} \times \frac{V_{1}}{V_{2(\text { min })}+V_{2(\text { tap })}(n-1)}=\frac{500}{1} \times \frac{220}{61+0.5(n-1)}
$$

where $n=$ current tap changer position
$V_{2(\text { min })}=$ Winding 2 minimum voltage (at $n=1$ )
$V_{2 \text { (tap) }}=$ Winding 2 voltage increment per tap
Thus, with the tap changer at position 33 , the Winding 2 CT ratio must be $1428.6 / 1$ to be perfectly matched. In this case, the mismatch factor is $1428.6 / 1500=0.952$.

## 745 Solution:

The 745 allows monitoring of the tap changer position via the tap position input. With this input, the 745 dynamically adjusts the CT ratio mismatch factor based on the actual transformer voltage ratio set by the tap changer.

## 5 SETPOINTS

Tap changers are operated by means of a motor drive unit mounted on the outside of the transformer tank. The motor drive is placed in a protective housing containing all devices necessary for operation, including a tap position indication circuit. This indication circuit has a terminal for each tap with a fixed resistive increment per tap. A cam from the drive shaft that provides local tap position indication also controls a wiper terminal in the indication circuit, as illustrated below.


Figure 5-1: TAP POSITION INPUT
The "zero position" terminal and the "wiper" terminal of the tap position circuit are connected to the positive and negative 745 tap position terminals. Polarity is not consequential. The following setpoints configure the 745 to determine tap position.
Under S2 SYSTEM SETUP / ONLOAD TAP CHANGER:

```
WINDING WITH TAP
CHANGER: Winding 2
```


## NUMBER OF TAP

POSITIONS: 33

```
MINIMUM TAP POSITION
VOLTAGE: 61.0 kV
```

VOLTAGE INCREMENT
PER TAP: 0.50 kV

RESISTANCE INCREMENT
Maximum value resistance on top tap is $5 \mathrm{~K} \Omega$
PER TAP: $33 \Omega$

### 5.2.4 PHASE SHIFTS ON THREE-PHASE TRANSFORMERS

Power transformers that are built in accordance with ANSI and IEC standards are required to identify winding terminals and phase relationships among the windings of the transformer.
ANSI standard C.37.12.70 requires that the labels of the terminals include the characters 1,2 , and 3 to represent the names of the individual phases. The phase relationship among the windings must be shown as a phasor diagram on the nameplate, with the winding terminals clearly labeled. This standard specifically states that the phase relationships are established for a condition where the source phase sequence of $1-2-3$ is connected to transformer windings labeled 1, 2 and 3 respectively.

IEC standard 60076-1 (1993) states that the terminal markings of the three phases follow national practice. The phase relationship among the windings is shown as a specified notation on the nameplate, and there may be a phasor diagram. In this standard the arbitrary labeling of the windings is shown as I, II and III. This standard specifically states that the phase relationships are established for a condition where a source phase sequence of $\mathrm{I}-\mathrm{II}-\mathrm{III}$ is connected to transformer windings labeled I, II and III respectively.
The source phase sequence must be stated when describing the winding phase relationships since these relationships change when the phase sequence changes. The example below shows why this happens, using a transformer described in IEC nomenclature as "Yd1" or in GE Power Management nomenclature as "Y/d30."


Figure 5-2: EXAMPLE TRANSFORMER
The above figure shows the physical connections within the transformer that produce a phase angle in the delta winding that lags the respective wye winding by $30^{\circ}$. The winding currents are also identified. Note that the total current out of the delta winding is described by an equation. Now assume that a source, with a sequence of ABC, is connected to transformer terminals ABC, respectively. The currents that would be present for a balanced load are shown below.


Figure 5-3: PHASORS FOR ABC SEQUENCE

## 5 SETPOINTS

Note that the Delta winding currents lag the Wye winding currents by $30^{\circ}$, which is in agreement with the transformer nameplate.

Now assume that a source, with a sequence of ACB is connected to transformer terminals A, C, B respectively. The currents that would be present for a balanced load are shown below:


Figure 5-4: PHASORS FOR ACB SEQUENCE
Note that the Delta winding currents leads the Wye winding currents by $30^{\circ}$, (which is a type Yd11 in IEC nomenclature and a type $\mathrm{Y} / \mathrm{d} 330$ in GE Power Management nomenclature) which is in disagreement with the transformer nameplate. This is because the physical connections and hence the equations used to calculate current for the delta winding have not changed. The transformer nameplate phase relationship information is only correct for a stated phase sequence.

It may be suggested that for the ACB sequence the phase relationship can be returned to that shown on the transformer nameplate by connecting source phases $\mathrm{A}, \mathrm{B}$ and C to transformer terminals $\mathrm{A}, \mathrm{C}$, and B respectively. This will restore the nameplate phase shifts but will cause incorrect identification of phases B and C within the relay, and is therefore not recommended.
All information presented in this manual is based on connecting the relay phase $A, B$ and $C$ terminals to the power system phases A, B and C respectively. The transformer types and phase relationships presented are for a system phase sequence of $A B C$, in accordance with the standards for power transformers. Users with a system phase sequence of ACB must determine the transformer type for this sequence.

The following diagram shows the internal connections of the $\mathrm{Y} / \mathrm{d} 30^{\circ}$ transformer of our example:
WINDING 1 (WYE)


Figure 5-5: WYE / DELTA ( $30^{\circ}$ LAG) TRANSFORMER
Under balanced conditions, the Winding 2 phase current phasors lag the corresponding phase current phasors of Winding 1 by $30^{\circ}$. With CTs connected in a Wye arrangement (polarity markings pointing away from the transformer), the corresponding phase currents cannot be summed directly to obtain a zero differential current, since corresponding phasors will NOT be $180^{\circ}$ out-of-phase.
Traditionally, this problem is solved by connecting the CTs on the WYE side of the transformer (Winding 1) in a Delta arrangement. This compensates for the phase angle lag introduced in the Delta side (Winding 2).
The 745 performs this phase angle correction internally based on the following setpoint. Under S2 SYSTEM SETUP/TRANSFORMER, set:

```
TRANSFORMER TYPE:
Y/d30
```

The 745 supports over 100 two- and three-winding transformer types. Table 5-1: TRANSFORMER TYPES on page 5-10 provides the following information about each transformer type:


As shown in the ' $\mathrm{Y} / \mathrm{d} 30^{\circ}$ ' entry of the table of transformer types, the phase angle correction (or phase shift) introduces $30^{\circ}$ lag in Winding 1. This lag is described in Table 5-2: PHASE SHIFTS on page 5-23. This table provides the following information about each phase shift type:


1. If zero-sequence current can flow into and out of one transformer winding (e.g. a grounded Wye or zig-zag winding) but not the other winding (e.g. a Delta winding), external ground faults will cause the differential element to operate incorrectly. Traditionally, this problem is solved by Delta connecting the CTs on the Wye side of a Wye/Delta transformer so that the currents coming to the relay are both phase corrected and void of zero-sequence current. Because the 745 software mimics the CT Delta connection, the zero-sequence current is automatically removed from all Wye or zig-zag winding currents of transformers having at least one delta winding.
2. External ground faults also cause maloperation of the differential element for transformers having an inzone grounding bank on the Delta side (and the Wye connected CTs on the same side). Traditionally, this problem is solved by inserting a zero-sequence current trap in the CT circuitry. The 745 automatically removes zero-sequence current from all Delta winding currents when calculating differential current. Where there is no source of zero-sequence current (e.g. Delta windings not having a grounding bank), the 745 effectively removes nothing.
3. Autotransformers have an internal tertiary winding to provide a path for third-harmonic currents and control transient overvoltages. Also, many two-winding Wye/Wye transformers have a three-legged core construction that forces zero-sequence flux into the transformer tank, creating an inherent Delta circuit. In both these cases, there is zero-sequence impedance between the primary and secondary windings. The 745 removes zero-sequence current from all windings of Wye/Wye and Wye/Wye/Wye transformers to prevent possible relay maloperations resulting from these two conditions.

Table 5-1: TRANSFORMER TYPES (Sheet 1 of 26)

| TRANSFORMER TYPE | $\begin{gathered} \text { WDG } \\ \# \end{gathered}$ | CONNECTION | VOLTAGE PHASORS | PHASE SHIFT |
| :---: | :---: | :---: | :---: | :---: |
| 2W External Corrrection | 1 | WYE (gnd 1/2) |  | $0^{\circ}$ |
|  | 2 | $\begin{gathered} \text { WYE } \\ (\text { gnd } 2 / 3) \\ 0^{\circ} \end{gathered}$ |  | $0^{\circ}$ |
| $\mathrm{Y} / \mathrm{y} 0^{\circ}$ | 1 | WYE (gnd 1/2) |  | $0^{\circ}$ |
|  | 2 | $\begin{gathered} \text { WYE } \\ (\text { gnd } 2 / 3 \text { ) } \\ 0^{\circ} \end{gathered}$ |  | $0^{\circ}$ |
| Y/y180 ${ }^{\circ}$ | 1 | WYE (gnd 1/2) |  | $\begin{gathered} 180^{\circ} \\ \mathrm{lag} \end{gathered}$ |
|  | 2 | WYE <br> (gnd 2/3) <br> $180^{\circ} \mathrm{lag}$ |  | $0^{\circ}$ |
| Y/d30 ${ }^{\circ}$ | 1 | WYE (gnd 1/2) |  | $30^{\circ} \mathrm{lag}$ |
|  | 2 | $\begin{aligned} & \text { DELTA } \\ & 30^{\circ} \mathrm{lag} \end{aligned}$ |  | $0^{\circ}$ |
| Y/d150 ${ }^{\circ}$ | 1 | WYE (gnd 1/2) |  | $\begin{gathered} 150^{\circ} \\ \mathrm{lag} \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 150^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |
| Y/d210 ${ }^{\circ}$ | 1 | WYE (gnd 1/2) |  | $\begin{gathered} 210^{\circ} \\ \operatorname{lag} \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 210^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |

Table 5-1: TRANSFORMER TYPES (Sheet 2 of 26)

| TRANSFORMER TYPE | WDG | CONNECTION | $\begin{aligned} & \hline \text { VOLTAGE } \\ & \text { PHASORS } \end{aligned}$ | PHASE SHIFT |
| :---: | :---: | :---: | :---: | :---: |
| Y/d330 ${ }^{\circ}$ | 1 | WYE <br> (gnd 1/2) |  | $\begin{gathered} 330^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 330^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |
| $\mathrm{D} / \mathrm{d} 0^{\circ}$ | 1 | DELTA | $\Lambda$ | $0^{\circ}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 0^{\circ} \end{gathered}$ | $i$ | $0^{\circ}$ |
| D/d60 ${ }^{\circ}$ | 1 | DELTA |  | $60^{\circ} \mathrm{lag}$ |
|  | 2 | $\begin{aligned} & \text { DELTA } \\ & 60^{\circ} \mathrm{lag} \end{aligned}$ |  | $0^{\circ}$ |
| D/d120 ${ }^{\circ}$ | 1 | DELTA |  | $\begin{gathered} 120^{\circ} \\ \operatorname{lag} \end{gathered}$ |
|  | 2 | $\begin{aligned} & \text { DELTA } \\ & 120^{\circ} \mathrm{lag} \end{aligned}$ |  | $0^{\circ}$ |
| D/d180 ${ }^{\circ}$ | 1 | DELTA |  | $\begin{gathered} 180^{\circ} \\ \mathrm{lag} \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 180^{\circ} \mathrm{lag} \end{gathered}$ | $1$ | $0^{\circ}$ |
| D/d240 ${ }^{\circ}$ | 1 | DELTA |  | $\begin{gathered} 240^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 240^{\circ} \mathrm{lag} \end{gathered}$ | $L$ | $0^{\circ}$ |
| D/d300 ${ }^{\circ}$ | 1 | DELTA |  | $\begin{gathered} 300^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 300^{\circ} \mathrm{lag} \end{gathered}$ | $j$ | $0^{\circ}$ |

Table 5-1: TRANSFORMER TYPES (Sheet 3 of 26)

| TRANSFORMER TYPE | WDG \# | CONNECTION | VOLTAGE PHASORS | $\begin{aligned} & \text { PHASE } \\ & \text { SHIFT } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| D/y30 ${ }^{\circ}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | WYE (gnd 1/2) $30^{\circ} \mathrm{lag}$ |  | $\begin{gathered} 330^{\circ} \\ \text { lag } \end{gathered}$ |
| D/y150 ${ }^{\circ}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | WYE <br> (gnd 1/2) $150^{\circ} \mathrm{lag}$ |  | $\begin{gathered} 210^{\circ} \\ \mathrm{lag} \end{gathered}$ |
| D/y210 ${ }^{\circ}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | WYE (gnd 1/2) $210^{\circ} \mathrm{lag}$ |  | $\begin{gathered} 150^{\circ} \\ \text { lag } \end{gathered}$ |
| D/y $330^{\circ}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | WYE <br> (gnd 1/2) <br> $330^{\circ}$ lag |  | $30^{\circ} \mathrm{lag}$ |
| Y/z30 ${ }^{\circ}$ | 1 | WYE (gnd 1/2) |  | $30^{\circ} \mathrm{lag}$ |
|  | 2 | $\begin{gathered} \text { ZIG-ZAG } \\ \text { (gnd } 2 / 3 \text { ) } \\ 30^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |
| Y/z150 ${ }^{\circ}$ | 1 | WYE (gnd 1/2) |  | $\begin{gathered} 150^{\circ} \\ \mathrm{lag} \end{gathered}$ |
|  | 2 | ZIG-ZAG <br> (gnd 2/3) <br> $150^{\circ} \mathrm{lag}$ |  | $0^{\circ}$ |
| Y/z210 ${ }^{\circ}$ | 1 | WYE (gnd 1/2) |  | $\begin{gathered} 210^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | ZIG-ZAG <br> (gnd 2/3) <br> $210^{\circ} \mathrm{lag}$ |  | $0^{\circ}$ |

Table 5-1: TRANSFORMER TYPES (Sheet 4 of 26)

| TRANSFORMER TYPE | $\begin{gathered} \text { WDG } \\ \text { \# } \end{gathered}$ | CONNECTION | VOLTAGE PHASORS | PHASE SHIFT |
| :---: | :---: | :---: | :---: | :---: |
| Y/z330 ${ }^{\circ}$ | 1 | WYE (gnd 1/2) |  | $\begin{gathered} 330^{\circ} \\ \mathrm{lag} \end{gathered}$ |
|  | 2 | ZIG-ZAG <br> (gnd 2/3) <br> $330^{\circ}$ lag |  | $0^{\circ}$ |
| D/z0 ${ }^{\circ}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | ZIG-ZAG <br> (gnd 1/2) $0^{\circ} \mathrm{lag}$ |  | $0^{\circ}$ |
| D/z60 ${ }^{\circ}$ | 1 | DELTA |  | $60^{\circ} \mathrm{lag}$ |
|  | 2 | ZIG-ZAG <br> (gnd 1/2) <br> $60^{\circ} \mathrm{lag}$ |  | $0^{\circ}$ |
| D/z120 ${ }^{\circ}$ | 1 | DELTA |  | $\begin{gathered} 120^{\circ} \\ \operatorname{lag} \end{gathered}$ |
|  | 2 | $\begin{gathered} \hline \text { ZIG-ZAG } \\ \text { (gnd 1/2) } \\ 120^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |
| D/z180 ${ }^{\circ}$ | 1 | DELTA |  | $\begin{gathered} 180^{\circ} \\ \mathrm{lag} \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { ZIG-ZAG } \\ \text { (gnd 1/2) } \\ 180^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |
| D/z240 ${ }^{\circ}$ | 1 | DELTA |  | $\begin{gathered} 240^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { ZIG-ZAG } \\ \text { (gnd 1/2) } \\ 240^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |
| D/z300 ${ }^{\circ}$ | 1 | DELTA |  | $\begin{gathered} 300^{\circ} \\ \mathrm{lag} \end{gathered}$ |
|  | 2 | $\begin{aligned} & \text { ZIG-ZAG } \\ & \text { (gnd 1/2) } \\ & 300^{\circ} \mathrm{lag} \end{aligned}$ |  | $0^{\circ}$ |

Table 5-1: TRANSFORMER TYPES (Sheet 5 of 26)

| TRANSFORMER TYPE | $\begin{gathered} \text { WDG } \\ \text { \# } \end{gathered}$ | CONNECTION | VOLTAGE PHASORS | PHASE SHIFT |
| :---: | :---: | :---: | :---: | :---: |
| 3W External Correction | 1 | WYE (gnd 1/2) |  | $0^{\circ}$ |
|  | 2 | $\begin{gathered} \text { WYE } \\ (\text { gnd } 2 / 3 \text { ) } \\ 0^{\circ} \end{gathered}$ |  | $0^{\circ}$ |
|  | 3 | $\begin{gathered} \text { WYE } \\ 0^{\circ} \end{gathered}$ |  | $0^{\circ}$ |
| $\mathrm{Y} / \mathrm{y} 0^{\circ} / \mathrm{d} 30^{\circ}$ | 1 | WYE (gnd 1/2) |  | $30^{\circ} \mathrm{lag}$ |
|  | 2 | $\begin{gathered} \text { WYE } \\ (\text { gnd } 2 / 3) \\ 0^{\circ} \end{gathered}$ |  | $30^{\circ} \mathrm{lag}$ |
|  | 3 | $\begin{aligned} & \text { DELTA } \\ & 30^{\circ} \text { lag } \end{aligned}$ |  | $0^{\circ}$ |
| $\mathrm{Y} / \mathrm{y} 0{ }^{\circ} \mathrm{d} 150^{\circ}$ | 1 | WYE <br> (gnd 1/2) |  | $\begin{gathered} 150^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { WYE } \\ (\text { gnd } 2 / 3 \text { ) } \\ 0^{\circ} \end{gathered}$ |  | $\begin{gathered} 150^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 3 | $\begin{aligned} & \text { DELTA } \\ & 150^{\circ} \mathrm{lag} \end{aligned}$ |  | $0^{\circ}$ |
| $\mathrm{Y} / \mathrm{y} 0{ }^{\circ} / \mathrm{d} 210^{\circ}$ | 1 | WYE (gnd 1/2) |  | $\begin{gathered} 210^{\circ} \\ \mathrm{lag} \end{gathered}$ |
|  | 2 | WYE (gnd 2/3) <br> $0^{\circ}$ |  | $\begin{gathered} 210^{\circ} \\ \mathrm{lag} \end{gathered}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 210^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |

Table 5-1: TRANSFORMER TYPES (Sheet 6 of 26)

| $\begin{array}{c}\text { TRANSFORMER } \\ \text { TYPE }\end{array}$ | $\begin{array}{c}\text { WDG } \\ \#\end{array}$ | $\begin{array}{c}\text { CONNECTION }\end{array}$ | $\begin{array}{c}\text { VOLTAGE } \\ \text { PHASORS }\end{array}$ | $\begin{array}{c}\text { PHASE } \\ \text { SHIFT }\end{array}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{c}\text { Y/y0\%/d330 }\end{array}$ | 2 | $\begin{array}{c}\text { WYE } \\ \text { (gnd 1/2) }\end{array}$ | $\begin{array}{c}\text { WYE } \\ \text { (gnd 2/3) } \\ 0^{\circ}\end{array}$ |  | \(\left.\begin{array}{c}330^{\circ} <br>

lag\end{array}\right]\)

Table 5-1: TRANSFORMER TYPES (Sheet 7 of 26)

| TRANSFORMER TYPE | $\begin{gathered} \hline \text { WDG } \\ \# \end{gathered}$ | CONNECTION | VOLTAGE PHASORS | PHASE SHIFT |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathrm{Y} / \mathrm{y} 180^{\circ} / \\ \mathrm{d} 330^{\circ} \end{gathered}$ | 1 | WYE <br> (gnd 1/2) |  | $\begin{gathered} 330^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { WYE } \\ \text { (gnd } 2 / 3 \text { ) } \\ 180^{\circ} \text { lag } \end{gathered}$ |  | $\begin{gathered} 150^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 330^{\circ} \mathrm{lag} \end{gathered}$ | $1$ | $0^{\circ}$ |
| $\mathrm{Y} / \mathrm{d} 30^{\circ} / \mathrm{y} 0^{\circ}$ | 1 | WYE (gnd 1/2) |  | $30^{\circ} \mathrm{lag}$ |
|  | 2 | $\begin{aligned} & \text { DELTA } \\ & 30^{\circ} \mathrm{lag} \end{aligned}$ |  | $0^{\circ}$ |
|  | 3 | $\begin{gathered} \text { WYE } \\ \text { (gnd } 2 / 3 \text { ) } \\ 0^{\circ} \end{gathered}$ |  | $30^{\circ} \mathrm{lag}$ |
| Y/d30 $/ \mathrm{y} 180^{\circ}$ | 1 | WYE (gnd 1/2) |  | $30^{\circ} \mathrm{lag}$ |
|  | 2 | $\begin{aligned} & \text { DELTA } \\ & 30^{\circ} \mathrm{lag} \end{aligned}$ |  | $0^{\circ}$ |
|  | 3 | $\begin{gathered} \text { WYE } \\ \text { (gnd } 2 / 3 \text { ) } \\ 180^{\circ} \mathrm{lag} \end{gathered}$ |  | $\begin{gathered} 210^{\circ} \\ \mathrm{lag} \end{gathered}$ |
| $\mathrm{Y} / \mathrm{d} 30^{\circ} / \mathrm{d} 30^{\circ}$ | 1 | WYE <br> (gnd 1/2) |  | $30^{\circ} \mathrm{lag}$ |
|  | 2 | $\begin{aligned} & \text { DELTA } \\ & 30^{\circ} \mathrm{lag} \end{aligned}$ |  | $0^{\circ}$ |
|  | 3 | $\begin{aligned} & \text { DELTA } \\ & 30^{\circ} \mathrm{lag} \end{aligned}$ |  | $0^{\circ}$ |

Table 5-1: TRANSFORMER TYPES (Sheet 8 of 26)

| TRANSFORMER TYPE | $\begin{gathered} \text { WDG } \\ \# \end{gathered}$ | CONNECTION | VOLTAGE PHASORS | $\begin{aligned} & \text { PHASE } \\ & \text { SHIFT } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Y} / \mathrm{d} 30^{\circ} / \mathrm{d} 150^{\circ}$ | 1 | WYE (gnd 1/2) |  | $30^{\circ} \mathrm{lag}$ |
|  | 2 | $\begin{aligned} & \text { DELTA } \\ & 30^{\circ} \mathrm{lag} \end{aligned}$ |  | $0^{\circ}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 150^{\circ} \mathrm{lag} \end{gathered}$ |  | $\begin{gathered} 240^{\circ} \\ \text { lag } \end{gathered}$ |
| $\mathrm{Y} / \mathrm{d} 30^{\circ} / \mathrm{d} 210^{\circ}$ | 1 | WYE (gnd 1/2) |  | $30^{\circ} \mathrm{lag}$ |
|  | 2 | $\begin{aligned} & \text { DELTA } \\ & 30^{\circ} \mathrm{lag} \end{aligned}$ |  | $0^{\circ}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 210^{\circ} \mathrm{lag} \end{gathered}$ | $y$ | $\begin{gathered} 180^{\circ} \\ \text { lag } \end{gathered}$ |
| Y/d30 $/ \mathrm{d} 330^{\circ}$ | 1 | WYE <br> (gnd 1/2) |  | $30^{\circ} \mathrm{lag}$ |
|  | 2 | $\begin{aligned} & \text { DELTA } \\ & 30^{\circ} \mathrm{lag} \end{aligned}$ | \| | $0^{\circ}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 330^{\circ} \mathrm{lag} \end{gathered}$ |  | $60^{\circ} \mathrm{lag}$ |
| $\mathrm{Y} / \mathrm{d} 150{ }^{\circ} \mathrm{y} 0^{\circ}$ | 1 | WYE <br> (gnd 1/2) |  | $\begin{gathered} 150^{\circ} \\ \operatorname{lag} \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 150^{\circ} \mathrm{lag} \end{gathered}$ | $\sqrt{ }$ | $0^{\circ}$ |
|  | 3 | $\begin{gathered} \text { WYE } \\ \text { (gnd } 2 / 3 \text { ) } \\ 0^{\circ} \end{gathered}$ |  | $\begin{gathered} 150^{\circ} \\ \text { lag } \end{gathered}$ |

Table 5-1: TRANSFORMER TYPES (Sheet 9 of 26)

| TRANSFORMER TYPE | $\begin{gathered} \text { WDG } \\ \text { \# } \end{gathered}$ | CONNECTION | VOLTAGE <br> PHASORS | PHASE SHIFT |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathrm{Y} / \mathrm{d} 150^{\circ} / \\ \mathrm{y} 180^{\circ} \end{gathered}$ | 1 | WYE (gnd 1/2) |  | $\begin{gathered} 150^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{aligned} & \text { DELTA } \\ & 150^{\circ} \mathrm{lag} \end{aligned}$ | $V_{1}$ | $0^{\circ}$ |
|  | 3 | $\begin{gathered} \text { WYE } \\ \text { (gnd 2/3) } \\ 180^{\circ} \text { lag } \end{gathered}$ |  | $\begin{gathered} 330^{\circ} \\ \text { lag } \end{gathered}$ |
| Y/d150 $/ \mathrm{d} 30^{\circ}$ | 1 | WYE <br> (gnd 1/2) |  | $\begin{gathered} 150^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{aligned} & \text { DELTA } \\ & 150^{\circ} \mathrm{lag} \end{aligned}$ | $W$ | $0^{\circ}$ |
|  | 3 | $\begin{aligned} & \text { DELTA } \\ & 30^{\circ} \mathrm{lag} \end{aligned}$ | $1$ | $\begin{gathered} 120^{\circ} \\ \text { lag } \end{gathered}$ |
| $\begin{gathered} \mathrm{Y} / \mathrm{d} 150^{\circ} / \\ \mathrm{d} 150^{\circ} \end{gathered}$ | 1 | WYE (gnd 1/2) |  | $\begin{gathered} 150^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{aligned} & \text { DELTA } \\ & 150^{\circ} \mathrm{lag} \end{aligned}$ | $N$ | $0^{\circ}$ |
|  | 3 | $\begin{aligned} & \text { DELTA } \\ & 150^{\circ} \mathrm{lag} \end{aligned}$ |  | $0^{\circ}$ |
| $\begin{gathered} \mathrm{Y} / \mathrm{d} 150^{\circ} \\ \mathrm{d} 210^{\circ} \end{gathered}$ | 1 | WYE <br> (gnd 1/2) |  | $\begin{gathered} 150^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{aligned} & \text { DELTA } \\ & 150^{\circ} \mathrm{lag} \end{aligned}$ | $N$ | $0^{\circ}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 210^{\circ} \mathrm{lag} \end{gathered}$ |  | $\begin{gathered} 300^{\circ} \\ \text { lag } \end{gathered}$ |

Table 5-1: TRANSFORMER TYPES (Sheet 10 of 26)

| TRANSFORMER TYPE | $\begin{gathered} \text { WDG } \\ \text { \# } \end{gathered}$ | CONNECTION | VOLTAGE PHASORS | $\begin{aligned} & \text { PHASE } \\ & \text { SHIFT } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathrm{Y} / \mathrm{d} 150^{\circ} / \\ \mathrm{d} 330^{\circ} \end{gathered}$ | 1 | WYE (gnd 1/2) |  | $\begin{gathered} 150^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 150^{\circ} \mathrm{lag} \end{gathered}$ | N | $0^{\circ}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 330^{\circ} \text { lag } \end{gathered}$ |  | $\begin{gathered} 180^{\circ} \\ \text { lag } \end{gathered}$ |
| $\mathrm{Y} / \mathrm{d} 210^{\circ} / \mathrm{y} 0^{\circ}$ | 1 | WYE (gnd 1/2) |  | $\begin{gathered} 210^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 210^{\circ} \mathrm{lag} \end{gathered}$ | 1 | $0^{\circ}$ |
|  | 3 | $\begin{gathered} \text { WYE } \\ \text { (gnd } 2 / 3 \text { ) } \\ 0^{\circ} \end{gathered}$ |  | $\begin{gathered} 210^{\circ} \\ \mathrm{lag} \end{gathered}$ |
| $\begin{gathered} \mathrm{Y} / \mathrm{d} 210^{\circ} / \\ \mathrm{y} 180^{\circ} \end{gathered}$ | 1 | WYE <br> (gnd 1/2) |  | $\begin{gathered} 210^{\circ} \\ \operatorname{lag} \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 210^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |
|  | 3 | $\begin{gathered} \text { WYE } \\ \text { (gnd 2/3) } \\ 180^{\circ} \text { lag } \end{gathered}$ | $\downarrow$ | $30^{\circ} \mathrm{lag}$ |
| $\mathrm{Y} / \mathrm{d} 210^{\circ} / \mathrm{d} 30^{\circ}$ | 1 | WYE <br> (gnd 1/2) |  | $\begin{gathered} 210^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 210^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |
|  | 3 | $\begin{aligned} & \text { DELTA } \\ & 30^{\circ} \mathrm{lag} \end{aligned}$ |  | $\begin{gathered} 180^{\circ} \\ \mathrm{lag} \end{gathered}$ |

Table 5-1: TRANSFORMER TYPES (Sheet 11 of 26)

| TRANSFORMER TYPE | $\begin{gathered} \text { WDG } \\ \text { \# } \end{gathered}$ | CONNECTION | VOLTAGE PHASORS | $\begin{aligned} & \text { PHASE } \\ & \text { SHIFT } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathrm{Y} / \mathrm{d} 210^{\circ} / \\ \mathrm{d} 150^{\circ} \end{gathered}$ | 1 | WYE (gnd 1/2) |  | $\begin{gathered} 210^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 210^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 150^{\circ} \mathrm{lag} \end{gathered}$ | $N$ | $60^{\circ} \mathrm{lag}$ |
| $\begin{gathered} \mathrm{Y} / \mathrm{d} 210^{\circ} \\ \mathrm{d} 210^{\circ} \end{gathered}$ | 1 | WYE <br> (gnd 1/2) |  | $\begin{gathered} 210^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 210^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 210^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |
| $\begin{gathered} \mathrm{Y} / \mathrm{d} 210^{\circ} / \\ \mathrm{d} 330^{\circ} \end{gathered}$ | 1 | WYE <br> (gnd 1/2) |  | $\begin{gathered} 210^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 210^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 330^{\circ} \mathrm{lag} \end{gathered}$ |  | $\begin{gathered} 240^{\circ} \\ \operatorname{lag} \end{gathered}$ |
| $\mathrm{Y} / \mathrm{d} 330^{\circ} / \mathrm{y} 0^{\circ}$ | 1 | WYE <br> (gnd 1/2) |  | $\begin{gathered} 330^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 330^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |
|  | 3 | $\begin{gathered} \text { WYE } \\ \text { (gnd } 2 / 3 \text { ) } \\ 0^{\circ} \end{gathered}$ |  | $\begin{gathered} 330^{\circ} \\ \text { lag } \end{gathered}$ |

Table 5-1: TRANSFORMER TYPES (Sheet 12 of 26)

| TRANSFORMER <br> TYPE | WDG <br> $\#$ | CONNECTION | VOLTAGE <br> PHASORS | PHASE <br> SHIFT |
| :---: | :---: | :---: | :---: | :---: |
| Y/d330 $/$ <br> y180 | 2 | WYE <br> (gnd 1/2) | DELTA <br> $330^{\circ}$ lag |  |

Table 5-1: TRANSFORMER TYPES (Sheet 13 of 26)

| TRANSFORMER TYPE | $\begin{gathered} \text { WDG } \\ \# \end{gathered}$ | CONNECTION | VOLTAGE PHASORS | $\begin{aligned} & \text { PHASE } \\ & \text { SHIFT } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathrm{Y} / \mathrm{d} 330^{\circ} / \\ \mathrm{d} 330^{\circ} \end{gathered}$ | 1 | WYE (gnd 1/2) |  | $\begin{gathered} 330^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 330^{\circ} \mathrm{lag} \end{gathered}$ | $i^{1}$ | $0^{\circ}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 330^{\circ} \mathrm{lag} \end{gathered}$ | \| | $0^{\circ}$ |
| $\mathrm{D} / \mathrm{d} 0^{\circ} / \mathrm{d} 0^{\circ}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 0^{\circ} \end{gathered}$ |  | $0^{\circ}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 0^{\circ} \end{gathered}$ | $/ i$ | $0^{\circ}$ |
| $\mathrm{D} / \mathrm{d} 0^{\circ} / \mathrm{d} 60^{\circ}$ | 1 | DELTA |  | $60^{\circ} \mathrm{lag}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 0^{\circ} \end{gathered}$ |  | $60^{\circ} \mathrm{lag}$ |
|  | 3 | $\begin{aligned} & \text { DELTA } \\ & 60^{\circ} \text { lag } \end{aligned}$ |  | $0^{\circ}$ |
| $\mathrm{D} / \mathrm{d} 0^{\circ} / \mathrm{d} 120^{\circ}$ | 1 | DELTA |  | $\begin{gathered} 120^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 0^{\circ} \end{gathered}$ | $\uparrow$ | $\begin{gathered} 120^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 120^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |

Table 5-1: TRANSFORMER TYPES (Sheet 14 of 26)

| TRANSFORMER TYPE | $\begin{gathered} \text { WDG } \\ \text { \# } \end{gathered}$ | CONNECTION | VOLTAGE PHASORS | $\begin{aligned} & \hline \text { PHASE } \\ & \text { SHIFT } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{D} / \mathrm{d} 0^{\circ} / \mathrm{d} 180^{\circ}$ | 1 | DELTA |  | $\begin{gathered} 180^{\circ} \\ \mathrm{lag} \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 0^{\circ} \end{gathered}$ |  | $\begin{gathered} 180^{\circ} \\ \operatorname{lag} \end{gathered}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 180^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |
| $\mathrm{D} / \mathrm{d} 0^{\circ} / \mathrm{d} 240^{\circ}$ | 1 | DELTA |  | $\begin{gathered} 240^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 0^{\circ} \end{gathered}$ |  | $\begin{gathered} 240^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 240^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |
| D/d0ºd $300^{\circ}$ | 1 | DELTA |  | $\begin{gathered} 300^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 0^{\circ} \end{gathered}$ |  | $\begin{gathered} 300^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 300^{\circ} \mathrm{lag} \end{gathered}$ | $K$ | $0^{\circ}$ |
| $\mathrm{D} / \mathrm{d} 0^{\circ} / \mathrm{y} 30^{\circ}$ | 1 | DELTA | $N$ | $0^{\circ}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 0^{\circ} \end{gathered}$ | $\hat{N}$ | $0^{\circ}$ |
|  | 3 | $\begin{gathered} \text { WYE } \\ \text { (gnd } 2 / 3 \text { ) } \\ 30^{\circ} \mathrm{lag} \end{gathered}$ |  | $\begin{gathered} 330^{\circ} \\ \text { lag } \end{gathered}$ |

Table 5-1: TRANSFORMER TYPES (Sheet 15 of 26)

| TRANSFORMER TYPE | $\begin{gathered} \text { WDG } \\ \# \end{gathered}$ | CONNECTION | VOLTAGE <br> PHASORS | PHASE SHIFT |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{D} / \mathrm{d} 0^{\circ} / \mathrm{y} 150^{\circ}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 0^{\circ} \end{gathered}$ |  | $0^{\circ}$ |
|  | 3 | $\begin{gathered} \text { WYE } \\ \text { (gnd 2/3) } \\ 150^{\circ} \mathrm{lag} \end{gathered}$ |  | $\begin{gathered} 210^{\circ} \\ \text { lag } \end{gathered}$ |
| $\mathrm{D} / \mathrm{d} 0^{\circ} / \mathrm{y} 210^{\circ}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 0^{\circ} \end{gathered}$ |  | $0^{\circ}$ |
|  | 3 | $\begin{aligned} & \text { WYE } \\ & \text { (gnd } 2 / 3 \text { ) } \\ & 210^{\circ} \mathrm{lag} \end{aligned}$ |  | $\begin{gathered} 150^{\circ} \\ \text { lag } \end{gathered}$ |
| $\mathrm{D} / \mathrm{d} 0 \times 1 \mathrm{y} 330^{\circ}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 0^{\circ} \end{gathered}$ |  | $0^{\circ}$ |
|  | 3 | $\begin{aligned} & \text { WYE } \\ & \text { (gnd } 2 / 3 \text { ) } \\ & 330^{\circ} \text { lag } \end{aligned}$ |  | $30^{\circ} \mathrm{lag}$ |
| $\mathrm{D} / \mathrm{d} 60^{\circ} / \mathrm{d} 0^{\circ}$ | 1 | DELTA |  | $60^{\circ} \mathrm{lag}$ |
|  | 2 | $\begin{aligned} & \text { DELTA } \\ & 60^{\circ} \text { lag } \end{aligned}$ |  | $0^{\circ}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 0^{\circ} \end{gathered}$ |  | $60^{\circ} \mathrm{lag}$ |

Table 5-1: TRANSFORMER TYPES (Sheet 16 of 26)

| TRANSFORMER TYPE | $\begin{gathered} \hline \text { WDG } \\ \# \end{gathered}$ | CONNECTION | VOLTAGE PHASORS | $\begin{aligned} & \text { PHASE } \\ & \text { SHIFT } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| D/d60 $/$ d60 ${ }^{\circ}$ | 1 | DELTA |  | $60^{\circ} \mathrm{lag}$ |
|  | 2 | $\begin{aligned} & \text { DELTA } \\ & 60^{\circ} \text { lag } \end{aligned}$ |  | $0^{\circ}$ |
|  | 3 | $\begin{aligned} & \text { DELTA } \\ & 60^{\circ} \mathrm{lag} \end{aligned}$ |  | $0^{\circ}$ |
| D/d60 $/$ d $240^{\circ}$ | 1 | DELTA |  | $\begin{gathered} 240^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{aligned} & \text { DELTA } \\ & 60^{\circ} \text { lag } \end{aligned}$ |  | $\begin{gathered} 180^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 240^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |
| D/d60 ${ }^{\circ} \mathrm{y} 30^{\circ}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | $\begin{aligned} & \text { DELTA } \\ & 60^{\circ} \mathrm{lag} \end{aligned}$ |  | $\begin{gathered} 300^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 3 | WYE <br> (gnd 2/3) $30^{\circ} \mathrm{lag}$ |  | $\begin{gathered} 330^{\circ} \\ \text { lag } \end{gathered}$ |
| $\mathrm{D} / \mathrm{d} 60^{\circ} \mathrm{y} 210^{\circ}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | $\begin{aligned} & \text { DELTA } \\ & 60^{\circ} \text { lag } \end{aligned}$ |  | $\begin{gathered} 300^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 3 | $\begin{aligned} & \text { WYE } \\ & (\text { gnd } 2 / 3 \text { ) } \\ & 210^{\circ} \mathrm{lag} \end{aligned}$ |  | $\begin{gathered} 150^{\circ} \\ \text { lag } \end{gathered}$ |
| D/d120 $/{ }^{\circ} 0^{\circ}$ | 1 | DELTA |  | $\begin{gathered} 120^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 120^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 0^{\circ} \end{gathered}$ |  | $\begin{gathered} 120^{\circ} \\ \text { lag } \end{gathered}$ |

Table 5-1: TRANSFORMER TYPES (Sheet 17 of 26)

5

| TRANSFORMER TYPE | $\begin{gathered} \text { WDG } \\ \text { \# } \end{gathered}$ | CONNECTION | VOLTAGE PHASORS | PHASE SHIFT |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathrm{D} / \mathrm{d} 120^{\circ} / \\ \mathrm{d} 120^{\circ} \end{gathered}$ | 1 | DELTA |  | $\begin{gathered} 120^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 120^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 120^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |
| $\begin{gathered} \mathrm{D} / \mathrm{d} 120^{\circ} / \\ \mathrm{d} 180^{\circ} \end{gathered}$ | 1 | DELTA |  | $\begin{gathered} 120^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 120^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |
|  | 3 | $\begin{aligned} & \text { DELTA } \\ & 180^{\circ} \mathrm{lag} \end{aligned}$ |  | $\begin{gathered} 300^{\circ} \\ \text { lag } \end{gathered}$ |
| $\begin{gathered} \mathrm{D} / \mathrm{d} 120^{\circ} / \\ \mathrm{y} 150^{\circ} \end{gathered}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 120^{\circ} \mathrm{lag} \end{gathered}$ |  | $\begin{gathered} 240^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 3 | $\begin{gathered} \text { WYE } \\ \text { (gnd 2/3) } \\ 150^{\circ} \text { lag } \end{gathered}$ |  | $\begin{gathered} 210^{\circ} \\ \text { lag } \end{gathered}$ |
| $\begin{gathered} \mathrm{D} / \mathrm{d} 120^{\circ} / \\ \mathrm{y} 330^{\circ} \end{gathered}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 120^{\circ} \mathrm{lag} \end{gathered}$ |  | $\begin{gathered} 240^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 3 | $\begin{gathered} \text { WYE } \\ \text { (gnd } 2 / 3 \text { ) } \\ 330^{\circ} \mathrm{lag} \end{gathered}$ |  | $30^{\circ} \mathrm{lag}$ |
| D/d180 $/$ d0 ${ }^{\circ}$ | 1 | DELTA |  | $\begin{gathered} 180^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 180^{\circ} \mathrm{lag} \end{gathered}$ | $1$ | $0^{\circ}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 0^{\circ} \end{gathered}$ |  | $\begin{gathered} 180^{\circ} \\ \text { lag } \end{gathered}$ |

Table 5-1: TRANSFORMER TYPES (Sheet 18 of 26)

| TRANSFORMER TYPE | $\begin{gathered} \text { WDG } \\ \text { \# } \end{gathered}$ | CONNECTION | VOLTAGE <br> PHASORS | PHASE SHIFT |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathrm{D} / \mathrm{d} 180^{\circ} \\ \mathrm{d} 120^{\circ} \end{gathered}$ | 1 | DELTA |  | $\begin{gathered} 120^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{aligned} & \text { DELTA } \\ & 180^{\circ} \mathrm{lag} \end{aligned}$ |  | $\begin{gathered} 300^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 3 | $\begin{aligned} & \text { DELTA } \\ & 120^{\circ} \mathrm{lag} \end{aligned}$ |  | $0^{\circ}$ |
| $\begin{gathered} \text { D/d } 180^{\circ} \\ \mathrm{d} 180^{\circ} \end{gathered}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 180^{\circ} \mathrm{lag} \end{gathered}$ |  | $\begin{gathered} 180^{\circ} \\ \mathrm{lag} \end{gathered}$ |
|  | 3 | $\begin{aligned} & \text { DELTA } \\ & 180^{\circ} \mathrm{lag} \end{aligned}$ |  | $\begin{gathered} 180^{\circ} \\ \mathrm{lag} \end{gathered}$ |
| $\begin{gathered} \text { D/d180 } \\ \text { d300 } \end{gathered}$ | 1 | DELTA |  | $\begin{gathered} 300^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 180^{\circ} \text { lag } \end{gathered}$ |  | $\begin{gathered} 120^{\circ} \\ \mathrm{lag} \end{gathered}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 300^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |
| $\begin{gathered} \mathrm{D} / \mathrm{d} 180^{\circ} / \\ \mathrm{y} 150^{\circ} \end{gathered}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 180^{\circ} \mathrm{lag} \end{gathered}$ | $1$ | $\begin{gathered} 180^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 3 | $\begin{gathered} \text { WYE } \\ \text { (gnd } 2 / 3 \text { ) } \\ 150^{\circ} \mathrm{lag} \end{gathered}$ |  | $\begin{gathered} 210^{\circ} \\ \text { lag } \end{gathered}$ |

Table 5-1: TRANSFORMER TYPES (Sheet 19 of 26)

| TRANSFORMER TYPE | $\begin{gathered} \hline \text { WDG } \\ \text { \# } \end{gathered}$ | CONNECTION | VOLTAGE PHASORS | PHASE SHIFT |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathrm{D} / \mathrm{d} 180^{\circ} / \\ \mathrm{y} 330^{\circ} \end{gathered}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 180^{\circ} \mathrm{lag} \end{gathered}$ |  | $\begin{gathered} 180^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 3 | $\begin{gathered} \text { WYE } \\ \text { (gnd 2/3) } \\ 330^{\circ} \mathrm{lag} \end{gathered}$ |  | $30^{\circ} \mathrm{lag}$ |
| $\mathrm{D} / \mathrm{d} 240^{\circ} / \mathrm{d} 0^{\circ}$ | 1 | DELTA |  | $\begin{gathered} 240^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 240^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 0^{\circ} \end{gathered}$ |  | $\begin{gathered} 240^{\circ} \\ \text { lag } \end{gathered}$ |
| D/d240 $/$ d $60^{\circ}$ | 1 | DELTA |  | $\begin{gathered} 240^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 240^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |
|  | 3 | $\begin{aligned} & \text { DELTA } \\ & 60^{\circ} \mathrm{lag} \end{aligned}$ |  | $\begin{gathered} 180^{\circ} \\ \text { lag } \end{gathered}$ |
| $\begin{gathered} \mathrm{D} / \mathrm{d} 240^{\circ} \\ \mathrm{d} 240^{\circ} \end{gathered}$ | 1 | DELTA |  | $\begin{gathered} 240^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 240^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 240^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |
| D/d240 $/ \mathrm{y} 30^{\circ}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 240^{\circ} \mathrm{lag} \end{gathered}$ |  | $\begin{gathered} 120^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 3 | $\begin{gathered} \text { WYE } \\ \text { (gnd } 2 / 3 \text { ) } \\ 30^{\circ} \text { lag } \end{gathered}$ |  | $\begin{gathered} 330^{\circ} \\ \mathrm{lag} \end{gathered}$ |

Table 5-1: TRANSFORMER TYPES (Sheet 20 of 26)

| TRANSFORMER TYPE | WDG | CONNECTION | VOLTAGE PHASORS | $\begin{aligned} & \text { PHASE } \\ & \text { SHIFT } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathrm{D} / \mathrm{d} 240^{\circ} / \\ \mathrm{y} 210^{\circ} \end{gathered}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 240^{\circ} \mathrm{lag} \end{gathered}$ |  | $\begin{gathered} 120^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 3 | $\begin{gathered} \text { WYE } \\ \text { (gnd 2/3) } \\ 210^{\circ} \text { lag } \end{gathered}$ |  | $\begin{gathered} 150^{\circ} \\ \mathrm{lag} \end{gathered}$ |
| D/d300 $/$ d $0^{\circ}$ | 1 | DELTA |  | $\begin{gathered} 300^{\circ} \\ \mathrm{lag} \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 300^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 0^{\circ} \end{gathered}$ |  | $\begin{gathered} 300^{\circ} \\ \text { lag } \end{gathered}$ |
| $\begin{gathered} \mathrm{D} / \mathrm{d} 300^{\circ} \\ \mathrm{d} 180^{\circ} \end{gathered}$ | 1 | DELTA |  | $\begin{gathered} 300^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 2 | $\begin{gathered} \text { DELTA } \\ 300^{\circ} \mathrm{lag} \end{gathered}$ |  | $0^{\circ}$ |
|  | 3 | $\begin{aligned} & \text { DELTA } \\ & 180^{\circ} \mathrm{lag} \end{aligned}$ |  | $\begin{gathered} 120^{\circ} \\ \mathrm{lag} \end{gathered}$ |
| D/y30\% $/$ d $60^{\circ}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | WYE <br> (gnd 1/2) <br> $30^{\circ} \mathrm{lag}$ |  | $\begin{gathered} 330^{\circ} \\ \mathrm{lag} \end{gathered}$ |
|  | 3 | $\begin{aligned} & \text { DELTA } \\ & 60^{\circ} \mathrm{lag} \end{aligned}$ |  | $\begin{gathered} 300^{\circ} \\ \text { lag } \end{gathered}$ |
| D/y $30^{\circ} / \mathrm{d} 240^{\circ}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | WYE <br> (gnd 1/2) $30^{\circ} \text { lag }$ |  | $\begin{gathered} 330^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 240^{\circ} \mathrm{lag} \end{gathered}$ |  | $\begin{gathered} 120^{\circ} \\ \mathrm{lag} \end{gathered}$ |

Table 5-1: TRANSFORMER TYPES (Sheet 21 of 26)

| TRANSFORMER TYPE | $\begin{gathered} \text { WDG } \\ \# \end{gathered}$ | CONNECTION | VOLTAGE PHASORS | PHASE SHIFT |
| :---: | :---: | :---: | :---: | :---: |
| D/y30\% $/ \mathrm{y} 30^{\circ}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | WYE <br> (gnd 1/2) $30^{\circ} \mathrm{lag}$ |  | $\begin{gathered} 330^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 3 | $\begin{gathered} \text { WYE } \\ (\text { gnd } 2 / 3) \\ 30^{\circ} \mathrm{lag} \end{gathered}$ |  | $\begin{gathered} 330^{\circ} \\ \text { lag } \end{gathered}$ |
| D/y30\%/y210 ${ }^{\circ}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | WYE <br> (gnd 1/2) $30^{\circ}$ lag |  | $\begin{gathered} 330^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 3 | WYE (gnd 2/3) $210^{\circ} \mathrm{lag}$ |  | $\begin{gathered} 150^{\circ} \\ \text { lag } \end{gathered}$ |
| D/y150 $/ \mathrm{d} 0^{\circ}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | WYE <br> (gnd 1/2) <br> $150^{\circ}$ lag |  | $\begin{gathered} 210^{\circ} \\ \mathrm{lag} \end{gathered}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 0^{\circ} \end{gathered}$ |  | $0^{\circ}$ |
| $\begin{gathered} \mathrm{D} / \mathrm{y} 150^{\circ} / \\ \mathrm{d} 120^{\circ} \end{gathered}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | WYE <br> (gnd 1/2) <br> $150^{\circ}$ lag |  | $\begin{gathered} 210^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 120^{\circ} \mathrm{lag} \end{gathered}$ |  | $\begin{gathered} 240^{\circ} \\ \text { lag } \end{gathered}$ |

Table 5-1: TRANSFORMER TYPES (Sheet 22 of 26)

| TRANSFORMER TYPE | $\begin{gathered} \text { WDG } \\ \# \end{gathered}$ | CONNECTION | VOLTAGE PHASORS | PHASE <br> SHIFT |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathrm{D} / \mathrm{y} 150^{\circ} / \\ \mathrm{d} 180^{\circ} \end{gathered}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | WYE (gnd 1/2) $150^{\circ} \mathrm{lag}$ |  | $\begin{gathered} 210^{\circ} \\ \mathrm{lag} \end{gathered}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 180^{\circ} \mathrm{lag} \end{gathered}$ |  | $\begin{gathered} 180^{\circ} \\ \text { lag } \end{gathered}$ |
| $\begin{gathered} \mathrm{D} / \mathrm{y} 150^{\circ} / \\ \mathrm{d} 300^{\circ} \end{gathered}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | WYE (gnd 1/2) $150^{\circ}$ lag |  | $\begin{gathered} 210^{\circ} \\ \mathrm{lag} \end{gathered}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 300^{\circ} \mathrm{lag} \end{gathered}$ |  | $60^{\circ} \mathrm{lag}$ |
| $\begin{gathered} \text { D/y150 / } \\ \text { y150 } \end{gathered}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | $\begin{gathered} \text { WYE } \\ \text { (gnd 1/2) } \\ 150^{\circ} \mathrm{lag} \end{gathered}$ |  | $\begin{gathered} 210^{\circ} \\ \mathrm{lag} \end{gathered}$ |
|  | 3 | $\begin{gathered} \text { WYE } \\ \text { (gnd } 2 / 3 \text { ) } \\ 150^{\circ} \mathrm{lag} \end{gathered}$ |  | $\begin{gathered} 210^{\circ} \\ \mathrm{lag} \end{gathered}$ |
| $\begin{gathered} \text { D/y } 150^{\circ} / \\ \mathrm{y} 330^{\circ} \end{gathered}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | $\begin{gathered} \text { WYE } \\ \text { (gnd 1/2) } \\ 150^{\circ} \mathrm{lag} \end{gathered}$ |  | $\begin{gathered} 210^{\circ} \\ \mathrm{lag} \end{gathered}$ |
|  | 3 | WYE (gnd 2/3) $330^{\circ}$ lag |  | $30^{\circ} \mathrm{lag}$ |

## 5 SETPOINTS

Table 5-1: TRANSFORMER TYPES (Sheet 23 of 26)

| TRANSFORMER TYPE | WDG \# | CONNECTION | VOLTAGE <br> PHASORS | $\begin{aligned} & \text { PHASE } \\ & \text { SHIFT } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{D} / \mathrm{y} 210^{\circ} / \mathrm{d} 0^{\circ}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | WYE (gnd 1/2) $210^{\circ} \mathrm{lag}$ |  | $\begin{gathered} 150^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 0^{\circ} \end{gathered}$ |  | $0^{\circ}$ |
| D/y210 $/ \mathrm{d} 60^{\circ}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | WYE <br> (gnd 1/2) <br> $210^{\circ}$ lag |  | $\begin{gathered} 150^{\circ} \\ \mathrm{lag} \end{gathered}$ |
|  | 3 | $\begin{aligned} & \text { DELTA } \\ & 60^{\circ} \mathrm{lag} \end{aligned}$ |  | $\begin{gathered} 300^{\circ} \\ \text { lag } \end{gathered}$ |
| $\begin{gathered} \mathrm{D} / \mathrm{y} 210^{\circ} \\ \mathrm{d} 240^{\circ} \end{gathered}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | WYE <br> (gnd 1/2) <br> $210^{\circ}$ lag |  | $\begin{gathered} 150^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 240^{\circ} \mathrm{lag} \end{gathered}$ |  | $\begin{gathered} 120^{\circ} \\ \text { lag } \end{gathered}$ |
| D/y210\% $\mathrm{y} 30^{\circ}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | $\begin{gathered} \text { WYE } \\ \text { (gnd 1/2) } \\ 210^{\circ} \mathrm{lag} \end{gathered}$ |  | $\begin{gathered} 150^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 3 | WYE <br> (gnd 2/3) <br> $30^{\circ} \mathrm{lag}$ |  | $\begin{gathered} 330^{\circ} \\ \text { lag } \end{gathered}$ |

Table 5-1: TRANSFORMER TYPES (Sheet 24 of 26)

| TRANSFORMER TYPE | WDG \# | CONNECTION | VOLTAGE PHASORS | $\begin{aligned} & \text { PHASE } \\ & \text { SHIFT } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathrm{D} / \mathrm{y} 210^{\circ} / \\ \mathrm{y} 210^{\circ} \end{gathered}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | WYE <br> (gnd 1/2) <br> $210^{\circ} \mathrm{lag}$ |  | $\begin{gathered} 150^{\circ} \\ \text { lag } \end{gathered}$ |
|  | 3 | WYE (gnd 2/3) $210^{\circ}$ lag |  | $\begin{gathered} 150^{\circ} \\ \text { lag } \end{gathered}$ |
| $\mathrm{D} / \mathrm{y} 330^{\circ} / \mathrm{d} 0^{\circ}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | WYE (gnd 1/2) $330^{\circ}$ lag |  | $30^{\circ} \mathrm{lag}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 0^{\circ} \end{gathered}$ |  | $0^{\circ}$ |
| $\begin{gathered} \mathrm{D} / \mathrm{y} 330^{\circ} / \\ \mathrm{d} 120^{\circ} \end{gathered}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | WYE (gnd 1/2) $330^{\circ}$ lag |  | $30^{\circ} \mathrm{lag}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 120^{\circ} \mathrm{lag} \end{gathered}$ |  | $\begin{gathered} 240^{\circ} \\ \text { lag } \end{gathered}$ |
| $\begin{gathered} \mathrm{D} / \mathrm{y} 330^{\circ} / \\ \mathrm{d} 180^{\circ} \end{gathered}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | $\begin{gathered} \text { WYE } \\ \text { (gnd 1/2) } \\ 330^{\circ} \mathrm{lag} \end{gathered}$ |  | $30^{\circ} \mathrm{lag}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 180^{\circ} \mathrm{lag} \end{gathered}$ |  | $\begin{gathered} 180^{\circ} \\ \text { lag } \end{gathered}$ |

Table 5-1: TRANSFORMER TYPES (Sheet 25 of 26)

| TRANSFORMER TYPE | $\begin{gathered} \text { WDG } \\ \# \end{gathered}$ | CONNECTION | VOLTAGE PHASORS | PHASE SHIFT |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathrm{D} / \mathrm{y} 330^{\circ} / \\ \mathrm{d} 300^{\circ} \end{gathered}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | WYE <br> (gnd 1/2) $330^{\circ} \mathrm{lag}$ |  | $30^{\circ} \mathrm{lag}$ |
|  | 3 | $\begin{gathered} \text { DELTA } \\ 300^{\circ} \mathrm{lag} \end{gathered}$ |  | $60^{\circ} \mathrm{lag}$ |
| $\begin{gathered} \mathrm{D} / \mathrm{y} 330^{\circ} / \\ \text { y150 } \end{gathered}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | WYE (gnd 1/2) $330^{\circ} \mathrm{lag}$ |  | $30^{\circ} \mathrm{lag}$ |
|  | 3 | WYE <br> (gnd 2/3) <br> $150^{\circ} \mathrm{lag}$ |  | $\begin{gathered} 210^{\circ} \\ \mathrm{lag} \end{gathered}$ |
| $\begin{gathered} \text { D/y } 330^{\circ} / \\ \text { y330 } \end{gathered}$ | 1 | DELTA |  | $0^{\circ}$ |
|  | 2 | WYE (gnd 1/2) $330^{\circ}$ lag |  | $30^{\circ} \mathrm{lag}$ |
|  | 3 | WYE (gnd 2/3) $330^{\circ}$ lag |  | $30^{\circ} \mathrm{lag}$ |
| $\mathrm{Y} / \mathrm{z} 30^{\circ} / \mathrm{z} 30^{\circ}$ | 1 | WYE |  | $30^{\circ} \mathrm{lag}$ |
|  | 2 | ZIG-ZAG <br> (gnd 1/2) <br> $30^{\circ}$ lag |  | $0^{\circ}$ |
|  | 3 | ZIG-ZAG <br> (gnd 2/3) <br> $30^{\circ} \mathrm{lag}$ |  | $0^{\circ}$ |

Table 5-1: TRANSFORMER TYPES (Sheet 26 of 26)

| TRANSFORMER <br> TYPE | WDG <br> $\#$ | CONNECTION | VOLTAGE <br> PHASORS | PHASE <br> SHIFT |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Y} / \mathrm{y} 0^{\circ} / \mathrm{y} 0^{\circ}$ | 2 | WYE |  | $0^{\circ}$ |
|  | 1 | WYE <br> (gnd 1/2) <br> $0^{\circ}$ |  | $0^{\circ}$ |
|  | 3 | WYE <br> (gnd 2/3) <br> $0^{\circ}$ |  | $0^{\circ}$ |

## 5 SETPOINTS

This table provides additional information about the Phase Shift column in Table 5-1: TRANSFORMER TYPES on page 5-10 and represents an assumed ABC phasor rotation. For transformers connected to a system with a phasor rotation of $A C B$, interchange all $B(b)$ and $C(c)$ designations.

Table 5-2: PHASE SHIFTS

| PHASE SHIFT | INPUT PHASORS | OUTPUT PHASORS | PHASOR TRANSFORMATION |
| :---: | :---: | :---: | :---: |
| $0^{\circ}$ |  |  | $\begin{aligned} & a=A \\ & b=B \\ & c=C \end{aligned}$ |
| $30^{\circ} \mathrm{lag}$ |  |  | $\begin{aligned} & \mathrm{a}=(\mathrm{A}-\mathrm{C}) / \sqrt{ } 3 \\ & \mathrm{~b}=(\mathrm{B}-\mathrm{A}) / \sqrt{3} \\ & \mathrm{c}=(\mathrm{C}-\mathrm{B}) / \sqrt{ } 3 \end{aligned}$ |
| $60^{\circ} \mathrm{lag}$ |  |  | $\begin{aligned} & \mathrm{a}=-\mathrm{C} \\ & \mathrm{~b}=-\mathrm{A} \\ & \mathrm{c}=-\mathrm{B} \end{aligned}$ |
| $90^{\circ} \mathrm{lag}$ |  | ${\underset{b}{b}}_{\stackrel{c}{t} \rightarrow a}$ | $\begin{aligned} & \mathrm{a}=(\mathrm{B}-\mathrm{C}) / \sqrt{ } 3 \\ & \mathrm{~b}=(\mathrm{C}-\mathrm{A}) / \sqrt{ } 3 \\ & \mathrm{c}=(\mathrm{A}-\mathrm{B}) / \sqrt{ } 3 \end{aligned}$ |
| $\begin{gathered} 120^{\circ} \\ \text { lag } \end{gathered}$ |  |  | $\begin{aligned} & a=B \\ & b=C \\ & c=A \end{aligned}$ |
| $\begin{gathered} 150^{\circ} \\ \text { lag } \end{gathered}$ |  |  | $\begin{aligned} & \mathrm{a}=(\mathrm{B}-\mathrm{A}) / \sqrt{ } 3 \\ & \mathrm{~b}=(\mathrm{C}-\mathrm{B}) / \sqrt{ } 3 \\ & \mathrm{c}=(\mathrm{A}-\mathrm{C}) / \sqrt{ } 3 \end{aligned}$ |


| PHASE <br> SHIFT | $\begin{gathered} \text { INPUT } \\ \text { PHASORS } \end{gathered}$ | OUTPUT PHASORS | PHASOR <br> TRANSFORMATION |
| :---: | :---: | :---: | :---: |
| $180^{\circ} \mathrm{lag}$ |  |  | $\begin{aligned} & \mathrm{a}=-\mathrm{A} \\ & \mathrm{~b}=-\mathrm{B} \\ & \mathrm{c}=-\mathrm{C} \end{aligned}$ |
| $210^{\circ} \mathrm{lag}$ |  | $\underset{\underset{a}{b} \rightarrow c ~}{b_{r}}$ | $\begin{aligned} & \mathrm{a}=(\mathrm{C}-\mathrm{A}) / \sqrt{ } 3 \\ & \mathrm{~b}=(\mathrm{A}-\mathrm{B}) / \sqrt{3} \\ & \mathrm{c}=(\mathrm{B}-\mathrm{C}) / \sqrt{3} \end{aligned}$ |
| $240^{\circ} \mathrm{lag}$ |  |  | $\begin{aligned} & a=C \\ & b=A \\ & c=B \end{aligned}$ |
| $270^{\circ} \mathrm{lag}$ |  |  | $\begin{aligned} & \mathrm{a}=(\mathrm{C}-\mathrm{B}) / \sqrt{ } 3 \\ & \mathrm{~b}=(\mathrm{A}-\mathrm{C}) / \sqrt{ } 3 \\ & \mathrm{c}=(\mathrm{B}-\mathrm{A}) / \sqrt{ } 3 \end{aligned}$ |
| $300^{\circ} \mathrm{lag}$ |  |  | $\begin{aligned} & \mathrm{a}=-\mathrm{B} \\ & \mathrm{~b}=-\mathrm{C} \\ & \mathrm{c}=-\mathrm{A} \end{aligned}$ |
| $330^{\circ} \mathrm{lag}$ |  | $\sum_{t}^{q}>0$ | $\begin{aligned} & \mathrm{a}=(\mathrm{A}-\mathrm{B}) / \sqrt{ } 3 \\ & \mathrm{~b}=(\mathrm{B}-\mathrm{C}) / \sqrt{ } 3 \\ & \mathrm{c}=(\mathrm{C}-\mathrm{A}) / \sqrt{ } 3 \end{aligned}$ |

Settings to configure the relay are entered on this page. This includes passcode security, user preferences, the RS485/RS422 communication port, the internal time and date, default messages, and various commands.

5.3.2 PASSCODE

After installing the setpoint access jumper, a passcode must be entered (if the passcode security feature is enabled) before setpoints can be changed. When the 745 is shipped from the factory, the passcode is defaulted to 0 . When the passcode is 0 , the passcode security feature is disabled and only the setpoint access jumper is required for changing setpoints from the front panel. Passcode entry is also required when programming setpoints from any of the serial communication ports.

This message indicates the start of the PASSCODE section. To continue with


## SETPOINT ACCESS:

Read \& Write

```
RESTRICT SETPOINT
```

WRITE ACCESS? No

## ALLOW SETPOINT

WRITE ACCESS? No


## ENCRYPTED PASSCODE: AIKFBAIK

these setpoints press ENTER or press MESSAGE to go to the next section.

## Range: Cannot be edited

This message cannot be edited directly. It indicates whether passcode protection is enabled (Read Only) or disabled (Read \& Write).

## Range: No / Yes

This message is only displayed when setpoint write access is allowed and the current passcode is not 0 . Select Yes and follow directions to restrict write access. This message is replaced by ALLOW SETPOINT WRITE ACCESS? when write access is restricted.
Range: No / Yes
This message is only displayed when setpoint write access is restricted. New setpoints cannot be entered in this state. To gain write access, select Yes and follow directions to enter the previously programmed passcode. If the passcode is correctly entered, new setpoint entry is allowed. If there is no keypress within 30 minutes, setpoint write access is automatically restricted. As an additional safety measure, the following minor self-test error is generated when the passcode is entered incorrectly three times in a row:

## SELF-TEST ERROR: Access Denied

## Range: No / Yes

Select Yes and follow directions to change the current passcode. Changing the passcode to the factory default of 0 disables the passcode security feature.

Factory default passcode: 0
If the programmed passcode is unknown, consult the factory service department with the encrypted passcode. The passcode can be determined using a deciphering program.

Some relay characteristics can be modified to accommodate the user preferences. This section allows for the definition of such characteristics.


This message indicates the start of the PREFERENCES section. To continue with these setpoints press ENTER or press MESAGE to go to the next section.


Range: Disabled / Enabled
When enabled, a beeper sounds in response to any front panel key pressed.

FLASH MESSAGE TIME:
4.0 s

```
DEFAULT MESSAGE
TIMEOUT: 300 s
```

```
DEFAULT MESSAGE
```

INTENSITY: 25\%

Flash messages are status, warning, error, or information messages displayed for several seconds, in response to certain key presses during setpoint programming. The time these messages remain on the display, overriding the normal messages, can be changed to accommodate different user reading rates.
Range: 10 to 900 s in steps of 1 s
After this period of time of no activity on the keys, the 745 automatically begins to display the programmed set of default messages programmed in S1 745 SETUP/DEFAULT MESSAGES.

## Range: 0 to $100 \%$ in steps of $25 \%$

To extend the life of the phosphor in the vacuum fluorescent display, the brightness of the display can be attenuated when default messages are being displayed. When interacting with the display using the front panel keys, the display will always operate at full brightness. One of five settings can be selected for attenuation of default messages: 100\% (maximum), $75 \%$, $50 \%, 25 \%$, or $0 \%$ (minimum).

Up to 32 relays can be daisy-chained and connected to a computer or a programmable controller, using either the two wire RS485 or the four wire RS422 serial communication port at the rear of the 745 . Before using communications, each relay must be programmed with a unique address and a common baud rate.


This message indicates the start of the COMMUNICATIONS section. To continue with these setpoints press ENTER, or press MESSAGE to go to the next section.

Range: 1 to 254 (steps of 1)
Enter a unique address, from 1 to 254, for this particular relay on both COM1 and COM2 serial communication links. This setpoint cannot be changed via the communication ports. Although addresses need not be sequential, no two relays can have the same address. Generally each relay added to the link will use the next higher address, starting from address 1 . No address is required to use the front panel program port since only one relay can be connected at one time.

```
COM1 BAUD RATE:
19200 Baud
```

COM1 PARITY:
None

```
COM1 HARDWARE:
RS485
```

```
COM2 BAUD RATE:
19200 Baud
```

COM2 PARITY:
None

```
FRONT BAUD RATE:
19200 Baud
```

```
FRONT PARITY:
None
```

Range: 300 / 1200 / 2400 / 4800 / 9600 / 19200
Select the baud rate for COM1, the RS485/RS422 communication port. This setpoint cannot be changed via the communication ports. All relays on the communication link, and the computer connecting them, must run at the same baud rate. The fastest response will be obtained at 19200 baud.

## Range: None / Even / Odd

The data frame is fixed at 1 start, 8 data, and 1 stop bit. If required, a parity bit is programmable. This setpoint cannot be changed via the communication ports. The parity of the transmitted signal must match the parity displayed in this setpoint.
Range: RS485 / RS422
If the two-wire RS485 hardware configuration is required for the COM1 serial communication port, select RS485. This setpoint cannot be changed via the communication ports. If the four wire RS422 hardware configuration is required, select RS422.
Range: 300 / 1200 / 2400 / 4800 / 9600 / 19200
Select the baud rate for the COM2 port. This setpoint cannot be changed via the communication ports.
Range: None / Even / Odd
Select the parity type for the COM2 port. This setpoint cannot be changed via the communication ports.
Range: 300 / 1200 / 2400 / 4800 / 9600 / 19200
Select the baud rate for the front panel port. This setpoint cannot be changed via the communication ports.
Range: None / Even / Odd
Select the parity type for the front panel port. This setpoint cannot be changed via the communication ports.


This message indicates the start of the DNP COMMUNICATION page. To continue with these setpoints press ENTER, or press MESSAGE to go back to the PORT SETUP section.

```
DNP PORT:
None
```

DNP POINT MAPPING:
Enabled

```
TRANSMISSION DELAY:
O ms
```

DATA LINK CONFIRM
MODE: Never
DATA LINK CONFIRM
TIMOUT: 1000 ms

```
DATA LINK CONFIRM
RETRIES: 3
```

```
SELECT/OPERATE ARM
TIMEOUT: 10000 ms
```

WRITE TIME INTERVAL:
0 min.

## COLD RESTART

INHIBIT: Disabled

Range: None / Com1 / Com2 / Front
Select the communication port that you will use for DNP.

## Range: Enabled / Disabled

When enabled, the 120 User Map Values are included in the DNP Object 30 point list. For more information, refer to Section 8.4: DNP COMMUNICATIONS.
Range: 0 to 65000 (Steps of 1)
Select the minimum time from when a DNP request is received and a response issued. A value of zero causes the response to be issued as quickly as possible.
Range: Never / Always / Sometimes
Select the data link confirmation mode desired for responses sent by the 745. When "Sometimes" is selected, data link confirmation is only requested when the response contains more than one frame.
Range: 1 to 65000 (Steps of 1)
Select a desired timeout. If no confirmation response is received within this time, the 745 will resend the frame if retries are still available.
Range: 0 to 100 (Steps of 1)
Select the maximum number of retries that will be issued for a given data link frame.
Range: 1 to 65000 (Steps of 1)
Select the duration of the select / operate arm timer.
Range: 0 to 65000 (Steps of 1)
Select the time that must elapse before the 745 will set the "need time" internal indication (IIN). After the time is written by a DNP master, the IIN will be set again after this time elapses. A value of zero disables this feature.
Range: Enabled / Disabled
When disabled, a cold restart request from a DNP master will cause the 745 to be reset. Enabling this setpoint will cause the cold restart request to initialize only the DNP sub-module.

When "Disabled" is selected, a cold restart request will cause loss of protection until the $\mathbf{7 4 5}$ reset completes.

The reset function performs the following actions: all latched relays are set to the non-operated state and latched target messages are cleared, if the initiating conditions are no longer present. Resetting can be performed in any of the following ways: via RESET on the front panel while the 745 is in local mode (i.e. the LOCAL indicator is on); via a logic input; via any of the communication ports. The following setpoints allowing configuring some of the features associated with resetting.


LOCAL RESET

```
BLOCK: Disabled
```

REMOTE RESET
SIGNAL: Disabled

This message indicates the start of the RESETTING section. To continue these setpoints press ENTER, or press MEssage $\nabla$ to go to the next section.

Range: Disabled / Logic Inpt 1 (2-16) / Virt Inpt 1 (2-16) / Output Rly 1 (2-8)
/ SelfTest Rly / Virt Outpt 1 (2-5)
The 745 is defaulted to the local mode. As a result, the front panel (local) RESET key is normally operational. Select any logic input, virtual input, output relay, or virtual output which, when asserted or operated, will block local mode, and hence the operation of the front panel RESET.
Range: Disabled / Logc Inpt 1 (2-16)
Select any logic input which, when asserted, will (remotely) cause a reset command.

The 745 includes a battery-backed internal clock that runs even when control power is lost. Battery power is used only when the 745 is not powered. The battery is rated to last for at least 10 years continuous use. The clock is accurate to within 1 minute per month. An IRIG-B signal may be connected to the 745 to synchronize the clock to a known time base and to other relays. The clock performs time and date stamping for various relay features, such as event and last trip data recording. Without an IRIG-B signal, the current time and date must be entered in a new relay for any time and date displayed. If not entered, all message references to time or date will display Unavailable. With an IRIG-B signal, only the current year needs to be entered.


This message indicates the start of the CLOCK section. To continue with these setpoints press ENTER, or press MESSAGE to go to the next section.

Range: Month = 1 to 12, Day = 1 to 31, Year = 1990 to 2089

```
DATE (MM/DD/YYYY):
    01/01/1996
```

TIME (HH:MM:SS):
00:00:00

```
IRIG-B SIGNAL TYPE:
```

None

None

Enter the current date, using two digits for the month, two digits for the day, and four digits for the year. For example, April 30, 1996 would be entered as 0430 1996. If entered from the front panel, the new date will take effect at the moment of pressing the ENTER key.
Range: Hour $=0$ to 23, Minute $=0$ to 59 , Second $=0$ to 59
Enter the current time by using two digits for the hour in 24 hour time, two digits for the minutes, and two digits for the seconds. The new time takes effect at the moment of pressing the Enter key. For example, 3:05 PM is entered as 150500 , with the ENTER key pressed at exactly 3:05 PM.
Range: None / DC Shift / Amplitude Modulated
Select the type of IRIG-B signal being used for clock synchronization. Select
'None' if no IRIG-B signal is to be used.

### 5.3.8 DEFAULT MESSAGES

Under normal conditions, if no front panel keys have been pressed for longer than the time specified in S1 745 SETUP/PREFERENCES/DEFAULT MESSAGE TIMEOUT, the screen begins to sequentially display up to 30 userselected default messages. In addition, up to 5 user programmable text messages can be assigned as default messages. For example, the relay could be set to sequentially display a text message identifying the transformer, the system status, the measured current in each phase, and the harmonic inhibit level. Currently selected default messages are viewed under S1 745 SETUP/DEFAULT MESSAGES. The first message in this section states the number of messages currently selected. The messages that follow are copies of the default messages in the sequence they will be displayed.


This message indicates the start of the DEFAULT MESSAGES section. To continue these setpoints press ENTER, or press Message to go to the next section.
Range: cannot be edited

## 1 MESSAGES SELECTED <br> 29 REMAIN UNASSIGNED



## a) ADDING DEFAULT MESSAGES

Default messages can be added to the end of the default message list, as follows:

1. Allow access to setpoints by installing the setpoint access jumper and entering the correct passcode.
2. Select the setpoint or actual value message to be entered as a default message, so that it is displayed. If user text is required, go into $\mathbf{\$ 1} \mathbf{7 4 5}$ SETUP/SCRATCHPAD and edit the text for default.
3. Press the decimal key followed by ENTER while the message is displayed. The screen will display PRESS [ENTER] TO ADD AS DEFAULT. Press ENTER again while this message is being displayed. The message is now added to the default message list.
b) REMOVING DEFAULT MESSAGES

Default messages can be removed from the default message list, as follows:

1. Allow access to setpoints by installing the setpoint access jumper and entering the correct passcode.
2. Select the message under the section $\mathbf{S 1} \mathbf{7 4 5}$ SETUP/DEFAULT MESSAGES to remove from the default message list.
3. Press the decimal key followed by ENTER. The screen displays PRESS [ENTER] TO REMOVE MESSAGE. Press ENTER while this message is being displayed. The message is now removed from the default message list and the messages that follow are moved up to fill the gap.

Up to 5 message screens can be programmed and selected as default messages. These messages can be used to provide identification information about the system or instructions to operators. User text messages can be entered as follows:


Use these setpoints to enter up to 5 user programmable messages to be displayed with the list of default messages. To continue setting the user messages press the ENTER key, or press the MESSAGE key to go to the next section.

## Text 1

Range: 40 alphanumeric characters
Press ENTER to begin editing scratchpad message 1 (2-5). The text may be changed from Text 1 one character at a time, using Value value $\square$. Press the ENTER key to store the edit and advance to the next character position. This message may then be stored as a default message.

Not Programmed
This message indicates the start of the INSTALLATION section. To continue these setpoints press ENTER, or press MESSAGE to go to the next section.

Range: Not Programmed / Programmed
In order to safeguard against the installation of a relay whose setpoints have not been entered, the 745 will not allow signaling of any output relay, will have the IN SERVICE indicator off and the SELF-TEST ERROR indicator on, until the 745 is set to Programmed. The setpoint is defaulted to Not Programmed when the relay leaves the factory. The following self-test error message is displayed automatically until the 745 is put into the programmed state:

SETPOINTS HAVE NOT BEEN PROGRAMMED

Some of the options supported by the 745 may be added while the relay is in the field. These include the Ana$\log \mathrm{I} / \mathrm{O}$, Loss Of Life and Restricted Ground Fault options.
Should this be desired, contact the factory with the following information:

- The order code of the 745 (found under A4 PRODUCT INFO/REVISION CODES/INSTALLED OPTIONS).
- The serial number of the 745 (found under A4 PRODUCT INFO/REVISION CODES/SERIAL NUMBER).
- The new option(s) that are to be added.

The factory will supply a passcode that may be used to add the new options to the 745 . Before entering the passcode and performing the upgrade, it is important to set the ENABLE setpoints correctly (see below). Any options that are currently supported by the 745 as well as any options that are to be added should have the corresponding ENABLE setpoint set to Yes. All others must be set to No.
For example, if the 745 currently supports only the Analog I/O option and the Loss Of Life option is to be added, then the ENABLE ANALOG I/0? setpoint and the ENABLE LOSS OF LIFE? setpoint must be set to Yes. The ENABLE RESTRICTED GROUND FAULT? setpoint must be set to No.


Range: Yes / No


Range: Yes / No


Enter passcode supplied by the manufacturer.

| UPGRADE OPTIONS? <br> Yes | Range: Yes / No |
| :--- | :--- | previous section.

Range: Yes / No

This message indicates the start of the UPGRADE OPTIONS section. To continue with these setpoints press ENTER, or press MESSAEE to go to the


This message indicates the start of the UPGRADE OPTIONS section. To continue with these setpoints press ENTER, or press MESSAGE $\triangle$ to go to the previous section.

Range: No / Yes
Select Yes if the upgrade options set supports the Analog I/O feature, otherwise select N . The default value for this setpoint reflects the current state of the option.

```
ENABLE LOSS OF LIFE?
No
```

```
ENABLE RESTRICTED
GROUND FAULT? No
```

ENTER PASSCODE:
UPGRADE UPTIONS?
No

Range: No / Yes
Select Yes if the upgrade options set supports the Loss Of Life feature and select No otherwise. The default value for this setpoint reflects the current state of the option.

Range: No / Yes
Select Yes if the upgrade options set supports the Restricted Ground Fault feature and select No otherwise. The default value for this setpoint reflects the current state of the option.
Range: 16 hexadecimal characters [0-9 and A-F]
Press ENTER to begin entering the factory-supplied upgrade passcode. This setpoint has a textual format, thus it is edited in the same manner as, for example, the setpoints under $\mathbf{\$ 1} 745$ SETUP/SCRATCHPAD.
Range: No / Yes
When all of the above setpoints are properly programmed, select Yes and press ENTER to prompt the 745 to upgrade its options. A flash message appears indicating the results of the upgrade. A successful upgrade may be verified by examining the installed options display under A4 PRODUCT INFO/ REVISION CODES/INSTALLED OPTIONS.

This group of setpoints is critical for the protection features to operate correctly. When the relay is ordered, the phase and ground CT inputs must be specified as either 5 A or 1 A . The characteristics of the equipment installed on the system are entered on this page. This includes information on the transformer type, CTs, VT, ambient temperature sensor, onload tap changer, demand metering, analog outputs and analog input.


### 5.4.2 TRANSFORMER

In order to provide accurate and effective transformer protection, the parameters of both the transformer and the system configuration must be supplied to the 745 relay.


This message indicates the start of the TRANSFORMER section. To continue with these setpoints, press Enter, or press messabe to go to the next section.
Range: $60 \mathrm{~Hz} / 50 \mathrm{~Hz}$
Enter the nominal frequency of the power system. This setpoint is used to determine the sampling rate in the absence of a measurable frequency. Frequency is measured from the VT input when available. If the VT input is not available, current from phase A of Winding 1 is used.

```
FREQUENCY TRACKING:
Enabled
```

PHASE SEQUENCE :
ABC

```
TRANSFORMER TYPE:
```

Y/d30 ${ }^{\circ}$

Range: Enabled / Disabled
In situations where the AC signals contain significant amount of subharmonic components, it may be necessary to disable frequency tracking.

## Range: ABC / ACB

Enter the phase sequence of the power system. Systems with an ACB phase sequence require special considerations. See Section 5.2.4: PHASE SHIFTS ON THREE-PHASE TRANSFORMERS on page 5-6 for details.
Range: See Table 5-1: TRANSFORMER TYPES on page 5-10.
Enter the transformer connection from the table of transformer types. Phase correction and zero-sequence removal are performed automatically as required.

If TRANSFORMER TYPE is entered as 2 W or 3W EXTERNAL CORRECTION with a DELTA/WYE power transformer, the WINDING 1/2/3 PHASE CT PRIMARY setting values must be divided by $\sqrt{3}$ on the DELTA current transformer side to compensate the current magnitude. With this correction, the 745 will properly compare line to neutral currents on all sides of the power transformer.
For example, for a 2-Winding DELTA/WYE power transformer with

- WYE connnected current transformers on the DELTA side of the power transformer (25000:5 ratio)
- DELTA connected current transformers on the WYE side of the power transformer (4000:5 ratio)
Set: TRANSFORMER TYPE $=2 \mathrm{~W}$ External Connection
WINDING 1 PHASE CT PRIMARY $=25000: 5$
WINDING 2 PHASE CT PRIMARY $=(4000 / \sqrt{3}): 5$ or $2309: 5$

```
LOAD LOSS AT RATED
LOAD: 1250 kW
```

```
LOW VOLTAGE WINDING
RATING: Above 5 kV
```

```
RATED WINDING TEMP
RISE: 65*}\textrm{C (oil)
```

```
NO LOAD LOSS:
125.0 kW
```

```
TYPE OF COOLING:
OA
```

```
RATED TOP OIL RISE
OVER AMBIENT: 10}\mp@subsup{}{}{\circ}\textrm{C
```


## XFMR THRML CAPACITY:

$1.00 \mathrm{kwh} /{ }^{\circ} \mathrm{C}$

```
WINDING TIME CONST:
    2.00 min.
```

SET ACCUMULATED LOSS
OF LIFE: $0 \times 10 \mathrm{~h}$

Range: 0 to 10000 in steps of 1
(Auto-ranging; see Table 5-3: LOW VOLTAGE WINDING RATING)
Enter the load loss at rated load. This value is used for calculation of harmonic derating factor, and in the Insulating Aging function.
Range: Above $5 \mathrm{kV} / 1 \mathrm{kV}$ to $5 \mathrm{kV} /$ Below 1 kV
Enter the low voltage winding rating. This selection affects the setpoint ranges of WINDING $(1,2,3)$ NOM $\varnothing-\varnothing$ VOLTAGE, WINDING $(1,2,3)$ RATED LOAD, MINIMUM TAP POSITION VOLTAGE and VOLTAGE INCREMENT PER TAP shown in Table 5-3: LOW VOLTAGE WINDING RATING below.

Range: $65^{\circ} \mathrm{C}$ (oil) $/ 55^{\circ} \mathrm{C}$ (oil) / $150^{\circ} \mathrm{C}$ (dry) / $115^{\circ} \mathrm{C}$ (dry) / $80^{\circ} \mathrm{C}$ (dry)
This setting determines the type of insulation, for use in the computation of Insulation Aging.
Range: 0.1 to 2000.0 in steps of 0.1
(Auto-ranging; see Table 5-3: LOW VOLTAGE WINDING RATING) From the transformer data. It is required for Insulation Aging calculations. Range: FA / OA / Directed FOA / FOW / Non-Directed FOA/FOW
From Transformer data, required for Insulation Aging calculations.
Range: 1 to 200 (steps of 1)
Required for Insulation Aging calculations
Range: 0.00 to 200.00 (steps of 0.01)
Required for Insulation Aging calculations. Obtain from transformer manufacturer

Range: 0.25 to 15.00 (steps of 0.01)
Required for Insulation Aging calculations

## Range: 0 to 20000 (steps of 1)

Required for Insulation Aging calculations. Set equal to the estimated accumulated loss of life.

Table 5-3: LOW VOLTAGE WINDING RATING

| DESCRIPTION | LOW VOLTAGE WINDING RATING |  |  |
| :---: | :---: | :---: | :---: |
|  | ABOVE 5 kV | 1 kV to 5 kV | BELOW 1 kV |
| WINDING $\times$ NOM $\phi-\phi$ VOLTAGE: | 0.1 to 2000.0 in steps of 0.1 kV | 0.01 to 200.00 in steps of 0.01 kV | $\begin{aligned} & 0.001 \text { to } 20.000 \\ & \text { in steps of } 0.001 \mathrm{kV} \end{aligned}$ |
| WINDING $x$ RATED LOAD | $\begin{aligned} & 0.1 \text { to } 2000.0 \\ & \text { in steps of } 0.1 \mathrm{MVA} \end{aligned}$ | $\begin{aligned} & 0.01 \text { to } 200.00 \\ & \text { in steps of } 0.01 \text { MVA } \end{aligned}$ | $\begin{aligned} & 0.001 \text { to } 20.000 \\ & \text { in steps of } 0.001 \text { MVA } \end{aligned}$ |
| MINIMUM TAP POSITION VOLTAGE | 0.1 to 2000.0 in steps of 0.1 kV | 0.01 to 200.00 in steps of 0.01 kV | $\begin{aligned} & 0.001 \text { to } 20.000 \\ & \text { in steps of } 0.001 \mathrm{kV} \end{aligned}$ |
| VOLTAGE INCREMENT PER TAP | $\begin{aligned} & 0.01 \text { to } 20.00 \\ & \text { in steps of } 0.01 \mathrm{kV} \end{aligned}$ | $\begin{aligned} & 0.001 \text { to } 2.000 \\ & \text { in steps of } 0.001 \mathrm{kV} \end{aligned}$ | $\begin{aligned} & 0.0001 \text { to } 0.2000 \\ & \text { in steps of } 0.0001 \mathrm{kV} \end{aligned}$ |
| Load Loss at Rated Load | $\begin{aligned} & 0.1 \text { to } 2000.0 \\ & \text { in steps of } 0.1 \mathrm{KW} \end{aligned}$ | $\begin{aligned} & 0.01 \text { to } 200.00 \\ & \text { in steps of } 0.01 \mathrm{KW} \end{aligned}$ | $\begin{aligned} & 0.001 \text { to } 20.000 \\ & \text { in steps of } 0.001 \mathrm{KW} \end{aligned}$ |
| No load Loss | 1 to 20000 in steps of 1 KW | 0.1 to 2000.0 in steps of 0.1 KW | $\begin{aligned} & 0.01 \text { to } 200.00 \\ & \text { in steps of } 0.01 \mathrm{KW} \end{aligned}$ |

These sections describe the characteristics of each transformer winding and the CTs connected to them.


```
WINDING 1 NOM \varnothing-\varnothing
VOLTAGE: 220.0 kV
```

WINDING 1 PHASE CT
PRIMARY: 500:5 A

```
WINDING 1 GROUND CT
PRIMARY: 500:5 A
```

WINDING 1 SERIES 3ø
RESISTANCE: 10.7000

```
WINDING 1 RATED
LOAD: 100.0 MVA
```

This message indicates the start of the WINDING 1 (2/3) section. To continue with these setpoints press ENTER, or press MESSAGE to go to the next section.

Range: Above 5 kV - 0.1 to 2000.0 (steps of 0.1), 1 kV to $5 \mathrm{kV}-0.01$ to 200.00 (steps of 0.01),
Below 1 kV - 0.001 to 20.000 (steps of 0.001 )
Enter the nominal phase-to-phase voltage rating of Winding 1 (2/3) of the transformer. The range for this setpoint is affected by the setting made at S2 SYSTEM SETUP/TRANSFORMER/LOW VOLTAGE WINDING RATING.
Range: Above 5 kV - 0.1 to 2000.0 (steps of 0.1),
1 kV to $5 \mathrm{kV}-0.01$ to 200.00 (steps of 0.01),
Below 1 kV - 0.001 to 20.000 (steps of 0.001 )
Enter the self-cooled load rating for Winding 1 (2/3) of the transformer. The range for this setpoint is affected by the setting made at S2 SYSTEM SETUP/ TRANSFORMER/LOW VOLTAGE WINDING RATING.
Range: 1 to 50000 (steps of 1)
Enter the phase CT primary current rating of the current transformers connected to Winding $1(2 / 3)$. The CT secondary current rating must match the relay phase current input rating indicated.

Enter the ground CT primary current rating of the current transformers connected in the Winding $1(2 / 3)$ neutral to ground path. The CT secondary current rating must match the relay ground current input rating indicated. This message will only appear if the transformer type setpoint shows that Winding $1(2 / 3)$ is a wye-connected winding.
Range: 0.001 to 50.000 (steps of 0.001)
Enter the series three-phase resistance of the winding (i.e. the sum of the resistance of each of the three phases for the winding). This value is normally only available from the transformer manufacturer's test report, and is used in the 745 for calculation of harmonic derating factor.

The above setpoint options are also available for the second and third winding. W3 setpoints are only visible if the unit has the appropriate hardware and if the selected transformer type is 3 -winding.

NOTE

This section contains the settings to configure the tap position input. The 745 accepts a resistive input from the tap changer control circuitry, which is used in the 745 to dynamically correct for CT ratio mismatch based on the dynamically changing voltage ratio of the transformer. Thus, the percent differential function of the device can be set for greater sensitivity. See the auto-configuration section of this chapter for more details on the tap position input.


This message indicates the start of the ONLOAD TAP CHANGER section. To continue with these setpoints press ENTER, or press MESSAGE to go to the next section.
Range: None / Winding 1 / Winding 2 / Winding 3


5

```
VOLTAGE INCREMENT
```

PER TAP: 0.50 kV

```
RESISTANCE INCREMENT
```

PER TAP: $33 \Omega$

Enter the winding with the tap changer. Enter 'None' for a transformer with no onload tap changer, or to disable this feature.
Range: 2 to 50 (steps of 1)
Enter the number of tap changer positions.
Range: above 5 kV : 0.1 to 2000.0 (steps of 0.1)
1 kV to $5 \mathrm{kV} \quad 0.01$ to 200.00 (steps of 0.01)
below $1 \mathrm{kV} \quad 0.001$ to 20.000 (steps of 0.001)
Enter the voltage at the lowest tap position. The range is affected by the S2 SYSTEM SETUP/TRANSFORMER/LOW VOLTAGE WINDING RATING setpoint.
Range: above $5 \mathrm{kV} \quad 0.1$ to 2000.0 (steps of 0.1)
1 kV to $5 \mathrm{kV} \quad 0.01$ to 200.00 (steps of 0.01)
below $1 \mathrm{kV} \quad 0.001$ to 20.000 (steps of 0.001)
Enter the voltage increment for each tap. The range is affected by the S2 SYSTEM SETUP/TRANSFORMER/LOW VOLTAGE WINDING RATING setpoint.
Range: 10 to 500 (steps of 1)
Enter the resistance increment that the 745 will see for each tap increment.
Maximum value resistance on top tap is $5 \mathrm{~K} \Omega$

The 745 calculates the individual harmonics in each of the phase current inputs up to the 21 st harmonic. With this information, it calculates an estimate of the effect of non-sinusoidal load currents on the transformer rated full load current. These calculations are based on ANSI/IEEE guide C57.110-1986, and require information that is often only available from the transformer manufacturer's test report, including the three-phase resistance of each winding and the load loss at rated load. The harmonic derating factor will only be valid if this information has been entered correctly.
The 745 also calculates the total harmonic distortion of the phase current input signals. The band of frequencies over which this calculation is made can be changed to be more selective than the default 2 nd to 21 st harmonics.

| I HARMONICS <br> [ENTER] for more | This message indicates the start of the HARMONICS section. To continue with this setpoint press ENTER, or press MESSAGE to go to the next section. |
| :---: | :---: |
| HARMONIC DERATING <br> ESTIMATION: Disabled | Range: Disabled / Enabled <br> Enter Enabled to enable the harmonic derating factor calculations. |
| THD MINIMUM HARMONIC <br> NUMBER: $2^{\text {nd }}$ | Range: 2nd / 3rd / ... / 21st <br> Enter the minimum harmonic number of the frequency band over which total harmonic distortion is calculated. |
| THD MAXIMUM HARMONIC NUMBER: $21^{\text {st }}$ | Range: 2nd / 3rd / ... / 21st <br> Enter the maximum harmonic number of the frequency band over which total harmonic distortion is calculated. |

Three programmed custom FlexCurves can be stored in the 745 as FlexCurve A, FlexCurve B and FlexCurve C. This allows the user to save special curves for specific applications and then select them as required for time overcurrent element curves. The custom FlexCurve has setpoints for entering the times-to-trip at various levels of pickup. The levels are as follows: 1.03, 1.05, 1.1 to 6.0 in steps of 0.1 and 6.5 to 20.0 in steps of 0.5 .


This message indicates the start of the FLEXCURVES section. To continue these setpoints press ENTER, or press message to go to the next section.

This message indicates the start of the FLEXCURVE A (B/C) section. To continue with these setpoints, press Enter, or press HEssage to go to the next section. Note that the messages for curve $B$ and curve $C$ are similar to the following message shown for curve A.

```
CURVE A TRIP TIME AT
1.03 x PU: 0 ms
```

Range: 0 to 65000 (steps of 1)
Enter the trip time for 1.03 times the pickup level for curve $A(B / C)$. The messages that follow sequentially, correspond to the trip times for the various pickup levels as indicated above.

The 745 provides a voltage input for the purposes of energization detection (for the ENERGIZATION INHIBIT feature of the percent differential element), overexcitation protection (the VOLTS-PER-HERTZ 1 and 2 functions), and frequency protection (the UNDERFREQUENCY, the FREQUENCY DECAY and the OVERFREQUENCY functions). Note that the frequency elements will use Winding 1, phase A current input if voltage is not available.


This message indicates the start of the VOLTAGE INPUT section. To continue with these setpoints press ENTER, or press MESSAGE to go to the next section.


Range: Disabled / Enabled
Enter Enabled when connecting a voltage transformer to this input.


Range: W1 Van/W1 Vbn/W1 Vcn/W1 Vab/W1 Vbc/W1 Vca/W2 Van / W2 Vbn/W2 Vcn/W2 Vab/W2 Vbc / W2 Vca/W3 Van/W3 Vbn / W3 Vcn / W3 Vab / W3 Vbc / W3 Vca
Enter the winding and phase of the voltage connected to the voltage input.

NOMINAL VT SECONDARY VOLTAGE: 120.0 V

5

The 745 provides an RTD input for monitoring the ambient temperature. The three RTD types which may be used are $100 \Omega$ platinum, $120 \Omega$ nickel, and $100 \Omega$ nickel, the characteristics of which are as follows:

Table 5-4: RTD RESISTANCE VS. TEMPERATURE

| Temperature ( ${ }^{\circ}$ Celsius) | $100 \Omega$ Platinum (DIN 43760 ) | $\begin{aligned} & 120 \Omega \\ & \text { Nickel } \end{aligned}$ | $100 \Omega$ <br> Nickel | Temperature ( ${ }^{\circ}$ Celsius) | $100 \Omega$ Platinum (DIN 43760 ) | $120 \Omega$ Nickel | $100 \Omega$ Nickel |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -50 | 80.31 | 86.17 | 71.81 | 110 | 142.29 | 209.85 | 174.87 |
| -40 | 84.27 | 92.76 | 77.30 | 120 | 146.06 | 219.29 | 182.75 |
| -30 | 88.22 | 99.41 | 82.84 | 130 | 149.82 | 228.96 | 190.80 |
| -20 | 92.16 | 106.15 | 88.45 | 140 | 153.58 | 238.85 | 199.04 |
| -10 | 96.09 | 113.00 | 94.17 | 150 | 157.32 | 248.95 | 207.45 |
| 0 | 100.00 | 120.00 | 100.00 | 160 | 161.04 | 259.30 | 216.08 |
| 10 | 103.90 | 127.17 | 105.97 | 170 | 164.76 | 269.91 | 224.92 |
| 20 | 107.79 | 134.52 | 112.10 | 180 | 168.47 | 280.77 | 233.97 |
| 30 | 111.67 | 142.06 | 118.38 | 190 | 172.46 | 291.96 | 243.30 |
| 40 | 115.54 | 149.79 | 124.82 | 200 | 175.84 | 303.46 | 252.88 |
| 50 | 119.39 | 157.74 | 131.45 | 210 | 179.51 | 315.31 | 262.76 |
| 60 | 123.24 | 165.90 | 138.25 | 220 | 183.17 | 327.54 | 272.94 |
| 70 | 127.07 | 174.25 | 145.20 | 230 | 186.82 | 340.14 | 283.45 |
| 80 | 130.89 | 182.84 | 152.37 | 240 | 190.45 | 353.14 | 294.28 |
| 90 | 134.70 | 191.64 | 159.70 | 250 | 194.08 | 366.53 | 305.44 |
| 100 | 138.50 | 200.64 | 167.20 |  |  |  |  |



This message indicates the start of the AMBIENT TEMP section. To continue these setpoints press ENTER, or press MESSAGE to go to the next section.

AMBIENT TEMPERATURE
SENSING: Disabled

AMBIENT RTD TYPE:
$100 \Omega$ Platinum

```
AVERAGE AMBIENT TEMP
FOR JANUARY: }20\mp@subsup{0}{}{\circ}\textrm{C
```

Range: Disabled / Enabled
Enter Enabled to use an RTD to monitor ambient temperature.
Range: $100 \Omega$ Platinum / $120 \Omega$ Nickel / $100 \Omega$ Nickel / By Monthly Average Enter the RTD sensor type being used.

Range: $-50^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ (steps)
This message is displayed only when the AMBIENT RTD TYPE is set for By Monthly Average. Ambient temperature is used in the calculation of Insulation Aging and must be enabled for the function to operate.

There is a display for each month similar to the box above.

The 745 provides a general purpose DC current input for use in monitoring any external parameter. Any standard transducer output may be connected to the analog input for monitoring.


This message indicates the start of the ANALOG INPUT section. To continue these setpoints press ENTER, or press message to go to the next section.

Range: 18 alphanumeric characters
Press ENTER to begin editing the name of the analog input. The text may be changed from ANALOG INPUT one character at a time, using the VaLle 4 / Value keys. Press the EnTer key to store the edit and advance to the next character position. This name will appear in the actual value message A2 METERING/ANALOG INPUT.
Range: 6 alphanumeric characters
Enter the units of the quantity being read by editing the text as described above. The 6 characters entered will be displayed instead of Units wherever the analog input units are displayed.

```
ANALOG INPUT RANGE:
0-1 mA
```

ANALOG INPUT MINIMUM
VALUE: 0 MA

```
ANALOG INPUT MAXIMUM
VALUE: 1000 \muA
```

Range: 0-1 mA / 0-5 mA / 4-20 mA / 0-20 mA
Select the current output range of the transducer that is connected to the analog input.
Range: 0 to 65000 (steps of 1)
Enter the value of the quantity measured which corresponds to the minimum output value of the transducer.

Range: 0 to 65000 (steps of 1)
Enter the value of the quantity measured which corresponds to the maximum output value of the transducer.

This section assigns the demand setpoints for monitoring current demand on all three phases of each windings. Current demand on the 745 is performed one of three ways: Thermal, Rolling Demand or Block Interval.


## CURRENT DEMAND METER

TYPE: Thermal

This message indicates the start of the DEMAND METERING section. To continue press ENTER or press MESSAEE to go to the next section.

Range: Thermal, Block Interval, Rolling Demand (see table below). Select the method to be used for the current demand metering.

## THERMAL

Select 'Thermal' to emulate the action of an analog peak-recording thermal demand meter. The 745 measures the current on each phase every second, and assumes the circuit quantity remains at this value until updated by the next measurement. It calculates the "thermal demand equivalent" based on the following equation:

$$
d(t)=D\left(1-e^{-k t}\right)
$$

where $d=$ demand after applying input for time $t$ (in minutes)
$\mathrm{D}=$ input quantity (constant)
$\mathrm{k}=2.3$ / thermal $90 \%$ response time


The graph above shows the thermal response characteristic for a thermal $90 \%$ response time of 15 minutes. A setpoint establishes the time to reach $90 \%$ of a steady-state value, just as the response time of an analog instrument (a steady-state value applied for twice the response time will indicate $99 \%$ of the value).

## BLOCK INTERVAL

Select 'Block Interval' to calculate a linear average of the current over the programmed demand TIME INTERVAL, starting daily at 00:00:00 (i.e. 12 am ). The 1440 minutes per day is divided into the number of blocks as set by the programmed time interval. Each new value of demand becomes available at the end of each time interval.

## ROLLING DEMAND

Select 'Rolling Demand' to calculate a linear average of the current over the programmed demand TIME INTERVAL (in the same way as Block Interval). The value is updated every minute and indicates the demand over the time interval just preceding the time of update.

```
THERMAL 90% RESPONSE
TIME: 15 min.
```

```
TIME INTERVAL:
20 min.
```

Range: 5 min. / 10 min. / 15 min. / 20 min . / 30 min . / 60 min .
This message is displayed only when the CURRENT DEMAND METER TYPE is set for Thermal. Enter the time required for a steady-state current to indicate $90 \%$ of actual value.

Range: 5 min. / 10 min. / 15 min. / 20 min. / 30 min. / 60 min.
This message is displayed only when the CURRENT DEMAND METER TYPE is set for Block Interval or Rolling Demand. Enter the time period over which the current demand calculation is performed.

There are seven analog outputs on the 745 relay which are selected to provide a full-scale output range of one of $0-1 \mathrm{~mA}, 0-5 \mathrm{~mA}, 4-20 \mathrm{~mA}, 0-20 \mathrm{~mA}$ or $0-10 \mathrm{~mA}$. Each channel can be programmed to monitor any measured parameter. This sub-section is only displayed with the option installed.

This message indicates the start of the ANALOG OUTPUTS section. To continue
ANALOG OUTPUTS
[ENTER] for more

ANALOG OUTPUT 1
ANALOG OUTPUT 1
FUNCTION: Disabled
FUNCTION: Disabled

```
ANALOG OUTPUT 1
VALUE: W1 ØA Current
```

with these setpoints press ENTER, or press MESSAGE to go to the next section.

This message indicates the start of the analog output 1 (2-7) setpoints of the analog outputs. To continue with these setpoints, press ENTER, or press MESSAGE to go to the next section.

## Range: Disabled / Enabled

This message enables or disables the analog output 1 (2-7) feature. When disabled, 0 mA will appear at the corresponding terminal.
Range: see below
Select the measured parameter to be represented by the mA DC current level of analog output 1 (2-7).

Select to monitor the RMS value (at fundamental frequency) of the winding $1(2 / 3)$ phase $A(B / C)$ current input.
Select to monitor the winding $1(2 / 3)$ load as a percentage of the rated load for that winding.
Select to monitor the total harmonic distortion in the winding $1(2 / 3)$ phase $A(B / C)$ current input.
Select to monitor the harmonic derating factor (i.e. the derated transformer capability while supplying non-sinusoidal load currents) in winding $1(2 / 3)$.

Select to monitor the system frequency.
Select to monitor the onload tap changer position.
Select to monitor the system voltage as measured from the voltage input.
Select to monitor the current demand value of the winding $1(2 / 3)$ phase A (B/C) current input.

| Analog Input | Select to monitor the general purpose analog input current. |
| ---: | :--- |
| Max Event W1 (2/3) | Select to monitor the maximum captured RMS value (at fundamental frequency) of <br> Ia (b/c/g) <br>  <br>  <br> the winding $1(2 / 3)$ phase A (phase B / phase C / ground) current input for all events <br> since the last time the event recorder was cleared. |

ANALOG OUTPUT 1
RANGE: 4-20 mA

```
ANALOG OUTPUT 1
MIN: O A
```

ANALOG OUTPUT 1
MAX: 1000 A

Range: 0-1 mA / 0-5 mA / 4-20 mA / 0-20 mA / 0-10 mA
Select the full-scale range of output current for analog output 1 (2-7).
Range: matches the range of the selected measured parameter.
Enter the value of the selected parameter which corresponds to the minimum output current of analog output 1 (2-7).
Range: matches the range of the associated actual value
Enter the value of the selected parameter which corresponds to the maximum output current of analog output 1 (2-7).

The 745 has two types of digital inputs: Logic Inputs have physical terminals for connecting to external contacts. Virtual Inputs, on the other hand, although providing the same function as logic inputs, have no physical external connections: a setpoint defines the state of each in terms of "ON" or "OFF".
There are 16 of each of logic inputs and virtual inputs. The state ('asserted' or 'not asserted') of each logic or virtual input can be used to cause any of a variety of predefined logic functions, such as protection element blocking, energization detection, etc. In addition, any logic or virtual input can be used as an input in FlexLog$i{ }^{\mathrm{TM}}$ equations to implement custom schemes.


This message indicates the start of setpoints page S3 LOGIC INPUTS. Press MESSAGE to view the contents of this page or SETpoint to go to the next page.
5.5.2 LOGIC INPUTS


This message indicates the start of the LOGIC INPUTS section. To continue these setpoints, press ENTER, or press MESSAGE to go to the next section.

This message indicates the start of the logic input $1(2-16)$ setpoints. To continue with these setpoints, press ENTER, or press MESSAGE to go to the next section.

```
INPUT 1 FUNCTION
Disabled
```

INPUT 1 TARGET:
Self-Reset

INPUT 1 NAME:
Logic Input 1

INPUT 1 ASSERTED
STATE: Closed

Range: Disabled / Enabled
Select 'Enabled' if this logic input is to be used. Selecting Disabled will never allow this logic input to achieve the 'Asserted' (or signaling) state.
Range: None / Latched / Self-Reset
Chose None to inhibit the display of the target message when the input is asserted. Thus an input whose "target type" is None will never disable the LED self-test feature because cannot generate a displayable target message.
Range: 18 alphanumeric characters
Press Enter to begin editing the name of the logic input. The text may be changed from Logic Input 1 one character at a time, using VALUE 4 VALUE $\nabla$. Press ENTER to store the edit and advance to the next character position.
Range: Open / Closed
Select Closed as the input asserted state when connected to a normally open contact (where the signaling state is closed). Select Open when connected to a normally closed contact (where the signaling state is open).

The Virtual Inputs setpoints are listed below:


This message indicates the start of the VIRTUAL INPUTS section. To continue with these setpoints press ENTER, or press MESSAGE to go to the next section.

```
INPUT 1 FUNCTION
```

Disabled

## INPUT 1 TARGET:

Self-Reset

INPUT 1 NAME:
Virtual Input 1
5


This message indicates the start of the virtual input 1 (2-16) setpoints. To continue with these setpoints, press ENTER key, or press MESSAGE to go to the next section.

## Range: Disabled / Enabled

Select Enabled if this logic input is to be used. Selecting Disabled will never allow this logic input to achieve the 'Asserted' (or signaling) state.
Range: None / latched / Self-Reset
Select None to inhibit the display of the target message when the input is asserted. Thus an input whose "target type" is None will never disable the LED self-test feature because can not generate a displayable target message.
Range: 18 alphanumeric characters
Press ENTER to begin editing the name of the virtual input. The text may be changed from Virtual Input 1 one character at a time, using the VALLE (4/ value keys. Press Enter to store the edit and advance to the next character position.
Range: Not Asserted / Asserted
Select Asserted to place the virtual input in the signaling state. Select Not Asserted to place the virtual input in the non-signaling state.

Protection and monitoring elements are configured in this page. This includes: complete differential protection; phase, neutral, ground, negative sequence overcurrent protection; restricted ground fault (differential ground) protection; under, over, and rate-of-change of frequency; overexcitation; harmonic monitoring; analog input monitoring; current demand monitoring; and transformer overload monitoring.

This message indicates the start of setpoints page S4 ELEMENTS. Press MESSAGE to view the contents of this page, or SETPOINT to go to the next page.

### 5.6.2 INTRODUCTION TO ELEMENTS

Each element is comprised of a number of setpoints, some of which are common to all elements. These common setpoints are described below, avoiding repeated descriptions throughout this section:

```
<NAME OF ELEMENT>
FUNCTION: Enabled
```

<NAME OF ELEMENT>
TARGET: Latched
<NAME OF ELEMENT> BLOCK: Disabled

## Range: Disabled / Enabled

Select Enabled to enable the element. For critical protection elements, this setpoint will normally be set to Enabled except for test purposes. For elements which are not to be used, this setpoint should be set to Disabled.

## Range: Self-reset / Latched / None

Target messages (accessed by the Next key) indicate which elements have picked up or operated. Select Latched to keep the element target message in the queue of target messages, even after the condition which caused the element to operate has been cleared, until a reset command is issued. Select Self-reset to automatically remove the target message from the queue of messages after the condition has been cleared. Select None to inhibit the display of the target message when the element operates. Thus an element whose "target type" is None will never disable the LED self-test feature because can not generate a displayable target message.
Range: Disabled / Logc Inpt 1 (2-16) / Virt Inpt 1 (2-16) / Output Rly 1 (2-8) / SelfTest Rly / Virt Outpt 1 (2-5)
Select any logic input, virtual input, output relay, or virtual output which, when asserted or operated, will block the element from operating. Selecting a logic input or virtual input allows the element to be blocked based on a decision external to the 745 . Selecting an output relay or virtual output allows the element to be blocked based on conditions detected by the 745 and the combination of logic programmed in the associated FlexLogic ${ }^{\text {TM }}$ equation.

Each protection and monitoring element setpoint (programmed in S4 ELEMENTS) has four copies, and these settings are organized in four setpoint groups. Only one group of settings are active in the protection scheme at a time. The active group can be selected using the ACTIVE SETPOINT GROUP setpoint or using a logic input. The setpoints in any group can be viewed or edited using the EDIT SETPOINT GROUP setpoint.


This message indicates the start of the SETPOINT GROUP section. To continue with these setpoints press ENTER, or press UESSAGE to go to the next section.
Range: Group 1 / Group 2 / Group 3 / Group 4
Select the number of the SETPOINT GROUP whose settings are to be active in the protection scheme. This selection will be overridden if a higher number setpoint group is activated using logic inputs.

## Range: Group 1 / Group 2 / Group 3 / Group 4 / Active Group

Select the number of the SETPOINT GROUP whose settings are to be viewed and/or edited via the front panel keypad or any of the communication ports. Selecting Active Group selects the currently active setpoint group for editing.

## GROUP 2 ACTIVATE

SIGNAL: Disabled
Select any logic input which, when asserted, will (remotely) select SETPOINT GROUP $2(3-4)$ to be the active group. This selection will be overridden if a higher number setpoint group is activated using the ACTIVE SETPOINT GROUP setpoint or another logic input.
5.6.4 DIFFERENTIAL

This section contains the settings to configure the percent differential element, including all associated harmonic inhibit features. The 745 provides three independent harmonic inhibit features: HARMONIC INHIBIT, which implements an inhibit scheme based on $2^{\text {nd }}$ or $2^{\text {nd }}+5^{\text {th }}$ harmonic which is 'in-circuit' at all times; ENERGIZATION INHIBIT, which allows changing the characteristics of the inhibit scheme during energization to improve reliability; and 5TH HARMONIC INHIBIT, which implements an inhibit scheme based on $5^{\text {th }}$ harmonic only, allowing inhibiting the percent differential during intentional overexcitation of the system.


This message indicates the start of the DIFFERENTIAL section. To continue these setpoints, press ENTER, or press MESSAGE to go to the next section.

## a) PERCENT DIFFERENTIAL

This section contains the settings to configure the percent differential element. The main purpose of the per-cent-slope characteristic of the differential element is to prevent maloperation because of unbalances between CTs during external faults. These unbalances arise as a result of the following factors:

- CT ratio mismatch (not a factor, since the 745 automatically corrects for this mismatch)
- Onload tap changers which result in dynamically changing CT mismatch
- CT accuracy errors
- CT saturation


## 5 SETPOINTS

The basic operating principle of the percent differential element can be described by the following diagram and its associated equations:


Figure 5-6: PERCENT DIFFERENTIAL OPERATING PRINCIPLE

Restraint current calculations have been changed from average to maximum to provide better security during external faults.

Basic Operating Principle (2-winding):

$$
\begin{aligned}
& I_{r}=I_{\text {restraint }}=\max \left(\left|\vec{I}_{1}\right|,\left|\vec{I}_{2}\right|\right) \\
& I_{d}=I_{\text {differential }}=\left|\vec{I}_{1}+\vec{I}_{2}\right| \\
& \% \text { slope }=\frac{I_{d}}{I_{r}} \times 100 \%
\end{aligned}
$$

where $\quad I_{\text {restraint }}=$ per-phase maximum of the currents after phase, ratio, and zero-sequence correction $I_{\text {differential }}=$ per-phase vector sum of currents after phase, ratio, and zero-sequence correction In the above equations, the $180^{\circ}$ phase shift due to the wiring connections is taken into account, hence the + sign to obtain the differential current.


Figure 5-7: PERCENT DIFFERENTIAL - DUAL SLOPE CHARACTERISTIC

The percent differential setpoints are shown below:


This message indicates the start of the PERCENT DIFFERENTIAL section. To continue with these setpoints press ENTER, or press WESSAGE to go to the next section.

```
PERCENT DIFFERENTIAL
FUNCTION: Enabled
```

PERCENT DIFFERENTIAL
TARGET: Latched
PERCENT DIFFERENTIAL
PICKUP: $0.30 \times C T$
PERCENT DIFFERENTIAL
SLOPE 1: 25\%

## PERCENT DIFFERENTIAL

 KNEEPOINT: $2.0 \times \mathrm{CT}$
## PERCENT DIFFERENTIAL

 SLOPE 2: 95\%```
PERCENT DIFFERENTIAL
BLOCK: Disabled
```

Range: Disabled / Enabled

Range: Self-reset / Latched / None
Select None to inhibit the display of the target message when the element operates. Thus an element whose "target type" is None never disables the LED self-test feature since it cannot generate a displayable target message.
Range: 0.05 to 1.00 (steps of 0.01)
Enter the minimum differential current required for operation. This setting is chosen based on the amount of differential current that might be seen under normal operating conditions.
Range: 15 to 100 (steps of 1)
Enter the slope 1 percentage (of differential current to restraint current) for the dual-slope percent differential element. The slope 1 setting is applicable for restraint currents of zero to the kneepoint, and defines the ratio of differential to restraint current above which the element will operate. This slope is set to ensure sensitivity to internal faults at normal operating current levels. The criteria for setting this slope are: (1) to allow for mismatch when operating at the limit of the transformer's onload tap-changer range; (2) to accommodate for CT errors.
Range: 1.0 to 20.0 (steps of 0.1)
Enter the kneepoint for the dual-slope percent differential element. This is the transition point between slopes 1 and 2 , in terms of restraint current, in units of relay nominal current. Set the kneepoint just above the maximum operating current level of the transformer between the maximum forcedcooled rated current and the maximum emergency overload current level.
Range: 50 to 200 (steps of 1)
Enter the slope 2 percentage (of differential current to restraint current) for the dual-slope percent differential element. This setting is applicable for restraint currents above the kneepoint and is set to ensure stability under heavy through fault conditions which could lead to high differential currents as a result of CT saturation.


Since $I_{\text {restraint }}=\max \left(\left|I_{1}\right|,\left|I_{2}\right|,\left|I_{3}\right|\right)$, it is not guaranteed that the differential current is always greater than $100 \%$ of the restraint current. Because of this enhancement, the PERCENT DIFFERENTIAL SLOPE 2 settings may cause slow operation (in rare cases no operation) in the following situations:

1. PERCENT DIFFERENTIAL SLOPE 2 is set above $100 \%$.
2. The source is connected to one winding only.

Therefore, the PERCENT DIFFERENTIAL SLOPE 2 value cannot be greater than $100 \%$. To increase dependability, the slope 2 settings should be less than $98 \%$
Range: Disabled / Logc Inpt 1 (2-16) /Virt Inpt 1 (2-16) / Output Rly 1 (2-8) / SelfTest Rly / Virt Outpt 1 (2-5)

## b) HARMONIC INHIBIT

This section contains the settings of the percent differential harmonic inhibit feature. This the percent differential element in a particular phase if the $2^{\text {nd }}$ harmonic of the same phase exceeds the HARMONIC INHIBIT LEVEL setpoint. With harmonic inhibit parameters set to $2 n d+5$ th, the RMS sum of the $2^{\text {nd }}$ and $5^{\text {th }}$ harmonic components is compared against the level setting. With harmonic averaging enabled, all three phases are inhibited if the three-phase average of the harmonics exceeds the level setting.


```
HARMONIC INHIBIT
FUNCTION: Enabled
```

```
HARMONIC INHIBIT
PARAMETERS: 2nd
```

```
HARMONIC AVERAGING:
Disabled
```

HARMONIC INHIBIT
LEVEL: 20.0\% fo

This message indicates the start of the HARMONIC INHIBIT section. To continue with these setpoints press ENTER, or press MESSAGE to go to the next section.
Range: Disabled / Enabled

Range: 2nd / 2nd + 5th
Select 2 nd to compare only the $2^{\text {nd }}$ harmonic current against the HARMONIC INHIBIT LEVEL. Select 2 nd +5 th to use the RMS sum of the $2^{\text {nd }} \& 5^{\text {th }}$ harmonic components. For most transformers, the $2^{\text {nd }}$ harmonic current alone will exceed $20 \%$ during energization and the 2nd setting is sufficient to inhibit the differential element for inrush current.
Range: Disabled / Enabled
Select Enabled to use the three-phase average of the harmonic current against the harmonic inhibit setting. For most applications, enabling harmonic averaging is not recommended.
Range: 0.1 to 65.0 (steps of 0.1)
Enter the level of harmonic current ( $2^{\text {nd }}$ or $\left.2^{\text {nd }}+5^{\text {th }}\right)$ above which the percent differential element will be inhibited from operating. For most applications, this level should be set to $20 \%$.

## c) ENERGIZATION INHIBIT

Over and above the standard harmonic inhibit feature programmed above, the 745 contains a harmonic inhibit feature which is in service only during energization and/or sympathetic inrush.

De-energization and energization of the transformer is detected by any of the following three methods:

1. With energization sensing by current enabled, all currents dropping below the minimum energization current indicates de-energization; any current exceeding the minimum energization current indicates energization. This method is the least reliable method of detecting energization, since an energized and unloaded transformer will be detected as being de-energized if this method is used alone.
2. With energization sensing by voltage enabled, the voltage dropping below the minimum energization voltage indicates de-energization; any current exceeding the minimum energization current indicates energization.
3. With 'b' auxiliary contacts from all switching devices (which can be used to energize the transformer) connected in series to a logic input and assigned to the BREAKERS ARE OPEN setpoint, the contacts closed indicates de-energization; any current exceeding the minimum energization current indicates energization.

Energization inhibit settings are put in service upon detection of de-energization. Upon energization, the energization inhibit duration timer is initiated and the settings are removed from service when the time delay elapses.

The energization inhibit feature may also be put in service during sympathetic inrush. The onset of sympathetic inrush is detected via a close command to the parallel transformer switching device connected to a logic input, assigned to the PARALL XFMR BRKR CLS setpoint. The energization inhibit settings are put in service when the contact closes. Upon the removal of the signal, the energization inhibit duration timer is initiated and the settings are removed from service when the time delay elapses.

In a "breaker-and-a-half scheme", where current can be present in the CTs without being present in the transformer winding, it may be necessary to use the Parallel transformer Breaker Close contact to initiate Energization Inhibit.

## | ENERGIZATN INHIbIT <br> | [ENTER] for more

```
ENERGIZATION INHIBIT
FUNCTION: Enabled
```

```
ENERGIZATION INHIBIT
PARAMETERS: 2nd
```

```
HARMONIC AVERAGING:
Enabled
```

| ENERGIZATION INHIBIT |
| :--- |
| LEVEL: $20.0 \%$ fo |

```
ENERGIZATION INHIBIT
```

DURATION: 0.10 s

This message indicates the start of the ENERGIZATION INHIBIT section. To continue with these setpoints press ENTER, or press MESSAGE to go to the next section.
Range: Disabled / Enabled

Range: 2nd / 2nd + 5th
Select 2nd to compare the $2^{\text {nd }}$ harmonic current against HARMONIC INHIBIT LEVEL. Select 2 nd +5 th to use the RMS sum of the $2^{\text {nd }}$ and $5^{\text {th }}$ harmonics.

## Range: Disabled / Enabled

Select Enabled to use the three-phase average of the harmonic current against the harmonic inhibit setting.
Range: 0.1 to 65.0 (steps of 0.1)
Enter the level of harmonic current ( $2^{\text {nd }}$ or $2^{\text {nd }}+5^{\text {th }}$ ) above which the percent differential element is inhibited from operating. This setting will often need to be set significantly lower than the HARMONIC INHIBIT LEVEL, especially when used with the Parallel Xfmr BkrCls logic input function for sympathetic inrush.
Range: 0.05 to 600.00 (steps of 0.01)
Enter the time delay from the moment of energization (or the end of the parallel breaker close command) before the energization inhibit feature is removed from service.

## d) ENERGIZATION SENSING

This section contains the settings for the Energization Sensing element. Energization sensing allows for the measurement of de-energization by current and voltage.


```
ENERGIZATION SENSING
```

BY CURRENT: Enabled

MINIMUM ENERGIZATION CURRENT: $0.10 \times$ CT

This message indicates the start of the ENERGIZATION SENSING section. To continue with these setpoints press ENTER, or press MESSAGE to go to the next section.
Range: Disabled / Enabled
Select Enabled to detect de-energization by the level of all currents dropping below the minimum energization current.
Range: 0.10 to 0.50 (steps of 0.01)
Enter the level of current below which the transformer is considered deenergized (energization sensing by current enabled), and above which the transformer is considered energized (any energization sensing enabled).

ENERGIZATION SENSING
BY VOLTAGE: Disabled

MINIMUM ENERGIZATION
VOLTAGE: 0.85 X VT

```
BREAKERS ARE OPEN
SIGNAL: Disabled
```

PARALL XFMR BRKR CLS
SIGNAL: Disabled

Range: Disabled / Enabled
Select Enabled to detect de-energization by the level of the voltage dropping below the minimum energization voltage. This setpoint is displayed only if voltage sensing is enabled under S2 SYSTEM SETUP/VOLTAGE INPUT.
Range: 0.50 to 0.99 (steps of 0.01)
Enter the voltage level below which the transformer is considered deenergized (when energization sensing by voltage is enabled). This setpoint is displayed only if S2 SYSTEM SETUP/VOLTAGE INPUT/VOLTAGE SENSING is Enabled.
Range: Disabled / Logc Inpt 1 (2-16)
Select any logic input which, when asserted, will indicate to the 745 that the transformer is de-energized. The selected logic input should be connected to the auxiliary contacts of the transformer breaker or disconnect switch.
Range: Disabled / Logc Inpt 1 (2-16)
Select any logic input which, when asserted, will indicate to the 745 the onset of sympathetic inrush. The selected logic input should be connected to the close command going to the parallel transformer switching device.

## e) 5TH HARMONIC INHIBIT

This section contains the settings of the 5th harmonic inhibit feature of the percent differential element, which allows inhibiting the percent differential during intentional overexcitation of the system. This feature inhibits the percent differential element in a particular phase if the 5th harmonic of the same phase exceeds the harmonic inhibit level setting. With harmonic averaging enabled, all three phases are inhibited if the three-phase average of the 5th harmonic exceeds the level setting.


This message indicates the start of the 5th HARMONIC INHIBIT section. To continue with these setpoints press ENTER, or press MESSAGE to go to the next section.
Range: Disabled / Enabled

## Range: Disabled / Enabled

Select 'Enabled' to use the three-phase average of the 5th harmonic current against the harmonic inhibit setting.
Range: 0.1 to 65.0 (steps of 0.1)
Enter the level of 5th harmonic current above which the percent differential element will be inhibited from operating.

This section contains the settings to configure the (unrestrained) instantaneous differential element, for protection under high magnitude internal faults.

## | INST DIFFERENTIAL <br> \| [ENTER] for more

```
INST DIFFERENTIAL
FUNCTION: Enabled
```

```
INST DIFFERENTIAL
TARGET: Latched
```

```
INST DIFFERENTIAL
PICKUP: 8.00 x CT
```

INST DIFFERENTIAL
BLOCK: Disabled

This message indicates the start of the INSTANTANEOUS DIFFERENTIAL section. To continue with these setpoints press ENTER, or press MESSAGE to go to the next section.

Range: Disabled / Enabled

## Range: Self-reset / Latched / None

Select "None" to inhibit the display of the target message when the element operates. Thus an element whose "target type" is "None" never disables the LED self-test feature since it cannot generate a displayable target message.

Range: 3.00 to 20.00 (steps of 0.01)
Enter the level of differential current (in units of relay nominal current) above which the instantaneous differential element will pickup and operate.

Range: Disabled / Logc Inpt 1 (2-16) /Virt Inpt 1 (2-16) / Output Rly 1 (2-8) / SelfTest Rly / Virt Outpt 1 (2-5)

This section contains settings to configure the phase overcurrent elements. Included are phase time overcurrents and two levels of phase instantaneous overcurrent for each phase of each winding.


This message indicates the start of the PHASE OVERCURRENT section. To continue with these setpoints press Enter, or press MESAGE to go to the next section.
a) WINDING 1 (2/3) PHASE TIME OVERCURRENT


```
W1 PHASE TIME OC
```

PICKUP: $1.20 \times$ ©T

This message indicates the start of the PHASE TIME OVERCURRENT section for Winding $1(2 / 3)$. To continue with these setpoints press ENTER, or press MESSAEE $\nabla$ to go to the next section.
Range: Disabled / Enabled

Range: Self-reset / Latched / None
Select None to inhibit the display of the target message when the element operates. Thus an element whose "target type" is None never disables the LED self-test feature since it cannot generate a displayable target message.
Range: 0.05 to 20.00 (steps of 0.01 )
Enter the phase current level (in units of relay nominal current) above which the W1 (2/3) phase time overcurrent element will pickup and start timing.

W1 PHASE TIME OC
SHAPE: Ext Inverse

W1 PHASE TIME OC MULTIPLIER: 1.00

## W1 PHASE TIME OC

RESET: Linear

W1 PHASE TIME OC
BLOCK: Disabled

W1 HARMONIC DERATING
CORRECTION: Disabled

Range: Ext Inverse / Very Inverse / Norm Inverse / Mod Inverse / Definite Time / IEC Curve A / IEC Curve B / IEC Curve C / IEC Short Inv / IAC Ext Inv / IAC Very Inv / IAC Inverse / IAC Short Inv / FlexCurve A / FlexCurve B / FlexCurve C
Select the time overcurrent curve shape to be used for the W1 (2/3) phase time overcurrent element. Section 5.9: TIME OVERCURRENT CURVES on page 5-90 describes the time overcurrent curve shapes.
Range: 0.00 to 100.00 (steps of 0.01)
Enter the multiplier constant by which the selected time overcurrent curve shape (the base curve) is to be shifted in time.
Range: Instantaneous / Linear
Select Linear reset to coordinate with electromechanical time overcurrent relays, in which the reset characteristic (when the current falls below the reset threshold before tripping) is proportional to ratio of "energy" accumulated to that required to trip. Select Instantaneous reset to coordinate with relays, such as most static units, with instantaneous reset characteristics.
Range: Disabled / Logc Inpt 1 (2-16) /Virt Inpt 1 (2-16) / Output Rly 1 (2-8) / SelfTest Rly / Virt Outpt 1 (2-5)

## Range: Disabled / Enabled

Select Enabled to enable automatic harmonic derating correction of the W1 (2/3) phase time overcurrent curve. The 745 calculates the derated transformer capability when supplying non-sinusoidal load currents (as per ANSI/IEEE C57.110-1986) and, when this feature is enabled, automatically shifts the phase time overcurrent curve pickup in order to maintain the required protection margin with respect to the transformer thermal damage curve, as illustrated below:


Figure 5-8: HARMONIC DERATING CORRECTION
b) WINDING 1 (2/3) PHASE INSTANTANEOUS OVERCURRENT 1


W1 PHASE INST OC 1 FUNCTION: Enabled

```
W1 PHASE INST OC 1
```

TARGET: Latched
W1 PHASE INST OC 1
PICKUP: $10.00 \times C T$

```
W1 PHASE INST OC 1
DELAY: 0 ms
```

```
W1 PHASE INST OC 1
BLOCK: Disabled
```

c) WINDING 1 (2/3) PHASE INSTANTANEOUS OVERCURRENT 2


This message indicates the start of the section describing the characteristics of the first level of PHASE INSTANTANEOUS OVERCURRENT protection for Winding 1 (2/3). To continue with these setpoints press ENTER, or press MESSAGE to go to the next section.
Range: Disabled / Enabled

Range: Self-reset / Latched / None
Select None to inhibit the display of the target message when the element operates. Thus an element whose "target type" is None will never disable the LED self-test feature because can not generate a displayable target message.
Range: 0.05 to 20.00 (steps of 0.01)
Enter the level of phase current (in units of relay nominal current) above which the W1 (2/3) phase instantaneous overcurrent 1 element will pickup and start the delay timer.
Range: 0 to 60000 (steps of 1)
Enter the time that the phase current must remain above the pickup level before the element operates.

Range: Disabled / Logc Inpt 1 (2-16) /Virt Inpt 1 (2-16) / Output Rly 1 (2-8) / SelfTest Rly / Virt Outpt 1 (2-5)

This message indicates the start of the section describing the characteristics of the second level of PHASE INSTANTANEOUS OVERCURRENT protection for Winding 1 (2/3). To continue with these setpoints press ENTER, or press MESSAGE to go to the next section.

The messages that follow are identical to those described for PHASE INSTANTANEOUS OVERCURRENT 1.

NOTE

In the 745, "neutral" refers to residual current ( $3 / 0$ ), which is calculated internally as the vector sum of the three phases. This section contains the settings to configure the neutral overcurrent elements. Included are neutral time overcurrents for each winding, and two levels of neutral instantaneous overcurrent for each winding.


This message indicates the start of the NEUTRAL OVERCURRENT section. To continue with these setpoints press ENTER, or press MESSAGE to go to the next section.
a) WINDING 1 (2/3) NEUTRAL TIME OVERCURRENT


```
W1 NEUTRAL TIME OC
FUNCTION: Enabled
```

W1 NEUTRAL TIME OC TARGET: Latched


W1 NEUTRAL TIME OC SHAPE: Ext Inverse

W1 NEUTRAL TIME OC MULTIPLIER: 1.00

```
W1 NEUTRAL TIME OC
RESET: Linear
```

```
W1 NEUTRAL TIME OC
BLOCK: Disabled
```

This message indicates the start of the NEUTRAL TIME OVERCURRENT section for Winding $1(2 / 3)$. To continue with these setpoints press ENTER, or press MESSAEE to go to the next section.
Range: Disabled / Enabled

## Range: Self-reset / Latched / None

Select None to inhibit the display of the target message when the element operates. Thus an element whose "target type" is None will never disable the LED self-test feature because can not generate a displayable target message.

Range: 0.05 to 20.00 (steps of 0.01)
Enter the level of neutral current (in units of relay nominal current) above which the W1 (2/3) neutral time overcurrent element will pickup and start timing.
Range: Ext Inverse / Very Inverse / Norm Inverse / Mod Inverse / Definite Time / IEC Curve A / IEC Curve B / IEC Curve C / IEC Short Inv / IAC Ext Inv / IAC Very Inv / IAC Inverse / IAC Short Inv / FlexCurve A / FlexCurve B / FlexCurve C
Select the time overcurrent curve shape to be used for the W1 (2/3) neutral time overcurrent element. Section 5.9: TIME OVERCURRENT CURVES on page 5-90 describes the time overcurrent curve shapes.
Range: 0.00 to 100.00 (steps of 0.01)
Enter the multiplier constant by which the selected time overcurrent curve shape (the base curve) is to be shifted in time.
Range: Instantaneous / Linear
Select Linear reset to coordinate with electromechanical time overcurrent relays, in which the reset characteristic (when the current falls below the reset threshold before tripping) is proportional to ratio of "energy" accumulated to that required to trip. Select Instantaneous reset to coordinate with relays, such as most static units, with instantaneous reset characteristics.
Range: Disabled / Logc Inpt 1 (2-16) /Virt Inpt 1 (2-16) / Output Rly 1 (2-8) / SelfTest Rly / Virt Outpt 1 (2-5)
b) WINDING 1 (2/3) NEUTRAL INSTANTANEOUS OVERCURRENT 1


This message indicates the start of the section describing the characteristics of the first level of NEUTRAL INSTANTANEOUS OVERCURRENT protection for Winding $1(2 / 3)$. To continue with these setpoints press ENTER , or press MESSAEE to go to the next section.

```
W1 NEUTRAL INST OC 1
FUNCTION: Enabled
```

W1 NEUTRAL INST OC 1
TARGET: Latched

```
W1 NEUTRAL INST OC 1
```

PICKUP: $10.00 \times C T$

```
W1 NEUTRAL INST OC 1
DELAY: O ms
```

```
W1 NEUTRAL INST OC 1
BLOCK: Disabled
```

Range: Disabled / Enabled

Range: Self-reset / Latched / None
Select None to inhibit the display of the target message when the element operates. Thus an element whose "target type" is None will never disable the LED self-test feature because can not generate a displayable target message.
Range: 0.05 to 20.00 (steps of 0.01)
Enter the level of neutral current (in units of relay nominal current) above which the W1 (2/3) neutral instantaneous overcurrent 1 element will pickup and start the delay timer.
Range: 0 to 60000 (steps of 1)
Enter the time that the neutral current must remain above the pickup level before the element operates.

Range: Disabled / Logc Inpt 1 (2-16) /Virt Inpt 1 (2-16) / Output Rly 1 (2-8) / SelfTest Rly / Virt Outpt 1 (2-5)
c) WINDING 1 (2/3) NEUTRAL INSTANTANEOUS OVERCURRENT 2


This message indicates the start of the section describing the characteristics of the second level of NEUTRAL INSTANTANEOUS OVERCURRENT protection for Winding $1(2 / 3)$. To continue with these setpoints press Enter, or press MESSAEE to go to the next section.

The messages that follow are identical to those described for NEUTRAL INSTANTANEOUS OVERCURRENT 1.

NOTE

In the 745, "ground" refers to the current measured in a CT in the connection between the transformer neutral and ground. The 745 has two ground inputs which are automatically assigned to wye or zig-zag connected windings, based on the transformer type selected. As a result, only those ground overcurrent settings whose winding is assigned a ground input are displayed and enabled. This section contains the settings to configure the ground overcurrent elements. Included are ground time overcurrents for each (wye or zig-zag) winding, and two levels of ground instantaneous overcurrent for each (wye or zig-zag) winding.


This message indicates the start of the GROUND OVERCURRENT section. To continue with these setpoints press ENTER, or press MESSAGE to go to the next section.
a) WINDING 1 (2/3) GROUND TIME OVERCURRENT
W1 GROUND TIME OC
W1 GROUND TIME OC
TARGET: Latched
TARGET: Latched

Here is the start of the GROUND TIME OVERCURRENT section for Winding 1 (2/ 3). To continue with these setpoints press ENTER, or press MESSAGE to go to the next section.
Range: Disabled / Enabled

## Range: Self-reset / Latched / None

Select None to inhibit the display of the target message when the element operates. Thus an element whose "target type" is None never disables the LED self-test feature since it cannot generate a displayable target message.

W1 GROUND TIME OC MULTIPLIER: 1.00

```
```

W1 GROUND TIME OC

```
```

W1 GROUND TIME OC
RESET: Linear

```
```

RESET: Linear

```
```

```
W1 GROUND TIME OC
BLOCK: Disabled
```



Range: 0.05 to 20.00 (steps of 0.01)
Enter the level of ground current (in units of relay nominal current) above which the W1 (2/3) ground time overcurrent element will pickup and start timing.

W1 GROUND TIME OC SHAPE: Ext Inverse

Range: Ext Inverse / Very Inverse / Norm Inverse / Mod Inverse / Definite Time / IEC Curve A / IEC Curve B / IEC Curve C / IEC Short Inv / IAC Ext Inv / IAC Very Inv / IAC Inverse / IAC Short Inv / FlexCurve A / FlexCurve B / FlexCurve C
Select the time overcurrent curve shape to be used for the W1 (2/3) ground time overcurrent element. Section 5.9: TIME OVERCURRENT CURVES on page 5-90 describes the time overcurrent curve shapes.
Range: 0.00 to 100.00 (steps of 0.01)
Enter the multiplier constant by which the selected time overcurrent curve shape (the base curve) is to be shifted in time.
Range: Instantaneous / Linear
Select Linear reset to coordinate with electromechanical time overcurrent relays, in which the reset characteristic (when the current falls below the reset threshold before tripping) is proportional to ratio of energy accumulated to that required to trip. Select Instantaneous reset to coordinate with relays, such as most static units, with instantaneous reset characteristics.
Range: Disabled / Logc Inpt 1 (2-16) /Virt Inpt 1 (2-16) / Output Rly 1 (2-8) / SelfTest Rly / Virt Outpt 1 (2-5)
b) WINDING 1 (2/3) GROUND INSTANTANEOUS OVERCURRENT 1


This message indicates the start of the section describing the characteristics of the first level of GROUND INSTANTANEOUS OVERCURRENT protection for Winding $1(2 / 3)$. To continue with these setpoints press ENTER , or press MESSAEE to go to the next section.

```
W1 GROUND INST OC 1
FUNCTION: Disabled
```

W1 GROUND INST OC 1
TARGET: Latched

```
W1 GROUND INST OC 1
PICKUP: 10.00 x CT
```

```
W1 GROUND INST OC 1
DELAY: O ms
```

```
W1 GROUND INST OC 1
BLOCK: Disabled
```

Range: Disabled / Enabled

Range: Self-reset / Latched / None
Select None to inhibit the display of the target message when the element operates. Thus an element whose "target type" is None will never disable the LED self-test feature because can not generate a displayable target message.
Range: 0.05 to 20.00 (steps of 0.01)
Enter the level of ground current (in units of relay nominal current) above which the W1 (2/3) ground instantaneous overcurrent 1 element will pickup and start the delay timer.
Range: 0 to 60000 (steps of 1)
Enter the time that the ground current must remain above the pickup level before the element operates.

Range: Disabled / Logc Inpt 1 (2-16) /Virt Inpt 1 (2-16) / Output Rly 1 (2-8) / SelfTest Rly / Virt Outpt 1 (2-5)
c) WINDING 1 (2/3) GROUND INSTANTANEOUS OVERCURRENT 2


This message indicates the start of the section describing the characteristics of the second level of GROUND INSTANTANEOUS OVERCURRENT protection for Winding $1(2 / 3)$. To continue with these setpoints press ENTER, or press MESSAEE to go to the next section.

The messages that follow are identical to those described for GROUND INSTANTANEOUS OVERCURRENT 1.
| RESTRICTED GROUND
[ENTER] for more

This message indicates the start of the RESTRICTED GROUND section. To continue with these setpoints press ENTER, or press WESAGE to go to the next section.

## a) WINDING 1 (2/3) RESTRICTED GROUND FAULT

This section contains the settings to configure the restricted ground fault elements.


Figure 5-9: RESTRICTED EARTH GROUND FAULT PROTECTION
Restricted Ground Fault protection is often applied to transformers having impedance grounded wye windings. It is intended to provide sensitive ground fault detection for low magnitude fault currents which would not be detected by the percent differential element.


Figure 5-10: RESISTANCE GROUNDED WYE WINDING

An internal ground fault on an impedance grounded wye winding (see Figure 5-10: RESISTANCE GROUNDED WYE WINDING above) produces a fault current ( $\left(_{F}\right.$ ) dependent on the value of the ground impedance and the position of the fault on the winding with respect to the neutral point. The resultant primary current ( $l_{\mathrm{p}}$ ) will be negligible for faults on the lower $30 \%$ of the winding since the fault voltage will not be the system voltage but the result of the transformation ratio between the primary windings and the percentage of shorted turns on the secondary. Therefore, the resultant differential currents could be below the slope threshold of the percent differential element and thus the fault could go undetected. The graph below shows the relationship between the primary ( $\mathrm{I}_{\mathrm{P}}$ ) and fault $\left(\mathrm{I}_{\mathrm{F}}\right)$ currents as a function of the distance of the fault point from the neutral and Figure 5-12: RGF AND PERCENT DIFFERENTIAL ZONES OF PROTECTION outlines the zones of effective protection along the winding for an impedance grounded wye.


Figure 5-11: FAULT CURRENTS VS. FAULT POINT FROM NEUTRAL


Figure 5-12: RGF AND PERCENT DIFFERENTIAL ZONES OF PROTECTION
The 745 implementation of RGF (Figure 5-13: RESTRICTED GROUND FAULT IMPLEMENTATION) is a low impedance current differential scheme where "spill" current due to CT tolerances is handled via load bias similar to the percent differential. The 745 calculates the vectorial difference of the residual and ground currents (i.e. $3 I_{0}-I_{g}$ ) and divides this by the maximum line current $\left(I_{\max }\right)$ to produce a percent slope value. The slope setting allows the user to determine the sensitivity of the element based on the class and quality of the CTs used. Typically no more than $4 \%$ overall error due to CT "spill" is assumed for protection class CTs at nominal load.

## 5 SETPOINTS

The issue of maloperation due to heavy external faults resulting in CT saturation is handled by a programmable timer. The timer provides the necessary delay required for the external fault to be cleared by the appropriate external protection with the added benefit that if the RGF element remains picked up after the timer expires the 745 will operate and clear the fault. This approach provides backup protection. Since the RGF element is targeted at detecting low magnitude internal winding fault currents, the time delay for internal faults is of little consequence since sensitivity and security are the critical parameters.


Figure 5-13: RESTRICTED GROUND FAULT IMPLEMENTATION
b) RESTRICTED GROUND FAULT SETTINGS EXAMPLE

Consider a transformer with the following specifications:
10 MVA, 33 kV to 11 kV, 10\% Impedance, Delta/Wye30
$R g=6.3$ ohms
CT Ratio $=600 / 1 \mathrm{Amp}$
Rated Load Current $=I_{\text {rated }}=10 \mathrm{MVA} /(\sqrt{3} \times 11 \mathrm{kV})=525 \mathrm{Amps}$
Maximum Phase-to-Ground Fault Current $=I_{g f(\max )}=11 \mathrm{kV} /(\sqrt{ } 3 \times 6.3)=1000 \mathrm{Amps}$
For a winding fault point at $5 \%$ distance from the neutral:

$$
I_{\text {fault }}=0.05 \times I_{g f(\max )}=0.05 \times 1000 \mathrm{~A}=50 \mathrm{~A}
$$

From Figure 5-11: FAULT CURRENTS VS. FAULT POINT FROM NEUTRAL on page 5-60, we see that the $I_{p}$ increase due to the fault is negligible and therefore $3 I_{o}=0$ (approx.)
Therefore: maximum phase current $=I_{\max }=I_{\text {rated }}=525 \mathrm{~A}$ (approx.), and
$I_{g d}=\left|3 I_{0}-I_{g}\right|=\left|0-\frac{I_{\text {fault }}}{\text { CT Ratio }}\right|=\left|0-\frac{50 \mathrm{~A}}{600}\right|=0.08 \times \mathrm{CT}=$ Pickup Setting
Slope $=\frac{I_{g d}}{I_{\max }}=\frac{50 \mathrm{~A}}{525 \mathrm{~A}}=9.5 \% \quad$ (select Slope Setting $=9 \%$ )
Time Delay: dependent on downstream protection coordination (100 ms typical)

## c) SETPOINTS

The Winding 1 Restricted Ground Fault setpoints are shown below:


W1 RESTD GND FAULT FUNCTION: Disabled

W1 RESTD GND FAULT TARGET: Latched

```
W1 RESTD GND FAULT
DELAY: 0.10 s
```

```
W1 RESTD GND FAULT
BLOCK: Disabled
```

Here is the start of the RESTRICTED GROUND FAULT section for Winding $1(2 / 3)$. To continue with these setpoints press ENTER, or press HEssag $\nabla$ to go to the next section.

Range: Disabled / Enabled

Range: Self-reset / Latched / None
Select None to inhibit the display of the target message when the element operates. Thus an element whose "target type" is None will never disable the LED self-test feature because can not generate a displayable target message.
Range: 0.05 to 20.00 (steps of 0.01 )
Enter the minimum level of ground differential current (in units of relay nominal current) for the W1 (2/3) restricted ground fault element.
Range: 0 to 100 (steps of 1)
Enter a slope percentage (of ground differential current to maximum line current)
Range: 0.00 to 600.00 (steps of 0.01)
Enter the time that the W1 (2/3) restricted ground fault element must remain picked up before the element operates.
Range: Disabled / Logc Inpt 1 (2-16) /Virt Inpt 1 (2-16) / Output Rly 1 (2-8) / SelfTest Rly / Virt Outpt 1 (2-5)

This section contains the settings to configure the negative sequence overcurrent elements. Included are negative sequence time overcurrents for each winding, and negative sequence instantaneous overcurrents for each winding.


This message indicates the start of the NEGATIVE SEQUENCE OVERCURRENT section. To continue with these setpoints press ENTER, or press messabe to go to the next section.

## a) WINDING 1 (2/3) NEGATIVE SEQUENCE TIME OVERCURRENT



This message indicates the start of the NEGATIVE SEQUENCE TIME OVERCURRENT section for Winding $1(2 / 3)$. To continue with these setpoints press ENTER, or press MESSAEE to go to the next section.

## Range: Disabled / Enabled

```
W1 NEG SEQ TIME OC
FUNCTION: Disabled
```

W1 NEG SEQ TIME OC TARGET: Latched


```
W1 NEG SEQ TIME OC
SHAPE: Ext Inverse
```

W1 NEG SEQ TIME OC
MULTIPLIER: 1.00
W1 NEG SEQ TIME OC
RESET: Linear

```
W1 NEG SEQ TIME OC
BLOCK: Disabled
```


## Range: Self-reset / Latched / None

Select None to inhibit the display of the target message when the element operates. Thus an element whose "target type" is None never disables the LED self-test feature since it cannot generate a displayable target message. Range: 0.05 to 20.00 (steps of 0.01)
Enter the level of negative sequence current (in units of relay nominal current) above which the W1 (2/3) negative sequence time overcurrent element will pickup and start timing.
Range: Ext Inverse / Very Inverse / Norm Inverse / Mod Inverse / Definite Time / IEC Curve A / IEC Curve B / IEC Curve C / IEC Short Inv / IAC Ext Inv / IAC Very Inv / IAC Inverse / IAC Short Inv / FlexCurve A / FlexCurve B / FlexCurve $C$
Select the time overcurrent curve shape to be used for the W1 (2/3) negative sequence time overcurrent element. Section 5.9: TIME OVERCURRENT CURVES on page 5-90 describes the time overcurrent curve shapes.
Range: 0.00 to 100.00 (steps of 0.01)
Enter the multiplier constant by which the selected time overcurrent curve shape (the base curve) is to be shifted in time.
Range: Instantaneous / Linear
Select Linear reset to coordinate with electromechanical time overcurrent relays, in which the reset characteristic (when the current falls below the reset threshold before tripping) is proportional to ratio of "energy" accumulated to that required to trip. Select Instantaneous reset to coordinate with relays, such as most static units, with instantaneous reset characteristics.
Range: Disabled / Logc Inpt 1 (2-16) /Virt Inpt 1 (2-16) / Output Rly 1 (2-8) / SelfTest Rly / Virt Outpt 1 (2-5)
b) WINDING 1 (2/3) NEG. SEQ. INSTANTANEOUS OVERCURRENT


```
W1 NEG SEQ INST OC
```

FUNCTION: Disabled
W1 NEG SEQ INST OC
TARGET: Latched

```
W1 NEG SEQ INST OC
PICKUP: 10.00 x CT
```

W1 NEG SEQ INST OC DELAY: 0 ms

W1 NEG SEQ INST OC BLOCK: Disabled

This message indicates the start of the section describing the characteristics of the NEGATIVE SEQUENCE INSTANTANEOUS OVERCURRENT protection for Winding 1 (2/3). To continue with these setpoints press ENTER, or press MESSAGE to go to the next section.
Range: Disabled / Enabled

Range: Self-reset / Latched / None
Select None to inhibit the display of the target message when the element operates. Thus an element whose "target type" is None never disables the LED self-test feature because can not generate a displayable target message.
Range: 0.05 to 20.00 (steps of 0.01 )
Enter the level of negative sequence current (in units of relay nominal current) above which the W1 (2/3) negative sequence instantaneous overcurrent element will pickup and start the delay timer.
Range: 0 to 60000 (steps of 1)
Enter the time that the negative sequence current must remain above the pickup level before the element operates.

Range: Disabled / Logc Inpt 1 (2-16) /Virt Inpt 1 (2-16) / Output Rly 1 (2-8) / SelfTest Rly / Virt Outpt 1 (2-5)

The 745 can be used as the primary detecting relay in automatic load shedding schemes based on underfrequency. This need arises if, during a system disturbance, an area becomes electrically isolated from the main system and suffers generation deficiency due to loss of either transmission or generation facilities. If reserve generation is not available in the area, conditions of low system frequency occur that may lead to a complete collapse. The 745 provides a means of automatically disconnecting sufficient load to restore an acceptable balance between load and generation.

The 745 uses both frequency and frequency rate-of-change as the basis for its operating criteria. These values are measured based on the voltage input or, if voltage is disabled, the Winding 1 phase A current input. The relay has two underfrequency and four rate-of-change levels. Thus, four or more separate blocks of load can be shed, according to the severity of the disturbance.

In addition to these elements, the 745 has an overfrequency element. A significant overfrequency condition, likely caused by a breaker opening and disconnecting load from a particular generation location, can be detected and used to quickly ramp the turbine speed back to normal. If this is not done, the overspeed can lead to a turbine trip, which would then subsequently require a turbine start up before restoring the system. If the turbine speed can be controlled successfully, system restoration can be much quicker. The overfrequency element of the 745 can be used for this purpose at a generating location.

## T <br> WE STRONGLY RECOMMEND THE USE OF EITHER THE VOLTAGE OR CURRENT OR BOTH SIGNAL FOR SUPERVISION. IF NO SUPERVISING CONDITIONS ARE ENABLED, THE ELEMENT COULD PRODUCE UNDESIRABLE OPERATION!

a) UNDERFREQUENCY 1 (2)


```
UNDERFREQUENCY 1
FUNCTION: Disabled
```

UNDERFREQUENCY 1
TARGET: Self-reset
CURRENT SENSING:
Enabled
MINIMUM OPERATING
CURRENT: $0.20 \times C T$

## MINIMUM OPERATING

VOLTAGE: $0.50 \times$ VT
| FREQUENCY
| FREQUENCY
| FREQUENCY
| FREQUENCY

This message indicates the start of the FREQUENCY section. To continue these setpoints press ENTER or press MESAGE to go to the next section.

This message indicates the start of the UNDERFREQUENCY section. To continue these setpoints press ENTER or press MESSAE for the next section.

Range: Disabled / Enabled

## Range: Self-reset / Latched / None

Select None to inhibit the display of the target message when the element operates. Thus an element whose "target type" is None never disables the LED self-test feature since it cannot generate a displayable target message.
Range: Disabled / Enabled

Range: 0.20 to 1.00 (steps of 0.01)
Enter the minimum value of winding 1 phase A current (in units of relay nominal current) required to allow the underfrequency element to operate.
Range: 0.10 to 0.99 (steps of 0.01)
Enter the minimum value of voltage (in units of relay nominal voltage) required to allow the underfrequency element to operate.
Range: 45.00 to 59.99 (steps of 0.01)
Enter the frequency (in Hz ) below which the underfrequency 1 element will pickup and start the delay timer.

## UNDERFREQUENCY 1

DELAY: 1.00 s

UNDERFREQUENCY 1
BLOCK: Disabled
b) FREQUENCY DECAY



```
FREQUENCY DECAY
```

TARGET: Latched

```
CURRENT SENSING:
Enabled
```



```
MINIMUM OPERATING
VOLTAGE: 0.50 x VT
```

```
FREQUENCY DECAY
THRESHOLD: 59.50 Hz
```

| FREQUENCY | DECAY |
| :--- | ---: |
| DELAY: | 0.00 s |


| FREQUENCY DECAY |
| :--- |
| RATE $1: \quad 0.4 \mathrm{~Hz} / \mathrm{s}$ |

DECAY
RATE 2: 1.0 Hz/s
RATE 2: 1.0 Hz/s

```
FREQUENCY DECAY
RATE 3: 2.0 Hz/s
```

```
FREQUENCY DECAY
RATE 4: 4.0 Hz/s
```

```
FREQUENCY DECAY
BLOCK: Disabled
```

Range: 0.00 to 600.00 (steps of 0.05 )
Enter the time that the frequency must remain below the pickup level before the element operates.
Range: Disabled / Logc Inpt 1 (2-16) /Virt Inpt 1 (2-16) / Output Rly 1 (2-8) / SelfTest Rly / Virt Outpt 1 (2-5)

This message indicates the start of the FREQUENCY DECAY section. To continue these setpoints press ENTER or press MEssAGE for the next section.

Range: Disabled / Enabled

## Range: Self-reset / Latched / None

Select None to inhibit the display of the target message when the element operates. Thus an element whose "target type" is None never disables the LED self-test feature since it cannot generate a displayable target message.

## Range: Disabled / Enabled

Range: 0.20 to 1.00 (steps of 0.01)
Enter the minimum value of Winding 1 phase A current (in units of relay nominal current) required to allow the frequency decay element to operate.
Range: 0.10 to 0.99 (steps of 0.01)
Enter the minimum value of voltage (in units of relay nominal voltage) required to allow the underfrequency element to operate.
Range: 45.00 to 59.99 (steps of 0.01)
Enter the frequency (in Hz ) below which the four frequency rate-of-change levels of the frequency decay element will be allowed to operate.
Range: 0.00 to 600.00 (steps of 0.01)

Range: 0.1 to 5.0 (steps of 0.1)
Enter the rate of frequency decay beyond which the rate 1 element operates.
Range: 0.1 to 5.0 (steps of 0.1 )
Enter the rate of frequency decay beyond which the rate 2 element operates.
Range: 0.1 to 5.0 (steps of 0.1 )
Enter the rate of frequency decay beyond which the rate 3 element operates.
Range: 0.1 to 5.0 (steps of 0.1 )
Enter the rate of frequency decay beyond which the rate 4 element operates.
Range: Disabled / Logc Inpt 1 (2-16) /Virt Inpt 1 (2-16) / Output Rly 1 (2-8) / SelfTest Rly / Virt Outpt 1 (2-5)
c) OVERFREQUENCY


This message indicates the start of the OVERFREQUENCY section. To continue these setpoints press ENTER or press MESSAGE for the next section.

Range: Disabled / Enabled

Range: Self-reset / Latched / None
Select None to inhibit the display of the target message when the element operates. Thus an element whose "target type" is None will never disable the LED self-test feature because can not generate a displayable target message.

```
CURRENT SENSING:
Enabled
```

```
MINIMUM OPERATING
CURRENT: 0.20 x CT
```



```
OVERFREQUENCY
PICKUP: 60.50 Hz
```



```
OVERFREQUENCY
BLOCK: Disabled
```

Range: Disabled / Enabled

Range: 0.20 to 1.00 (steps of 0.01)
Enter the minimum value of Winding 1 phase A current (in units of relay nominal current) required to allow the overfrequency element to operate.
Range: 0.10 to 0.99 (steps of 0.01)
Enter the minimum value of voltage (in units of relay nominal voltage) required to allow the underfrequency element to operate.
Range: 50.01 to 65.00 (steps of 0.01)
Enter the frequency (in Hz ) above which the overfrequency element will pickup and start the delay timer.
Range: 0.00 to 600.00 (steps of 0.05)
Enter the time that the frequency must remain above the pickup level before the element operates.
Range: Disabled / Logc Inpt 1 (2-16) /Virt Inpt 1 (2-16) / Output Rly 1 (2-8) / SelfTest Rly / Virt Outpt 1 (2-5)

A transformer is designed to operate at or below a maximum magnetic flux density in the transformer core. Above this design limit the eddy currents in the core and nearby conductive components cause overheating which within a very short time may cause severe damage. The magnetic flux in the core is proportional to the voltage applied to the winding divided by the impedance of the winding. The flux in the core increases with either increasing voltage or decreasing frequency. During startup or shutdown of generator-connected transformers, or following a load rejection, the transformer may experience an excessive ratio of volts to hertz, that is, become overexcited.

When a transformer core is overexcited, the core is operating in a non-linear magnetic region, and creates harmonic components in the exciting current. A significant amount of current at the 5th harmonic is characteristic of overexcitation.

This section contains the settings to configure the overexcitation monitoring elements. Included are a 5th harmonic level, and two volts-per-hertz elements, each with a pickup level and a time delay.

a) 5TH HARMONIC LEVEL


5th HARMONIC LEVEL
FUNCTION: Disabled

5th HARMONIC LEVEL TARGET: Self-reset

## MINIMUM OPERATING

 CURRENT: $0.10 \times C T$```
5th HARMONIC LEVEL
PICKUP: 10.0% fo
```

5th HARMONIC LEVEL
DELAY: 10 s
5th HARMONIC LEVEL
BLOCK: Disabled

This message indicates the start of the OVEREXCITATION section. To continue these setpoints press ENTER or press MESSAGE for the next section.

This message indicates the start of the section describing the characteristics of 5th HARMONIC LEVEL. To continue these setpoints press ENTER or press MEssage $\nabla$ for the next section.

Range: Disabled / Enabled

## Range: Self-reset / Latched / None

Select None to inhibit the display of the target message when the element operates. Thus an element whose "target type" is None will never disable the LED self-test feature because can not generate a displayable target message.

Range: 0.03 to 1.00 (steps of 0.01)
Enter the minimum value of current (in units of relay nominal current) required to allow the 5th harmonic level element to operate.
Range: 0.1 to 99.9 (steps of 0.1)
Enter the 5th harmonic current (in $\% f_{0}$ ) above which the 5th harmonic level element will pickup and start the delay timer.
Range: 0 to 60000 (steps of 1)
Enter the time that the 5th harmonic current must remain above the pickup level before the element operates.
Range: Disabled / Logc Inpt 1 (2-16) /Virt Inpt 1 (2-16) / Output Rly 1 (2-8) / SelfTest Rly / Virt Outpt 1 (2-5)
b) VOLTS-PER-HERTZ 1 (2)


FUNCTION: Disabled


MINIMUM OPERATING
VOLTAGE: $0.10 \times$ VT

```
VOLTS-PER-HERTZ 1
PICKUP: 2.36 v/Hz
```

```
VOLTS-PER-HERTZ 1
SHAPE: Definite Time
```

```
VOLTS-PER-HERTZ 1
DELAY: 2.00 s
```

```
VOLTS-PER-HERTZ 1
RESET: 0.0 s
```

VOLTS-PER-HERTZ 1
BLOCK: Disabled

This message indicates the start of the section describing the characteristics of the VOLTS-PER-HERTZ 1(2) element. To continue these setpoints press ENTER or press MEssag $\nabla$ for the next section.
Range: Disabled / Enabled

## Range: Self-reset / Latched / None

Select None to inhibit the display of the target message when the element operates. Thus an element whose "target type" is None will never disable the LED self-test feature because can not generate a displayable target message.
Range: 0.10 to 0.99 (steps of 0.01)
Enter the minimum value of voltage (in terms of nominal VT secondary voltage) required to allow the volts-per-hertz 1 element to operate.
Range: 1.00 to 4.00 (steps of 0.01)
Enter the volts-per-hertz value (in $\mathrm{V} / \mathrm{Hz}$ ) above which the volts-per-hertz 1 element will pickup and start the delay timer.
Range: Definite Time / Inv Curve 1 / Inv Curve 2 / Inv Curve 3
Select the curve shape to be used for the volts-per-hertz 1 (2) element. A description of inverse volts-per-hertz curve shapes can be found at the end of this chapter.

Range: 0.00 to 600.00 (steps of 0.01)
Enter the time that the volts-per-hertz value must remain above the pickup level before the element operates.
Range: 0.0 to 6000.0 (steps of 0.01)
Enter the time that the volts-per-hertz value must remain below the pickup level before the element resets.
Range: Disabled / Logc Inpt 1 (2-16) /Virt Inpt 1 (2-16) / Output Rly 1 (2-8) / SelfTest Rly / Virt Outpt 1 (2-5)

This section contains the settings to configure the total harmonic distortion monitoring elements. Included are a THD level element for each winding and each phase.

```
| HARMONICS
| [ENTER] for more
[ENTER] for more
```

This message indicates the start of the THD LEVEL section. To continue these setpoints press ENTER or press MESSAEE for the next section.
a) WINDING 1 (2/3) THD LEVEL
| W1 THD LEVEL
| W1 THD LEVEL
[ENTER] for more
[ENTER] for more

```
W1 THD LEVEL
FUNCTION: Disabled
```




W1 THD LEVEL
BLOCK: Disabled

This message indicates the start of the W1 (2/3) THD level section. To continue these setpoints press ENTER or press MESAAE for the next section.

Range: Disabled / Enabled

Range: Self-reset / Latched / None
Select None to inhibit the display of the target message when the element operates. Thus an element whose "target type" is None never disables the LED self-test feature since it cannot generate a displayable target message. Range: 0.03 to 1.00 (steps of 0.01)
Enter the minimum value of current (in units of relay nominal current) required to allow the THD level element to operate.
Range: 0.1 to 50.0 (steps of 0.1)
Enter the total harmonic distortion (in \% $f_{0}$ ) above which the W1 (2/3) THD level will pickup and start the delay timer.
Range: 0 to 60000 (steps of 1)
Enter the time that the total harmonic distortion must remain above the pickup level before the element operates.
Range: Disabled / Logc Inpt 1 (2-16) /Virt Inpt 1 (2-16) / Output Rly 1 (2-8) / SelfTest Rly / Virt Outpt 1 (2-5)

## 5 SETPOINTS

b) WINDING 1 (2/3) HARMONIC DERATING


W1 HARMONIC DERATING FUNCTION: Disabled

W1 HARMONIC DERATING TARGET: Self-reset

MINIMUM OPERATING
CURRENT: $0.10 \times$ CT

This message indicates the start of the W1 (2/3) HARMONIC DERATING section. To continue these setpoints press ENTER or press MESSAGE for the next section.
Range: Disabled / Enabled

Range: Self-reset / Latched / None
Select None to inhibit the display of the target message when the element operates. Thus an element whose "target type" is None will never disable the LED self-test feature since it cannot generate a displayable target message.
Range: 0.03 to 1.00 (steps of 0.01)
Enter the minimum value of current (in units of relay nominal current) required to allow the Harmonic Derating element to operate.

W1 HARMONIC DERATING
PICKUP: 0.90

W1 HARMONIC DERATING DELAY: 10 s

W1 HARMONIC DERATING
BLOCK: Disabled

Range: 0.01 to 0.98 (steps of 0.1)
Enter the harmonic derating below which the W1 $(2 / 3)$ harmonic derating will pickup and start the delay timer.
Range: 0 to 60000 (steps of 1)
Enter the time that the harmonic derating must remain below the pickup level before the element operates.
Range: Disabled / Logc Inpt 1 (2-16) /Virt Inpt 1 (2-16) / Output Rly 1 (2-8) / SelfTest Rly / Virt Outpt 1 (2-5)

### 5.6.14 INSULATION AGING / LOSS OF LIFE FEATURE

## a) DESCRIPTION

The 745 Insulation Aging/Loss of Life feature is based on the computational methods presented in IEEE standards C57.91-1995, "IEEE Guide for Loading Mineral-Oil-Immersed Transformers", and C57.96-1989, "IEEE Guide for Loading Dry-Type Distribution and Power Transformers". These standards present a method of computing the top oil temperature, the hottest spot inside the transformer, the aging factor, and the total accumulated loss of life. The computations are based on the loading of the transformer, the ambient temperature, and the transformer data entered. The computations assume that the transformer cooling system is fully operational and able to maintain transformer temperatures within the specified limits under normal load conditions.

The computation results are a guide only. The transformer industry has not yet been able to define, with any degree of precision, the exact end of life of a transformer. Many transformers are still in service today, though they have long surpassed their theoretical end of life, some of them by a factor of three of four times.

Three protection elements are provided as part of the Loss of Life feature. The first element monitors the hot-test-spot temperature. The second element monitors the aging factor and the third monitors the total accumulated loss of life. Each element produces an output when the monitored quantity exceeds a set limit.
The Insulation Aging/Loss of Life feature is a field-upgradeable feature. For the feature (and associated elements) to operate correctly, it must first be enabled under the factory settings using the passcode provided at purchase. If the feature was ordered when the relay was purchased, then it is already enabled. Note that setting this feature using the 745PC software requires that it be enabled the under File > Properties > Loss of Life menu. If the computer is communicating with a relay with the feature installed, it is automatically detected.

For the computations to be performed correctly, it is necessary to enter the transformer data under SETPOINTS/ S2 SYSTEM SETUP/TRANSFORMER. The transformer load is taken from the winding experiencing the greatest loading. All transformer and winding setpoints must be correct or the computations will be meaningless.

The preferred approach for ambient temperature is to use an RTD connected to the 745. If this is not feasible, average values for each month of the year can be entered as settings, under SETPOINTS/S2 SYSTEM SETUP/ AMBIENT TEMPERATURE/AMBIENT RTD TYPE and selecting By Monthly Average.

## b) HOTTEST-SPOT LIMIT

The Hottest-Spot Limit element provides a means of detecting an abnormal hot spot inside the transformer. The element operates on the computed hottest-spot value. The Hottest-spot temperature will revert to $0^{\circ} \mathrm{C}$ for 1 minute if the power supply to the relay is interrupted. The necessary settings required for this element to perform correctly are entered under:

## SETPOINTS/S4 ELEMENTS/INSULATION AGING/HOTTEST-SPOT LIMIT

## 5 SETPOINTS

c) INSULATION AGING SETPOINTS


This message indicates the start of the INSULATION AGING section. To continue these setpoints press ENTER or press MESSAEE for the next section.

This message indicates the start of the HOTTEST-SPOT LIMIT section. To continue these setpoints press ENTER or press MESSAE for the next section.

Range: Disabled / Enabled
FUNCTION: Disabled

```
HOTTEST-SPOT LIMIT
TARGET: Self-Reset
```

```
HOTTEST-SPOT LIMIT
PICKUP: 150}\mp@subsup{}{}{\circ}\textrm{C
```

```
HOTTEST-SPOT LIMIT
DELAY: }10\mathrm{ min.
```

```
HOTTEST-SPOT LIMIT
BLOCK: Disabled
```

Range: Self-reset / Latched / None

Select None to inhibit the display of the target message when the element operates. Thus an element whose "target type" is None never disables the LED self-test feature since it cannot generate a displayable target message.
Range: 50 to 300 (steps of 1)
Enter the Hottest-spot temperature required for operation of the element. This setting should be a few degrees above the maximum permissible hottest-spot temperature under emergency loading condition and maximum ambient temperature.

Range: 0 to 60,000, steps of 1 minute
Enter a time delay above which the hottest-spot temperature must remain before the element operates.
Range: Disabled / Logc Inpt 1 (2-16) /Virt Inpt 1 (2-16) / Output Rly 1 (2-8) / SelfTest Rly / Virt Outpt 1 (2-5)

The Aging Factor Limit element provides a means of detecting when a transformer is aging faster than would normally be acceptable. The element operates on the computed aging factor, which in turn is derived from the computed hottest-spot value. The aging factor value will revert to zero if the power supply to the relay is interrupted. The necessary settings required for this element to perform correctly are entered under:

SETPOINTS/S4 ELEMENTS/INSULATION AGING/AGING FACTOR LIMIT


AGING FACTOR LIMIT
FUNCTION: Disabled

AGING FACTOR LIMIT
TARGET: Self-Reset

5


AGING FACTOR LIMIT
DELAY: 10 min .

AGING FACTOR LIMIT
BLOCK: Disabled

This message indicates the start of the AGING FACTOR LIMIT section. To continue these setpoints press ENTER or press MESSAGE for the next section.

Range: Disabled / Enabled

Range: Self-reset / Latched / None
Select None to inhibit the display of the target message when the element operates. Thus an element whose "target type" is None never disables the LED self-test feature since it cannot generate a displayable target message.
Range: 1.1 to 10 (steps of 0.1)
Enter the Aging Factor required for operation of the element. This setting should be above the maximum permissible aging factor under emergency loading condition and maximum ambient temperature.

Range: 0 to 60,000, steps of 1 minute
Enter a time delay above which the Aging Factor must remain before the element operates.

Range: Disabled / Logc Inpt 1 (2-16) /Virt Inpt 1 (2-16) / Output Rly 1 (2-8) / SelfTest Rly / Virt Outpt 1 (2-5)

The Loss of Life Limit element computes the total expended life of the transformer, based on the aging factor and the actual in-service time of the transformer. For example, if the aging factor is a steady 1.5 over a time period of 10 hours, the transformer will have aged for an equivalent $1.5 \times 10=15$ hours. The cumulative total number of hours expended is retained in the relay even when control power is lost. The initial Loss of Life value, when a relay is first placed in service, can be programmed under the transformer settings. The element operates on the cumulative total value, with no time delay. The output of this element should be used as an alarm only, as users may wish to leave the transformer in service beyond the theoretical expended life. The necessary settings required for this element to perform correctly are entered under:

## SETPOINTS/S4 ELEMENTS/INSULATION AGING/LOSS OF LIFE LIMIT



This message indicates the start of the LOSS OF LIFE LIMIT section. To continue these setpoints press ENTER or press MEssag $\square$ for the next section.

Range: Disabled / Enabled

## Range: Self-reset / Latched / None

Select None to inhibit the display of the target message when the element operates. An element whose "target type" is None never disables the LED self-test feature because it cannot generate a displayable target message.

```
LOSS OF LIFE LIMIT
PICKUP: 16000 x 10h
```

LOSS OF LIFE LIMIT BLOCK: Disabled

The actual values are only displayed if the Loss of Life option is installed and the ambient temperature is enabled.

The 745 has the ability to monitor any external quantity, such as bus voltage, battery voltage, etc., via a general purpose auxiliary current input called the analog input. Any one of the standard transducer output ranges $0-1 \mathrm{~mA}, 0-5 \mathrm{~mA}, 4-20 \mathrm{~mA}$, or $0-20 \mathrm{~mA}$ can be connected to the analog input terminals. The analog input is configured in S2 SYSTEM SETUP / ANALOG INPUT and the actual values displayed in A2 METERING / ANALOG INPUT.
This section contains the settings to configure the analog input monitoring elements. Included are two analog input levels, each with a programmable pickup threshold and time delay.

a) ANALOG LEVEL 1 (2)


ANALOG INPUT LEVEL 1 FUNCTION: Disabled

ANALOG INPUT LEVEL 1 TARGET: Self-reset

```
ANALOG INPUT LEVEL 1
PICKUP: 10 uA
```

```
ANALOG INPUT LEVEL 1
DELAY: 50 s
```

ANALOG INPUT LEVEL 1
BLOCK: Disabled

This message indicates the start of the ANALOG INPUT section. To continue these setpoints press ENTER or press message for the next section.

This message indicates the start of the ANALOG LEVEL 1(2) sub-section. To continue these setpoints press ENTER or press MESSAGE for the next section.

Range: Disabled / Enabled

## Range: Self-reset / Latched / None

Select "None" to inhibit the display of the target message when the element operates. Thus an element whose "target type" is None will never disable the LED self-test feature because can not generate a displayable target message.
Range: 1 to 65000 (steps of 1)
Enter the analog input value (in the units programmed) above which the analog input level 1 element will pickup and start the delay timer.
Range: 0 to 60000 (steps of 1)
Enter the time that the analog input value must remain above the pickup level before the element operates.
Range: Disabled / Logc Inpt 1 (2-16) /Virt Inpt 1 (2-16) / Output Rly 1 (2-8) / SelfTest Rly / Virt Outpt 1 (2-5)

This section contains the settings to configure the current demand monitoring elements. Included are a current demand level for each winding and each phase.


This message indicates the start of the CURRENT DEMAND section. To continue these setpoints press ENTER or press MESSAEF for the next section.


This message indicates the start of the W1 (2/3) CURRENT DEMAND section. To continue these setpoints press ENTER or press UESSAGE for the next section.

Range: Disabled / Enabled

W1 CURRENT DEMAND
FUNCTION: Disabled


Range: Self-reset / Latched / None
Select None to inhibit the display of the target message when the element operates. An element whose "target type" is None never disables the LED self-test feature because it cannot generate a displayable target message.
Range: 0 to 65000 (steps of 1 autoranging)
Enter the current demand above which the W1 (2/3) current demand element will pickup and operate.
Range: Disabled / Logc Inpt 1 (2-16) /Virt Inpt 1 (2-16) / Output Rly 1 (2-8) / SelfTest Rly / Virt Outpt 1 (2-5)

This section contains the settings to configure the transformer overload monitoring element.


TRANSFORMER OVERLOAD
TARGET: Self-reset


```
TRANSFORMER OVERLOAD
BLOCK: Disabled
```

```
XFMR OVERTEMP ALARM
SIGNAI: Disabled
```

This message indicates the start of the TRANSFORMER OVERLOAD section. To continue these setpoints press ENTER or press MESSAGE for the next section.

Range: Disabled / Enabled

Range: Self-reset / Latched / None
Select None to inhibit the display of the target message when the element operates. Thus an element whose "target type" is None never disables the LED self-test feature since it cannot generate a displayable target message. Range: 50 to 300 (steps of 1)
Enter the transformer loading (in terms of the percent of rated load) above which the transformer overload element will pickup and start the delay timer.
Range: 0 to 60000 (steps of 1)
Enter the time that the transformer loading must remain above the pickup level before the element operates.
Range: Disabled / Logc Inpt 1 (2-16) /Virt Inpt 1 (2-16) / Output Rly 1 (2-8) / SelfTest Rly / Virt Outpt 1 (2-5)

Range: Disabled / Logc Inpt 1 (2-16)
Select any logic input that, when asserted, indicates the transformer cooling system has failed and an over-temperature condition exists. The logic input should be connected to the transformer winding temperature alarm contacts.

The Tap Changer Failure element monitors the resistance seen by the tap changer monitoring circuit. Should the resistance be greater than $150 \%$ of the resistance at the maximum tap, per the settings of the Tap Changer Monitoring feature, this element will produce an output signal. This signal can be used as an alarm or as a signal to change Setpoint Group. A change in the Setpoint Group would be programmed through the FlexLogic. This approach would be useful if very sensitive settings had been used in the normal in-service Setpoint group for the Harmonic Restrained Differential element, assuming that the tap changer position was used to compensate the input current magnitude.

This message indicates the start of the TAP CHANGER FAILURE section. To

tap changer failure
FUNCTION: Disabled

```
TAP CHANGER FAILURE
TARGET: Self-reset
```

```
TAP CHANGER FAILURE
```

continue these setpoints press ENTER or press Messag for the next section.

Range: Disabled / Enabled

Range: Self-reset / Latched / None
Select None to inhibit the display of the target message when the element operates. Thus an element whose "target type" is None never disables the LED self-test feature since it cannot generate a displayable target message.
Range: 0 to 600.00 (steps of 0.01)

Range: Disabled / Logc Inpt 1 (2-16) /Virt Inpt 1 (2-16) / Output Rly 1 (2-8) / SelfTest Rly / Virt Outpt 1 (2-5)

The S5 OUTPUTS page contains the settings to configure all outputs.

This message indicates the start of setpoints page S5 OUTPUTS. Press MESSAGE to view the contents or SETPOINT to go on to the next page.

The 745 has nine digital outputs (one solid-state, four trip rated form A contacts, and four auxiliary form C contacts) which are fully programmable using FlexLogic ${ }^{\text {TM }}$ equations. FlexLogic ${ }^{\text {TM }}$ is a highly flexible and easy-touse equation format which allows any combination of protection and monitoring elements, logic inputs, outputs, and timers to be assigned to any output, using multiple input AND, OR, NAND, NOR, XOR, and NOT Boolean logic gates. Each digital output can have an equation of up to 20 parameters. Five "virtual outputs" are also available, each having an equation containing up to 10 parameters, whose output can be used as a parameter in any other equation.

In addition to these outputs, the conditions to trigger a waveform capture (trace memory) is also programmable using FlexLogic ${ }^{\text {TM }}$. A 10 parameter equation is provided for this purpose.

### 5.7.2 INTRODUCTION TO FLEXLOGICTM

A FlexLogic ${ }^{\text {TM }}$ equation defines the combination of inputs and logic gates to operate an output. Each output has its own equation, an equation being a linear array of parameters. Evaluation of an equation results in either a 1 ( $=$ ON, i.e. operate the output), or 0 (= OFF, i.e. do not operate the output).
The table below provides information about FlexLogic ${ }^{\text {TM }}$ equations for all outputs in the 745:
Table 5-5: FLEXLOGICTM OUTPUT TYPES

| NAME | TYPE | NUMBER OF EQUATION <br> PARAMETERS | EVALUATION <br> RATE |
| :--- | :---: | :---: | :---: |
| Output Relay 1 | solid-state | 20 | every $1 / 2$ cycle* $^{*}$ |
| Output Relay 2 <br> Output Relay 3 <br> Output Relay 4 <br> Output Relay 5 | trip-rated <br> form A contacts | 20 each | every $1 / 2$ cycle* $^{*}$ |
| Output Relay 6 <br> Output Relay 7 <br> Output Relay 8 | form C contacts | 20 each | every 100 ms |
| Self-Test Relay | form C contacts <br> dedicated for self-test <br> (not programmable) | --- | every 100 ms |
| Trace Trigger | waveform capture trigger | 10 | every $1 / 2$ cycle* |
| Virtual Output 1 <br> Virtual Output 2 <br> Virtual Output 3 <br> Virtual Output 4 <br> Virtual Output 5 | internal register <br> (for use in other equations) | 10 each | every $1 / 2$ cycle* |

* cycle refers to the power system cycle as detected by the frequency circuitry of the 745.

As mentioned above, the parameters of an equation can contain either INPUTS or GATES.
Table 5-6: FLEXLOGICTM ${ }^{\text {TM }}$ INPUT TYPES

| INPUTS | INPUT IS "1" (= ON) IF... |
| :--- | :--- |
| element* pickup | the pickup setting of the element is exceeded |
| element* operate | the pickup setting of the element is exceeded for the programmed time delay |
| logic inputs 1 to 16 | the logic input contact is asserted |
| virtual inputs 1 to 16 | the virtual input is asserted |
| output relays 1 to 8 | the output relay operates <br> (i.e. evaluation of the FlexLogic ${ }^{\text {TM }}$ equation results in a ' 1 ') |
| virtual outputs 1 to 5 | the virtual output operates <br> (i.e. evaluation of the FlexLogic ${ }^{\text {TM }}$ equation results in a '1') |
| timers 1 to 10 | the timer runs to completion <br> (i.e. the 'start' condition is met for the programmed time delay) |

* element refers to any protection or monitoring element programmed under setpoints page S4 ELEMENTS

Table 5-7: FLEXLOGICTM GATES

| GATES | NUMBER OF INPUTS | OUPUT IS " 1 " (= ON) IF... |
| :--- | :--- | :--- |
| NOT | 1 | input is ' 0 ' |
| OR | 2 to 19 (for 20 parameter equations) <br> 2 to 9 (for 10 parameter equations) | any input is ' 1 ' |
| AND | 2 to 19 (for 20 parameter equations) <br> 2 to 9 (for 10 parameter equations) | all inputs are ' 1 ' |
| NOR | 2 to 19 (for 20 parameter equations) <br> 2 to 9 (for 10 parameter equations) | all inputs are ' 0 ' |
| NAND | 2 to 19 (for 20 parameter equations) <br> 2 to 9 (for 10 parameter equations) | any input is ' 0 ' |
| XOR | 2 to 19 (for 20 parameter equations) <br> 2 to 9 (for 10 parameter equations) | odd number of inputs are ' 1 ' |

Inputs and gates are combined into a FlexLogic ${ }^{\text {TM }}$ equation. The sequence of entries in the linear array of parameters follows these general rules:

1. INPUTS TO A GATE ALWAYS PRECEDE THE GATE IN THE EQUATION.
2. GATES HAVE ONLY ONE OUTPUT.
3. THE OUTPUT OF A GATE CAN BE THE INPUT TO ANOTHER GATE. Therefore, according to rule 1 , the former gate will precede the latter gate in the equation.)
4. ANY INPUT CAN BE USED MORE THAN ONCE IN AN EQUATION.
5. THE OUTPUT OF AN EQUATION CAN BE USED AS AN INPUT TO ANY EQUATION (INCLUDING FEEDBACK TO ITSELF).
6. IF ALL PARAMETERS OF AN EQUATION ARE NOT USED, THE ‘END' PARAMETER MUST FOLLOW THE LAST PARAMETER USED.
a) AN EXAMPLE

As an example, assume that the following logic is required to operate Output Relay 2:


Figure 5-14: FLEXLOGICTM EXAMPLE
Based on the rules given above, the Output Relay 2 FlexLogic $^{\text {TM }}$ equation is shown below. On the left is a stack of boxes showing the FlexLogic ${ }^{\text {TM }}$ messages for Output Relay 2. On the right of the stack of boxes is an illustration of how the equation is interpreted.
In this example, the inputs of the 4 -input OR gate are 'Percent Diff OP', 'Inst Diff OP', the output of the XOR gate, and the output of the AND gate. The inputs of the 2-input AND gate are the output of the NOT gate, and 'Output Relay 2'. The input to the NOT gate is 'Logic Input 2'. The inputs to the 2-input XOR gate are 'Virtual Output 1' and 'Logic Input 1'. For all these gates, the inputs precede the gate itself.
This ordering of parameters of an equation, where the gate (or "operator") follows the input (or "value") is commonly referred to as "Postfix" or "Reverse Polish" notation.


Figure 5-15: FLEXLOGIC EXAMPLE IMPLEMENTED
Any equation entered in the 745 that does not make logical sense according to the notation described here, will be flagged as a self-test error. The following message will be displayed until the error is corrected:

```
SELF-TEST ERROR:
```

Flexlogic Eqn

This section contains the settings (including the FlexLogic ${ }^{\top \mathrm{M}}$ equation) to configure output relays 1 to 8 .


This message indicates the start of the OUTPUT RELAYS section. To continue these setpoints press ENTER or press UESSAEE for the next section.

This message indicates the start of the OUTPUT RELAY 1 (2-8) section. To continue these setpoints press ENTER or press MESSAGE for the next section.

## Range: 18 alphanumeric characters

Press ENTER edit the name of the output. The text may be changed from Solid State Trip one character at a time, using the Vallee value Press $\square$ ENTER to store the edit and advance to the next character position.
Range: Self-resetting / Latched
Select Latched to maintain the Output $1(2-8)$ contacts in the energized state, even after the condition that caused the contacts to operate is cleared, until a reset command is issued (or automatically after one week). Select Selfreset to automatically de-energize the contacts after the condition is cleared.
The solid state output (Output 1) remains closed until externally reset by a momentary interruption of current, unless wired in parallel with an electromechanical relay (Outputs $2-8$ ) in which case it turns off when the relay operates.

## Range: Trip / Alarm / Control

Select Trip to turn the TRIP indicator on or Alarm to turn the ALARM indicator on when this output operates. Otherwise, select Control.
Note that the TRIP indicator remains on until a reset command is issued (or automatically after one week). The ALARM indicator turns off automatically when the output is no longer operated.

## Range: any FlexLogic ${ }^{\text {TM }}$ input or gate

The 20 messages shown in the table below are the parameters of the FlexLogic ${ }^{\top \mathrm{M}}$ equation for Output $1(2-8)$ as described in the introduction to FlexLogic ${ }^{\text {TM }}$.

Table 5-8: OUTPUT RELAY DEFAULT FLEXLOGIC

| FLEXLOGIC <br> GATE | OUTPUT RELAY NUMBER |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{1}$ to 3 | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| 01 | Percent Diff OP | Volts/Hertz 1 OP | W1 THD Level OP | Underfreq 1 OP | Underfreq 2 OP | Freq Decay 3 OP |
| 02 | Inst Diff OP | Volts/Hertz 2 OP | W2 THD Level OP | Freq Decay R1 OP | Freq Decay R2 OP | END |
| 03 | Any W1 OC OP | OR (2 inputs) | Xfmr Overload OP | OR (2 inputs) | OR (2 inputs) | END |
| 04 | Any W2 OC OP | END | 5th HarmLevel OP | END | END | END |
| 05 | OR (4 inputs) | END | OR (4 inputs) | END | END | END |
| 06 to 20 | END | END | END | END | END | END |

Trace memory is the oscillography feature of the 745 . All system inputs are synchronously digitized at a sampling rate of 64 times a power cycle. Upon occurrence of a user-defined trigger condition, the 16 cycles of oscillographic waveforms are captured into trace memory. The trigger condition is defined by a FlexLogic ${ }^{\top \mathrm{M}}$ equation, and the number of pre-trigger cycles of data captured is programmable.
This section contains the settings (including the FlexLogic ${ }^{\top \mathrm{M}}$ equation) to configure trace memory triggering.


TRACE TRIG FLEXLOGIC
01: Any Element PKP

This message indicates the start of the TRACE MEMORY section. To continue these setpoints press ENTER or press MESSAEE for the next section.

Range: 1 to 15 (steps of 1)
Enter the number of cycles of data, of the 16 cycles of waveform data to be captured, that are to be pre-trigger information.
Range: any FlexLogic ${ }^{\text {TM }}$ input or gate
The following 10 messages are the parameters of the FlexLogic ${ }^{\text {TM }}$ equation for trace memory triggering as described in the introduction to FlexLogic ${ }^{\top \mathrm{M}}$.

The Trace Memory default Flexlogic is as follows:

## TRACE TRIG FLEXLOGIC: <br> 01: Any Element PKP 02 to 12: END

### 5.7.6 VIRTUAL OUTPUTS

Virtual outputs are FlexLogic ${ }^{\text {TM }}$ equations whose output (or result) can be used as inputs to other equations. The 745 has 5 virtual outputs. One application of these outputs may be to contain a block of logic that is repeated for more than one output.

This section contains the FlexLogic ${ }^{\text {TM }}$ equations to configure virtual outputs 1 to 5 .


## VIRTUAL OUTPUT 1 (2-5)



```
VIRTUAL 1 FLEXLOGIC
```

01: END

This message indicates the start of the VIRTUAL OUTPUT 1 (2-5) section. To continue these setpoints press ENTER or press MESAGE $\nabla$ for the next section.
This message indicates the start of the VIRTUAL OUTPUTS section. To continue these setpoints press ENTER or press MESAAE for the next section.

Range: any FlexLogic ${ }^{\text {™ }}$ input or gate
The following 10 messages are the parameters of the FlexLogic ${ }^{\text {TM }}$ equation for virtual output $1(2-5)$ as described in the introduction to FlexLogic ${ }^{\text {TM }}$.

## 5 SETPOINTS

Protection and monitoring elements already have their own programmable delay timers, where they are required. For additional flexibility, 10 independent timers are available for implementing custom schemes where timers are not available. For example, a pickup delay timer may be required on a logic input; or, a single delay timer may be required on the output of a block of logic.

This section contains the settings to configure timers 1 to 10 .


This message indicates the start of the TIMERS section. To continue these setpoints press ENTER or press MESSAEE for the next section.

TIMER 1 (2-10)


```
TIMER 1 PICKUP
DELAY: 0.00 s
```

This message indicates the start of the TIMER 1 (2-10) section. To continue these setpoints press ENTER or press MESSAGE for the next section.

Range: any FlexLogic input.
Select the FlexLogic entry which, when operated or asserted, will start timer 1 (2-10).
Range: 0.00 to 600.00 (steps of 0.01 )
Enter the delay time during which the start condition for timer 1 (2-10) must remain operated or asserted, before the timer will operate.
Range: 0.00 to 600.00 (steps of 0.01 )
Enter the delay time after which the start condition for timer 1 (2-10) must remain not operated or not asserted, before the timer will stop operating.

The 745 provides various diagnostic tools to verify the relay functionality. The normal function of all output contacts can be overridden and forced to be energized or de-energized. Analog outputs may be forced to any level of their output range. The simulation feature allows system parameters (magnitudes and angles) to be entered as setpoints and made to generate fault conditions without the necessity of any system connections. In addition, 16 cycles of sampled current/voltage waveform data (in IEEE "Comtrade" file format) can be loaded and "played back" to test the response of the 745 under any (previously recorded) system disturbance.

5.8.2 OUTPUT RELAYS

The 745 has the ability to override the normal function of all outputs, forcing each to energize and de-energize for testing. Enabling this feature turns the IN SERVICE indicator off and the TEST MODE indicator on.


This message indicates the start of the OUTPUT RELAYS section. To continue these setpoints press ENTER or press MESSAEE for the next section.

Range: Disabled / Enabled
Select Enabled to enable the output relay testing feature and override normal output relay operation. This setpoint is defaulted to Disabled at power on.
Range: De-energized / Energized
Select Energized to force Output $1(2-8)$ to the energized state. Select Deenergized to force Output $1(2-8)$ to the de-energized state. This setpoint is only operational while the output relay testing feature is enabled.
Range: De-energized / Energized
Select Energized to force the self-test relay to the energized state and Deenergized to force to the de-energized state. This setpoint is only operational while the output relay testing feature is enabled.
5.8.3 ANALOG OUTPUTS

The 745 has the ability to override the normal function of analog transducer outputs, forcing each to any level of its output range. Enabling this feature turns the TEST MODE indicator on and de-energize the self-test relay.


This message indicates the start of the ANALOG OUTPUTS section. To continue these setpoints press Enter or press MEssage for the next section.

## Range: Disabled / Enabled

Select Enabled to enable the analog output testing and override the analog output normal operation. This setpoint defaults to Disabled at power on.

```
FORCE ANALOG OUT 1:
    0%
```

Range: 0 to 100 (steps of 1)
Enter the percentage of the DC mA output range of Analog Output 1 (2-7).
For example, if the analog output range has been programmed to $4-20 \mathrm{~mA}$, entering $100 \%$ outputs $20 \mathrm{~mA}, 0 \%$ outputs 4 mA , and $50 \%$ outputs 12 mA . This setpoint is only operational if analog output testing is enabled.

The simulation feature allows testing of the functionality of the relay in response to programmed conditions, without the need of external AC voltage and current inputs. System parameters such as currents and voltages, phase angles and system frequency are entered as setpoints. When placed in simulation mode, the relay suspends reading actual AC inputs and generates samples to represent the programmed phasors. These samples are used in all calculations and protection logic. Enabling this feature will turn off the IN SERVICE indicator, turn on the TEST MODE indicator, and de-energize the self-test relay.


> WHEN IN SIMULATION MODE, PROTECTION FEATURES DO NOT OPERATE BASED ON ACTUAL SYSTEM INPUTS. IF SIMULATION MODE IS USED FOR FIELD TESTING ON EQUIPMENT, OTHER MEANS OF PROTECTION MUST BE PROVIDED BY THE OPERATOR.


This message indicates the start of the SIMULATION section. To continue these setpoints press ENTER or press MESSAEE for the next section.

## SIMULATION SETUP:



This message indicates the start of the SIMULATION SETUP section. To continue these setpoints press ENTER or press MESSAGE for the next section.

Range: Disabled / Prefault Mode / Fault Mode / Playback Mode
Select the simulation mode required. Select Disabled to return the 745 to normal operation. See Table 5-9: SIMULATION MODES on page 5-88 for details on the simulation function modes.
Range: any combination of outputs 1 to 8
Select the output relays which must be blocked from operating while in simulation mode.
An operator can use the simulation feature to provide a complete functional test of the protection features, except for the measurement of external input values. As this feature may be used for on site testing, provision is made (with this setpoint) to block the operation of output relays during this testing, to prevent the operation of other equipment. Note that the default setting blocks the operation of all output relays.
Range: Disabled / Logc Inpt 1 (2-16)
Select any logic input which, when asserted, initiates Fault Mode simulation. This signal has an effect only if the 745 is initially in Prefault Mode.
Range: Disabled / Logc Inpt 1 (2-16)
Select any logic input which, when asserted, initiates Playback Mode simulation. This signal has an effect only if the 745 is initially in Prefault Mode.

START FAULT MODE
SIGNAL: Disabled

START PLAYBACK MODE
SIGNAL: Disabled

Table 5-9: SIMULATION MODES

| MODE | DESCRIPTION |
| :--- | :--- |
| Prefault Mode | Select Prefault Mode to simulate the normal operating condition of a transformer. In this <br> mode, the normal inputs are replaced with sample values generated based on the <br> programmed prefault values. Phase currents are balanced (i.e. equal in magnitude and <br> $120^{\circ}$ apart), and the phase lag between windings is that which would result under normal <br> conditions for the transformer type selected. The magnitude of phase currents for each <br> winding are set to the values programmed in S6 TESTING/SIMULATION/PREFAULT VALUES/W1 <br> (2/3) PHASE ABC CURRENT MAGNITUDE. The magnitude of the voltage is set to the value <br> programmed in S6 TESTING/SIMULATION/PREFAULT VALUES/VOLTAGE INPUT MAGNITUDE. The <br> frequency is set to the value programmed in S2 SYSTEM SETUP/TRANSFORMER/NOMINAL <br> FREQUENCY. |
| Fault Mode | Select Fault Mode to simulate the faulted operating condition of a transformer. In this <br> mode, the normal inputs are replaced with sample values generated based on the <br> programmed fault values. The magnitude and angle of each phase current and ground <br> current of the available windings, the magnitude and angle of the voltage input, and <br> system frequency are set to the values programmed under S6 TESTING/SIMULATION/FAULT <br> VALUES. <br> A logic input, programmed to the Simulate Fault function, can be used to trigger the <br> transition from the Prefault Mode to the Fault Mode, allowing the measurement of element <br> operating times. |
| Playback | Select Playback Mode to play back a sampled waveform data file which has been pre- <br> loaded into the relay. In this mode, the normal inputs are replaced with 16-cycles of <br> waveform samples downloaded into the 745 by the 745PC program (from an <br> oscillographic data file in the IEEE "Comtrade" file format). <br> A logic input, programmed to the Simulate Playback function, can be used to trigger the <br> transition from the Prefault Mode to the Playback Mode, allowing the measurement of <br> element operating times. |

5.8.5 PREFAULT VALUES

This section contains the settings to configure prefault mode simulation.


```
VOLTAGE INPUT
```

MAGNITUDE: $1.0 \times \mathrm{VT}$

This message indicates the start of the PREFAULT VALUES section. To continue these setpoints press ENTER or press MESSAGE for the next section.

Range: 0.0 to 40.0 (steps of 0.1)
Enter the winding $1(2 / 3)$ phase current magnitude (in terms of the winding full load current) while in Prefault Mode.
Range: 0.0 to 2.0 (steps of 0.1 )
Enter the voltage magnitude (in terms of the nominal VT secondary voltage) while in Prefault Mode.

This section contains the settings to configure fault mode simulation.


```
W1 PHASE A CURRENT
ANGLE: 0
```

```
W1 GROUND CURRENT
MAGNITUDE: 0.0 x CT
```

This message indicates the start of the FAULT VALUES section. To continue these setpoints press ENTER or press MESSAGE for the next section.

Range: 0.0 to 40.0 (steps of 0.1)
Enter the Winding $1(2 / 3)$ phase $A(B / C)$ current magnitude (in terms of the winding full load current) while in Fault Mode.
Range: 0 to 359 (steps of 1)
Enter the Winding $1(2 / 3)$ phase $A(B / C)$ current angle (with respect to the Winding 1 phase A current phasor) while in Fault Mode. Note that the Winding 1 phase A current angle cannot be edited and is used as a reference for the other phase angles.
Range: 0.0 to 40.0 (steps of 0.1)
Enter the Winding $1(2 / 3)$ ground current magnitude (in terms of the winding FLC) while in Fault Mode. Note that ground refers to the measured CT current in the connection between transformer neutral and ground. As such, this message only appears for wye or zig-zag connected windings.
Range: 0 to 359 (steps of 0.1)
Enter the Winding $1(2 / 3)$ ground current angle (with respect to the Winding 1 phase A current phasor). This message only appears for wye or zig-zag connected windings.

VOLTAGE INPUT
MAGNITUDE: $1.0 \times$ xT

```
VOLTAGE INPUT
ANGLE: }\mp@subsup{0}{}{\circ}\textrm{Lag
```

```
FREQUENCY:
60.00 Hz
```

Range: 0.0 to 2.0 (steps of 0.1)
Enter the voltage magnitude (in terms of the nominal VT secondary voltage) while in Prefault Mode.
Range: 0 to 359 (steps of 1)
Enter the voltage angle (with respect to the winding 1 phase A current phasor) while in Fault Mode.
Range: 45.00 to 60.00 (steps of 0.01)
Enter the system frequency (in Hz ) while in Fault Mode.
5.8.7 FACTORY SERVICE

This section contains settings intended for factory use only, for calibration, testing, and diagnostics. The messages can only be accessed by entering a factory service passcode in the first message.


ENTER FACTORY PASSCODE:

This message indicates the start of the FACTORY SERVICE section. To continue these setpoints press ENTER or press UESSAGE for the next section.
(Restricted Access For Factory Personnel Only)

Graphs of time-current curves on 11"x17" log-log graph paper are available upon request.

NOTE
5.9.2 ANSI CURVES

The ANSI time overcurrent curve shapes conform to industry standard curves and fit into the ANSI C37.90 curve classifications for extremely, very, normally, and moderately inverse. The 745 ANSI curves are derived from the following formula:

$$
T=\left\{\begin{array}{l}
M \times\left[A+\frac{B}{1.03-C}+\frac{D}{(1.03-C)^{2}}+\frac{E}{(1.03-C)^{3}}\right], \\
M \times\left[A+\frac{B}{I / I_{p k p}-C}+\frac{D}{\left(I / I_{p k p}-C\right)^{2}}+\frac{E}{\left(I / I_{p k p}-C\right)^{3}}\right], \\
\\
M \times\left[A+\frac{B}{I_{p k p}}<1.03\right. \\
20.0-C
\end{array} \frac{D}{(20.0-C)^{2}}+\frac{E}{(20.0-C)^{3}}\right], \quad \text { for } \frac{I}{I_{p k p}} \geq 20.04 \frac{I}{I_{p k p}}<20.0 .
$$

where: $\quad T=$ Operate Time (sec.)
$M=$ Multiplier Setpoint
$I=$ Input Current
$I_{p k p}=$ Pickup Current Setpoint
$A, B, C, D, E=$ Constants
Table 5-10: ANSI CURVE CONSTANTS

| ANSI CURVE SHAPE | CONSTANTS |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | E |
| EXTREMELY INVERSE | 0.0399 | 0.2294 | 0.5000 | 3.0094 | 0.7222 |
| VERY INVERSE | 0.0615 | 0.7989 | 0.3400 | -0.2840 | 4.0505 |
| NORMALLY INVERSE | 0.0274 | 2.2614 | 0.3000 | -4.1899 | 9.1272 |
| MODERATELY INVERSE | 0.1735 | 0.6791 | 0.8000 | -0.0800 | 0.1271 |

Table 5-11: ANSI CURVE TRIP TIMES (IN SECONDS)

| $\begin{array}{\|c} \hline \text { MULTIPLIER } \\ \boldsymbol{M} \end{array}$ | CURRENT $/ / I_{\text {pkp }}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.5 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 10.0 |
| ANSI EXTREMELY INVERSE |  |  |  |  |  |  |  |  |  |  |
| 0.5 | 2.000 | 0.872 | 0.330 | 0.184 | 0.124 | 0.093 | 0.075 | 0.063 | 0.055 | 0.049 |
| 1.0 | 4.001 | 1.744 | 0.659 | 0.368 | 0.247 | 0.185 | 0.149 | 0.126 | 0.110 | 0.098 |
| 2.0 | 8.002 | 3.489 | 1.319 | 0.736 | 0.495 | 0.371 | 0.298 | 0.251 | 0.219 | 0.196 |
| 4.0 | 16.004 | 6.977 | 2.638 | 1.472 | 0.990 | 0.742 | 0.596 | 0.503 | 0.439 | 0.393 |
| 6.0 | 24.005 | 10.466 | 3.956 | 2.208 | 1.484 | 1.113 | 0.894 | 0.754 | 0.658 | 0.589 |
| 8.0 | 32.007 | 13.955 | 5.275 | 2.944 | 1.979 | 1.483 | 1.192 | 1.006 | 0.878 | 0.786 |
| 10.0 | 40.009 | 17.443 | 6.594 | 3.680 | 2.474 | 1.854 | 1.491 | 1.257 | 1.097 | 0.982 |
| ANSI VERY INVERSE |  |  |  |  |  |  |  |  |  |  |
| 0.5 | 1.567 | 0.663 | 0.268 | 0.171 | 0.130 | 0.108 | 0.094 | 0.085 | 0.078 | 0.073 |
| 1.0 | 3.134 | 1.325 | 0.537 | 0.341 | 0.260 | 0.216 | 0.189 | 0.170 | 0.156 | 0.146 |
| 2.0 | 6.268 | 2.650 | 1.074 | 0.682 | 0.520 | 0.432 | 0.378 | 0.340 | 0.312 | 0.291 |
| 4.0 | 12.537 | 5.301 | 2.148 | 1.365 | 1.040 | 0.864 | 0.755 | 0.680 | 0.625 | 0.583 |
| 6.0 | 18.805 | 7.951 | 3.221 | 2.047 | 1.559 | 1.297 | 1.133 | 1.020 | 0.937 | 0.874 |
| 8.0 | 25.073 | 10.602 | 4.295 | 2.730 | 2.079 | 1.729 | 1.510 | 1.360 | 1.250 | 1.165 |
| 10.0 | 31.341 | 13.252 | 5.369 | 3.412 | 2.599 | 2.161 | 1.888 | 1.700 | 1.562 | 1.457 |
| ANSI NORMALLY INVERSE |  |  |  |  |  |  |  |  |  |  |
| 0.5 | 2.142 | 0.883 | 0.377 | 0.256 | 0.203 | 0.172 | 0.151 | 0.135 | 0.123 | 0.113 |
| 1.0 | 4.284 | 1.766 | 0.754 | 0.513 | 0.407 | 0.344 | 0.302 | 0.270 | 0.246 | 0.226 |
| 2.0 | 8.568 | 3.531 | 1.508 | 1.025 | 0.814 | 0.689 | 0.604 | 0.541 | 0.492 | 0.452 |
| 4.0 | 17.137 | 7.062 | 3.016 | 2.051 | 1.627 | 1.378 | 1.208 | 1.082 | 0.983 | 0.904 |
| 6.0 | 25.705 | 10.594 | 4.524 | 3.076 | 2.441 | 2.067 | 1.812 | 1.622 | 1.475 | 1.356 |
| 8.0 | 34.274 | 14.125 | 6.031 | 4.102 | 3.254 | 2.756 | 2.415 | 2.163 | 1.967 | 1.808 |
| 10.0 | 42.842 | 17.656 | 7.539 | 5.127 | 4.068 | 3.445 | 3.019 | 2.704 | 2.458 | 2.260 |
| ANSI MODERATELY INVERSE |  |  |  |  |  |  |  |  |  |  |
| 0.5 | 0.675 | 0.379 | 0.239 | 0.191 | 0.166 | 0.151 | 0.141 | 0.133 | 0.128 | 0.123 |
| 1.0 | 1.351 | 0.757 | 0.478 | 0.382 | 0.332 | 0.302 | 0.281 | 0.267 | 0.255 | 0.247 |
| 2.0 | 2.702 | 1.515 | 0.955 | 0.764 | 0.665 | 0.604 | 0.563 | 0.533 | 0.511 | 0.493 |
| 4.0 | 5.404 | 3.030 | 1.910 | 1.527 | 1.329 | 1.208 | 1.126 | 1.066 | 1.021 | 0.986 |
| 6.0 | 8.106 | 4.544 | 2.866 | 2.291 | 1.994 | 1.812 | 1.689 | 1.600 | 1.532 | 1.479 |
| 8.0 | 10.807 | 6.059 | 3.821 | 3.054 | 2.659 | 2.416 | 2.252 | 2.133 | 2.043 | 1.972 |
| 10.0 | 13.509 | 7.574 | 4.776 | 3.818 | 3.324 | 3.020 | 2.815 | 2.666 | 2.554 | 2.465 |

The Definite Time curve shape causes a trip as soon as the pickup level is exceeded for a specified period of time. The base Definite Time curve has a delay of 0.1 s . The curve multiplier makes this delay adjustable from 0.000 to 10.000 seconds in steps of 0.001 seconds.

### 5.9.4 IEC CURVES

For European applications, the relay offers the four standard curves defined in IEC 255-4 and British standard BS142. These are defined as IEC Curve A, IEC Curve B, IEC Curve C, and Short Inverse. The formula for these curves is:

$$
T= \begin{cases}M \times\left[\frac{K}{(1.03)^{E}-1}\right], & 1 \leq \frac{1}{I_{p k p}}<1.03 \\ M \times\left[\frac{K}{\left(I / I_{p k p}\right)^{E}-1}\right], & 1.03 \leq \frac{1}{I_{p k p}}<20.0 \\ M \times\left[\frac{K}{(20.0)^{E}-1}\right], & \frac{I}{I_{p k p}} \geq 20.0\end{cases}
$$

where: $\quad T=$ Operate Time (sec.)
M = Multiplier Setpoint
$I=$ Input Current
$I_{\text {pkp }}=$ Pickup Current Setpoint
$K, E=$ Constants

Table 5-12: IEC CURVE CONSTANTS

| IEC (BS) CURVE SHAPE | CONSTANTS |  |
| :--- | :---: | :---: |
|  | K | E |
| IEC CURVE A (BS142) | 0.140 | 0.020 |
| IEC CURVE B (BS142) | 13.500 | 1.000 |
| IEC CURVE C (BS142) | 80.000 | 2.000 |
| IEC SHORT INVERSE | 0.050 | 0.040 |

Table 5-13: IEC CURVE TRIP TIMES

| MULTIPLIER$\boldsymbol{M}$ | CURRENT $\quad / / I_{p k p}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.5 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 10. |

## IEC CURVE A

| 0.05 | 0.860 | 0.501 | 0.315 | 0.249 | 0.214 | 0.192 | 0.176 | 0.165 | 0.156 | 0.149 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.10 | 1.719 | 1.003 | 0.630 | 0.498 | 0.428 | 0.384 | 0.353 | 0.330 | 0.312 | 0.297 |
| 0.20 | 3.439 | 2.006 | 1.260 | 0.996 | 0.856 | 0.767 | 0.706 | 0.659 | 0.623 | 0.594 |
| 0.40 | 6.878 | 4.012 | 2.521 | 1.992 | 1.712 | 1.535 | 1.411 | 1.319 | 1.247 | 1.188 |
| 0.60 | 10.317 | 6.017 | 3.781 | 2.988 | 2.568 | 2.302 | 2.117 | 1.978 | 1.870 | 1.782 |
| 0.80 | 13.755 | 8.023 | 5.042 | 3.984 | 3.424 | 3.070 | 2.822 | 2.637 | 2.493 | 2.376 |
| 1.00 | 17.194 | 10.029 | 6.302 | 4.980 | 4.280 | 3.837 | 3.528 | 3.297 | 3.116 | 2.971 |

IEC CURVE B

| 0.05 | 1.350 | 0.675 | 0.338 | 0.225 | 0.169 | 0.135 | 0.113 | 0.096 | 0.084 | 0.075 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.10 | 2.700 | 1.350 | 0.675 | 0.450 | 0.338 | 0.270 | 0.225 | 0.193 | 0.169 | 0.150 |
| 0.20 | 5.400 | 2.700 | 1.350 | 0.900 | 0.675 | 0.540 | 0.450 | 0.386 | 0.338 | 0.300 |
| 0.40 | 10.800 | 5.400 | 2.700 | 1.800 | 1.350 | 1.080 | 0.900 | 0.771 | 0.675 | 0.600 |
| 0.60 | 16.200 | 8.100 | 4.050 | 2.700 | 2.025 | 1.620 | 1.350 | 1.157 | 1.013 | 0.900 |
| 0.80 | 21.600 | 10.800 | 5.400 | 3.600 | 2.700 | 2.160 | 1.800 | 1.543 | 1.350 | 1.200 |
| 1.00 | 27.000 | 13.500 | 6.750 | 4.500 | 3.375 | 2.700 | 2.250 | 1.929 | 1.688 | 1.500 |

## IEC CURVE C

| 0.05 | 3.200 | 1.333 | 0.500 | 0.267 | 0.167 | 0.114 | 0.083 | 0.063 | 0.050 | 0.040 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.10 | 6.400 | 2.667 | 1.000 | 0.533 | 0.333 | 0.229 | 0.167 | 0.127 | 0.100 | 0.081 |
| 0.20 | 12.800 | 5.333 | 2.000 | 1.067 | 0.667 | 0.457 | 0.333 | 0.254 | 0.200 | 0.162 |
| 0.40 | 25.600 | 10.667 | 4.000 | 2.133 | 1.333 | 0.914 | 0.667 | 0.508 | 0.400 | 0.323 |
| 0.60 | 38.400 | 16.000 | 6.000 | 3.200 | 2.000 | 1.371 | 1.000 | 0.762 | 0.600 | 0.485 |
| 0.80 | 51.200 | 21.333 | 8.000 | 4.267 | 2.667 | 1.829 | 1.333 | 1.016 | 0.800 | 0.646 |
| 1.00 | 64.000 | 26.667 | 10.000 | 5.333 | 3.333 | 2.286 | 1.667 | 1.270 | 1.000 | 0.808 |

IEC SHORT TIME

| 0.05 | 0.153 | 0.089 | 0.056 | 0.044 | 0.038 | 0.034 | 0.031 | 0.029 | 0.027 | 0.026 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.10 | 0.306 | 0.178 | 0.111 | 0.088 | 0.075 | 0.067 | 0.062 | 0.058 | 0.054 | 0.052 |
| 0.20 | 0.612 | 0.356 | 0.223 | 0.175 | 0.150 | 0.135 | 0.124 | 0.115 | 0.109 | 0.104 |
| 0.40 | 1.223 | 0.711 | 0.445 | 0.351 | 0.301 | 0.269 | 0.247 | 0.231 | 0.218 | 0.207 |
| 0.60 | 1.835 | 1.067 | 0.668 | 0.526 | 0.451 | 0.404 | 0.371 | 0.346 | 0.327 | 0.311 |
| 0.80 | 2.446 | 1.423 | 0.890 | 0.702 | 0.602 | 0.538 | 0.494 | 0.461 | 0.435 | 0.415 |
| 1.00 | 3.058 | 1.778 | 1.113 | 0.877 | 0.752 | 0.673 | 0.618 | 0.576 | 0.544 | 0.518 |

The curves for the General Electric type IAC relay family are derived from the formula:

$$
T=\left\{\begin{array}{l}
M \times\left[A+\frac{B}{1.03-C}+\frac{D}{(1.03-C)^{2}}+\frac{E}{(1.03-C)^{3}}\right], \quad \text { for } 1 \leq \frac{I}{I_{p k p}}<1.03 \\
M \times\left[A+\frac{B}{I / I_{p k p}-C}+\frac{D}{\left(I / I_{p k p}-C\right)^{2}}+\frac{E}{\left(I / I_{p k p}-C\right)^{3}}\right], \quad \text { for } 1.03 \leq \frac{I}{I_{p k p}}<20.0 \\
M \times\left[A+\frac{B}{20.0-C}+\frac{D}{(20.0-C)^{2}}+\frac{E}{(20.0-C)^{3}}\right], \quad \text { for } \frac{I}{I_{p k p}} \geq 20.0
\end{array}\right.
$$

where: $\quad T=$ Operate Time (sec.)
$M=$ Multiplier Setpoint
$I=$ Input Current
$I_{p k p}=$ Pickup Current Setpoint
$A, B, C, D, E=$ Constants

Table 5-14: IAC CURVE CONSTANTS

| IAC CURVE SHAPE | CONSTANTS |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | E |
| IAC EXTREME INVERSE | 0.0040 | 0.6379 | 0.6200 | 1.7872 | 0.2461 |
| IAC VERY INVERSE | 0.0900 | 0.7955 | 0.1000 | -1.2885 | 7.9586 |
| IAC INVERSE | 0.2078 | 0.8630 | 0.8000 | -0.4180 | 0.1947 |
| IAC SHORT INVERSE | 0.0428 | 0.0609 | 0.6200 | -0.0010 | 0.0221 |

Table 5-15: IAC CURVE TRIP TIMES

| MULTIPLIER M | CURRENT $\quad / / I_{p k p}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.5 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 10.0 |
| IAC EXTREMELY INVERSE |  |  |  |  |  |  |  |  |  |  |
| 0.5 | 1.699 | 0.749 | 0.303 | 0.178 | 0.123 | 0.093 | 0.074 | 0.062 | 0.053 | 0.046 |
| 1.0 | 3.398 | 1.498 | 0.606 | 0.356 | 0.246 | 0.186 | 0.149 | 0.124 | 0.106 | 0.093 |
| 2.0 | 6.796 | 2.997 | 1.212 | 0.711 | 0.491 | 0.372 | 0.298 | 0.248 | 0.212 | 0.185 |
| 4.0 | 13.591 | 5.993 | 2.423 | 1.422 | 0.983 | 0.744 | 0.595 | 0.495 | 0.424 | 0.370 |
| 6.0 | 20.387 | 8.990 | 3.635 | 2.133 | 1.474 | 1.115 | 0.893 | 0.743 | 0.636 | 0.556 |
| 8.0 | 27.183 | 11.987 | 4.846 | 2.844 | 1.966 | 1.487 | 1.191 | 0.991 | 0.848 | 0.741 |
| 10.0 | 33.979 | 14.983 | 6.058 | 3.555 | 2.457 | 1.859 | 1.488 | 1.239 | 1.060 | 0.926 |

IAC VERY INVERSE

| 0.5 | 1.451 | 0.656 | 0.269 | 0.172 | 0.133 | 0.113 | 0.101 | 0.093 | 0.087 | 0.083 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.0 | 2.901 | 1.312 | 0.537 | 0.343 | 0.266 | 0.227 | 0.202 | 0.186 | 0.174 | 0.165 |
| 2.0 | 5.802 | 2.624 | 1.075 | 0.687 | 0.533 | 0.453 | 0.405 | 0.372 | 0.349 | 0.331 |
| 4.0 | 11.605 | 5.248 | 2.150 | 1.374 | 1.065 | 0.906 | 0.810 | 0.745 | 0.698 | 0.662 |
| 6.0 | 17.407 | 7.872 | 3.225 | 2.061 | 1.598 | 1.359 | 1.215 | 1.117 | 1.046 | 0.992 |
| 8.0 | 23.209 | 10.497 | 4.299 | 2.747 | 2.131 | 1.813 | 1.620 | 1.490 | 1.395 | 1.323 |
| 10.0 | 29.012 | 13.121 | 5.374 | 3.434 | 2.663 | 2.266 | 2.025 | 1.862 | 1.744 | 1.654 |

## IAC NORMALLY INVERSE

| 0.5 | 0.578 | 0.375 | 0.266 | 0.221 | 0.196 | 0.180 | 0.168 | 0.160 | 0.154 | 0.148 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.0 | 1.155 | 0.749 | 0.532 | 0.443 | 0.392 | 0.360 | 0.337 | 0.320 | 0.307 | 0.297 |
| 2.0 | 2.310 | 1.499 | 1.064 | 0.885 | 0.784 | 0.719 | 0.674 | 0.640 | 0.614 | 0.594 |
| 4.0 | 4.621 | 2.997 | 2.128 | 1.770 | 1.569 | 1.439 | 1.348 | 1.280 | 1.229 | 1.188 |
| 6.0 | 6.931 | 4.496 | 3.192 | 2.656 | 2.353 | 2.158 | 2.022 | 1.921 | 1.843 | 1.781 |
| 8.0 | 9.242 | 5.995 | 4.256 | 3.541 | 3.138 | 2.878 | 2.695 | 2.561 | 2.457 | 2.375 |
| 10.0 | 11.552 | 7.494 | 5.320 | 4.426 | 3.922 | 3.597 | 3.369 | 3.201 | 3.072 | 2.969 |

IAC SHORT INVERSE

| 0.5 | 0.072 | 0.047 | 0.035 | 0.031 | 0.028 | 0.027 | 0.026 | 0.026 | 0.025 | 0.025 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1.0 | 0.143 | 0.095 | 0.070 | 0.061 | 0.057 | 0.054 | 0.052 | 0.051 | 0.050 | 0.049 |
| 2.0 | 0.286 | 0.190 | 0.140 | 0.123 | 0.114 | 0.108 | 0.105 | 0.102 | 0.100 | 0.099 |
| 4.0 | 0.573 | 0.379 | 0.279 | 0.245 | 0.228 | 0.217 | 0.210 | 0.204 | 0.200 | 0.197 |
| 6.0 | 0.859 | 0.569 | 0.419 | 0.368 | 0.341 | 0.325 | 0.314 | 0.307 | 0.301 | 0.296 |
| 8.0 | 1.145 | 0.759 | 0.559 | 0.490 | 0.455 | 0.434 | 0.419 | 0.409 | 0.401 | 0.394 |
| 10.0 | 1.431 | 0.948 | 0.699 | 0.613 | 0.569 | 0.542 | 0.524 | 0.511 | 0.501 | 0.493 |

The curve for the inverse curve 1 shape is derived from the formula:

$$
T=\frac{D}{\left(\frac{V / F}{\text { Pickup }}\right)^{2}-1} \quad \text { when } \frac{V}{F}>\text { Pickup }
$$

where
$T=$ operate time (sec.)
$D=$ delay setpoint (sec.)
$V=$ fundamental RMS value of voltage ( V )
$F=$ frequency of voltage signal (Hz)
Pickup = volts-per-hertz pickup setpoint (V/Hz)


Figure 5-16: INVERSE CURVE 1

The curve for the inverse curve 2 shape is derived from the formula:

$$
T=\frac{D}{\frac{V / F}{\text { Pickup }}-1} \text { when } \frac{V}{F}>\text { Pickup }
$$

where $\quad T=$ operate time (sec.)
$D=$ delay setpoint (sec.)
$V=$ fundamental RMS value of voltage ( V )
$F=$ frequency of voltage signal ( Hz )
Pickup = volts-per-hertz pickup setpoint (V/Hz)


Figure 5-17: INVERSE CURVE 2

The curve for the inverse curve 3 shape is derived from the formula:

$$
T=\frac{D}{\left(\frac{V / F}{\text { Pickup }}\right)^{0.5}-1} \quad \text { when } \frac{V}{F}>\text { Pickup }
$$

where
$T=$ operate time (sec.)
$D=$ delay setpoint (sec.)
$V=$ fundamental RMS value of voltage ( V )
$F=$ frequency of voltage signal (Hz)
Pickup = volts-per-hertz pickup setpoint (V/Hz)


Figure 5-18: INVERSE CURVE 3

Measured values, event records and product information are actual values. Actual values may be accessed via any of the following methods:

- Front panel, using the keys and display.
- Front program port, and a portable computer running the 745PC program supplied with the relay.
- Rear RS485/RS422 COM 1 port or RS485 COM 2 port with any system running user written software.

Any of these methods can be used to view the same information. A computer, however, makes viewing much more convenient, since more than one piece of information can be viewed at the same time.

Actual value messages are organized into logical groups, or pages, for easy reference. All actual value messages are illustrated and described in blocks throughout this chapter. A reference of all messages is also provided at the end of the chapter. All values shown in these message illustrations assume that no inputs (besides control power) are connected to the 745.

Some messages appear on the following pages with a gray background. This indicates that the message may not appear depending upon the configuration of the relay (as selected by setpoints) or the options installed in the relay during manufacture. For example, no display associated with Winding 3 will ever appear if the relay is not configured for three-winding operation.

### 6.1.2 ACTUAL VALUES ORGANIZATION



- Current Date and Time
- Logic Inputs
- Virtual Inputs
- Output Relays
- Virtual Outputs
- Self-Test Errors

- Currents (Phase, Neutral, Ground, Positive, Negative, and Zero Sequence, Differential, Restraint, Ground Differential)
- Harmonic Content (2nd to 21st, THD, Harmonic Derating)
- System Frequency and Frequency Decay Rate
- Tap Changer
- Voltage and Volts-Per-Hertz
- Current Demand
- Ambient Temperature
- Loss of Life
- Analog Input
- Power
- Energy
|| Actual values
|| A3 EVENT RECORDER
- 128 events



## || actual values <br> || A1 Status

This is the header of Actual Values page A1 STATUS. To view these actual values press message or press ACTUAL to go to the next page header.

Some status information is displayed by the front panel indicators. More status details can be viewed from the first page of actual values. This information includes date and time, logic input status and output relay status.


## CURRENT TIME:

00:00:00

This message indicates the start of the Date and Time actual values. To view these actual values press ENTER or press MESSAGE for the next section.

The current date is displayed in this message.

The current time is displayed in this message.

### 6.2.3 LOGIC INPUTS

## | LOGIC INPUTS | [ENTER] for more

## LOGIC INPUT 1

STATE: Not Asserted

SETPOINT ACCESS STATE: Open

This message indicates the start of the Logic Inputs actual values. To view these actual values press ENTER or press MESSAGE for the next section.

This message displays the state of logic input \#1. Similar messages appear sequentially for logic inputs 2 through 16.

This message displays the state of the setpoint access jumper. Setpoints cannot be changed from the front panel when the state is opened.
6.2.4 VIRTUAL INPUTS

This message indicates the start of the Virtual Inputs actual values. To view these actual values press ENTER or press MESSAGE for the next section.

This message displays the state of virtual input \#1. Similar messages appear sequentially for Virtual inputs 2 through 16.
6.2.5 OUTPUT RELAYS


This message indicates the start of the Output Relays actual values. To view these actual values press ENTER or press MESSAGE for the next section.

This message displays the state of output relay \#1. Similar messages appear sequentially for output relays 2 through 8.

This message displays the state of the self-test relay.


VIRTUAL OUTPUT 1
STATE: De-energized

This message indicates the start of the Virtual Outputs actual values. To view these actual values press ENTER or press MESSAGE for the next section.

This message displays the state of virtual output \#1. Similar messages appear sequentially for virtual outputs 2 through 5 .


FLEXLOGIC EQN ERROR: None

BAD SETTINGS ERROR: None

This message indicates the start of the Self-Test Errors actual values. To view these actual values press Enter. Pressing MESAGE proceeds to the ending of page S1.
This message displays the source of the error occurring in the FlexLogic equation.

This message displays the cause of a bad setting made within the setting of the setpoints.

| II Actual values | This is the header of Actual Values page A2 METERING. To view these <br> II A2 metering |
| :--- | :--- |
| actual values press message or press actual to go to the next page header. |  |

The 745 measures all winding currents and their harmonic components as well as system frequency and voltage, tap changer position, ambient temperature and an auxiliary analog input channel. From these, derived values including neutral, sequence components, differential and restraint currents, THD, harmonic derating factors and current demand are calculated. These processed values are both displayed and used to perform the required protection and monitoring functions.
6.3.2 CURRENT

For each monitored winding, the fundamental frequency magnitude and phase angle of phase $A, B, C$ and ground currents are recalculated every half-cycle for use in differential and overcurrent protection. From these values, neutral, positive, negative and zero-sequence as well as differential, restraint and ground differential currents are calculated. These are displayed and updated approximately twice a second for readability.


This message indicates the start of the Current actual values. To view these

## a) WINDING $1 / 2 / 3$ CURRENTS



This message indicates the start of the Winding 1 Current actual values
(Windings 2 and 3 are similar). To view these actual values press ENTER or
press Messag $\square$ for the next section.

The following Actual Values messages are repeated for Windings 1, 2 and 3.


W1 NEUTRAL CURRENT:
OA at $0^{\circ} \mathrm{Lag}$


## WINDING 1 LOADING:

 $0 \%$ of rated loadW1 AVERAGE PHASE CURRENT: 0 A

The fundamental frequency current magnitude and phase for Winding 1 (2/ 3 ), phase $A$ is shown. The current angle for Winding 1, phase $A$ is always set to zero as this angle is used as a reference for all other currents, both measured and derived.

This message displays the fundamental frequency current magnitude and phase for Winding $1(2 / 3)$, phase B.

The fundamental frequency current magnitude and phase for Winding 1 (2/ 3 ), phase $C$ is displayed.

This Winding displays the fundamental frequency current magnitude and phase for winding $1(2 / 3)$, neutral.

This message displays the fundamental frequency current magnitude and phase for Winding $1(2 / 3)$, ground current input, if used.

This message displays what percentage of its maximum specified load Winding $1(2 / 3)$ is currently carrying.

The average phase current value in the corresponding winding is displayed.
b) POSITIVE SEQUENCE CURRENTS


All sequence component phase angles are referenced to Winding 1 phase A current.

This message indicates the start of the Positive Sequence Current actual values. To view these actual values press ENTER or press MESSAE $\nabla$ for the next section.

This message displays the positive sequence current magnitude and phase for Winding 1.


This message displays the positive sequence current magnitude and phase for Winding 2.

This message displays the positive sequence current magnitude and phase for Winding 3.
c) NEGATIVE SEQUENCE CURRENTS


This message indicates the start of the Negative Sequence Current actual values. To view these actual values press ENTER or press MESAGE for the next section.

This message displays the negative sequence current magnitude and phase for Winding 1.


This message displays the negative sequence current magnitude and phase for Winding 2.


This message displays the negative sequence current magnitude and phase for Winding 3.

## d) ZERO SEQUENCE CURRENTS



This message indicates the start of the Zero Sequence Current actual values. To view these actual values press ENTER or press MESSAEE for the next section.
This message displays the zero sequence current magnitude and phase for Winding 1.

This message displays the zero sequence current magnitude and phase for Winding 2.

This message displays the zero sequence current magnitude and phase for Winding 3.

## e) DIFFERENTIAL CURRENT

The differential current phase angles are referenced to Winding 1 phase A current.


```
PHASE A DIFFERENTIAL
CURRENT: O.00 x CT
```

```
PHASE A DIFFERENTIAL
ANGLE: 00
```

```
PHASE B DIFFERENTIAL
CURRENT: 0.00 x CT
```

```
PHASE B DIFFERENTIAL
ANGLE: \(0^{\circ} \mathrm{Lag}\)
```

```
PHASE C DIFFERENTIAL
CURRENT: 0.00 x CT
```

```
PHASE C DIFFERENTIAL
ANGLE: 0 O Lag
```


## f) RESTRAINT CURRENT



PHASE A RESTRAINT CURRENT: $0.00 \times C T$


```
PHASE C RESTRAINT
CURRENT: 0.00 x CT
```

g) GROUND DIFFERENTIAL CURRENT


```
W1 GND DIFFERENTIAL
CURRENT: 0.000 x CT
```

```
W2 GND DIFFERENTIAL
CURRENT: 0.000 x CT
```

```
W3 GND DIFFERENTIAL
CURRENT: 0.000 x CT
```

This message indicates the start of the Differential Current actual values. To view these actual values press ENTER or press MESSAES for the next section.

This message displays the differential current magnitude for phase A.

This message displays the differential current angle for phase A.

This message displays the differential current magnitude for phase $B$.

This message displays the differential current angle for phase $B$.

This message displays the differential current magnitude for phase C .

This message displays the differential current angle for phase C .

This message indicates the start of the Restraint Current actual values. To view these actual values press ENTER or press MESAGE for the next section.

This message displays the restraint current magnitude for phase A.

This message displays the restraint current magnitude for phase B.

This message displays the restraint current magnitude for phase C.

This message indicates the Ground Differential Current actual values. To view these actual values press ENTER or press MESAGE for the next section.

This message displays the ground differential current magnitude for Winding \#1.

This message displays the ground differential current magnitude for Winding \#2.

This message displays the ground differential current magnitude for Winding \#3.

The 745 can determine the harmonic components of every current that it measures. This allows it to calculate total harmonic distortion (THD) as well as a harmonic derating factor that can be used to adjust phase time overcurrent protection to account for additional internal energy dissipation that arises from the presence of harmonic currents.


This message indicates the start of the Harmonic Content actual values. To view these actual values press ENTER or press MESSAGE for the next section.

## a) HARMONIC SUB-COMPONENTS

The 745 is capable of measuring harmonic components up to a frequency of 21 times the nominal system frequency. An actual value is calculated for each phase of each monitored winding.

The example below shows what is displayed in a typical case for harmonic components (in this case the second harmonic). Similar displays exist for all harmonics up to the $21^{\text {st }}$.


W1 (\% fo) H2a: 0.0
H2b: $0.0 \mathrm{H} 2 \mathrm{c}: 0.0$

W2 (\% fo) H2a: 0.0
H2b: $0.0 \mathrm{H} 2 \mathrm{c}: 0.0$

W3 (\% fo) H2a: 0.0
H2b: 0.0 H2c: 0.0

This message indicates the start of the Second Harmonic actual values. To view these actual values press ENTER or press MESSAGE for the next sequential harmonic section.
The second harmonic magnitude for each phase current of Winding 1 is displayed. Values are expressed as a percentage of the magnitude of the corresponding fundamental frequency component.
The second harmonic magnitude for each phase current of Winding 2 is displayed. Values are expressed as a percentage of the magnitude of the corresponding fundamental frequency component.
The second harmonic magnitude for each phase current of Winding 3 is displayed. Values are expressed as a percentage of the magnitude of the corresponding fundamental frequency component.

## b) TOTAL HARMONIC DISTORTION (THD)

THD is calculated and displayed. Every THD value is calculated as the ratio of the RMS value of the sum of the squared individual harmonic amplitudes to the rms value of the fundamental frequency. The calculations are based on IEEE standard 519-1986


This message indicates the start of the THD actual values. To view these actual values press ENTER or press MESSAGE for the next section.

The following Actual Value messages are repeated for Windings 1, 2, and 3.


This message displays the THD for Winding 1 phase A current, expressed as a percentage of the fundamental frequency component. The numbers in parentheses indicate the programmed frequency band (in terms of harmonic number) over which THD is being calculated.
W1 THDb (2nd-21st):
$0.0 \%$ fo

W1 THDC (2nd-21st): $0.0 \%$ fo

This message displays the THD for Winding 1 phase B current, expressed as a percentage of the fundamental frequency component.

This message displays the THD for Winding 1 phase C current, expressed as a percentage of the fundamental frequency component.

## c) HARMONIC DERATING FACTOR

The Harmonic Derating Factor for each of the windings shows the effect of nonsinusoidal load currents on power transformer's rated full load current. The calculations are based on ANSI/IEEE standard C57.110-1986.


```
W1 HARMONIC DERATING
```

FACTOR: 1.00

```
W2 HARMONIC DERATING
FACTOR: 1.00
```

W3 HARMONIC DERATING
FACTOR: 1.00

This message displays the harmonic derating factor for Winding 3.


```
SYSTEM FREQUENCY:
    0.00 Hz
```

This message indicates the start of the Harmonic Derating Factor actual values of page A2. To view these actual values press ENTER; press EsCAPE key to return to the Harmonic Content sub-heading or press actual to go to the next section.

This message displays the harmonic derating factor for Winding 1.

This message displays the harmonic derating factor for Winding 2.

FREQUENCY DECAY RATE: $0.00 \mathrm{~Hz} / \mathrm{s}$

This message indicates the start of the Frequency actual values. To view these actual values press ENTER or press MESSAGE for the next section.

This message displays the system frequency. Frequency is calculated from the voltage input provided that the voltage sensing is enabled and the injected voltage is above $50 \%$ of VT. If these criteria are not satisfied, then the system frequency is determined from Winding 1 phase A current provided that it is above $0.05 \times \mathrm{CT}$. If frequency still cannot be calculated, 0.00 is displayed, though the sampling rate is then set for the nominal frequency set under S2 SYSTEM SETUP / TRANSFORMER.

This message displays the frequency decay rate. This actual value can only be calculated if system frequency can be calculated.
6.3.5 TAP CHANGER
| TAP CHANGER
| [ENTER] for more
TAP CHANGER
POSITION: n/a

This message indicates the start of the Tap Changer actual values. To view these actual values press ENTER or press MESSAGE $\nabla$ for the next section.

This message displays the actual tap position. If tap position sensing is disabled, $\mathrm{n} / \mathrm{a}$ will be displayed.


SYSTEM LINE-TO-LINE
VOLTAGE: 0.00 kV

```
VOLTS-PER-HERTZ:
0.00 v/Hz
```

LINE-NTRL VOLTAGE:
0.00 kV at $0^{\circ} \mathrm{Lag}$

This message indicates the start of the Voltage actual values. To view these actual values press ENTER or press MESSAGE for the next section.

This message displays the system's line-to-line voltage. For phase-toneutral input voltages, this display is converted to its line-to-line equivalent.

This message displays the calculated volts-per-hertz.

This message displays the line-to-neutral phase voltage magnitude and angle.

The 745 measures current demand on each phase of each monitored winding. These parameters can be monitored to reduce supplier demand penalties or for statistical metering purposes. Demand is calculated based on the measurement type in S2 SYSTEM SETUP/DEMAND METERING. For each quantity, the 745 displays the demand over the most recent demand time interval, the maximum demand since the last date that the demand data was reset, and the time and date stamp of this maximum value.


This message indicates the start of the Demand actual values. To view these actual values press ENTER or press MESSAGE for the next section.

## a) DEMAND DATA CLEAR



This message indicates the start of the Demand Data Clear actual values. To view these actual values press ENTER or press MESSAGE for the next section. Enter Yes to clear all maximum demand data.
CLEAR MAX DEMAND
DATA? No

This message displays the last date that the demand data was cleared. If the date has never been programmed, this message will display Jan 011996.

This message displays the last time that the demand data was cleared.

## b) CURRENT DEMAND

The following Actual Values messages are repeated for Windings 1, 2 and 3.


```
W1 PHASE B CURRENT
DEMAND: OA
```



```
MAXIMUM W1 DEMAND:
    OA in phase A
```

MAXIMUM W1 DEMAND
DATE: Jan 011996

This message indicates the start of the Winding 1 (2/3) Current Demand actual values. To view these actual values press ENTER or press MESSAGE to scroll to the current demand values for the next winding.
This message displays the Winding 1 (2/3) phase A current demand.

This message displays the Winding 1 (2/3) phase B current demand.

This message displays the Winding $1(2 / 3)$ phase C current demand.

This message displays the maximum Winding $1(2 / 3)$ current demand and the phase in which it occurred since the demand data was last reset.

This message displays the date when the maximum Winding $1(2 / 3)$ current demand was detected. If the date has never been programmed, this message will display Jan 011996
This message displays the time when the maximum Winding $1(2 / 3)$ current demand was detected.
6.3.8 AMBIENT TEMPERATURE

6
Ambient temperature is monitored via an RTD connected to the 745 .


This message indicates the start of the Ambient Temperature actual values. To view these actual values press ENTER or press MESAGE for the next section.

```
AMBIENT TEMPERATURE
O %
```

This message displays the measured ambient temperature.
6.3.9 LOSS OF LIFE

This message indicates the start of the LOSS OF LIFE actual values. To view these actual values press ENTER or press MEssag for the next section.

This is the computed hottest-spot temperature, based on the ambient temperature and the highest-load winding current.

The insulation aging factor is computed from the hottest-spot temperature.

```
INSULATION AGING
FACTOR: 0.0
```

TOTAL ACCUM LOSS OF
LIFE: 0.00 hours

The 745 provides the ability to monitor any external quantity via an auxiliary current input called the ANALOG INPUT.


This message indicates the start of the Analog Input actual values. To view these actual values press ENTER or press MESSAEE for the end of page A2.

ANALOG INPUT:
$0 \mu A$
This message displays the scaled value of the analog input, as defined by the setpoints noted above. In this message, the name programmed in
S2 SYSTEM SETUP/ANALOG INPUT/ANALOG INPUT NAME is displayed instead of ANALOG INPUT (the factory default), and the units programmed in S2 SYSTEM SETUP/ANALOG INPUT/ANALOG INPUT UNITS are displayed instead of $\mu \mathrm{A}$ (which is the factory default).
6.3.11 POWER

The 745 calculates and displays real, reactive, and apparent power as well as the power factor for all of the available windings providing that the voltage sensing is enabled. Power flowing into the power transformer is designated as source power and power flowing out of the transformer is designated as load power.


This message indicates the start of the Power actual values. To view these actual values press ENTER or press MESSAGE for the end of page A2.

The following Actual Values messages are repeated for Windings 1, 2 and 3.


This message indicates the start of the Power actual values. To view these actual values press ENTER or press MESSAEE for the end of page A2.

This message displays the total 3 phase real power (in MW) for winding 1(2/ 3) as source or load.

This message displays the total 3 phase reactive power (in Mvar) for winding $1(2 / 3)$ as source or load.

This message displays the total 3 phase apparent power (in MVA) for winding $1(2 / 3)$.

This message displays the total 3 phase power factor (as lead or lag) for winding $1(2 / 3)$.

The 745 calculates and displays watthours and varhours for source currents and load currents for all of the available windings providing that the voltage sensing is enabled.


This message indicates the start of the Energy actual values. To view these actual values press ENTER or press MESSAGE for the end of page A2.

## a) ENERGY DATA CLEAR



This message indicates the start of the Energy Data Clear actual values. To view these actual values press ENTER or press MESSAGE for the next section.

## CLEAR ENERGY

Enter Yes to clear all energy data.
DATA? No


TIME OF LAST CLEAR: 00:00:00

This message displays the last date that the energy data was cleared. If the date has never been programmed, this message will display Jan 011996.

This message displays the last time that the energy data was cleared.
b) W1/W2/W3 ENERGY

The following Actual Values messages are repeated for Windings 1, 2 and 3.


This message indicates the start of the Energy actual values. To view these actual values press ENTER or press MESSAGE for the end of page A2.

This message displays the source watthours (in MWh) for Winding $1(2 / 3)$.

This message displays the load watthours (in MWh) for Winding $1(2 / 3)$.

This message displays the source varhours (in Mvarh) for Winding 1(2/3).
0 Mvarh

This message displays the load varhours (in Mvarh) for Winding $1(2 / 3)$.


The 745 relay contains an event recording feature which runs continuously, capturing and storing the conditions present at the moment of occurrence of the last 128 events, as well as the time and date of each event.
6.4.2 EVENT DATA RESET


## CLEAR EVENT RECORDER <br> DATA? No

CLEAR EVENT RECORDER
SIGNAL: Disabled
DATE OF LAST CLEAR:
Jan 011996

TIME OF LAST CLEAR:
00:00:00.000

NO. OF EVENTS SINCE LAST CLEAR: 0

This message indicates the start of the Event Data Clear actual values. To view these actual values press ENTER or press UESSAGE for the next section.

Enter Yes to clear all event recorder data.

Range: Disabled / Logc Inpt 1(2-16)
Assign a logic input to be used for remote clearing of the event recorder.
This message displays the date that the event recorder was last cleared. If the date has never been programmed, this message will display Jan 011996.

This message displays the time that the event recorder was last cleared.

This message displays the number of time an event has occurred since the last clearing of the event recorder.

### 6.4.3 EVENT RECORDS

The header message for each event contains two pieces of information: the event number (higher numbers denote more recent events) and the event date. If the event record is clear or if the date has never been programmed, Unavailable is displayed instead of a date. No more than 128 events are stored at the same time.


This message indicates the start of the Event \#001 actual values. To view these actual values press ENTER or press MESSAGE for the next sequential event record. After the oldest event is displayed, pressing Message $\nabla$ goes to the end of page A3. The date that the event occurred is displayed as part of the message.

This message displays the date that the event occurred. If the date has never been programmed, this message will display Unavailable.
Jan 012001


```
EVENT CAUSE: On
Control Power
```

This message displays the time that the event occurred. If the time has never been programmed, this message will display Unavailable.

This message displays two pieces of information: the phases which are involved in the event (if applicable), and the cause of the event, which may be any of those listed in Table 6-1: TYPES/CAUSES OF EVENTS below

## W1 PHASE A CURRENT 0 A at $0^{\circ} \mathrm{Lag}$



```
W1 (% fo) H2a: 0.0
H2b: 0.O H2c: 0.0
```

W1 ( $\%$ fo) H5a: 0.0
н5b: 0.0 H5c: 0.0


W2 (\% fo) H2a: 0.0 H2b: $0.0 \mathrm{H} 2 \mathrm{c}: 0.0$

W2 (\% fo) H5a: 0.0 H5b: 0.0 H5c: 0.0

```
W3 PHASE A CURRENT
O A at 00 Lag
```

W3 PHASE B CURRENT
0 A at $0^{\circ} \mathrm{Lag}$
W3 PHASE C CURRENT
0 A at $0^{\circ} \mathrm{Lag}$

```
W3 GROUND CURRENT
O A at 00 Lag
```

```
W3 (% fo) H2a: 0.0
H2b: 0.O H2c: 0.O
```

This message displays the phase current magnitude and phase angle for phase A of winding 1 at the moment of the event.

This message displays the phase current magnitude and phase angle for phase $B$ of winding 1 at the moment of the event.

This message displays the phase current magnitude and phase angle for phase $C$ of winding 1 at the moment of the event.

This message displays the ground current magnitude and phase angle for winding 1 at the moment of the event.

This message displays the magnitude of the second harmonic current for each phase of winding 1 at the moment of the event.

This message displays the magnitude of the fifth harmonic current for each phase of winding 1 at the moment of the event.

This message displays the phase current magnitude and phase angle for phase A of winding 2 at the moment of the event.

This message displays the phase current magnitude and phase angle for phase $B$ of winding 2 at the moment of the event.

This message displays the phase current magnitude and phase angle for phase $C$ of winding 2 at the moment of the event.

This message displays the ground current magnitude and phase angle for winding 2 at the moment of the event.

This message displays the magnitude of the second harmonic current for each phase of winding 2 at the moment of the event.

This message displays the magnitude of the fifth harmonic current for each phase of winding 2 at the moment of the event.

This message displays the phase current magnitude and phase angle for phase $A$ of winding 3 at the moment of the event.

This message displays the phase current magnitude and phase angle for phase B of winding 3 at the moment of the event.

This message displays the phase current magnitude and phase angle for phase $C$ of winding 3 at the moment of the event.

This message displays the ground current magnitude and phase angle for winding 3 at the moment of the event.

This message displays the magnitude of the second harmonic current for each phase of winding 3 at the moment of the event.

W3 (\% fo) H5a: 0.0
H5b: 0.0 H5c: 0.0

PHASE A DIFFERENTIAL CURRENT: $0.00 \times C T$

PHASE B DIFFERENTIAL CURRENT: $0.00 \times C T$

PHASE C DIFFERENTIAL CURRENT: $0.00 \times \mathrm{CT}$


This message displays the magnitude of the fifth harmonic current for each phase of winding 3 at the moment of the event.

This message displays the differential current for phase A at the moment of the event.

This message displays the differential current for phase B at the moment of the event.

This message displays the differential current for phase $C$ at the moment of the event.

This message displays the restraint current for phase A at the moment of the event.

This message displays the restraint current for phase $B$ at the moment of the event.

This message displays the restraint current for phase $C$ at the moment of the event.

This message displays the system frequency at the moment of the event.

This message displays the frequency decay rate at the moment of the event.

This message displays the tap changer position at the moment of the event.
TAP CHANGER POSITION: n/a

```
VOLTS-PER-HERTZ:
0.00 V/Hz
```


## AMBIENT TEMPERATURE:

 $0^{\circ} \mathrm{C}$```
ANALOG INPUT:
O \muA
```

This message displays the volts-per-hertz at the moment of the event.

This message displays the ambient temperature at the moment of the event.

This message displays the measured analog input at the moment of the event.

Table 6-1: TYPES/CAUSES OF EVENTS

## PICKUP / OPERATE / DROPOUT

| Percent Differential | Inst Differential | W1 Phase Time OC | W2 Phase Time OC |
| :---: | :---: | :---: | :---: |
| W3 Phase Time OC | W1 Phase Inst OC 1 | W2 Phase Inst OC 1 | W3 Phase Inst OC 1 |
| W1 Phase Inst OC 2 | W2 Phase Inst OC 2 | W3 Phase Inst OC 2 | W1 Neutral Time OC |
| W2 Neutral Time OC | W3 Neutral Time OC | W1 Neutral Inst OC 1 | W2 Neutral Inst OC 1 |
| W3 Neutral Inst OC 1 | W1 Neutral Inst OC 2 | W2 Neutral Inst OC 2 | W3 Neutral Inst OC 2 |
| W1 Ground Time OC | W2 Ground Time OC | W3 Ground Time OC | W1 Ground Inst OC 1 |
| W2 Ground Inst OC 1 | W3 Ground Inst OC 1 | W1 Ground Inst OC 2 | W2 Ground Inst OC 2 |
| W3 Ground Inst OC 2 | W1 Restd Gnd Fault | W2 Restd Gnd Fault | W3 Restd Gnd Fault |
| W1 Neg Seq Time OC | W2 Neg Seq Time OC | W3 Neg Seq Time OC | W1 Neg Seq Inst OC |
| W2 Neg Seq Inst OC | W3 Neg Seq Inst OC | Underfrequency 1 | Underfrequency 2 |
| Frequency Decay 1 | Frequency Decay 2 | Frequency Decay 3 | Frequency Decay 4 |
| Overfrequency | 5th Harmonic Level | Volts-Per-Hertz 1 | Volts-Per-Hertz 2 |
| W1 THD Level | W2 THD Level | W3 THD Level | W1 Harmonic Derating |
| W2 Harmonic Derating | W3 Harmonic Derating | Analog Level 1 | Analog Level 2 |
| W1 Current Demand | W2 Current Demand | W3 Current Demand | Transformer Overload |
| ON/OFF |  |  |  |
| Logic Input 1 | Logic Input 2 | Logic Input 3 | Logic Input 4 |
| Logic Input 5 | Logic Input 6 | Logic Input 7 | Logic Input 8 |
| Logic Input 9 | Logic Input 10 | Logic Input 11 | Logic Input 12 |
| Logic Input 13 | Logic Input 14 | Logic Input 15 | Logic Input 16 |
| Virtual Input 1 | Virtual Input 2 | Virtual Input 3 | Virtual Input 4 |
| Virtual Input 5 | Virtual Input 6 | Virtual Input 7 | Virtual Input 8 |
| Virtual Input 9 | Virtual Input 10 | Virtual Input 11 | Virtual Input 12 |
| Virtual Input 13 | Virtual Input 14 | Virtual Input 15 | Virtual Input 16 |
| Output Relay 1 | Output Relay 2 | Output Relay 3 | Output Relay 4 |
| Output Relay 5 | Output Relay 6 | Output Relay 7 | Output Relay 8 |
| Self-Test Relay | Virtual Output 1 | Virtual Output 2 | Virtual Output 3 |
| Virtual Output 4 | Virtual Output 5 | Setpoint Group 1 | Setpoint Group 2 |
| Setpoint Group 3 | Setpoint Group 4 | Test Mode | Simulation Disabled |
| Simulation Prefault | Simulation Fault | Simulation Playback | Logic Input Reset |
| Front Panel Reset | Comm Port Reset | Manual Trace Trigger | Auto Trace Trigger |
| Control Power | Aging factor Limit | Ambient Temperature | Tap Changer failure |
| ERROR! |  |  |  |
| Logic Input Power | Analog Output Power | Unit Not Calibrated | EEPROM Memory |
| Real-Time Clock | Battery | Emulation Software | Int. Temperature |
| Flexlogic Equation | DSP Processor | Bad Xfmr Settings | IRIG-B Signal |
| Setpt Access Denied | Ambnt temperature |  |  |

Note: The recorded event displayed for Logic inputs, Virtual Inputs, and Relay outputs will show the programmed name of the input/output.


This is the header of Actual Values page A4 PRODUCT INFO. To view these actual values press MEssAEE or press ACTUAL to cycle back to the A1 header.

This page of actual values contains information specifying the product. This information, which includes hardware and software revision codes and calibration dates, is for GE Power Management service personnel.

### 6.5.2 TECHNICAL SUPPORT



GE Power Management
215 Anderson Avenue

Markham, Ontario,
Canada, L6E 1B3

Tel: (905) 294-6222
Fax: (905) 201-2098

Internet Address:
www.ge.com/indsys/pm

This message indicates the start of the Revision Codes actual value. To view these actual values press ENTER or press MESSAGE for the next section.

This message displays the manufacturer's address.

This message displays the manufacturer's address.

This message displays the manufacturer's telephone and fax number

This message displays the manufacturer's Internet address


This message indicates the start of the Revision Codes actual value. To view these actual values press ENTER or press MESSAGE for the next section.

This message displays the product name.
II 745 Transformer
|| Management Relay


This message displays the hardware revision of the relay.


This message displays the software revision of the relay.


This message displays the revision number of the boot software.

## VERSION NUMBER: 000

```
INSTALLED OPTIONS:
W3-P1-G1-LO-ALR
```

| SERIAL NUMBER: <br> D33xXXXX | The product serial number is an eight digit alphanumeric value. |
| :--- | :--- |


| MANUFACTURE DATE: <br> Jan 012001 | This message display the date the relay was manufactured. |
| :---: | :---: |



ORIGINAL CALIBRATION
DATE: Jan 012001

```
LAST CALIBRATION
DATE: Jan 01 2001
```

This message indicates the start of the Calibration actual values. To view these actual values press ENTER or press MESSAGE to go to the end of page A4.
This message displays the date the relay was first calibrated.

This message displays the date the relay was most recently calibrated.

Target messages are displayed when any protection, monitoring or self-test target is activated. The messages contain information about the type of the active target(s), and are displayed in a queue that is independent of both the setpoint and actual value message structures.

When any target is active, the MESSAGE indicator will light, and the first message in the queue is displayed automatically. The target message queue may be scrolled through by pressing NEXT.

If no key is pressed, the next target message in the queue will be displayed after a delay of four seconds. This process repeats, continuously cycling through the queue of target messages.

As long as there is at least one message in the queue, the MESSAGE indicator will remain lit. Pressing any key other than Next will return the display to the setpoint or actual value message that was previously displayed. The NEXT key may be pressed any time the MESSAGE indicator is lit, to redisplay the target message queue.

If NEXT is pressed when no target messages are in the queue, all front-panel LEDs will light and the flash message

```
|| NO ACTIVE TARGETS
|| (TESTING LEDS)
```

will appear. A typical active target message looks like this,
LATCHED: a
Percent Differentl
and consists of three components which are arranged thus:

```
<STATUS>: <PHASE>
```

<CAUSE>
<STATUS> will be one of PICKUP, OPERATE or LATCHED.

- PICKUP: Indicates that the fault condition that is required to activate the protection element has been detected by the 745 but has not persisted for a sufficiently long time to cause the relay to activate its protection function.
- OPERATE: Indicates that the protection element has been activated.
- LATCHED: Indicates that the protection element is (or was) activated. This display will remain even if the conditions that caused the element to activate are removed.
- <PHASE> are the phase(s) that are associated with the element (where applicable).

Messages for LATCHED targets remain in the queue until the relay is reset. Messages for PICKUP and OPERATE targets remain in the queue as long as the condition causing the target to be active is present.

In addition, messages for LATCHED targets will automatically be deleted if an entire week passes without any changes to the state of the target messages but the conditions that caused the LATCHED messages to be displayed originally are no longer present.

The bottom line of the display (i.e., <CAUSE>) will be the name of the element that has been activated. Following are the elements available on the 745 (and which may appear in an active target display).

## Table 6-2: 745 PROTECTION ELEMENTS

| Percent Differentl | Inst Differential | W1 Phase Time OC | W2 Phase Time OC |
| :--- | :--- | :--- | :--- |
| W3 Phase Time OC | W1 Phase Inst OC 1 | W2 Phase Inst OC 1 | W3 Phase Inst OC 1 |
| W1 Phase Inst OC 2 | W2 Phase Inst OC 2 | W3 Phase Inst OC 2 | W1 Ntrl Time OC |
| W2 Ntrl Time OC | W3 Ntrl Time OC | W1 Ntrl Inst OC 1 | W2 Ntrl Inst OC 1 |
| W3 Ntrl Inst OC 1 | W1 Ntrl Inst OC 2 | W2 Ntrl Inst OC 2 | W3 Ntrl Inst OC 2 |
| W1 Gnd Time OC | W2 Gnd Time OC | W3 Gnd Time OC | W1 Gnd Inst OC 1 |
| W2 Gnd Inst OC 1 | W3 Gnd Inst OC 1 | W1 Gnd Inst OC 2 | W2 Gnd Inst OC 2 |
| W3 Gnd Inst OC 2 | W1 Rest Gnd Fault | W2 Rest Gnd Fault | W3 Rest Gnd Fault |
| W1 Neg Seq Time OC | W2 Neg Seq Time OC | W3 Neg Seq Time OC | W1 Neg Seq Inst OC |
| W2 Neg Seq Inst OC | W3 Neg Seq Inst OC | Underfrequency 1 | Underfrequency 2 |
| Freq Decay Rate 1 | Freq Decay Rate 2 | Freq Decay Rate 3 | Freq Decay Rate 4 |
| Overfrequency | 5th Harmonic Level | Volts-per-hertz 1 | Volts-per-hertz 2 |
| W1 THD Level | W2 THD Level | W3 THD Level | W1 Harmonic Derating |
| W2 Harmonic Derating | W3 Harmonic Derating | Analog Level 1 | Analog Level 2 |
| W1 Current Demand | W2 Current Demand | W3 Current Demand | Xformer Overload |
| Logic Input 1 | Logic Input 2 | Logic Innut 3 | Logic Input 4 |
| Logic Input 5 | Logic Input 6 | Logic Input 7 | Logic Input 8 |
| Logic Input 9 | Logic Input 10 | Logic Input 11 | Logic Input 12 |
| Logic Input 13 | Logic Input 14 | Logic Input 15 | Logic Input 16 |
| Virtual Input 1 | Virtual Input 2 | Virtual Input 3 | Virtual Input 4 |
| Virtual Input 5 | Virtual Input 6 | Virtual Input 7 | Virtual Input 8 |
| Virtual Input 9 | Virtual Input 10 | Virtual Input 11 | Virtual Input 12 |
| Virtual Input 13 | Virtual Input 14 | Virtual Input 15 | Virtual Input 16 |

The recorded event displayed for Logic inputs and Virtual Inputs will show the programmed name of the input/ output. An active target display may also be generated as a result of a self-test error. When this occurs, the target message will look like this:

```
| SELF-TEST ERROR:
<ERROR>
```

<ERROR> in the display will be one of the following:

| Logic Power Out | Analog Output | Emulation Software |
| :--- | :--- | :--- |
| Real-Time Clock | Battery | Bad Xfmr Settings |
| Flexlogic Eqn | DSP Processor | EEPROM Memory |
| Access Denied | Not Calibrated | Int Temperature |

For more detail about these errors, refer to Section 6.7: SELF-TEST ERRORS.
As well, there is an additional message that may appear as a target message. It looks like this:

```
| SETPOINTS HAVE NOT
| BEEN PROGRAMMED!
```

This message will be placed in the target message queue whenever $\mathbf{S 1} 745$ SETUP/INSTALLATION/745 SETPOINTS is set to Not Programmed. This serves as a warning that the relay has not been programmed for the installation and is therefore not in the in-service state.

The 745 performs self-diagnostics at initialization (after power-up), and continuously thereafter (in a background task). The tests ensure that every testable unit of the hardware is functioning correctly.

ANY SELF-TEST ERROR INDICATES A SERIOUS PROBLEM REQUIRING SERVICE.
6.7.2 MAJOR SELF-TEST ERRORS

Upon detection of a major self-test error, the 745:

- disables all protection functionality
- turns on the front panel SELF-TEST ERROR indicator
- turns off the front panel IN SERVICE indicator
- de-energizes all output relays, including the SELF-TEST relay
- indicates the failure by inserting an appropriate message in the target message queue
- records the failure in the EVENT RECORDER
6.7.3 MINOR SELF-TEST ERRORS

Upon detection of a minor self-test error, the 745:

- turns on the front panel SELF-TEST ERROR indicator
- de-energizes the SELF-TEST relay
- indicates the failure by inserting an appropriate message in the target message queue
- records the failure in the EVENT RECORDER

All conditions listed in Table 6-3: SELF-TEST ERROR INTERPRETATION cause a target message to be generated.:

Table 6-3: SELF-TEST ERROR INTERPRETATION

| MESSAGE | SEVERITY | CAUSE |
| :---: | :---: | :---: |
| EEPROM Memory | major | This error is caused by detection of corrupted location in the 745 data memory which cannot be self-corrected. Errors that can be automatically corrected are not indicated. Any function of the 745 is susceptible to misoperate from this failure. |
| Flexlogic Eqn | major | This error is caused when an error in FlexLogic is detected. No feature of the 745 that is controlled by FlexLogic will operate when this failure occurs. Programming correct FlexLogic equations will remove this error. |
| DSP Processor | major | This error is caused when communications with the internal digital signal processor is lost. Most of the monitoring capability of the 745 (including all measurement of current) will be lost when this failure occurs. |
| Bad Xfmr Settings | major | This error is caused when the 745 determines that the transformer configuration programmed via setpoints does not correspond to a realistic physical system. |
| Logic Power Out | minor | This error is caused by failure of the +32VDC power supply used to power dry contacts of logic inputs. Logic inputs using internal power are affected by this failure. This may be caused by an external connection which shorts this power supply to ground. |
| Analog Output | minor | This error is caused by failure of the +32 VDC power supply used to power analog outputs. Analog output currents are affected by this failure. |
| Not Calibrated | minor | This error message appears when the 745 determines that it has not been calibrated. Although the relay is fully functional, the accuracy of measured input values (e.g. currents and line voltage) as well as generated outputs (e.g. analog outputs) is not likely to be within those specified for the relay. |
| Real-Time Clock | minor | This error is caused when the 745 detects that the real-time clock is not running. Under this condition, the 745 will not be able to maintain the current time and date. This would normally occur if backup battery power for the clock is lost and control power is removed from the 745. Even if control power is restored, the clock will not operate until the time and/or date are programmed via S1 745 SETUP / CLOCK. |
| Battery | minor | This error is caused by the loss of battery power to the real-time clock. The ability of the 745 to maintain the current date and time without control power is lost. |
| Emulation Software | minor | This error is caused by development software being loaded in the relay. |
| Int Temperature | minor | This error is caused by the detection of unacceptably low (less than $-40^{\circ} \mathrm{C}$ ) or high (greater than $+85^{\circ} \mathrm{C}$ ) temperatures detected inside the unit |
| IRIG-B Failure | minor | This error is caused when the IRIG-B signal type selected does not match the format code being injected into the IRIG-B terminals. |
| Access Denied | minor | This error is caused when the passcode is entered incorrectly three times in a row from either the front panel or any of the communication ports. This error may be removed by entering the correct passcode. |
| Ambnt temperature | minor | This error is caused when ambient temperature is out of range.(-50 to $250^{\circ} \mathrm{C}$ inclusive). |

Flash messages are warning, error, or general information messages displayed in response to certain key presses. The length of time these messages remain displayed can be programmed in S1 745 SETUP/PREFERENCES /FLASH MESSAGE TIME. The factory default flash message time is 4 seconds.


This flash message is displayed in response to pressing ENTER while on a setpoint message with a numerical value. The edited value had to be adjusted to the nearest multiple of the step value before it was stored.
This flash message is displayed in response to executing a command at a command message. Entering Yes at a command message will display the message ARE YOU SURE?. Entering Yes again will perform the requested command, and display this flash message.
|| Default message
|| has been added
|| DEFAULT MESSAGE


This flash message is displayed in response to pressing the decimal key, followed by ENTER twice, on any setpoint or actual value message except those in the subgroup S1 745 SETUP / DEFAULT MESSAGES.
This flash message is displayed in response to pressing the decimal key, followed by ENTER twice, on one of the selected default messages in the subgroup S1 745 SETUP / DEFAULT MESSAGES.
This flash message is displayed in response to an incorrectly entered passcode when attempting to enable or disable setpoint access. It is also displayed when an attempt has been made to upgrade to an option without the correct passcode.


This flash message is displayed while changing the programmed passcode from the command message S1 745 SETUP/PASSCODE/CHANGE PASSCODE. If the passcode entered at the prompt PLEASE RE-ENTER NEW PASSCODE is different from the one entered at the prompt PLEASE ENTER A NEW PASSCODE, the 745 will not store the entered passcode, and display this flash message.

## \| INPUT FUNCTION IS \| ALREADY ASSIGNED

\| INVALID KEY: MUST
BE IN LOCAL MODE

\|| NEW SETPOINT HAS
\| BEEN STORED
|| NO ACTIVE TARGETS
\| (TESTING LEDS)

This flash message is displayed under certain conditions when attempting to assign logic input functions under S3 LOGIC INPUTS. Only the Disabled and To FlexLogic functions can be assigned to more than one logic input. If an attempt is made to assign any another function to a logic input when it is already assigned to another logic input, the assignment will not be made and this message will be displayed.
This flash message is displayed in response to pressing RESET while the 745 is in REMOTE mode. The 745 must be put into LOCAL mode in order for this key to be operational.
This flash message is displayed in response to changing the programmed passcode from the setpoint S1 745 SETUP/PASSCODE/CHANGE PASSCODE. The directions to change the passcode were followed correctly, and the new passcode was stored as entered.
This flash message is displayed in response to pressing ENTER while editing on any setpoint message. The edited value was stored as entered.

This flash message is displayed in response to the NEXT key, while the MESSAGE indicator is off. There are no active conditions to display in the target message queue.

```
|| out of range II value not stored
```


## || please enter a || Non-Zero passcode

```
|| PRESS [ENTER] TO
|| add as default
```

```
|| PRESS [ENTER] TO
|| begin text edit
```



## || Pressed key || IS INVALID here <br> ```|| ReSEtting latched \\ || Conditions```


|| invalid serial
|| number

```
|| PASSCODE VALID -
|| OPtions adJUSted
```

This flash message is displayed in response to pressing ENTER while on a setpoint message with a numerical value. The edited value was either less than the minimum or greater than the maximum acceptable value for this setpoint and, as a result, was not stored.
This flash message is displayed while changing the passcode from the setpoint $\mathbf{S 1} 745$ SETUP/PASSCODE/CHANGE PASSCODE. An attempt was made to change the passcode to 0 when it was already 0 .
This flash message is displayed for 5 seconds in response to pressing the decimal key followed by ENTER while displaying any setpoint or actual value message except the S1745 SETUP/DEFAULT MESSAGES/SELECTED DEFAULTS setpoints. Pressing ENTER again while this message is displayed adds the setpoint or actual value message to the default list.
This flash message is displayed in response to pressing VaLle $\boldsymbol{A}$ or Value while on a setpoint message with a text entry value. The Enter key must first be pressed to begin editing.
This flash message is displayed for 5 seconds in response to pressing the decimal key followed by ENTER while displaying one of the selected default messages in $\mathbf{\$ 1} 745$ SETUP/DEFAULT MESSAGES/SELECTED DEFAULTS. Pressing ENTER again while this message is displayed removes the default message from the list.

This flash message is displayed in response to any pressed key that has no meaning in the current context.

This flash message is displayed in response to pressing RESET when the relay is in local mode. All active targets for which the activating condition is no longer present will be cleared.
This flash message is displayed in response to pressing Enter while on any setpoint message. Setpoint access is restricted because the programmed passcode has not been entered to allow access.
This flash message is displayed in response to pressing Enter while on any setpoint message. Setpoint access is restricted because the setpoint access terminals have not been connected.
This flash message is displayed in response to entering the programmed passcode at the S1 745 SETUP/PASSCODE/ALLOW SETPOINT WRITE ACCESS setpoint. The command to allow write access to setpoints has been successfully executed and setpoints can be changed and entered.
This flash message is displayed in response to correctly entering the programmed passcode at $\mathbf{\$ 1} 745$ SETUP/PASSCODE/RESTRICT SETPOINT WRITE ACCESS?. The command to restrict access to setpoints has been successfully executed and setpoints cannot be changed.
This flash message is displayed when an attempt is made to upgrade installed options and the 745 detects an invalid serial number.

This flash message is displayed when an attempt to upgrade an option was successful.

The 745 instruction manual provides complete descriptions of the operation of each feature in the relay in Chapter 5 PROGRAMMING in the form of written descriptions. This chapter provides block diagrams for each feature. These diagrams are sequential logic diagrams illustrating how each setpoint, input parameter, and internal logic is used in a feature to obtain an output.
7.1.2 SETPOINTS

- shown as a block with heading 'SETPOINT'
- the location of setpoints is indicated by the 'Path' heading of the diagram
- the exact wording of the displayed setpoint message identifies the setpoint
- major functional setpoint selections are listed below the name and are incorporated in the logic


### 7.1.3 MEASUREMENT UNITS

- shown as a block with inset labelled 'RUN'
- the associated pickup or dropout setpoint is shown directly above
- operation of the detector is controlled by logic entering the 'RUN' inset
- relationship between setpoint and input parameter is indicated by simple mathematical symbols: '<' (less than), '>' (greater than), etc.


### 7.1.4 TIME DELAYS

- shown as a block with the following schematic symbol:

- the delay before pickup is indicated by $t_{P K P}$, and the delay after dropout is indicated by $t_{\mathrm{DO}}$.
- if the delay before pickup is adjustable, the associated delay setpoint is shown directly above, and the schematic symbol indicates that $t_{\text {PKP }}=$ DELAY.
- shown as the following schematic symbol: $\otimes$
- the exact wording of the front panel label identifies the indicator


## - described using basic 'AND' gates and 'OR' gates

The remainder of this chapter illustrates the block diagrams for each feature.


Figure 7-1: DIFFERENTIAL SCHEME LOGIC - PERCENT DIFFERENTIAL


Figure 7-2: DIFFERENTIAL SCHEME LOGIC - 5TH HARMONIC INHIBIT


Figure 7-3: DIFFERENTIAL SCHEME LOGIC - ENERGIZATION INHIBIT


Figure 7-4: DIFFERENTIAL SCHEME LOGIC - ENERGIZATION INHIBIT


Figure 7-5: DIFFERENTIAL SCHEME LOGIC - 5TH HARMONIC INHIBIT


Figure 7-6: INSTANTANEOUS DIFFERENTIAL SCHEME LOGIC


Figure 7-7: PHASE TIME O/C SCHEME LOGIC


Figure 7-8: PHASE INST O/C 1 SCHEME LOGIC


Figure 7-9: PHASE INST O/C 2 SCHEME LOGIC


Figure 7-10: NEUTRAL TIME O/C SCHEME LOGIC


Figure 7-11: NEUTRAL INST O/C 1 SCHEME LOGIC


Figure 7-12: NEUTRAL INST O/C 2 SCHEME LOGIC


Figure 7-13: GROUND TIME O/C SCHEME LOGIC


Figure 7-14: GROUND INST O/C 1 SCHEME LOGIC


Figure 7-15: GROUND INST O/C 2 SCHEME LOGIC


Figure 7-16: RESTRICTED GROUND FAULT SCHEME LOGIC


Figure 7-17: NEGATIVE SEQUENCE TIME O/C SCHEME LOGIC


7

Figure 7-18: NEGATIVE SEQUENCE INST O/C SCHEME LOGIC


Figure 7-19: UNDERFREQUENCY SCHEME LOGIC


Figure 7-20: FREQUENCY DECAY SCHEME LOGIC


Figure 7-21: OVERFREQUENCY SCHEME LOGIC


Figure 7-22: 5TH HARMONIC LEVEL SCHEME LOGIC


Figure 7-23: VOLTS-PER-HERTZ SCHEME LOGIC


Figure 7-24: THD LEVEL SCHEME LOGIC


Figure 7-25: HARMONIC DERATING SCHEME LOGIC


Figure 7-26: ANALOG INPUT SCHEME LOGIC


Figure 7-27: CURRENT DEMAND SCHEME LOGIC


Figure 7-28: TRANSFORMER OVERLOAD


Figure 7-29: OUTPUT RELAYS 1-8


Figure 7-30: SELF-TEST RELAY


Figure 7-31: HOTTEST-SPOT LIMIT


Figure 7-32: AGING FACTOR LIMIT


Figure 7-33: LOSS OF LIFE LIMIT


Figure 7-34: TAP CHANGER FAILURE

The GE Power Management 745 Transformer Management relay communicates with other computerized equipment such as programmable logic controllers, personal computers, or plant master computers using either the AEG Modicon Modbus protocol or the Harris Distributed Network Protocol (DNP), Version 3.0. Following are some general notes:

- The 745 relay always act as slave devices meaning that they never initiate communications; they only listen and respond to requests issued by a master computer.
- For Modbus, a subset of the Remote Terminal Unit (RTU) format of the protocol is supported which allows extensive monitoring, programming and control functions using read and write register commands.
- For DNP, the functionality is restricted to monitoring of essential relay data and control of important relay functions. A complete description of the services available via DNP may be found in the Device Profile Document which is included in this chapter.

DNP is a complex protocol. As a consequence, it is not possible within the scope of this manual to provide a description of the protocol's operation in anything approaching the detail required to understand how to use it to communicate with the relay. It is strongly recommended that interested users contact the DNP Users Group at www.dnp.org to obtain further information:
Members of the DNP Users Group are eligible to receive complete descriptions of all aspects of the protocol. The Users Group also operates a website (www.dnp.org) where technical information and support is available.

### 8.1.2 PHYSICAL LAYER

Both the MODBUS and DNP protocols are hardware-independent so that the physical layer can be any of a variety of standard hardware configurations including RS232, RS422, RS485, fiber optics, etc. The 745 includes a front panel RS232 port and two rear terminal RS485 ports, one of which can also be configured as RS422. Data flow is half duplex in all configurations. See Section 3.2.16: RS485 / RS422 COMMUNICATION PORTS on page 3-12 for details on wiring.

Each data byte is transmitted in an asynchronous format consisting of 1 start bit, 8 data bits, 1 stop bit, and possibly 1 parity bit. This produces a 10 or 11 bit data frame. This is important for transmission through modems at high bit rates ( 11 bit data frames are not supported by many modems at baud rates greater than 300).

The baud rate and parity are independently programmable for each communications port. Baud rates of 300, 1200, 2400, 4800, 9600, and 19200 are available. Even, odd, and no parity are available. See Section 5.3.4: COMMUNICATIONS on page 5-26 for further details.
The master device in any system must know the address of the slave device with which it is to communicate. The 745 will not act on a request from a master if the address in the request does not match the relay's slave address (unless the address is the broadcast address -- see below).

A single setpoint selects the slave address used for all ports with the exception that for the front panel port the relay will accept any address when the Modbus protocol is used. The slave address is otherwise the same regardless of the protocol in use, but note that the broadcast address is 0 for Modbus and 65535 for DNP. The relay recognizes and processes a master request (under conditions that are protocol-specific) if the broadcast address is used but never returns a response.
DNP may be used on, at most, one of the communications ports. Any port(s) not selected to use DNP will communicate using Modbus. Setpoint S1 RELAY SETUP / COMMUNICATIONS / DNP / DNP PORT is used to select which port will communicate using DNP.
The maximum time for a 745 relay to return a response to any (non-broadcast) master request never exceeds 1 second.

This section dedicated to discussion of details of the Modbus protocol. As noted above, specifics of DNP are best obtained directly from the DNP Users Group at www.dnp.org. Along with the Device Profile Document, the DNP specification provides sufficient information for a user to develop an interface should DNP wish to be used for communications with the relay.

### 8.2.2 GE POWER MANAGEMENT MODBUS PROTOCOL

The GE Power Management 745 Transformer Management Relay implements a subset of the AEG Modicon Modbus serial communication standard. Many devices support this protocol directly with a suitable interface card, allowing direct connection of relays. The Modbus protocol is hardware-independent; that is, the physical layer can be any of a variety of standard hardware configurations. This includes RS232, RS422, RS485, fibre optics, etc. The 745 includes a front panel RS232 port and two rear terminal RS485 ports, one of which can be configured as a four-wire RS422 port. Modbus is a single master / multiple slave protocol suitable for a multidrop configuration as provided by RS485/RS422 hardware. In this configuration up to 32 slaves can be daisychained together on a single communication channel.

The GE Power Management 745 is always a Modbus slave. It cannot be programmed as a Modbus master. The Modbus protocol exists in two versions: Remote Terminal Unit (RTU, binary) and ASCII. Only the RTU version is supported by the 745 . Monitoring, programming and control functions are possible using read and write register commands.

Additional information on the Modbus protocol can be found on the Modbus website at www.modbus.org.

### 8.2.3 ELECTRICAL INTERFACE

The hardware or electrical interface is any of the following:

- two-wire RS485 for the rear terminal COM1 and COM2 terminals
- four-wire RS422 for the rear terminal COM1 terminals
- RS232 for the front panel connector

In a two-wire RS485 link, data flow is bi-directional. The four-wire RS422 port uses the RS485 terminal for receive lines, and two other terminals for transmit lines. In the front panel RS232 link there are separate lines for transmission and reception as well as a signal ground wire. In all configurations data flow is half duplex. That is, data is never transmitted and received at the same time.

RS485 and RS422 lines should be connected in a daisy chain configuration (avoid star connections) with terminating resistors and capacitors installed at each end of the link, i.e. at the master end and at the slave farthest from the master. The value of the terminating resistors should be equal to the characteristic impedance of the line. This is approximately $120 \Omega$ for standard 24 AWG twisted pair wire. The value of the capacitors should be 1 nF . Shielded wire should always be used to minimize noise. Polarity is important in RS485 communications. The '+' terminal of every device must be connected together for the system to operate.

### 8.2.4 DATA FRAME FORMAT AND RATE

One data frame of an asynchronous transmission to or from a GE Power Management 745 consists of 1 start bit, 8 data bits, and 1 stop bit. This produces a 10 bit data frame. The 745 can be configured to include an additional even or odd parity bit if required, producing an 11 bit data frame.

All ports of the GE Power Management 745 support operation at 300, 1200, 2400, 9600, and 19200 baud.

A complete request/response sequence consists of the following bytes transmitted as separate data frames:

| MASTER QUERY MESSAGE: |  |
| :--- | :--- |
| SLAVE ADDRESS: | (1 byte) |
| FUNCTION CODE: | (1 byte) |
| DATA: | (variable number of bytes depending on FUNCTION CODE) |
| CRC: | (2 bytes) |
| SLAVE RESPONSE MESSAGE: |  |
| SLAVE ADDRESS: | (1 byte) |
| FUNCTION CODE: | (1 byte) |
| DATA: | (variable number of bytes depending on FUNCTION CODE) |
| CRC: | (2 bytes) |

A message is terminated when no data is received for a period of $31 / 2$ character transmission times. Consequently, the transmitting device must not allow gaps between bytes larger than this interval (about 3 ms at 9600 baud).

- SLAVE ADDRESS: This is the first byte of every message. This byte represents the user-assigned address of the slave device that is to receive the message sent by the master. Each slave device must be assigned a unique address, and only the addressed slave will respond to a message that starts with its address. In a master query message the SLAVE ADDRESS represents the address of the slave to which the request is being sent. In a slave response message the SLAVE ADDRESS is a confirmation representing the address of the slave that is sending the response. A master query message with a SLAVE ADDRESS of 0 indicates a broadcast command. All slaves on the communication link will take action based on the message, but none will respond to the master. Broadcast mode is only recognized when associated with FUNCTION CODES 05h, 06h, and 10h. For any other function code, a message with broadcast mode slave address 0 will be ignored.
- FUNCTION CODE: This is the second byte of every message. Modbus defines function codes of 1 to 127 . The GE Power Management 745 implements some of these functions. In a master query message the FUNCTION CODE tells the slave what action to perform. In a slave response message, if the FUNCTION CODE sent from the slave is the same as the FUNCTION CODE sent from the master then the slave performed the function as requested. If the high order bit of the FUNCTION CODE sent from the slave is a 1 (i.e. if the FUNCTION CODE is $>7 \mathrm{Fh}$ ) then the slave did not perform the function as requested and is sending an error or exception response.
- DATA: This will be a variable number of bytes depending on the FUNCTION CODE. This may include actual values, setpoints, or addresses sent by the master to the slave or by the slave to the master.
- CRC: This is a two byte error checking code. The RTU version of Modbus includes a two byte CRC-16 (16 bit cyclic redundancy check) with every message. The CRC-16 algorithm essentially treats the entire data stream (data bits only; start, stop and parity ignored) as one continuous binary number. This number is first shifted left 16 bits and then divided by a characteristic polynomial (11000000000000101B). The 16 bit remainder of the division is appended to the end of the message, MSByte first. The resulting message including CRC, when divided by the same polynomial at the receiver will give a zero remainder if no transmission errors have occurred. If a GE Power Management Modbus slave device receives a message in which an error is indicated by the CRC-16 calculation, the slave device will not respond to the message. A CRC-16 error indicates that one or more bytes of the message were received incorrectly and thus the entire message should be ignored in order to avoid the slave device performing any incorrect operation. The CRC-16 calculation is an industry standard method used for error detection.

Once the following algorithm is completed, the working register "A" will contain the CRC value to be transmitted. Note that this algorithm requires the characteristic polynomial to be reverse bit ordered. The most significant bit of the characteristic polynomial is dropped, since it does not affect the value of the remainder. The following symbols are used in the algorithm:
$\left.\begin{array}{lll}\text { Symbols: } & \text {--> } & \text { data transfer } \\ & \text { A } & 16 \text { bit working register } \\ & \mathbf{A}_{\text {low }} & \text { low order byte of } \mathrm{A}\end{array}\right)$

Algorithm: 1. FFFF (hex) --> A
2. 0 --> i
3. 0 --> j
4. $\mathrm{D}_{\mathrm{i}}(+) \mathrm{A}_{\text {low }}-->A_{\text {low }}$
5. j + 1 --> j
6. $\operatorname{shr}(\mathrm{A})$
7. Is there a carry? No: go to step 8.

Yes: G (+) A --> A and continue.
8. Is $j=8$ ? No: go to 5 .

Yes: continue.
9. i + 1 --> i
10. Is $i=N$ ? No: go to 3 .

Yes: continue.
11. A --> CRC

GE Power Management will provide a C programming language implementation of this algorithm upon request.)

NOTE
8.2.7 MESSAGE TIMING

Communication message synchronization is maintained by timing constraints. The receiving device must measure the time between the reception of characters. If three and one half character times elapse without a new character or completion of the message, then the communication link must be reset (i.e. all slaves start listening for a new query message from the master). Thus at 1200 baud a delay of greater than $3.5 \times 1 / 1200 \times 10=$ 29.2 ms will cause the communication link to be reset. At 9600 baud a delay of greater than $3.5 \times 1 / 9600 \times 10$ $=3.6 \mathrm{~ms}$ will cause the communication link to be reset. Most master query messages will be responded to in less than 50 ms .

### 8.2.8 SUPPORTED FUNCTION CODES

The second byte of every message is the function code. Modbus defines function codes of 01 h to 7Fh. The GE Power Management SR Series Modbus protocol supports some of these functions, as summarized below.

Table 8-1: GE POWER MANAGEMENT FUNCTION CODES

| FUNCTION CODE |  | DEFINITION | DESCRIPTION | SUBSTITUTE |
| :--- | :--- | :--- | :--- | :---: |
| HEX | DEC |  |  |  |
| 03 | 3 | READ ACTUAL VALUES |  |  |
| 04 | 4 | OR SETPOINTS |  |  | \(\left.\begin{array}{l}Read actual value or setpoint registers <br>

from one or more consecutive memory <br>
map register addresses.\end{array}\right)\)

* Since some programmable logic controllers only support function codes 03h (or 04h) and 10h, most of the above Modbus commands can be performed by reading from or writing to special addresses in the 745 memory map using these function codes. See section entitled FUNCTION CODE SUBSTITUTIONS for details.


## Modbus implementation: <br> GE Power Management implementation:

Read Holding Registers<br>Read Actual Values or Setpoints

Since some PLC implementations of Modbus only support one of function codes 03h and 04h, the 745 interpretation allows either function code to be used for reading one or more consecutive setpoints or actual values. The data starting address will determine the type of data being read. Function codes 03 h and 04 h are therefore identical.

The GE Power Management implementation of Modbus views "holding registers" as any setpoint or actual value register in the 745 memory map. Registers are 16 bit (two byte) values transmitted high order byte first. Thus all GE Power Management setpoints and actual values in the memory map are sent as two byte registers. This function code allows the master to read one or more consecutive setpoints or actual values from the addressed slave device.

The maximum number of values that can be read in a single message is 120 .

## MESSAGE FORMAT AND EXAMPLE:

Request to read 3 register values starting from address 0200 from slave device 11.

## Master Query Message:

SLAVE ADDRESS
FUNCTION CODE
DATA STARTING ADDRESS: high order byte
DATA STARTING ADDRESS: low order byte
NUMBER OF REGISTERS: high order byte
NUMBER OF REGISTERS: low order byte
CRC: low order byte
CRC: high order byte

## Field:

SLAVE ADDRESS
FUNCTION CODE
BYTE COUNT
DATA \#1: high order byte
DATA \#1: low order byte
DATA \#2: high order byte
DATA \#2: low order byte
DATA \#3: high order byte
DATA \#3: low order byte
CRC: low order byte
CRC: high order byte

## Example (hex):

11 query message for slave 11
03 read register values
02 data starting at address 0200
00
00
03
06
E3

## Example (hex):

11 response message from slave 11
03 read register values
06
2B
00
00
00
00

## 64

C8
BA

3 register values $=6$ bytes total
register value in address $0200=022 \mathrm{~B}$
register value in address $0201=0000$
register value in address $0202=0064$

## Modbus implementation: <br> GE Power Management implementation:

## Force Single Coil <br> Execute Operation

This function code allows the master to perform various operations in the 745 . The 2 byte CODE VALUE of FFOOh must be sent after the OPERATION CODE for the operation to be performed.

## MESSAGE FORMAT AND EXAMPLE:

Request to perform reset operation in slave device 11.

## Master Query Message:

SLAVE ADDRESS
FUNCTION CODE
OPERATION CODE: high order byte
OPERATION CODE: low order byte
CODE VALUE: high order byte
CODE VALUE: low order byte
CRC: low order byte
CRC: high order byte

## Field:

SLAVE ADDRESS
FUNCTION CODE
OPERATION CODE: high order byte
OPERATION CODE: low order byte
CODE VALUE: high order byte
CODE VALUE: low order byte
CRC: low order byte
CRC: high order byte

## Example (hex):

11 query message for slave 11
05 execute operation
00 remote reset
01
FF perform operation
00
DF
6A

## Example (hex):

11 response message from slave 11
05 execute operation
00 remote reset
01
FF perform operation
00
DF
6A

Table 8-2: SUMMARY OF OPERATION CODES FOR FUNCTION CODE 05H

| OPERATION <br> CODE | DEFINITION | DESCRIPTION |
| :---: | :--- | :--- |
| 0000 | NO OPERATION | Does not do anything. |
| 0001 | REMOTE RESET | Performs the same function as the front panel RESET key. |
| 0002 | TRIGGER TRACE <br> MEMORY | Initiates a waveform capture of trace memory and increments the "Total Number <br> of Trace Triggers" registers. |
| 0003 | CLEAR MAXIMUM <br> DEMAND DATA | Performs the same function as the command in message A2 METERING / DEMAND <br> / DEMAND DATA CLEAR / CLEAR MAXIMUM DEMAND DATA. |
| 0004 | CLEAR EVENT <br> RECORDER DATA | Performs the same function as the command in message A3 EVENT RECORDER / <br> EVENT DATA CLEAR / CLEAR EVENT RECORDER DATA. |
| 0005 | CLEAR LOSS-OF- <br> LIFE DATA | Performs the same function as the command in message S1 745 SETUP / <br> INSTALLATION / CLEAR LOSS-OF-LIFE DATA. |
| 0006 | CLEAR TRACE <br> MEMORY | Clears all trace memory buffers and sets the "Total Number of Trace Triggers" <br> register to zero. |
| 0007 | CLEAR ENERGY <br> DATA | Performs the same function as the command in message A2 METERING / ENERGY / <br> ENERGY DATA CLEAR / CLEAR ENERGY. |


| Modbus Implementation: | Preset Single Register |
| :--- | :--- |
| GE Power Management Implementation: | Store Single Setpoint |

This function code allows the master to modify the contents of a single setpoint register in the addressed slave device. The response of the slave device to this function code is an echo of the entire master query message.

## MESSAGE FORMAT AND EXAMPLE:

Request slave device 11 to write the value 00C8 at setpoint address 1100.

## Master Query Message:

SLAVE ADDRESS
FUNCTION CODE
DATA STARTING ADDRESS: high order byte
DATA STARTING ADDRESS: low order byte
DATA: high order byte
DATA: low order byte
CRC: low order byte
CRC: high order byte

## Field:

SLAVE ADDRESS
FUNCTION CODE
DATA STARTING ADDRESS: high order byte
DATA STARTING ADDRESS: low order byte
DATA: high order byte
DATA: low order byte
CRC: low order byte
CRC: high order byte

## Example (hex):

11 query message for slave 11
06 store single setpoint value
11 data starting at address 1100
00
00 data for address $1100=00 C^{*}$

8F
F0

## Example (hex):

11 response message from slave 11
06 store single setpoint value
11 data starting at address 1100
00
00 data for address $1100=00 C^{*}$

## C8

8F
F0

## Modbus Implementation: <br> GE Power Management Implementation: <br> Preset Multiple Registers <br> Store Multiple Setpoints

This function code allows the master to modify the contents of a one or more consecutive setpoint registers in the addressed slave device. Setpoint registers are 16 bit (two byte) values transmitted high order byte first.
The maximum number of register values (setpoints) that can be stored in a single message is 60 .

## MESSAGE FORMAT AND EXAMPLE:

Request slave device 11 to write the value 00 C 8 at setpoint address 1100, and the value 0001 at setpoint address 1101.

| Master Query Message: | Example (hex): |  |
| :--- | :--- | :--- |
| SLAVE ADDRESS | 11 | query message for slave 11 |
| FUNCTION CODE | 10 | store multiple setpoint values |
| DATA STARTING ADDRESS: high order byte | 11 | data starting at address 1100 |
| DATA STARTING ADDRESS: low order byte | 00 |  |
| NUMBER OF SETPOINTS: high order byte | 00 | 2 setpoint values = 4 bytes total |
| NUMBER OF SETPOINTS: low order byte | 02 |  |
| BYTE COUNT | 04 | 4 bytes of data |
| DATA \#1: high order byte | 00 | data for address 1100 = 00C8 |
| DATA \#1: low order byte | C8 |  |
| DATA \#2: high order byte | 00 | data for address 1101 = 0001 |
| DATA \#: low order byte | 01 |  |
| CRC: low order byte | 27 |  |
| CRC: high order byte | 01 |  |
| Field: | Example (hex): |  |
| SLAVE ADDRESS | 11 | response message from slave 11 |
| FUNCTION CODE | 10 | store multiple setpoint values |
| DATA STARTING ADDRESS: high order byte | 11 | data starting at address 1100 |
| DATA STARTING ADDRESS: low order byte | 00 |  |
| NUMBER OF SETPOINTS: high order byte | 00 | 2 setpoint values = 4 bytes total |
| NUMBER OF SETPOINTS: low order byte | 02 |  |
| CRC: low order byte | 46 |  |
| CRC: high order byte | 64 |  |

### 8.2.13 EXCEPTION RESPONSES

Programming or operation errors happen because of illegal data in a message, hardware or software problems in the slave device, etc. These errors result in an exception response from the slave. The slave detecting one of these errors sends a response message to the master consisting of slave address, function code, error code, and CRC. To indicate that the response is a notification of an error, the high order bit of the function code is set to 1 .
Table 8-3: ERROR CODES

| ERROR <br> CODE | MODBUS DEFINITION | GE POWER MANAGEMENT IMPLEMENTATION |
| :---: | :--- | :--- |
| 01 | ILLEGAL FUNCTION | The function code of the master query message is not a function code <br> supported by the slave. |
| 02 | ILLEGAL DATA ADDRESS | The address referenced in the data field of the master query message is not <br> an address supported by the slave. |
| 03 | ILLEGAL DATA VALUE | The value referenced in the data field of the master query message is not <br> allowable in the addressed slave location. |
| 04 | FAILURE IN ASSOCIATED <br> DEVICE | An external device connected to the addressed slave device has failed and <br> the data requested cannot be sent. This response will be returned if a GE <br> Power Management device connected to the RS485 external device port of <br> the 745 has failed to respond to the 745. |
| $05^{*}$ | ACKNOWLEDGE | The addressed slave device has accepted and is processing a long duration <br> command. Poll for status. |
| $06^{*}$ | BUSY, REJECTED <br> MESSAGE | The message was received without error, but the slave device is engaged in <br> processing a long duration command. Retransmit later, when the slave <br> device may be free. |
| $07^{*}$ | NAK - NEGATIVE <br> ACKNOWLEDGE | The message was received without error, but the request could not be <br> performed, because this version of the 745 does not have the requested <br> operation available. |

## $\underbrace{E}_{\text {NOTE }}$ <br> MESSAGE FORMAT AND EXAMPLE:

Request to slave device 11 to perform unsupported function code 39h.

## Master Query Message:

SLAVE ADDRESS
FUNCTION CODE
CRC: low order byte
CRC: high order byte

## Field:

SLAVE ADDRESS
FUNCTION CODE
ERROR CODE
CRC: low order byte
CRC: high order byte

## Example (hex):

11 query message for slave 11
39 unsupported function code - error
CD
F2

## Example (hex):

11 response message from slave 11
B9 return unsupported fn. code with high-order bit set
01 illegal function

### 8.2.14 READING THE EVENT RECORDER

All Event Recorder data can be read from Modbus registers found in the address range 0800h - 0FFFh.
The 'Total Number of Events Since Last Clear' register at address 0804h is incremented by one every time a new event occurs. The register is cleared to zero when the Event Recorder is cleared. When a new event occurs, the event is assigned an 'event number' which is equal to the incremented value of this register. The newest event will have an event number equal to the Total Number of Events. This register can be used to determine if any new events have occurred by periodically reading the register to see if the value has changed. If the Total Number of Events has increased, then new events have occurred.

Only the data for a single event can be read from the Modbus memory map in a single data packet. The 'Event Record Selector Index' register at address 0805h selects the event number whose data can be read from the memory map. For example, to read the data for event number 123, the value 123 must first be written to this register. All the data for event number 123 can now be read from the 'Event Recorder Data' registers at addresses 0830h to 0866h. Only the last 128 events are actually stored in the relay's memory. Attempting to retrieve data for older events that are not stored will result in a Modbus exception response when writing to the 'Event Record Selector Index'.
The following example illustrates how information can be retrieved from the Event Recorder:
A SCADA system polls the Total Number of Events register once every minute. It now reads a value of 27 from the register when previously the value was 24 , which means that three new events have occurred during the last minute. The SCADA system writes a value of 25 to the Event Record Selector Index register. It then reads the data for event number 25 from the Event Recorder Data registers and stores the data to permanent memory for retrieval by an operator. The SCADA system now writes the value 26 to the selector and then reads the data for event number 26. Finally, the SCADA system writes the value 27 to the selector and then reads the data for this event. All the data for the new events has now been retrieved by the SCADA system, so it resumes polling the Total Number of Events register.

### 8.2.15 READING TRACE MEMORY

All Trace Memory data can be read from Modbus registers found in the address range 4000h-47FFh.
The 'Total Number of Trace Triggers Since Last Clear' register at address 4004h is incremented by one every time a new trace memory waveform capture is triggered. The register is cleared to zero when the Trace Memory is cleared. When a new trigger occurs, the captured trace memory buffer is assigned a 'trigger number' which is equal to the incremented value of this register. The newest captured buffer will have a trigger number equal to the Total Number of Trace Triggers. This register can be used to determine if any new triggers have occurred by periodically reading the register to see if the value has changed. If the Total Number of Trace Triggers has increased, then new trace memory waveform captures have occurred.
Only the data for a single channel of a single trace memory buffer can be read from the Modbus memory map at a time. The 'Trace Buffer Selector Index' register at address 4005h selects the trace memory buffer, and the 'Trace Channel Selector Index' register at address 4006h selects the trace memory channel, whose waveform data can be read from the memory map. For example, to read the waveform data for the 'Winding 1 Phase C Current' of trace memory buffer 5, the value 5 must be written to the Trace Buffer Selector Index, and the value 2 (as per data format F65) must be written to the Trace Channel Selector Index. All the captured waveform data for buffer 5, channel 'Winding 1 Phase C Current' can now be read from the 'Trace Memory Data' registers at addresses 4010h to 4416h. Only the trace memory buffers for the last 3 trace memory triggers are actually stored in the relay's memory. Attempting to retrieve data for older triggers that are not stored will result in a Modbus exception response when writing to the 'Trace Buffer Selector Index'.
The following example illustrates how information can be retrieved from the Trace Memory:

A SCADA system polls the Total Number of Trace Triggers register once every minute. It now reads a value of 6 from the register when previously the value was 5, which means that one new trigger has occurred during the last minute. The SCADA system writes a value of 6 to the Trace Buffer Selector Index register. It then writes the value of 0 to the Trace Channel Selector Index register, reads the waveform data for Winding 1 Phase A Current of trace buffer 6 from the Trace Memory Data registers and stores the data to permanent memory for retrieval by an operator. The SCADA system now writes the value 1 to the Trace Channel Selector Index and then reads the waveform data for Winding 1 Phase B Current. The SCADA system continues by writing all other channel numbers to the Trace Channel Selector Index, each time reading the waveform data, until all channels for buffer 6 have been read. All the waveform data for the new trace memory trigger has now been retrieved by the SCADA system, so it resumes polling the Total Number of Trace Triggers register.

### 8.2.16 ACCESSING DATA VIA THE USER MAP

The 745 has a powerful feature, called the User Map, which allows a computer to access up to 120 non-consecutive registers (setpoints or actual values) by using one Modbus read message.

It is often necessary for a master computer to continuously poll various values in each of the connected slave relays. If these values are scattered throughout the memory map, reading them would require numerous transmissions and would labor the communication link. The User Map can be programmed to join any memory map address to one in the block of consecutive User Map locations, so that they can be accessed by reading (and writing to, if joined to setpoints) these consecutive locations.

The User Map feature consists of:

1. User Map Addresses \#1 to \#120 (located at memory map addresses 0180 to 01F7 hex). These are the setpoints which store the (possibly discontinuous) memory map addresses of the values that are to be accessed.
2. User Map Values \#1 to \#120 (located at memory map addresses 0100 to 0177 hex). These are the access points of the remapped locations. Reading User Map Value \#1 returns the value at the address stored in User Map Address \#1, User Map Value \#2 the value at User Map Address \#2, and so on. Writing to any User Map Value is only possible if the address stored in the corresponding User Map Address is that of a setpoint value.
For an example of how to use the User Map feature, say the master computer is required to continuously read the memory map locations shown in the table below from slave 11. Normally, this would require at least 4 separate master query messages.

Table 8-4: MEMORY MAP LOCATIONS TO BE ACCESSED

| ADDRESS | DESCRIPTION | TYPE |
| :--- | :--- | :---: |
| 0200 H | Relay Status | actual value |
| 0210 H | W3 Phase Time O/C Flag | actual value |
| 0300 H | W1 Phase A 4th Harmonic Content | actual value |
| 0301 H | W1 Phase B 4th Harmonic Content | actual value |
| 0302 hex | W1 Phase C 4th Harmonic Content | actual value |
| 2002 hex | Percent Differential Pickup | setpoint |

1. First, preload the addresses listed in the first column of the table to in User Map Addresses \#1 to \#6 (addresses 0180 to 0185 hex).

| Master Query Message: | Example (hex): |  |
| :--- | :--- | :--- |
| SLAVE ADDRESS | 11 | query message for slave 11 |
| FUNCTION CODE | 10 | store multiple setpoint values |
| DATA STARTING ADDRESS: high order byte | 01 | data starting at address 0180 |
| DATA STARTING ADDRESS: low order byte | 80 |  |
| NUMBER OF SETPOINTS: high order byte | 00 | 6 setpoint values = 12 bytes total |
| NUMBER OF SETPOINTS: low order byte | 06 |  |
| BYTE COUNT | $0 C$ | 12 bytes of data |
| DATA \#1: high order byte | 02 | $0200 \rightarrow$ Relay Status |
| DATA \#1: low order byte | 00 |  |
| DATA \#2: high order byte | 02 | $0210 \rightarrow$ W3 Phase Time O/C Flag |
| DATA \#2: low order byte | 10 |  |
| DATA \#3: high order byte | 03 | $0300 \rightarrow$ W1 Phase A 4th Harmonic Content |
| DATA \#3: low order byte | 00 |  |
| DATA \#4: high order byte | 03 | $0301 \rightarrow$ W1 Phase B 4th Harmonic Content |
| DATA \#4: low order byte | 01 |  |
| DATA \#5: high order byte | 03 | $0302 \rightarrow$ W1 Phase C 4th Harmonic Content |
| DATA \#5: low order byte | 02 |  |
| DATA \#6: high order byte | 20 | $2002 \rightarrow$ Percent Differential Pickup |
| DATA \#6: low order byte | 02 |  |
| CRC: low order byte | $2 F$ |  |
| CRC: high order byte | $8 A$ |  |
| Field: | Example (hex): |  |
| SLAVE ADDRESS | 11 | response message from slave 11 |
| FUNCTION CODE | 10 | store multiple setpoint values |
| DATA STARTING ADDRESS: high order byte | 11 | data starting at address 0180 |
| DATA STARTING ADDRESS: low order byte | 80 |  |
| NUMBER OF SETPOINTS: high order byte | 00 | 6 setpoint values = 12 bytes total |
| NUMBER OF SETPOINTS: low order byte | 06 |  |
| CRC: low order byte | 42 |  |
| CRC: high order byte | $8 F$ |  |

2. Now that the User Map Addresses have been setup, the required memory map locations can be accessed via the User Map Values \#1 to \#6 (addresses 0100 to 0105 hex). Both actual values and setpoints may be read.

| Master Query Message: | Exa |
| :--- | :--- |
| SLAVE ADDRESS | 11 |
| FUNCTION CODE | 03 |
| DATA STARTING ADDRESS: high order byte | 01 |
| DATA STARTING ADDRESS: low order byte | 00 |
| NUMBER OF REGISTERS: high order byte | 00 |
| NUMBER OF REGISTERS: low order byte | 06 |
| CRC: low order byte | C6 |
| CRC: high order byte | A4 |

## Example (hex):

11
030100
query message for slave 11
read register values
data starting at address 0100
6 setpoint values $=12$ bytes total

## Field:

SLAVE ADDRESS
FUNCTION CODE
BYTE COUNT
DATA \#1: high order byte
DATA \#1: low order byte
DATA \#2: high order byte
DATA \#2: low order byte
DATA \#3: high order byte
DATA \#3: low order byte
DATA \#4: high order byte
DATA \#4: low order byte
DATA \#5: high order byte
DATA \#5: low order byte
DATA \#6: high order byte

> DATA \#6: low order byte

CRC: low order byte
CRC: high order byte

## Example (hex):

> response message from slave 11 read register values
> 6 registers values = 12 bytes of data Relay Status
> W3 Phase Time O/C Flag = not operated
> W1 Phase A 4th Harmonic Content $=1 \% f_{0}$
> W1 Phase B 4th Harmonic Content $=1 \% f_{0}$
> W1 Phase C 4th Harmonic Content $=1 \% f_{0}$
> Percent Differential Pickup $=0.30 \times I_{d}$
3. Setpoints may be written via the user map. In the example above, to change the value of Restrained Differential Pickup to $0.20 \times$ CT through the user map, transmit the following Modbus message:

## Master Query Message:

SLAVE ADDRESS
FUNCTION CODE
DATA STARTING ADDRESS: high order byte 01
DATA STARTING ADDRESS: low order byte 85
DATA: high order byte
DATA: low order byte 14
CRC: low order byte 9B
CRC: high order byte 40

## Field:

SLAVE ADDRESS

## FUNCTION CODE

DATA STARTING ADDRESS: high order byte 01
DATA STARTING ADDRESS: low order byte 85
DATA: high order byte
DATA: low order byte
CRC: low order byte
14

CRC: high order byte 40

00

## Example (hex):

11 query message for slave 11
store single setpoint values
data starting at address 0185
$0014=0.30 \times I_{d}$

Most 745 supported Modbus commands can be performed via function codes 03 h (or 04 h ), and 10 h and special memory map addresses.
a) FUNCTION CODE 03H AND 04 SUBSTITUTIONS

Function codes 03 h and 04 h are interchangeable. Both have identical message formats, and both perform the same action.

## b) FUNCTION CODE 05H SUBSTITUTION

Function code 05h (EXECUTE OPERATION) can be performed by writing the command as if it were data in the memory map.

0080h OPERATION CODE
The message format and example is shown below.
Request slave device 11 to reset targets:

| Master Query Message: | Example (hex): |  |
| :--- | :--- | :--- |
| SLAVE ADDRESS | 11 | query message for slave 11 |
| FUNCTION CODE | 10 | store multiple setpoints (substituted for code 05H) |
| DATA STARTING ADDRESS: high order byte | 00 | data starting at address 0080 |
| DATA STARTING ADDRESS: low order byte | 80 |  |
| NUMBER OF SETPOINTS: high order byte | 00 | 1 register values = 2 bytes total |
| NUMBER OF SETPOINTS: low order byte | 01 |  |
| BYTE COUNT | 02 | 2 bytes of data |
| DATA \#1: high order byte | 00 | $0001=$ operation code 0001H (reset targets) |
| DATA \#1: low order byte | 01 |  |
| CRC: low order byte | B5 |  |
| CRC: high order byte | 90 |  |
| Field: |  | Example (hex): |
| SLAVE ADDRESS | 11 | response message from slave 11 |
| FUNCTION CODE | 10 | store multiple setpoints |
| DATA STARTING ADDRESS: high order byte | 00 | data starting at address 0080 |
| DATA STARTING ADDRESS: low order byte | 80 |  |
| NUMBER OF SETPOINTS: high order byte | 00 | 1 setpoint values = 2 bytes total |
| NUMBER OF SETPOINTS: low order byte | 01 |  |
| CRC: low order byte | 02 |  |
| CRC: high order byte | 31 |  |

## c) FUNCTION CODE 06H SUBSTITUTION

Function code 06h (STORE SINGLE SETPOINT) is simply a shorter version of function code 10h (STORE MULTIPLE SETPOINTS). Using function code 10h, such that the NUMBER OF SETPOINTS stored is 1 , has the same effect as function code 06 h . The message format and example is shown below.

Request slave device 11 to write the single setpoint value 00C8 at setpoint address 1100.
Master Query Message:SLAVE ADDRESS
FUNCTION CODEDATA STARTING ADDRESS: high order byteDATA STARTING ADDRESS: low order byteNUMBER OF SETPOINTS: high order byteNUMBER OF SETPOINTS: low order byteBYTE COUNTDATA \#1: high order byteDATA \#1: low order byte8
CRC: low order byte ..... 6B
CRC: high order byte ..... 07
Field:
SLAVE ADDRESS
FUNCTION CODE
DATA STARTING ADDRESS: high order byte11
DATA STARTING ADDRESS: low order byte ..... 00NUMBER OF SETPOINTS: high order byteNUMBER OF SETPOINTS: low order byte
CRC: low order byte ..... 0601
CRC: high order byte ..... 65
Example (hex):
11 response message from slave 11

## Example (hex):

11 query message for slave 11
10 store multiple setpoints (substituted for code 06H)
11 data starting at address 1100
00
$00 \quad 1$ setpoint values $=2$ bytes total
01
02
00
2 bytes of data data for address $1100=00 \mathrm{C} 8$
00

store multiple setpoint values
00

1 setpoint values $=2$ bytes total
data starting at address 1100

### 8.2.18 MEMORY MAP ORGANIZATION

Data in the 745 that is accessible via computer communications is grouped into several sections of the memory map as shown in the table below. All memory map locations are two-byte (16-bit) values. The following section lists all memory map locations. Addresses for all locations are in hexadecimal. Consult the range, step, units, and the data format (listed after the memory map) to interpret the register values.
Table 8-5: MEMORY MAP ORGANIZATION

| MEMORY MAP SECTION | ADDRESS RANGE | DESCRIPTION |
| :--- | :---: | :--- |
| Product ID | $0000-007 F$ | Identification and revision information. Read only. |
| Commands | $0080-00 F F$ | Substitute command locations. Read and write. |
| User Map | $0100-01 F F$ | User Map Values and Addresses. Read and write. |
| Actual Values | $0200-07 F F$ | Read only. |
| Event Recorder | $0800-0 F F F$ | Read only (except "Event Record Selector Index"). |
| Common Setpoints | $1000-1 F F F$ | Read and write. |
| Setpoint Group 1/2/3/4 | $2000-3 F F F$ | Read and write. |
| Trace Memory | $4000-47 F F$ | Read only (except "Trace Buffer Selector Index" and "Trace <br> Channel Selector Index"). |
| Playback Memory | $4800-4 F F F$ | Read and write. |

Table 8-6: 745 MEMORY MAP (Sheet 1 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP <br> VALUE | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Product ID (Addresses 0000 to 007F) - Read Only |  |  |  |  |  |  |  |
| 0000 | PRODUCT ID | GE Product Device Code | --- | --- | --- | F1 | $33=745$ |
| 0001 |  | Hardware Revision | --- | --- | --- | F13 | $4=\mathrm{D}$ |
| 0002 |  | Software Revision | --- | --- | --- | F14 | 200 |
| 0003 |  | Version Number | 000 to 999 | 001 | --- | F1 | 000 |
| 0004 |  | Bootware Revision | 000 to 999 | 001 | --- | F14 | 120 |
| 0005 |  | Installed Options | --- | --- | --- | F15 | --- |
| 0006 |  | Serial Number (4 registers) | --- | --- | --- | F33 | "A0000000" |
| 000A |  | Manufacture Date (2 registers) | --- | --- | --- | F23 | --- |
| O00C |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 001F |  | Reserved |  |  |  |  |  |
| Upgrade Options (Addresses 0020 to 002F) - Read / Write |  |  |  |  |  |  |  |
| 0020 | MODIFY OPTIONS | New Options | --- | --- | --- | F15 | --- |
| 0021 |  | Modify Passcode | --- | --- | --- | F33 | --- |
| 0022 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 007F |  | Reserved |  |  |  |  |  |
| Commands (Addresses 0080 to 00FF) - Read / Write |  |  |  |  |  |  |  |
| 0080 | COMMANDS | Command Operation Code | --- | --- | --- | F19 | --- |
| 0081 |  | Passcode Access (4 registers) | --- | --- | --- | F33 | --- |
| 0085 |  | Change Passcode (4 registers) | --- | --- | --- | F33 | --- |
| 0089 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 008F |  | Reserved |  |  |  |  |  |
| 0090 | VIRTUAL INPUTS | Virtual Input 1 Programmed State | --- | --- | --- | F43 | 0 |
| 0091 |  | Virtual Input 2 Programmed State | --- | --- | --- | F43 | 0 |
| 0092 |  | Virtual Input 3 Programmed State | --- | --- | --- | F43 | 0 |
| 0093 |  | Virtual Input 4 Programmed State | --- | --- | --- | F43 | 0 |
| 0094 |  | Virtual Input 5 Programmed State | --- | --- | --- | F43 | 0 |
| 0095 |  | Virtual Input 6 Programmed State | --- | --- | --- | F43 | 0 |
| 0096 |  | Virtual Input 7 Programmed State | --- | --- | --- | F43 | 0 |
| 0097 |  | Virtual Input 8 Programmed State | --- | --- | --- | F43 | 0 |
| 0098 |  | Virtual Input 9 Programmed State | --- | --- | --- | F43 | 0 |
| 0099 |  | Virtual Input 10 Programmed State | --- | --- | --- | F43 | 0 |
| 009A |  | Virtual Input 11 Programmed State | --- | --- | --- | F43 | 0 |

Table 8-6: 745 MEMORY MAP (Sheet 2 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP <br> VALUE | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 009B |  | Virtual Input 12 Programmed State | --- | --- | --- | F43 | 0 |
| 009C |  | Virtual Input 13 Programmed State | --- | --- | --- | F43 | 0 |
| 009D |  | Virtual Input 14 Programmed State | --- | --- | --- | F43 | 0 |
| 009E |  | Virtual Input 15 Programmed State | --- | --- | --- | F43 | 0 |
| 009F |  | Virtual Input 16 Programmed State | --- | --- | --- | F43 | 0 |
| 00A0 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 00EF |  | Reserved |  |  |  |  |  |
| 00F0 | TIME/DATE | Time (2 registers) | --- | --- | --- | F22 | --- |
| 00F2 |  | Date (2 registers) | --- | --- | --- | F23 | --- |
| 00F4 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 00FF |  | Reserved |  |  |  |  |  |
| User Map (Addresses 0100 to 01FF) - Read / Write |  |  |  |  |  |  |  |
| 0100 | USER MAP VALUES | User Map Value \#1 | --- | --- | --- | --- | --- |
| 0101 |  | User Map Value \#2 | --- | --- | --- | --- | --- |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 0177 |  | User Map Value \#120 | --- | --- | --- | --- | --- |
| 0178 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 017F |  | Reserved |  |  |  |  |  |
| 0180 | USER MAP ADDRESSES | User Map Address \#1 | 0000 to FFFF | 0001 | hex | F1 | 0000 hex |
| 0181 |  | User Map Address \#2 | 0000 to FFFF | 0001 | hex | F1 | 0000 hex |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| $01 F 7$ |  | User Map Address \#120 | 0000 to FFFF | 0001 | hex | F1 | 0000 hex |
| 01F8 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 01FF |  | Reserved |  |  |  |  |  |
| Actual Values (Addresses 0200 to 07FF) - Read Only |  |  |  |  |  |  |  |
| 0200 | SYSTEM STATUS | Relay Status | --- | --- | --- | F20 | --- |
| 0201 |  | System Status | --- | --- | --- | F21 | --- |
| 0202 |  | Conditions | --- | --- | --- | F35 | --- |
| 0203 |  | Operation Status | --- | --- | --- | F44 | --- |
| 0204 |  | Logic Input Status | --- | --- | --- | F49 | --- |
| 0205 |  | Output Relay Status | --- | --- | --- | F50 | --- |
| 0206 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 0207 |  | Reserved |  |  |  |  |  |

Table 8-6: 745 MEMORY MAP (Sheet 3 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP VALUE | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0208 | $\begin{gathered} \text { ELEMENT } \\ \text { FLAGS } \end{gathered}$ | Any Element Flag | --- | --- | --- | F52 | --- |
| 0209 |  | Any Winding 1 Overcurrent Element Flag | --- | --- | --- | F52 | --- |
| 020A |  | Any Winding 2 Overcurrent Element Flag | --- | --- | --- | F52 | --- |
| 020B |  | Any Winding 3 Overcurrent Element Flag | --- | --- | --- | F52 | --- |
| 020C |  | Percent Differential Flag | --- | --- | --- | F52 | --- |
| 020D |  | Inst Differential Flag | --- | --- | --- | F52 | --- |
| 020E |  | Winding 1 Phase Time 0/C Flag | --- | --- | --- | F52 | --- |
| 020F |  | Winding 2 Phase Time 0/C Flag | --- | --- | --- | F52 | --- |
| 0210 |  | Winding 3 Phase Time 0/C Flag | --- | --- | --- | F52 | --- |
| 0211 |  | Winding 1 Phase Inst 0/C 1 Flag | --- | --- | --- | F52 | --- |
| 0212 |  | Winding 2 Phase Inst 0/C 1 Flag | --- | --- | --- | F52 | --- |
| 0213 |  | Winding 3 Phase Inst 0/C 1 Flag | --- | --- | --- | F52 | --- |
| 0214 |  | Winding 1 Phase Inst 0/C 2 Flag | --- | --- | --- | F52 | --- |
| 0215 |  | Winding 2 Phase Inst 0/C 2 Flag | --- | --- | --- | F52 | --- |
| 0216 |  | Winding 3 Phase Inst 0/C 2 Flag | --- | --- | --- | F52 | --- |
| 0217 |  | Winding 1 Neutral Time 0/C Flag | --- | --- | --- | F52 | --- |
| 0218 |  | Winding 2 Neutral Time 0/C Flag | --- | -- | --- | F52 | --- |
| 0219 |  | Winding 3 Neutral Time 0/C Flag | --- | --- | --- | F52 | --- |
| 021A |  | Winding 1 Neutral Inst 0/C 1 Flag | --- | --- | --- | F52 | --- |
| 021B |  | Winding 2 Neutral Inst 0/C 1 Flag | --- | --- | --- | F52 | --- |
| 021C |  | Winding 3 Neutral Inst 0/C 1 Flag | --- | --- | --- | F52 | --- |
| 021D |  | Winding 1 Neutral Inst 0/C 2 Flag | --- | --- | --- | F52 | --- |
| 021E |  | Winding 2 Neutral Inst 0/C 2 Flag | --- | --- | --- | F52 | --- |
| 021F |  | Winding 3 Neutral Inst 0/C 2 Flag | --- | --- | --- | F52 | --- |
| 0220 |  | Winding 1 Ground Time 0/C Flag | --- | --- | --- | F52 | --- |
| 0221 |  | Winding 2 Ground Time 0/C Flag | --- | --- | --- | F52 | --- |
| 0222 |  | Winding 3 Ground Time 0/C Flag | --- | --- | --- | F52 | --- |
| 0223 |  | Winding 1 Ground Inst 0/C 1 Flag | --- | --- | --- | F52 | --- |
| 0224 |  | Winding 2 Ground Inst 0/C 1 Flag | --- | --- | --- | F52 | --- |
| 0225 |  | Winding 3 Ground Inst 0/C 1 Flag | --- | --- | --- | F52 | --- |
| 0226 |  | Winding 1 Ground Inst 0/C 2 Flag | --- | --- | --- | F52 | --- |
| 0227 |  | Winding 2 Ground Inst 0/C 2 Flag | --- | --- | --- | F52 | --- |
| 0228 |  | Winding 3 Ground Inst 0/C 2 Flag | --- | --- | --- | F52 | --- |
| 0229 |  | Winding 1 Restricted Ground Time 0/C Flag | --- | --- | --- | F52 | --- |
| 022A |  | Winding 2 Restricted Ground Time 0/C Flag | --- | --- | --- | F52 | --- |
| 022B |  | Winding 3 Restricted Ground Time 0/C Flag | --- | --- | --- | F52 | --- |
| 022C |  | Winding 1 Restricted Ground Inst 0/C Flag | --- | --- | --- | F52 | --- |
| 022D |  | Winding 2 Restricted Ground Inst 0/C Flag | --- | --- | --- | F52 | --- |

Table 8-6: 745 MEMORY MAP (Sheet 4 of 57)

| $\begin{aligned} & \hline \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP VALUE | UNITS | $\begin{array}{\|c\|} \hline \text { FORMAT } \\ \text { CODE } \end{array}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 022E |  | Winding 3 Restricted Ground Inst 0/C Flag | --- | --- | --- | F52 | --- |
| 022F |  | Winding 1 Neg Seq Time 0/C Flag | --- | --- | --- | F52 | --- |
| 0230 |  | Winding 2 Neg Seq Time 0/C Flag | --- | --- | --- | F52 | --- |
| 0231 |  | Winding 3 Neg Seq Time 0/C Flag | --- | --- | --- | F52 | --- |
| 0232 |  | Winding 1 Neg Seq Instantaneous 0/C Flag | --- | --- | --- | F52 | --- |
| 0233 |  | Winding 2 Neg Seq Instantaneous 0/C Flag | --- | --- | --- | F52 | --- |
| 0234 |  | Winding 3 Neg Seq Instantaneous 0/C Flag | --- | --- | --- | F52 | --- |
| 0235 |  | Underfrequency 1 Flag | --- | --- | --- | F52 | --- |
| 0236 |  | Underfrequency 2 Flag | --- | --- | --- | F52 | --- |
| 0237 |  | Frequency Decay Rate 1 Flag | --- | --- | --- | F52 | --- |
| 0238 |  | Frequency Decay Rate 2 Flag | --- | -- | --- | F52 | --- |
| 0239 |  | Frequency Decay Rate 3 Flag | --- | --- | --- | F52 | --- |
| 023A |  | Frequency Decay Rate 4 Flag | --- | --- | --- | F52 | --- |
| 023B |  | Overfrequency Flag | --- | --- | --- | F52 | --- |
| 023C |  | 5th Harmonic Level Flag | --- | --- | --- | F52 | --- |
| 023D |  | Volts-Per-Hertz 1 Flag | --- | --- | --- | F52 | --- |
| 023E |  | Volts-Per-Hertz 2 Flag | --- | --- | --- | F52 | --- |
| 023F |  | Winding 1 THD Level Flag | --- | --- | --- | F52 | --- |
| 0240 |  | Winding 2 THD Level Flag | --- | --- | --- | F52 | --- |
| 0241 |  | Winding 3 THD Level Flag | --- | --- | --- | F52 | --- |
| 0242 |  | Winding 1 Harmonic Derating Flag | --- | --- | --- | F52 | --- |
| 0243 |  | Winding 2 Harmonic Derating Flag | --- | --- | --- | F52 | --- |
| 0244 |  | Winding 3 Harmonic Derating Flag | --- | --- | --- | F52 | --- |
| 0245 |  | Hottest-Spot Temperature Limit Flag | --- | --- | --- | F52 | --- |
| 0246 |  | Loss-Of-Life Limit Flag | --- | --- | --- | F52 | --- |
| 0247 |  | Analog Input Level 1 Flag | --- | --- | --- | F52 | --- |
| 0248 |  | Analog Input Level 2 Flag | --- | --- | --- | F52 | --- |
| 0249 |  | Winding 1 Current Demand Flag | --- | --- | -- | F52 | --- |
| 024A |  | Winding 2 Current Demand Flag | --- | --- | -- | F52 | --- |
| 024B |  | Winding 3 Current Demand Flag | --- | --- | --- | F52 | --- |
| 024C |  | Transformer Overload Flag | --- | --- | --- | F52 | --- |
| 024D |  | Aging Factor Limit Flag | --- | --- | --- | F52 | --- |
| 024E |  | Tap Changer Failure Flag | --- | --- | --- | F52 | --- |
| 024F |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 025F |  | Reserved |  |  |  |  |  |

Table 8-6: 745 MEMORY MAP (Sheet 5 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | $\begin{gathered} \text { STEP } \\ \text { VALUE } \end{gathered}$ | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0260 | INPUT/OUTPUT FLAGS | Logic Input Assert Flags | --- | --- | --- | F56 | --- |
| 0261 |  | Virtual Input Assert Flags | --- | --- | --- | F56 | --- |
| 0262 |  | Output Relay Operate Flags | --- | --- | --- | F57 | --- |
| 0263 |  | Virtual Output Operate Flags | --- | --- | --- | F59 | --- |
| 0264 |  | Timer Operate Flags | --- | --- | --- | F61 | --- |
| 0265 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 027F |  | Reserved |  |  |  |  |  |
| 0280 | WINDING 1 CURRENT | Winding 1 Phase A Current - Magnitude | --- | --- | A | F78 | --- |
| 0281 |  | Winding 1 Phase A Current - Angle | 0 | --- | ${ }^{\circ} \mathrm{Lag}$ | F1 | --- |
| 0282 |  | Winding 1 Phase B Current - Magnitude | --- | --- | A | F78 | --- |
| 0283 |  | Winding 1 Phase B Current - Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | --- |
| 0284 |  | Winding 1 Phase C Current - Magnitude | --- | --- | A | F78 | --- |
| 0285 |  | Winding 1 Phase C Current - Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | --- |
| 0286 |  | Winding 1 Neutral Current - Magnitude | --- | --- | A | F78 | --- |
| 0287 |  | Winding 1 Neutral Current - Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | --- |
| 0288 |  | Winding 1 Ground Current - Magnitude | --- | --- | A | F81 | --- |
| 0289 |  | Winding 1 Ground Current - Angle | 0 to 359 | 1 | ${ }^{\circ}$ Lag | F1 | --- |
| 028A |  | Winding 1 Loading | 0 to 999 | 1 | \% rated | F1 | --- |
| 028B |  | Winding 1 Ave. Phase Current | --- | --- | A | F78 | --- |
| 028C |  | Reserved |  |  |  |  |  |
| 028F |  | Reserved |  |  |  |  |  |
| 0290 | WINDING 2 CURRENT | Winding 2 Phase A Current - Magnitude | --- | --- | A | F79 | --- |
| 0291 |  | Winding 2 Phase A Current - Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | --- |
| 0292 |  | Winding 2 Phase B Current - Magnitude | --- | --- | A | F79 | --- |
| 0293 |  | Winding 2 Phase B Current - Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | --- |
| 0294 |  | Winding 2 Phase C Current - Magnitude | --- | --- | A | F79 | --- |
| 0295 |  | Winding 2 Phase C Current - Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | --- |
| 0296 |  | Winding 2 Neutral Current - Magnitude | --- | --- | A | F79 | --- |
| 0297 |  | Winding 2 Neutral Current - Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | --- |
| 0298 |  | Winding 2 Ground Current - Magnitude | --- | --- | A | F82 | --- |
| 0299 |  | Winding 2 Ground Current - Angle | 0 to 359 | 1 | ${ }^{\circ}$ Lag | F1 | --- |
| 029A |  | Winding 2 Loading | 0 to 999 | 1 | \% rated | F1 | --- |
| 029B |  | Winding 2 Ave. Phase Current | --- | --- | A | F79 | --- |
| 029C |  | Reserved |  |  |  |  |  |
| 029F |  | Reserved |  |  |  |  |  |

Table 8-6: 745 MEMORY MAP (Sheet 6 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP | UNITS | $\begin{array}{\|c\|} \hline \text { FORMAT } \\ \text { CODE } \end{array}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 02A0 | WINDING 3 CURRENT | Winding 3 Phase A Current - Magnitude | --- | --- | A | F80 | --- |
| 02A1 |  | Winding 3 Phase A Current - Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | --- |
| 02A2 |  | Winding 3 Phase B Current - Magnitude | --- | --- | A | F80 | --- |
| 02A3 |  | Winding 3 Phase B Current - Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | --- |
| 02A4 |  | Winding 3 Phase C Current - Magnitude | --- | -- | A | F80 | --- |
| 02A5 |  | Winding 3 Phase C Current - Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | --- |
| 02A6 |  | Winding 3 Neutral Current - Magnitude | --- | --- | A | F80 | --- |
| 02A7 |  | Winding 3 Neutral Current - Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | --- |
| 02A8 |  | Winding 3 Ground Current - Magnitude | --- | --- | A | F83 | --- |
| 02A9 |  | Winding 3 Ground Current - Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | --- |
| 02AA |  | Winding 3 Loading | 0 to 999 | 1 | \% rated | F1 | --- |
| 02AB |  | Winding 3 Ave. Phase Current | --- | --- | A | F80 | --- |
| 02AC |  | Reserved |  |  |  |  |  |
| 02AF |  | Reserved |  |  |  |  |  |
| 02B0 | SEQUENCE CURRENTS | Winding 1 Positive Sequence Current Magnitude | --- | --- | A | F78 | --- |
| 02B1 |  | Winding 1 Positive Sequence Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | --- |
| 02B2 |  | Winding 2 Positive Sequence Current Magnitude | --- | --- | A | F79 | --- |
| 02B3 |  | Winding 2 Positive Sequence Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | --- |
| 02B4 |  | Winding 3 Positive Sequence Current Magnitude | --- | --- | A | F80 | --- |
| 02B5 |  | Winding 3 Positive Sequence Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | --- |
| 02B6 |  | Winding 1 Negative Sequence Current Magnitude | --- | --- | A | F78 | --- |
| 02B7 |  | Winding 1 Negative Sequence Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | --- |
| 02B8 |  | Winding 2 Negative Sequence Current Magnitude | --- | --- | A | F79 | --- |
| 02B9 |  | Winding 2 Negative Sequence Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | --- |
| 02BA |  | Winding 3 Negative Sequence Current Magnitude | --- | --- | A | F80 | --- |
| 02BB |  | Winding 3 Negative Sequence Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | --- |
| 02BC |  | Winding 1 Zero Sequence Current Magnitude | --- | --- | A | F78 | --- |
| 02BD |  | Winding 1 Zero Sequence Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | --- |
| 02BE |  | Winding 2 Zero Sequence Current Magnitude | --- | --- | A | F79 | --- |
| 02BF |  | Winding 2 Zero Sequence Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | --- |
| 02C0 |  | Winding 3 Zero Sequence Current Magnitude | --- | --- | A | F80 | --- |
| 02C1 |  | Winding 3 Zero Sequence Current Angle | 0 to 359 | 1 | ${ }^{\circ}$ Lag | F1 | --- |
| 02C2 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 02CF |  | Reserved |  |  |  |  |  |
| 02D0 | DIFFERENTIAL CURRENT | Phase A Differential Current - Magnitude | 0.00 to 655.35 | 0.01 | x CT | F3 | --- |
| 02D1 |  | Phase A Differential Current - Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | --- |
| 02D2 |  | Phase B Differential Current - Magnitude | 0.00 to 655.35 | 0.01 | x CT | F3 | --- |

Table 8-6: 745 MEMORY MAP (Sheet 7 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | $\begin{aligned} & \text { STEP } \\ & \text { VALUE } \end{aligned}$ | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 02D3 |  | Phase B Differential Current - Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | --- |
| 02D4 |  | Phase C Differential Current - Magnitude | 0.00 to 655.35 | 0.01 | x CT | F3 | --- |
| 02D5 |  | Phase C Differential Current - Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | --- |
| 02D6 | RESTRAINT CURRENT | Phase A Restraint Current | 0.00 to 655.35 | 0.01 | x CT | F3 | --- |
| 02D7 |  | Phase B Restraint Current | 0.00 to 655.35 | 0.01 | x CT | F3 | --- |
| 02D8 |  | Phase C Restraint Current | 0.00 to 655.35 | 0.01 | x CT | F3 | --- |
| 02D9 | GROUND DIFFERENTIAL CURRENT | Winding 1 Ground Differential Current | 0.000 to 65.535 | 0.001 | x CT | F53 | --- |
| 02DA |  | Winding 2 Ground Differential Current | 0.000 to 65.535 | 0.001 | xCT | F53 | --- |
| 02DB |  | Winding 3 Ground Differential Current | 0.000 to 65.535 | 0.001 | x CT | F53 | --- |
| 02DC |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 02DF |  | Reserved |  |  |  |  |  |
| 02E0 | 2ND <br> HARMONIC | Winding 1 Phase A 2nd Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 02E1 |  | Winding 1 Phase B 2nd Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 02E2 |  | Winding 1 Phase C 2nd Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 02E3 |  | Winding 2 Phase A 2nd Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 02E4 |  | Winding 2 Phase B 2nd Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 02E5 |  | Winding 2 Phase C 2nd Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 02E6 |  | Winding 3 Phase A 2nd Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 02E7 |  | Winding 3 Phase B 2nd Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 02E8 |  | Winding 3 Phase C 2nd Harmonic Content | 0.0 to 99.9 | 0.1 | \% fo | F2 | --- |
| 02E9 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 02EF |  | Reserved |  |  |  |  |  |
| 02F0 | 3RD HARMONIC | Winding 1 Phase A 3rd Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 02F1 |  | Winding 1 Phase B 3rd Harmonic Content | 0.0 to 99.9 | 0.1 | \% fo | F2 | --- |
| 02F2 |  | Winding 1 Phase C 3rd Harmonic Content | 0.0 to 99.9 | 0.1 | \% fo | F2 | --- |
| 02F3 |  | Winding 2 Phase A 3rd Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 02F4 |  | Winding 2 Phase B 3rd Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 02F5 |  | Winding 2 Phase C 3rd Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 02F6 |  | Winding 3 Phase A 3rd Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| $02 \mathrm{F7}$ |  | Winding 3 Phase B 3rd Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 02F8 |  | Winding 3 Phase C 3rd Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 02F9 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 02FF |  | Reserved |  |  |  |  |  |

Table 8-6: 745 MEMORY MAP (Sheet 8 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | $\begin{gathered} \hline \text { STEP } \\ \text { VALUE } \end{gathered}$ | UNITS | $\begin{aligned} & \hline \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0300 | 4TH HARMONIC | Winding 1 Phase A 4th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0301 |  | Winding 1 Phase B 4th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0302 |  | Winding 1 Phase C 4th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0303 |  | Winding 2 Phase A 4th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0304 |  | Winding 2 Phase B 4th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0305 |  | Winding 2 Phase C 4th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0306 |  | Winding 3 Phase A 4th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0307 |  | Winding 3 Phase B 4th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0308 |  | Winding 3 Phase C 4th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0309 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 030F |  | Reserved |  |  |  |  |  |
| 0310 | 5TH HARMONIC | Winding 1 Phase A 5th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0311 |  | Winding 1 Phase B 5th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0312 |  | Winding 1 Phase C 5th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0313 |  | Winding 2 Phase A 5th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0314 |  | Winding 2 Phase B 5th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0315 |  | Winding 2 Phase C 5th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0316 |  | Winding 3 Phase A 5th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0317 |  | Winding 3 Phase B 5th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0318 |  | Winding 3 Phase C 5th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0319 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 031F |  | Reserved |  |  |  |  |  |
| 0320 | 6TH HARMONIC | Winding 1 Phase A 6th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0321 |  | Winding 1 Phase B 6th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0322 |  | Winding 1 Phase C 6th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0323 |  | Winding 2 Phase A 6th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0324 |  | Winding 2 Phase B 6th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0325 |  | Winding 2 Phase C 6th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0326 |  | Winding 3 Phase A 6th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0327 |  | Winding 3 Phase B 6th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0328 |  | Winding 3 Phase C 6th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0329 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 032F |  | Reserved |  |  |  |  |  |

Table 8-6: 745 MEMORY MAP (Sheet 9 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP VALUE | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0330 | 7TH HARMONIC | Winding 1 Phase A 7th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0331 |  | Winding 1 Phase B 7th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0332 |  | Winding 1 Phase C 7th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0333 |  | Winding 2 Phase A 7th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0334 |  | Winding 2 Phase B 7th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0335 |  | Winding 2 Phase C 7th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0336 |  | Winding 3 Phase A 7th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0337 |  | Winding 3 Phase B 7th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0338 |  | Winding 3 Phase C 7th Harmonic Content | 0.0 to 99.9 | 0.1 | \% fo | F2 | --- |
| 0339 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 033F |  | Reserved |  |  |  |  |  |
| 0340 | 8TH HARMONIC | Winding 1 Phase A 8th Harmonic Content | 0.0 to 99.9 | 0.1 | \% fo | F2 | --- |
| 0341 |  | Winding 1 Phase B 8th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0342 |  | Winding 1 Phase C 8th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0343 |  | Winding 2 Phase A 8th Harmonic Content | 0.0 to 99.9 | 0.1 | \% fo | F2 | --- |
| 0344 |  | Winding 2 Phase B 8th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0345 |  | Winding 2 Phase C 8th Harmonic Content | 0.0 to 99.9 | 0.1 | \% fo | F2 | --- |
| 0346 |  | Winding 3 Phase A 8th Harmonic Content | 0.0 to 99.9 | 0.1 | \% fo | F2 | --- |
| 0347 |  | Winding 3 Phase B 8th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0348 |  | Winding 3 Phase C 8th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0349 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 034F |  | Reserved |  |  |  |  |  |
| 0350 | 9TH HARMONIC | Winding 1 Phase A 9th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0351 |  | Winding 1 Phase B 9th Harmonic Content | 0.0 to 99.9 | 0.1 | \% fo | F2 | --- |
| 0352 |  | Winding 1 Phase C 9th Harmonic Content | 0.0 to 99.9 | 0.1 | \% fo | F2 | --- |
| 0353 |  | Winding 2 Phase A 9th Harmonic Content | 0.0 to 99.9 | 0.1 | \% fo | F2 | --- |
| 0354 |  | Winding 2 Phase B 9th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0355 |  | Winding 2 Phase C 9th Harmonic Content | 0.0 to 99.9 | 0.1 | \% fo | F2 | --- |
| 0356 |  | Winding 3 Phase A 9th Harmonic Content | 0.0 to 99.9 | 0.1 | \% fo | F2 | --- |
| 0357 |  | Winding 3 Phase B 9th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0358 |  | Winding 3 Phase C 9th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0359 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 035F |  | Reserved |  |  |  |  |  |

Table 8-6: 745 MEMORY MAP (Sheet 10 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | $\begin{gathered} \hline \text { STEP } \\ \text { VALUE } \end{gathered}$ | UNITS | $\begin{aligned} & \hline \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0360 | $\overline{10 \mathrm{TH}}$ HARMONIC | Winding 1 Phase A 10th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0361 |  | Winding 1 Phase B 10th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0362 |  | Winding 1 Phase C 10th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0363 |  | Winding 2 Phase A 10th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0364 |  | Winding 2 Phase B 10th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0365 |  | Winding 2 Phase C 10th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0366 |  | Winding 3 Phase A 10th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0367 |  | Winding 3 Phase B 10th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0368 |  | Winding 3 Phase C 10th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0369 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 036F |  | Reserved |  |  |  |  |  |
| 0370 | 11TH HARMONIC | Winding 1 Phase A 11th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0371 |  | Winding 1 Phase B 11th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0372 |  | Winding 1 Phase C 11th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0373 |  | Winding 2 Phase A 11th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0374 |  | Winding 2 Phase B 11th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0375 |  | Winding 2 Phase C 11th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0376 |  | Winding 3 Phase A 11th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0377 |  | Winding 3 Phase B 11th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0378 |  | Winding 3 Phase C 11th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0379 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 037F |  | Reserved |  |  |  |  |  |
| 0380 | 12TH HARMONIC | Winding 1 Phase A 12th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0381 |  | Winding 1 Phase B 12th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0382 |  | Winding 1 Phase C 12th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0383 |  | Winding 2 Phase A 12th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0384 |  | Winding 2 Phase B 12th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0385 |  | Winding 2 Phase C 12th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0386 |  | Winding 3 Phase A 12th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0387 |  | Winding 3 Phase B 12th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0388 |  | Winding 3 Phase C 12th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0389 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 038F |  | Reserved |  |  |  |  |  |

Table 8-6: 745 MEMORY MAP (Sheet 11 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | $\begin{gathered} \text { STEP } \\ \text { VALUE } \end{gathered}$ | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0390 | 13TH <br> HARMONIC | Winding 1 Phase A 13th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0391 |  | Winding 1 Phase B 13th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0392 |  | Winding 1 Phase C 13th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0393 |  | Winding 2 Phase A 13th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0394 |  | Winding 2 Phase B 13th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0395 |  | Winding 2 Phase C 13th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0396 |  | Winding 3 Phase A 13th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0397 |  | Winding 3 Phase B 13th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0398 |  | Winding 3 Phase C 13th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0399 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 039F |  | Reserved |  |  |  |  |  |
| 03A0 | $14 \mathrm{TH}$ <br> HARMONIC | Winding 1 Phase A 14th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03A1 |  | Winding 1 Phase B 14th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03A2 |  | Winding 1 Phase C 14th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03A3 |  | Winding 2 Phase A 14th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03A4 |  | Winding 2 Phase B 14th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03A5 |  | Winding 2 Phase C 14th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03A6 |  | Winding 3 Phase A 14th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03A7 |  | Winding 3 Phase B 14th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03A8 |  | Winding 3 Phase C 14th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03A9 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 03AF |  | Reserved |  |  |  |  |  |
| 03B0 | 15TH <br> HARMONIC | Winding 1 Phase A 15th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03B1 |  | Winding 1 Phase B 15th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03B2 |  | Winding 1 Phase C 15th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03B3 |  | Winding 2 Phase A 15th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03B4 |  | Winding 2 Phase B 15th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03B5 |  | Winding 2 Phase C 15th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03B6 |  | Winding 3 Phase A 15th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03B7 |  | Winding 3 Phase B 15th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03B8 |  | Winding 3 Phase C 15th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03B9 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 03BF |  | Reserved |  |  |  |  |  |

Table 8-6: 745 MEMORY MAP (Sheet 12 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP VALUE | UNITS | FORMAT CODE | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 03C0 | 16TH <br> HARMONIC | Winding 1 Phase A 16th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03C1 |  | Winding 1 Phase B 16th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03C2 |  | Winding 1 Phase C 16th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03C3 |  | Winding 2 Phase A 16th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03C4 |  | Winding 2 Phase B 16th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03C5 |  | Winding 2 Phase C 16th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| $03 \mathrm{C6}$ |  | Winding 3 Phase A 16th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| $03 \mathrm{C7}$ |  | Winding 3 Phase B 16th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03C8 |  | Winding 3 Phase C 16th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03C9 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 03CF |  | Reserved |  |  |  |  |  |
| 03D0 | 17TH HARMONIC | Winding 1 Phase A 17th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03D1 |  | Winding 1 Phase B 17th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03D2 |  | Winding 1 Phase C 17th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03D3 |  | Winding 2 Phase A 17th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03D4 |  | Winding 2 Phase B 17th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03D5 |  | Winding 2 Phase C 17th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03D6 |  | Winding 3 Phase A 17th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03D7 |  | Winding 3 Phase B 17th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03D8 |  | Winding 3 Phase C 17th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03D9 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 03DF |  | Reserved |  |  |  |  |  |
| 03E0 | $\begin{gathered} \text { 18TH } \\ \text { HARMONIC } \end{gathered}$ | Winding 1 Phase A 18th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03E1 |  | Winding 1 Phase B 18th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03E2 |  | Winding 1 Phase C 18th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03E3 |  | Winding 2 Phase A 18th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03E4 |  | Winding 2 Phase B 18th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03E5 |  | Winding 2 Phase C 18th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03E6 |  | Winding 3 Phase A 18th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03E7 |  | Winding 3 Phase B 18th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03E8 |  | Winding 3 Phase C 18th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03E9 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 03EF |  | Reserved |  |  |  |  |  |

Table 8-6: 745 MEMORY MAP (Sheet 13 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | $\begin{gathered} \text { STEP } \\ \text { VALUE } \end{gathered}$ | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 03F0 | $\begin{gathered} \text { 19TH } \\ \text { HARMONIC } \end{gathered}$ | Winding 1 Phase A 19th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03F1 |  | Winding 1 Phase B 19th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03F2 |  | Winding 1 Phase C 19th Harmonic Content | 0.0 to 99.9 | 0.1 | \% fo | F2 | --- |
| 03F3 |  | Winding 2 Phase A 19th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03F4 |  | Winding 2 Phase B 19th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03F5 |  | Winding 2 Phase C 19th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03F6 |  | Winding 3 Phase A 19th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03F7 |  | Winding 3 Phase B 19th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 03F8 |  | Winding 3 Phase C 19th Harmonic Content | 0.0 to 99.9 | 0.1 | \% fo | F2 | --- |
| 03F9 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 03FF |  | Reserved |  |  |  |  |  |
| 0400 | 20TH HARMONIC | Winding 1 Phase A 20th Harmonic Content | 0.0 to 99.9 | 0.1 | \% fo | F2 | --- |
| 0401 |  | Winding 1 Phase B 20th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0402 |  | Winding 1 Phase C 20th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0403 |  | Winding 2 Phase A 20th Harmonic Content | 0.0 to 99.9 | 0.1 | \% fo | F2 | --- |
| 0404 |  | Winding 2 Phase B 20th Harmonic Content | 0.0 to 99.9 | 0.1 | \% fo | F2 | --- |
| 0405 |  | Winding 2 Phase C 20th Harmonic Content | 0.0 to 99.9 | 0.1 | \% fo | F2 | --- |
| 0406 |  | Winding 3 Phase A 20th Harmonic Content | 0.0 to 99.9 | 0.1 | \% fo | F2 | --- |
| 0407 |  | Winding 3 Phase B 20th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0408 |  | Winding 3 Phase C 20th Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0409 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 040F |  | Reserved |  |  |  |  |  |
| 0410 | 21ST HARMONIC | Winding 1 Phase A 21st Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0411 |  | Winding 1 Phase B 21st Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0412 |  | Winding 1 Phase C 21st Harmonic Content | 0.0 to 99.9 | 0.1 | \% fo | F2 | --- |
| 0413 |  | Winding 2 Phase A 21st Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0414 |  | Winding 2 Phase B 21st Harmonic Content | 0.0 to 99.9 | 0.1 | \% fo | F2 | --- |
| 0415 |  | Winding 2 Phase C 21st Harmonic Content | 0.0 to 99.9 | 0.1 | \% fo | F2 | --- |
| 0416 |  | Winding 3 Phase A 21st Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0417 |  | Winding 3 Phase B 21st Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0418 |  | Winding 3 Phase C 21st Harmonic Content | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0419 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 041F |  | Reserved |  |  |  |  |  |

Table 8-6: 745 MEMORY MAP (Sheet 14 of 57)

| $\begin{aligned} & \hline \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | $\begin{gathered} \hline \text { STEP } \\ \text { VALUE } \end{gathered}$ | UNITS | $\begin{array}{\|c\|} \hline \text { FORMAT } \\ \text { CODE } \end{array}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0420 | TOTAL HARMONIC DISTORTION | Winding 1 Phase A Total Harmonic Distortion | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0421 |  | Winding 1 Phase B Total Harmonic Distortion | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0422 |  | Winding 1 Phase C Total Harmonic Distortion | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0423 |  | Winding 2 Phase A Total Harmonic Distortion | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0424 |  | Winding 2 Phase B Total Harmonic Distortion | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0425 |  | Winding 2 Phase C Total Harmonic Distortion | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0426 |  | Winding 3 Phase A Total Harmonic Distortion | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0427 |  | Winding 3 Phase B Total Harmonic Distortion | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0428 |  | Winding 3 Phase C Total Harmonic Distortion | 0.0 to 99.9 | 0.1 | \% f0 | F2 | --- |
| 0429 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 042F |  | Reserved |  |  |  |  |  |
| 0430 | HARMONIC DERATING | Winding 1 Harmonic Derating Factor | 0.00 to 1.00 | 0.01 | --- | F3 | --- |
| 0431 |  | Winding 2 Harmonic Derating Factor | 0.00 to 1.00 | 0.01 | --- | F3 | --- |
| 0432 |  | Winding 3 Harmonic Derating Factor | 0.00 to 1.00 | 0.01 | --- | F3 | --- |
| 0433 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 043F |  | Reserved |  |  |  |  |  |
| 0440 | FREQUENCY | System Frequency | 0.00 to 99.99 | 0.01 | Hz | F3 | --- |
| 0441 |  | Frequency Decay Rate | -9.99 to 9.99 | 0.01 | Hz/s | F6 | --- |
| 0442 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 0444 |  | Reserved |  |  |  |  |  |
| 0445 | TAP CHANGER | Tap Changer Position | 1 to 50 | 1 | --- | F1 | --- |
| 0446 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 0448 |  | Reserved |  |  |  |  |  |
| 0449 | VOLTAGE | System Line-to-Line Voltage | 0.00 to 600.00 | 0.01 | kV | F3 | --- |
| 044A |  | Volts-per-Hertz | 0.00 to 4.00 | 0.01 | V/Hz | F3 | --- |
| 044B |  | Line-to-Ntrl Voltage - Magnitude | 0.00 to 600.00 | 0.01 | kV | F3 | --- |
| 044C |  | Line-to-Ntrl Voltage - Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 |  |
| 044D |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 044F |  | Reserved |  |  |  |  |  |
| 0450 | CURRENT DEMAND | Demand Data Last Clear Date (2 registers) | --- | --- | --- | F23 | --- |
| 0452 |  | Demand Data Last Clear Time (2 registers) | --- | --- | --- | F22 | --- |
| 0454 |  | Winding 1 Phase A Current Demand | --- | --- | A | F78 | --- |
| 0455 |  | Winding 1 Phase B Current Demand | --- | --- | A | F78 | --- |

Table 8-6: 745 MEMORY MAP (Sheet 15 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | $\begin{gathered} \hline \text { STEP } \\ \text { VALUE } \end{gathered}$ | UNITS | $\begin{aligned} & \hline \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0456 |  | Winding 1 Phase C Current Demand | --- | --- | A | F78 | --- |
| 0457 |  | Winding 1 Max Current Demand | --- | --- | A | F78 | 0 A |
| 0458 |  | Winding 1 Max Current Demand Phase | --- | --- | --- | F18 | $0=$ phase A |
| 0459 |  | Wdg 1 Max Current Demand Date (2 registers) | --- | --- | --- | F23 | Jan 011996 |
| 045B |  | Wdg 1 Max Current Demand Time (2 registers) | --- | --- | --- | F22 | 00:00:00.000 |
| 045D |  | Winding 2 Phase A Current Demand | --- | --- | A | F79 | --- |
| 045E |  | Winding 2 Phase B Current Demand | --- | --- | A | F79 | --- |
| 045F |  | Winding 2 Phase C Current Demand | --- | --- | A | F79 | --- |
| 0460 |  | Winding 2 Max Current Demand | --- | --- | A | F79 | 0 A |
| 0461 |  | Winding 2 Max Current Demand Phase | --- | --- | --- | F18 | $0=$ phase A |
| 0462 |  | Wdg 2 Max Current Demand Date (2 registers) | --- | --- | --- | F23 | Jan 011996 |
| 0464 |  | Wdg 2 Max Current Demand Time (2 registers) | --- | --- | --- | F22 | 00:00:00.000 |
| 0466 |  | Winding 3 Phase A Current Demand | --- | --- | A | F80 | --- |
| 0467 |  | Winding 3 Phase B Current Demand | --- | --- | A | F80 | --- |
| 0468 |  | Winding 3 Phase C Current Demand | --- | --- | A | F80 | --- |
| 0469 |  | Winding 3 Max Current Demand | --- | --- | A | F80 | 0 A |
| 046A |  | Winding 3 Max Current Demand Phase | --- | --- | --- | F18 | $0=$ phase A |
| 046B |  | Wdg 3 Max Current Demand Date (2 registers) | --- | --- | --- | F23 | Jan 011996 |
| 046D |  | Wdg 3 Max Current Demand Time (2 registers) | --- | --- | --- | F22 | 00:00:00.000 |
| 046F |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 0477 |  | Reserved |  |  |  |  |  |
| 0478 | AMBIENT TEMP | Ambient Temperature | -51 to 251 | 1 | ${ }^{\circ} \mathrm{C}$ | F4 | --- |
| 0479 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 047F |  | Reserved |  |  |  |  |  |
| 0480 | LOSS-OF-LIFE | Hottest-spot Winding Temperature | -50 to 300 | 1 | ${ }^{\circ} \mathrm{C}$ | F4 | --- |
| 0481 |  | Total Accumulated Loss-of-Life (2 registers) | 0 to 200000 | 1 | hours | F7 | 0 hours |
| 0483 |  | Aging Factor | 0.0 to 2000.0 | 0.1 | - | F2 | - |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 0487 |  | Reserved |  |  |  |  |  |
| 0488 | ANALOG INPUT | Analog Input | 0 to 65000 | 1 | <Units> | F1 | --- |
| 0489 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 048F |  | Reserved |  |  |  |  |  |
| 0490 | POWER | W1 Real Power | -32000 to 32000 | --- | MW | F93 | --- |
| 0491 |  | W1 Reactive Power | -32000 to 32000 | --- | Mvar | F93 | --- |
| 0492 |  | W1 Apparent Power | 0 to 32000 | --- | MVA | F93 | --- |

Table 8-6: 745 MEMORY MAP (Sheet 16 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP | UNITS | $\begin{aligned} & \hline \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0493 |  | W1 Power Factor | -0.00 to 1.00 | 0.01 | --- | F3 | --- |
| 0494 |  | W2 Real Power | -32000 to 32000 | --- | MW | F94 | --- |
| 0495 |  | W2 Reactive Power | -32000 to 32000 | --- | Mvar | F94 | --- |
| 0496 |  | W2 Apparent Power | 0 to 32000 | --- | MVA | F94 | --- |
| 0497 |  | W2 Power Factor | -0.00 to 1.00 | 0.01 | --- | F3 | --- |
| 0498 |  | W3 Real Power | -32000 to 32000 | --- | MW | F95 | --- |
| 0499 |  | W3 Reactive Power | -32000 to 32000 | --- | Mvar | F95 | --- |
| 049A |  | W3 Apparent Power | 0 to 32000 | --- | MVA | F95 | --- |
| 049B |  | W3 Power Factor | -0.00 to 1.00 | 0.01 | --- | F3 | --- |
| 0500 | ENERGY | Energy Clear Date | --- | --- | --- | F23 | --- |
| 0502 |  | Energy Clear Time | --- | --- | --- | F22 | --- |
| 0504 |  | W1 Source Watthours | --- | --- | MWh | F96 | --- |
| 0506 |  | W1 Load Watthours | --- | --- | MWh | F96 | --- |
| 0508 |  | W1 Source Varhours | --- | --- | Mvarh | F96 | --- |
| 050A |  | W1 Load Varhours | --- | --- | Mvarh | F96 | --- |
| 050C |  | W2 Source Watthours | --- | --- | MWh | F97 | --- |
| 050E |  | W2 Load Watthours | --- | --- | MWh | F97 | --- |
| 0510 |  | W2 Source Varhours | --- | --- | Mvarh | F97 | --- |
| 0512 |  | W2 Load Varhours | --- | --- | Mvarh | F97 | --- |
| 0514 |  | W3 Source Watthours | --- | --- | MWh | F98 | --- |
| 0516 |  | W3 Load Watthours | --- | --- | MWh | F98 | --- |
| 0518 |  | W3 Source Varhours | --- | --- | Mvarh | F98 | --- |
| 051A |  | W3 Load Varhours | --- | --- | Mvarh | F98 | --- |
| 07FF |  | Reserved |  |  |  |  |  |
| Event Recorder (Addresses 0800 to OFFF) - Read Only |  |  |  |  |  |  |  |
| 0800 | EVENT RECORDER | Event Recorder Last Clear Date (2 registers) | --- | --- | --- | F23 | --- |
| 0802 |  | Event Recorder Last Clear Time (2 registers) | --- | --- | --- | F22 | --- |
| 0804 |  | Total Number of Events Since Last Clear | 0 to 65535 | 1 | --- | F1 | 0 |
| 0805 |  | Event Record Selector Index (XX) [read/write] | 1 to 65535 | 1 | --- | F1 | 1 = Event 1 |
| 0806 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 080F |  | Reserved |  |  |  |  |  |
| 0810 | MAXIMUM EVENT CURRENT | Maximum Event Winding 1 Phase A Current | --- | --- | A | F78 | 0 A |
| 0811 |  | Maximum Event Winding 1 Phase B Current | --- | --- | A | F78 | 0 A |
| 0812 |  | Maximum Event Winding 1 Phase C Current | --- | --- | A | F78 | 0 A |
| 0813 |  | Maximum Event Winding 1 Ground Current | --- | --- | A | F81 | 0 A |
| 0814 |  | Maximum Event Winding 2 Phase A Current | --- | --- | A | F79 | 0 A |
| 0815 |  | Maximum Event Winding 2 Phase B Current | --- | --- | A | F79 | 0 A |

Table 8-6: 745 MEMORY MAP (Sheet 17 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP VALUE | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0816 |  | Maximum Event Winding 2 Phase C Current | --- | --- | A | F79 | 0 A |
| 0817 |  | Maximum Event Winding 2 Ground Current | --- | --- | A | F82 | 0 A |
| 0818 |  | Maximum Event Winding 3 Phase A Current | --- | --- | A | F80 | 0 A |
| 0819 |  | Maximum Event Winding 3 Phase B Current | --- | --- | A | F80 | 0 A |
| 081A |  | Maximum Event Winding 3 Phase C Current | --- | --- | A | F80 | 0 A |
| 081B |  | Maximum Event Winding 3 Ground Current | --- | --- | A | F83 | 0 A |
| 081C |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 082F |  | Reserved |  |  |  |  |  |
| 0830 | EVENTRECORDERDATA | Event XX Date of Event (2 registers) | --- | --- | --- | F23 | --- |
| 0832 |  | Event XX Time of Event (2 registers) | --- | --- | --- | F22 | --- |
| 0834 |  | Event XX Cause of Event | --- | --- | --- | F24 | --- |
| 0835 |  | Event XX Winding 1 Phase A Current Magnitude | --- | --- | A | F78 | 0 A |
| 0836 |  | Event XX Winding 1 Phase A Current Angle | 0 | --- | ${ }^{\circ} \mathrm{Lag}$ | F1 | $0^{\circ} \mathrm{Lag}$ |
| 0837 |  | Event XX Winding 1 Phase B Current Magnitude | --- | --- | A | F78 | 0 A |
| 0838 |  | Event XX Winding 1 Phase B Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | $0^{\circ} \mathrm{Lag}$ |
| 0839 |  | Event XX Winding 1 Phase C Current Magnitude | --- | --- | A | F78 | 0 A |
| 083A |  | Event XX Winding 1 Phase C Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | $0^{\circ}$ Lag |
| 083B |  | Event XX Winding 1 Ground Current Magnitude | --- | --- | A | F81 | 0 A |
| 083C |  | Event XX Winding 1 Ground Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | $0^{\circ} \mathrm{Lag}$ |
| 083D |  | Event XX Winding 1 Phase A 2nd Harmonic | 0.0 to 99.9 | 0.1 | \% f0 | F2 | 0\% fo |
| 083E |  | Event XX Winding 1 Phase B 2nd Harmonic | 0.0 to 99.9 | 0.1 | \% f0 | F2 | $0 \% f 0$ |
| 083F |  | Event XX Winding 1 Phase C 2nd Harmonic | 0.0 to 99.9 | 0.1 | \% f0 | F2 | $0 \% f 0$ |
| 0840 |  | Event XX Winding 1 Phase A 5th Harmonic | 0.0 to 99.9 | 0.1 | \% f0 | F2 | $0 \%$ fo |
| 0841 |  | Event XX Winding 1 Phase B 5th Harmonic | 0.0 to 99.9 | 0.1 | \% f0 | F2 | 0\% fo |
| 0842 |  | Event XX Winding 1 Phase C 5th Harmonic | 0.0 to 99.9 | 0.1 | \% f0 | F2 | 0\% fo |
| 0843 |  | Event XX Winding 2 Phase A Current Magnitude | --- | --- | A | F79 | 0 A |
| 0844 |  | Event XX Winding 2 Phase A Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | $0^{\circ} \mathrm{Lag}$ |
| 0845 |  | Event XX Winding 2 Phase B Current Magnitude | --- | --- | A | F79 | 0 A |
| 0846 |  | Event XX Winding 2 Phase B Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | $0^{\circ} \mathrm{Lag}$ |
| 0847 |  | Event XX Winding 2 Phase C Current Magnitude | --- | --- | A | F79 | 0 A |
| 0848 |  | Event XX Winding 2 Phase C Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | $0^{\circ}$ Lag |
| 0849 |  | Event XX Winding 2 Ground Current Magnitude | --- | --- | A | F82 | 0 A |
| 084A |  | Event XX Winding 2 Ground Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | $0^{\circ}$ Lag |
| 084B |  | Event XX Winding 2 Phase A 2nd Harmonic | 0.0 to 99.9 | 0.1 | \% f0 | F2 | 0\% fo |
| 084C |  | Event XX Winding 2 Phase B 2nd Harmonic | 0.0 to 99.9 | 0.1 | \% f0 | F2 | 0\% fo |
| 084D |  | Event XX Winding 2 Phase C 2nd Harmonic | 0.0 to 99.9 | 0.1 | \% f0 | F2 | $0 \% f 0$ |
| 084E |  | Event XX Winding 2 Phase A 5th Harmonic | 0.0 to 99.9 | 0.1 | \% f0 | F2 | 0\% fo |

Table 8-6: 745 MEMORY MAP (Sheet 18 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP VALUE | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 084F |  | Event XX Winding 2 Phase B 5th Harmonic | 0.0 to 99.9 | 0.1 | \% f0 | F2 | 0\% fo |
| 0850 |  | Event XX Winding 2 Phase C 5th Harmonic | 0.0 to 99.9 | 0.1 | \% f0 | F2 | 0\% fo |
| 0851 |  | Event XX Winding 3 Phase A Current Magnitude | --- | --- | A | F80 | 0 A |
| 0852 |  | Event XX Winding 3 Phase A Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | $0^{\circ}$ Lag |
| 0853 |  | Event XX Winding 3 Phase B Current Magnitude | --- | -- | A | F80 | 0 A |
| 0854 |  | Event XX Winding 3 Phase B Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | $0^{\circ} \mathrm{Lag}$ |
| 0855 |  | Event XX Winding 3 Phase C Current Magnitude | --- | --- | A | F80 | 0 A |
| 0856 |  | Event XX Winding 3 Phase C Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | $0^{\circ} \mathrm{Lag}$ |
| 0857 |  | Event XX Winding 3 Ground Current Magnitude | --- | --- | A | F83 | 0 A |
| 0858 |  | Event XX Winding 3 Ground Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | $0^{\circ} \mathrm{Lag}$ |
| 0859 |  | Event XX Winding 3 Phase A 2nd Harmonic | 0.0 to 99.9 | 0.1 | \% f0 | F2 | 0\% fo |
| 085A |  | Event XX Winding 3 Phase B 2nd Harmonic | 0.0 to 99.9 | 0.1 | \% f0 | F2 | 0\% fo |
| 085B |  | Event XX Winding 3 Phase C 2nd Harmonic | 0.0 to 99.9 | 0.1 | \% f0 | F2 | $0 \% f 0$ |
| 085C |  | Event XX Winding 3 Phase A 5th Harmonic | 0.0 to 99.9 | 0.1 | \% f0 | F2 | $0 \%$ fo |
| 085D |  | Event XX Winding 3 Phase B 5th Harmonic | 0.0 to 99.9 | 0.1 | \% f0 | F2 | $0 \% f 0$ |
| 085E |  | Event XX Winding 3 Phase C 5th Harmonic | 0.0 to 99.9 | 0.1 | \% f0 | F2 | 0\% fo |
| 085F |  | Event XX Phase A Differential Current | 0.00 to 655.35 | 0.01 | $\times$ CT | F3 | $0.00 \times \mathrm{CT}$ |
| 0860 |  | Event XX Phase B Differential Current | 0.00 to 655.35 | 0.01 | $\times$ CT | F3 | $0.00 \times$ CT |
| 0861 |  | Event XX Phase C Differential Current | 0.00 to 655.35 | 0.01 | $\times$ CT | F3 | $0.00 \times$ CT |
| 0862 |  | Event XX Phase A Restraint Current | 0.00 to 655.35 | 0.01 | $\times$ CT | F3 | $0.00 \times \mathrm{CT}$ |
| 0863 |  | Event XX Phase B Restraint Current | 0.00 to 655.35 | 0.01 | $\times$ CT | F3 | $0.00 \times$ CT |
| 0864 |  | Event XX Phase C Restraint Current | 0.00 to 655.35 | 0.01 | $\times$ CT | F3 | $0.00 \times \mathrm{CT}$ |
| 0865 |  | Event XX System Frequency | 0.00 to 99.99 | 0.01 | Hz | F3 | 0.00 Hz |
| 0866 |  | Event XX Frequency Decay Rate | -9.99 to 9.99 | 0.01 | Hz/s | F6 | $0.00 \mathrm{~Hz} / \mathrm{s}$ |
| 0867 |  | Event XX Tap Changer Position | 1 to 50 | 1 | --- | F1 | $0=\mathrm{n} / \mathrm{a}$ |
| 0868 |  | Event XX Volts-per-Hertz | 0.00 to 4.00 | 0.01 | V/Hz | F3 | $0.00 \mathrm{~V} / \mathrm{Hz}$ |
| 0869 |  | Event XX Ambient Temperature | -51 to 251 | 1 | ${ }^{\circ} \mathrm{C}$ | F4 | $0^{\circ} \mathrm{C}$ |
| 086A |  | Event XX Analog Input | 0 to 65000 | 1 | <Units> | F1 | 0 <Units> |
| 086B |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| OFFF |  | Reserved |  |  |  |  |  |
| Common Setpoints (Addresses 1000 to 1FFF) - Read / Write |  |  |  |  |  |  |  |
| 1000 | 745 SETUP | 745 Setpoints | --- | --- | --- | F29 | $0=$ Not Prog'd |
| 1001 |  | Encrypted Passcode (4 registers) [read only] | --- | --- | --- | F33 | "AIKFBAIK" |
| 1005 |  | Beeper | --- | --- | --- | F30 | 1 = Enabled |
| 1006 |  | Flash Message Time | 0.5 to 10.0 | 0.5 | S | F2 | $40=4.0 \mathrm{~s}$ |
| 1007 |  | Default Message Timeout | 10 to 900 | 1 | S | F1 | 300 s |
| 1008 |  | Default Message Intensity | 0 to 100 | 25 | \% | F1 | 25\% |

Table 8-6: 745 MEMORY MAP (Sheet 19 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | $\begin{aligned} & \text { STEP } \\ & \text { VALUE } \end{aligned}$ | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1009 |  | Slave Address | 1 to 254 | 1 | --- | F1 | 254 |
| 100A |  | COM1 Baud Rate | --- | --- | --- | F31 | $5=19200 \mathrm{Bd}$ |
| 100B |  | COM1 Parity | --- | --- | --- | F73 | 0 = None |
| 100C |  | COM1 Communication Hardware | --- | --- | --- | F17 | $0=$ RS485 |
| 100D |  | COM2 Baud Rate | --- | --- | --- | F31 | 5 = 19200 Bd |
| 100E |  | COM2 Parity | --- | --- | --- | F73 | 0 = None |
| 100F |  | Front Port Baud Rate | --- | --- | --- | F31 | $5=19200 \mathrm{Bd}$ |
| 1010 |  | Front Port Parity | --- | --- | --- | F73 | 0 = None |
| 1011 |  | Local Reset Block | --- | --- | --- | F87 | 0 = Disabled |
| 1012 |  | Remote Reset Signal | --- | --- | --- | F88 | 0 = Disabled |
| 1013 |  | IRIG-B Signal Type | --- | --- | --- | F84 | 0 = None |
| 1014 |  | Active Setpoint Group | --- | --- | --- | F60 | 0 = Group 1 |
| 1015 |  | Edit Setpoint Group | --- | --- | --- | F74 | 4 = Active Grp |
| 1016 |  | Setpoint Group 2 Activate Signal | --- | --- | --- | F88 | 0 = Disabled |
| 1017 |  | Setpoint Group 3 Activate Signal | --- | --- | --- | F88 | 0 = Disabled |
| 1018 |  | Setpoint Group 4 Activate Signal | --- | --- | --- | F88 | 0 = Disabled |
| 1019 |  | Clear Event Recorder Signal | --- | --- | --- | F88 | 0 = Disabled |
| 101A |  | DNP port | --- | --- | --- | F99 | $0=$ None |
| 101B |  | Reserved |  |  |  |  |  |
| 101F |  | Reserved |  |  |  |  |  |
| 1020 | DEFAULT MESSAGES | No. Of Default Messages Selected [read only] | 0 to 30 | 1 | --- | F1 | 1 |
| 1021 |  | Default Message \#1 (2 registers) | --- | --- | --- | F32 | --- |
| 1023 |  | Default Message \#2 (2 registers) | --- | --- | --- | F32 | --- |
| 1025 |  | Default Message \#3 (2 registers) | --- | --- | --- | F32 | --- |
| 1027 |  | Default Message \#4 (2 registers) | --- | --- | --- | F32 | --- |
| 1029 |  | Default Message \#5 (2 registers) | --- | --- | --- | F32 | --- |
| 102B |  | Default Message \#6 (2 registers) | --- | --- | --- | F32 | --- |
| 102D |  | Default Message \#7 (2 registers) | --- | --- | --- | F32 | --- |
| 102F |  | Default Message \#8 (2 registers) | --- | --- | --- | F32 | --- |
| 1031 |  | Default Message \#9 (2 registers) | --- | --- | --- | F32 | --- |
| 1033 |  | Default Message \#10 (2 registers) | --- | --- | --- | F32 | --- |
| 1035 |  | Default Message \#11 (2 registers) | --- | --- | --- | F32 | --- |
| 1037 |  | Default Message \#12 (2 registers) | --- | --- | --- | F32 | --- |
| 1039 |  | Default Message \#13 (2 registers) | --- | --- | --- | F32 | --- |
| 103B |  | Default Message \#14 (2 registers) | --- | --- | --- | F32 | --- |
| 103D |  | Default Message \#15 (2 registers) | --- | --- | --- | F32 | --- |
| 103F |  | Default Message \#16 (2 registers) | --- | --- | --- | F32 | --- |
| 1041 |  | Default Message \#17 (2 registers) | --- | --- | --- | F32 | --- |

Table 8-6: 745 MEMORY MAP (Sheet 20 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | $\begin{aligned} & \text { STEP } \\ & \text { VALUE } \end{aligned}$ | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1043 |  | Default Message \#18 (2 registers) | --- | --- | --- | F32 | --- |
| 1045 |  | Default Message \#19 (2 registers) | --- | --- | --- | F32 | --- |
| 1047 |  | Default Message \#20 (2 registers) | --- | --- | --- | F32 | --- |
| 1049 |  | Default Message \#21 (2 registers) | --- | --- | --- | F32 | --- |
| 104B |  | Default Message \#22 (2 registers) | --- | --- | --- | F32 | --- |
| 104D |  | Default Message \#23 (2 registers) | --- | --- | --- | F32 | --- |
| 104F |  | Default Message \#24 (2 registers) | --- | --- | --- | F32 | --- |
| 1051 |  | Default Message \#25 (2 registers) | --- | --- | --- | F32 | --- |
| 1053 |  | Default Message \#26 (2 registers) | --- | --- | --- | F32 | --- |
| 1055 |  | Default Message \#27 (2 registers) | --- | --- | --- | F32 | --- |
| 1057 |  | Default Message \#28 (2 registers) | --- | --- | --- | F32 | --- |
| 1059 |  | Default Message \#29 (2 registers) | --- | --- | --- | F32 | --- |
| 105B |  | Default Message \#30 (2 registers) | --- | --- | --- | F32 | --- |
| 105D |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 105F |  | Reserved |  |  |  |  |  |
| 1060 | SCRATCHPAD | Scratchpad Message 1 (20 registers) | --- | --- | --- | F33 | "Text 1" |
| 1074 |  | Scratchpad Message 2 (20 registers) | --- | --- | --- | F33 | "Text 2" |
| 1088 |  | Scratchpad Message 3 (20 registers) | --- | --- | --- | F33 | "Text 3" |
| 109C |  | Scratchpad Message 4 (20 registers) | --- | --- | --- | F33 | "Text 4" |
| 10B0 |  | Scratchpad Message 5 (20 registers) | --- | --- | --- | F33 | "Text 5" |
| 10C4 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 10CF |  | Reserved |  |  |  |  |  |
| 10D0 | DNP | Port Used For DNP | --- | --- | --- | F99 | 0 = None |
| 10D1 |  | Include User Map Points (Point Mapping) | --- | --- | --- | F30 | 1 = Enabled |
| 10D2 |  | Transmission Delay | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 10D3 |  | Data Link Confirmation Mode | --- | --- | --- | F102 | $0=$ Never |
| 10D4 |  | Data Link Confirmation Timeout | 1 to 65000 | 1 | ms | F1 | 1000 ms |
| 10D5 |  | Data Link Confirmation Retries | 0 to 100 | 1 | --- | F1 | 3 |
| 10D6 |  | Select/Operate Arm Timer Duration | 1 to 65000 | 1 | ms | F1 | 10000 ms |
| 10D7 |  | Write Time Interval | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 10D8 |  | Inhibit Cold Restart | --- | --- | --- | F30 | 0 = Disabled |
| 10D9 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 10FF |  | Reserved |  |  |  |  |  |
| 1100 | TRANSFORMER | Nominal Frequency | 50 to 60 | 10 | Hz | F1 | 60 Hz |
| 1101 |  | Phase Sequence | --- | --- | --- | F27 | $0=A B C$ |

Table 8-6: 745 MEMORY MAP (Sheet 21 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP VALUE | UNITS | $\begin{aligned} & \hline \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1102 |  | Transformer Type | --- | --- | --- | F28 | $3=\mathrm{Y} / \mathrm{d} 30^{\circ}$ |
| 1103 |  | Rated Winding Temperature Rise | --- | --- | --- | F37 | $1=65^{\circ} \mathrm{C}$ (oil) |
| 1104 |  | Type of Cooling: Oil Immersed | --- | --- | --- | F39 | $0=0 \mathrm{~A}$ |
| 1105 |  | Load Loss at Rated Load (2 registers) | 1 to 20000 | 1 | kW | F101 | 1250 kW |
| 1107 |  | No-Load Loss | 1 to 20000 | 1 | kW | F90 | 1250 $=125.0 \mathrm{~kW}$ |
| 1108 |  | Top Oil Rise Over Ambient (at rated load) | 1 to 200 | 1 | ${ }^{\circ} \mathrm{C}$ | F1 | $10^{\circ} \mathrm{C}$ |
| 1109 |  | Transformer Thermal Capacity | 0.00 to 200.00 | 0.01 | kWh/ ${ }^{\circ} \mathrm{C}$ | F3 | $100=1.00 \mathrm{kWh} /{ }^{\circ} \mathrm{C}$ |
| 110A |  | Winding Time Constant: Oil-Immersed | 0.25 to 15.00 | 0.01 | minutes | F3 | $200=2.00 \mathrm{~min}$ |
| 110B |  | Type of Cooling: Dry | - | - | - | F100 | 0=sealed self-cooled |
| 110C |  | Thermal Time Constant: Dry | 0.25 to 15.00 | 0.01 | minutes | F3 | $200=2.00 \mathrm{~min}$ |
| 110D |  | Set Initial Accumulated Loss of Life | 0 to 20000 | 1 | hrs $\times 10$ | F1 | 0 hours |
| 110E |  | Frequency Tracking | --- | --- | --- | F30 | 1 = Enabled |
| 110F |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 111F |  | Reserved |  |  |  |  |  |
| 1120 | WINDING 1 | Winding 1 Nominal Phase-to-Phase Voltage | 1 to 20000 | --- | kV | F90 | 220.0 kV |
| 1121 |  | Winding 1 Rated Load | 1 to 20000 | --- | MVA | F90 | $1000=100 \mathrm{MVA}$ |
| 1122 |  | Winding 1 Phase CT Primary | 1 to 50000 | 1 | :1 or :5 A | F1 | 500 A |
| 1123 |  | Winding 1 Ground CT Primary | 1 to 50000 | 1 | :1 or :5 A | F1 | 500 A |
| 1124 |  | Winding 1 Series 3-Phase Resistance | 0.001 to 50.000 | 0.001 | $\Omega$ | F53 | $10700=10.7 \Omega$ |
| 1125 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 112F |  | Reserved |  |  |  |  |  |
| 1130 | WINDING 2 | Winding 2 Nominal Phase-to-Phase Voltage | 1 to 20000 | --- | kV | F90 | $690=69.0 \mathrm{kV}$ |
| 1131 |  | Winding 2 Rated Load | 1 to 20000 | --- | MVA | F90 | $1000=100 \mathrm{MVA}$ |
| 1132 |  | Winding 2 Phase CT Primary | 1 to 50000 | 1 | :1 or :5 A | F1 | 1500 A |
| 1133 |  | Winding 2 Ground CT Primary | 1 to 50000 | 1 | :1 or :5 A | F1 | 1500 A |
| 1134 |  | Winding 2 Series 3-Phase Resistance | 0.001 to 50.000 | 0.001 | $\Omega$ | F53 | $2100=2.100 \Omega$ |
| 1135 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 113F |  | Reserved |  |  |  |  |  |
| 1140 | WINDING 3 | Winding 3 Nominal Phase-to-Phase Voltage | 1 to 20000 | --- | kV | F90 | $690=69.0 \mathrm{kV}$ |
| 1141 |  | Winding 3 Rated Load | 1 to 20000 | --- | MVA | F90 | $1000=100 \mathrm{MVA}$ |
| 1142 |  | Winding 3 Phase CT Primary | 1 to 50000 | 1 | :1 or : 5 A | F1 | 1500 A |
| 1143 |  | Winding 3 Ground CT Primary | 1 to 50000 | 1 | :1 or :5 A | F1 | 1500 A |
| 1144 |  | Winding 3 Series 3-Phase Resistance | 0.001 to 50.000 | 0.001 | $\Omega$ | F53 | $2100=2.100 \Omega$ |
| 1145 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |

Table 8-6: 745 MEMORY MAP (Sheet 22 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 115F |  | Reserved |  |  |  |  |  |
| 1160 | ONLOAD TAP CHANGER | Winding With Tap Changer | --- | --- | --- | F40 | $0=$ None |
| 1161 |  | Number of Tap Positions | 2 to 50 | 1 | --- | F1 | 33 |
| 1162 |  | Minimum Tap Position Voltage | 1 to 20000 | --- | kV | F90 | $610=61.0 \mathrm{kV}$ |
| 1163 |  | Voltage Increment Per Tap | 1 to 2000 | --- | kV | F91 | $50=0.50 \mathrm{kV}$ |
| 1164 |  | Resistance Increment Per Tap | 10 to 500 | 1 | $\Omega$ | F1 | $33=33 \Omega$ |
| 1165 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 1167 |  | Reserved |  |  |  |  |  |
| 1168 | HARMONICS | Harmonic Derating Estimation | --- | --- | --- | F30 | 0 = Disabled |
| 1169 |  | THD Minimum Harmonic Number | --- | --- | --- | F92 | 0 = 2nd |
| 116A |  | THD Maximum Harmonic Number | --- | --- | --- | F92 | $19=21 \mathrm{st}$ |
| 116B |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 116F |  | Reserved |  |  |  |  |  |
| 1170 | FLEXCURVES | FlexCurve A Delay at $1.03 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1171 |  | FlexCurve A Delay at $1.05 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1172 |  | FlexCurve A Delay at $1.10 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1173 |  | FlexCurve A Delay at $1.20 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1174 |  | FlexCurve A Delay at $1.30 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1175 |  | FlexCurve A Delay at $1.40 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1176 |  | FlexCurve A Delay at $1.50 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1177 |  | FlexCurve A Delay at $1.60 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1178 |  | FlexCurve A Delay at $1.70 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1179 |  | FlexCurve A Delay at $1.80 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 117A |  | FlexCurve A Delay at $1.90 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 117B |  | FlexCurve A Delay at $2.00 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 117C |  | FlexCurve A Delay at $2.10 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 117D |  | FlexCurve A Delay at $2.20 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 117E |  | FlexCurve A Delay at $2.30 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 117F |  | FlexCurve A Delay at $2.40 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1180 |  | FlexCurve A Delay at $2.50 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1181 |  | FlexCurve A Delay at $2.60 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1182 |  | FlexCurve A Delay at $2.70 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1183 |  | FlexCurve A Delay at $2.80 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1184 |  | FlexCurve A Delay at $2.90 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1185 |  | FlexCurve A Delay at $3.00 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1186 |  | FlexCurve A Delay at $3.10 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |

Table 8-6: 745 MEMORY MAP (Sheet 23 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP VALUE | UNITS | $\begin{array}{\|l\|} \hline \text { FORMAT } \\ \text { CODE } \end{array}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1187 |  | FlexCurve A Delay at $3.20 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1188 |  | FlexCurve A Delay at $3.30 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1189 |  | FlexCurve A Delay at $3.40 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 118A |  | FlexCurve A Delay at $3.50 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 118B |  | FlexCurve A Delay at $3.60 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 118C |  | FlexCurve A Delay at $3.70 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 118D |  | FlexCurve A Delay at $3.80 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 118E |  | FlexCurve A Delay at $3.90 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 118F |  | FlexCurve A Delay at $4.00 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1190 |  | FlexCurve A Delay at $4.10 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1191 |  | FlexCurve A Delay at $4.20 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1192 |  | FlexCurve A Delay at $4.30 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1193 |  | FlexCurve A Delay at $4.40 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1194 |  | FlexCurve A Delay at $4.50 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1195 |  | FlexCurve A Delay at $4.60 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1196 |  | FlexCurve A Delay at $4.70 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1197 |  | FlexCurve A Delay at $4.80 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1198 |  | FlexCurve A Delay at $4.90 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1199 |  | FlexCurve A Delay at $5.00 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 119A |  | FlexCurve A Delay at $5.10 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 119B |  | FlexCurve A Delay at $5.20 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 119 C |  | FlexCurve A Delay at $5.30 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 119D |  | FlexCurve A Delay at $5.40 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 119E |  | FlexCurve A Delay at $5.50 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 119F |  | FlexCurve A Delay at $5.60 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11A0 |  | FlexCurve A Delay at $5.70 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11A1 |  | FlexCurve A Delay at $5.80 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11A2 |  | FlexCurve A Delay at $5.90 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11A3 |  | FlexCurve A Delay at $6.00 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11A4 |  | FlexCurve A Delay at $6.50 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11A5 |  | FlexCurve A Delay at $7.00 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11A6 |  | FlexCurve A Delay at $7.50 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11A7 |  | FlexCurve A Delay at $8.00 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11A8 |  | FlexCurve A Delay at $8.50 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11A9 |  | FlexCurve A Delay at $9.00 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11AA |  | FlexCurve A Delay at $9.50 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11 AB |  | FlexCurve A Delay at $10.0 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11AC |  | FlexCurve A Delay at $10.5 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |

Table 8-6: 745 MEMORY MAP (Sheet 24 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | $\begin{gathered} \hline \text { STEP } \\ \text { VALUE } \end{gathered}$ | UNITS | $\begin{aligned} & \hline \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11AD |  | FlexCurve A Delay at $11.0 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11AE |  | FlexCurve A Delay at $11.5 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11AF |  | FlexCurve A Delay at $12.0 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11B0 |  | FlexCurve A Delay at $12.5 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11B1 |  | FlexCurve A Delay at $13.0 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11B2 |  | FlexCurve A Delay at $13.5 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11B3 |  | FlexCurve A Delay at $14.0 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11B4 |  | FlexCurve A Delay at $14.5 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11B5 |  | FlexCurve A Delay at $15.0 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11B6 |  | FlexCurve A Delay at $15.5 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| $11 \mathrm{B7}$ |  | FlexCurve A Delay at $16.0 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 1188 |  | FlexCurve A Delay at $16.5 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11B9 |  | FlexCurve A Delay at $17.0 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11BA |  | FlexCurve A Delay at $17.5 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11BB |  | FlexCurve A Delay at $18.0 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11BC |  | FlexCurve A Delay at $18.5 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11BD |  | FlexCurve A Delay at $19.0 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11BE |  | FlexCurve A Delay at $19.5 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11BF |  | FlexCurve A Delay at $20.0 \times$ PKP | 0 to 65000 | 1 | ms | F1 | 0 ms |
| 11C0 |  | FlexCurve B (80 registers: see FlexCurve A) | --- | --- | --- | --- | --- |
| 1210 |  | FlexCurve C (80 registers: see FlexCurve A) | --- | --- | --- | --- | --- |
| 1260 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 126F |  | Reserved |  |  |  |  |  |
| 1270 | VOLTAGE INPUT | Voltage Sensing | --- | --- | --- | F30 | 0 = Disabled |
| 1271 |  | Voltage Input Parameter | --- | --- | --- | F63 | 0 = W1 Van |
| 1272 |  | Nominal VT Secondary Voltage | 60.0 to 120.0 | 0.1 | V | F2 | $1200=120.0 \mathrm{~V}$ |
| 1273 |  | VT Ratio | 1 to 5000 | 1 | :1 | F1 | 1000:1 |
| 1274 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 127F |  | Reserved |  |  |  |  |  |
| 1280 | AMBIENT TEMP | Ambient Temperature Sensing | --- | --- | --- | F30 | 0 = Disabled |
| 1281 |  | Ambient RTD Type | --- | --- | --- | F41 | $0=100 \mathrm{~W} \mathrm{Pt}$ |
| 1282 |  | Average Ambient Temperature for January | -50 to 125 | 1 | ${ }^{\circ} \mathrm{C}$ | F4 | $20^{\circ} \mathrm{C}$ |
| 1283 |  | Average Ambient Temperature for February | -50 to 125 | 1 | ${ }^{\circ} \mathrm{C}$ | F4 | $20^{\circ} \mathrm{C}$ |
| 1284 |  | Average Ambient Temperature for March | -50 to 125 | 1 | ${ }^{\circ} \mathrm{C}$ | F4 | $20^{\circ} \mathrm{C}$ |
| 1285 |  | Average Ambient Temperature for April | -50 to 125 | 1 | ${ }^{\circ} \mathrm{C}$ | F4 | $20^{\circ} \mathrm{C}$ |
| 1286 |  | Average Ambient Temperature for May | -50 to 125 | 1 | ${ }^{\circ} \mathrm{C}$ | F4 | $20^{\circ} \mathrm{C}$ |

Table 8-6: 745 MEMORY MAP (Sheet 25 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP <br> VALUE | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1287 |  | Average Ambient Temperature for June | -50 to 125 | 1 | ${ }^{\circ} \mathrm{C}$ | F4 | $20^{\circ} \mathrm{C}$ |
| 1288 |  | Average Ambient Temperature for July | -50 to 125 | 1 | ${ }^{\circ} \mathrm{C}$ | F4 | $20^{\circ} \mathrm{C}$ |
| 1289 |  | Average Ambient Temperature for August | -50 to 125 | 1 | ${ }^{\circ} \mathrm{C}$ | F4 | $20^{\circ} \mathrm{C}$ |
| 128A |  | Average Ambient Temperature for September | -50 to 125 | 1 | ${ }^{\circ} \mathrm{C}$ | F4 | $20^{\circ} \mathrm{C}$ |
| 128B |  | Average Ambient Temperature for October | -50 to 125 | 1 | ${ }^{\circ} \mathrm{C}$ | F4 | $20^{\circ} \mathrm{C}$ |
| 128C |  | Average Ambient Temperature for November | -50 to 125 | 1 | ${ }^{\circ} \mathrm{C}$ | F4 | $20^{\circ} \mathrm{C}$ |
| 128D |  | Average Ambient Temperature for December | -50 to 125 | 1 | ${ }^{\circ} \mathrm{C}$ | F4 | $20^{\circ} \mathrm{C}$ |
| 128E |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 128F |  | Reserved |  |  |  |  |  |
| 1290 | ANALOG INPUT | Analog Input Name (9 registers) | --- | --- | --- | F33 | ANALOG INPUT |
| 1299 |  | Analog Input Units (3 registers) | --- | --- | --- | F33 | "uA" |
| 129C |  | Analog Input Range | --- | --- | --- | F42 | $0=0-1 \mathrm{~mA}$ |
| 129D |  | Analog Input Minimum Value | 0 to 65000 | 1 | <Units> | F1 | 0 <Units> |
| 129E |  | Analog Input Maximum Value | 0 to 65000 | 1 | <Units> | F1 | 1000 <Units> |
| 129F |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 12BF |  | Reserved |  |  |  |  |  |
| 12C0 | DEMAND METERING | Current Demand Meter Type | --- | --- | --- | F58 | $0=$ Thermal |
| 12C1 |  | Thermal 90\% Response Time | --- | --- | --- | F16 | $2=15 \mathrm{~min}$ |
| 12C2 |  | Time Interval | --- | --- | --- | F16 | $3=20 \mathrm{~min}$ |
| $12 \mathrm{C3}$ |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 12CF |  | Reserved |  |  |  |  |  |
| 12D0 | ANALOG OUTPUTS | Analog Output 1 Function | --- | --- | --- | F30 | 0 = Disabled |
| 12D1 |  | Analog Output 1 Value | --- | --- | --- | F45 | 0 = W1 øA curr |
| 12D2 |  | Analog Output 1 Range | --- | --- | --- | F26 | $2=4-20 \mathrm{~mA}$ |
| 12D3 |  | Analog Output 1 Minimum | --- | --- | --- | --- | 0 A |
| 12D4 |  | Analog Output 1 Maximum | --- | --- | --- | --- | 1000 A |
| 12D5 |  | Analog Output 2 Function | --- | --- | --- | F30 | 0 = Disabled |
| 12D6 |  | Analog Output 2 Value | --- | --- | --- | F45 | 1 = W1 øB curr |
| 12D7 |  | Analog Output 2 Range | --- | --- | --- | F26 | $2=4-20 \mathrm{~mA}$ |
| 12D8 |  | Analog Output 2 Minimum | --- | --- | --- | --- | 0 A |
| 12D9 |  | Analog Output 2 Maximum | --- | --- | --- | --- | 1000 A |
| 12DA |  | Analog Output 3 Function | --- | --- | --- | F30 | 0 = Disabled |
| 12DB |  | Analog Output 3 Value | --- | --- | --- | F45 | 2 = W1 øC curr |
| 12DC |  | Analog Output 3 Range | --- | --- | --- | F26 | $2=4-20 \mathrm{~mA}$ |
| 12DD |  | Analog Output 3 Minimum | --- | --- | --- | --- | 0 A |

Table 8-6: 745 MEMORY MAP (Sheet 26 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP VALUE | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12DE |  | Analog Output 3 Maximum | --- | --- | --- | --- | 1000 A |
| 12DF |  | Analog Output 4 Function | --- | --- | --- | F30 | 0 = Disabled |
| 12E0 |  | Analog Output 4 Value | --- | --- | --- | F45 | $9=$ W1 loading |
| 12E1 |  | Analog Output 4 Range | --- | --- | --- | F26 | $2=4-20 \mathrm{~mA}$ |
| 12E2 |  | Analog Output 4 Minimum | --- | --- | --- | --- | 0\% |
| 12E3 |  | Analog Output 4 Maximum | --- | --- | --- | --- | 100\% |
| 12E4 |  | Analog Output 5 Function | --- | --- | --- | F30 | 0 = Disabled |
| 12E5 |  | Analog Output 5 Value | --- | --- | --- | F45 | $26=$ Voltage |
| 12E6 |  | Analog Output 5 Range | --- | --- | --- | F26 | $2=4-20 \mathrm{~mA}$ |
| $12 \mathrm{E7}$ |  | Analog Output 5 Minimum | --- | --- | --- | --- | $0=0.00 \mathrm{kV}$ |
| 12 E 8 |  | Analog Output 5 Maximum | --- | --- | --- | --- | 14.40 kV |
| 12E9 |  | Analog Output 6 Function | --- | --- | --- | F30 | 0 = Disabled |
| 12EA |  | Analog Output 6 Value | --- | --- | --- | F45 | $24=$ frequency |
| 12EB |  | Analog Output 6 Range | --- | --- | --- | F26 | $2=4-20 \mathrm{~mA}$ |
| 12EC |  | Analog Output 6 Minimum | --- | --- | --- | --- | $5700=57.0 \mathrm{~Hz}$ |
| 12ED |  | Analog Output 6 Maximum | --- | --- | --- | --- | $6300=63.0 \mathrm{~Hz}$ |
| 12EE |  | Analog Output 7 Function | --- | --- | --- | F30 | 0 = Disabled |
| 12EF |  | Analog Output 7 Value | --- | --- | --- | F45 | 25 = Tap Pos. |
| 12F0 |  | Analog Output 7 Range | --- | --- | --- | F26 | $2=4-20 \mathrm{~mA}$ |
| 12F1 |  | Analog Output 7 Minimum | --- | --- | --- | --- | 1 |
| 12F2 |  | Analog Output 7 Maximum | --- | --- | --- | --- | 33 |
| 12F3 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 12FF |  | Reserved |  |  |  |  |  |
| 1300 | LOGIC INPUTS | Logic Input 1 Function | --- | --- | --- | F30 | 0 = Disabled |
| 1301 |  | Logic Input 1 Name (9 registers) | --- | --- | --- | F33 | "Logic Input 1" |
| 130A |  | Logic Input 1 Asserted State | --- | --- | --- | F75 | 1 = Closed |
| 130B |  | Logic Input 2 Function | --- | --- | --- | F30 | 0 = Disabled |
| 130C |  | Logic Input 2 Name (9 registers) | --- | --- | --- | F33 | "Logic Input 2" |
| 1315 |  | Logic Input 2 Asserted State | --- | --- | --- | F75 | 1 = Closed |
| 1316 |  | Logic Input 3 Function | --- | --- | --- | F30 | 0 = Disabled |
| 1317 |  | Logic Input 3 Name (9 registers) | --- | --- | --- | F33 | "Logic Input 3" |
| 1320 |  | Logic Input 3 Asserted State | --- | --- | --- | F75 | 1 = Closed |
| 1321 |  | Logic Input 4 Function | --- | --- | --- | F30 | 0 = Disabled |
| 1322 |  | Logic Input 4 Name (9 registers) | --- | --- | --- | F33 | "Logic Input 4" |
| 132B |  | Logic Input 4 Asserted State | --- | --- | --- | F75 | 1 = Closed |
| 132C |  | Logic Input 5 Function | --- | --- | --- | F30 | 0 = Disabled |
| 132D |  | Logic Input 5 Name (9 registers) | --- | --- | --- | F33 | "Logic Input 5" |

Table 8-6: 745 MEMORY MAP (Sheet 27 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP VALUE | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1336 |  | Logic Input 5 Asserted State | --- | --- | --- | F75 | 1 = Closed |
| 1337 |  | Logic Input 6 Function | --- | --- | --- | F30 | 0 = Disabled |
| 1338 |  | Logic Input 6 Name (9 registers) | --- | --- | --- | F33 | "Logic Input 6" |
| 1341 |  | Logic Input 6 Asserted State | --- | --- | --- | F75 | 1 = Closed |
| 1342 |  | Logic Input 7 Function | --- | --- | --- | F30 | 0 = Disabled |
| 1343 |  | Logic Input 7 Name (9 registers) | --- | --- | --- | F33 | "Logic Input 7" |
| 134C |  | Logic Input 7 Asserted State | --- | --- | --- | F75 | 1 = Closed |
| 134D |  | Logic Input 8 Function | --- | --- | --- | F30 | 0 = Disabled |
| 134E |  | Logic Input 8 Name (9 registers) | --- | --- | --- | F33 | "Logic Input 8" |
| 1357 |  | Logic Input 8 Asserted State | --- | --- | --- | F75 | 1 = Closed |
| 1358 |  | Logic Input 9 Function | --- | --- | --- | F30 | 0 = Disabled |
| 1359 |  | Logic Input 9 Name (9 registers) | --- | --- | --- | F33 | "Logic Input 9" |
| 1362 |  | Logic Input 9 Asserted State | --- | --- | --- | F75 | 1 = Closed |
| 1363 |  | Logic Input 10 Function | --- | --- | --- | F30 | 0 = Disabled |
| 1364 |  | Logic Input 10 Name (9 registers) | --- | --- | --- | F33 | "Logic Input 10" |
| 136D |  | Logic Input 10 Asserted State | --- | --- | --- | F75 | 1 = Closed |
| 136E |  | Logic Input 11 Function | --- | --- | --- | F30 | 0 = Disabled |
| 136F |  | Logic Input 11 Name (9 registers) | --- | --- | --- | F33 | "Logic Input 11" |
| 1378 |  | Logic Input 11 Asserted State | --- | --- | --- | F75 | 1 = Closed |
| 1379 |  | Logic Input 12 Function | --- | --- | --- | F30 | 0 = Disabled |
| 137A |  | Logic Input 12 Name (9 registers) | --- | --- | --- | F33 | "Logic Input 12" |
| 1383 |  | Logic Input 12 Asserted State | --- | --- | --- | F75 | 1 = Closed |
| 1384 |  | Logic Input 13 Function | --- | --- | --- | F30 | 0 = Disabled |
| 1385 |  | Logic Input 13 Name (9 registers) | --- | --- | --- | F33 | "Logic Input 13" |
| 138E |  | Logic Input 13 Asserted State | --- | --- | --- | F75 | 1 = Closed |
| 138F |  | Logic Input 14 Function | --- | --- | --- | F30 | 0 = Disabled |
| 1390 |  | Logic Input 14 Name (9 registers) | --- | --- | --- | F33 | "Logic Input 14" |
| 1399 |  | Logic Input 14 Asserted State | --- | --- | --- | F75 | 1 = Closed |
| 139A |  | Logic Input 15 Function | --- | --- | --- | F30 | 0 = Disabled |
| 139B |  | Logic Input 15 Name (9 registers) | --- | --- | --- | F33 | "Logic Input 15" |
| 13A4 |  | Logic Input 15 Asserted State | --- | --- | --- | F75 | 1 = Closed |
| 13A5 |  | Logic Input 16 Function | --- | --- | --- | F30 | 0 = Disabled |
| 13A6 |  | Logic Input 16 Name (9 registers) | --- | --- | --- | F33 | "Logic Input 16" |
| 13AF |  | Logic Input 16 Asserted State | --- | --- | --- | F75 | 1 = Closed |
| 13B0 |  | Logic Input 1 Target | --- | --- | --- | F46 | 0 = Self-Test |
| 13B1 |  | Logic Input 2 Target | --- | --- | --- | F46 | 0 = Self-Test |
| 13B2 |  | Logic Input 3 Target | --- | --- | --- | F46 | 0 = Self-Test |
| 13B3 |  | Logic Input 4 Target | --- | --- | --- | F46 | 0 = Self-Test |

Table 8-6: 745 MEMORY MAP (Sheet 28 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP VALUE | UNITS | $\begin{aligned} & \hline \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13B4 |  | Logic Input 5 Target | --- | --- | --- | F46 | 0 = Self-Test |
| 13B5 |  | Logic Input 6 Target | --- | --- | --- | F46 | 0 = Self-Test |
| 13B6 |  | Logic Input 7 Target | --- | --- | --- | F46 | $0=$ Self-Test |
| 13B7 |  | Logic Input 8 Target | --- | --- | --- | F46 | 0 = Self-Test |
| 13B8 |  | Logic Input 9 Target | --- | --- | --- | F46 | 0 = Self-Test |
| 13B9 |  | Logic Input 10 Target | --- | --- | --- | F46 | $0=$ Self-Test |
| 13BA |  | Logic Input 11 Target | --- | --- | --- | F46 | 0 = Self-Test |
| 13BB |  | Logic Input 12 Target | --- | --- | --- | F46 | 0 = Self-Test |
| 13BC |  | Logic Input 13 Target | --- | --- | --- | F46 | 0 = Self-Test |
| 13BD |  | Logic Input 14 Target | --- | --- | --- | F46 | 0 = Self-Test |
| 13BE |  | Logic Input 15 Target | --- | --- | --- | F46 | 0 = Self-Test |
| 13BF |  | Logic Input 16 Target | --- | --- | --- | F46 | 0 = Self-Test |
| 13C0 | VIRTUAL INPUTS | Virtual Input 1 Function | --- | --- | --- | F30 | 0 = Disabled |
| 13C1 |  | Virtual Input 1 Name (9 registers) | --- | --- | --- | F33 | "Virtual Input 1" |
| 13CA |  | Virtual Input 2 Function | --- | --- | --- | F30 | 0 = Disabled |
| 13CB |  | Virtual Input 2 Name (9 registers) | --- | --- | --- | F33 | "Virtual Input 2" |
| 13D4 |  | Virtual Input 3 Function | --- | --- | --- | F30 | 0 = Disabled |
| 13D5 |  | Virtual Input 3 Name (9 registers) | --- | --- | --- | F33 | "Virtual Input 3" |
| 13DE |  | Virtual Input 4 Function | --- | --- | --- | F30 | 0 = Disabled |
| 13DF |  | Virtual Input 4 Name (9 registers) | --- | --- | --- | F33 | "Virtual Input 4" |
| 13E8 |  | Virtual Input 5 Function | --- | --- | --- | F30 | 0 = Disabled |
| 13E9 |  | Virtual Input 5 Name (9 registers) | --- | --- | --- | F33 | "Virtual Input 5" |
| 13F2 |  | Virtual Input 6 Function | --- | --- | --- | F30 | 0 = Disabled |
| 13F3 |  | Virtual Input 6 Name (9 registers) | --- | --- | --- | F33 | "Virtual Input 6" |
| 13FC |  | Virtual Input 7 Function | --- | --- | --- | F30 | 0 = Disabled |
| 13FD |  | Virtual Input 7 Name (9 registers) | --- | --- | --- | F33 | "Virtual Input 7" |
| 1406 |  | Virtual Input 8 Function | --- | --- | --- | F30 | 0 = Disabled |
| 1407 |  | Virtual Input 8 Name (9 registers) | --- | --- | --- | F33 | "Virtual Input 8" |
| 1410 |  | Virtual Input 9 Function | --- | --- | --- | F30 | 0 = Disabled |
| 1411 |  | Virtual Input 9 Name (9 registers) | --- | --- | --- | F33 | "Virtual Input 9" |
| 141A |  | Virtual Input 10 Function | --- | --- | --- | F30 | 0 = Disabled |
| 141B |  | Virtual Input 10 Name (9 registers) | --- | --- | --- | F33 | "Virtual Input 10" |
| 1424 |  | Virtual Input 11 Function | -- | --- | --- | F30 | 0 = Disabled |
| 1425 |  | Virtual Input 11 Name (9 registers) | --- | --- | --- | F33 | "Virtual Input 11" |
| 142E |  | Virtual Input 12 Function | --- | --- | --- | F30 | 0 = Disabled |
| 142F |  | Virtual Input 12 Name (9 registers) | --- | --- | --- | F33 | "Virtual Input 12" |
| 1438 |  | Virtual Input 13 Function | --- | --- | --- | F30 | 0 = Disabled |
| 1439 |  | Virtual Input 13 Name (9 registers) | --- | --- | --- | F33 | "Virtual Input 13" |

Table 8-6: 745 MEMORY MAP (Sheet 29 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP VALUE | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1442 |  | Virtual Input 14 Function | --- | --- | --- | F30 | 0 = Disabled |
| 1443 |  | Virtual Input 14 Name (9 registers) | --- | --- | --- | F33 | "Virtual Input 14" |
| 144C |  | Virtual Input 15 Function | --- | --- | --- | F30 | 0 = Disabled |
| 144D |  | Virtual Input 15 Name (9 registers) | --- | --- | --- | F33 | "Virtual Input 15" |
| 1456 |  | Virtual Input 16 Function | --- | --- | --- | F30 | 0 = Disabled |
| 1457 |  | Virtual Input 16 Name (9 registers) | --- | --- | --- | F33 | "Virtual Input 16" |
| 1460 |  | Virtual Input 1 Target | --- | --- | --- | F46 | $0=$ Self-Reset |
| 1461 |  | Virtual Input 2 Target | --- | --- | --- | F46 | 0 = Self-Reset |
| 1462 |  | Virtual Input 3 Target | --- | --- | --- | F46 | $0=$ Self-Reset |
| 1463 |  | Virtual Input 4 Target | --- | --- | --- | F46 | $0=$ Self-Reset |
| 1464 |  | Virtual Input 5 Target | --- | --- | --- | F46 | $0=$ Self-Reset |
| 1465 |  | Virtual Input 6 Target | --- | --- | --- | F46 | $0=$ Self-Reset |
| 1466 |  | Virtual Input 7 Target | --- | --- | --- | F46 | $0=$ Self-Reset |
| 1467 |  | Virtual Input 8 Target | --- | --- | --- | F46 | $0=$ Self-Reset |
| 1468 |  | Virtual Input 9 Target | --- | --- | --- | F46 | $0=$ Self-Reset |
| 1469 |  | Virtual Input 10 Target | --- | --- | --- | F46 | $0=$ Self-Reset |
| 146A |  | Virtual Input 11 Target | --- | --- | --- | F46 | $0=$ Self-Reset |
| 146B |  | Virtual Input 12 Target | --- | --- | --- | F46 | $0=$ Self-Reset |
| 146C |  | Virtual Input 13 Target | --- | --- | --- | F46 | 0 = Self-Reset |
| 146D |  | Virtual Input 14 Target | --- | --- | --- | F46 | $0=$ Self-Reset |
| 146E |  | Virtual Input 15 Target | --- | --- | --- | F46 | $0=$ Self-Reset |
| 146F |  | Virtual Input 16 Target | --- | --- | --- | F46 | $0=$ Self-Reset |
| 1470 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 147F |  | Reserved |  |  |  |  |  |
| 1480 | OUTPUT RELAY 1 | Output 1 Name (9 registers) | --- | --- | --- | F33 | Solid State Trip |
| 1489 |  | Output 1 Operation | --- | --- | --- | F66 | $0=$ self-resetting |
| 148A |  | Output 1 Type | --- | --- | --- | F38 | $0=$ Trip |
| 148B |  | Output 1 FlexLogic (20 registers) | --- | --- | --- | F47 | --- |
| 149F |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 14AF |  | Reserved |  |  |  |  |  |
| 14B0 | $\begin{aligned} & \hline \text { OUTPUT } \\ & \text { RELAY } 2 \end{aligned}$ | Output 2 Name (9 registers) | --- | --- | --- | F33 | "Trip 1" |
| 14B9 |  | Output 2 Operation | --- | --- | --- | F66 | 0 = self-resetting |
| 14BA |  | Output 2 Type | --- | --- | --- | F38 | $0=$ Trip |
| 14BB |  | Output 2 FlexLogic (20 registers) | --- | --- | --- | F47 | --- |
| 14CF |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |

Table 8-6: 745 MEMORY MAP (Sheet 30 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | $\begin{gathered} \text { STEP } \\ \text { VALUE } \end{gathered}$ | UNITS | $\begin{aligned} & \hline \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14DF |  | Reserved |  |  |  |  |  |
| 14E0 | OUTPUT RELAY 3 | Output 3 Name (9 registers) | --- | --- | --- | F33 | "Trip 2" |
| 14E9 |  | Output 3 Operation | --- | --- | --- | F66 | $0=$ self-resetting |
| 14EA |  | Output 3 Type | --- | --- | --- | F38 | 0 = Trip |
| 14EB |  | Output 3 FlexLogic (20 registers) | --- | --- | --- | F47 | --- |
| 14FF |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 150F |  | Reserved |  |  |  |  |  |
| 1510 | OUTPUT RELAY 4 | Output 4 Name (9 registers) | --- | --- | --- | F33 | Volts/Hertz Trip |
| 1519 |  | Output 4 Operation | --- | --- | --- | F66 | $0=$ self-resetting |
| 151A |  | Output 4 Type | --- | --- | --- | F38 | $0=$ Trip |
| 151B |  | Output 4 FlexLogic (20 registers) | --- | --- | --- | F47 | --- |
| 152F |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 153F |  | Reserved |  |  |  |  |  |
| 1540 | $\begin{aligned} & \hline \text { OUTPUT } \\ & \text { RELAY } 5 \end{aligned}$ | Output 5 Name (9 registers) | --- | --- | --- | F33 | Overflux Alarm |
| 1549 |  | Output 5 Operation | --- | --- | --- | F66 | $0=$ self-resetting |
| 154A |  | Output 5 Type | --- | --- | --- | F38 | 1 = Alarm |
| 154B |  | Output 5 FlexLogic (20 registers) | --- | --- | --- | F47 | --- |
| 155F |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 156F |  | Reserved |  |  |  |  |  |
| 1570 | OUTPUT RELAY 6 | Output 6 Name (9 registers) | -- | --- | --- | F33 | Frequency Trip 1 |
| 1579 |  | Output 6 Operation | --- | --- | --- | F66 | $0=$ self-resetting |
| 157A |  | Output 6 Type | -- | --- | --- | F38 | 0 = Trip |
| 157B |  | Output 6 FlexLogic (20 registers) | --- | --- | --- | F47 | --- |
| 158F |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 159F |  | Reserved |  |  |  |  |  |
| 15A0 | OUTPUT RELAY 7 | Output 7 Name (9 registers) | --- | --- | --- | F33 | Frequency Trip 2 |
| 15A9 |  | Output 7 Operation | --- | --- | --- | F66 | $0=$ self-resetting |
| 15AA |  | Output 7 Type | --- | --- | --- | F38 | $0=$ Trip |
| 15AB |  | Output 7 FlexLogic (20 registers) | --- | --- | --- | F47 | --- |
| 15BF |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 15CF |  | Reserved |  |  |  |  |  |

Table 8-6: 745 MEMORY MAP (Sheet 31 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP <br> VALUE | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15D0 | OUTPUT <br> RELAY 8 | Output 8 Name (9 registers) | --- | --- | --- | F33 | Frequency Trip 3 |
| 15D9 |  | Output 8 Operation | --- | --- | --- | F66 | $0=$ self-resetting |
| 15DA |  | Output 8 Type | --- | --- | --- | F38 | $0=$ Trip |
| 15DB |  | Output 8 FlexLogic (20 registers) | --- | --- | --- | F47 | --- |
| 15EF |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 15FF |  | Reserved |  |  |  |  |  |
| 1600 | TRACE MEMORY | Number of Pre-Trigger Cycles | 1 to 15 | 1 | cycles | F1 | 12 cycles |
| 1601 |  | Trace Memory Trigger FlexLogic (10 registers) | --- | --- | --- | F47 | --- |
| 160B |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 19FF |  | Reserved |  |  |  |  |  |
| 1A00 | VIRTUAL OUTPUTS | Virtual Output 1 FlexLogic (10 registers) | --- | --- | --- | F47 | --- |
| 1A0A |  | Virtual Output 2 FlexLogic (10 registers) | --- | --- | --- | F47 | --- |
| 1A14 |  | Virtual Output 3 FlexLogic (10 registers) | --- | --- | --- | F47 | --- |
| 1A1E |  | Virtual Output 4 FlexLogic (10 registers) | --- | --- | --- | F47 | --- |
| 1A28 |  | Virtual Output 5 FlexLogic (10 registers) | --- | --- | --- | F47 | --- |
| 1A32 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 1D7F |  | Reserved |  |  |  |  |  |
| 1D80 | TIMERS | Timer 1 Start | --- | --- | --- | F62 | 0 = End |
| 1D81 |  | Timer 1 Pickup Delay | 0.00 to 600.00 | 0.01 | S | F3 | 0.00 s |
| 1D82 |  | Timer 1 Dropout Delay | 0.00 to 600.00 | 0.01 | S | F3 | 0.00 s |
| 1D83 |  | Timer 2 Start | --- | --- | --- | F62 | 0 = End |
| 1D84 |  | Timer 2 Pickup Delay | 0.00 to 600.00 | 0.01 | S | F3 | 0.00 s |
| 1D85 |  | Timer 2 Dropout Delay | 0.00 to 600.00 | 0.01 | S | F3 | 0.00 s |
| 1D86 |  | Timer 3 Start | --- | --- | --- | F62 | 0 = End |
| 1D87 |  | Timer 3 Pickup Delay | 0.00 to 600.00 | 0.01 | S | F3 | 0.00 s |
| 1D88 |  | Timer 3 Dropout Delay | 0.00 to 600.00 | 0.01 | S | F3 | 0.00 s |
| 1D89 |  | Timer 4 Start | --- | --- | --- | F62 | 0 = End |
| 1D8A |  | Timer 4 Pickup Delay | 0.00 to 600.00 | 0.01 | S | F3 | 0.00 s |
| 1D8B |  | Timer 4 Dropout Delay | 0.00 to 600.00 | 0.01 | S | F3 | 0.00 s |
| 1D8C |  | Timer 5 Start | --- | --- | --- | F62 | 0 = End |
| 1D8D |  | Timer 5 Pickup Delay | 0.00 to 600.00 | 0.01 | S | F3 | 0.00 s |
| 1D8E |  | Timer 5 Dropout Delay | 0.00 to 600.00 | 0.01 | S | F3 | 0.00 s |
| 1D8F |  | Timer 6 Start | --- | --- | --- | F62 | 0 = End |
| 1D90 |  | Timer 6 Pickup Delay | 0.00 to 600.00 | 0.01 | S | F3 | 0.00 s |
| 1D91 |  | Timer 6 Dropout Delay | 0.00 to 600.00 | 0.01 | S | F3 | 0.00 s |

Table 8-6: 745 MEMORY MAP (Sheet 32 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP | UNITS | $\begin{array}{\|c\|} \hline \text { FORMAT } \\ \text { CODE } \end{array}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1D92 |  | Timer 7 Start | --- | --- | --- | F62 | 0 = End |
| 1D93 |  | Timer 7 Pickup Delay | 0.00 to 600.00 | 0.01 | S | F3 | 0.00 s |
| 1D94 |  | Timer 7 Dropout Delay | 0.00 to 600.00 | 0.01 | S | F3 | 0.00 s |
| 1D95 |  | Timer 8 Start | --- | --- | --- | F62 | 0 = End |
| 1D96 |  | Timer 8 Pickup Delay | 0.00 to 600.00 | 0.01 | S | F3 | 0.00 s |
| 1D97 |  | Timer 8 Dropout Delay | 0.00 to 600.00 | 0.01 | S | F3 | 0.00 s |
| 1D98 |  | Timer 9 Start | --- | --- | --- | F62 | 0 = End |
| 1D99 |  | Timer 9 Pickup Delay | 0.00 to 600.00 | 0.01 | S | F3 | 0.00 s |
| 1D9A |  | Timer 9 Dropout Delay | 0.00 to 600.00 | 0.01 | S | F3 | 0.00 s |
| 1D9B |  | Timer 10 Start | --- | --- | --- | F62 | 0 = End |
| 1D9C |  | Timer 10 Pickup Delay | 0.00 to 600.00 | 0.01 | S | F3 | 0.00 s |
| 1D9D |  | Timer 10 Dropout Delay | 0.00 to 600.00 | 0.01 | S | F3 | 0.00 s |
| 1D9E |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 1DFF |  | Reserved |  |  |  |  |  |
| 1E00 | FORCE OUTPUT RELAYS | Force Output Relays Function | --- | --- | --- | F30 | 0 = Disabled |
| 1E01 |  | Force Output Relay 1 | --- | --- | --- | F34 | $0=$ De-energized |
| 1E02 |  | Force Output Relay 2 | --- | --- | --- | F34 | $0=$ De-energized |
| 1E03 |  | Force Output Relay 3 | --- | --- | --- | F34 | $0=$ De-energized |
| 1E04 |  | Force Output Relay 4 | --- | --- | --- | F34 | $0=$ De-energized |
| 1E05 |  | Force Output Relay 5 | --- | --- | --- | F34 | $0=$ De-energized |
| 1E06 |  | Force Output Relay 6 | --- | --- | --- | F34 | $0=$ De-energized |
| 1E07 |  | Force Output Relay 7 | --- | --- | --- | F34 | $0=$ De-energized |
| 1E08 |  | Force Output Relay 8 | --- | --- | --- | F34 | $0=$ De-energized |
| 1E09 |  | Force Self-Test Relay | --- | --- | --- | F34 | $0=$ De-energized |
| 1E0A |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 1E0F |  | Reserved |  |  |  |  |  |
| 1E10 | FORCE ANALOG OUTPUTS | Force Analog Outputs Function | --- | --- | --- | F30 | 0 = Disabled |
| 1E11 |  | Force Analog Output 1 | 0 to 100 | 1 | \% | F1 | 0\% |
| 1E12 |  | Force Analog Output 2 | 0 to 100 | 1 | \% | F1 | 0\% |
| 1E13 |  | Force Analog Output 3 | 0 to 100 | 1 | \% | F1 | 0\% |
| 1E14 |  | Force Analog Output 4 | 0 to 100 | 1 | \% | F1 | 0\% |
| 1E15 |  | Force Analog Output 5 | 0 to 100 | 1 | \% | F1 | 0\% |
| 1E16 |  | Force Analog Output 6 | 0 to 100 | 1 | \% | F1 | 0\% |
| 1E17 |  | Force Analog Output 7 | 0 to 100 | 1 | \% | F1 | 0\% |
| 1E18 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |

Table 8-6: 745 MEMORY MAP (Sheet 33 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | $\begin{gathered} \hline \text { STEP } \\ \text { VALUE } \end{gathered}$ | UNITS | $\begin{aligned} & \hline \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1E1F |  | Reserved |  |  |  |  |  |
| 1E20 | SIMULATION SETUP | Simulation Function | --- | --- | --- | F48 | 0 = Disabled |
| 1E21 |  | Block Operation of Outputs | --- | --- | --- | F67 | $255=12345678$ |
| 1E22 |  | Start Fault Mode Signal | --- | --- | --- | F88 | 0 = Disabled |
| 1E23 |  | Start Playback Mode Signal | --- | --- | --- | F88 | 0 = Disabled |
| 1E24 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 1E27 |  | Reserved |  |  |  |  |  |
| 1E28 | SIMULATION PREFAULT VALUES | Prefault Wdg 1 Phase ABC Current Magnitudes | 0.0 to 40.0 | 0.1 | $\times \mathrm{CT}$ | F2 | $10=1.0 \times \mathrm{CT}$ |
| 1E29 |  | Prefault Wdg 2 Phase ABC Current Magnitudes | 0.0 to 40.0 | 0.1 | $\times$ CT | F2 | $10=1.0 \times$ CT |
| 1E2A |  | Prefault Wdg 3 Phase ABC Current Magnitudes | 0.0 to 40.0 | 0.1 | $\times \mathrm{CT}$ | F2 | $10=1.0 \times \mathrm{CT}$ |
| 1E2B |  | Prefault Voltage Input Magnitude | 0.0 to 2.0 | 0.1 | $\times \mathrm{VT}$ | F2 | $10=1.0 \times \mathrm{VT}$ |
| 1E2C |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 1E2F |  | Reserved |  |  |  |  |  |
| 1 E 30 | SIMULATION FAULT VALUES | Fault Winding 1 Phase A Current Magnitude | 0.0 to 40.0 | 0.1 | $\times \mathrm{CT}$ | F2 | $10=1.0 \times \mathrm{CT}$ |
| 1E31 |  | Fault Winding 1 Phase A Current Angle | --- | --- | 。 | F1 | $0^{\circ}$ |
| 1 E 32 |  | Fault Winding 1 Phase B Current Magnitude | 0.0 to 40.0 | 0.1 | $\times \mathrm{CT}$ | F2 | $10=1.0 \times \mathrm{CT}$ |
| 1 E 33 |  | Fault Winding 1 Phase B Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | $120^{\circ} \mathrm{Lag}$ |
| 1E34 |  | Fault Winding 1 Phase C Current Magnitude | 0.0 to 40.0 | 0.1 | $\times \mathrm{CT}$ | F2 | $10=1.0 \times$ CT |
| 1E35 |  | Fault Winding 1 Phase C Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | $240^{\circ} \mathrm{Lag}$ |
| 1E36 |  | Fault Winding 1 Ground Current Magnitude | 0.0 to 40.0 | 0.1 | $\times \mathrm{CT}$ | F2 | $0.0 \times$ CT |
| 1 E 37 |  | Fault Winding 1 Ground Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | $0^{\circ} \mathrm{Lag}$ |
| 1E38 |  | Fault Winding 2 Phase A Current Magnitude | 0.0 to 40.0 | 0.1 | $\times \mathrm{CT}$ | F2 | $10=1.0 \times \mathrm{CT}$ |
| 1E39 |  | Fault Winding 2 Phase A Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | $0^{\circ} \mathrm{Lag}$ |
| 1E3A |  | Fault Winding 2 Phase B Current Magnitude | 0.0 to 40.0 | 0.1 | $\times \mathrm{CT}$ | F2 | $10=1.0 \times \mathrm{CT}$ |
| 1E3B |  | Fault Winding 2 Phase B Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | $120^{\circ} \mathrm{Lag}$ |
| 1E3C |  | Fault Winding 2 Phase C Current Magnitude | 0.0 to 40.0 | 0.1 | $\times \mathrm{CT}$ | F2 | $10=1.0 \times \mathrm{CT}$ |
| 1E3D |  | Fault Winding 2 Phase C Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | $240^{\circ} \mathrm{Lag}$ |
| 1E3E |  | Fault Winding 2 Ground Current Magnitude | 0.0 to 40.0 | 0.1 | $\times$ CT | F2 | $0.0 \times$ CT |
| 1E3F |  | Fault Winding 2 Ground Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | $0^{\circ} \mathrm{Lag}$ |
| 1E40 |  | Fault Winding 3 Phase A Current Magnitude | 0.0 to 40.0 | 0.1 | $\times \mathrm{CT}$ | F2 | $10=1.0 \times \mathrm{CT}$ |
| 1E41 |  | Fault Winding 3 Phase A Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | $330^{\circ} \mathrm{Lag}$ |
| 1E42 |  | Fault Winding 3 Phase B Current Magnitude | 0.0 to 40.0 | 0.1 | $\times$ CT | F2 | $10=1.0 \times \mathrm{CT}$ |
| 1 E 43 |  | Fault Winding 3 Phase B Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | $90^{\circ} \mathrm{Lag}$ |
| 1E44 |  | Fault Winding 3 Phase C Current Magnitude | 0.0 to 40.0 | 0.1 | $\times \mathrm{CT}$ | F2 | $10=1.0 \times \mathrm{CT}$ |
| 1E45 |  | Fault Winding 3 Phase C Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | $210^{\circ} \mathrm{Lag}$ |
| 1 E 46 |  | Fault Winding 3 Ground Current Magnitude | 0.0 to 40.0 | 0.1 | $\times \mathrm{CT}$ | F2 | $0.0 \times \mathrm{CT}$ |

Table 8-6: 745 MEMORY MAP (Sheet 34 of 57)

| $\begin{array}{\|l\|} \hline \text { ADDR } \\ \text { (HEX) } \end{array}$ | GROUP | DESCRIPTION | RANGE | STEP VALUE | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1E47 |  | Fault Winding 3 Ground Current Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | $0^{\circ} \mathrm{Lag}$ |
| 1 E 48 |  | Fault Voltage Input Magnitude | 0.0 to 2.0 | 0.1 | $\times \mathrm{VT}$ | F2 | $10=1.0 \times \mathrm{VT}$ |
| 1 E 49 |  | Fault Voltage Input Angle | 0 to 359 | 1 | ${ }^{\circ} \mathrm{Lag}$ | F1 | $0^{\circ} \mathrm{Lag}$ |
| 1E4A |  | Fault Frequency | 45.00 to 60.00 | 0.01 | Hz | F3 | 60.00 Hz |
| 1E4B |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 1FFF |  | Reserved |  |  |  |  |  |
| Setpoint Group 1/2/3/4 (Addresses 2000 to 3FFF) - Read / Write |  |  |  |  |  |  |  |
| 2000 | PERCENT DIFFERENTIAL | Percent Differential Function | --- | --- | --- | F30 | 1 = Enabled |
| 2001 |  | Percent Differential Target | --- | --- | --- | F46 | 1 = Latched |
| 2002 |  | Percent Differential Pickup | 0.05 to 1.00 | 0.01 | $\times \mathrm{CT}$ | F3 | $30=0.30 \times C T$ |
| 2003 |  | Percent Differential Slope 1 | 15 to 100 | 1 | \% | F1 | 25\% |
| 2004 |  | Percent Differential Break Point | 1.0 to 20.0 | 0.1 | $\times \mathrm{CT}$ | F2 | $20=2.0 \times \mathrm{CT}$ |
| 2005 |  | Percent Differential Slope 2 | 50 to 200 | 1 | \% | F1 | 100\% |
| 2006 |  | Percent Differential Block | --- | -- | --- | F87 | 0 = Disabled |
| 2007 |  | Reserved |  |  |  |  |  |
| 2008 | HARMONIC INHIBIT | Harmonic Inhibit Function | --- | --- | --- | F30 | 1 = Enabled |
| 2009 |  | Harmonic Inhibit Parameters | --- | --- | --- | F64 | 0 = 2nd |
| 200A |  | Harmonic Averaging | --- | --- | --- | F30 | 0 = Disabled |
| 200B |  | Harmonic Inhibit Level | 0.1 to 65.0 | 0.1 | \% f0 | F2 | $200=20.0 \% f_{0}$ |
| 200C |  | Reserved |  |  |  |  |  |
| 200D | ENERGIZATION INHIBIT | Energization Inhibit Function | --- | --- | --- | F30 | 1 = Enabled |
| 200E |  | Energization Inhibit Parameters | --- | --- | --- | F64 | 0 = 2nd |
| 200 F |  | Harmonic Averaging | --- | --- | --- | F30 | 1 = Enabled |
| 2010 |  | Energization Inhibit Level | 0.1 to 65.0 | 0.1 | \% f0 | F2 | $200=20.0 \% f_{0}$ |
| 2011 |  | Energization Inhibit Duration | 0.05 to 600.00 | 0.01 | S | F1 | $10=0.10 \mathrm{~s}$ |
| 2012 |  | Energization Sensing By Current | --- | --- | --- | F30 | 1 = Enabled |
| 2013 |  | Minimum Energization Current | 0.10 to 0.50 | 0.01 | $\times \mathrm{CT}$ | F3 | $10=0.10 \times C T$ |
| 2014 |  | Energization Sensing By Voltage | --- | --- | --- | F30 | $0=$ Disabled |
| 2015 |  | Minimum Energization Voltage | 0.50 to 0.99 | 0.01 | $\times \mathrm{VT}$ | F3 | $85=0.85 \times \mathrm{VT}$ |
| 2016 |  | Breakers Are Open Signal | --- | --- | --- | F88 | $0=$ Disabled |
| 2017 |  | Parallel Transformer Breaker Close Signal | --- | --- | --- | F88 | $0=$ Disabled |
| 2018 |  | Reserved |  |  |  |  |  |
| 2019 | 5TH HARMONIC INHIBIT | 5th Harmonic Inhibit Function | --- | --- | --- | F30 | 0 = Disabled |
| 201A |  | Harmonic Averaging | --- | --- | --- | F30 | $0=$ Disabled |
| 201B |  | 5th Harmonic Inhibit Level | 0.1 to 65.0 | 0.1 | \% f0 | F2 | $100=10.0 \% f_{0}$ |
| 201C |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |

Table 8-6: 745 MEMORY MAP (Sheet 35 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | $\begin{gathered} \text { STEP } \\ \text { VALUE } \end{gathered}$ | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 201F |  | Reserved |  |  |  |  |  |
| 2020 | INST DIFFERENTIAL | Inst Differential Function | --- | --- | --- | F30 | 1 = Enabled |
| 2021 |  | Inst Differential Target | --- | --- | --- | F46 | 1 = Latched |
| 2022 |  | Inst Differential Pickup | 3.00 to 20.00 | 0.01 | $\times \mathrm{CT}$ | F3 | $800=8.00 \times C T$ |
| 2023 |  | Inst Differential Block | --- | --- | --- | F87 | 0 = Disabled |
| 2024 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 203F |  | Reserved |  |  |  |  |  |
| 2040 | WINDING 1PHASE TIMEO/C | Winding 1 Phase Time 0/C Function | --- | --- | --- | F30 | 1 = Enabled |
| 2041 |  | Winding 1 Phase Time 0/C Target | --- | --- | --- | F46 | 1 = Latched |
| 2042 |  | Winding 1 Phase Time 0/C Pickup | 0.05 to 20.00 | 0.01 | $\times \mathrm{CT}$ | F3 | $120=1.20 \times C T$ |
| 2043 |  | Winding 1 Phase Time 0/C Shape | --- | --- | --- | F36 | $0=$ Ext Inverse |
| 2044 |  | Winding 1 Phase Time 0/C Multiplier | 0.00 to 100.00 | 0.01 | --- | F3 | $100=1.00$ |
| 2045 |  | Winding 1 Phase Time 0/C Reset | --- | --- | --- | F68 | 1 = Linear |
| 2046 |  | Winding 1 Phase Time 0/C Block | --- | --- | --- | F87 | 0 = Disabled |
| 2047 |  | Winding 1 Harmonic Derating Correction | --- | --- | --- | F30 | 0 = Disabled |
| 2048 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 204F |  | Reserved |  |  |  |  |  |
| 2050 | WINDING 2PHASE TIME$0 / \mathrm{C}$ | Winding 2 Phase Time 0/C Function | --- | --- | --- | F30 | 1 = Enabled |
| 2051 |  | Winding 2 Phase Time 0/C Target | --- | --- | --- | F46 | 1 = Latched |
| 2052 |  | Winding 2 Phase Time 0/C Pickup | 0.05 to 20.00 | 0.01 | $\times \mathrm{CT}$ | F3 | $120=1.20 \times C T$ |
| 2053 |  | Winding 2 Phase Time 0/C Shape | --- | --- | --- | F36 | 0 = Ext Inverse |
| 2054 |  | Winding 2 Phase Time 0/C Multiplier | 0.00 to 100.00 | 0.01 | --- | F3 | $100=1.00$ |
| 2055 |  | Winding 2 Phase Time 0/C Reset | --- | --- | --- | F68 | 1 = Linear |
| 2056 |  | Winding 2 Phase Time 0/C Block | --- | --- | --- | F87 | 0 = Disabled |
| 2057 |  | Winding 2 Harmonic Derating Correction | --- | --- | --- | F30 | 0 = Disabled |
| 2058 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 205F |  | Reserved |  |  |  |  |  |
| 2060 | WINDING 3PHASE TIMEO/C | Winding 3 Phase Time 0/C Function | --- | --- | --- | F30 | 1 = Enabled |
| 2061 |  | Winding 3 Phase Time 0/C Target | --- | --- | --- | F46 | 1 = Latched |
| 2062 |  | Winding 3 Phase Time 0/C Pickup | 0.05 to 20.00 | 0.01 | $\times \mathrm{CT}$ | F3 | $120=1.20 \times C T$ |
| 2063 |  | Winding 3 Phase Time 0/C Shape | --- | --- | --- | F36 | 0 = Ext Inverse |
| 2064 |  | Winding 3 Phase Time 0/C Multiplier | 0.00 to 100.00 | 0.01 | --- | F3 | $100=1.00$ |
| 2065 |  | Winding 3 Phase Time 0/C Reset | -- | --- | --- | F68 | 1 = Linear |
| 2066 |  | Winding 3 Phase Time 0/C Block | --- | --- | --- | F87 | 0 = Disabled |
| 2067 |  | Winding 3 Harmonic Derating Correction | --- | --- | --- | F30 | 0 = Disabled |

Table 8-6: 745 MEMORY MAP (Sheet 36 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP VALUE | UNITS | $\begin{array}{\|l\|} \hline \text { FORMAT } \\ \text { CODE } \end{array}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2068 | WINDING 1 PHASE INST 0/C 1 | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 206F |  | Reserved |  |  |  |  |  |
| 2070 |  | Winding 1 Phase Inst 0/C 1 Function | --- | --- | --- | F30 | 1 = Enabled |
| 2071 |  | Winding 1 Phase Inst 0/C 1 Target | --- | --- | --- | F46 | 1 = Latched |
| 2072 |  | Winding 1 Phase Inst 0/C 1 Pickup | 0.05 to 20.00 | 0.01 | x CT | F3 | $1000=10.00 \times$ CT |
| 2073 |  | Winding 1 Phase Inst 0/C 1 Delay | 0 to 60000 | 1 | ms | F1 | 0 ms |
| 2074 |  | Winding 1 Phase Inst 0/C 1 Block | --- | --- | --- | F87 | 0 = Disabled |
| 2075 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 207F |  | Reserved |  |  |  |  |  |
| 2080 | WINDING 2 PHASE INST 0/C 1 | Winding 2 Phase Inst 0/C 1 Function | --- | --- | --- | F30 | 1 = Enabled |
| 2081 |  | Winding 2 Phase Inst 0/C 1 Target | --- | --- | --- | F46 | 1 = Latched |
| 2082 |  | Winding 2 Phase Inst 0/C 1 Pickup | 0.05 to 20.00 | 0.01 | x CT | F3 | $10.00 \times$ CT |
| 2083 |  | Winding 2 Phase Inst 0/C 1 Delay | 0 to 60000 | 1 | ms | F1 | 0 ms |
| 2084 |  | Winding 2 Phase Inst 0/C 1 Block | --- | --- | --- | F87 | 0 = Disabled |
| 2085 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 208F |  | Reserved |  |  |  |  |  |
| 2090 | WINDING 3 PHASE INST 0/C 1 | Winding 3 Phase Inst 0/C 1 Function | --- | --- | --- | F30 | 1 = Enabled |
| 2091 |  | Winding 3 Phase Inst 0/C 1 Target | --- | --- | --- | F46 | 1 = Latched |
| 2092 |  | Winding 3 Phase Inst 0/C 1 Pickup | 0.05 to 20.00 | 0.01 | x CT | F3 | $1000=10.00 \times$ CT |
| 2093 |  | Winding 3 Phase Inst 0/C 1 Delay | 0 to 60000 | 1 | ms | F1 | 0 ms |
| 2094 |  | Winding 3 Phase Inst 0/C 1 Block | --- | --- | --- | F87 | 0 = Disabled |
| 2095 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 209F |  | Reserved |  |  |  |  |  |
| 20A0 | $\begin{gathered} \text { WINDING } 1 \\ \text { PHASE INST } \\ 0 / C 2 \end{gathered}$ | Winding 1 Phase Inst 0/C 2 Function | --- | --- | --- | F30 | 1 = Enabled |
| 20A1 |  | Winding 1 Phase Inst 0/C 2 Target | --- | --- | --- | F46 | 1 = Latched |
| 20A2 |  | Winding 1 Phase Inst 0/C 2 Pickup | 0.05 to 20.00 | 0.01 | x CT | F3 | $1000=10.00 \times C T$ |
| 20A3 |  | Winding 1 Phase Inst 0/C 2 Delay | 0 to 60000 | 1 | ms | F1 | 0 ms |
| 20A4 |  | Winding 1 Phase Inst 0/C 2 Block | --- | --- | --- | F87 | $0=$ Disabled |
| 20A5 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 20AF |  | Reserved |  |  |  |  |  |
| 20B0 | WINDING 2 PHASE INST 0/C 2 | Winding 2 Phase Inst 0/C 2 Function | --- | --- | --- | F30 | 1 = Enabled |
| 20B1 |  | Winding 2 Phase Inst 0/C 2 Target | --- | --- | --- | F46 | 1 = Latched |
| 20B2 |  | Winding 2 Phase Inst 0/C 2 Pickup | 0.05 to 20.00 | 0.01 | x CT | F3 | $1000=10.00 \times C T$ |

Table 8-6: 745 MEMORY MAP (Sheet 37 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP <br> VALUE | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20B3 |  | Winding 2 Phase Inst 0/C 2 Delay | 0 to 60000 | 1 | ms | F1 | 0 ms |
| 20B4 |  | Winding 2 Phase Inst 0/C 2 Block | --- | --- | --- | F87 | 0 = Disabled |
| 20B5 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 20BF |  | Reserved |  |  |  |  |  |
| 20C0 | WINDING 3 PHASE INST 0/C 2 | Winding 3 Phase Inst 0/C 2 Function | --- | --- | --- | F30 | 1 = Enabled |
| $20 \mathrm{C1}$ |  | Winding 3 Phase Inst 0/C 2 Target | --- | --- | --- | F46 | 1 = Latched |
| $20 \mathrm{C2}$ |  | Winding 3 Phase Inst 0/C 2 Pickup | 0.05 to 20.00 | 0.01 | x CT | F3 | $1000=10.00 \times$ CT |
| $20 \mathrm{C3}$ |  | Winding 3 Phase Inst 0/C 2 Delay | 0 to 60000 | 1 | ms | F1 | 0 ms |
| $20 \mathrm{C4}$ |  | Winding 3 Phase Inst 0/C 2 Block | --- | --- | --- | F87 | 0 = Disabled |
| 20C5 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 20CF |  | Reserved |  |  |  |  |  |
| 20D0 | WINDING 1 NEUTRAL TIME O/C | Winding 1 Neutral Time 0/C Function | --- | --- | --- | F30 | 1 = Enabled |
| 20D1 |  | Winding 1 Neutral Time 0/C Target | --- | --- | --- | F46 | 1 = Latched |
| 20D2 |  | Winding 1 Neutral Time 0/C Pickup | 0.05 to 20.00 | 0.01 | x CT | F3 | $85=0.85 \times$ CT |
| 20D3 |  | Winding 1 Neutral Time 0/C Shape | --- | --- | --- | F36 | 0 = Ext Inverse |
| 20D4 |  | Winding 1 Neutral Time 0/C Multiplier | 0.00 to 100.00 | 0.01 | --- | F3 | $100=1.00$ |
| 20D5 |  | Winding 1 Neutral Time 0/C Reset | --- | --- | --- | F68 | 1 = Linear |
| 20D6 |  | Winding 1 Neutral Time 0/C Block | --- | --- | --- | F87 | 0 = Disabled |
| 20D7 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 20DF |  | Reserved |  |  |  |  |  |
| 20E0 | WINDING 2 NEUTRAL TIME 0/C | Winding 2 Neutral Time 0/C Function | --- | --- | --- | F30 | 0 = Disabled |
| 20 E 1 |  | Winding 2 Neutral Time 0/C Target | --- | --- | --- | F46 | 1 = Latched |
| 20 E 2 |  | Winding 2 Neutral Time 0/C Pickup | 0.05 to 20.00 | 0.01 | x CT | F3 | $85=0.85 \times$ CT |
| 20E3 |  | Winding 2 Neutral Time 0/C Shape | --- | --- | --- | F36 | 0 = Ext Inverse |
| 20E4 |  | Winding 2 Neutral Time 0/C Multiplier | 0.00 to 100.00 | 0.01 | --- | F3 | $100=1.00$ |
| 20E5 |  | Winding 2 Neutral Time 0/C Reset | --- | --- | --- | F68 | 1 = Linear |
| 20E6 |  | Winding 2 Neutral Time 0/C Block | --- | --- | --- | F87 | 0 = Disabled |
| 20E7 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 20EF |  | Reserved |  |  |  |  |  |
| 20F0 | WINDING 3 NEUTRAL TIME 0/C | Winding 3 Neutral Time 0/C Function | --- | --- | --- | F30 | 0 = Disabled |
| 20F1 |  | Winding 3 Neutral Time 0/C Target | --- | --- | --- | F46 | 1 = Latched |
| 20F2 |  | Winding 3 Neutral Time 0/C Pickup | 0.05 to 20.00 | 0.01 | $\times$ CT | F3 | $85=0.85 \times$ CT |
| 20 F 3 |  | Winding 3 Neutral Time 0/C Shape | --- | --- | --- | F36 | $0=$ Ext Inverse |
| 20 F 4 |  | Winding 3 Neutral Time 0/C Multiplier | 0.00 to 100.00 | 0.01 | --- | F3 | $100=1.00$ |

Table 8-6: 745 MEMORY MAP (Sheet 38 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP VALUE | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 F 5 |  | Winding 3 Neutral Time 0/C Reset | --- | --- | --- | F68 | 1 = Linear |
| 20F6 |  | Winding 3 Neutral Time 0/C Block | --- | --- | --- | F87 | 0 = Disabled |
| $20 F 7$ |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 20FF |  | Reserved |  |  |  |  |  |
| 2100 | WINDING 1 NEUTRAL INST 0/C 1 | Winding 1 Neutral Inst 0/C 1 Function | --- | --- | --- | F30 | 1 = Enabled |
| 2101 |  | Winding 1 Neutral Inst 0/C 1 Target | --- | --- | --- | F46 | 1 = Latched |
| 2102 |  | Winding 1 Neutral Inst 0/C 1 Pickup | 0.05 to 20.00 | 0.01 | $\times$ CT | F3 | $1000=10.00 \times$ CT |
| 2103 |  | Winding 1 Neutral Inst 0/C 1 Delay | 0 to 60000 | 1 | ms | F1 | 0 ms |
| 2104 |  | Winding 1 Neutral Inst 0/C 1 Block | --- | --- | --- | F87 | $0=$ Disabled |
| 2105 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 210F |  | Reserved |  |  |  |  |  |
| 2110 | WINDING 2 NEUTRAL INST 0/C 1 | Winding 2 Neutral Inst 0/C 1 Function | --- | --- | --- | F30 | 0 = Disabled |
| 2111 |  | Winding 2 Neutral Inst 0/C 1 Target | --- | --- | --- | F46 | 1 = Latched |
| 2112 |  | Winding 2 Neutral Inst 0/C 1 Pickup | 0.05 to 20.00 | 0.01 | $\times$ CT | F3 | $1000=10.00 \times$ CT |
| 2113 |  | Winding 2 Neutral Inst 0/C 1 Delay | 0 to 60000 | 1 | ms | F1 | 0 ms |
| 2114 |  | Winding 2 Neutral Inst 0/C 1 Block | --- | --- | --- | F87 | 0 = Disabled |
| 2115 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 211F |  | Reserved |  |  |  |  |  |
| 2120 | WINDING 3 NEUTRAL INST 0/C 1 | Winding 3 Neutral Inst 0/C 1 Function | --- | --- | --- | F30 | 0 = Disabled |
| 2121 |  | Winding 3 Neutral Inst 0/C 1 Target | --- | --- | --- | F46 | 1 = Latched |
| 2122 |  | Winding 3 Neutral Inst 0/C 1 Pickup | 0.05 to 20.00 | 0.01 | $\times \mathrm{CT}$ | F3 | $1000=10.00 \times$ CT |
| 2123 |  | Winding 3 Neutral Inst 0/C 1 Delay | 0 to 60000 | 1 | ms | F1 | 0 ms |
| 2124 |  | Winding 3 Neutral Inst 0/C 1 Block | --- | --- | --- | F87 | $0=$ Disabled |
| 2125 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 212F |  | Reserved |  |  |  |  |  |
| 2130 | WINDING 1 NEUTRAL INST 0/C 2 | Winding 1 Neutral Inst 0/C 2 Function | --- | --- | --- | F30 | 0 = Disabled |
| 2131 |  | Winding 1 Neutral Inst 0/C 2 Target | --- | --- | --- | F46 | 1 = Latched |
| 2132 |  | Winding 1 Neutral Inst 0/C 2 Pickup | 0.05 to 20.00 | 0.01 | $\times \mathrm{CT}$ | F3 | $1000=10.00 \times$ CT |
| 2133 |  | Winding 1 Neutral Inst 0/C 2 Delay | 0 to 60000 | 1 | ms | F1 | 0 ms |
| 2134 |  | Winding 1 Neutral Inst 0/C 2 Block | --- | --- | --- | F87 | 0 = Disabled |
| 2135 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 213F |  | Reserved |  |  |  |  |  |

Table 8-6: 745 MEMORY MAP (Sheet 39 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP VALUE | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2140 | WINDING 2 NEUTRAL INST O/C 2 | Winding 2 Neutral Inst 0/C 2 Function | --- | --- | --- | F30 | 0 = Disabled |
| 2141 |  | Winding 2 Neutral Inst 0/C 2 Target | --- | --- | --- | F46 | 1 = Latched |
| 2142 |  | Winding 2 Neutral Inst 0/C 2 Pickup | 0.05 to 20.00 | 0.01 | $\times$ CT | F3 | $1000=10.00 \times$ CT |
| 2143 |  | Winding 2 Neutral Inst 0/C 2 Delay | 0 to 60000 | 1 | ms | F1 | 0 ms |
| 2144 |  | Winding 2 Neutral Inst 0/C 2 Block | --- | --- | --- | F87 | 0 = Disabled |
| 2145 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 214F |  | Reserved |  |  |  |  |  |
| 2150 | WINDING 3 NEUTRAL INST O/C 2 | Winding 3 Neutral Inst 0/C 2 Function | --- | --- | --- | F30 | 0 = Disabled |
| 2151 |  | Winding 3 Neutral Inst 0/C 2 Target | --- | --- | --- | F46 | 1 = Latched |
| 2152 |  | Winding 3 Neutral Inst 0/C 2 Pickup | 0.05 to 20.00 | 0.01 | $\times \mathrm{CT}$ | F3 | $1000=10.00 \times$ CT |
| 2153 |  | Winding 3 Neutral Inst 0/C 2 Delay | 0 to 60000 | 1 | ms | F1 | 0 ms |
| 2154 |  | Winding 3 Neutral Inst 0/C 2 Block | --- | --- | --- | F87 | $0=$ Disabled |
| 2155 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 215F |  | Reserved |  |  |  |  |  |
| 2160 | WINDING 1GROUND TIMEO/C | Winding 1 Ground Time 0/C Function | --- | --- | --- | F30 | 1 = Enabled |
| 2161 |  | Winding 1 Ground Time 0/C Target | --- | --- | --- | F46 | 1 = Latched |
| 2162 |  | Winding 1 Ground Time 0/C Pickup | 0.05 to 20.00 | 0.01 | $\times \mathrm{CT}$ | F3 | $85=0.85 \times$ CT |
| 2163 |  | Winding 1 Ground Time 0/C Shape | --- | --- | --- | F36 | $0=$ Ext Inverse |
| 2164 |  | Winding 1 Ground Time 0/C Multiplier | 0.00 to 100.00 | 0.01 | --- | F3 | $100=1.00$ |
| 2165 |  | Winding 1 Ground Time 0/C Reset | --- | --- | --- | F68 | 1 = Linear |
| 2166 |  | Winding 1 Ground Time 0/C Block | --- | --- | --- | F87 | 0 = Disabled |
| 2167 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 216F |  | Reserved |  |  |  |  |  |
| 2170 | WINDING 2GROUND TIMEO/C | Winding 2 Ground Time 0/C Function | --- | --- | --- | F30 | 0 = Disabled |
| 2171 |  | Winding 2 Ground Time 0/C Target | --- | --- | --- | F46 | 1 = Latched |
| 2172 |  | Winding 2 Ground Time 0/C Pickup | 0.05 to 20.00 | 0.01 | $\times$ CT | F3 | $85=0.85 \times$ CT |
| 2173 |  | Winding 2 Ground Time 0/C Shape | --- | --- | --- | F36 | $0=$ Ext Inverse |
| 2174 |  | Winding 2 Ground Time 0/C Multiplier | 0.00 to 100.00 | 0.01 | --- | F3 | $100=1.00$ |
| 2175 |  | Winding 2 Ground Time 0/C Reset | --- | --- | --- | F68 | 1 = Linear |
| 2176 |  | Winding 2 Ground Time 0/C Block | --- | --- | --- | F87 | 0 = Disabled |
| 2177 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 217F |  | Reserved |  |  |  |  |  |

Table 8-6: 745 MEMORY MAP (Sheet 40 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP | UNITS | $\begin{array}{\|c\|} \hline \text { FORMAT } \\ \text { CODE } \end{array}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2180 | WINDING 3GROUNDTIME$0 / \mathrm{C}$ | Winding 3 Ground Time 0/C Function | --- | --- | --- | F30 | 0 = Disabled |
| 2181 |  | Winding 3 Ground Time 0/C Target | --- | --- | --- | F46 | 1 = Latched |
| 2182 |  | Winding 3 Ground Time 0/C Pickup | 0.05 to 20.00 | 0.01 | x CT | F3 | $85=0.85 \times$ CT |
| 2183 |  | Winding 3 Ground Time 0/C Shape | --- | --- | --- | F36 | 0 = Ext Inverse |
| 2184 |  | Winding 3 Ground Time 0/C Multiplier | 0.00 to 100.00 | 0.01 | --- | F3 | $100=1.00$ |
| 2185 |  | Winding 3 Ground Time 0/C Reset | --- | --- | --- | F68 | 1 = Linear |
| 2186 |  | Winding 3 Ground Time 0/C Block | --- | --- | --- | F87 | $0=$ Disabled |
| 2187 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 218F |  | Reserved |  |  |  |  |  |
| 2190 | WINDING 1 GROUND INST 0/C 1 | Winding 1 Ground Inst 0/C 1 Function | --- | --- | --- | F30 | 0 = Disabled |
| 2191 |  | Winding 1 Ground Inst 0/C 1 Target | --- | --- | --- | F46 | 1 = Latched |
| 2192 |  | Winding 1 Ground Inst 0/C 1 Pickup | 0.05 to 20.00 | 0.01 | x CT | F3 | $1000=10.00 \times C T$ |
| 2193 |  | Winding 1 Ground Inst 0/C 1 Delay | 0 to 60000 | 1 | ms | F1 | 0 ms |
| 2194 |  | Winding 1 Ground Inst 0/C 1 Block | --- | --- | --- | F87 | 0 = Disabled |
| 2195 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 219 F |  | Reserved |  |  |  |  |  |
| 21A0 | WINDING 2GROUNDINSTO/C 1 | Winding 2 Ground Inst 0/C 1 Function | --- | --- | --- | F30 | 0 = Disabled |
| 21A1 |  | Winding 2 Ground Inst 0/C 1 Target | --- | --- | --- | F46 | 1 = Latched |
| 21A2 |  | Winding 2 Ground Inst 0/C 1 Pickup | 0.05 to 20.00 | 0.01 | x CT | F3 | $1000=10.00 \times$ CT |
| 21A3 |  | Winding 2 Ground Inst 0/C 1 Delay | 0 to 60000 | 1 | ms | F1 | 0 ms |
| 21A4 |  | Winding 2 Ground Inst 0/C 1 Block | --- | --- | --- | F87 | $0=$ Disabled |
| 21A5 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 21AF |  | Reserved |  |  |  |  |  |
| 21B0 | WINDING 3GROUND INSTO/C 1 | Winding 3 Ground Inst 0/C 1 Function | --- | --- | --- | F30 | 0 = Disabled |
| 21B1 |  | Winding 3 Ground Inst 0/C 1 Target | --- | --- | --- | F46 | 1 = Latched |
| 21B2 |  | Winding 3 Ground Inst 0/C 1 Pickup | 0.05 to 20.00 | 0.01 | x CT | F3 | $1000=10.00 \times$ CT |
| 21B3 |  | Winding 3 Ground Inst 0/C 1 Delay | 0 to 60000 | 1 | ms | F1 | 0 ms |
| 21B4 |  | Winding 3 Ground Inst 0/C 1 Block | --- | --- | --- | F87 | 0 = Disabled |
| 21B5 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 21BF |  | Reserved |  |  |  |  |  |
| 21C0 | WINDING 1GROUND INSTO/C 2 | Winding 1 Ground Inst 0/C 2 Function | --- | --- | --- | F30 | 0 = Disabled |
| $21 \mathrm{C1}$ |  | Winding 1 Ground Inst 0/C 2 Target | --- | --- | --- | F46 | 1 = Latched |
| 21-2 |  | Winding 1 Ground Inst 0/C 2 Pickup | 0.05 to 20.00 | 0.01 | x CT | F3 | $1000=10.00 \times$ CT |
| $21 \mathrm{C3}$ |  | Winding 1 Ground Inst 0/C 2 Delay | 0 to 60000 | 1 | ms | F1 | 0 ms |

Table 8-6: 745 MEMORY MAP (Sheet 41 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | $\begin{gathered} \text { STEP } \\ \text { VALUE } \end{gathered}$ | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 21C4 | $\begin{gathered} \text { WINDING } 2 \\ \text { GROUND INST } \\ \text { O/C } 2 \end{gathered}$ | Winding 1 Ground Inst 0/C 2 Block | --- | --- | --- | F87 | 0 = Disabled |
| 21C5 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 21CF |  | Reserved |  |  |  |  |  |
| 21D0 |  | Winding 2 Ground Inst 0/C 2 Function | --- | --- | --- | F30 | 0 = Disabled |
| 21D1 |  | Winding 2 Ground Inst 0/C 2 Target | --- | --- | --- | F46 | 1 = Latched |
| 21D2 |  | Winding 2 Ground Inst 0/C 2 Pickup | 0.05 to 20.00 | 0.01 | $\times \mathrm{CT}$ | F3 | $1000=10.00 \times$ CT |
| 21D3 |  | Winding 2 Ground Inst 0/C 2 Delay | 0 to 60000 | 1 | ms | F1 | 0 ms |
| 21D4 |  | Winding 2 Ground Inst 0/C 2 Block | --- | --- | --- | F87 | 0 = Disabled |
| 21D5 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 21DF |  | Reserved |  |  |  |  |  |
| 21E0 | WINDING 3GROUND INSTO/C 2 | Winding 3 Ground Inst 0/C 2 Function | --- | --- | --- | F30 | 0 = Disabled |
| 21E1 |  | Winding 3 Ground Inst 0/C 2 Target | --- | --- | --- | F46 | 1 = Latched |
| 21E2 |  | Winding 3 Ground Inst 0/C 2 Pickup | 0.05 to 20.00 | 0.01 | $\times \mathrm{CT}$ | F3 | $1000=10.00 \times$ CT |
| 21E3 |  | Winding 3 Ground Inst 0/C 2 Delay | 0 to 60000 | 1 | ms | F1 | 0 ms |
| 21E4 |  | Winding 3 Ground Inst 0/C 2 Block | --- | --- | --- | F87 | 0 = Disabled |
| 21E5 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 21EF |  | Reserved |  |  |  |  |  |
| 21F0 | $\begin{gathered} \text { WINDING } 1 \\ \text { RESTD GND } \\ \text { FAULT } \end{gathered}$ | Winding 1 Restricted Ground Fault Function | --- | --- | --- | F30 | 0 = Disabled |
| 21F1 |  | Winding 1 Restricted Ground Fault Target | --- | --- | --- | F46 | 1 = Latched |
| 21F2 |  | Winding 1 Restricted Ground Fault Pickup | 0.05 to 20.00 | 0.01 | $\times \mathrm{CT}$ | F3 | $8=0.08 \times \mathrm{CT}$ |
| 21F3 |  | Winding 1 Restricted Ground Fault Slope | 0 to 100 | 1 | \% | F1 | 10\% |
| 21 F 4 |  | Winding 1 Restricted Ground Fault Delay | 0.00 to 600.00 | 0.01 | S | F3 | $10=0.10 \mathrm{~s}$ |
| $21 \mathrm{F5}$ |  | Winding 1 Restricted Ground Fault Block | --- | --- | --- | F87 | $0=$ Disabled |
| 21F6 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 21FF |  | Reserved |  |  |  |  |  |
| 2200 | WINDING 2 RESTD GND FAULT | Winding 2 Restricted Ground Fault Function | --- | --- | --- | F30 | 0 = Disabled |
| 2201 |  | Winding 2 Restricted Ground Fault Target | --- | --- | --- | F46 | 1 = Latched |
| 2202 |  | Winding 2 Restricted Ground Fault Pickup | 0.05 to 20.00 | 0.01 | $\times \mathrm{CT}$ | F3 | $8=0.08 \times \mathrm{CT}$ |
| 2203 |  | Winding 2 Restricted Ground Fault Slope | 0 to 100 | 1 | \% | F1 | 10\% |
| 2204 |  | Winding 2 Restricted Ground Fault Delay | 0.00 to 600.00 | 0.01 | S | F3 | $10=0.10 \mathrm{~s}$ |
| 2205 |  | Winding 2 Restricted Ground Fault Block | --- | --- | --- | F87 | $0=$ Disabled |
| 2206 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 220 F |  | Reserved |  |  |  |  |  |

Table 8-6: 745 MEMORY MAP (Sheet 42 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | $\begin{aligned} & \text { STEP } \\ & \text { VALUE } \end{aligned}$ | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2210 | WINDING 3 RESTD GND FAULT | Winding 3 Restricted Ground Fault Function | --- | -- | --- | F30 | 0 = Disabled |
| 2211 |  | Winding 3 Restricted Ground Fault Target | --- | --- | --- | F46 | 1 = Latched |
| 2212 |  | Winding 3 Restricted Ground Fault Pickup | 0.05 to 20.00 | 0.01 | $\times \mathrm{CT}$ | F3 | $8=0.08 \times \mathrm{CT}$ |
| 2213 |  | Winding 3 Restricted Ground Fault Slope | 0 to 100 | 1 | \% | F1 | 10\% |
| 2214 |  | Winding 3 Restricted Ground Fault Delay | 0.00 to 600.00 | 0.01 | S | F3 | $10=0.10 \mathrm{~s}$ |
| 2215 |  | Winding 3 Restricted Ground Fault Block | --- | --- | --- | F87 | 0 = Disabled |
| 2216 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 221F |  | Reserved |  |  |  |  |  |
| 2220 | $\begin{gathered} \hline \text { WINDING } 1 \\ \text { RESTD GND } \\ \text { TREND } \end{gathered}$ | Winding 1 Restricted Ground Trend Function | --- | --- | --- | F30 | 0 = Disabled |
| 2221 |  | Winding 1 Restricted Ground Trend Target | --- | --- | --- | F46 | 1 = Latched |
| 2222 |  | Winding 1 Restricted Ground Trend Pickup | 0.05 to 20.00 | 0.01 | $\times \mathrm{CT}$ | F3 | $8=0.08 \times \mathrm{CT}$ |
| 2223 |  | Winding 1 Restricted Ground Trend Slope | 0 to 100 | 1 | \% | F1 | 90\% |
| 2224 |  | Winding 1 Restricted Ground Trend Delay | 0.00 to 600.00 | 0.01 | S | F3 | $10=0.10 \mathrm{~s}$ |
| 2225 |  | Winding 1 Restricted Ground Trend Block | --- | --- | --- | F87 | 0 = Disabled |
| 2226 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 222F |  | Reserved |  |  |  |  |  |
| 2230 | $\begin{aligned} & \text { WINDING } 2 \\ & \text { RESTD GND } \\ & \text { TREND } \end{aligned}$ | Winding 2 Restricted Ground Trend Function | --- | --- | --- | F30 | 0 = Disabled |
| 2231 |  | Winding 2 Restricted Ground Trend Target | --- | --- | --- | F46 | 1 = Latched |
| 2232 |  | Winding 2 Restricted Ground Trend Pickup | 0.05 to 20.00 | 0.01 | $\times \mathrm{CT}$ | F3 | $8=0.08 \times \mathrm{CT}$ |
| 2233 |  | Winding 2 Restricted Ground Trend Slope | 0 to 100 | 1 | \% | F1 | 90\% |
| 2234 |  | Winding 2 Restricted Ground Trend Delay | 0.00 to 600.00 | 0.01 | S | F3 | $10=0.10 \mathrm{~s}$ |
| 2235 |  | Winding 2 Restricted Ground Trend Block | --- | --- | --- | F87 | 0 = Disabled |
| 2236 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 223F |  | Reserved |  |  |  |  |  |
| 2240 | WINDING 3 RESTD GND TREND | Winding 3 Restricted Ground Trend Function | --- | --- | --- | F30 | 0 = Disabled |
| 2241 |  | Winding 3 Restricted Ground Trend Target | --- | --- | --- | F46 | 1 = Latched |
| 2242 |  | Winding 3 Restricted Ground Trend Pickup | 0.05 to 20.00 | 0.01 | $\times \mathrm{CT}$ | F3 | $8=0.08 \times \mathrm{CT}$ |
| 2243 |  | Winding 3 Restricted Ground Trend Slope | 0 to 100 | 1 | \% | F1 | 90\% |
| 2244 |  | Winding 3 Restricted Ground Trend Delay | 0.00 to 600.00 | 0.01 | S | F3 | $10=0.10 \mathrm{~s}$ |
| 2245 |  | Winding 3 Restricted Ground Trend Block | --- | --- | --- | F87 | 0 = Disabled |
| 2246 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 224F |  | Reserved |  |  |  |  |  |

Table 8-6: 745 MEMORY MAP (Sheet 43 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP <br> VALUE | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2250 | $\begin{gathered} \text { WINDING } 1 \\ \text { NEG SEQ TIME } \\ 0 / C \end{gathered}$ | Winding 1 Neg Seq Time 0/C Function | --- | --- | --- | F30 | 0 = Disabled |
| 2251 |  | Winding 1 Neg Seq Time 0/C Target | --- | --- | --- | F46 | 1 = Latched |
| 2252 |  | Winding 1 Neg Seq Time 0/C Pickup | 0.05 to 20.00 | 0.01 | $\times$ CT | F3 | $25=0.25 \times \mathrm{CT}$ |
| 2253 |  | Winding 1 Neg Seq Time 0/C Shape | --- | --- | --- | F36 | 0 = Ext Inverse |
| 2254 |  | Winding 1 Neg Seq Time 0/C Multiplier | 0.00 to 100.00 | 0.01 | --- | F3 | $100=1.00$ |
| 2255 |  | Winding 1 Neg Seq Time 0/C Reset | --- | --- | --- | F68 | 1 = Linear |
| 2256 |  | Winding 1 Neg Seq Time 0/C Block | --- | --- | --- | F87 | 0 = Disabled |
| 2257 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 225F |  | Reserved |  |  |  |  |  |
| 2260 | $\qquad$ | Winding 2 Neg Seq Time 0/C Function | --- | --- | --- | F30 | 0 = Disabled |
| 2261 |  | Winding 2 Neg Seq Time 0/C Target | --- | --- | --- | F46 | 1 = Latched |
| 2262 |  | Winding 2 Neg Seq Time 0/C Pickup | 0.05 to 20.00 | 0.01 | $\times \mathrm{CT}$ | F3 | $25=0.25 \times \mathrm{CT}$ |
| 2263 |  | Winding 2 Neg Seq Time 0/C Shape | --- | --- | --- | F36 | 0 = Ext Inverse |
| 2264 |  | Winding 2 Neg Seq Time 0/C Multiplier | 0.00 to 100.00 | 0.01 | --- | F3 | $100=1.00$ |
| 2265 |  | Winding 2 Neg Seq Time 0/C Reset | --- | --- | --- | F68 | 1 = Linear |
| 2266 |  | Winding 2 Neg Seq Time 0/C Block | --- | --- | --- | F87 | 0 = Disabled |
| 2267 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 226F |  | Reserved |  |  |  |  |  |
| 2270 | WINDING 3NEG SEQ TIMEO/C | Winding 3 Neg Seq Time 0/C Function | --- | --- | --- | F30 | 0 = Disabled |
| 2271 |  | Winding 3 Neg Seq Time 0/C Target | --- | --- | --- | F46 | 1 = Latched |
| 2272 |  | Winding 3 Neg Seq Time 0/C Pickup | 0.05 to 20.00 | 0.01 | $\times \mathrm{CT}$ | F3 | $25=0.25 \times \mathrm{CT}$ |
| 2273 |  | Winding 3 Neg Seq Time 0/C Shape | --- | --- | --- | F36 | 0 = Ext Inverse |
| 2274 |  | Winding 3 Neg Seq Time 0/C Multiplier | 0.00 to 100.00 | 0.01 | --- | F3 | $100=1.00$ |
| 2275 |  | Winding 3 Neg Seq Time 0/C Reset | --- | --- | --- | F68 | 1 = Linear |
| 2276 |  | Winding 3 Neg Seq Time 0/C Block | --- | --- | --- | F87 | 0 = Disabled |
| 2277 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 227 F |  | Reserved |  |  |  |  |  |
| 2280 | WINDING 1NEG SEQ INST$0 / \mathrm{C}$ | Winding 1 Neg Seq Inst 0/C Function | --- | --- | --- | F30 | 0 = Disabled |
| 2281 |  | Winding 1 Neg Seq Inst 0/C Target | --- | --- | --- | F46 | 1 = Latched |
| 2282 |  | Winding 1 Neg Seq Inst 0/C Pickup | 0.05 to 20.00 | 0.01 | $\times \mathrm{CT}$ | F3 | $1000=10.00 \times$ CT |
| 2283 |  | Winding 1 Neg Seq Inst 0/C Delay | 0 to 60000 | 1 | ms | F1 | 0 ms |
| 2284 |  | Winding 1 Neg Seq Inst 0/C Block | --- | --- | --- | F87 | 0 = Disabled |
| 2285 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 228F |  | Reserved |  |  |  |  |  |

Table 8-6: 745 MEMORY MAP (Sheet 44 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | $\begin{aligned} & \hline \text { STEP } \\ & \text { VALUE } \end{aligned}$ | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2290 | WINDING 2NEG SEQ INST$0 / C$ | Winding 2 Neg Seq Inst 0/C Function | --- | --- | --- | F30 | 0 = Disabled |
| 2291 |  | Winding 2 Neg Seq Inst 0/C Target | --- | --- | --- | F46 | 1 = Latched |
| 2292 |  | Winding 2 Neg Seq Inst 0/C Pickup | 0.05 to 20.00 | 0.01 | $\times \mathrm{CT}$ | F3 | $1000=10.00 \times$ CT |
| 2293 |  | Winding 2 Neg Seq Inst 0/C Delay | 0 to 60000 | 1 | ms | F1 | 0 ms |
| 2294 |  | Winding 2 Neg Seq Inst 0/C Block | --- | --- | --- | F87 | 0 = Disabled |
| 2295 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 229F |  | Reserved |  |  |  |  |  |
| 22A0 | WINDING 3NEG SEQ INSTO/C | Winding 3 Neg Seq Inst 0/C Function | --- | --- | --- | F30 | 0 = Disabled |
| 22A1 |  | Winding 3 Neg Seq Inst 0/C Target | --- | --- | --- | F46 | 1 = Latched |
| 22A2 |  | Winding 3 Neg Seq Inst 0/C Pickup | 0.05 to 20.00 | 0.01 | $\times$ CT | F3 | $1000=10.00 \times$ CT |
| 22A3 |  | Winding 3 Neg Seq Inst 0/C Delay | 0 to 60000 | 1 | ms | F1 | 0 ms |
| 22A4 |  | Winding 3 Neg Seq Inst 0/C Block | --- | --- | --- | F87 | 0 = Disabled |
| 22A5 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 22AF |  | Reserved |  |  |  |  |  |
| 22B0 | UNDER FREQUENCY 1 | Underfrequency 1 Function | --- | --- | --- | F30 | 0 = Disabled |
| 22B1 |  | Underfrequency 1 Target | --- | --- | --- | F46 | $0=$ Self-reset |
| 22B2 |  | Underfrequency 1 Minimum Operating Current | 0.05 to 1.00 | 0.01 | $\times \mathrm{CT}$ | F3 | $20=0.20 \times \mathrm{CT}$ |
| 22B3 |  | Underfrequency 1 Pickup | 45.00 to 59.99 | 0.01 | Hz | F3 | $5900=59.0 \mathrm{~Hz}$ |
| 22B4 |  | Underfrequency 1 Delay | 0.00 to 600.00 | 0.01 | S | F3 | $100=1.00 \mathrm{~s}$ |
| 22B5 |  | Underfrequency 1 Block | --- | --- | --- | F87 | 0 = Disabled |
| 22B6 |  | Underfrequency 1 Current Sensing | --- | --- | --- | F30 | 1 = Enabled |
| 22B7 |  | Underfrequency 1 Minimum Operating Voltage | 0.10 to 0.99 | 0.01 | $\times \mathrm{VT}$ | F3 | $50=0.50 \times \mathrm{VT}$ |
| 22B8 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 22BF |  | Reserved |  |  |  |  |  |
| 22 CO | $\begin{gathered} \text { UNDER } \\ \text { FREQUENCY } \\ 2 \end{gathered}$ | Underfrequency 2 Function | --- | --- | -- | F30 | 0 = Disabled |
| 22C1 |  | Underfrequency 2 Target | --- | --- | --- | F46 | 1 = Latched |
| 22 C 2 |  | Underfrequency 2 Minimum Operating Current | 0.05 to 1.00 | 0.01 | $\times \mathrm{CT}$ | F3 | $20=0.20 \times \mathrm{CT}$ |
| $22 \mathrm{C3}$ |  | Underfrequency 2 Pickup | 45.00 to 59.99 | 0.01 | Hz | F3 | $5880=58.8 \mathrm{~Hz}$ |
| $22 \mathrm{C4}$ |  | Underfrequency 2 Delay | 0.00 to 600.00 | 0.01 | S | F3 | $10=0.10 \mathrm{~s}$ |
| $22 \mathrm{C5}$ |  | Underfrequency 2 Block | --- | --- | -- | F87 | 0 = Disabled |
| $22 \mathrm{C6}$ |  | Underfrequency 2 Current Sensing | --- | --- | --- | F30 | 1 = Enabled |
| $22 \mathrm{C7}$ |  | Underfrequency 2 Minimum Operating Voltage | 0.01 to 0.99 | 0.01 | $\times \mathrm{VT}$ | F3 | $50=0.50 \times \mathrm{VT}$ |
| $22 \mathrm{C8}$ |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 22CF |  | Reserved |  |  |  |  |  |

Table 8-6: 745 MEMORY MAP (Sheet 45 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP VALUE | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 22D0 | $\begin{gathered} \text { FREQUENCY } \\ \text { DECAY } \end{gathered}$ | Frequency Decay Function | --- | --- | --- | F30 | 0 = Disabled |
| 22 D 1 |  | Frequency Decay Target | --- | --- | --- | F46 | 1 = Latched |
| 22D2 |  | Frequency Decay Minimum Operating Current | 0.05 to 1.00 | 0.01 | $\times$ CT | F3 | $20=0.20 \times C T$ |
| 22D3 |  | Frequency Decay Threshold | 45.00 to 59.99 | 0.01 | Hz | F3 | $5950=59.5 \mathrm{~Hz}$ |
| 22D4 |  | Frequency Decay Rate 1 | 0.1 to 5.0 | 0.1 | Hz/s | F2 | $4=0.4 \mathrm{~Hz} / \mathrm{s}$ |
| 22D5 |  | Frequency Decay Rate 2 | 0.1 to 5.0 | 0.1 | Hz/s | F2 | $10=1.0 \mathrm{~Hz} / \mathrm{s}$ |
| $22 \mathrm{D6}$ |  | Frequency Decay Rate 3 | 0.1 to 5.0 | 0.1 | Hz/s | F2 | $20=2.0 \mathrm{~Hz} / \mathrm{s}$ |
| $22 \mathrm{D7}$ |  | Frequency Decay Rate 4 | 0.1 to 5.0 | 0.1 | Hz/s | F2 | $40=4.0 \mathrm{~Hz} / \mathrm{s}$ |
| 22D8 |  | Frequency Decay Block | --- | --- | --- | F87 | 0 = Disabled |
| 22D9 |  | Frequency Decay Current Sensing | --- | --- | --- | F30 | 1 = Enabled |
| 22DA |  | Frequency Decay Minimum Operating Voltage | 0.10 to 0.99 | 0.01 | $\times \mathrm{V} T$ | F3 | $50=0.50 \times \mathrm{VT}$ |
| 22DB |  | Frequency Decay Delay | 0.00 to 600.00 | 0.01 | S | F3 | $0=0.00 \mathrm{~s}$ |
| 22DC |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 22DF |  | Reserved |  |  |  |  |  |
| 22E0 | OVERFREQUENCY | Overfrequency Function | --- | --- | --- | F30 | 0 = Disabled |
| 22E1 |  | Overfrequency Target | --- | --- | --- | F46 | 1 = Latched |
| 22E2 |  | Overfrequency Minimum Operating Current | 0.05 to 1.00 | 0.01 | $\times$ CT | F3 | $20=0.20 \times C T$ |
| 22E3 |  | Overfrequency Pickup | 50.01 to 65.00 | 0.01 | Hz | F3 | $6050=60.5 \mathrm{~Hz}$ |
| 22E4 |  | Overfrequency Delay | 0.00 to 600.00 | 0.01 | S | F3 | $500=5.00 \mathrm{~s}$ |
| 22E5 |  | Overfrequency Block | --- | --- | --- | F87 | 0 = Disabled |
| $22 \mathrm{E6}$ |  | Overfrequency Current Sensing | --- | --- | --- | F30 | 1 = Enabled |
| $22 \mathrm{E7}$ |  | Overfrequency Minimum Operating Voltage | 0.10 to 0.99 | 0.01 | $\times \mathrm{VT}$ | F3 | $50=0.50 \times \mathrm{VT}$ |
| 22E8 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 22EF |  | Reserved |  |  |  |  |  |
| 22F0 | 5th HARMONIC LEVEL | 5th Harmonic Level Function | --- | --- | --- | F30 | 0 = Disabled |
| 22 F 1 |  | 5th Harmonic Level Target | --- | --- | --- | F46 | $0=$ Self-reset |
| 22F2 |  | 5th Harmonic Level Min.Operating Current | 0.03 to 1.00 | 0.01 | $\times \mathrm{CT}$ | F3 | $10=0.10 \times \mathrm{CT}$ |
| 22F3 |  | 5th Harmonic Level Pickup | 0.1 to 99.9 | 0.1 | \% f0 | F1 | $100=10.0 \% f_{0}$ |
| 22F4 |  | 5th Harmonic Level Delay | 0 to 60000 | 1 | S | F1 | 10 s |
| 22F5 |  | 5th Harmonic Level Block | --- | --- | --- | F87 | 0 = Disabled |
| 22F6 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 22FF |  | Reserved |  |  |  |  |  |
| 2300 | VOLTS-PERHERTZ 1 | Volts-Per-Hertz 1 Function | --- | --- | --- | F30 | 0 = Disabled |
| 2301 |  | Volts-Per-Hertz 1 Target | --- | --- | --- | F46 | $0=$ Self-reset |
| 2302 |  | Volts-Per-Hertz 1 Minimum Operating Voltage | 0.10 to 0.99 | 0.01 | $\times \mathrm{VT}$ | F3 | $10=0.10 \times \mathrm{VT}$ |

Table 8-6: 745 MEMORY MAP (Sheet 46 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | $\begin{aligned} & \text { STEP } \\ & \text { VALUE } \end{aligned}$ | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2303 |  | Volts-Per-Hertz 1 Pickup | 1.00 to 4.00 | 0.01 | V/Hz | F3 | $236=2.36 \mathrm{~V} / \mathrm{Hz}$ |
| 2304 |  | Volts-Per-Hertz 1 Shape | --- | --- | --- | F86 | 0 = Def. Time |
| 2305 |  | Volts-Per-Hertz 1 Delay | 0.00 to 600.00 | 0.01 | S | F3 | $200=2.00 \mathrm{~s}$ |
| 2306 |  | Volts-Per-Hertz 1 Reset | 0.0 to 6000.0 | 0.1 | S | F2 | 0.0 s |
| 2307 |  | Volts-Per-Hertz 1 Block | --- | --- | --- | F87 | 0 = Disabled |
| 2308 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 230F |  | Reserved |  |  |  |  |  |
| 2310 | VOLTS-PERHERTZ 2 | Volts-Per-Hertz 2 Function | --- | --- | --- | F30 | $0=$ Disabled |
| 2311 |  | Volts-Per-Hertz 2 Target | --- | --- | --- | F46 | 1 = Latched |
| 2312 |  | Volts-Per-Hertz 2 Min. Operating Voltage | 0.10 to 0.99 | 0.01 | x VT | F3 | $10=0.10 \times \mathrm{VT}$ |
| 2313 |  | Volts-Per-Hertz 2 Pickup | 1.00 to 4.00 | 0.01 | V/Hz | F3 | $214=2.14 \mathrm{~V} / \mathrm{Hz}$ |
| 2314 |  | Volts-Per-Hertz 2 Shape | --- | --- | --- | F86 | 0 = Def. Time |
| 2315 |  | Volts-Per-Hertz 2 Delay | 0.00 to 600.00 | 0.01 | S | F3 | $4500=45.00 \mathrm{~s}$ |
| 2316 |  | Volts-Per-Hertz 2 Reset | 0.0 to 6000.0 | 0.1 | S | F2 | 0.0 s |
| 2317 |  | Volts-Per-Hertz 2 Block | --- | --- | --- | F87 | 0 = Disabled |
| 2318 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 231F |  | Reserved |  |  |  |  |  |
| 2320 | WINDING 1 THD LEVEL | Winding 1 THD Level Function | --- | --- | --- | F30 | $0=$ Disabled |
| 2321 |  | Winding 1 THD Level Target | --- | --- | --- | F46 | $0=$ Self-reset |
| 2322 |  | Winding 1 THD Level Min. Operating Current | 0.03 to 1.00 | 0.01 | $\times \mathrm{CT}$ | F3 | $10=0.10 \times \mathrm{CT}$ |
| 2323 |  | Winding 1 THD Level Pickup | 0.1 to 50.0 | 0.1 | \% f0 | F2 | $500=50.0 \%$ |
| 2324 |  | Winding 1 THD Level Delay | 0 to 60000 | 1 | S | F1 | 10 s |
| 2325 |  | Winding 1 THD Level Block | --- | -- | --- | F87 | 0 = Disabled |
| 2326 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 232F |  | Reserved |  |  |  |  |  |
| 2330 | WINDING 2 THD LEVEL | Winding 2 THD Level Function | --- | --- | --- | F30 | 0 = Disabled |
| 2331 |  | Winding 2 THD Level Target | --- | --- | --- | F46 | $0=$ Self-reset |
| 2332 |  | Winding 2 THD Level Min. Operating Current | 0.03 to 1.00 | 0.01 | $\times \mathrm{CT}$ | F3 | $10=0.10 \times \mathrm{CT}$ |
| 2333 |  | Winding 2 THD Level Pickup | 0.1 to 50.0 | 0.1 | \% f0 | F2 | $500=50.0 \%$ |
| 2334 |  | Winding 2 THD Level Delay | 0 to 60000 | 1 | S | F1 | 10 s |
| 2335 |  | Winding 2 THD Level Block | --- | --- | --- | F87 | 0 = Disabled |
| 2336 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 233F |  | Reserved |  |  |  |  |  |

Table 8-6: 745 MEMORY MAP (Sheet 47 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP <br> VALUE | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2340 | WINDING 3 <br> THD LEVEL | Winding 3 THD Level Function | --- | --- | --- | F30 | 0 = Disabled |
| 2341 |  | Winding 3 THD Level Target | --- | --- | --- | F46 | $0=$ Self-reset |
| 2342 |  | Winding 3 THD Level Min. Operating Current | 0.03 to 1.00 | 0.01 | $\times$ CT | F3 | $10=0.10 \times C T$ |
| 2343 |  | Winding 3 THD Level Pickup | 0.1 to 50.0 | 0.1 | \% f0 | F2 | $500=50.0 \%$ |
| 2344 |  | Winding 3 THD Level Delay | 0 to 60000 | 1 | S | F1 | 10 s |
| 2345 |  | Winding 3 THD Level Block | --- | --- | --- | F87 | 0 = Disabled |
| 2346 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 234F |  | Reserved |  |  |  |  |  |
| 2350 | WINDING 1 HARMONIC DERATING | Winding 1 Harm Derating Function | --- | --- | --- | F30 | 0 = Disabled |
| 2351 |  | Winding 1 Harm Derating Target | --- | --- | --- | F46 | $0=$ Self-reset |
| 2352 |  | Winding 1 Harm Derating Min. Operating Current | 0.03 to 1.00 | 0.01 | $\times$ CT | F3 | $10=0.10 \times C T$ |
| 2353 |  | Winding 1 Harm Derating Pickup | 0.01 to 0.98 | 0.01 | --- | F3 | $90=0.90$ |
| 2354 |  | Winding 1 Harm Derating Delay | 0 to 60000 | 1 | S | F1 | 10 s |
| 2355 |  | Winding 1 Harm Derating Block | --- | --- | --- | F87 | 0 = Disabled |
| 2356 |  | Reserved |  |  |  |  |  |
| : |  | : |  |  |  |  |  |
| 235F |  | Reserved |  |  |  |  |  |
| 2360 | WINDING 2 HARMONIC DERATING | Winding 2 Harm Derating Function | --- | --- | --- | F30 | 0 = Disabled |
| 2361 |  | Winding 2 Harm Derating Target | --- | --- | --- | F46 | $0=$ Self-reset |
| 2362 |  | Winding 2 Harm Derating Min. Operating Current | 0.03 to 1.00 | 0.01 | $\times$ CT | F3 | $10=0.10 \times$ CT |
| 2363 |  | Winding 2 Harm Derating Pickup | 0.01 to 0.98 | 0.01 | --- | F3 | $90=0.90$ |
| 2364 |  | Winding 2 Harm Derating Delay | 0 to 60000 | 1 | S | F1 | 10 s |
| 2365 |  | Winding 2 Harm Derating Block | --- | --- | --- | F87 | 0 = Disabled |
| 2366 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 236F |  | Reserved |  |  |  |  |  |
| 2370 | WINDING 3 HARMONIC DERATING | Winding 3 Harm Derating Function | --- | --- | --- | F30 | 0 = Disabled |
| 2371 |  | Winding 3 Harm Derating Target | --- | --- | --- | F46 | $0=$ Self-reset |
| 2372 |  | Winding 3 Harm Derating Min. Operating Current | 0.03 to 1.00 | 0.01 | $\times \mathrm{CT}$ | F3 | $10=0.10 \times C T$ |
| 2373 |  | Winding 3 Harm Derating Pickup | 0.01 to 0.98 | 0.01 | --- | F3 | $90=0.90$ |
| 2374 |  | Winding 3 Harm Derating Delay | 0 to 60000 | 1 | S | F1 | 10 s |
| 2375 |  | Winding 3 Harm Derating Block | --- | --- | --- | F87 | 0 = Disabled |
| 2376 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 237F |  | Reserved |  |  |  |  |  |

Table 8-6: 745 MEMORY MAP (Sheet 48 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP VALUE | UNITS | $\begin{array}{\|c\|} \hline \text { FORMAT } \\ \text { CODE } \end{array}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2380 | HOTTESTSPOT LIMIT | Hottest-spot Limit Function | --- | --- | --- | F30 | 0 = Disabled |
| 2381 |  | Hottest-spot Limit Target | --- | --- | --- | F46 | $0=$ Self-reset |
| 2382 |  | Hottest-spot Limit Pickup | 50 to 300 | 1 | ${ }^{\circ} \mathrm{C}$ | F1 | $150^{\circ} \mathrm{C}$ |
| 2383 |  | Hottest-spot Limit Delay | 0 to 60000 | 1 | min | F1 | 10 min |
| 2384 |  | Hottest-spot Limit Block | --- | --- | --- | F87 | 0 = Disabled |
| 2385 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 238F |  | Reserved |  |  |  |  |  |
| 2390 | LOSS-OF-LIFE <br> LIMIT | Loss-of-Life Limit Function | --- | --- | --- | F30 | 0 = Disabled |
| 2391 |  | Loss-of-Life Limit Target | --- | --- | --- | F46 | $0=$ Self-reset |
| 2392 |  | Loss-of-Life Limit Pickup | 0 to 20000 | 1 | hrs $\times 10$ | F1 | $16000=160000 \mathrm{hrs}$ |
| 2393 |  | Loss-of-Life Limit Block | --- | --- | --- | F87 | 0 = Disabled |
| 2394 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 239F |  | Reserved |  |  |  |  |  |
| 23A0 | ANALOG INPUT LEVEL 1 | Analog Input Level 1 Function | --- | --- | --- | F30 | 0 = Disabled |
| 23A1 |  | Analog Input Level 1 Target | --- | --- | --- | F46 | 0 = Self-reset |
| 23A2 |  | Analog Input Level 1 Pickup | 1 to 65000 | 1 | <Units> | F1 | 10 <Units> |
| 23A3 |  | Analog Input Level 1 Delay | 0 to 60000 | 1 | S | F1 | 50 s |
| 23A4 |  | Analog Input Level 1 Block | --- | --- | --- | F87 | 0 = Disabled |
| 23A5 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 23AF |  | Reserved |  |  |  |  |  |
| 23B0 |  | Analog Input Level 2 Function | --- | --- | --- | F30 | 0 = Disabled |
| 23B1 |  | Analog Input Level 2 Target | --- | --- | --- | F46 | 0 = Self-reset |
| 23B2 |  | Analog Input Level 2 Pickup | 1 to 65000 | 1 | <Units> | F1 | 100 <Units> |
| 23B3 |  | Analog Input Level 2 Delay | 0 to 60000 | 1 | S | F1 | 100 s |
| 23B4 |  | Analog Input Level 2 Block | --- | --- | --- | F87 | $0=$ Disabled |
| 23B5 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 23BF |  | Reserved |  |  |  |  |  |
| 23C0 | WINDING 1 CURRENT DEMAND | Winding 1 Current Demand Function | --- | --- | --- | F30 | 0 = Disabled |
| 23C1 |  | Winding 1 Current Demand Target | --- | --- | --- | F46 | $0=$ Self-reset |
| 23C2 |  | Winding 1 Current Demand Pickup | --- | --- | A | F78 | 100 A |
| 23C3 |  | Winding 1 Current Demand Block | --- | --- | --- | F87 | $0=$ Disabled |
| 23C4 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 23CF |  | Reserved |  |  |  |  |  |

Table 8-6: 745 MEMORY MAP (Sheet 49 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | $\begin{gathered} \text { STEP } \\ \text { VALUE } \end{gathered}$ | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23D0 | WINDING 2 <br> CURRENT <br> DEMAND | Winding 2 Current Demand Function | --- | --- | --- | F30 | 0 = Disabled |
| 23D1 |  | Winding 2 Current Demand Target | --- | --- | --- | F46 | 0 = Self-reset |
| 23D2 |  | Winding 2 Current Demand Pickup | --- | --- | A | F79 | 400 A |
| 23D3 |  | Winding 2 Current Demand Block | --- | --- | --- | F87 | 0 = Disabled |
| 23D4 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 23DF |  | Reserved |  |  |  |  |  |
| 23E0 | WINDING 3 CURRENT DEMAND | Winding 3 Current Demand Function | --- | --- | --- | F30 | 0 = Disabled |
| 23E1 |  | Winding 3 Current Demand Target | --- | --- | --- | F46 | 0 = Self-reset |
| 23E2 |  | Winding 3 Current Demand Pickup | --- | --- | A | F80 | 400 A |
| 23E3 |  | Winding 3 Current Demand Block | --- | --- | --- | F87 | 0 = Disabled |
| 23E4 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 23EF |  | Reserved |  |  |  |  |  |
| 23 FO | XFORMER <br> OVERLOAD | Transformer Overload Function | --- | --- | --- | F30 | 0 = Disabled |
| 23F1 |  | Transformer Overload Target | --- | --- | --- | F46 | 0 = Self-reset |
| 23 F 2 |  | Transformer Overload Pickup | 50 to 300 | 1 | \% rated | F1 | 208\% rated |
| 23 F 3 |  | Transformer Overload Delay | 0 to 60000 | 1 | s | F1 | 10 s |
| 23 F 4 |  | Transformer Overload Block | --- | --- | --- | F87 | $0=$ Disabled |
| $23 \mathrm{F5}$ |  | Transformer Overtemperature Alarm Signal | --- | --- | --- | F88 | 0 = Disabled |
| 23F6 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 23FF |  | Reserved |  |  |  |  |  |
| 2400 | AGING <br> FACTOR <br> LIMIT | Aging Factor Limit Function | --- | --- | --- | F30 | 0 = Disabled |
| 2401 |  | Aging Factor Limit Target | --- | --- | --- | F46 | 0 = Self-reset |
| 2402 |  | Aging Factor Limit Pickup | 1.1 to 10.0 | 0.1 | -- | F2 | $20=2.0$ |
| 2403 |  | Aging Factor Limit Delay | 0 to 60000 | 1 | minutes | F1 | 10 minutes |
| 2404 |  | Aging Factor Limit Block | --- | --- | --- | F87 | 0 = Disabled |
| 2405 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 240 F |  | Reserved |  |  |  |  |  |
| 2410 | TAPCHANGER FAILURE | Tap Changer Failure Function | --- | --- | --- | F30 | $0=$ Disabled |
| 2411 |  | Tap Changer Failure Target | --- | --- | --- | F46 | 0 = Self-reset |
| 2412 |  | Tap Changer Failure Delay | 0 to 600.00 | 0.01 | S | F3 | $500=5.00 \mathrm{~s}$ |
| 2413 |  | Tap Changer Failure Block | --- | --- | --- | F87 | 0 = Disabled |
| 2414 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 3FFF |  | Reserved |  |  |  |  |  |

Table 8-6: 745 MEMORY MAP (Sheet 50 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | $\begin{gathered} \text { STEP } \\ \text { VALUE } \end{gathered}$ | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Trace Memory (Addresses 4000 to 47FF) - Read Only |  |  |  |  |  |  |  |
| 4000 | TRACE MEMORY | Trace Memory Last Clear Date (2 registers) | --- | --- | --- | F23 | --- |
| 4002 |  | Trace Memory Last Clear Time (2 registers) | --- | --- | --- | F22 | --- |
| 4004 |  | Total Number of Trace Triggers Since Last Clear | 0 to 65535 | 1 | --- | F1 | --- |
| 4005 |  | Trace Buffer Selector Index (XX) [read/write] | 1 to 65535 | 1 | --- | F1 | --- |
| 4006 |  | Trace Channel Selector Index (YY) [read/write] | --- | --- | --- | F65 | --- |
| 4007 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 400F |  | Reserved |  |  |  |  |  |
| 4010 |  | Trace Buffer XX Trigger Date (2 registers) | --- | --- | --- | F23 | --- |
| 4012 |  | Trace Buffer XX Trigger Time (2 registers) | --- | --- | --- | F22 | --- |
| 4014 |  | Trace Buffer XX Trigger Cause | --- | --- | --- | F85 | --- |
| 4015 |  | Trace Buffer XX Trigger Sample Index | 0 to 1023 | 1 | --- | F1 | --- |
| 4016 |  | Trace Buffer XX System Frequency | 2.00 to 65.00 | 0.01 | Hz | F3 | --- |
| 4017 |  | Trace Buffer XX Channel YY Sample 0 | --- | --- | --- | F70 | --- |
| 4018 |  | Trace Buffer XX Channel YY Sample 1 | --- | --- | --- | F70 | --- |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 4416 |  | Trace Buffer XX Channel YY Sample 1023 | --- | --- | --- | F70 | --- |
| 4417 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 47FF |  | Reserved |  |  |  |  |  |
| Playback Memory (Addresses 4800 to 4FFF) - Read / Write |  |  |  |  |  |  |  |
| 4800 | PLAYBACK MEMORY | Playback Channel Selector Index (XX) | --- | --- | --- | F69 | --- |
| 4801 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 480F |  | Reserved |  |  |  |  |  |
| 4810 |  | Playback Channel XX Sample 0 | --- | --- | --- | F70 | --- |
| 4811 |  | Playback Channel XX Sample 1 | --- | --- | --- | F70 | --- |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 4COF |  | Playback Channel XX Sample 1023 | --- | --- | --- | F70 | --- |
| 4C10 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 4FFF |  | Reserved |  |  |  |  |  |
| Factory Service (Addresses $\mathbf{5 0 0 0}$ to 7FFF) - Read / Write |  |  |  |  |  |  |  |
| 5000 | FACTORY SERVICE | Factory Service Function Passcode | --- | --- | --- | F1 | 0 |
| 5001 |  | Factory Service Commands | --- | --- | --- | F71 | 0 |
| 5002 |  | Force LED Status Column 1 | --- | --- | --- | F54 | 0 |
| 5003 |  | Force LED Status Column 2 | --- | --- | --- | F54 | 0 |

Table 8-6: 745 MEMORY MAP (Sheet 51 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | $\begin{gathered} \text { STEP } \\ \text { VALUE } \end{gathered}$ | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5004 |  | Force LED Status Column 3 | --- | --- | --- | F54 | 0 |
| 5005 |  | Force Other Hardware | --- | --- | --- | F72 | 0 |
| 5006 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 5009 |  | Reserved |  |  |  |  |  |
| 500A | SETTING ERRORS | FlexLogic Equation Error | --- | --- | --- | F76 | 0 = None |
| 500B |  | Bad Transformer Settings Error | --- | --- | --- | F77 | 0 = None |
| 500C |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 500F |  | Reserved |  |  |  |  |  |
| 5010 | $\begin{gathered} \hline \text { SELF-TEST } \\ \text { ERROR } \\ \text { FLAGS } \end{gathered}$ | Logic Input Error Flag | --- | --- | --- | F52 | 0 |
| 5011 |  | Analog Output Error Flag | --- | --- | --- | F52 | 0 |
| 5012 |  | Calibration Error Flag | --- | --- | --- | F52 | 0 |
| 5013 |  | EEPROM Error Flag | --- | --- | --- | F52 | 0 |
| 5014 |  | Real Time Clock Error Flag | --- | --- | --- | F52 | 0 |
| 5015 |  | Battery Error Flag | --- | --- | --- | F52 | 0 |
| 5016 |  | Emulation Software Error Flag | --- | --- | --- | F52 | 0 |
| 5017 |  | Internal Temperature Error Flag | --- | --- | --- | F52 | 0 |
| 5018 |  | Flexlogic Error Flag | --- | --- | --- | F52 | 0 |
| 5019 |  | DSP Error Flag | --- | --- | --- | F52 | 0 |
| 501A |  | Bad Settings Error Flag | --- | --- | --- | F52 | 0 |
| 501B |  | IRIG-B Signal Error Flag | --- | --- | --- | F52 | 0 |
| 501C |  | Access Denied Error Flag | --- | --- | --- | F52 | 0 |
| 501D |  | Ambient Temperature Error Flag | --- | --- | --- | F52 | --- |
| 501E |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 501F |  | Reserved |  |  |  |  |  |
| 5020 | HARDWARE DIAGNOSTICS | Operating Hours of Relay | 0 to 65535 | 1 | hours | F1 | 0 |
| 5021 |  | Internal Temperature | -55.0 to 150.0 | 0.1 | ${ }^{\circ} \mathrm{C}$ | F5 | --- |
| 5022 |  | Minimum Internal Temperature | -55.0 to 150.0 | 0.1 | ${ }^{\circ} \mathrm{C}$ | F5 | --- |
| 5023 |  | Maximum Internal Temperature | -55.0 to 150.0 | 0.1 | ${ }^{\circ} \mathrm{C}$ | F5 | --- |
| 5024 |  | 0-1 mA Analog Input | 0 to 65535 | 1 | $\mu \mathrm{A}$ | F1 | --- |
| 5025 |  | 0-20 mA Analog Input | 0 to 65535 | 1 | $\mu \mathrm{A}$ | F1 | --- |
| 5026 |  | Last Front Panel Key Pressed | --- | --- | --- | F55 | $00 \mathrm{~h}=$ No Key |
| 5027 |  | DSP Diagnostic Flags | --- | --- | --- | F51 | --- |
| 5028 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 502F |  | Reserved |  |  |  |  |  |

Table 8-6: 745 MEMORY MAP (Sheet 52 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | $\begin{gathered} \hline \text { STEP } \\ \text { VALUE } \end{gathered}$ | UNITS | $\begin{aligned} & \hline \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5030 | SOFTWARE DIAGNOSTICS | Unexpected Interrupt Counter | 0 to 65535 | 1 | --- | F1 | 0 |
| 5031 |  | Last Unexpected Interrupt Vector | 0 to 255 | 1 | --- | F1 | 0 |
| 5032 |  | Unexpected Reset Counter | 0 to 65535 | 1 | --- | F1 | 0 |
| 5033 |  | Last Unexpected Reset Cause | 0 to 255 | 1 | --- | F1 | 0 |
| 5034 |  | EEPROM Scrub Counter | 0 to 65535 | 1 | --- | F1 | 0 |
| 5035 |  | A/D Virtual Ground Error Counter | 0 to 65535 | 1 | --- | F1 | 0 |
| 5036 |  | Front RS232 Error Counter | 0 to 65535 | 1 | --- | F1 | 0 |
| 5037 |  | COM1 Error Counter | 0 to 65535 | 1 | --- | F1 | 0 |
| 5038 |  | COM2 Error Counter | 0 to 65535 | 1 | --- | F1 | 0 |
| 5039 |  | Processor Usage | 0.0 to 100.0 | 0.1 | \% | F2 | --- |
| 503A |  | RAM Memory Usage | 0.0 to 100.0 | 0.1 | \% | F2 | --- |
| 503B |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 503F |  | Reserved |  |  |  |  |  |
| 5040 | COMPILE DATE/TIME | Boot Program Compile Date (2 registers) | --- | --- | --- | F23 | --- |
| 5042 |  | Boot Program Compile Time (2 registers) | --- | --- | --- | F22 | --- |
| 5044 |  | Main Program Compile Date (2 registers) | --- | --- | --- | F23 | --- |
| 5046 |  | Main Program Compile Time (2 registers) | --- | --- | --- | F22 | --- |
| 5048 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 50FF |  | Reserved |  |  |  |  |  |
| 5100 | CALIBRATION DATA | Date of Last Calibration (2 registers) | --- | --- | --- | F23 | --- |
| 5102 |  | Date of Original Calibration (2 registers) | --- | --- | --- | F23 | --- |
| 5104 |  | x8 to x1 Saturation Level | 0 to 32767 | 1 | counts | F1 | 3000 counts |
| 5105 |  | Winding 1 Phase A Current x1 Offset | -100 to +100 | 1 | --- | F4 | 0 |
| 5106 |  | Winding 1 Phase A Current x 1 Gain | 0 to 20000 | 1 | --- | F1 | 15556 |
| 5107 |  | Winding 1 Phase A Current x8 Offset | -100 to +100 | 1 | --- | F4 | 0 |
| 5108 |  | Winding 1 Phase A Current x8 Gain | 0 to 20000 | 1 | --- | F1 | 15556 |
| 5109 |  | Winding 1 Phase B Current x1 Offset | -100 to +100 | 1 | --- | F4 | 0 |
| 510A |  | Winding 1 Phase B Current x1 Gain | 0 to 20000 | 1 | --- | F1 | 15556 |
| 510B |  | Winding 1 Phase B Current x8 Offset | -100 to +100 | 1 | --- | F4 | 0 |
| 510C |  | Winding 1 Phase B Current x8 Gain | 0 to 20000 | 1 | --- | F1 | 15556 |
| 510D |  | Winding 1 Phase C Current x1 Offset | -100 to +100 | 1 | --- | F4 | 0 |
| 510E |  | Winding 1 Phase C Current x1 Gain | 0 to 20000 | 1 | --- | F1 | 15556 |
| 510F |  | Winding 1 Phase C Current x8 Offset | -100 to +100 | 1 | --- | F4 | 0 |
| 5110 |  | Winding 1 Phase C Current x8 Gain | 0 to 20000 | 1 | --- | F1 | 15556 |
| 5111 |  | Winding 1/2 Ground Current x1 Offset | -100 to +100 | 1 | --- | F4 | 0 |
| 5112 |  | Winding $1 / 2$ Ground Current x 1 Gain | 0 to 20000 | 1 | --- | F1 | 15556 |

Table 8-6: 745 MEMORY MAP (Sheet 53 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP VALUE | UNITS | $\begin{aligned} & \hline \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5113 |  | Winding 1/2 Ground Current x8 Offset | -100 to +100 | 1 | --- | F4 | 0 |
| 5114 |  | Winding 1/2 Ground Current x8 Gain | 0 to 20000 | 1 | --- | F1 | 15556 |
| 5115 |  | Winding 2 Phase A Current x1 Offset | -100 to +100 | 1 | --- | F4 | 0 |
| 5116 |  | Winding 2 Phase A Current x 1 Gain | 0 to 20000 | 1 | --- | F1 | 15556 |
| 5117 |  | Winding 2 Phase A Current x8 Offset | -100 to +100 | 1 | -- | F4 | 0 |
| 5118 |  | Winding 2 Phase A Current $x 8$ Gain | 0 to 20000 | 1 | --- | F1 | 15556 |
| 5119 |  | Winding 2 Phase B Current x1 Offset | -100 to +100 | 1 | --- | F4 | 0 |
| 511A |  | Winding 2 Phase B Current x1 Gain | 0 to 20000 | 1 | --- | F1 | 15556 |
| 511B |  | Winding 2 Phase B Current x8 Offset | -100 to +100 | 1 | --- | F4 | 0 |
| 511C |  | Winding 2 Phase B Current x8 Gain | 0 to 20000 | 1 | --- | F1 | 15556 |
| 511D |  | Winding 2 Phase C Current x1 Offset | -100 to +100 | 1 | --- | F4 | 0 |
| 511E |  | Winding 2 Phase C Current x 1 Gain | 0 to 20000 | 1 | --- | F1 | 15556 |
| 511F |  | Winding 2 Phase C Current x8 Offset | -100 to +100 | 1 | --- | F4 | 0 |
| 5120 |  | Winding 2 Phase C Current $x 8$ Gain | 0 to 20000 | 1 | --- | F1 | 15556 |
| 5121 |  | Winding $2 / 3$ Ground Current $\times 1$ Offset | -100 to +100 | 1 | --- | F4 | 0 |
| 5122 |  | Winding $2 / 3$ Ground Current x 1 Gain | 0 to 20000 | 1 | --- | F1 | 15556 |
| 5123 |  | Winding $2 / 3$ Ground Current x8 Offset | -100 to +100 | 1 | --- | F4 | 0 |
| 5124 |  | Winding 2/3 Ground Current x8 Gain | 0 to 20000 | 1 | --- | F1 | 15556 |
| 5125 |  | Winding 3 Phase A Current x 1 Offset | -100 to +100 | 1 | --- | F4 | 0 |
| 5126 |  | Winding 3 Phase A Current x 1 Gain | 0 to 20000 | 1 | --- | F1 | 15556 |
| 5127 |  | Winding 3 Phase A Current x8 Offset | -100 to +100 | 1 | --- | F4 | 0 |
| 5128 |  | Winding 3 Phase A Current x8 Gain | 0 to 20000 | 1 | --- | F1 | 15556 |
| 5129 |  | Winding 3 Phase B Current x1 Offset | -100 to +100 | 1 | --- | F4 | 0 |
| 512A |  | Winding 3 Phase B Current x 1 Gain | 0 to 20000 | 1 | --- | F1 | 15556 |
| 512B |  | Winding 3 Phase B Current x8 Offset | -100 to +100 | 1 | --- | F4 | 0 |
| 512 C |  | Winding 3 Phase B Current x8 Gain | 0 to 20000 | 1 | --- | F1 | 15556 |
| 512D |  | Winding 3 Phase C Current x1 Offset | -100 to +100 | 1 | --- | F4 | 0 |
| 512E |  | Winding 3 Phase C Current $x 1$ Gain | 0 to 20000 | 1 | --- | F1 | 15556 |
| 512F |  | Winding 3 Phase C Current x 8 Offset | -100 to +100 | 1 | --- | F4 | 0 |
| 5130 |  | Winding 3 Phase C Current $x 8$ Gain | 0 to 20000 | 1 | --- | F1 | 15556 |
| 5131 |  | Voltage Input $\times 1$ Offset | -100 to +100 | 1 | --- | F4 | 0 |
| 5132 |  | Voltage Input $\times 1$ Gain | 0 to 20000 | 1 | --- | F1 | 1412 |
| 5133 |  | Voltage Input $\times 8$ Offset | -100 to +100 | 1 | --- | F4 | 0 |
| 5134 |  | Voltage Input $\times 8$ Gain | 0 to 20000 | 1 | --- | F1 | 1412 |
| 5135 |  | Tap Changer Input Low Offset | -600 to +600 | 1 | --- | F4 | 0 |
| 5136 |  | Tap Changer Input Low Gain | 0 to 10000 | 1 | --- | F1 | 5779 |
| 5137 |  | Tap Changer Input High Offset | -600 to +600 | 1 | --- | F4 | 0 |
| 5138 |  | Tap Changer Input High Gain | 0 to 1000 | 1 | --- | F1 | 578 |

Table 8-6: 745 MEMORY MAP (Sheet 54 of 57)

| $\begin{aligned} & \hline \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | $\begin{aligned} & \text { STEP } \\ & \text { VALUE } \end{aligned}$ | UNITS | $\begin{aligned} & \hline \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5139 |  | Ambient Temperature RTD Input Low Offset | -600 to +600 | 1 | --- | F4 | 0 |
| 513A |  | Ambient Temperature RTD Input Low Gain | 0 to 20000 | 1 | --- | F1 | 8192 |
| 513B |  | Ambient Temperature RTD Input High Offset | -600 to +600 | 1 | --- | F4 | 0 |
| 513C |  | Ambient Temperature RTD Input High Gain | 0 to 20000 | 1 | --- | F1 | 8192 |
| 513D |  | Analog Input 1 mA Offset | -600 to +600 | 1 | --- | F4 | 0 |
| 513E |  | Analog Input 1 mA Gain | 0 to 2000 | 1 | --- | F1 | 1112 |
| 513F |  | Analog Input 20 mA Offset | -600 to +600 | 1 | --- | F4 | 0 |
| 5140 |  | Analog Input 20 mA Gain | 0 to 30000 | 1 | --- | F1 | 22244 |
| 5141 |  | Analog Output \#1 Min Scale | 0 to 4095 | 1 | --- | F1 | 0 |
| 5142 |  | Analog Output \#1 Max Scale | 0 to 4095 | 1 | --- | F1 | 4095 |
| 5143 |  | Analog Output \#2 Min Scale | 0 to 4095 | 1 | --- | F1 | 0 |
| 5144 |  | Analog Output \#2 Max Scale | 0 to 4095 | 1 | --- | F1 | 4095 |
| 5145 |  | Analog Output \#3 Min Scale | 0 to 4095 | 1 | --- | F1 | 0 |
| 5146 |  | Analog Output \#3 Max Scale | 0 to 4095 | 1 | --- | F1 | 4095 |
| 5147 |  | Analog Output \#4 Min Scale | 0 to 4095 | 1 | --- | F1 | 0 |
| 5148 |  | Analog Output \#4 Max Scale | 0 to 4095 | 1 | --- | F1 | 4095 |
| 5149 |  | Analog Output \#5 Min Scale | 0 to 4095 | 1 | --- | F1 | 0 |
| 514A |  | Analog Output \#5 Max Scale | 0 to 4095 | 1 | --- | F1 | 4095 |
| 514B |  | Analog Output \#6 Min Scale | 0 to 4095 | 1 | --- | F1 | 0 |
| 514C |  | Analog Output \#6 Max Scale | 0 to 4095 | 1 | --- | F1 | 4095 |
| 514D |  | Analog Output \#7 Min Scale | 0 to 4095 | 1 | --- | F1 | 0 |
| 514E |  | Analog Output \#7 Max Scale | 0 to 4095 | 1 | --- | F1 | 4095 |
| 514F |  | Analog Output \#8 Reference | 0 to 4095 | 1 | --- | F1 | 4095 |
| 5150 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 515F |  | Reserved |  |  |  |  |  |
| 5160 | ANALOG OUTPUT D/A COUNTS | Force Analog Output 1 D/A Count | 0 to 4095 | 1 | --- | F1 | 0 |
| 5161 |  | Force Analog Output 2 D/A Count | 0 to 4095 | 1 | --- | F1 | 0 |
| 5162 |  | Force Analog Output 3 D/A Count | 0 to 4095 | 1 | --- | F1 | 0 |
| 5163 |  | Force Analog Output 4 D/A Count | 0 to 4095 | 1 | --- | F1 | 0 |
| 5164 |  | Force Analog Output 5 D/A Count | 0 to 4095 | 1 | --- | F1 | 0 |
| 5165 |  | Force Analog Output 6 D/A Count | 0 to 4095 | 1 | --- | F1 | 0 |
| 5166 |  | Force Analog Output 7 D/A Count | 0 to 4095 | 1 | --- | F1 | 0 |
| 5167 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 516 F |  | Reserved |  |  |  |  |  |

Table 8-6: 745 MEMORY MAP (Sheet 55 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | $\begin{gathered} \text { STEP } \\ \text { VALUE } \end{gathered}$ | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5170 | RMS PRESENT, MIN, MAX READINGS | Winding 1 Phase A RMS Current | --- | --- | $\times$ CT | F53 | --- |
| 5171 |  | Winding 1 Phase A RMS Current Minimum | --- | --- | $\times$ CT | F53 | --- |
| 5172 |  | Winding 1 Phase A RMS Current Maximum | --- | --- | $\times \mathrm{CT}$ | F53 | --- |
| 5173 |  | Winding 1 Phase B RMS Current | --- | --- | $\times \mathrm{CT}$ | F53 | --- |
| 5174 |  | Winding 1 Phase B RMS Current Minimum | --- | --- | $\times \mathrm{CT}$ | F53 | --- |
| 5175 |  | Winding 1 Phase B RMS Current Maximum | --- | --- | $\times \mathrm{CT}$ | F53 | --- |
| 5176 |  | Winding 1 Phase C RMS Current | --- | --- | $\times \mathrm{CT}$ | F53 | --- |
| 5177 |  | Winding 1 Phase C RMS Current Minimum | --- | --- | $\times \mathrm{CT}$ | F53 | --- |
| 5178 |  | Winding 1 Phase C RMS Current Maximum | --- | --- | $\times \mathrm{CT}$ | F53 | --- |
| 5179 |  | Winding 1/2 Ground RMS Current | --- | --- | $\times \mathrm{CT}$ | F53 | --- |
| 517A |  | Winding 1/2 Ground RMS Current Minimum | --- | --- | $\times$ CT | F53 | --- |
| 517B |  | Winding 1/2 Ground RMS Current Maximum | --- | --- | $\times \mathrm{CT}$ | F53 | --- |
| 517C |  | Winding 2 Phase A RMS Current | --- | --- | $\times$ CT | F53 | --- |
| 517D |  | Winding 2 Phase A RMS Current Minimum | --- | --- | $\times \mathrm{CT}$ | F53 | --- |
| 517E |  | Winding 2 Phase A RMS Current Maximum | --- | --- | $\times \mathrm{CT}$ | F53 | --- |
| 517F |  | Winding 2 Phase B RMS Current | --- | --- | $\times$ CT | F53 | --- |
| 5180 |  | Winding 2 Phase B RMS Current Minimum | --- | --- | $\times \mathrm{CT}$ | F53 | --- |
| 5181 |  | Winding 2 Phase B RMS Current Maximum | --- | --- | $\times$ CT | F53 | --- |
| 5182 |  | Winding 2 Phase C RMS Current | --- | --- | $\times$ CT | F53 | --- |
| 5183 |  | Winding 2 Phase C RMS Current Minimum | --- | --- | $\times$ CT | F53 | --- |
| 5184 |  | Winding 2 Phase C RMS Current Maximum | --- | --- | $\times \mathrm{CT}$ | F53 | --- |
| 5185 |  | Winding 2/3 Ground RMS Current | --- | --- | $\times \mathrm{CT}$ | F53 | --- |
| 5186 |  | Winding 2/3 Ground RMS Current Minimum | --- | --- | $\times$ CT | F53 | --- |
| 5187 |  | Winding 2/3 Ground RMS Current Maximum | --- | --- | $\times \mathrm{CT}$ | F53 | --- |
| 5188 |  | Winding 3 Phase A RMS Current | --- | --- | $\times \mathrm{CT}$ | F53 | --- |
| 5189 |  | Winding 3 Phase A RMS Current Minimum | --- | --- | $\times \mathrm{CT}$ | F53 | --- |
| 518A |  | Winding 3 Phase A RMS Current Maximum | --- | --- | $\times$ CT | F53 | --- |
| 518B |  | Winding 3 Phase B RMS Current | --- | --- | $\times$ CT | F53 | --- |
| 518C |  | Winding 3 Phase B RMS Current Minimum | --- | --- | $\times$ CT | F53 | --- |
| 518D |  | Winding 3 Phase B RMS Current Maximum | --- | --- | $\times \mathrm{CT}$ | F53 | --- |
| 518E |  | Winding 3 Phase C RMS Current | --- | --- | $\times$ CT | F53 | --- |
| 518F |  | Winding 3 Phase C RMS Current Minimum | --- | --- | $\times \mathrm{CT}$ | F53 | --- |
| 5190 |  | Winding 3 Phase C RMS Current Maximum | --- | --- | $\times \mathrm{CT}$ | F53 | --- |
| 5191 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 519F |  | Reserved |  |  |  |  |  |

Table 8-6: 745 MEMORY MAP (Sheet 56 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | STEP VALUE | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 51A0 | CALIBRATION SAMPLE DATA | Winding 1 Phase A Current Sample | --- | --- | --- | F70 | --- |
| 51A1 |  | Winding 1 Phase B Current Sample | --- | --- | --- | F70 | --- |
| 51A2 |  | Winding 1 Phase C Current Sample | --- | --- | --- | F70 | --- |
| 51A3 |  | Winding 1/2 Ground Current Sample | --- | --- | --- | F70 | --- |
| 51A4 |  | Winding 2 Phase A Current Sample | --- | --- | --- | F70 | --- |
| 51A5 |  | Winding 2 Phase B Current Sample | --- | --- | --- | F70 | --- |
| 51A6 |  | Winding 2 Phase C Current Sample | --- | --- | --- | F70 | --- |
| 51A7 |  | Winding 2/3 Ground Current Sample | --- | --- | --- | F70 | --- |
| 51A8 |  | Winding 3 Phase A Current Sample | --- | --- | --- | F70 | --- |
| 51A9 |  | Winding 3 Phase B Current Sample | --- | --- | --- | F70 | --- |
| 51AA |  | Winding 3 Phase C Current Sample | --- | --- | --- | F70 | --- |
| 51AB |  | Voltage Sample | --- | --- | --- | F70 | --- |
| 51AC |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 51AF |  | Reserved |  |  |  |  |  |
| 51B0 | CALIBRATION GROUND CURRENTS | Winding 1/2 Ground Current - RMS Magnitude | --- | --- | A | F81 / F82 | --- |
| 51B1 |  | Winding 2/3 Ground Current - RMS Magnitude | --- | --- | A | F82 / F83 | --- |
| 51B2 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 51BF |  | Reserved |  |  |  |  |  |
| 51C0 | SERIAL A/D COUNTS | 20 mA Analog Input Count | 0 to 65535 | --- | --- | F1 | --- |
| 51C1 |  | 1 mA Analog Input Count | 0 to 65535 | --- | --- | F1 | --- |
| $51 \mathrm{C2}$ |  | RTD High-Gain Count | 0 to 65535 | --- | --- | F1 | --- |
| 51C3 |  | RTD Low-Gain Count | 0 to 65535 | --- | --- | F1 | --- |
| 51C4 |  | RTD No-Sensor Count | 0 to 65535 | --- | --- | F1 | --- |
| 51C5 |  | Tap Position High-Gain Count | 0 to 65535 | --- | --- | F1 | --- |
| 51C6 |  | Tap Position Low-Gain Count | 0 to 65535 | --- | --- | F1 | --- |
| $51 \mathrm{C7}$ |  | 32V Analog Output Monitor | 0 to 65535 | --- | --- | F1 | --- |
| 51C8 |  | Internal Temperature Zero Bias | 0 to 65535 | --- | --- | F1 | --- |
| 5109 |  | Internal Temperature | 0 to 65535 | --- | --- | F1 | --- |
| 51CA |  | Zero Reference | 0 to 65535 | --- | --- | F1 | --- |
| 51 CB |  | Half-Scale Test | 0 to 65535 | --- | --- | F1 | --- |
| 51CC |  | Zero-Scale Test | 0 to 65535 | --- | --- | F1 | --- |
| 51CD |  | Full-Scale Test | 0 to 65535 | --- | -- | F1 | --- |
| 51CE |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 51FF |  | Reserved |  |  |  |  |  |

Table 8-6: 745 MEMORY MAP (Sheet 57 of 57)

| $\begin{aligned} & \text { ADDR } \\ & \text { (HEX) } \end{aligned}$ | GROUP | DESCRIPTION | RANGE | $\begin{gathered} \text { STEP } \\ \text { VALUE } \end{gathered}$ | UNITS | $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | FACTORY DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5200 | FRONT PANEL DISPLAY | Front Panel Display Buffer (20 registers) | --- | --- | --- | F33 | --- |
| 5214 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 521 F |  | Reserved |  |  |  |  |  |
| 5220 |  | Override Message Function | --- | --- | --- | F30 | --- |
| 5221 |  | Override Message (20 registers) | --- | --- | --- | F33 | --- |
| 5235 |  | Reserved |  |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| 7FFF |  | Reserved |  |  |  |  |  |

Table 8-7: 745 DATA FORMATS (Sheet 1 of 36)

| $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
| F1 | 16 bits | UNSIGNED VALUE |
|  | Example: 1234 stored as 1234 |  |
| F2 | 16 bits | UNSIGNED VALUE 1 DECIMAL PLACE |
|  | Example: 123.4 stored as 1234 |  |
| F3 | 16 bits | UNSIGNED VALUE 2 DECIMAL PLACES |
|  | Example: 12.34 stored as 1234 |  |
| F4 | 16 bits | 2's COMPLEMENT SIGNED VALUE |
|  | Example: -1234 stored as -1234 |  |
| F5 | 16 bits | 2's COMPLEMENT SIGNED VALUE, 1 DECIMAL PLACE |
|  | Example: -123.4 stored as -1234 |  |
| F6 | 16 bits | 2's COMPLEMENT SIGNED VALUE, 2 DECIMAL PLACES |
|  | Example: -12.34 stored as -1234 |  |
| F7 | 32 bits | UNSIGNED LONG VALUE |
|  | 1st 16 bits | high order word of long value |
|  | 2nd 16 bits | low order word of long value |
|  | Example: 123456 stored as 123456 |  |
| F8 | 32 bits | UNSIGNED LONG VALUE, 1 DECIMAL PLACE |
|  | 1st 16 bits | high order word of long value |
|  | 2nd 16 bits | low order word of long value |
|  | Example: 12345.6 stored as 123456 |  |
| F9 | 32 bits | UNSIGNED LONG VALUE, 2 DECIMAL PLACES |
|  | 1st 16 bits | high order word of long value |
|  | 2nd 16 bits | low order word of long value |
|  | Example: 1234.56 stored as 123456 |  |
| F10 | 32 bits | 2'S COMPLEMENT SIGNED LONG VALUE |
|  | 1st 16 bits | high order word of long value |
|  | 2nd 16 bits | low order word of long value |
|  | Example: -123456 stored as -123456 |  |
| F11 | 32 bits | 2'S COMPLEMENT SIGNED LONG VALUE, 1 DECIMAL PLACE |
|  | 1st 16 bits | high order word of long value |
|  | 2nd 16 bits | low order word of long value |
|  | Example: $\mathbf{- 1 2 3 4 5 . 6}$ stored as $\mathbf{- 1 2 3 4 5 6}$ |  |

Table 8-7: 745 DATA FORMATS (Sheet 2 of 36)

| FORMAT CODE | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
| F12 | 32 bits | 2'S COMPLEMENT SIGNED LONG VALUE, 2 DECIMAL PLACES |
|  | 1st 16 bits | high order word of long value |
|  | 2nd 16 bits | low order word of long value |
|  | Example: $\mathbf{- 1 2 3 4 . 5 6 ~ s t o r e d ~ a s ~} \mathbf{- 1 2 3 4 5 6}$ |  |
| F13 | 16 bits | HARDWARE REVISION |
|  | 0000000000000001 | $1=\mathrm{A}$ |
|  | 0000000000000010 | $2=B$ |
|  | $\downarrow$ | $\downarrow$ |
|  | 0000000000011010 | $26=$ Z |
| F14 | 16 bits | SOFTWARE REVISION |
|  | xxxx 1111 xxxx xxxx | Major Revision Number 0 to 9 in steps of 1 |
|  | xxxx xxxx 1111 xxxx | Minor Revision Number 0 to 9 in steps of 1 |
|  | xxxx xxxx xxxx 1111 | Ultra Minor Revision Number 0 to 9 in steps of 1 |
|  | Example: Revision 2.83 stored as 0283 hex |  |
| F15 | 16 bits | INSTALLED OPTIONS |
|  | xxxx xxxx xxxx xxx1 | Windings Per Phase ( $0=$ Two Windings, 1 = Three Windings) |
|  |  | Rating of Winding 1 Phase Current Inputs ( $0=1 \mathrm{~A}, 1=5 \mathrm{~A}$ ) |
|  | xxxx $x x x x$ xxxx x1xx | Rating of Winding 2 Phase Current Inputs ( $0=1 \mathrm{~A}, 1=5 \mathrm{~A}$ ) |
|  | xxxx xxxx xxxx 1xxx | Rating of Winding 3 Phase Current Inputs $(0=1 \mathrm{~A}, 1=5 \mathrm{~A})$ |
|  | xxxx $x x x x \mathrm{xxx} 1 \mathrm{xxxx}$ | Rating of Winding $1 / 2$ Ground Current Inputs ( $0=1 \mathrm{~A}, 1=5 \mathrm{~A}$ ) |
|  | xxxx $x$ xxx xx 1 x xxxx | Rating of Winding $2 / 3$ Ground Current Inputs $(0=1 \mathrm{~A}, 1=5 \mathrm{~A})$ |
|  | xxxx $x$ xxx x1xx xxxx | Control Power ( $0=$ L0 [20-60 Vdc], $1=\mathrm{HI}$ [90-300 Vdc/70-265 Vac]) |
|  | xxxx $x$ xxx 1xxx xxxx | Analog Input/Outputs ( $0=$ Not Installed, 1 = Installed) |
|  | xxxx $\mathrm{xxx1} \mathrm{xxxx}$ xxxx | $\begin{aligned} & \text { Loss-Of-Life ( } 0=\text { Not Installed, } \\ & 1=\text { Installed) } \end{aligned}$ |
|  | xxxx xx1x xxxx xxxx | Restricted Ground Fault ( $0=$ Not Installed, 1 = Installed) |
| F16 | 16 bits | DEMAND INTERVAL/RESPONSE |
|  | 0000000000000000 | $0=5 \mathrm{~min}$ |
|  | 0000000000000001 | $1=10 \mathrm{~min}$ |

Table 8-7: 745 DATA FORMATS (Sheet 3 of 36)

| $\begin{gathered} \text { FORMAT } \\ \text { CODE } \end{gathered}$ | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
|  | 0000000000000010 | $2=15 \mathrm{~min}$ |
|  | 0000000000000011 | $3=20 \mathrm{~min}$ |
|  | 0000000000000100 | $4=30 \mathrm{~min}$ |
|  | 0000000000000101 | $5=60 \mathrm{~min}$ |
| F17 | 16 bits | COMMUNICATION HARDWARE |
|  | 0000000000000000 | $0=$ RS485 |
|  | 0000000000000001 | 1 = RS422 |
| F18 | 16 bits | MAXIMUM DEMAND PHASE |
|  | 0000000000000000 | 0 = in phase A |
|  | 0000000000000001 | $1=$ in phase $B$ |
|  | 0000000000000010 | $2=$ in phase C |
| F19 | 16 bits | COMMAND OPERATION CODE |
|  | 0000000000000000 | 0000 = NO OPERATION |
|  | 0000000000000001 | 0001 = REMOTE RESET |
|  | 0000000000000010 | 0002 = TRIGGER TRACE MEMORY |
|  | 0000000000000011 | 0003 = CLEAR MAX DEMAND DATA |
|  | 0000000000000100 | 0004 = CLEAR EVENT RECORDER |
|  | 0000000000000110 | 0006 = CLEAR TRACE MEMORY |
|  | 0000000000000111 | 0007 = CLEAR ENERGY DATA |
| F20 | 16 bits | RELAY STATUS |
|  | xxxx $\times x \times x$ x $x$ xx xxx 1 | $\begin{array}{\|l} 745 \text { In Service } \\ (0=\text { Not In Service, } 1=\operatorname{In} \text { Service }) \end{array}$ |
|  | xxxx $\mathrm{xxxx} \times \mathrm{xxx} \mathrm{xx} 1 \mathrm{x}$ | $\begin{aligned} & \text { Self-Test Error } \\ & (0=\text { No Error, } 1=\text { Error(s) }) \end{aligned}$ |
|  | xxxx xxxx xxxx x1xx | Test Mode ( $0=$ Disabled, $1=$ Enabled) |
|  | xxxx xxxx xxxx 1xxx | Differential Blocked ( $0=$ Not Blocked, $1=$ Blocked) |
|  | xxxx $\mathrm{xxxx} \times 1 \mathrm{x} x \mathrm{xxxx}$ | Local (0 = Off, $1=0 \mathrm{n}$ ) |
|  | xxxx xxxx 1 xxx xxxx | $\begin{aligned} & \text { Message } \\ & (0=\text { No Diagnostic Messages, } \\ & 1=\text { Active Diagnostic Message(s)) } \end{aligned}$ |
| F21 | 16 bits | SYSTEM STATUS |
|  | xxxx xxxx xxxx xxx1 | Transformer De-energized ( $0=$ Energized, $1=$ De-energized) |
|  | xxxx $\mathrm{xxxx} \times \mathrm{x} x \mathrm{x}$ xx1x | Transformer Overload ( $0=$ Normal, 1 = Overload) |
|  | xxxx $\mathrm{xxxx} \times \mathrm{xxx} \times 1 \mathrm{x} x$ | Load-Limit Reduced ( $0=$ Not Reduced, $1=$ Reduced) |
|  | xxxx xxxx xxx1 xxxx | Setpoint Group 1 ( $0=$ Not Active, $1=$ Active) |
|  | xxxx $\mathrm{xxxx} \mathrm{xx} 1 \mathrm{x} \times \mathrm{x} x \mathrm{x}$ | Setpoint Group 2 <br> ( $0=$ Not Active, $1=$ Active) |

Table 8-7: 745 DATA FORMATS (Sheet 4 of 36)

| $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
|  | xxxx xxxx x1xx xxxx | Setpoint Group 3 <br> ( $0=$ Not Active, $1=$ Active) |
|  | xxxx xxxx 1 xxx xxxx | Setpoint Group 4 ( $0=$ Not Active, $1=$ Active) |
| F22 | 32 bits | TIME |
|  | 1st 16 bits | Hours / Minutes (HH:MM:xx.xxx) |
|  | 11111111 xxxx xxxx | Hours |
|  | 00000000 | $0=12 \mathrm{am}$ |
|  | 00000001 | 1 = 1 am |
|  | $\downarrow$ | $\downarrow$ |
|  | 00010111 | $23=11 \mathrm{pm}$ |
|  | xxxx xxxx 11111111 | Minutes |
|  |  | 0 to 59 in steps of 1 |
|  | 2nd 16 bits | Seconds (xx:xx:SS.SSS) |
|  | 0000000000000000 | $0=0.000 \mathrm{~s}$ |
|  | 0000000000000001 | $1=0.001 \mathrm{~s}$ |
|  | $\downarrow$ | $\downarrow$ |
|  | 1110101001011111 | $59999=59.999 \mathrm{~s}$ |
|  | Note: If the time has never been set then all 32 bits will be 1. |  |
| F23 | 32 bits | DATE |
|  | 1st 16 bits | Month / Day (MM/DD/xxxx) |
|  | 11111111 xxxx xxxx | Month |
|  | 00000001 | 1 = January |
|  | 00000010 | 2 = February |
|  | $\downarrow$ | $\downarrow$ |
|  | 00001100 | $12=$ December |
|  | xxxx xxxx 11111111 | Day |
|  |  | 1 to 31 in steps of 1 |
|  | 2nd 16 bits | Year (xx/xx/YYYY) |
|  |  | 1990 to 2089 in steps of 1 |
|  | Note: If the date has never been set then all 32 bits will be 1. |  |
| F24 | 16 bits | TYPE/CAUSE OF EVENT |
|  | 1111 xxxx xxxx xxxx | TYPE OF EVENT |
|  | 0000 xxxx xxxx xxxx | 0 = None |
|  | 0001 xxxx xxxx xxxx | 1 = 0ff |
|  | 0010 xxxx xxxx xxxx | $2=0 n$ |
|  | 0011 xxxx xxxx xxxx | 3 = Pickup |
|  | 0100 xxxx xxxx xxxx | 4 = Operate |
|  | 0101 xxxx xxxx xxxx | 5 = Dropout |
|  | 0110 xxxx xxxx xxxx | 6 = Error! |

Table 8-7: 745 DATA FORMATS (Sheet 5 of 36)

| $\begin{gathered} \text { FORMAT } \\ \text { CODE } \end{gathered}$ | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
|  | Xxxx 111111111111 | CAUSE OF EVENT |
|  | xxxx 000000000000 | $0=$ No Event |
|  | xxxx 000000000001 | 1 = Percent Differential |
|  | xxxx 000000000010 | $2=$ Inst Differential |
|  | xxxx 000000000011 | 3 = W1 Phase Time OC |
|  | xxxx 000000000100 | 4 = W2 Phase Time OC |
|  | xxxx 000000000101 | 5 = W3 Phase Time OC |
|  | xxxx 000000000110 | 6 = W1 Phase Inst 10 O |
|  | xxxx 000000000111 | 7 = W2 Phase Inst 10 O |
|  | xxxx 000000001000 | $8=$ W3 Phase Inst 10 C |
|  | xxxx 000000001001 | 9 = W1 Phase Inst 200 |
|  | xxxx 000000001010 | 10 = W2 Phase Inst 20 C |
|  | xxxx 000000001011 | 11 = W3 Phase Inst 20 C |
|  | xxxx 000000001100 | 12 = W1 Neutral Time OC |
|  | xxxx 000000001101 | 13 = W2 Neutral Time OC |
|  | xxxx 000000001110 | 14 = W3 Neutral Time OC |
|  | xxxx 000000001111 | $15=$ W1 Neutral Inst 10 O |
|  | xxxx 000000010000 | $16=$ W2 Neutral Inst 10 O |
|  | xxxx 000000010001 | 17 = W3 Neutral Inst 1 OC |
|  | xxxx 000000010010 | 18 = W1 Neutral Inst 2 OC |
|  | xxxx 000000010011 | $19=$ W2 Neutral Inst 2 OC |
|  | xxxx 000000010100 | 20 = W3 Neutral Inst 2 OC |
|  | xxxx 000000010101 | 21 = W1 Ground Time OC |
|  | xxxx 000000010110 | 22 = W2 Ground Time OC |
|  | xxxx 000000010111 | 23 = W3 Ground Time OC |
|  | xxxx 000000011000 | 24 = W1 Ground Inst 1 OC |
|  | xxxx 000000011001 | 25 = W2 Ground Inst 1 OC |
|  | xxxx 000000011010 | 26 = W3 Ground Inst 1 OC |
|  | xxxx 000000011011 | 27 = W1 Ground Inst 2 OC |
|  | xxxx 000000011100 | 28 = W2 Ground Inst 2 OC |
|  | xxxx 000000011101 | 29 = W3 Ground Inst 2 OC |
|  | xxxx 000000011110 | $30=$ W1 Restd Gnd Fault |
|  | xxxx 000000011111 | 31 = W2 Restd Gnd Fault |
|  | xxxx 000000100000 | $32=$ W3 Restd Gnd Fault |
|  | xxxx 000000100001 | 33 = W1 Restd Gnd Trend |
|  | xxxx 000000100010 | $34=$ W2 Restd Gnd Trend |
|  | xxxx 000000100011 | $35=$ W3 Restd Gnd Trend |
|  | xxxx 000000100100 | $36=$ W1 Neg Seq Time OC |
|  | xxxx 000000100101 | 37 = W2 Neg Seq Time OC |

Table 8-7: 745 DATA FORMATS (Sheet 6 of 36)

| FORMAT CODE | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
|  | xxxx 000000100110 | 38 = W3 Neg Seq Time OC |
|  | xxxx 000000100111 | $39=$ W1 Neg Seq Inst OC |
|  | xxxx 000000101000 | $40=$ W2 Neg Seq Inst OC |
|  | xxxx 000000101001 | 41 = W3 Neg Seq Inst OC |
|  | xxxx 000000101010 | $42=$ Underfrequency 1 |
|  | xxxx 000000101011 | 43 = Underfrequency 2 |
|  | xxxx 000000101100 | $44=$ Frequency Decay 1 |
|  | xxxx 000000101101 | $45=$ Frequency Decay 2 |
|  | xxxx 000000101110 | 46 = Frequency Decay 3 |
|  | xxxx 000000101111 | $47=$ Frequency Decay 4 |
|  | xxxx 000000110000 | $48=$ Overfrequency |
|  | xxxx 000000110001 | $49=5$ th Harmonic Level |
|  | xxxx 000000110010 | $50=$ Volts-Per-Hertz 1 |
|  | xxxx 000000110011 | 51 = Volts-Per-Hertz 2 |
|  | xxxx 000000110100 | 52 W W1 THD Level |
|  | xxxx 000000110101 | 53 = W2 THD Level |
|  | xxxx 000000110110 | 54 = W3 THD Level |
|  | xxxx 000000110111 | 55 = W1 Harmonic Derating |
|  | xxxx 000000111000 | 56 = W2 Harmonic Derating |
|  | xxxx 000000111001 | 57 = W3 Harmonic Derating |
|  | xxxx 000000111010 | $58=$ Hottest Spot Limit |
|  | xxxx 000000111011 | 59 = Loss-Of-Life Limit |
|  | xxxx 000000111100 | $60=$ Analog Level 1 |
|  | xxxx 000000111101 | 61 = Analog Level 2 |
|  | xxxx 000000111110 | $62=$ W1 Current Demand |
|  | xxxx 000000111111 | $63=$ W2 Current Demand |
|  | xxxx 000001000000 | 64 = W3 Current Demand |
|  | xxxx 000001000001 | 65 = Transformer Overload |
|  | xxxx 000001000010 | $66=$ Logic Input 1 |
|  | xxxx 000001000011 | $67=$ Logic Input 2 |
|  | xxxx 000001000100 | $68=$ Logic Input 3 |
|  | xxxx 000001000101 | $69=$ Logic Input 4 |
|  | xxxx 000001000110 | $70=$ Logic Input 5 |
|  | xxxx 000001000111 | $71=$ Logic Input 6 |
|  | xxxx 000001001000 | $72=$ Logic Input 7 |
|  | xxxx 000001001001 | $73=$ Logic Input 8 |
|  | xxxx 000001001010 | $74=$ Logic Input 9 |
|  | xxxx 000001001011 | $75=$ Logic Input 10 |
|  | xxxx 000001001100 | $76=$ Logic Input 11 |

Table 8-7: 745 DATA FORMATS (Sheet 7 of 36)

| $\begin{aligned} & \hline \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
|  | xxxx 000001001101 | 77 = Logic Input 12 |
|  | xxxx 000001001110 | $78=$ Logic Input 13 |
|  | xxxx 000001001111 | 79 = Logic Input 14 |
|  | xxxx 000001010000 | $80=$ Logic Input 15 |
|  | xxxx 000001010001 | 81 = Logic Input 16 |
|  | xxxx 000001010010 | $82=$ Virtual Input 1 |
|  | xxxx 000001010011 | 83 = Virtual Input 2 |
|  | xxxx 000001010100 | $84=$ Virtual Input 3 |
|  | xxxx 000001010101 | $85=$ Virtual Input 4 |
|  | xxxx 000001010110 | $86=$ Virtual Input 5 |
|  | xxxx 000001010111 | 87 = Virtual Input 6 |
|  | xxxx 000001011000 | $88=$ Virtual Input 7 |
|  | xxxx 000001011001 | $89=$ Virtual Input 8 |
|  | xxxx 000001011010 | $90=$ Virtual Input 9 |
|  | xxxx 000001011011 | $91=$ Virtual Input 10 |
|  | xxxx 000001011100 | $92=$ Virtual Input 11 |
|  | xxxx 000001011101 | $93=$ Virtual Input 12 |
|  | xxxx 000001011110 | $94=$ Virtual Input 13 |
|  | xxxx 000001011111 | $95=$ Virtual Input 14 |
|  | xxxx 000001100000 | $96=$ Virtual Input 15 |
|  | xxxx 000001100001 | 97 = Virtual Input 16 |
|  | xxxx 000001100010 | 98 = Output Relay 1 |
|  | xxxx 000001100011 | 99 Output Relay 2 |
|  | xxxx 000001100100 | 100 = Output Relay 3 |
|  | xxxx 000001100101 | 101 = Output Relay 4 |
|  | xxxx 000001100110 | 102 = Output Relay 5 |
|  | xxxx 000001100111 | 103 = Output Relay 6 |
|  | xxxx 000001101000 | 104 = Output Relay 7 |
|  | xxxx 000001101001 | 105 = Output Relay 8 |
|  | xxxx 000001101010 | 106 = Self-Test Relay |
|  | xxxx 000001101011 | 107 = Virtual Output 1 |
|  | xxxx 000001101100 | 108 = Virtual Output 2 |
|  | xxxx 000001101101 | 109 = Virtual Output 3 |
|  | xxxx 000001101110 | $110=$ Virtual Output 4 |
|  | xxxx 000001101111 | 111 = Virtual Output 5 |
|  | xxxx 000001110000 | 112 = Setpoint Group 1 |
|  | xxxx 000001110001 | 113 = Setpoint Group 2 |
|  | xxxx 000001110010 | 114 = Setpoint Group 3 |
|  | xxxx 000001110011 | 115 = Setpoint Group 4 |

Table 8-7: 745 DATA FORMATS (Sheet 8 of 36)

| $\begin{gathered} \text { FORMAT } \\ \text { CODE } \end{gathered}$ | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
|  | xxxx 000001110100 | 116 = Test Mode |
|  | xxxx 000001110101 | 117 = Simulation Disabled |
|  | xxxx 000001110110 | $118=$ Simulation Prefault |
|  | xxxx 000001110111 | 119 = Simulation Fault |
|  | xxxx 000001111000 | 120 = Simulation Playback |
|  | xxxx 000001111001 | 121 = Logic Input Reset |
|  | xxxx 000001111010 | $122=$ Front Panel Reset |
|  | xxxx 000001111011 | 123 = Comm Port Reset |
|  | xxxx 000001111100 | 124 = Manual Trace Trigger |
|  | xxxx 000001111101 | 125 = Auto Trace Trigger |
|  | xxxx 000001111110 | 126 = Control Power |
|  | xxxx 000001111111 | 127 = Logic Input Power |
|  | xxxx 000010000000 | 128 = Analog Output Power |
|  | xxxx 000010000001 | 129 = Unit Not Calibrated |
|  | xxxx 000010000010 | 130 = EEPROM Memory |
|  | xxxx 000010000011 | 131 = Real-Time Clock |
|  | xxxx 000010000100 | 132 = Battery |
|  | xxxx 000010000101 | 133 = Emulation Software |
|  | xxxx 000010000110 | $134=\mathrm{lnt}$ Temperature |
|  | xxxx 000010000111 | 135 = Flexlogic Equation |
|  | xxxx 000010001000 | 136 = DSP Processor |
|  | xxxx 000010001001 | 137 = Bad Xfmr Settings |
|  | xxxx 000010001010 | $138=$ IRIG-B Signal |
|  | xxxx 000010001011 | 139 = Setpt Access Denied |
|  | xxxx 000010001100 | $140=$ Aging factor Limit |
|  | xxxx 000010001101 | 141 = Ambient Temperature |
|  | xxxx 000010001110 | $142=$ Tap Changer Failure |
| F25 | 16 bits | 2's COMPLEMENT SIGNED VALUE, 3 DECIMAL PLACES |
|  | Example: -1.234 stored as -1234 |  |
| F26 | 16 bits | ANALOG OUTPUT RANGE |
|  | 0000000000000000 | $0=0-1 \mathrm{~mA}$ |
|  | 0000000000000001 | $1=0-5 \mathrm{~mA}$ |
|  | 0000000000000010 | $2=4-20 \mathrm{~mA}$ |
|  | 0000000000000011 | $3=0-20 \mathrm{~mA}$ |
|  | 0000000000000100 | $4=0-10 \mathrm{~mA}$ |
| F27 | 16 bits | PHASE SEQUENCE |
|  | 0000000000000000 | $0=A B C$ |
|  | 0000000000000001 | 1 = ACB |

Table 8-7: 745 DATA FORMATS (Sheet 9 of 36)

| FORMAT CODE | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
| F28 | 16 bits | TRANSFORMER TYPE |
|  | 0000000000000000 | $0=2 \mathrm{~W}$ (extn correction) |
|  | 0000000000000001 | $1=\mathrm{Y} / \mathrm{y} 0^{\circ}$ |
|  | 0000000000000010 | $2=\mathrm{Y} / \mathrm{y} 180^{\circ}$ |
|  | 0000000000000011 | $3=Y / d 30^{\circ}$ |
|  | 0000000000000100 | $4=Y / d 150^{\circ}$ |
|  | 0000000000000101 | $5=\mathrm{Y} / \mathrm{d} 210^{\circ}$ |
|  | 0000000000000110 | $6=Y / d 330^{\circ}$ |
|  | 0000000000000111 | 7 = D/d0 ${ }^{\circ}$ |
|  | 0000000000001000 | $8=\mathrm{D} / \mathrm{d} 60^{\circ}$ |
|  | 0000000000001001 | $9=\mathrm{D} / \mathrm{d} 120^{\circ}$ |
|  | 0000000000001010 | $10=\mathrm{D} / \mathrm{d} 180^{\circ}$ |
|  | 0000000000001011 | $11=\mathrm{D} / \mathrm{d} 240^{\circ}$ |
|  | 0000000000001100 | $12=\mathrm{D} / \mathrm{d} 300^{\circ}$ |
|  | 0000000000001101 | $13=\mathrm{D} / \mathrm{y} 30^{\circ}$ |
|  | 0000000000001110 | $14=\mathrm{D} / \mathrm{y} 150^{\circ}$ |
|  | 0000000000001111 | $15=\mathrm{D} / \mathrm{y} 210^{\circ}$ |
|  | 0000000000010000 | $16=\mathrm{D} / \mathrm{y} 330^{\circ}$ |
|  | 0000000000010001 | $17=\mathrm{Y} / 230^{\circ}$ |
|  | 0000000000010010 | $18=Y / 2150^{\circ}$ |
|  | 0000000000010011 | $19=Y / z 210^{\circ}$ |
|  | 0000000000010100 | $20=Y / z 330^{\circ}$ |
|  | 0000000000010101 | $21=\mathrm{D} / \mathrm{z} 0^{\circ}$ |
|  | 0000000000010110 | $22=\mathrm{D} / 260^{\circ}$ |
|  | 0000000000010111 | $23=\mathrm{D} / 2120^{\circ}$ |
|  | 0000000000011000 | $24=\mathrm{D} / \mathrm{z} 180^{\circ}$ |
|  | 0000000000011001 | $25=\mathrm{D} / 2240^{\circ}$ |
|  | 0000000000011010 | $26=\mathrm{D} / 2300^{\circ}$ |
|  | 0000000000011011 | $27=3 W$ (extn correction) |
|  | 0000000000011100 | $28=\mathrm{Y} / \mathrm{y} 0^{\circ} / \mathrm{d} 30^{\circ}$ |
|  | 0000000000011101 | $29=\mathrm{Y} / \mathrm{y} 0^{\circ} / \mathrm{d} 150^{\circ}$ |
|  | 0000000000011110 | $30=\mathrm{Y} / \mathrm{y} 0^{\circ} / \mathrm{d} 210^{\circ}$ |
|  | 0000000000011111 | $31=\mathrm{Y} / \mathrm{y} 0^{\circ} / \mathrm{d} 330^{\circ}$ |
|  | 0000000000100000 | $32=\mathrm{Y} / \mathrm{y} 180^{\circ} / \mathrm{d} 30^{\circ}$ |
|  | 0000000000100001 | $33=\mathrm{Y} / \mathrm{y} 180^{\circ} \mathrm{d} 150^{\circ}$ |
|  | 0000000000100010 | $34=\mathrm{Y} / \mathrm{y} 180{ }^{\circ} \mathrm{d} 210^{\circ}$ |
|  | 0000000000100011 | $35=\mathrm{Y} / \mathrm{y} 180^{\circ} \mathrm{d} 330^{\circ}$ |
|  | 0000000000100100 | $36=Y / d 30 \% / y 0^{\circ}$ |
|  | 0000000000100101 | $37=\mathrm{Y} / \mathrm{d} 30 \% / \mathrm{y} 180^{\circ}$ |

Table 8-7: 745 DATA FORMATS (Sheet 10 of 36)

| $\begin{gathered} \text { FORMAT } \\ \text { CODE } \end{gathered}$ | APPLICABLE BITS | DEFIIITION |
| :---: | :---: | :---: |
|  | 0000000000100110 | $38=\mathrm{Y} / \mathrm{d} 30^{\circ} / \mathrm{d} 30^{\circ}$ |
|  | 0000000000100111 | $39=Y / d 30 \% / 150^{\circ}$ |
|  | 0000000000101000 | $40=Y / d 30 \% / d 210^{\circ}$ |
|  | 0000000000101001 | $41=Y / d 30 \% d 330^{\circ}$ |
|  | 0000000000101010 | $42=\mathrm{Y} / \mathrm{d} 150^{\circ} / \mathrm{y} 0^{\circ}$ |
|  | 0000000000101011 | $43=\mathrm{Y} / \mathrm{d} 150^{\circ} / 180^{\circ}$ |
|  | 0000000000101100 | $44=\mathrm{Y} / \mathrm{d} 150 \% / 430^{\circ}$ |
|  | 0000000000101101 | $45=\mathrm{Y} / \mathrm{d} 150^{\circ} / 1150^{\circ}$ |
|  | 0000000000101110 | $46=\mathrm{Y} / \mathrm{d} 150^{\circ} / \mathrm{d} 210^{\circ}$ |
|  | 0000000000101111 | $47=\mathrm{Y} / \mathrm{d} 150^{\circ} / \mathrm{d} 330^{\circ}$ |
|  | 0000000000110000 | $48=\mathrm{Y} / \mathrm{d} 210^{\circ} / \mathrm{y} 0^{\circ}$ |
|  | 0000000000110001 | $49=\mathrm{Y} / \mathrm{d} 210^{\circ} / \mathrm{y} 180^{\circ}$ |
|  | 0000000000110010 | $50=\mathrm{Y} / \mathrm{d} 210^{\circ} / \mathrm{d} 30^{\circ}$ |
|  | 0000000000110011 | $51=\mathrm{Y} / \mathrm{d} 210^{\circ} / 1150^{\circ}$ |
|  | 0000000000110100 | $52=\mathrm{Y} / \mathrm{d} 210^{\circ} / \mathrm{d} 210^{\circ}$ |
|  | 0000000000110101 | $53=\mathrm{Y} / \mathrm{d} 210^{\circ} / \mathrm{d} 330^{\circ}$ |
|  | 0000000000110110 | $54=\mathrm{Y} / \mathrm{d} 330 \% / \mathrm{y} 0^{\circ}$ |
|  | 0000000000110111 | $55=\mathrm{Y} / \mathrm{d} 330^{\circ} / 180^{\circ}$ |
|  | 0000000000111000 | $56=\mathrm{Y} / \mathrm{d} 330 \% / d 30^{\circ}$ |
|  | 0000000000111001 | $57=\mathrm{Y} / \mathrm{d} 330^{\circ} / 1150^{\circ}$ |
|  | 0000000000111010 | $58=\mathrm{Y} / \mathrm{d} 330 \% / 210^{\circ}$ |
|  | 0000000000111011 | $59=\mathrm{Y} / \mathrm{d} 330^{\circ} / \mathrm{d} 330^{\circ}$ |
|  | 0000000000111100 | $60=\mathrm{D} / \mathrm{d} 0^{\circ} \mathrm{d} 0^{\circ}$ |
|  | 0000000000111101 | $61=\mathrm{D} / \mathrm{d} 0 / \mathrm{d} 60^{\circ}$ |
|  | 0000000000111110 | $62=\mathrm{D} / \mathrm{d} 0 \% / 120^{\circ}$ |
|  | 0000000000111111 | $63=\mathrm{D} / 00 \% 1180^{\circ}$ |
|  | 0000000001000000 | $64=\mathrm{D} / \mathrm{d} 0 \% / 2420^{\circ}$ |
|  | 0000000001000001 | $65=\mathrm{D} / \mathrm{d} 0 \% / \mathrm{d} 300^{\circ}$ |
|  | 0000000001000010 | $66=\mathrm{D} / \mathrm{d} 0 / 430^{\circ}$ |
|  | 0000000001000011 | $67=\mathrm{D} / \mathrm{d} 0 / \mathrm{y} 150^{\circ}$ |
|  | 0000000001000100 | $68=\mathrm{D} / \mathrm{d} 0 \% / \mathrm{y} 210^{\circ}$ |
|  | 0000000001000101 | $69=\mathrm{D} / \mathrm{d} 0 \% / 3330^{\circ}$ |
|  | 0000000001000110 | $70=\mathrm{D} / \mathrm{d} 60 \% / 0^{\circ}$ |
|  | 0000000001000111 | $71=\mathrm{D} / \mathrm{d} 60^{\circ} / \mathrm{d} 60^{\circ}$ |
|  | 0000000001001000 | $72=\mathrm{D} / 660 / \mathrm{d} 240^{\circ}$ |
|  | 0000000001001001 | $73=\mathrm{D} / \mathrm{d} 60^{\circ} / \mathrm{y} 30^{\circ}$ |
|  | 0000000001001010 | $74=\mathrm{D} / 660 / \mathrm{y} 210^{\circ}$ |
|  | 0000000001001011 | $75=\mathrm{D} / \mathrm{d} 120 \% / 0^{\circ}$ |
|  | 0000000001001100 | $76=\mathrm{D} / \mathrm{d} 120^{\circ} / 120^{\circ}$ |

Table 8-7: 745 DATA FORMATS (Sheet 11 of 36)

| $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
|  | 0000000001001101 | $77=\mathrm{D} / \mathrm{d} 120^{\circ} / \mathrm{d} 180^{\circ}$ |
|  | 0000000001001110 | $78=\mathrm{D} / \mathrm{d} 120^{\circ} / \mathrm{y} 150^{\circ}$ |
|  | 0000000001001111 | $79=\mathrm{D} / \mathrm{d} 120^{\circ} \mathrm{y} 330^{\circ}$ |
|  | 0000000001010000 | $80=\mathrm{D} / \mathrm{d} 180^{\circ} / \mathrm{d}^{\circ}$ |
|  | 0000000001010001 | $81=\mathrm{D} / \mathrm{d} 180 \% \mathrm{~d} 120^{\circ}$ |
|  | 0000000001010010 | $82=\mathrm{D} / \mathrm{d} 180^{\circ} / \mathrm{d} 180^{\circ}$ |
|  | 0000000001010011 | $83=\mathrm{D} / \mathrm{d} 180^{\circ} / \mathrm{d} 300^{\circ}$ |
|  | 0000000001010100 | $84=\mathrm{D} / \mathrm{d} 180^{\circ} / \mathrm{y} 150^{\circ}$ |
|  | 0000000001010101 | $85=\mathrm{D} / \mathrm{d} 180^{\circ} / \mathrm{y} 330^{\circ}$ |
|  | 0000000001010110 | $86=\mathrm{D} / \mathrm{d} 240^{\circ} / \mathrm{d} 0^{\circ}$ |
|  | 0000000001010111 | $87=\mathrm{D} / \mathrm{d} 240^{\circ} / \mathrm{d} 60^{\circ}$ |
|  | 0000000001011000 | $88=\mathrm{D} / \mathrm{d} 240 \% \mathrm{~d} 240^{\circ}$ |
|  | 0000000001011001 | $89=\mathrm{D} / \mathrm{d} 240^{\circ} / \mathrm{y} 30^{\circ}$ |
|  | 0000000001011010 | $90=\mathrm{D} / \mathrm{d} 240^{\circ} / \mathrm{y} 210^{\circ}$ |
|  | 0000000001011011 | $91=\mathrm{D} / \mathrm{d} 300{ }^{\circ} \mathrm{d} 0^{\circ}$ |
|  | 0000000001011100 | $92=\mathrm{D} / \mathrm{d} 300{ }^{\circ} \mathrm{d} 180^{\circ}$ |
|  | 0000000001011101 | $93=\mathrm{D} / \mathrm{d} 300{ }^{\circ} \mathrm{d} 300^{\circ}$ |
|  | 0000000001011110 | $94=\mathrm{D} / \mathrm{d} 300 \% / \mathrm{y} 150^{\circ}$ |
|  | 0000000001011111 | $95=\mathrm{D} / \mathrm{d} 300{ }^{\circ} / \mathrm{y} 330^{\circ}$ |
|  | 0000000001100000 | $96=\mathrm{D} / \mathrm{y} 30 \% / \mathrm{d} 0^{\circ}$ |
|  | 0000000001100001 | $97=\mathrm{D} / \mathrm{y} 30^{\circ} / \mathrm{d} 60^{\circ}$ |
|  | 0000000001100010 | $98=\mathrm{D} / \mathrm{y} 30 \% \mathrm{~d} 240^{\circ}$ |
|  | 0000000001100011 | $99=\mathrm{D} / \mathrm{y} 30^{\circ} / \mathrm{y} 30^{\circ}$ |
|  | 0000000001100100 | $100=\mathrm{D} / \mathrm{y} 30^{\circ} / \mathrm{y} 210^{\circ}$ |
|  | 0000000001100101 | $101=\mathrm{D} / \mathrm{y} 150 \% \mathrm{~d} 0^{\circ}$ |
|  | 0000000001100110 | $102=\mathrm{D} / \mathrm{y} 150 \% / \mathrm{d} 120^{\circ}$ |
|  | 0000000001100111 | $103=\mathrm{D} / \mathrm{y} 150 \% / \mathrm{d} 180^{\circ}$ |
|  | 0000000001101000 | $104=\mathrm{D} / \mathrm{y} 150{ }^{\circ} / \mathrm{d} 300^{\circ}$ |
|  | 0000000001101001 | $105=\mathrm{D} / \mathrm{y} 150 \% / \mathrm{y} 150^{\circ}$ |
|  | 0000000001101010 | $106=\mathrm{D} / \mathrm{y} 150{ }^{\circ} / \mathrm{y} 330^{\circ}$ |
|  | 0000000001101011 | $107=\mathrm{D} / \mathrm{y} 210^{\circ} / \mathrm{d} 0^{\circ}$ |
|  | 0000000001101100 | $108=\mathrm{D} / \mathrm{y} 210 \% \mathrm{~d} 60^{\circ}$ |
|  | 0000000001101101 | $109=\mathrm{D} / \mathrm{y} 210^{\circ} / \mathrm{d} 240^{\circ}$ |
|  | 0000000001101110 | $110=\mathrm{D} / \mathrm{y} 210^{\circ} / \mathrm{y} 30^{\circ}$ |
|  | 0000000001101111 | $111=\mathrm{D} / \mathrm{y} 210^{\circ} / \mathrm{y} 210^{\circ}$ |
|  | 0000000001110000 | $112=\mathrm{D} / \mathrm{y} 330^{\circ} / \mathrm{d} 0^{\circ}$ |
|  | 0000000001110001 | $113=\mathrm{D} / \mathrm{y} 330^{\circ} / \mathrm{d} 120^{\circ}$ |
|  | 0000000001110010 | $114=\mathrm{D} / \mathrm{y} 330^{\circ} / \mathrm{d} 180^{\circ}$ |
|  | 0000000001110011 | $115=\mathrm{D} / \mathrm{y} 330^{\circ} / \mathrm{d} 300^{\circ}$ |

Table 8-7: 745 DATA FORMATS (Sheet 12 of 36)

| $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
|  | 0000000001110100 | $116=\mathrm{D} / 3330 \% / 150^{\circ}$ |
|  | 0000000001110101 | $117=\mathrm{D} / \mathrm{y} 330 \% / \mathrm{3} 30^{\circ}$ |
|  | 0000000001110110 | $118=Y / 230 \% / 230^{\circ}$ |
|  | 0000000001110111 | $119=Y / y 0 \% / y 0^{\circ}$ |
| F29 | 16 bits | 745 OPERATION |
|  | 0000000000000000 | 0 = Not Programmed |
|  | 0000000000000001 | 1 = Programmed |
| F30 | 16 bits | ENABLED/DISABLED |
|  | 0000000000000000 | 0 = Disabled |
|  | 0000000000000001 | 1 = Enabled |
| F31 | 16 bits | baUd Rate |
|  | 0000000000000000 | $0=300$ Baud |
|  | 0000000000000001 | $1=1200$ Baud |
|  | 0000000000000010 | $2=2400$ Baud |
|  | 0000000000000011 | $3=4800$ Baud |
|  | 0000000000000100 | $4=9600$ Baud |
|  | 0000000000000101 | 5 = 19200 Baud |
| F32 | 32 bits | DEFAULT MESSAGE |
|  |  | Internally Defined |
| F33 | 16 bits | ASCII TEXT CHARACTERS |
|  | xxxx $\times 1 \times x 11111111$ | Second ASCII Character |
|  | 11111111 xxxx xxxx | First ASCII Character |
| F34 | 16 bits | ReLAY STATE |
|  | 0000000000000000 | $0=$ De-energized |
|  | 0000000000000001 | 1 = Energized |
| F35 | 16 bits | CONDITIONS |
|  | xxxx $\times x x x x x x x$ xxx | Trip ( $0=$ No Active Trip Condition, 1 = Active Trip Condition) |
|  | xxxx xxxx xxxx xx1x | Alarm ( $0=$ No Active Alarm Conditions, 1=Active Alarm Condition(s)) |
|  | xxxx $x$ xxx $x$ xxx x1x | Pickup <br> ( $0=$ No Pickup, $1=$ Pickup) |
|  | xxxy $x x x x x x x 1$ xxxx | Phase A ( 1 = Phase A Fault) |
|  | xxxx $x$ xxx $x \times 11 \mathrm{xxxx}$ | Phase B ( 1 = Phase B Faut) |
|  | xxxx $x x x x \times 1 \times x \times x x x$ | Phase C ( 1 = Phase C Faut) |
|  | xxxx xxxx 1xxx xxx | Ground ( 1 = Ground Faut) |
| F36 | 16 bits | OVERCURRENT CURVE SHAPE |
|  | 0000000000000000 | 0 = Ext Inverse |
|  | 0000000000000001 | 1 = Very Inverse |
|  | 0000000000000010 | 2 = Norm Inverse |

Table 8-7: 745 DATA FORMATS (Sheet 13 of 36)

| $\begin{array}{\|l\|} \hline \text { FORMAT } \\ \text { CODE } \end{array}$ | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
|  | 0000000000000011 | 3 = Mod Inverse |
|  | 0000000000000100 | 4 = Definite Time |
|  | 0000000000000101 | $5=$ IEC Curve A |
|  | 0000000000000110 | $6=$ IEC Curve B |
|  | 0000000000000111 | 7 = IEC Curve C |
|  | 0000000000001000 | $8=$ IEC Short In |
|  | 0000000000001001 | 9 = IAC Ext Inv |
|  | 0000000000001010 | 10 = IAC Very Inv |
|  | 0000000000001011 | 11 = IAC Inverse |
|  | 0000000000001100 | $12=$ IAC Short Inv |
|  | 0000000000001101 | 13 = FlexCurve A |
|  | 0000000000001110 | 14 = FlexCurve B |
|  | 0000000000001111 | 15 = FlexCurve C |
| F37 | 16 bits | RATED WINDING TEMPERATURE RISE |
|  | 0000000000000000 | $0=55^{\circ} \mathrm{C}$ (oil) |
|  | 0000000000000001 | $1=65^{\circ} \mathrm{C}$ (oil) |
|  | 0000000000000010 | $2=80^{\circ} \mathrm{C}$ (dry) |
|  | 0000000000000011 | $3=115^{\circ} \mathrm{C}$ (dry) |
|  | 0000000000000100 | $4=150^{\circ} \mathrm{C}$ (dry) |
| F38 | 16 bits | OUTPUT TYPE |
|  | 0000000000000000 | 0 = Trip |
|  | 0000000000000001 | 1 = Alarm |
|  | 0000000000000010 | 2 = Control |
| F39 | 16 bits | COOLING TYPE FOR OIL-FILLED TRANSFORMER |
|  | 0000000000000000 | $0=0 \mathrm{~A}$ |
|  | 0000000000000001 | 1 = FA |
|  | 0000000000000010 | 2 = Non-Directed FOA/FOW |
|  | 0000000000000011 | 3 = Directed FOA/FOW |
| F40 | 16 bits | WINDING SELECTION |
|  | 0000000000000000 | 0 = None |
|  | 0000000000000001 | $1=$ Winding 1 |
|  | 0000000000000010 | $2=$ Winding 2 |
|  | 0000000000000011 | $3=$ Winding 3 |
| F41 | 16 bits | RTD TYPE |
|  | 0000000000000000 | $0=100$ ohm Platinum |
|  | 0000000000000001 | 1 = 120 ohm Nickel |
|  | 0000000000000010 | $2=100$ ohm Nickel |
|  | 0000000000000011 | 3 = Monthly Average |

Table 8-7: 745 DATA FORMATS (Sheet 14 of 36)

| $\begin{array}{\|c} \hline \text { FORMAT } \\ \text { CODE } \end{array}$ | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
| F42 | 16 bits | ANALOG INPUT RANGE |
|  | 0000000000000000 | $0=0-1 \mathrm{~mA}$ |
|  | 0000000000000001 | $1=0.5 \mathrm{~mA}$ |
|  | 0000000000000010 | $2=4-20 \mathrm{~mA}$ |
|  | 0000000000000011 | $3=0-20 \mathrm{~mA}$ |
| F43 | 16 bits | NOT ASSERTED / ASSERTED |
|  | 0000000000000000 | $0=$ Not Asserted |
|  | 0000000000000001 | 1 = Asserted |
| F44 | 16 bits | OPERATION STATUS |
|  | xxxx xxxx xxxx xxx1 | Code Programming Mode ( 0 = Disabled, 1 = Enabled) |
|  | xxxx $x x x x x x x x$ xx1x | Setpoint Access Jumper ( $0=$ Disabled, $1=$ Enabled) |
|  | xxxx xxxx xxxx x1xx | Factory Service Mode ( $0=$ Disabled, 1 = Enabled) |
|  | xxxx xxxx xxxx 1xxx | Comm Port Passcode Access ( $0=$ Read \& Write, $1=$ Read Only |
| F45 | 16 bits | ANALOG OUTPUT VALUE |
|  | 0000000000000000 | 0 = W1 øA Current |
|  | 0000000000000001 | 1 = W1 ¢B Current |
|  | 0000000000000010 | $2=$ W1 øC Current |
|  | 0000000000000011 | 3 = W2 øA Current |
|  | 0000000000000100 | $4=$ W2 øB Current |
|  | 0000000000000101 | $5=$ W2 øC Current |
|  | 0000000000000110 | $6=$ W3 øA Current |
|  | 0000000000000111 | $7=$ W 3 øB Current |
|  | 0000000000001000 | $8=$ W 3 øC Current |
|  | 0000000000001001 | 9 = W1 Loading |
|  | 0000000000001010 | $10=$ W2 Loading |
|  | 0000000000001011 | 11 = W3 Loading |
|  | 0000000000001100 | 12 = W1 øA THD |
|  | 0000000000001101 | $13=\mathrm{W} 1$ øB THD |
|  | 0000000000001110 | 14 = W1 هC THD |
|  | 0000000000001111 | 15 = W2 øA THD |
|  | 0000000000010000 | $16=$ W2 øB THD |
|  | 0000000000010001 | 17 = W2 øC THD |
|  | 0000000000010010 | $18=$ W3 øA THD |
|  | 0000000000010011 | $19=$ W 3 øB THD |
|  | 0000000000010100 | 20 = W3 øC THD |
|  | 0000000000010101 | $21=$ W1 Derating |
|  | 0000000000010110 | $22=$ W2 Derating |

Table 8-7: 745 DATA FORMATS (Sheet 15 of 36)

| $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
|  | 0000000000010111 | $23=$ W3 Derating |
|  | 0000000000011000 | $24=$ Frequency |
|  | 0000000000011001 | $25=$ Tap Position |
|  | 0000000000011010 | $26=$ Voltage |
|  | 0000000000011011 | 27 = W1 øA Demand |
|  | 0000000000011100 | $28=$ W1 øB Demand |
|  | 0000000000011101 | $29=$ W1 øC Demand |
|  | 0000000000011110 | $30=$ W2 øA Demand |
|  | 0000000000011111 | $31=$ W2 øB Demand |
|  | 0000000000100000 | $32=$ W2 øC Demand |
|  | 0000000000100001 | $33=$ W3 øA Demand |
|  | 0000000000100010 | $34=$ W 3 øB Demand |
|  | 0000000000100011 | $35=$ W3 øC Demand |
|  | 0000000000100100 | $36=$ Analog Input |
|  | 0000000000100101 | $37=$ Max Event W1 la |
|  | 0000000000100110 | $38=$ Max Event W1 Ib |
|  | 0000000000100111 | $39=$ Max Event W1 Ic |
|  | 0000000000101000 | $40=$ Max Event W1 Ig |
|  | 0000000000101001 | 41 = Max Event W2 la |
|  | 0000000000101010 | $42=$ Max Event W2 lb |
|  | 0000000000101011 | $43=$ Max Event W2 Ic |
|  | 0000000000101100 | $44=$ Max Event W2 Ig |
|  | 0000000000101101 | $45=$ Max Event W3 la |
|  | 0000000000101110 | $46=$ Max Event W3 Ib |
|  | 0000000000101111 | 47 = Max Event W3 Ic |
|  | 0000000000110000 | $48=$ Max Event W3 Ig |
| F46 | 16 bits | TARGET TYPES |
|  | 0000000000000000 | 0 = Self-reset |
|  | 0000000000000001 | 1 = Latched |
|  | 0000000000000010 | $2=$ None |
| F47 | 16 bits | FLEXLOGIC EQUATION |
|  | 0000000000000000 | Token = END |
|  | 0000000100000000 | Token $=$ OFF |
|  | 0000001000000000 | Token $=0 \mathrm{~N}$ |
|  | 0000001100000000 | Token $=$ NOT gate |
|  | 00000100 xxxx xxxx | Token $=$ OR gate |
|  | 00000010 | 2 = 2 input OR gate |
|  | 00000011 | $3=3$ input OR gate |
|  | $\downarrow$ | $\downarrow$ |

Table 8-7: 745 DATA FORMATS (Sheet 16 of 36)

| $\begin{array}{\|c\|} \hline \text { FORMAT } \\ \text { CODE } \end{array}$ | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
|  | 00010011 | $19=19$ input OR gate |
|  | 00000101 xxxx xxxx | Token = AND gate |
|  | 00000010 | $2=2$ input AND gate |
|  | 00000011 | $3=3$ input AND gate |
|  | $\downarrow$ | $\downarrow$ |
|  | 00010011 | $19=19$ input AND gate |
|  | 00000110 xxxx xxxx | Token $=$ NOR gate |
|  | 00000010 | $2=2$ input NOR gate |
|  | 00000011 | $3=3$ input NOR gate |
|  | $\downarrow$ | $\downarrow$ |
|  | 00010011 | $19=19$ input NOR gate |
|  | 00000111 xxxx xxxx | Token = NAND gate |
|  | 00000010 | 2 = 2 input NAND gate |
|  | 00000011 | $3=3$ input NAND gate |
|  | $\downarrow$ | $\downarrow$ |
|  | 00010011 | $19=19$ input NAND gate |
|  | 00001000 xxxx xxxx | Token $=$ XOR gate |
|  | 00000010 | $2=2$ input XOR gate |
|  | 00000011 | $3=3$ input XOR gate |
|  | $\downarrow$ | $\downarrow$ |
|  | 00010011 | $19=19$ input XOR gate |
|  | 00001001 xxxx xxxx | Token = Element Pickup |
|  | 00000000 | $0=$ Any Element |
|  | 00000001 | 1 = Any W1 Overcurrent |
|  | 00000010 | 2 = Any W2 Overcurrent |
|  | 00000011 | 3 = Any W3 Overcurrent |
|  | 00000100 | 4 = Percent Differential |
|  | 00000101 | 5 = Inst Differential |
|  | 00000110 | 6 = Winding 1 Phase Time 0/C |
|  | 00000111 | 7 = Winding 2 Phase Time 0/C |
|  | 00001000 | 8 = Winding 3 Phase Time 0/C |
|  | 00001001 | 9 = Winding 1 Phase Inst 0/C 1 |
|  | 00001010 | $10=$ Winding 2 Phase Inst 0/C 1 |
|  | 00001011 | 11 = Winding 3 Phase Inst 0/C 1 |
|  | 00001100 | $12=$ Winding 1 Phase Inst 0/C 2 |
|  | 00001101 | 13 = Winding 2 Phase Inst 0/C 2 |
|  | 00001110 | 14 = Winding 3 Phase Inst 0/C 2 |
|  | 00001111 | $15=$ Winding 1 Neutral Time 0/C |
|  | 00010000 | 16 = Winding 2 Neutral Time 0/C |

Table 8-7: 745 DATA FORMATS (Sheet 17 of 36)

| $\begin{aligned} & \hline \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
|  | 00010001 | 17 = Winding 3 Neutral Time 0/C |
|  | 00010010 | $18=$ Winding 1 Neutral Inst 0/C 1 |
|  | 00010011 | $19=$ Winding 2 Neutral Inst 0/C 1 |
|  | 00010100 | $20=$ Winding 3 Neutral Inst 0/C 1 |
|  | 00010101 | $21=$ Winding 1 Neutral Inst 0/C 2 |
|  | 00010110 | $22=$ Winding 2 Neutral Inst 0/C 2 |
|  | 00010111 | $23=$ Winding 3 Neutral Inst 0/C 2 |
|  | 00011000 | $24=$ Winding 1 Ground Time 0/C |
|  | 00011001 | $25=$ Winding 2 Ground Time 0/C |
|  | 00011010 | $26=$ Winding 3 Ground Time 0/C |
|  | 00011011 | $27=$ Winding 1 Ground Inst 0/C 1 |
|  | 00011100 | $28=$ Winding 2 Ground Inst 0/C 1 |
|  | 00011101 | $29=$ Winding 3 Ground Inst 0/C 1 |
|  | 00011110 | $30=$ Winding 1 Ground Inst 0/C 2 |
|  | 00011111 | $31=$ Winding 2 Ground Inst 0/C 2 |
|  | 00100000 | $32=$ Winding 3 Ground Inst 0/C 2 |
|  | 00100001 | $33=$ Winding 1 Restricted Ground Fault |
|  | 00100010 | $34=$ Winding 2 Restricted Ground Fault |
|  | 00100011 | $35=$ Winding 3 Restricted Ground Fault |
|  | 00100100 | $36=$ Winding 1 Restricted Ground Trend |
|  | 00100101 | $37=$ Winding 2 Restricted Ground Trend |
|  | 00100110 | $38=$ Winding 3 Restricted Ground Trend |
|  | 00100111 | $39=$ Winding 1 Neg. Seq. Time 0/C |
|  | 00101000 | $40=$ Winding 2 Neg. Seq. Time 0/C |
|  | 00101001 | 41 = Winding 3 Neg. Seq. Time 0/C |
|  | 00101010 | $42=$ Winding 1 Neg. Seq. Inst 0/C |
|  | 00101011 | $43=$ Winding 2 Neg. Seq. Inst 0/C |
|  | 00101100 | $44=$ Winding 3 Neg. Seq. Inst 0/C |
|  | 00101101 | 45 = Underfrequency 1 |
|  | 00101110 | 46 = Underfrequency 2 |
|  | 00101111 | 47 = Frequency Decay Rate 1 |
|  | 00110000 | $48=$ Frequency Decay Rate 2 |
|  | 00110001 | 49 = Frequency Decay Rate 3 |
|  | 00110010 | $50=$ Frequency Decay Rate 4 |
|  | 00110011 | 51 = Overfrequency |
|  | 00110100 | $52=5$ th Harmonic Level |
|  | 00110101 | 53 = Volts-Per-Hertz 1 |
|  | 00110110 | 54 = Volts-Per-Hertz 2 |
|  | 00110111 | $55=$ Winding 1 THD Level |

Table 8-7: 745 DATA FORMATS (Sheet 18 of 36)

| FORMAT CODE | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
|  | 00111000 | 56 = Winding 2 THD Level |
|  | 00111001 | 57 = Winding 3 THD Level |
|  | 00111010 | $58=$ Winding 1 Harmonic Derating |
|  | 00111011 | $59=$ Winding 2 Harmonic Derating |
|  | 00111100 | $60=$ Winding 3 Harmonic Derating |
|  | 00111101 | $61=$ Hottest-Spot Temperature Limit |
|  | 00111110 | 62 = Loss-Of-Life Limit |
|  | 00111111 | 63 = Analog Input Level 1 |
|  | 01000000 | 64 = Analog Input Level 2 |
|  | 01000001 | $65=$ Winding 1 Current Demand |
|  | 01000010 | $66=$ Winding 2 Current Demand |
|  | 01000011 | 67 = Winding 3 Current Demand |
|  | 01000100 | 68 = Transformer Overload |
|  | 01000101 | 69 = Aging Factor Limit |
|  | 01000110 | $70=$ Tap Changer Failure |
|  | 00001010 xxxx xxxx | Token = Element Operated (data same as for Element Pickup) |
|  | 00001011 xxxx xxxx | Token = Logic Input Asserted |
|  | 00000000 | $0=$ Logic Input 1 |
|  | 00000001 | 1 = Logic Input 2 |
|  | 00000010 | 2 = Logic Input 3 |
|  | 00000011 | 3 = Logic Input 4 |
|  | 00000100 | $4=$ Logic Input 5 |
|  | 00000101 | $5=$ Logic Input 6 |
|  | 00000110 | $6=$ Logic Input 7 |
|  | 00000111 | 7 = Logic Input 8 |
|  | 00001000 | $8=$ Logic Input 9 |
|  | 00001001 | 9 = Logic Input 10 |
|  | 00001010 | 10 = Logic Input 11 |
|  | 00001011 | 11 = Logic Input 12 |
|  | 00001100 | $12=$ Logic Input 13 |
|  | 00001101 | $13=$ Logic Input 14 |
|  | 00001110 | 14 = Logic Input 15 |
|  | 00001111 | 15 = Logic Input 16 |
|  | 00001100 xxxx xxxx | Token $=$ Virtual Input Asserted |
|  | 00000000 | 0 = Virtual Input 1 |
|  | 00000001 | 1 = Virtual Input 2 |
|  | 00000010 | $2=$ Virtual Input 3 |
|  | 00000011 | 3 = Virtual Input 4 |
|  | 00000100 | 4 = Virtual Input 5 |

Table 8-7: 745 DATA FORMATS (Sheet 19 of 36)

| $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
|  | 00000101 | $5=$ Virtual Input 6 |
|  | 00000110 | $6=$ Virtual Input 7 |
|  | 00000111 | 7 = Virtual Input 8 |
|  | 00001000 | $8=$ Virtual Input 9 |
|  | 00001001 | 9 = Virtual Input 10 |
|  | 00001010 | 10 = Virtual Input 11 |
|  | 00001011 | 11 = Virtual Input 12 |
|  | 00001100 | $12=$ Virtual Input 13 |
|  | 00001101 | 13 = Virtual Input 14 |
|  | 00001110 | $14=$ Virtual Input 15 |
|  | 00001111 | $15=$ Virtual Input 16 |
|  | 00001101 xxxx xxxx | Token = Output Relay Operated |
|  | 00000000 | 0 = Output Relay 1 |
|  | 00000001 | 1 = Output Relay 2 |
|  | 00000010 | 2 = Output Relay 3 |
|  | 00000011 | 3 = Output Relay 4 |
|  | 00000100 | 4 = Output Relay 5 |
|  | 00000101 | 5 = Output Relay 6 |
|  | 00000110 | $6=$ Output Relay 7 |
|  | 00000111 | 7 = Output Relay 8 |
|  | 00001000 | 8 = Self-Test Relay |
|  | 00001110 xxxx xxxx | Token = Virtual Output Operated |
|  | 00000000 | $0=$ Virtual Output 1 |
|  | 00000001 | 1 = Virtual Output 2 |
|  | 00000010 | 2 = Virtual Output 3 |
|  | 00000011 | 3 = Virtual Output 4 |
|  | 00000100 | 4 = Virtual Output 5 |
|  | 00001111 xxxx xxxx | Token $=$ Timer Operated |
|  | 00000000 | $0=$ Timer 1 |
|  | 00000001 | 1 = Timer 2 |
|  | 00000010 | $2=$ Timer 3 |
|  | 00000011 | $3=$ Timer 4 |
|  | 00000100 | $4=$ Timer 5 |
|  | 00000101 | $5=$ Timer 6 |
|  | 00000110 | $6=\operatorname{Timer} 7$ |
|  | 00000111 | 7 = Timer 8 |
|  | 00001000 | $8=$ Timer 9 |
|  | 00001001 | $9=$ Timer 10 |

Table 8-7: 745 DATA FORMATS (Sheet 20 of 36)

| $\begin{gathered} \text { FORMAT } \\ \text { CODE } \end{gathered}$ | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
| F48 | 16 bits | SIMULATION FUNCTION |
|  | 0000000000000000 | $0=$ Disabled |
|  | 0000000000000001 | 1 = Prefault Mode |
|  | 0000000000000010 | 2 = Fault Mode |
|  | 0000000000000011 | 3 = Playback Mode |
| F49 | 16 bits | INPUT STATES |
|  | xxxx $x \times x x y x x x$ xxx1 | Input 1 ( $0=$ Open, 1 = Closed) |
|  | xxxx $\times x \times x \times x x x \times x 1 x$ | Input 2 ( $0=$ Open, $1=$ Closed) |
|  | xxxx $x$ xxx $x$ xx $x 11 x x$ | Input 3 ( $0=$ Open, $1=$ Closed) |
|  | xxxx xxxx $x$ xxx 1xxx | Input 4 ( $0=$ Open, $1=$ Closed) |
|  | xxxx xxxx xxx1 xxxx | Input 5 ( $0=$ Open, $1=$ Closed) |
|  | xxxx xxxx xx1x xxxx | Input 6 ( $0=$ Open, $1=$ Closed) |
|  | xxxx $x \times x \times x 1 x x x x x x$ | Input 7 ( $0=$ Open, $1=$ Closed) |
|  | xxxx xxxx 1xxx $x \times x x$ | Input 8 ( 0 Open, 1 = Closed) |
|  | xxxx $x$ xx 1 xxxx $x$ xxx | Input 9 ( $0=$ Open, $1=$ Closed) |
|  | xxxx xx1x $x x x x \times x x x$ | Input 10 ( $0=0$ Open, 1 = Closed) |
|  | xxxx x1xx $x$ xxx $x$ xx | Input 11 ( $0=0$ Open, 1 = Closed) |
|  | xxxx 1xxx xxxx xxx | Input 12 ( $0=0$ Open, 1 = Closed) |
|  | xxx1 xxxx xxxx xxxx | Input 13 ( $0=0$ Open, $1=$ Closed) |
|  | xx1 1 xxxx $x x x x$ xxx | Input 14 ( $0=$ Open, 1 = Closed) |
|  | x1xx $x \times x \times x x x x x x x$ | Input 15 ( $0=$ Open, 1 = Closed) |
|  | $1 \times x x$ xxxx xxxx xxx | Input 16 ( $0=0$ Open, 1 = Closed) |
| F50 | 16 bits | OUTPUT RELAY STATES |
|  | xxxx $x x x x x x x x x x x 1$ | Output Relay 1 <br> ( $0=$ De-energized, $1=$ Energized) |
|  | xxxx xxxx xxxx xx1x | Output Relay 2 <br> ( $0=$ De-energized, $1=$ Energized) |
|  | xxxx xxxx xxxx x1xx | Output Relay 3 <br> ( $0=$ De-energized, $1=$ Energized) |
|  | xxxx $x x x x$ xxxx $1 \times x x$ | Output Relay 4 ( $0=$ De-energized, $1=$ Energized) |
|  | xxxx xxxx $x \times x 1$ xxxx | Output Relay 5 ( $0=$ De-energized, $1=$ Energized) |
|  | xxxx xxxx xx1x xxx | Output Relay 6 ( $0=$ De-energized, $1=$ Energized) |
|  | xxxx xxxx x1xx xxx | Output Relay 7 $\text { (0 = De-energized, } 1=\text { Energized })$ |
|  | xxxx xxxx 1xxx xxx | Output Relay 8 ( $0=$ De-energized, $1=$ Energized) |
|  | xxxx xxx 1 xxxx xxx | Self-Test Relay ( $0=$ De-energized, $1=$ Energized) |

Table 8-7: 745 DATA FORMATS (Sheet 21 of 36)

| $\begin{array}{\|c\|} \hline \text { FORMAT } \\ \text { CODE } \end{array}$ | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
| F51 | 16 bits | DSP DIAGNOSTIC FLAGS |
|  | xxxx xxxx xxxx xxx1 | A/D Virtual Ground ( $0=0$ kay, 1 = Out of Tolerance) |
|  | xxxx xxxx xxxx xx1x | A/D Subsystem ( $0=0$ kay, 1 = Not Responding) |
| F52 | 16 bits | LOGIC FLAG |
|  | xxxx xxxx xxxx xxx1 | $\begin{aligned} & \text { Pickup Flag } \\ & (0=\text { Not Picked Up, } 1=\text { Picked Up) } \end{aligned}$ |
|  | xxxx xxxx xxxx xx 1 x | Operated Flag ( $0=$ Not Operated, $1=$ Operated) |
|  | xxxx xxxx $x$ xxx x1xx | Latched Flag ( $0=$ Not Latched, $1=$ Latched) |
|  | xxxx xxxx xxxx 1 xxx | $\begin{aligned} & \text { Self test flag } \\ & (0=\text { No error, } 1=\text { Error }) \end{aligned}$ |
|  | xxxx xxx1 xxxx xxxx | Phase A Flag ( $0=$ No Fault, 1 = Fault) |
|  | xxxx xx1x xxxx xxxx | Phase B Flag ( $0=$ No Fault, $1=$ Fault) |
|  | xxxx x1xx xxxx xxxx | Phase C Flag ( $0=$ No Fault, $1=$ Fault) |
|  | xxxx 1xxx xxxx xxxx | Ground Flag ( $0=$ No Fault, $1=$ Fault) |
| F53 | 16 bits | UNSIGNED VALUE, 3 DECIMAL PLACES |
|  | Example: 1.234 stored as 1234 |  |
| F54 | 16 bits | FORCE LED STATE |
|  | xxxx xxxx 11111111 | LED On/Off State (0 = 0ff, $1=0 \mathrm{n}$ ) |
|  | x $x$ xx $\mathrm{xxxx} \times \mathrm{xxxx} \times \mathrm{xx} 1$ | LED \#1 (Top) |
|  | $x \mathrm{xxx} \times \mathrm{xxx} \times \mathrm{xxx} \times \mathrm{xx} 1 \mathrm{x}$ | LED \#2 |
|  | $x \mathrm{xxx} \times \mathrm{xxx} \times \mathrm{xxxx} \times 1 \mathrm{xx}$ | LED \#3 |
|  |  | LED \#4 |
|  | xxxx $x$ xxx $\mathrm{xxx} 1 \mathrm{x} x \mathrm{x} x$ | LED \#5 |
|  |  | LED \#6 |
|  | $x \mathrm{x} x \mathrm{x} \times \mathrm{xxx} \times 1 \mathrm{x} x \mathrm{xxxx}$ | LED \#7 |
|  | xxxx xxxx 1xxx xxxx | LED \#8 (Bottom) |
| F55 | 16 bits | FRONT PANEL KEY |
|  | 0000000000000000 | $0=10 '$ |
|  | 0000000000000001 | 1 = '1' |
|  | 0000000000000010 | $2=2{ }^{\prime}$ |
|  | 0000000000000011 | $3=3$ ' |
|  | 0000000000000100 | $4=14$ |
|  | 0000000000000101 | $5=15$ |
|  | 0000000000000110 | $6=$ '6' |

Table 8-7: 745 DATA FORMATS (Sheet 22 of 36)

| $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
|  | 0000000000000111 | 7 = '7' |
|  | 0000000000001000 | $8=81$ |
|  | 0000000000001001 | 9 = '9' |
|  | 0000000000001010 | 10 = '.' |
|  | 0000000000001011 | 11 = 'Value Up' |
|  | 0000000000001100 | $12=$ 'Value Down' |
|  | 0000000000001101 | 13 = 'Message Up' |
|  | 0000000000001110 | 14 = 'Message Down' |
|  | 0000000000001111 | $15=$ 'Next' |
|  | 0000000000010000 | $16=$ 'Enter' |
|  | 0000000000010001 | 17 = 'Escape' |
|  | 0000000000010010 | 18 = 'Setpoints' |
|  | 0000000000010011 | 19 = 'Actual' |
|  | 0000000000010100 | 20 = 'Reset' |
|  | 0000000000010101 | 21 = 'Help' |
| F56 | 16 bits | INPUT ASSERT FLAGS |
|  | xxxx xxxx xxxx xxx1 | Input 1 <br> ( $0=$ Not Asserted, $1=$ Asserted) |
|  | x $x$ xx $\mathrm{xxxx} \times \mathrm{xxx} \mathrm{xx} 1 \mathrm{x}$ | Input 2 <br> ( $0=$ Not Asserted, $1=$ Asserted) |
|  | xxxx $\mathrm{xxxx} \times \mathrm{xxx} \times 1 \mathrm{x} x$ | Input 3 <br> ( $0=$ Not Asserted, $1=$ Asserted) |
|  | xxxx $x$ xxx $x$ xxx 1xxx | Input 4 $\text { (0 = Not Asserted, } 1 \text { = Asserted) }$ |
|  | xxxx xxxx $\times x \times 1$ xxxx | Input 5 <br> ( $0=$ Not Asserted, $1=$ Asserted) |
|  | x $x$ xx $\mathrm{xxxx} x \mathrm{x} 1 \mathrm{x} \times \mathrm{x} x \mathrm{x}$ | Input 6 <br> ( $0=$ Not Asserted, $1=$ Asserted) |
|  | x $x$ xx $\mathrm{xxxx} \times 1 \mathrm{xx} \mathrm{x} x \mathrm{x} x$ | Input 7 <br> ( $0=$ Not Asserted, $1=$ Asserted) |
|  | xxxx $x$ xxx 1xxx $x x x x$ | $\begin{aligned} & \text { Input } 8 \\ & (0=\text { Not Asserted, } 1=\text { Asserted }) \end{aligned}$ |
|  | xxxx $\mathrm{xxx1}$ xxxx xxxx | $\begin{aligned} & \text { Input } 9 \\ & (0=\text { Not Asserted, } 1=\text { Asserted }) \end{aligned}$ |
|  | x xxx xx 1 x xxxx xxxx | $\begin{aligned} & \text { Input } 10 \\ & (0=\text { Not Asserted, } 1=\text { Asserted }) \end{aligned}$ |
|  | xxxx x1xx xxxx xxxx | $\begin{aligned} & \text { Input } 11 \\ & (0=\text { Not Asserted, } 1=\text { Asserted }) \end{aligned}$ |
|  | xxxx 1xxx xxxx xxxx | $\begin{aligned} & \text { Input } 12 \\ & (0=\text { Not Asserted, } 1=\text { Asserted }) \end{aligned}$ |
|  | xxx1 xxxx xxxx xxxx | $\begin{aligned} & \text { Input } 13 \\ & (0=\text { Not Asserted, } 1=\text { Asserted }) \end{aligned}$ |
|  | xx1x xxxx xxxx xxxx | Input 14 $\text { ( } 0=\text { Not Asserted, } 1=\text { Asserted })$ |

Table 8-7: 745 DATA FORMATS (Sheet 23 of 36)


Table 8-7: 745 DATA FORMATS (Sheet 24 of 36)


Table 8-7: 745 DATA FORMATS (Sheet 25 of 36)

| $\begin{aligned} & \hline \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
| F64 | 16 bits | HARMONIC PARAMETERS |
|  | 0000000000000000 | 0 = 2nd |
|  | 0000000000000001 | 1 = 2nd +5 th |
| F65 | 16 bits | TRACE MEMORY CHANNEL |
|  | 0000000000000000 | $0=\mathrm{W} 1 \mathrm{la}$ |
|  | 0000000000000001 | $1=\mathrm{W} 1 \mathrm{lb}$ |
|  | 0000000000000010 | $2=\mathrm{W} 1 \mathrm{lc}$ |
|  | 0000000000000011 | $3=\mathrm{W} 2 \mathrm{la}$ |
|  | 0000000000000100 | $4=\mathrm{W} 2 \mathrm{lb}$ |
|  | 0000000000000101 | $5=\mathrm{W} 2 \mathrm{Ic}$ |
|  | 0000000000000110 | $6=$ W 3 la |
|  | 0000000000000111 | $7=\mathrm{W} 3 \mathrm{lb}$ |
|  | 0000000000001000 | $8=$ W3 Ic |
|  | 0000000000001001 | $9=W 1 / 2 \mathrm{lg}$ |
|  | 0000000000001010 | $10=W 2 / 3 \mathrm{lg}$ |
|  | 0000000000001011 | 11 = Voltage |
|  | 0000000000001100 | $12=$ Logic Inputs |
|  | 0000000000001101 | 13 = Output Relays |
| F66 | 16 bits | OUTPUT OPERATION |
|  | 0000000000000000 | 0 = Self-resetting |
|  | 0000000000000001 | 1 = Latched |
| F67 | 16 bits | BLOCK OPERATION OF OUTPUTS |
|  | xxxx xxxx xxxx xxx1 | Output Relay 1 ( $0=$ Allow <br> Operation, 1 = Block Operation) |
|  | xxxx xxxx xxxx xx1x | Output Relay 2 ( $0=$ Allow <br> Operation, 1 = Block Operation) |
|  | xxxx xxxx xxxx x1xx | Output Relay 3 ( $0=$ Allow Operation, 1 = Block Operation) |
|  | xxxx xxxx $\times x \times x$ 1xxx | Output Relay 4 ( $0=$ Allow Operation, 1 = Block Operation) |
|  | xxxx xxxx $\mathrm{xxx1}$ xxxx | Output Relay 5 ( $0=$ Allow Operation, 1 = Block Operation) |
|  | xxxx xxxx xx1x xxxx | Output Relay 6 ( $0=$ Allow Operation, 1 = Block Operation) |
|  | xxxx xxxx x1xx xxxx | Output Relay 7 ( $0=$ Allow Operation, 1 = Block Operation) |
|  | xxxx xxxx 1xxx xxxx | Output Relay 8 ( $0=$ Allow Operation, 1 = Block Operation) |
| F68 | 16 bits | RESET TIME |
|  | 0000000000000000 | 0 = Instantaneous |
|  | 0000000000000001 | 1 = Linear |

Table 8-7: 745 DATA FORMATS (Sheet 26 of 36)

| FORMAT <br> CODE | APPLICABLE BITS | DEFINITION |
| :---: | :--- | :--- |
| F69 | 16 bits | PLAYBACK MEMORY CHANNEL |
|  | 0000000000000000 | $0=$ W1 la |
|  | 0000000000000001 | $1=$ W1 Ib |
|  | 0000000000000010 | $2=$ W1 Ic |
|  | 0000000000000011 | $3=$ W2 la |
|  | 0000000000000100 | $4=$ W2 Ib |
|  | 0000000000000101 | $5=$ W2 Ic |
|  | 0000000000000110 | $6=$ W3 la |
|  | 0000000000000111 | $7=$ W3 Ib |
|  | 0000000000001000 | $8=$ W3 Ic |
|  | 0000000000001001 | $9=$ W1/2 Ig |
|  | 0000000000001010 | $10=$ W2/3 Ig |
|  | 0000000000001011 | $11=$ Voltage |
| F70 | 16 bits | TRACE/PLAYBACK MEMORY DATA |
| Treple |  |  |

Trace/Playback Channel Selector Index $=0-10$ (i.e. any current input) 2'S COMPLEMENT SIGNED VALUE
Examples: $1.000 \times$ CT stored as 500; -0.500 x CT stored as -250
Trace/Playback Channel Selector Index $=11$ (i.e. Voltage)
2'S COMPLEMENT SIGNED VALUE
Examples: $1.000 \times$ VT stored as 1000; $-0.500 \times$ VT stored as -500
Trace Channel Selector Index = 12 (i.e. Logic Inputs) AS PER FORMAT F49
Example: "Logic Inputs 1 and 3 closed" stored as 0005 hex
Trace Channel Selector Index $=13$ (i.e. Output Relays) AS PER FORMAT F50
Example: "Output Relays 2 and 4 energized" stored as 000A hex

| F71 | $\mathbf{1 6}$ bits | FACTORY SERVICE COMMANDS |
| :--- | :--- | :--- |
|  | 0000000000000000 | $0=$ Clear Any Pending Commands |
|  | 0000000000000001 | $1=$ Load Factory Default Setpoints |
|  | 0000000000000010 | $2=$ Load Default Calibration Data |
|  | 0000000000000011 | $3=$ Clear Diagnostic Data |
|  | 0000000000000100 | $4=$ Clear RMS Min/Max Data |
| F72 | $\mathbf{1 6}$ bits | FORCE OTHER HARDWARE |
|  | xxxx xxxx xxxx xxx1 | LEDs (0=Normal, 1= Use LED <br> force codes) |
|  | xxxx xxxx xxxx x1xx | External Watchdog <br> $(0=$ Normal, $1=$ Stop Updating $)$ |
|  | xxxx xxxx xxxx 1xxx | Internal Watchdog <br> $(0=$ Normal, $1=$ Stop Updating $)$ |
| F73 | 16 bits | PARITY |
|  | 0000000000000000 | $0=$ None |
|  | 0000000000000001 | $1=$ Odd |
|  |  |  |

Table 8-7: 745 DATA FORMATS (Sheet 27 of 36)

| $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
|  | 0000000000000010 | 2 = Even |
| F74 | 16 bits | EDIT SETPOINT GROUP |
|  | 0000000000000000 | 0 = Group 1 |
|  | 0000000000000001 | 1 = Group 2 |
|  | 0000000000000010 | $2=$ Group 3 |
|  | 0000000000000011 | 3 = Group 4 |
|  | 0000000000000100 | 4 = Active Group |
| F75 | 16 bits | VIRTUAL INPUT PROGRAMMED STATE |
|  | 0000000000000000 | 0 = Open |
|  | 0000000000000001 | 1 = Closed |
| F76 | 16 bits | FLEXLOGIC EQUATION ERROR |
|  | 0000000000000000 | 0 = None |
|  | 0000000000000001 | 1 = Output Relay 1 |
|  | 0000000000000010 | 2 = Output Relay 2 |
|  | 0000000000000011 | 3 = Output Relay 3 |
|  | 0000000000000100 | 4 = Output Relay 4 |
|  | 0000000000000101 | 5 = Output Relay 5 |
|  | 0000000000000110 | 6 = Output Relay 6 |
|  | 0000000000000111 | 7 = Output Relay 7 |
|  | 0000000000001000 | $8=$ Output Relay 8 |
|  | 0000000000001001 | 9 = Trace Memory Trigger |
|  | 0000000000001010 | 10 = Virtual Output 1 |
|  | 0000000000001011 | 11 = Virtual Output 2 |
|  | 0000000000001100 | 12 = Virtual Output 3 |
|  | 0000000000001101 | $13=$ Virtual Output 4 |
|  | 0000000000001110 | 14 = Virtual Output 5 |
| F77 | 16 bits | BAD TRANSFORMER SETTINGS ERROR |
|  | 0000000000000000 | 0 = None |
|  | 0000000000000001 | 1 = W1-W2 Ratio Mismatch |
|  | 0000000000000010 | 2 = W1-W3 Ratio Mismatch |
|  | 0000000000000011 | 3 = Load Loss |
|  | 0000000000000100 | 4 = W1 Eddy-Current Loss |
|  | 0000000000000101 | 5 = W2 Eddy-Current Loss |
|  | 0000000000000110 | 6 = W3 Eddy-Current Loss |
|  | 0000000000000111 | 7 = W1 Rated Load |
|  | 0000000000001000 | $8=$ W2 Rated Load |
|  | 0000000000001001 | 9 = W3 Rated Load |

Table 8-7: 745 DATA FORMATS (Sheet 28 of 36)

| $\begin{aligned} & \hline \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | APPLICABLE BITS | DEFINITITON |
| :---: | :---: | :---: |
| F78 | 16 bits | UNSIGNED VALUE AUTORANGING BASED ON WINDING 1 PHASE CT PRIMARY |
|  | For CT PRIMARY $\leq 2$ A <br> Format: Unsigned value, 3 decimal places Example: 1.234 stored as 1234 |  |
|  | For $2 \mathrm{~A}<\mathrm{CT}$ PRIMARY $\leq 20 \mathrm{~A}$ Format: Unsigned value, 2 decimal places Example: 12.34 stored as 1234 |  |
|  | For $20 \mathrm{~A}<\mathrm{CT}$ PRIMARY $\leq 200 \mathrm{~A}$ Format: Unsigned value, 1 decimal place Example: 123.4 stored as 1234 |  |
|  | For $200 \mathrm{~A}<\mathrm{CT}$ PRIMARY $\leq 2000 \mathrm{~A}$ Format: Unsigned value Example: 1234 stored as 1234 |  |
|  | For CT PRIMARY > 2000 A Format: Unsigned value, scaled by 10 Example: 12340 stored as 1234 |  |
| F79 | 16 bits | UNSIGNED VALUE AUTORANGING BASED ON WINDING 2 PHASE CT PRIMARY |
|  | For CT PRIMARY $\leq 2$ A <br> Format: Unsigned value, 3 decimal places <br> Example: 1.234 stored as 1234 |  |
|  | For $2 \mathrm{~A}<\mathrm{CT}$ PRIMARY $\leq 20 \mathrm{~A}$ Format: Unsigned value, 2 decimal places Example: 12.34 stored as 1234 |  |
|  | For $20 \mathrm{~A}<\mathrm{CT}$ PRIMARY $\leq 200 \mathrm{~A}$ Format: Unsigned value, 1 decimal place Example: 123.4 stored as 1234 |  |
|  | For $200 \mathrm{~A}<\mathrm{CT}$ PRIMARY $\leq 2000 \mathrm{~A}$ Format: Unsigned value Example: 1234 stored as 1234 |  |
|  | For CT PRIMARY > 2000 A Format: Unsigned value, scaled by 10 Example: 12340 stored as 1234 |  |
| F80 | 16 bits | UNSIGNED VALUE AUTORANGING BASED ON WINDING 3 PHASE CT PRIMARY |
|  | For CT PRIMARY $\leq 2$ A <br> Format: Unsigned value, 3 decimal places Example: 1.234 stored as 1234 |  |
|  | For $2 \mathrm{~A}<\mathrm{CT}$ PRIMARY $\leq 20 \mathrm{~A}$ Format: Unsigned value, 2 decimal places Example: 12.34 stored as 1234 |  |
|  | For $20 \mathrm{~A}<\mathrm{CT}$ PRIMARY $\leq 200 \mathrm{~A}$ Format: Unsigned value, 1 decimal place Example: 123.4 stored as 1234 |  |

Table 8-7: 745 DATA FORMATS (Sheet 29 of 36)

| FORMAT <br> CODE | APPLICABLE BITS | DEFINITION |
| :---: | :--- | :--- |
|  | For 200 A < CT PRIMARY $\leq 2000 \mathrm{~A}$ <br> Format: Unsigned value <br> Example: 1234 stored as 1234 |  |
|  | For CT PRIMARY > 2000 A <br> Format: Unsigned value, scaled by 10 <br> Example: 12340 stored as 1234 |  |
| F81 | $\mathbf{1 6}$ bits | UNSIGNED VALUE <br> AUTORANGING BASED ON <br> WINDING 1 GROUND CT PRIMARY |


|  | For CT PRIMARY $\leq 2$ A <br> Format: Unsigned value, 3 decimal places <br> Example: 1.234 stored as 1234 |
| :--- | :--- |
|  | For 2 A < CT PRIMARY $\leq 20 \mathrm{~A}$ <br> Format: Unsigned value, 2 decimal places <br> Example: 12.34 stored as 1234 |
|  | For 2 A < CT PRIMARY $\leq 200 \mathrm{~A}$ <br> Format: Unsigned value, 1 decimal place <br> Example: 123.4 stored as 1234 |
|  | For 200 A < CT PRIMARY $\leq 2000 \mathrm{~A}$ <br> Format: Unsigned value <br> Example: 1234 stored as 1234 |
|  | For CT PRIMARY greater than 2000 A <br> Format: Unsigned value, scaled by 10 <br> Example: 12340 stored as 1234 |
| F82 | $\mathbf{1 6}$ bitsUNSIGNED VALUE <br> AUTORANGING BASED ON <br> WINDING 2 GROUND CT PRIMARY |


|  | For CT PRIMARY $\leq 2$ A <br> Format: Unsigned value, 3 decimal places <br> Example: 1.234 stored as 1234 ) |
| :--- | :--- |
|  | For 2 A < CT PRIMARY $\leq 20 \mathrm{~A}$ <br> Format: Unsigned value, 2 decimal places <br> Example: 12.34 stored as 1234 |
|  | For 200 A < CT PRIMARY $\leq 200 \mathrm{~A}$ <br> Format: Unsigned value, 1 decimal place <br> Example: 123.4 stored as 1234 |
|  | For 200 A < CT PRIMARY $\leq 2000 \mathrm{~A}$ <br> Format: Unsigned value <br> Example: 1234 stored as 1234 |
|  | For CT PRIMARY > 2000 A <br> Format: Unsigned value, scaled by 10 <br> Example: 12340 stored as 1234 |
| F83 | $\mathbf{1 6}$ bits <br> UNSIGNED VALUE <br> AUTORANGING BASED ON <br> WINDING 3 GROUND CT PRIMARY |

For CT PRIMARY $\leq 2 \mathrm{~A}$
Format: Unsigned value, 3 decimal places Example: 1.234 stored as 1234

Table 8-7: 745 DATA FORMATS (Sheet 30 of 36)


Table 8-7: 745 DATA FORMATS (Sheet 31 of 36)

| $\begin{aligned} & \text { FORMAT } \\ & \text { CODE } \end{aligned}$ | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
|  | 0000000000010000 | $16=$ Logic Input 16 |
|  | 0000000000010001 | $17=$ Virtual Input 1 |
|  | 0000000000010010 | 18 = Virtual Input 2 |
|  | 0000000000010011 | $19=$ Virtual Input 3 |
|  | 0000000000010100 | $20=$ Virtual Input 4 |
|  | 0000000000010101 | $21=$ Virtual Input 5 |
|  | 0000000000010110 | $22=$ Virtual Input 6 |
|  | 0000000000010111 | $23=$ Virtual Input 7 |
|  | 0000000000011000 | $24=$ Virtual Input 8 |
|  | 0000000000011001 | $25=$ Virtual Input 9 |
|  | 0000000000011010 | $26=$ Virtual Input 10 |
|  | 0000000000011011 | 27 = Virtual Input 11 |
|  | 0000000000011100 | $28=$ Virtual Input 12 |
|  | 0000000000011101 | $29=$ Virtual Input 13 |
|  | 0000000000011110 | $30=$ Virtual Input 14 |
|  | 0000000000011111 | $31=$ Virtual Input 15 |
|  | 0000000000100000 | $32=$ Virtual Input 16 |
|  | 0000000000100001 | $33=$ Output Relay 1 |
|  | 0000000000100010 | $34=$ Output Relay 2 |
|  | 0000000000100011 | $35=$ Output Relay 3 |
|  | 0000000000100100 | $36=$ Output Relay 4 |
|  | 0000000000100101 | 37 = Output Relay 5 |
|  | 0000000000100110 | $38=$ Output Relay 6 |
|  | 0000000000100111 | 39 = Output Relay 7 |
|  | 0000000000101000 | 40 = Output Relay 8 |
|  | 0000000000101001 | 41 = Self-Test Relay |
|  | 0000000000101010 | $42=$ Virtual Output 1 |
|  | 0000000000101011 | 43 = Virtual Output 2 |
|  | 0000000000101100 | $44=$ Virtual Output 3 |
|  | 0000000000101101 | $45=$ Virtual Output 4 |
|  | 0000000000101110 | $46=$ Virtual Output 5 |
| F88 | 16 bits | ASSERT SIGNAL |
|  | 0000000000000000 | $0=$ Disabled |
|  | 0000000000000001 | 1 = Logic Input 1 |
|  | 0000000000000010 | 2 = Logic Input 2 |
|  | 0000000000000011 | $3=$ Logic Input 3 |
|  | 0000000000000100 | 4 = Logic Input 4 |
|  | 0000000000000101 | $5=$ Logic Input 5 |
|  | 0000000000000110 | $6=$ Logic Input 6 |

Table 8-7: 745 DATA FORMATS (Sheet 32 of 36)

| $\begin{array}{\|c\|} \hline \text { FORMAT } \\ \text { CODE } \end{array}$ | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
|  | 0000000000000111 | 7 = Logic Input 7 |
|  | 0000000000001000 | $8=$ Logic Input 8 |
|  | 0000000000001001 | $9=$ Logic Input 9 |
|  | 0000000000001010 | $10=$ Logic Input 10 |
|  | 0000000000001011 | 11 = Logic Input 11 |
|  | 0000000000001100 | $12=$ Logic Input 12 |
|  | 0000000000001101 | 13 = Logic Input 13 |
|  | 0000000000001110 | 14 = Logic Input 14 |
|  | 0000000000001111 | 15 = Logic Input 15 |
|  | 0000000000010000 | 16 = Logic Input 16 |
| F89 | 16 bits | LOW VOLTAGE WINDING RATING |
|  | 0000000000000000 | $0=$ Above 5 kV |
|  | 0000000000000001 | $1=1 \mathrm{kV}$ to 5 kV |
|  | 0000000000000010 | 2 = Below 1 kV |
| F90 | 16 bits | UNSIGNED VALUE AUTORANGING VOLTAGE / RATED LOAD / MIN TAP VOLTAGE |
|  | For LOW VOLTAGE WINDING RATING $\geq 5 \mathrm{kV}$ Format: Unsigned value, 1 decimal place Example: 123.4 stored as 1234 |  |
|  | For $1 \mathrm{kV} \leq$ LOW VOLTAGE WINDING RATING $<5 \mathrm{kV}$ Format: Unsigned value, 2 decimal places Example: 12.34 stored as 1234 |  |
|  | For LOW VOLTAGE WINDING RATING < 1 kV Format: Unsigned value, 3 decimal places Example: 1.234 stored as 1234 |  |
| F91 | 16 bits | UNSIGNED VALUE, AUTORANGING VOLTAGE INCREMENT PER TAP |
|  | For LOW VOLTAGE WINDING RATING $\geq$ Above 5 kV Format: Unsigned value, 2 decimal places Example: 12.34 stored as 1234 |  |
|  | ```For \(1 \mathrm{kV} \leq\) LOW VOLTAGE WINDING RATING \(<5 \mathrm{kV}\) Format: Unsigned value, 3 decimal places Example: 1.234 stored as 1234``` |  |
|  | For LOW VOLTAGE WINDING RATING < 1 kV <br> Format: Unsigned value, 4 decimal places Example: 0.1234 stored as 1234 |  |
| F92 | 16 bits | HARMONIC NUMBER |
|  | 0000000000000010 | $0=2 \mathrm{nd}$ |
|  | 0000000000000011 | 1 = 3rd |
|  | 0000000000000100 | $2=4$ th |
|  | 0000000000000101 | $3=5$ th |
|  | 0000000000000110 | $4=6$ th |
|  | 0000000000000111 | $5=7$ th |

Table 8-7: 745 DATA FORMATS (Sheet 33 of 36)

| FORMAT CODE | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
|  | 0000000000001000 | $6=8$ th |
|  | 0000000000001001 | $7=9$ th |
|  | 0000000000001010 | $8=10$ th |
|  | 0000000000001011 | 9 = 11th |
|  | 0000000000001100 | $10=12$ th |
|  | 0000000000001101 | $11=13$ th |
|  | 0000000000001110 | $12=14$ th |
|  | 0000000000001111 | $13=15$ th |
|  | 0000000000010000 | $14=16$ th |
|  | 0000000000010001 | $15=17$ th |
|  | 0000000000010010 | $16=18$ th |
|  | 0000000000010011 | 17 = 19th |
|  | 0000000000010100 | $18=20$ th |
|  | 0000000000010101 | $19=21 \mathrm{st}$ |
| F93 | 16 bits | SIGNED VALUE <br> AUTORANGING BASED ON <br> WINDING 1 PHASE CT PRIMARY |
|  | For CT PRIMARY $\leq 2 \mathrm{~A}$ Format: Signed value, 3 decimal places Example: 1.234 stored as 1234 |  |
|  | For $2 \mathrm{~A}<\mathrm{CT}$ PRIMARY $\leq 20 \mathrm{~A}$ Format: Signed value, 2 decimal places Example: 12.34 stored as 1234 |  |
|  | For $20 \mathrm{~A}<\mathrm{CT}$ PRIMARY $\leq 200 \mathrm{~A}$ Format: Signed value, 1 decimal place Example: 123.4 stored as 1234 |  |
|  | For 200 A < CT PRIMARY $\leq 2000$ A Format: Signed value Example: 1234 stored as 1234 |  |
|  | For CT PRIMARY > 2000 A Format: Signed value, scaled by 10 Example: 12340 stored as 1234 |  |
| F94 | 16 bits | SIGNED VALUE <br> AUTORANGING BASED ON WINDING 2 PHASE CT PRIMARY |
|  | For CT PRIMARY $\leq 2$ A Format: Signed value, 3 decimal places Example: 1.234 stored as 1234 |  |
|  | For $2 \mathrm{~A}<\mathrm{CT}$ PRIMARY $\leq 20 \mathrm{~A}$ Format: Signed value, 2 decimal places Example: 12.34 stored as 1234 |  |
|  | For $20 \mathrm{~A}<\mathrm{CT}$ PRIMARY $\leq 200 \mathrm{~A}$ Format: Signed value, 1 decimal place Example: 123.4 stored as 1234 |  |

Table 8-7: 745 DATA FORMATS (Sheet 34 of 36)

| FORMAT CODE | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
|  | For $200 \mathrm{~A}<\mathrm{CT}$ PRIMARY $\leq 2000 \mathrm{~A}$ Format: Signed value Example: 1234 stored as 1234 |  |
|  | For CT PRIMARY > 2000 A Format: Signed value, scaled by 10 Example: 12340 stored as 1234 |  |
| F95 | 16 bits | SIGNED VALUE <br> AUTORANGING BASED ON WINDING 3 PHASE CT PRIMARY |
|  | For CT PRIMARY $\leq 2$ A Format: Signed value, 3 decimal places Example: 1.234 stored as 1234 |  |
|  | For $2 \mathrm{~A}<\mathrm{CT}$ PRIMARY $\leq 20 \mathrm{~A}$ Format: Signed value, 2 decimal places Example: 12.34 stored as 1234 |  |
|  | For $20 \mathrm{~A}<\mathrm{CT}$ PRIMARY $\leq 200 \mathrm{~A}$ Format: Signed value, 1 decimal place Example: 123.4 stored as 1234 |  |
|  | For $200 \mathrm{~A}<\mathrm{CT}$ PRIMARY $\leq 2000 \mathrm{~A}$ Format: Signed value Example: 1234 stored as 1234 |  |
|  | For CT PRIMARY > 2000 A Format: Signed value, scaled by 10 Example: 12340 stored as 1234 |  |
| F96 | 32 bits | UNSIGNED VALUE <br> AUTORANGING BASED ON <br> WINDING 1 PHASE CT PRIMARY |


|  | For CT PRIMARY $\leq 2$ A <br> Format: Signed value, 3 decimal places Example: 1.234 stored as 1234 |
| :---: | :---: |
|  | For $2 \mathrm{~A}<\mathrm{CT}$ PRIMARY $\leq 20 \mathrm{~A}$ Format: Signed value, 2 decimal places Example: 12.34 stored as 1234 |
|  | For $20 \mathrm{~A}<\mathrm{CT}$ PRIMARY $\leq 200 \mathrm{~A}$ <br> Format: Signed value, 1 decimal place Example: 123.4 stored as 1234 |
|  | For $200 \mathrm{~A}<\mathrm{CT}$ PRIMARY $\leq 2000 \mathrm{~A}$ <br> Format: Signed value Example: 1234 stored as 1234 |
|  | For CT PRIMARY > 2000 A <br> Format: Signed value, scaled by 10 Example: 12340 stored as 1234 |
| F97 | 32 bits UNSIGNED VALUE <br> AUTORANGING BASED ON <br> WINDING 2 PHASE CT PRIMARY |
|  | For CT PRIMARY $\leq 2$ A <br> Format: Signed value, 3 decimal places Example: 1.234 stored as 1234 |

Table 8-7: 745 DATA FORMATS (Sheet 35 of 36)

| FORMAT CODE | APPLICABLE BITS | DEFINITION |
| :---: | :---: | :---: |
|  | For $2 \mathrm{~A}<\mathrm{CT}$ PRIMARY $\leq 20 \mathrm{~A}$ Format: Signed value, 2 decimal places Example: 12.34 stored as 1234 |  |
|  | For $20 \mathrm{~A}<\mathrm{CT}$ PRIMARY $\leq 200 \mathrm{~A}$ Format: Signed value, 1 decimal place Example: 123.4 stored as 1234 |  |
|  | For 200 A < CT PRIMARY $\leq 2000$ A Format: Signed value Example: 1234 stored as 1234 |  |
|  | For CT PRIMARY > 2000 A Format: Signed value, scaled by 10 Example: 12340 stored as 1234 |  |
| F98 | 32 bits | UNSIGNED VALUE, AUTORANGING BASED ON WINDING 3 PHASE CT PRIMARY |
|  | For CT PRIMARY $\leq 2 \mathrm{~A}$ <br> Format: Signed value, 3 decimal places Example: 1.234 stored as 1234 |  |
|  | For $2 \mathrm{~A}<\mathrm{CT}$ PRIMARY $\leq 20 \mathrm{~A}$ Format: Signed value, 2 decimal places Example: 12.34 stored as 1234 |  |
|  | For $20 \mathrm{~A}<\mathrm{CT}$ PRIMARY $\leq 200 \mathrm{~A}$ Format: Signed value, 1 decimal place Example: 123.4 stored as 1234 |  |
|  | For 200 A < CT PRIMARY $\leq 2000$ A Format: Signed value Example: 1234 stored as 1234 |  |
|  | For CT PRIMARY > 2000 AFormat: Signed value, scaled by 10Example: 12340 stored as 1234 |  |
| F99 | 16 bits | Port used for DNP |
|  | 0000000000000000 | $0=$ None |
|  | 0000000000000001 | 1=Com 1 |
|  | 0000000000000010 | 2=Com 2 |
|  | 0000000000000011 | 3=Front |
| F100 | 16 bits | Cooling Type For Dry Transformer |
|  | 0000000000000000 | $0=$ Sealed Self Cooled |
|  | 0000000000000001 | 1 =Vented Self cooled |
|  | 0000000000000010 | 2=Forced-cooled |
| F101 | 16 bits | Unsigned value, Autoranging Load Loss at Rated Load |
|  Low Volt. Winding rating $\geq 5$ KV <br> Unsigned Value, 0 Decimal Places <br> Example: 1234 stored as 1234 |  |  |
|  | 1 KV $\leq$ Low Volt. Winding rating < 5 KV Unsigned Value, 1 Decimal Place Example: 123.4 stored as 1234 |  |

Table 8-7: 745 DATA FORMATS (Sheet 36 of 36)

| FORMAT <br> CODE | APPLICABLE BITS | DEFINITION |
| :---: | :--- | :--- |
|  | Low Volt. Winding rating < 1 KV <br> Unsigned Value, 2 Decimal Places <br> Example: 12.34 stored as 1234) |  |
| F102 | 16 bits | Data Link Confirmation Mode |
|  | 0000000000000000 | $0=$ Never |
|  | 0000000000000001 | $1=$ Sometimes |
|  | 0000000000000010 | 2=Always |



```
DNP 3.0
DEVICE PROFILE DOCUMENT (Continued)
```

| Executes Control Operations: |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| WRITE Binary Outputs | Never $\square$ Always $\square$ Sometimes $\square$ | Configurable |  |
| SELECT/OPERATE | $\square$ | Never |  |
| DIRECT OPERATE | $\square$ | Always $\square$ Sometimes $\square$ | Configurable |

(For an explanation of the above, refer to the discussion accompanying the point list for the Binary Output/ Control Relay Output Block objects)

| Queue Never <br> Clear Queue Never | Always $\square$ Sometimes $\square$ Configurable Always $\square$ Sometimes $\square$ Configurable |
| :---: | :---: |
| Reports Binary Input Change Events when no specific variations requested: <br> I Never Only time-tagged <br> Only non-time-tagged Configurable to send both, one or the othe | Reports time-tagged Binary Input Change Events when no specific variation requested: <br> Never <br> Binary Input Change With Time Binary Input Change With Relative Time Configurable |
| Sends Unsolicited Responses: <br> Never <br> Configurable Only certain objects Sometimes ENABLE/DISABLE UNSOLICITED <br> Function codes supported | Sends Static Data in Unsolicited Responses: <br> Never When Device Restarts When Status Flags Change |
| Default Counter Object/Variation: <br> X No Counters Reported Configurable Default Object Default Variation Point-by-point list attached | Counters Roll Over at: |
| Sends Multi-Fragment Responses: $\square$ Yes No |  |

Notes:

1. The data link layer confirmation mode, confirmation timeout, and number of retries are all configurable. Refer to the setpoints defined under S1 745 SETUP / COMMUNICATIONS / DNP for more details. Additional setpoints related to DNP are discussed in Section 5.3.5: DNP COMMUNICATIONS on page 5-27.

The table below gives a list of all objects recognized and returned by the relay. Additional information is provided on the following pages including a list of the default variations returned for each object and lists of defined point numbers for each object.

| IMPLEMENTATION TABLE |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OBJECT |  |  | REQUEST |  | RESPONSE |  |
| Obj | Var | Description | Func. Codes | Qual Codes (Hex) | Func. Codes | Qual Codes (Hex) |
| 1 | 0 | Binary Input - All Variations | 1 | 06 |  |  |
| 1 | 1 | Binary Input | 1 | 00, 01, 06 | 129 | 00, 01 |
| 1 | 2 | Binary Input With Status | 1 | 00, 01, 06 | 129 | 00, 01 |
| 2 | 0 | Binary Input Change - All Variations | 1 | 06, 07, 08 |  |  |
| 2 | 1 | Binary Input Change Without Time | 1 | 06, 07, 08 | 129 | 17, 28 |
| 2 | 2 | Binary Input Change With Time | 1 | 06, 07, 08 | 129 | 17, 28 |
| 10 | 0 | Binary Output - All Variations | 1 | 06 |  |  |
| 10 | 2 | Binary Output Status | 1 | 00, 01, 06 | 129 | 00, 01 |
| 12 | 1 | Control Relay Output Block | 3, 4, 5, 6 | 17, 28 | 129 | 17, 28 |
| 30 | 0 | Analog Input - All Variations | 1 | 06 |  |  |
| 30 | 1 | 32-Bit Analog Input With Flag | 1 | 00, 01, 06 | 129 | 00, 01 |
| 30 | 2 | 16-Bit Analog Input With Flag | 1 | 00, 01, 06 | 129 | 00, 01 |
| 30 | 3 | 32-Bit Analog Input Without Flag | 1 | 00, 01, 06 | 129 | 00, 01 |
| 30 | 4 | 16-Bit Analog Input Without Flag | 1 | 00, 01, 06 | 129 | 00, 01 |
| 32 | 0 | Analog Input Change - All Variations | 1 | 06, 07, 08 |  |  |
| 32 | 1 | 32-Bit Analog Input Change Without Time | 1 | 06, 07, 08 | 129 | 17, 28 |
| 32 | 2 | 16-Bit Analog Input Change Without Time | 1 | 06, 07, 08 | 129 | 17, 28 |
| 32 | 3 | 32-Bit Analog Input Change With Time | 1 | 06, 07, 08 | 129 | 17, 28 |
| 32 | 4 | 16-Bit Analog Input Change With Time | 1 | 06, 07, 08 | 129 | 17, 28 |
| 50 | 1 | Time and Date | 1, 2 | 07 (Note 1) | 129 | 07 |
| 60 | 1 | Class 0 Data (Note 2) | 1 | 06 | 129 |  |
| 60 | 2 | Class 1 Data (Note 3) | 1 | 06, 07, 08 | 129 |  |
| 60 | 3 | Class 2 Data (Note 3) | 1 | 06, 07, 08 | 129 |  |
| 60 | 4 | Class 3 Data (Note 3) | 1 | 06, 07, 08 | 129 |  |
| 80 | 1 | Internal Indications | 2 | 00 (Note 4) | 129 |  |
|  |  | No object | 13 |  |  |  |
|  |  | No object | 14 |  |  |  |
|  |  | No object | 23 |  |  |  |

Table Notes:

1. For this object, the quantity specified in the request must be exactly 1 as there is only one instance of this object defined in the relay.
2. All static input data known to the relay is returned in response to a request for Class 0 . This includes all objects of type 1 (Binary Input), type 10 (Binary Output) and type 30 (Analog Input).
3. The point tables for Binary Input and Analog Input objects contain a field which defines to which event class the corresponding static data has been assigned.
4. For this object, the qualifier code must specify an index of 7 only.

The following table specifies the default variation for all objects returned by the relay. These are the variations that will be returned for the object in a response when no specific variation is specified in a request.

| DEFAULT VARIATIONS |  |  |
| :---: | :--- | :---: |
| Object | Description | Default Variation |
| 1 | Binary Input - Single Bit | 1 |
| 2 | Binary Input Change With Time | 2 |
| 10 | Binary Output Status | 2 |
| 30 | 16-Bit Analog Input Without Flag | 4 |
| 32 | 16-Bit Analog Input Change Without Time | 2 |


\section*{| POINT LIST FOR: | BINARY INPUT (OBJECT 01) |
| :--- | :--- |
|  | BINARY INPUT CHANGE (OBJECT 02) |}


| Index | Description | Event Class <br> Assigned To | Notes |
| :---: | :---: | :---: | :---: |
| 0 | Logic Input 1 Operated | Class 1 | Note 1 |
| 1 | Logic Input 2 Operated | Class 1 | Note 1 |
| 2 | Logic Input 3 Operated | Class 1 | Note 1 |
| 3 | Logic Input 4 Operated | Class 1 | Note 1 |
| 4 | Logic Input 5 Operated | Class 1 | Note 1 |
| 5 | Logic Input 6 Operated | Class 1 | Note 1 |
| 6 | Logic Input 7 Operated | Class 1 | Note 1 |
| 7 | Logic Input 8 Operated | Class 1 | Note 1 |
| 8 | Logic Input 9 Operated | Class 1 | Note 1 |
| 9 | Logic Input 10 Operated | Class 1 | Note 1 |
| 10 | Logic Input 11 Operated | Class 1 | Note 1 |
| 11 | Logic Input 12 Operated | Class 1 | Note 1 |
| 12 | Logic Input 13 Operated | Class 1 | Note 1 |
| 13 | Logic Input 14 Operated | Class 1 | Note 1 |
| 14 | Logic Input 15 Operated | Class 1 | Note 1 |
| 15 | Logic Input 16 Operated | Class 1 | Note 1 |
| 16 | Output Relay 1 Energized | Class 1 | Note 1 |
| 17 | Output Relay 2 Energized | Class 1 | Note 1 |
| 18 | Output Relay 3 Energized | Class 1 | Note 1 |
| 19 | Output Relay 4 Energized | Class 1 | Note 1 |
| 20 | Output Relay 5 Energized | Class 1 | Note 1 |
| 21 | Output Relay 6 Energized | Class 1 | Note 1 |
| 22 | Output Relay 7 Energized | Class 1 | Note 1 |
| 23 | Output Relay 8 Energized | Class 1 | Note 1 |
| 24 | Self-Test Relay Energized | Class 1 | Note 1 |
| 25 | Setpoint Group 1 Active | Class 1 | Note 1 |
| 26 | Setpoint Group 2 Active | Class 1 | Note 1 |
| 27 | Setpoint Group 3 Active | Class 1 | Note 1 |
| 28 | Setpoint Group 4 Active | Class 1 | Note 1 |

## Notes:

1. Any detected change in the state of any point will cause the generation of an event object.

| POINT LIST FOR:BINARY OUTPUT (OBJECT 10) <br> CONTROL RELAY OUTPUT BLOCK (OBJECT 12) |  |
| :--- | :--- |
| Index | Description |
| 0 | Reset |
| 1 | Virtual Input 1 |
| 2 | Virtual Input 2 |
| 3 | Virtual Input 3 |
| 4 | Virtual Input 4 |
| 5 | Virtual Input 5 |
| 6 | Virtual Input 6 |
| 7 | Virtual Input 7 |
| 8 | Virtual Input 8 |
| 9 | Virtual Input 9 |
| 10 | Virtual Input 10 |
| 11 | Virtual Input 11 |
| 12 | Virtual Input 12 |
| 13 | Virtual Input 13 |
| 14 | Virtual Input 14 |
| 15 | Virtual Input 15 |
| 16 | Virtual Input 16 |

The following restrictions should be observed when using object 12 to control the points listed in the above table.

1. The Count field is checked first. If it is zero, the command will be accepted but no action will be taken. If this field is non-zero, the command will be executed exactly once regardless of its value.
2. The Control Code field of object 12 is then inspected:

- The Queue and Clear sub-fields are ignored.
- For point 0 , the valid Control Code values are "Pulse On" (1 hex), "Latch On" ( 3 hex), or "Close - Pulse On" (41 hex). Any of these may be used to initiate the function (Reset) associated with the point
- Virtual inputs may be set (i.e. asserted) via a Control Code value of "Latch On" (3 hex), "Close - Pulse On" (41 hex), or "Close - Latch On" (43 hex), A Control Code value of "Latch Off" (4 hex), "Trip Pulse - On" (81 hex), or "Trip - Latch On" (83 hex) may be used to clear a Virtual Input.
- Any value in the Control Code field not specified above is invalid and will be rejected.

3. The On Time and Off Time fields are ignored. Since all controls take effect immediately upon receipt, timing is irrelevant.
4. The Status field in the response will reflect the success or failure of the control attempt thus:

- A Status of "Request Accepted" ( 0 ) will be returned if the command was accepted.
- A Status of "Request not Accepted due to Formatting Errors" (3) will be returned if the Control Code field was incorrectly formatted.
- If select/operate was used, a status of "Arm Timeout" (1) or "No Select" (2) is returned if the associated failure condition is detected.
An operate of the Reset point may fail to clear active targets (although the response to the command will always indicate successful operation) due to other inputs or conditions (e.g. blocks) existing at the time. To verify the success or failure of an operate of this point, it is necessary to examine the associated Binary Input(s) after the control attempt is performed.
When using object 10 to read the status of a Binary Output, a read of point 0 will always return zero. For other points, the current state of the corresponding Virtual Input will be returned.

In the following table, the entry in the "Format" column indicates that the format of the associated data point can be determined by looking up the entry in the Memory Map Data Formats table. For example, an "F1" format is described in that table as a (16-bit) unsigned value without any decimal places. Therefore, the value read should be interpreted in this manner.

| POINT LIST FOR: |  | ANALOG INPUT (OBJECT 30) ANALOG INPUT CHANGE (OBJECT 32) |  | Event Class Assigned To | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (Note 5) In Point Ma | dex when ping Is: | Format | Description |  |  |
| Disabled | Enabled |  |  |  |  |
| n/a | 0 | - | User Map Value 1 |  |  |
| n/a | 1 | - | User Map Value 2 |  |  |
| . | . | - | . |  |  |
| . | . | - | . |  |  |
| . | . | - | . |  |  |
| n/a | 118 | - | User Map Value 119 |  |  |
| n/a | 119 | - | User Map Value 120 |  |  |
| 0 | 120 | F1 | Winding 1 Phase CT Primary | Class 1 | Notes 2,6 |
| 1 | 121 | F1 | Winding 2 Phase CT Primary | Class 1 | Notes 2,7 |
| 2 | 122 | F1 | Winding 3 Phase CT Primary | Class 1 | Notes 2,5,8 |
| 3 | 123 | F1 | Winding 1 Ground CT Primary | Class 1 | Notes 2,9 |
| 4 | 124 | F1 | Winding 2 Ground CT Primary | Class 1 | Notes 2,10 |
| 5 | 125 | F1 | Winding 3 Ground CT Primary | Class 1 | Notes 2,5,11 |
| 6 | 126 | F78 | Winding 1 Phase A Current Magnitude | Class 1 | Note 6 |
| 7 | 127 | F78 | Winding 1 Phase B Current Magnitude | Class 1 | Note 6 |
| 8 | 128 | F78 | Winding 1 Phase C Current Magnitude | Class 1 | Note 6 |
| 9 | 129 | F78 | Winding 1 Neutral Current Magnitude | Class 1 | Note 6 |
| 10 | 130 | F81 | Winding 1 Ground Current Magnitude | Class 1 | Notes 5,9 |
| 11 | 131 | F1 | Winding 1 Loading | Class 1 |  |
| 12 | 132 | F78 | Winding 1 Average Phase Current Magnitude | Class 1 | Note 6 |
| 13 | 133 | F79 | Winding 2 Phase A Current Magnitude | Class 1 | Note 7 |
| 14 | 134 | F79 | Winding 2 Phase B Current Magnitude | Class 1 | Note 7 |
| 15 | 135 | F79 | Winding 2 Phase C Current Magnitude | Class 1 | Note 7 |
| 16 | 136 | F79 | Winding 2 Neutral Current Magnitude | Class 1 | Note 7 |
| 17 | 137 | F82 | Winding 2 Ground Current Magnitude | Class 1 | Note 5,10 |
| 18 | 138 | F1 | Winding 2 Loading | Class 1 |  |
| 19 | 139 | F79 | Winding 2 Average Phase Current Magnitude | Class 1 | Note 7 |
| 20 | 140 | F80 | Winding 3 Phase A Current Magnitude | Class 1 | Notes 5,8 |
| 21 | 141 | F80 | Winding 3 Phase B Current Magnitude | Class 1 | Notes 5,8 |
| 22 | 142 | F80 | Winding 3 Phase C Current Magnitude | Class 1 | Notes 5,8 |
| 23 | 143 | F80 | Winding 3 Neutral Current Magnitude | Class 1 | Notes 5,8 |
| 24 | 144 | F83 | Winding 3 Ground Current Magnitude | Class 1 | Notes 5,11 |
| 25 | 145 | F1 | Winding 3 Loading | Class 1 | Note 5 |
| 26 | 146 | F80 | Winding 3 Average Phase Current Magnitude | Class 1 | Notes 5,8 |


| POINT LIST FOR: |  | ANALOG INPUT (OBJECT 30) ANALOG INPUT CHANGE (OBJECT 32) (Continued) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (Note 5) Index when Point Mapping Is: |  | Format | Description | Event Class Assigned To | Notes |
| Disabled | Enabled |  |  |  |  |
| 27 | 147 | F78 | Winding 1 Positive Sequence Current Magnitude | Class 1 | Note 6 |
| 28 | 148 | F79 | Winding 2 Positive Sequence Current Magnitude | Class 1 | Note 7 |
| 29 | 149 | F80 | Winding 3 Positive Sequence Current Magnitude | Class 1 | Notes 5,8 |
| 30 | 150 | F78 | Winding 1 Negative Sequence Current Magnitude | Class 1 | Note 6 |
| 31 | 151 | F79 | Winding 2 Negative Sequence Current Magnitude | Class 1 | Note 7 |
| 32 | 152 | F80 | Winding 3 Negative Sequence Current Magnitude | Class 1 | Notes 5,8 |
| 33 | 153 | F78 | Winding 1 Zero Sequence Current Magnitude | Class 1 | Note 6 |
| 34 | 154 | F79 | Winding 2 Zero Sequence Current Magnitude | Class 1 | Note 7 |
| 35 | 155 | F80 | Winding 3 Zero Sequence Current Magnitude | Class 1 | Notes 5,8 |
| 36 | 156 | F3 | Phase A Differential Current Magnitude | Class 1 |  |
| 37 | 157 | F3 | Phase B Differential Current Magnitude | Class 1 |  |
| 38 | 158 | F3 | Phase C Differential Current Magnitude | Class 1 |  |
| 39 | 159 | F53 | Winding 1 Ground Differential Current | Class 1 | Note 5 |
| 40 | 160 | F53 | Winding 2 Ground Differential Current | Class 1 | Note 5 |
| 41 | 161 | F53 | Winding 3 Ground Differential Current | Class 1 | Note 5 |
| 42 | 162 | F2 | Winding 1 Phase A Total Harmonic Distortion | Class 1 |  |
| 43 | 163 | F2 | Winding 1 Phase B Total Harmonic Distortion | Class 1 |  |
| 44 | 164 | F2 | Winding 1 Phase C Total Harmonic Distortion | Class 1 |  |
| 45 | 165 | F2 | Winding 2 Phase A Total Harmonic Distortion | Class 1 |  |
| 46 | 166 | F2 | Winding 2 Phase B Total Harmonic Distortion | Class 1 |  |
| 47 | 167 | F2 | Winding 2 Phase C Total Harmonic Distortion | Class 1 |  |
| 48 | 168 | F2 | Winding 3 Phase A Total Harmonic Distortion | Class 1 | Note 5 |
| 49 | 169 | F2 | Winding 3 Phase B Total Harmonic Distortion | Class 1 | Note 5 |
| 50 | 170 | F2 | Winding 3 Phase C Total Harmonic Distortion | Class 1 | Note 5 |
| 51 | 171 | F3 | System Frequency | Class 1 | Note 3 |
| 52 | 172 | F1 | Tap Changer Position | Class 1 |  |
| 53 | 173 | F3 | System Line-To-Line Voltage | Class 1 | Note 5 |
| 54 | 174 | F3 | Volts-Per-Hertz | Class 1 | Note 5 |
| 55 | 175 | F3 | Line-To-Neutral Voltage Magnitude | Class 1 | Note 5 |
| 56 | 176 | F4 | Ambient Temperature | Class 1 | Note 5 |
| 57 | 177 | F4 | Hottest-Spot Winding Temperature | Class 1 | Note 5 |
| 58 | 178 | F2 | Insulation Aging Factor | Class 1 | Note 5 |
| 59 | 179 | F7 | Total Accumulated Loss Of Life (Note 12) | Class 1 | Note 5 |
| 60 | 180 | F1 | Analog Input | Class 1 | Note 5 |
| 61 | 181 | F93 | Winding 1 Real Power | Class 1 | Notes 5,6 |
| 62 | 182 | F93 | Winding 1 Reactive Power | Class 1 | Notes 5,6 |
| 63 | 183 | F93 | Winding 1 Apparent Power | Class 1 | Notes 5,6 |
| 64 | 184 | F3 | Winding 1 Power Factor | Class 1 | Note 5 |


| POINT LIST FOR: |  | ANALOG INPUT (OBJECT 30) ANALOG INPUT CHANGE (OBJECT 32) (Continued) |  |  | Event Class <br> Assigned To | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (Note 5) In Point Ma | dex when ping Is: | Format | Description |  |  |  |
| Disabled | Enabled |  |  |  |  |  |
| 65 | 185 | F94 | Winding 2 Real Power |  | Class 1 | Notes 5,7 |
| 66 | 186 | F94 | Winding 2 Reactive Power |  | Class 1 | Notes 5,7 |
| 67 | 187 | F94 | Winding 2 Apparent Power |  | Class 1 | Notes 5,7 |
| 68 | 188 | F3 | Winding 2 Power Factor |  | Class 1 | Note 5 |
| 69 | 189 | F95 | Winding 3 Real Power |  | Class 1 | Note 5,8 |
| 70 | 190 | F95 | Winding 3 Reactive Power |  | Class 1 | Note 5,8 |
| 71 | 191 | F95 | Winding 3 Apparent Power |  | Class 1 | Note 5,8 |
| 72 | 192 | F3 | Winding 3 Power Factor |  | Class 1 | Note 5 |

Table Notes:

1. Unless otherwise specified, an event object will be generated for a point if the current value of the point changes by an amount greater than or equal to two percent of its previous value.
2. An event object is created for these points if the current value of a point is in any way changed from its previous value.
3. An event object is created for the System Frequency point if the system frequency changes by 0.04 Hz or more from its previous value.
4. The data returned by a read of the User Map Value points is determined by the values programmed into the corresponding User Map Address registers (which are only accessible via Modbus). Refer to the section titled "Accessing Data Via The User Map" in this chapter for more information. Changes in User Map Value points never generate event objects. Because of the programmable nature of the user map, it cannot be determined at read time if the source value is signed or unsigned. For this reason, the data returned in a 32 -bit variation is never sign-extended even if the source value is negative.
5. Depending upon the configuration and/or programming of the SR745, this value may not be available. Should this be the case, a value of zero will be returned.
6. Points with format F78 and F93 are scaled based upon the value of the Winding 1 Phase CT Primary setpoint (point 0 ). It is necessary to read point 0 and refer to the descriptions of these formats (in the "SR745 Data Formats" table) in order to determine the scale factor.
7. As for note 6 except the affected formats are F 79 \& F 94 and the scaling is determined by the value read from point 1 .
8. As for note 6 except the affected formats are F 80 \& F 95 and the scaling is determined by the value read from point 2.
9. As for note 6 except the affected format is F81 and the scaling is determined by the value read from point 3.
10. As for note 6 except the affected format is F82 and the scaling is determined by the value read from point 4.
11. As for note 6 except the affected format is F 83 and the scaling is determined by the value read from point 5 .
12. The "Total Accumulated Loss Of Life" is a 32-bit, unsigned, positive value. As a consequence, a master performing 16bit reads cannot be guaranteed to be able to read this point under all conditions. When this point's value exceeds 65535 (0xffff hex), a 16-bit read will return 0xffff (hex) and the over-range bit in the flag returned with the data will be set. Because of this possibility of over-range, the default variation for this object is 2 (i.e., 16 -bit analog input with flag).
13. There are two defined maps for Analog Output points. The map used is specified by the setting of the "Point Mapping" setpoint at Modbus address 10D1 (hex). This setpoint may be set to a value of "Disabled" or "Enabled". When "Disabled", only the preassigned Analog Output points are available at indices 0 through 72.
When "Enabled", the User Map Values are assigned to points 0 through 119 with the preassigned Analog Outputs following beginning with point index 120. The value read from points 0 through 119 will depend upon the value programmed into the corresponding User Map Address setpoint (note that programming of these setpoints can only be accomplished via Modbus). Refer to the section in this chapter titled Accessing Data Via The User Map for more information.

Please note that changes in User Map Values never generate event objects.

The 745PC program, provided with every 745 relay, allows easy access to all relay setpoints and actual values via a personal computer running Windows ${ }^{\circledR} 3.1 / 95$ or higher and one RS232 port (COM1 or COM2). 745PC allows the user to:

- Program/modify setpoints
- Load/save setpoint files from/to disk
- Read actual values
- Monitor status
- Plot/print/view trending graphs of selected actual values
- Perform waveform capture (oscillography)
- Download and "playback" waveforms (Simulation Mode)
- View the Event Recorder
- View the harmonic content of any phase current in real time
- Get help on any topic


Figure 9-1: 745PC PROGRAM STARTUP WINDOW
The 745PC program can be used "stand-alone", without a 745 relay, to create or edit 745 setpoint files.

The configuration listed is for both a minimum configured and an optimal configured system. Running on a minimum configuration causes the performance of the PC program to slow down.
Processor: minimum 486, Pentium or higher recommended
Memory: minimum $4 \mathrm{MB}, 16 \mathrm{MB}$ recommended, minimum 540K of conventional memory
Hard Drive: $\quad 20 \mathrm{MB}$ free space required before installation of PC program.

## ADDITIONAL WINDOWS 3.1/3.11 CONSIDERATIONS

- Installation of SHARE.EXE required.
- Close other applications (spreadsheet or word processor) before running the PC program to eliminate any problems because of low memory.
9.1.3 MENU SUMMARY

| File Setpoint | Actual Commi |  |
| :---: | :---: | :---: |
| New | $\mathrm{Crrl+N}$ | $\longleftarrow$ Create a new setpoint file with factory defaults |
| Qpen... | Crri+ 0 | $\longleftarrow$ Open an existing file |
| Save As... | Crrl + S | $4 \quad$ Save setpoints to a file |
| Properties |  | $\longleftarrow$ Configure 745PC when in FILE EDIT mode |
| Send Info to R | elay | $\longleftarrow$ Send a setpoint file to the relay |
| Print Setup |  | $\longleftarrow$ Print a relay or file setpoints |
| Print Preview |  |  |
| Print... | Crrl +P |  |
| Exit |  | $\longleftarrow$ Exit the 745PC program |


| Setpoint Actual |
| :--- |
| 745 Setug |
| System Setup |
| Logic Inputs |
| Elements |
| Outputs |
| Iesting |
| User Map |



| Actual Communication |
| :--- |
| Status |
| Metering |
| Event Recorder |
| Eroduct Info |
| Irending |
| Waveform Capture |



Figure 9-2: 745PC TOP LEVEL MENU SUMMARY


Figure 9-3: 745PC TOOLBAR SUMMARY

### 9.1.5 HARDWARE CONFIGURATION

The 745PC program can communicate to the 745 via the front panel RS232 port or the rear terminal RS485 ports. Figure 9.2 shows the connections required for the RS232 front panel interface which consists of the following:

- A standard "straight through" serial cable with the SR745 end as a DB-9 male and the computer end as DB-9 or DB-25 female for COM1 or COM2 respectively.
Figure 9.3 shows the required connections and equipment for the RS485 rear terminal interface. The interface consists of the following:
- GE Power Management F485 RS232-to-RS485 converter.
- A standard "straight through" serial cable connected from your computer to the GE Power Management F485 Converter box. The converter box end should be DB-9 male and the computer end DB-9 or DB-25 female for COM1 or COM2 respectively.

Shielded twisted pair (20, 22 or 24 AWG) cable from converter box to the SR745 rear terminals. The converter box (,+- , GND) terminals end up connected to (B1, B2, B3) respectively. The line should also be terminated in an RC network (i.e. 120ohm, 1nF) as described in Section 3.2.16: RS485 / RS422 COMMUNICATION PORTS on page 3-12.


Figure 9-4: RS232 COMMUNICATIONS SETUP


Figure 9-5: RS485 COMMUNICATIONS SETUP

Installation of the 745PC software is accomplished as follows:

1. Ensure that Windows is running on the local PC.
2. Insert the GE Power Management Products CD into your CD-ROM drive or point your web browser to the GE Power Management website at www.ge.com/indsys/pm. Under Windows 95/98, the Product CD will launch the welcome screen automatically. Since the Products CD is essentially a "snapshot" of the GE Power Management website, the procedures for installation from the CD and the web are identical.


## GE Industrial Systems



Last Updated: March 13, 2000
Click here for viewers download page.
Figure 9-6: GE POWER MANAGEMENT WELCOME SCREEN
3. Click the Index by Product Name item from the main page and select 745 Transformer Management Relay from the product list to open the 745 product page.
4. Click the Software item from the Product Resources list to bring you to the 745 software page.
5. The latest version of the 745PC program will be shown. Click on the 745PC Program item to download the installation program to your local PC. Run the installation program and follow the prompts to install to the desired directory. When complete, a new GE Power Management group window will appear containing the 745PC icon.

Startup of the 745PC software is accomplished as follows:

1. Double-click on the $\mathbf{7 4 5}$ program icon inside the GE Power Management group or select from the Windows Start menu to launch 745PC. The 745 to PC communications status is displayed on the bottom right corner of the screen:
2. To configure communications, select the Communication > Computer menu item. The COMMUNICATION / COMPUTER dialog box will appear containing the various communications settings for the local PC. These settings should be modified as shown below:


Set the Startup Mode based on user preference. In "Communicate with Relay" mode, 745PC will attempt to establish communications immediately upon startup. While in the "File mode /w default settings", 745 PC waits for the user to click the ON button before attempting communications - this mode is preferred when the 745PC is being used without an attached 745 relay.

Set Control Type to match the type of RS232/RS485 converter. If connected through the 745 front panel RS232 port, select "No Control Type". If connected through a GE Power Management F485 converter unit, select "MULTILIN RS232/RS485 CONVERTOR". If connected through a modem, select "Modem". If a thirdparty RS232/RS485 converter is being used, select the appropriate control type from the available list based on the manufacturer's specifications.

Set Parity to match the 745 PARITY setpoint (see S1 745 SETUP). If connected through the 745 front panel RS232 port, set to "None".

Set Baud Rate to match the 745 BAUD RATE setpoint (see S1 745 SETUP).
Set Communcation Port \# to the COM port on your local PC where the 745 relay is connected (e.g. COM1 or COM2). On most computers, COM1 is used by the mouse device and as such COM2 is usually available for communications.

Figure 9-7: COMMUNICATION/COMPUTER DIALOG BOX
3. To begin communications, click on the ON button in the in the Communication section of the dialog box. The Status section indicates the communication status. If communications is established, the message "Program is now talking to a Multilin device" is displayed. As well, the status at the bottom right hand corner of the screen indicates "Communicating".

Saving setpoints to a file on the local PC is accomplished as follows:

1. If the local PC is not connected to a 745 relay, select the File > Properties menu item. The dialog box shown below appears, allowing for the configuration of the 745PC program for the options ordered for a particular 745 relay. 745PC needs to know the correct options when creating a setpoint file so that setpoints that are not available for that particular relay are not downloaded.


Figure 9-8: FILE/PROPERTIES DIALOG BOX
2. Select the installed options from the drop down menus. After configuration, select the File >Save As menu item. This launches the following dialog box. Enter the file name under which the file will be saved in the File Name box or click on any of the file names displayed. All 745 setpoint files should have the extension .745 (for example, $\mathbf{x f r m r 0 1 . 7 4 5 ) . ~ C l i c k ~ O K ~ t o ~ p r o c e e d . ~}$


Figure 9-9: SAVING SETPOINTS
3. The program reads all the relay setpoint values and stores them to the selected file.

Prior to downloading new firmware to the 745, it is necessary to save the 745 setpoints to a file (see previous section). Loading new firmware into the 745's flash memory is accomplished as follows:

1. Select the Communications > Update Firmware menu item.
2. The following warning message will appear. Click Yes to proceed or No to abort.

3. Next, 745PC requests the name of the file containing the new firmware. Locate the appropriate file(s) by changing drives and/or directories until a list of file names appears in the file list box. File names for released 745 firmware have the following format:


Figure 9-10: 745 FIRMWARE FILE FORMAT
4. The 745PC program automatically lists file names beginning with $\mathbf{3 3}$. Click on the appropriate file name such that it appears in the File Name box. Click OK to continue.
5. 745PC will prompt with the following dialog box. This will be the last chance to cancel the firmware upgrade before the flash memory is erased. Click Yes to continue.

6. Upon completion the program place the relay back into "normal mode".
7. Upon successful updating of the 745 firmware, the next step is reloading the saved setpoints back to the 745. See the following section for details.

Loading the 745 with setpoints from a file is accomplished as follows：
1．Select the File＞Open menu item．
2． 745 PC launches the Open dialog box listing all filenames in the 745 default directory with the extension 745．Select the setpoint file to download and click OK to continue．


Figure 9－11：OPEN SETPOINTS FILE DIALOG BOX
3．Select the File＞Send Info to Relay menu item．745PC will prompt to confirm or cancel the setpoint file load．Click Yes to download the setpoints to the 745 relay or No to cancel．

9．3．4 ENTERING SETPOINTS
The following example illustrates the entering of setpoints from the 745PC program．
1．Select the Setpoint＞System Setup menu item
2．Click the Transformer button in the System Setup window．
3．The following dialog box prompts for the transformer setpoint information．Note that the number of selec－ tions shown is dependent on the 745 installed options．

| Setpoints／System Setup／Transformer 区 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| TRANSFORMER |  |  | OK |  |
| Nominal Frequency | 60 Hz | 这 | Cancel |  |
| Frequency Tracking | Enabled | $\checkmark$ |  |  |
| Phase Sequence | ABC | $\checkmark$ | Store |  |
| Transformer Type | Y／d30 ${ }^{\circ}$ | $\checkmark$ | Help |  |
| Load Loss at Rated Load | 1250 kW | 䢒 |  |  |
| Low Voltage Winding Rating | Above 5 kV | $\checkmark$ |  |  |
| Rated Winding Temperature Rise | $65^{\circ} \mathrm{C}$（oil） | $\checkmark$ |  |  |
| No－Load Loss | 125.0 kW | 这 |  |  |
| Type of Cooling：Oil | OA | $\checkmark$ |  |  |
| Top Oil Rise Over Ambient | $10^{\circ} \mathrm{C}$ | 会 |  |  |
| Transformer Thermal Capacity | $10.00 \mathrm{kWh} /{ }^{\circ} \mathrm{C}$ | $\stackrel{\text { A }}{ }$ |  |  |
| Winding Time Constant：Oil | 2.00 minutes | 这 |  |  |
| Initial Accumulated Loss of Life | $0 \times 10 \mathrm{~h}$ | 违 |  |  |

Figure 9－12：TRANSFORMER SETPOINTS DIALOG BOX
4. For setpoints requiring numerical values (e.g. Load Loss at Rated Load), click the mouse pointer anywhere inside the setpoint box. This displays a numerical keypad showing the OLD value, RANGE and INCREMENT of the setpoint value being modified.


Figure 9-13: NUMERICAL SETPOINT ENTRY
5. For setpoints requiring non-numerical values (e.g. Transformer Type), clicking anywhere inside the setpoint box will causes selection menu to be displayed.


Checked boxes indicate that the user has visited the setpoint during this session.


Checked boxes indicate that the user
has visited the setpoint during this session.

### 9.3.5 VIEWING ACTUAL VALUES

The following example illustrates how any of the measured or monitored values can be displayed. In the following example the winding currents are examined:

1. Select the Actual > Metering > Currents menu item.
2. 745PC displays the following dialog box detailing the winding currents. To view any of the currents available click on the desired tab shown at the top of the box. For example, to view the positive, negative and zero sequence currents in any of the windings click on the Sequence tab.


Figure 9-14: 745PC ACTUAL VALUES WINDOW

The procedures contained in this section can be used to verify the correct operation of the 745 Transformer Management Relay ${ }^{\circledR}$ prior to placing it into service for the first time. These procedures may also be used to verify the relay on a periodic basis. Although not a total functional verification, the tests in this chapter verify the major operating points of all features of the relays. Before commissioning the relay, users should read Chapter 3: INSTALLATION, which provides important information about wiring, mounting, and safety concerns. The user should also become familiar with the relay as described in Chapter 2: GETTING STARTED and Chapter 5: SETPOINTS.

Test personnel must be familiar with general relay testing practices and safety precautions to avoid personal injuries or equipment damage.

This chapter is divided into several sections, as follows:

- GENERAL: outlines safety precautions, conventions used in the test procedures.
- TEST EQUIPMENT: the test equipment required.
- GENERAL PRELIMINARY WORK
- LOGIC INPUTS AND OUTPUT RELAYS: tests all digital and analog inputs, the A/D data acquisition system, and relay and transistor outputs.
- DISPLAY, METERING, COMMUNICATIONS, \& ANALOG OUTPUTS: tests all values derived from the AC current and voltage inputs.
- PROTECTION SCHEMES: tests all features that can cause a trip, including differential, overcurrent, over and underfrequency elements.
- AUXILIARY PROTECTION/MONITORING FUNCTIONS
- PLACING RELAY INTO SERVICE

The 745 is realized with digital hardware and software algorithms, using extensive internal monitoring. Consequently, it is expected that, if the input circuits, CTs, VTs, power supply, auxiliary signals, etc., are functioning correctly, all the protection and monitoring features inside the relay will also perform correctly, as per applied settings. It is therefore only necessary to perform a calibration of the input circuits and cursory verification of the protection and monitoring features to ensure that a fully-functional relay is placed into service.

Though tests are presented in this section to verify the correct operation of all features contained in the 745, only those features which are placed into service need be tested. Skip all sections which cover features not included or not enabled when the relay is in service, except for the proviso of the next paragraph.
Some features such as the Local/Remote Reset of targets, display messages and indications are common to all the protection features and hence are tested only once. Testing of these features has been included with the Harmonic Restraint Percent Differential, which will almost always be enabled. If, for some reasons, this element is not enabled when the relay is in service, you will need to test the Local/Remote Reset when testing another protection element.

HIGH VOLTAGES ARE PRESENT ON THE REAR TERMINALS OF THE RELAY, CAPABLE OF CAUSING DEATH OR SERIOUS INJURY. USE CAUTION AND FOLLOW ALL SAFETY RULES WHEN HANDLING, TESTING, OR ADJUSTING THE EQUIPMENT.

DO NOT OPEN THE SECONDARY CIRCUIT OF A LIVE CT, SINCE THE HIGH VOLTAGE PRODUCED IS CAPABLE OF CAUSING DEATH OR SERIOUS INJURY, OR DAMAGE TO THE CT INSULATION.

## THE RELAY USES COMPONENTS WHICH ARE SENSITIVE TO ELECTROSTATIC DISCHARGES. WHEN HANDLING THE UNIT, CARE SHOULD BE TAKEN TO AVOID ELECTRICAL DISCHARGES TO THE TERMINALS AT THE REAR OF THE RELAY.

ENSURE THAT THE CONTROL POWER APPLIED TO THE RELAY, AND THE AC CURRENT AND VOLTAGE INPUTS, MATCH THE RATINGS SPECIFIED ON THE RELAY NAMEPLATE. DO NOT APPLY CURRENT TO THE CT INPUTS IN EXCESS OF THE SPECIFIED RATINGS.

ENSURE THAT THE LOGIC INPUT WET CONTACTS ARE CONNECTED TO VOLTAGES BELOW THE MAXIMUM VOLTAGE SPECIFICATION OF 300 V DC.
10.1.4 CONVENTIONS

The following conventions are used for the remainder of this chapter:

- All setpoints and actual values are mentioned with their path as a means of specifying where to find the particular message. For instance, the setpoint WINDING 1 PHASE CT PRIMARY, which in the message structure is located under setpoints page S 2 , would be written as:

SETPOINTS/S2 SYSTEM SETUP/WINDING 1/WINDING 1 PHASE CT PRIMARY

- Normal phase rotation of a three-phase power system is ABC.
- The phase angle between a voltage signal and a current signal is positive when the voltage leads the current.
- Phase A to neutral voltage is indicated by $V_{a n}$ (arrowhead on the "a").
- Phase A to B voltage is indicated by $V_{a b}$ (arrowhead on the "a").
- The neutral current signal is the $3 I_{0}$ signal derived from the three phase currents for any given winding.
- The ground current is the current signal measured by means of a CT in the power transformer connection to ground.

It is possible to completely verify the 745 relay operation using the built-in test and simulation features described earlier in this manual. However, some customers prefer to perform simple signal-injection tests to verify the basic operation of each element placed into service. The procedures described in this chapter have been designed for this purpose. To use the built-in facilities, refer to the appropriate sections in this manual.
The conventional, decades-old approach to testing relays utilized adjustable voltage and current sources, variacs, phase shifters, multimeters, timing device, and the like. In the last few years several instrumentation companies have offered sophisticated instrumentation to test protective relays. Generally this equipment offers built-in sources of AC voltage and current, DC voltage and current, timing circuit, variable frequency, phase shifting, harmonic generation, and complex fault simulation. If using such a test set, refer to the equipment manufacturer's instructions to generate the appropriate signals required by the procedures in this section. If you do not have a sophisticated test set, then you will need the following "conventional" equipment:

- Variable current source able to supply up to 40 A (depends on relay settings)
- Variable power resistors to control current amplitude
- Ten-turn $2 \mathrm{~K} \Omega$ low-power potentiometer
- Power rectifier to build a circuit to generate 2nd harmonics
- Accurate timing device
- Double-pole single-throw contactor suitable for at least 40 amperes AC.
- Combined fundamental \& 5th-harmonic adjustable current supply for elements involving the $5^{\text {th }}$ harmonic.
- Variable-frequency source of current or voltage to test over/underfrequency and frequency trend elements.
- Ammeters (RMS-responding), multimeters, voltmeters
- variable dc mA source
- variable dc mV source
- single-pole single-throw contactor

The simple test setup shown below can be used for the majority of tests. When the diode is not shorted and the two currents are summed together prior to the switch, the composite current contains the $2^{\text {nd }}$ harmonic necessary to verify the $2^{\text {nd }}$ harmonic restraint of the harmonic restraint percent differential elements. With the diode shorted and the two currents fed to separate relay inputs, the slope of the differential elements can be measured. With only $I_{1}$ connected (with a return path) the pickup level of any element can be measured.


Figure 10-1: TEST SETUP

1. Review appropriate sections of this manual to familiarize yourself with the relay. Confidence in the commissioning process comes with knowledge of the relay features and methods of applying settings.
2. Verify the installation to ensure correct connections of all inputs and outputs.
3. Review the relay settings and/or determine features and settings required for your installation. In large utilities a central group is often responsible for determining which relay features will be enabled and which settings are appropriate. In a small utility or industrial user, the on-site technical person is responsible both for the settings and also for the complete testing of the relay.
4. Set the relay according to requirements. Ensure that the correct relay model has been installed. A summary table is available in this manual for users to record all the relay settings. When the testing is completed, users should verify the applied relay settings, and verify that all desired elements have been enabled, using the 745PC program or the relay front panel.
5. Verify that the relay rated $A C$ current matches the CT secondary value.
6. Verify that the relay rated AC voltage matches the VT secondary value.
7. Verify that the relay rated frequency setting matches the power system frequency.
8. Open all blocking switches so as not to issue an inadvertent trip signal to line breakers.
9. Verify that the auxiliary supply matches relay nameplate. Turn the auxiliary supply ON.
10. Verify that all grounding connections are correctly made.

To facilitate testing it is recommended that all functions be initially set to Disabled. Every feature which will be used in the application should be set per desired settings, enabled for the specific commissioning test for the feature, then returned to Disabled at completion of its test. Each feature can then be tested without complications caused by operations of other features. At the completion of all commissioning tests all required features are then Enabled.

It is necessary to keep track of modifications/changes made to settings during the course of these commissioning steps and ensure that all settings are returned to the "in-service" values at the end of the tests, prior to placing the relay into service.

The 745 is rated for 2000 V DC isolation between relay contacts, CT inputs, VT inputs and the safety ground terminal G12. Some precautions are required to prevent 745 damage during these tests.
Filter networks and transient protection clamps are used between control power and the filter ground terminal G11. This filtering is intended to filter out high voltage transients, radio frequency interference (RFI), and electromagnetic interference (EMI). The filter capacitors and transient suppressors could be damaged by application continuous high voltage. Disconnect filter ground terminal G11 during testing of control power and trip coil supervision. CT inputs, VT inputs, and output relays do not require any special precautions. Low voltage inputs ( $<30 \mathrm{~V}$ ) such as RTDs, analog inputs, analog outputs, digital inputs, and RS485 communication ports are not to be tested for dielectric strength under any circumstance.


Figure 10-2: TESTING FOR DIELECTRIC STRENGTH


Figure 10-3: LOGIC INPUTS

## a) PROCEDURE

1. Prior to energizing any of the Logic Inputs, ensure that doing so will not cause a relay trip signal to be issued beyond the blocking switches. These should have been opened prior to starting on these tests. If you wish, you can disable the Logic Input functions by setting:

## SETPOINTS/S3 LOGIC INPUTS/LOGIC INPUT 1 (2-16)/LOGIC INPUT 1 FUNCTION: Disabled

2. Connect a switch between LOGIC INPUT 1 (terminal D1) and +32 V DC (terminal D12), as shown in Figure 10-3: LOGIC INPUTS (alternatively, use the wet contact approach shown in the same figure). Logic Inputs can be asserted with either an opened or closed contact, per the user choice. Verify/set the type of Logic Input to be used with the following setpoint:

SETPOINTS/S3 LOGIC INPUTS/LOGIC INPUTS/LOGIC INPUT 1 (2-16)/INPUT 1 ASSERTED STATE
3. Display the status of the Logic Input using the actual value item:

## ACTUAL VALUES/A1 STATUS/LOGIC INPUTS/LOGIC INPUT 1 (2-16) STATE

4. With the switch contact open (or closed), check that the input state is detected and displayed as Not Asserted.
5. Close (open) the switch contacts. Check that the input state is detected and displayed as Asserted.
6. Repeat for all the relay logic inputs which are used in your application.
a) PROCUDURE:
7. To verify the proper functioning of the output relays, enable the "Force Output Relays Function" built into the 745 by setting:

SETPOINTS/S6 TESTING/OUTPUT RELAYS/FORCE OUTPUT RELAYS FUNCTION: Enabled
The TEST MODE LED on the front of the relay will come ON, indicating that the relay is in test mode and no longer in service. In test mode all output relays can be controlled manually.
2. Set the FORCE OUTPUT 1 to FORCE OUTPUT8 setpoints as follows:
3. Under SETPOINTS/S6 TESTING/OUTPUT RELAYS/FORCE OUTPUT 1 ( 2 to 8) set:

SETPOINTS/S6 TESTING/OUTPUT RELAYS/FORCE OUTPUT 1: De-energized
SETPOINTS/S6 TESTING/OUTPUT RELAYS/FORCE OUTPUT 2: De-energized
SETPOINTS/S6 TESTING/OUTPUT RELAYS/FORCE OUTPUT 3: De-energized
SETPOINTS/S6 TESTING/OUTPUT RELAYS/FORCE OUTPUT 4: De-energized
SETPOINTS/S6 TESTING/OUTPUT RELAYS/FORCE OUTPUT 5: De-energized
SETPOINTS/S6 TESTING/OUTPUT RELAYS/FORCE OUTPUT 6: De-energized
SETPOINTS/S6 TESTING/OUTPUT RELAYS/FORCE OUTPUT 7: De-energized
SETPOINTS/S6 TESTING/OUTPUT RELAYS/FORCE OUTPUT 8: De-energized
4. Using a multimeter, check that all outputs are de-energized. For outputs 2 to 5 , the outputs are dry N.O. contacts and for outputs 6 to 8, the outputs are throwover contacts (form C). Output 1 is a solid state output. When de-energized, the resistance across E1 and F1 will be greater than 2 MW ; when energized, and with the multimeter positive lead on E1, the resistance will be in the 20 to 30 kW .
5. Now change the settings to:

SETPOINTS/S6 TESTING/OUTPUT RELAYS/FORCE OUTPUT 1: Energized
SETPOINTS/S6 TESTING/OUTPUT RELAYS/FORCE OUTPUT 2: Energized
SETPOINTS/S6 TESTING/OUTPUT RELAYS/FORCE OUTPUT 3: Energized
SETPOINTS/S6 TESTING/OUTPUT RELAYS/FORCE OUTPUT 4: Energized
SETPOINTS/S6 TESTING/OUTPUT RELAYS/FORCE OUTPUT 5: Energized
SETPOINTS/S6 TESTING/OUTPUT RELAYS/FORCE OUTPUT 6: Energized
SETPOINTS/S6 TESTING/OUTPUT RELAYS/FORCE OUTPUT 7: Energized
SETPOINTS/S6 TESTING/OUTPUT RELAYS/FORCE OUTPUT 8: Energized
6. Using a multimeter, check that all outputs are now energized.
7. Now return all output forcing to De-energized and disable the relay forcing function by setting:

SETPOINTS/S6 TESTING/OUTPUT RELAYS/FORCE OUTPUT RELAYS FUNCTION: Disabled
8. All the output relays should reset.

Accuracy of readings taken in this section should be compared with the specified relay accuracies, chapter 1 . If the measurements obtained during this commissioning procedure are "out-of-specification" verify your instrumentation accuracy. If the errors are truly in the relay, advise the company representative.

The general approach used to verify the AC current inputs is to supply rated currents in all the input CTs. Displayed readings will then confirm that the relay is correctly measuring all the inputs and performing the correct calculations to derive sequence components, loading values, etc. Since the displayed values are high-side values, you can use this test to verify that the CT ratios have been correctly entered.

1. If you are using a single phase current supply, connect this current signal to all the input CTs in series, winding 1,2 and 3 , if using a 3 -winding configuration, and the ground CT input(s). Adjust the current level to 1 A for 1 -amp-rated relays and to 5 A for 5 -amp-rated relays.

Some elements may operate under these conditions unless all elements have been disabled.
2. With the above current signals ON, read the Actual Values displayed under:

## ACTUAL VALUES/A2 METERING/CURRENT

The actual values can be quickly read using the 745PC program.
3. Read the rms magnitude and the phase of the current signal in each phase of each winding. Note that phase A, winding \#1 current is used as the reference for all angle measurements.
$I_{\text {phase rms displayed }}=I_{\text {phase input }} \times$ CT ratio for that winding
The phase angle will be $0^{\circ}$ for all phase currents if the same current is injected in all phase input CTs. Sequence components will be:
$I_{1}=$ CT Ratio $\times \frac{I_{a}+a I_{b}+a^{2} I_{c}}{3}=0$ since the three currents are in phase.
where $a=1 \angle 120^{\circ}$
$I_{2}=$ CT Ratio $\times \frac{I_{a}+a^{2} I_{b}+a I_{c}}{3}=0$ since the three currents are in phase.
$I_{\text {zero sequence }}=C T$ ratio $\times$ input current
$I_{\text {neutral }}=3 \times$ Phase CT ratio $\times$ input current
$I_{\text {Ground }}=$ Ground CT ratio $\times$ input current into ground CT
4. Since the transformer load is calculated using the A-phase current, the displayed load should be:

$$
\% \text { Loading }=\frac{\text { Actual Current }}{\text { Rated MVA Current }} \times 100 \%
$$

where Rated MVA Current $=\frac{\text { MVA }}{\sqrt{3} k V_{L-L}}$
5. Verify the harmonic content display: should be zero, or equal to distortion of input current.

## ACTUAL VALUES/A2 METERING/HARMONIC CONTENT/THD/W1...W2...W3

6. Verify frequency: 60 or 50 Hz , as per frequency of input current on phase A .

## ACTUAL VALUES/A2 METERING/FREQUENCY/SYSTEM FREQUENCY

7. To verify the positive and negative sequence component values, apply the current signal to phase A of each winding in series. Read the values of positive and negative sequence current displayed by the relay.

$$
I_{1}=\frac{1}{3} \times \text { CT Ratio } \times\left(I_{a}+a I_{b}+a^{2} I_{c}\right)=\frac{1}{3} \times \text { CT Ratio } \times I_{a} \text { since } I_{b}=I_{c}=0
$$

where $\mathrm{a}=1 \angle 120^{\circ}$

$$
I_{2}=\frac{1}{3} \times \text { CT Ratio } \times\left(I_{a}+a^{2} I_{b}+a I_{c}\right)=\frac{1}{3} \times \text { CT Ratio } \times I_{a} \text { since } I_{b}=I_{c}=0
$$

All angles will be $0^{\circ}$.
These values are displayed with the following actual values:

## ACTUAL VALUES/A2 METERING/CURRENT/POSITIVE SEQUENCE/W1...W2...W3

ACTUAL VALUES/A2 METERING/CURRENT/NEGATIVE SEQUENCE/W1...W2...W3
8. Now, lower the current amplitude while displaying the system frequency. Verify that the frequency is displayed correctly with current levels down to approximately 50 mA rms input. Decrease current to 0 A .

1. Connect an AC voltage to the voltage input (if the input voltage feature is enabled) to terminals C 11 and C 12 . Set the level at the expected VT secondary voltage on the VT for your installation.
2. Remove all current signals from the relay.
3. Verify the voltage reading with the following actual value:

## ACTUAL VALUES/A2 METERING/VOLTAGE/SYSTEM VOLTAGE

The reading should be: Input voltage $\times$ VT Ratio


The displayed system voltage is always the line-to-line voltage regardless of the input VT signal. Earlier versions of the 745 may display the same voltage as the selected input, i.e. phase-to-neutral if the input is a phase-to-neutral signal and phase-to-phase if the input is phase-to-phase.
4. With the voltage signal still ON , read the displayed system frequency under:

## ACTUAL VALUES/A2 METERING/FREQUENCY/SYSTEM FREQUENCY

5. Lower the voltage amplitude while displaying the system frequency. Verify that the frequency is displayed correctly with voltage levels down to less than 3 V RMS input (when the lower limit is reached, the system frequency will be displayed as 0.00 Hz ). Verify that at less than 1.0 V , frequency is displayed as 0.00 Hz .
10.5.4 TRANSFORMER-TYPE SELECTION

The 745 automatically configures itself to correct for CT ratio mismatch, phase shift, etc., provided that the input CTs are all connected in wye. The following example illustrates the automatic setting feature of the 745.
a) AUTOMATIC TRANSFORMATION PERFORMED IN THE 745

The automatic configuration routines examine the CT ratios, the transformer voltage ratios, the transformer phase shift, etc., and apply correction factors to match the current signals under steady state conditions.
Consider the case of a $\mathrm{Y}: \mathrm{D} 30^{\circ}$ power transformer with the following data (using a 1 ACT secondary rating for the relay):

Winding \#1: $100 \mathrm{MVA}, 220 \mathrm{kV}, 250 / 1 \mathrm{CT}$ ratio (rated current is 262.4 A, hence CT ratio of 250/1) Winding \#2: $100 \mathrm{MVA}, 69 \mathrm{kV}, 1000 / 1 \mathrm{CT}$ ratio (rated current is 836.8 A , hence CT ratio of 1000/1)

The 1000/1 CT ratio is not a perfect match for the 250/1 ratio. The high-side CT produces a secondary current of $262.5 / 250=1.05$ A whereas the low-side CT produces a current of 0.837 A. The 745 automatically applies an amplitude correction factor to the Winding 2 currents to match them to the Winding 1 currents. The following illustrates how the correction factor is computed:

$$
\mathrm{CT}_{2}(\text { ideal })=\mathrm{CT}_{1} \times \frac{V_{1}}{V_{2}}=\frac{250}{1} \times \frac{220 \mathrm{~V}}{69 \mathrm{~V}}=797.1
$$

The mismatch factor is therefore $\frac{\text { Ideal CT Ratio }}{\text { Actual CT Ratio }}=\frac{797.1}{1000}=0.7971$
Winding 2 currents are divided by this factor to obtain balanced conditions for the differential elements.
If this transformer were on line, fully loaded, and protected by a properly set 745 relay, the actual current values read by the relay would be:

Winding 1: $262.5 \mathrm{~A} \angle 0^{\circ}$ (this is the reference winding)
Winding 2: 836.8 A $\angle 210^{\circ}$ ( $30^{\circ}$ lag due to transformer and $180^{\circ}$ lag due to CT connections)
Differential current: less than $0.03 \times \mathrm{CT}$ as the two winding currents are equal once correctly transformed inside the relay.
The loading of each winding would be $100 \%$ of rated.
The above results can be verified with two adjustable sources of three-phase current. With a single current source, how the relay performs the necessary phase angle corrections must be taken into account. Table 5-1: TRANSFORMER TYPES on page 5-10 shows that the $Y$-side currents are shifted by $30^{\circ}$ to match the Delta secondary side. The $30^{\circ}$ phase shift is obtained from the equations below:

$$
I_{W 1 a^{\prime}}=\frac{I_{W 1 a}-I_{W 1 c}}{\sqrt{3}}, \quad I_{W 1 b^{\prime}}=\frac{I_{W 1 b}-I_{W 1 a}}{\sqrt{3}}, \quad I_{W 1 c^{\prime}}=\frac{I_{W 1 c}-I_{W 1 b}}{\sqrt{3}}
$$

By injecting a current into phase A of Winding 1 and phase A of Winding 2 only, $I_{W 1 b}=I_{W 1 c}=0$ A. Therefore, if we assume an injected current of $1 \times \mathrm{CT}$, the transformed Y -side currents will be:

$$
I_{W 1 a^{\prime}}=\frac{1 \times \mathrm{CT}}{\sqrt{3}}, \quad I_{W 1 b^{\prime}}=\frac{-1 \times \mathrm{CT}}{\sqrt{3}}, \quad I_{W 1 c^{\prime}}=\frac{0 \times \mathrm{CT}}{\sqrt{3}}
$$

For the purposes of the differential elements only, the transformation has reduced the current to 0.57 times its original value into phase A, and created an apparent current into phase B, for the described injection condition. If a $1 \times$ CT is now injected into phase A Winding 1 , the following values for the differential currents for all three phases should be obtained:

A-phase differential: $0.57 \times \mathrm{CT} \angle 0^{\circ} \mathrm{Lag}$
B-phase differential: $0.57 \times$ CT $\angle 180^{\circ} \mathrm{Lag}$
C-phase: $0 \times$ CT.

## b) EFFECTS OF ZERO-SEQUENCE COMPONENT REMOVAL



The transformation used to obtain the $30^{\circ}$ phase shift on the $Y$-side automatically removes the zero-sequence current from those signals. The 745 always removes the zero-sequence current from the delta winding currents.

If the zero-sequence component is removed from the Delta-side winding currents, the Winding 2 current values will change under unbalanced conditions. Consider again the case described above, with the $1 \times$ CT injected into phase A of Winding 2.

For the $1 \times$ CT current, the zero-sequence value is $1 / 3$ of $1.0 \times$ CT or $0.333 \times$ CT A. The value for $I_{\text {W2a }}$ ' is therefore ( $1.0-0.333$ ) $\times$ CT $=0.6667 \times$ CT A. This value must be divided by the CT error correction factor of 0.797 as described above.
Therefore, the value of differential current for phase A, when injecting $1 \times \mathrm{CT}$ in Winding 2 only, is:

$$
I_{A(\text { differential })}=\frac{0.667 \times \mathrm{CT} \mathrm{~A}}{0.797}=0.84 \times \mathrm{CT} \mathrm{~A}
$$

The action of removing the zero-sequence current results in a current equal to the zero-sequence value introduced into phases B and C. Hence, the differential current for these two elements is:

$$
I_{B(\text { differential })}=I_{C(\text { differential })}=\frac{0.333 \times \mathrm{CT} \mathrm{~A}}{0.797}=0.84 \times \mathrm{CT} \mathrm{~A}
$$

Now, applying $1 \times$ CT into phase A Winding 1 and the same current into phase A Winding 2, but $180^{\circ}$ out-ofphase to properly represent CT connections, the total differential current in the A-phase element will be ( 0.57 $0.84) \times$ CT $=-0.26 \times$ CT. The injection of currents into phase $A$ of Windings 1 and 2 in this manner introduces a differential current of $(-0.57 \times C T+0.42 \times C T)=-0.15 \times C T$ into phase $B$ and $(0.0 \times C T+0.42 \times C T)=0.42$ $\times$ CT into phase C .
10.5.5 AMBIENT TEMPERATURE INPUT

## a) BASIC CALIBRATION OF RTD INPUT

1. Enable ambient temperature sensing through the following setpoint:

## SETPOINTS/S2 SYSTEM SETUP/AMBIENT TEMP/ AMBIENT TEMPERATURE SENSING

2. Connect a thermocouple to the relay terminals B10,11,12 and read through actual value:

## ACTUAL VALUES/A2 METERING/AMBIENT TEMP/AMBIENT TEMPERATURE

3. Compare the displayed value of temperature against known temperature at the location of the sensor. Use a thermometer or other means of obtaining actual temperature.
An alternative approach is to perform a more detailed calibration per the procedure outlined below.

## b) DETAILED CALIBRATION OF RTD INPUT

1. Alter the following setpoints as shown:

SETPOINT S2: SYSTEM SETUP/AMBIENT TEMP/AMBIENT TEMPERATURE SENSING: Enabled SETPOINT S2: SYSTEM SETUP/AMBIENT TEMP/AMBIENT RTD TYPE/(select desired type)
2. The measured values should be $\pm 2^{\circ} \mathrm{C}$ or $\pm 4^{\circ} \mathrm{F}$. Alter the resistance applied to the RTD input (note the 3 input connection must be used for the measurements to be valid) as per the typical table below to simulate RTDs and verify accuracy of the measured values. View the measured values in:

ACTUAL VALUES A2/METERING/AMBIENT TEMP.

Refer to RTD tables included in this manual for calibration of resistance versus temperature.
Table 10-1: MEASURED RTD TEMPERATURE - $100 \Omega$ PLATINUM

| $\begin{gathered} 100 \Omega \\ \text { PLATINUM } \\ \text { RESISTANCE } \end{gathered}$ | EXPECTED RTD READING |  | MEASURED RTD TEMPERATURE ${ }^{\circ} \mathrm{C}$ $\qquad$ ${ }^{\circ} \mathrm{F}$ (select one) |
| :---: | :---: | :---: | :---: |
|  | ${ }^{\circ} \mathrm{C}$ | ${ }^{\circ} \mathrm{F}$ |  |
| 80.31 | -50 | -58 |  |
| 100.00 | 0 | 32 |  |
| 119.39 | 50 | 122 |  |
| 138.50 | 100 | 212 |  |
| 157.32 | 150 | 302 |  |
| 175.84 | 200 | 392 |  |
| 194.08 | 250 | 482 |  |

Table 10-2: MEASURED RTD TEMPERATURE - $120 \Omega$ NICKEL

| $\begin{aligned} & 120 \Omega \text { NICKEL } \\ & \text { RESISTANCE } \end{aligned}$ | EXPECTED RTD READING |  | MEASURED RTD TEMPERATURE ${ }^{\circ} \mathrm{C}$ $\qquad$ ${ }^{\circ} \mathrm{F}$ (select one) |
| :---: | :---: | :---: | :---: |
|  | ${ }^{\circ} \mathrm{C}$ | ${ }^{\circ} \mathrm{F}$ |  |
| 86.17 | -50 | -58 |  |
| 120.0 | 0 | 32 |  |
| 157.74 | 50 | 122 |  |
| 200.64 | 100 | 212 |  |
| 248.95 | 150 | 302 |  |
| 303.46 | 200 | 392 |  |
| 366.53 | 250 | 482 |  |

Table 10-3: MEASURED RTD TEMPERATURE - $100 \Omega$ NICKEL

| $100 \Omega$ NICKEL RESISTANCE | EXPECTED RTD READING |  | MEASURED RTD TEMPERATURE ${ }^{\circ} \mathrm{C}$ $\qquad$ ${ }^{\circ} \mathrm{F}$ (select one) |
| :---: | :---: | :---: | :---: |
|  | ${ }^{\circ} \mathrm{C}$ | ${ }^{\circ} \mathrm{F}$ |  |
| 71.81 | -50 | -58 |  |
| 100.00 | 0 | 32 |  |
| 131.45 | 50 | 122 |  |
| 167.20 | 100 | 212 |  |
| 207.45 | 150 | 302 |  |
| 252.88 | 200 | 392 |  |
| 305.44 | 250 | 482 |  |

## c) AMBIENT TEMPERATURE BY MONTHLY AVERAGES

1. If the ambient temperature is entered as 12 monthly averages, program the value for the month during which the relay is being commissioned.
2. Examine the following actual value to verify the programmed temperature:

## ACTUAL VALUES A2/METERING/AMBIENT TEMP.

3. Verify that values entered for other months do not affect the value for the present month.

### 10.5.6 ANALOG OUTPUTS

1. The analog output settings are located in the following setpoints section:

## SETPOINTS/S2 SYSTEM SETUP/ANALOG OUTPUTS/...

2. Connect a milliammeter to the Analog Output contacts, COM on A5, A.O. \#1 on A6, A.O. \#2 on A7, A.O. \#3 on A8, A.O. \#4 on A9, A.O. \#5 on A10, A.O. \#6 on A11 or A.O. \#7 on A12.
3. From the settings used for the tested Analog output, determine the mA range for the output and the driving signal and its range for the full range of output current.
4. Apply the input signal and vary its amplitude over the full range and ensure the Analog Output current is the correct amplitude. Record the results in the table below. Duplicate as required for each Analog Output.

Table 10-4: CALIBRATION RESULTS FOR ANALOG OUTPUTS

| Analog Output Number: <br> Analog Output Value: <br> Analog Output Range: | Analog Output Min.: <br> Analog Output Max.: |  |  |
| :---: | :---: | :---: | :---: |
| INPUT SIGNAL AMPLITUDE <br> (percent of full range) | EXPECTED mA OUTPUT | MEASURED mA OUTPUT |  |
| 0 |  |  |  |
| 25 |  |  |  |
| 50 |  |  |  |
| 75 |  |  |  |
| 100 |  |  |  |

1. The Analog Input used to sense tap position is programmed with the following setpoints:

## SETPOINTS/S2 SYSTEM SETUP/ONLOAD TAP CHANGER/.....

2. To verify the operation of this circuit, connect a variable resistor across terminals A3 and A4. The resistor range should cover the full range of resistance produced by the tap changer mechanism. The tap position is displayed under:

## ACTUAL VALUES/A2 METERING/TAP CHANGER/TAP CHANGER POSITION

3. Adjust the resistance to simulate the minimum tap position and verify that a 1 is displayed. Now gradually increase the resistance up to the value which represents the maximum tap value, verifying that the tap position indicator tracks the resistance.
10.6.1 WARNING

Keep track of modifications/changes made to settings during the course of these commissioning steps and ensure that all settings are returned to the "in-service" values at the end of the tests.
10.6.2 HARMONIC RESTRAINED PERCENT DIFFERENTIAL

The harmonic restrained percent differential element setpoint are under:

## SETPOINTS/S4 ELEMENTS/DIFFERENTIAL/PERCENT DIFFERENTIAL/...

Disable all other protection elements to ensure that trip relay(s) and auxiliary relays are operated by element under test only. With a multimeter, monitor the appropriate output contact(s) per intended settings of the FlexLogic. Refer to the relay settings to find out which relay(s) should operate when a given element operates.
a) MINIMUM PICKUP

1. The minimum pickup of the A-phase element is measured by applying a fundamental frequency AC current to terminals H 1 and G1, Winding 1 phase A . Monitor the appropriate trip and auxiliary contact(s) as the current is increased from 0 A . Compare the current value at which operation is detected against:

## SETPOINTS/S4 ELEMENTS/DIFFERENTIAL/PERCENT DIFFERENTIAL/PERCENT DIFFERENTIAL PICKUP

Since the operating point is normally set quite low, fine control of the current signal will be required to obtain accurate results.
2. The currents in the winding may be phase shifted or may have the zero-sequence component removed due to auto-configuration (see Section 5.2: AUTO-CONFIGURATION on page 5-3). As an alternate to calculating to relation of input current to differential current, the differential current is displayed under:

ACTUAL VALUES/A2 METERING/CURRENT/DIFFERENTIAL/...
Ensure that the displayed value is the same as the minimum pickup setting when the element operates.
3. Check that the TRIP and MESSAGE indicators are flashing and the following trip message is displayed:
\| OPERATED (LATCHED) $\varnothing$ A
| Percent Differentl


The message will indicate either OPERATED or LATCHED depending on the setting under:
SETPOINTS/S4 ELEMENTS/DIFFERENTIAL/PERCENT DIFFERENTIAL/PERCENT DIFFERENTIAL TARGET NOTE
4. To independently verify that auto-configuration causes the currents to be as measured, follow the rules outlined in steps 5 to 9 below.
5. Look up transformer type in Table 5-1: TRANSFORMER TYPES on page 5-10.
6. For the phase shift shown for the particular set of vectors, determine the processing applied to the current vectors for that winding from Table 5-2: PHASE SHIFTS on page 5-23.
7. Calculate the "dashed" current values using the equations in Table 5-2: PHASE SHIFTS on page 5-23. If applicable, use the zero-sequence removal computation. This is applicable for all Delta windings and for both windings of a wye-wye transformer. Compute the processed current vectors to obtain the "dashed" values for that winding.
8. Calculate the CT correction factor for Windings 2 (and 3 if applicable) and apply as necessary.
9. Turn the equations around to compute the threshold differential currents in terms of the applied currents.


To check the threshold without performing computations, inject balanced 3-phase currents into any winding. With balanced conditions, there is no effect on magnitude due to phase shifting and zero-

NOTE sequence removal has no effect. However, the CT ratio mismatch is still applicable.
10. Repeat the minimum pickup level measurements for the B-phase (inputs H 2 and G 2 ) and the C -phase element (inputs H3 and G3).

The above tests have effectively verified the minimum operating level of the three harmonic restrained differential elements. If desired the above measurements may be repeated for the phase inputs for the other winding(s). The results should be identical.
b) VERIFICATION OF LOCAL RESET MODE

1. Set the differential element with a latched target. Apply enough current to cause the relay to operate, then remove the current. The trip LED and the phase LED should be latched on.
2. Set Local Reset Block to Disabled as follows:

SETPOINTS/S1 745 SETUP / RESETTING / LOCAL RESET BLOCK: Disabled
3. Press the RESET key. The target should reset.
4. Set Local Reset Block to Logic Input 1 (2-16) as follows:

SETPOINTS/S1 745 SETUP / RESETTING / LOCAL RESET BLOCK: Logc Inpt 1 (2-16)
5. Press the RESET key and verify that the target does not reset if the logic input is not asserted. Verify the status of selected logic input through the actual value:

ACTUAL VALUES/A1 STATUS / LOGIC INPUTS / LOGIC INPUT 1 (2-16)
6. Assert the selected logic input, apply the current to cause the target to latch and verify that pressing the RESET button does not reset the LED. The following message should appear:
\| IN INAVLID KEY: MUST
\| BE IN LOCAL MODE
c) VERIFICATION OF REMOTE RESET MODE

1. Set the differential element with a latched target. Apply enough current to cause the relay to operate, then remove the current. The trip LED and the phase LED should be latched on.
2. Set Remote Reset Signal to Logic Input 1 (2-16) under:

SETPOINTS/S1 745 SETUP / RESETTING / REMOTE RESET SIGNAL: Logc Inpt 1 (2-16)
3. Assert Logic Input 1. The target should reset.
d) VERIFICATION OF SOLID STATE OUTPUT

1. If the solid state output is used to drive auxiliary relays, verify that these relays operate whenever the relay is in a trip condition. Ensure that the current though the auxiliary coils is interrupted by an external contactor between each test.
2. To avoid operating the breaker during the commissioning process when the solid state output operates the breaker directly, use the circuit shown in Figure 10-4: SOLID STATE OUTPUT TEST CIRCUIT to verify this output. Whenever the relay is in a trip state, current flows through the load resistor. Select the resistor for approximately $1 \times$ CT of DC current with the normal DC supply voltage used in your relay scheme.


Figure 10-4: SOLID STATE OUTPUT TEST CIRCUIT

## e) BASIC OPERATING TIME

1. To measure the basic operating time of the harmonic restrained differential elements, connect an AC current signal to terminals H 1 and G1, through a double-pole single-throw switch. The second pole of the switch starts a timer circuit which is stopped by the operation of the relay trip contact. Refer to the figure below for details.
2. Close the switch and set the current level to 3 times the minimum pickup value measured earlier. Re-open the switch and reset all targets on the relay. Ensure that timer circuit functions correctly.
3. Close the switch and record operating time of relay.


Figure 10-5: TIMER TEST CIRCUIT

## f) SLOPE MEASUREMENTS

The auto configuration processes the currents to correct for phase shifts, CT mismatch, and zero sequence component removal. As such, it more complex to measure the slope from an external single phase injection. Therefore, the use of displayed actual values is recommended.

The differential and restraint currents are displayed the actual values sections:

## ACTUAL VALUES/A2 METERING/CURRENTS/DIFFERENTIAL/PHASE A DIFFERENTIAL CURRENT ACTUAL VALUES A2 METERING/CURRENTS/RESTRAINT/PHASE A RESTRAINT CURRENT

1. To measure the slope, connect current signals to the relay as shown in the figure below:


Figure 10-6: CURRENT SIGNAL CONNECTIONS
2. If $I_{1}=1.5 \times \mathrm{CT}$ and $I_{2}=0$, the element is operated as all the current appears as a differential current.
3. The slope is calculated from the values of $I_{\text {differential }}$ and $I_{\text {restraint }}$ as shown below:

$$
\% \text { slope }=\frac{I_{\text {differential }}}{I_{\text {restraint }}} \times 100 \%
$$

4. Slowly increase $I_{2}$. As $I_{2}$ is increased, the element will reset when the differential current drops below the minimum pickup.
5. As $I_{2}$ continues to increase, the element operates again when both the initial slope and the minimum pickup conditions are satisfied. Calculate the initial slope 1 value at this point.
6. As $I_{2}$ increases further, the element may reset again, depending on the setting of the slope kneepoint. This is caused by the current values moving into the slope 2 region.
7. Continue increasing $I_{2}$ until the element operates again. Compute the slope 2 value at this point.

## g) SLOPE KNEEPOINT

1. To measure the approximate location of the kneepoint, follow the procedure above, setting $l_{1}$ at a value equal to the kneepoint. Gradually increase $I_{2}$ until the element resets. Calculate the first slope at this point. The value thus obtained should be equal to the initial slope setting. Increase $I_{2}$ until the element operates again. Calculate the slope at this point - it should be equal to the final slope. If the kneepoint is much different than the selected value of $I_{1}$, the two values of slope will be the same.
2. For an accurate measurement of the kneepoint, select a value of $I_{1}$ just above the kneepoint value.
3. Increase $I_{2}$ until the element resets. Calculate the slope - the value should be equal to the initial slope value.
4. Increase $I_{1}$ by a small amount, say $10 \%$, and adjust $I_{2}$ until a new operating point is obtained. Calculate the slope. Repeat until the slope value equals the final slope. The kneepoint value is the value of the restraint current at which the slope changed in value.

Keep in mind the effects of auto-configuration on the magnitude of the current signal fed to the differential elements when conducting the slope kneepoint test.
NOTE

## h) 2nd HARMONIC RESTRAINT

To measure the percentage of second harmonic required to block the operation of the harmonic-restraint differential elements, use the connection diagram shown below. Current is supplied as an operating current to the Aphase element.


Figure 10-7: 2ND HARMONIC RESTRAINT TEST

1. Close switch $S 1$. Set the $A C$ current, $I_{A C}$ to twice rated $C T$ secondary current. Set $I_{D C}$ to obtain harmonic content above the 2nd harmonic restraint setting under:

## SETPOINTS/S4 ELEMENTS/DIFFERENTIAL/HARMONIC INHIBIT/HARMONIC INHIBIT LEVEL

2. Calculate the percent second harmonic content from the equations below:

If the current is measured with average-responding/reading meters:

$$
\% 2 \mathrm{nd}=\frac{100 \times 0.141 \times I_{D C}}{I_{D C}+0.9 \times I_{A C}}
$$

b) if the current is measured with rms-responding/reading meters:

$$
\% 2 \mathrm{nd}=\frac{100 \times 0.141 \times I_{D C}}{I_{D C}+1.414 \times I_{A C}}
$$

3. Open and reclose S1. The relay should not operate.
4. Decrease $I_{D C}$ until the element operates. Calculate the percent of second harmonic at this point using the equations above. The calculated percent harmonic value should equal the relay setting.

## i) 5th HARMONIC RESTRAINT

Verifying the operation of the 5th harmonic restraint requires test equipment capable of generating a current signal containing a fundamental and 5th harmonic. Most modern dedicated relay test instruments, such as Powertec's (or Manta) DFR, Doble, or Multiamp instruments are capable of generating appropriate signals. A power operational amplifier with a suitably rated output, or a power audio amplifier, may also be used to generate the appropriate signal.

1. Connect the test setup as below to supply the A-phase element. Set the fundamental current level to the CT rated secondary value. The harmonic restraint differential element of phase A should be operated.


Figure 10-8: 5TH HARMONIC RESTRAINT TEST
2. Increase the 5th harmonic component to a value well above the 5th harmonic restraint setting shown in:

SETPOINTS/S4 ELEMENTS/DIFFERENTIAL/5th HARM INHIBIT/5th HARMONIC INHIBIT LEVEL
3. Remove the total current signal and reapply. The relay should not operate. Decrease the 5th harmonic component until the element operates.
4. Calculate the percentage 5 th harmonic to restrain from the following equation:

$$
\% 5 \text { th }=\frac{100 \times \text { level of } 5 \text { th harmonic }}{\text { level of fundamental }}
$$

5. Compare this value to the relay setting.

## j) ENERGIZATION DETECTION SCHEME

Refer to Section 5.6.4 DIFFERENTIAL on page 5-46 for a description of this feature. This feature is activated by up to three inputs: breaker auxiliary switch, current below a threshold, or absence of voltage. The procedure below will test the current-level enabling feature. A similar approach can be used to verify the other two enabling functions, with the proper test equipment.

1. Enable the Energization Detection Scheme with the following setpoint:

## SETPOINTS/S4 ELEMENTS/DIFFERENTIAL/ENERGIZATION INHIBIT/ENERGIZATION INHIBIT FUNCTION: Enabled

2. Make the following setpoint changes:

> SETPOINTS/S4 ELEMENTS/DIFFERENTIAL/ENERGIZATION INHIBIT/ENERGIZATION IHIBIT PARMETERS: 2nd SETPOINTS/S4 ELEMENTS/DIFFERENTIAL/ENERGIZATION INHIBIT/HARMONIC AVERAGING: Disabled SETPOINTS/S4 ELEMENTS/DIFFERENTIAL/ENERGIZATION INHIBIT/ENERGIZATION INHIBIT LEVEL: $15 \%$ SETPOINTS/S4 ELEMENTS/DIFFERENTIAL/ENERGIZATION INHIBIT/ENERGIZATION INHIBIT DURATION: 5 s SETPINTS/S4 ELEMENTS/DIFERENTIAL/ENERGIZATIN INHIBIT/ENERIZATION SENSING BY CURRENT: Enabled SETPINISTS/S4 ELEMENTS/DIFFERENTIAL/ENERGIZATION INHIBIT/MINIMUM ENERGIZATION CURRENT: $0.10 \times$ CT
3. Preset current with harmonic content just above the Energization Inhibit Level used during the "energization period". Apply the current signal and measure the operating time. The time should be equal to "energization period" plus approximately 50 ms .
4. Disable the energization detection scheme and repeat the timing test. The operate time should be the normal operating time of Harmonic Restraint Differential element.

## k) TARGET, OUTPUT CONTACT, \& DISPLAY OPERATION

Verify the correct operation of all targets and output contacts and display messages during the above Percent Differential tests.

## I) BLOCKING FROM LOGIC INPUTS

Each element can be programmed to be blocked by a logic input, virtual input, virtual output, output relay operation, or self-test relay operation. This procedure verifies that the differential element is blockable by Logic Input 1.

1. Select Logic Input 1 as shown:

SETPOINTS/S4 ELEMENTS/DIFFERENTIAL/PERCENT DIFFERENTIAL/PERCENT DIFFERENTIAL BLOCK: Logc Inpt 1
2. Apply current to operate the differential element then assert Logic Input 1. Verify that the element has reset and that all targets can be reset.
3. With Logic Input 1 asserted, remove the current and reapply. Verify that the element did not operate.
10.6.3 INSTANTANEOUS DIFFERENTIAL PROTECTION

Settings for this element are under the setpoints group:

## SETPOINTS/S4 ELEMENTS/INST DIFFERENTIAL/...

All other protective elements must be disabled to ensure that trip relay(s) and auxiliary relays are operated by element under test. Monitor the appropriate contact per intended settings of the FlexLogic.

## a) MINIMUM PICKUP

1. The operating level of the A-phase element is measured by applying an AC current to terminals H 1 and G1. Monitor the appropriate trip and auxiliary contact(s) as the current is increased from 0 A . Due to the auto-configuration feature, it may be easier to read the actual differential current on the relay rather computing it. Compare the value of the differential current at which operation is detected against the setpoint:

## SETPOINTS/ S4 ELEMENTS/INST DIFFERENTIAL/INST DIFFERENTIAL PICKUP

2. Check that the TRIP and MESSAGE indicators are flashing and the following trip message is displayed:
|| LATCHED: $\varnothing$ A (BC)
II Inst Differential


The message may show operated instead of latched if the target is set to Self-Reset.

NOTE
b) OPERATING TIME

1. To measure the basic operating time of the instantaneous differential elements, connect an AC current signal to terminals H 1 and G1 through a double-pole, single-throw switch. The second pole of the switch starts a timer circuit that will be stopped by the operation of the relay trip contact. Refer to Figure 10-5: TIMER TEST CIRCUIT on page 10-16.
2. Close the switch and set the current level to 2 times the pickup value measured earlier. Re-open the switch and reset all targets on the relay. Ensure that the timer circuit functions correctly.
3. Close the switch and record operating time of relay.

All the differential currents are calculated using the same principal used in Section 10.5.4: TRANSFORMER-TYPE SELECTION on page 10-9. The differential current derivation is affected by phase shift compensation and zero sequence removal.

## c) TARGET, OUTPUT CONTACT, \& DISPLAY OPERATION

Verify the correct operation of all targets and output contacts and display messages during testing.

## d) BLOCKING FROM LOGIC INPUTS

Each element is programmable to be blocked by a logic input, virtual input, virtual output, output relay operation, or self-test relay operation. This test verifies that the differential element can be blocked by Logic Input 1.

1. Select logic input 1 as shown below:

## SETPOINTS/S4 ELEMENTS/INST DIFFERENTIAL/INST DIFFERENTIAL BLOCK: Logc Inpt 1

2. Apply current to operate the differential element then assert Logic Input 1. Verify that the element has reset and that all targets can be reset.
3. With Logic Input 1 asserted, remove the current and reapply. Verify that the element did not operate.
10.6.4 PHASE TIME OVERCURRENT

This procedure verifies that the phase time overcurrent element performance matches the in-service settings. Since these elements can have any one of a multitude of timing curves, a table of expected operating times versus applied current should be prepared prior to testing the elements. Refer to Section 5.9: TIME OVERCURRENT CURVES on page 5-90 for information on timing curves.

If the relay elements are set for a "Linear" reset characteristic when measuring the operating times, ensure that there is sufficient time between test current injections for the element to reset fully; otherwise, erroneous timing measurements will be obtained.

The settings for these elements are found under:
SETPOINTS/S4 ELEMENTS/PHASE 0C/W1..., W2..., W3...
a) WINDING \#1 ELEMENTS

To ensure that only the Phase Time overcurrent elements operate the trip relays (and any other output relays) selected by the logic, disable all protection features except Phase Time Overcurrent. Use the general test setup shown below:


Figure 10-9: GENERAL TEST SETUP
Connect the current supply to terminals $\mathrm{X}=\mathrm{H} 1$ and $\mathrm{Y}=\mathrm{G} 1$ to test the Winding 1 A -phase element. Monitor the appropriate output relays per the FlexLogic settings.

## b) PICKUP LEVEL

1. With the interval timer disabled, apply the current signal and increase its magnitude slowly until the trip relay and all the selected auxiliary relays operate. If the element has a very inverse time characteristic, it is easier and more accurate to increase the current far above the pickup level until the trip relay operates then reduce the current to just above the operate level. Then, current can be slowly reduced below the operate level and observed for a reset action on the trip relay. This reset level for the current should be approximately $98 \%$ of the pickup level. Once the relay drops out, slowly increase the current until the trip contact closes. The operate level should correspond to the pickup setting.
2. Check that the following message is displayed:
\| LATCHED (OPERATED) $\varnothing$ A
|| W1 Phase Time OC
The message will indicate LATCHED or OPERATED, depending on the setting for the target.

## c) OPERATING TIME

Using a table like the one shown below, select 3 or 4 values of current multiples at which the timing is to be measured. Enter the expected operating times from the timing curve applied in the settings. Using the setup shown in Figure 10-9: GENERAL TEST SETUP on page 10-21 and the Interval Timer enabled, set the current level to the desired value and apply suddenly by closing the double-pole switch. Record the operating time and compare it to the expected value. Repeat for all desired values of current.

| CURRENT <br> MULTIPLE | NOMINAL <br> TIME | MEASURED <br> TIME |
| :---: | :---: | :---: |
| 1.5 |  |  |
| 3 |  |  |
| 5 |  |  |
|  |  |  |

## d) RESET TIME

A precise measurement of the reset time requires a relay test set capable of dynamic operation, with three sequenced stages, each with programmable current levels and time duration external contact, and flexible triggering. To perform such a test, please contact GE Power Management for detailed test instructions.

A simple verification the selected reset mode can be obtained using Figure 10-9: GENERAL TEST SETUP on page 10-21. The procedure consists of performing repetitive operating time measurements in quick succession. If the reset is selected for instantaneous, the operating time will always be equal to the nominal time derived from the selected curve. If the reset is selected as linear, the operating time will vary as a function of the time between successive application of the current signal. If performed at current multiples of 2 to 3 times the pickup level, the variations in operating time will be easier to detect.

## e) PHASE B AND C ELEMENTS

If the A-phase element performed correctly and met specifications, repeat the PICKUP LEVEL portion of the above test for the $B$ and $C$ phases of Winding 1. For the B-phase, $X=H 2$ and $Y=G 2$. For the C-phase, $X=H 3$ and $\mathrm{Y}=\mathrm{G} 3$. The displayed message should change to indicate the correct phase, winding, and element that operated.

## f) WINDING \#2 AND \#3 ELEMENTS

Because the Winding 2 and 3 elements can be set with completely different parameters than the elements for Winding 1, it is necessary to repeat the full set of tests described above for each winding.

The blocking from logic input, if enabled, can be tested as described in earlier tests for other elements.

### 10.6.5 PHASE INSTANTANEOUS OVERCURRENT 1

This procedure verifies that the Phase Instantaneous overcurrent performance matches the in-service settings. The settings for these elements are found under:

SETPOINTS/S4 ELEMENTS/PHASE OC/W1 PHASE INST. OC 1, W2...., W3...
The testing occurs at current multiples of at least five times the rated CT secondary value. Do not leave the current signal on for more than a few seconds!
a) WINDING \#1 ELEMENTS

To ensure that only the Phase Instantaneous Overcurrent 1 element operates the trip relays (and any other output relays) selected by the logic, disable all protection features except Phase Instantaneous Overcurrent 1. Use the general test setup shown in Figure 10-9: GENERAL TEST SETUP on page 10-21.

Connect the current supply to terminals $\mathrm{X}=\mathrm{H} 1$ and $\mathrm{Y}=\mathrm{G} 1$ to test the Winding 1 A-phase element. Monitor the appropriate output relays as per the relay FlexLogic settings.
b) PICKUP LEVEL

1. With the interval timer disabled, apply the current signal and increase its magnitude until the trip relay (and all selected auxiliary relays) operate. Compare the measured operating level against the relay setpoints:

## SETPOINTS/S4 ELEMENTS/PHASE 0/C/W1 PHASE INST OC 1/W1 PHASE INST OC 1 PICKUP

2. Check that TRIP, PICKUP, and PHASE A ( B or C ) come on when the element operates. Check that the following message is displayed:
```
|| LATCHED (OPERATED) \varnothingA
```

II W1 Phase Inst OC 1
3. Reduce the current until the element resets. The reset level should be $97 \%$ of the operate level. When the element resets, the TRIP and PHASE indicators should remain on if the TARGET was selected as latched. Otherwise, only the TRIP indicator should stay on.
4. Reset indicators and clear messages.
c) OPERATING TIME

Using the setup shown in Figure 10-9: GENERAL TEST SETUP on page 10-21 and the Interval Timer enabled, set the current level to 1.5 times the operating level of the element. Apply current suddenly by closing the double-pole switch. Record the operate time and compare it to the setpoint value for:

## SETPOINTS/S4 ELEMENTS/PHASE 0/C/W1 PHASE INST OC 1/W1 PHASE INST OC 1 DELAY

## d) PHASE B AND C ELEMENTS

If the A-phase element performed correctly and met specifications, repeat the PICKUP LEVEL portion of the above test for phases B and C of Winding 1. For the B-phase, $X=H 2$ and $Y=G 2$. For the C-phase, $X=H 3$ and $Y=G 3$. The displayed message should change to indicate the correct phase, winding, and element that operated.

## e) WINDING \#2 AND \#3 ELEMENTS

Because the Winding 2 and 3 elements can be set with completely different parameters than the Winding 1 elements, it is necessary to repeat the full set of tests described above for each winding.
10.6.6 PHASE INSTANTANEOUS OVERCURRENT 2

The Phase Instantaneous Overcurrent 2 elements are identical to the Phase Instantaneous Overcurrent 1 elements. As such, the same test procedure can be used to verify their correct operation. Disable all protection features except the Phase Instantaneous Overcurrent 2 elements and follow the steps in Section 10.6.5: PHASE INSTANTANEOUS OVERCURRENT 1 on page 10-23, making the appropriate changes for the display indications and output relays which are operated by the Phase Instantaneous Overcurrent 2 elements.


The blocking from logic input, if enabled, can be tested as described in earlier tests for other elements.

NOTE
10.6.7 NEUTRAL TIME OVERCURRENT

This procedure verifies that the Neutral Time Overcurrent performance matches the in-service settings. Since these elements can have any one of a multitude of timing curves, a table of expected operating times versus applied current should be prepared prior to testing. The neutral element measures the derived zero-sequence current signal as an input. Refer to Section 5.9: TIME OVERCURRENT CURVES on page 5-90 for information on timing curves.

If the relay elements are set for the "Linear" reset characteristic when measuring the operating times, ensure there is sufficient time between test current injections for the element to reset fully. Otherwise, erroneous timing measurements will be obtained.

The settings for these elements are found under:

## SETPOINTS/S4 ELEMENTS/NEUTRAL OC/W1 NEUTRAL TIME OC, W2..., W3...

Note that there can only be one or two Neutral Time Overcurrent elements in service at the same time.

## a) WINDING \#1 ELEMENT

To ensure that only the Neutral Time Overcurrent element under test operates the trip relays (and any other output relays) selected by the logic, disable all protection features except Neutral Time Overcurrent. Use the general test setup shown in Figure 10-9: GENERAL TEST SETUP on page 10-21.

Connect the current supply to terminals $\mathrm{X}=\mathrm{H} 1$ and $\mathrm{Y}=\mathrm{G} 1$ to test the Winding 1 neutral element. Monitor the appropriate output relays as per the relay FlexLogic settings.

## b) PICKUP LEVEL

1. With the interval timer disabled, apply the current signal and slowly increase its magnitude until the trip relay (and all the selected auxiliary relays) operate.
2. If the relay under test has a very inverse time characteristic, it is easier and more accurate to increase the current far above the pickup level until the trip relay operates, then reduce the current to just above the expected operate level. Slowly reduce the current below the operate level and observe for a reset action on the trip relay. This current reset level should be approximately $98 \%$ of the pickup level setting. Once the relay drops out, slowly increase the current until the trip contact closes. The operate level should correspond to the pickup setpoint:

## SETPOINTS/S4 ELEMENTS/NEUTRAL OC/W1 NTRL TIME OC/W1 NEUTRAL TIME OC PICKUP

Since current is being introduced into one phase only, the input current signal is equal to the $3 I_{0}$ signal used by the element.
3. When the element operates, check that the TRIP, PICKUP and PHASE LEDs are on and the following message is displayed:

```
|| LATCHED (OPERATED)
II W1 Ntrl Time OC
```

4. Reduce the current until the element resets. The reset level should be $97 \%$ of the operate level. When the element resets, the TRIP and message indicators should remain on if the TARGET was selected as latched. Otherwise only the TRIP indicator remains on.
5. Reset indicators and clear messages.

## c) OPERATING TIME

Using a table like the one shown below, select 3 or 4 values of current multiples at which timing is to be measured. Enter the expected operating times from the timing curve applied in the settings. Using the setup in Figure 10-9: GENERAL TEST SETUP on page 10-21 and the Interval Timer enabled, set the current level to the desired value and apply suddenly by closing the double-pole switch. Record the operate time and compare to the expected value. Repeat for all desired values of current.

| CURRENT <br> MULTIPLE | NOMINAL <br> TIME | MEASURED <br> TIME |
| :---: | :---: | :---: |
| 1.5 |  |  |
| 3 |  |  |
| 5 |  |  |
|  |  |  |

## d) RESET TIME

A precise measurement of the reset time requires a relay test set capable of dynamic operation, with three sequenced stages, each with programmable current levels and time duration, and flexible external contact triggering. To perform such a test, contact GE Power Management for detailed test instructions.

A simple verification of the reset mode selected under:

## SETPOINTS/S4 ELEMENTS/NEUTRAL OC/W1 NTRL TIME OC/W1 NEUTRAL TIME OC RESET

is obtained using the setup shown in Figure 10-9: GENERAL TEST SETUP on page 10-21. The test consists of repetitive operating time measurements in quick succession. If the reset is set for INSTANTANEOUS, the operating time is always equal to the nominal time derived from the selected curve. If the reset is set as LINEAR, the operating time varies as a function of the time between successive applications of current. The variations in operating time are easier to detect if this test is performed at current multiples of 2 to 3 times the pickup level.

## e) WINDING \#2 OR WINDING \#3 ELEMENTS

Since the Winding 2 and 3 elements can be set with completely different parameters than the Winding 1 elements, it is necessary to repeat the full set of tests described above for each winding. To test Winding 2 elements, disable all protection elements except for W2 NEUTRAL TIME OVERCURRENT. Connect the current signal to $\mathrm{X}=\mathrm{H} 4$ and $\mathrm{Y}=\mathrm{G} 4$ and repeat tests in this section. To test Winding 3 elements, disable all protection elements except for W3 NEUTRAL TIME OVERCURRENT. Connect the current signal to $\mathrm{X}=\mathrm{H} 7$ and $\mathrm{Y}=\mathrm{G} 7$ and repeat the tests in this section.

The blocking from logic input, if enabled, can be tested as described in earlier tests for other elements.

This procedure verifies that the Neutral Instantaneous Overcurrent performance is as per the in-service settings. Settings for these elements are found under:

## SETPOINTS/S4 ELEMENTS/NEUTRAL OC/W1 NTRL INST OC 1/

If the relay settings require testing at current multiples of several times the rated CT secondary value, do not leave the current signal on for more than a few seconds.

## a) WINDING \#1 ELEMENT

To ensure that only the Neutral Instantaneous Overcurrent 1 element operates the trip relays (and any other output relays) selected by the logic, disable all protection features except Neutral Instantaneous Overcurrent 1. Use the general test setup shown in Figure 10-9: GENERAL TEST SETUP on page 10-21.

Connect the current supply to terminals $\mathrm{X}=\mathrm{H} 1$ and $\mathrm{Y}=\mathrm{G} 1$ to test the Winding 1 A -phase element. Monitor the appropriate output relays as per the relay FlexLogic settings.
b) PICKUP LEVEL

1. With the interval timer disabled, apply the current signal and increase its magnitude until the trip relays (and all the selected auxiliary relays) operate. Compare the measured operating level against the value in:

SETPOINTS/S4 ELEMENTS/NEUTRAL OC/W1 NTRL INST OC 1/W1 NEUTRAL INST OC 1 PICKUP
2. Check that, when the element operates, the TRIP and PICKUP indicators are on and the following message is displayed:

```
|| LATCHED (OPERATED)
|| W1 Ntrl Inst OC 1
```

3. Reduce the current until the element resets. The reset level should be $97 \%$ of the operate level. When the element resets, the TRIP and message indicators should remain on if the TARGET was selected as latched. Otherwise only the TRIP indicator should stay on.
4. Reset indicators and clear messages.
c) OPERATING TIME

With the setup shown in Figure 10-9: GENERAL TEST SETUP on page 10-21 and the Interval Timer enabled, set the current level to 1.5 times the operate level of the element and apply suddenly by closing the doublepole switch. Record the operate time and compare to the value in:

## SETPOINTS/S4 ELEMENTS/NEUTRAL OC/W1 NTRL INST OC 1/W1 NEUTRAL INST OC 1 DELAY

d) WINDING 2 AND 3 ELEMENTS


Only two Neutral Instantaneous Overcurrent 1 elements can be in service simultaneously.

Because the Winding 2 and 3 elements can be set with completely different parameters than the Winding 1 elements, it is necessary to repeat the full set of tests described in this section for each winding.


The blocking from logic input, if enabled, can be tested as described in earlier tests for other elements.

The Neutral Instantaneous Overcurrent 2 elements are identical to the Neutral Instantaneous Overcurrent 1 elements. Consequently, the same test procedure can be used to verify their correct operation. Disable all protection features except Neutral Instantaneous Overcurrent 2. Follow the steps in Section 10.6.8: NEUTRAL INSTANTANEOUS OVERCURRENT 1 on page 10-26, making the appropriate changes for the display indications and output relays operated by the Neutral Instantaneous Overcurrent 2 elements.
10.6.10 GROUND TIME OVERCURRENT

This procedure verifies that the Ground Time Overcurrent performance matches the in-service settings. Since these elements can be assigned a multitude of timing curves, a table of expected operating times versus applied current should be prepared prior to testing. The ground element measures the current signal connected to the ground current input CT, H10 and G10 or F12 and E12. Refer to Section 5.9: TIME OVERCURRENT CURVES on page 5-90 for information on timing curves. There can only be one or two Ground Time Overcurrent elements in service at the same time.

If the relay elements are set for the "Linear" reset characteristic when measuring the operating times, ensure there is sufficient time between test current injections for the element to reset fully. Otherwise, erroneous timing measurements will be obtained.

The settings for these elements will be found under:

## SETPOINTS/S4 ELEMENTS/GROUND OC/W1 GND TIME OC/...

a) WINDING 1 ELEMENT

To ensure that only the Ground Time Overcurrent element operates the trip relays (and any other output relays) selected by the logic, disable all protection features except Ground Time Overcurrent. Use the general test setup shown in Figure 10-9: GENERAL TEST SETUP on page 10-21.

Connect the current supply to terminals $\mathrm{X}=\mathrm{H} 10$ and $\mathrm{Y}=\mathrm{G} 10$ to test the Winding 1 ground element. Monitor the appropriate output relays as per the relay FlexLogic settings.

## b) PICKUP LEVEL

1. With the interval timer disabled, apply the current signal and slowly increase its magnitude until the trip relay (and all the selected auxiliary relays) operate.
2. If the relay has a very inverse time characteristic, it is easier and more accurate to increase the current far above the pickup level until the trip relay operates and then reduce the current to just above the operate level. Then slowly reduce the current below the operate level and observe for a reset action on the trip relay. This reset level for the current should be approximately $98 \%$ of the pickup level. Once the relay drops out, slowly increase the current until the trip contact closes. The operate level should correspond to the pickup setting in:

## SETPOINTS/S4 ELEMENTS/GROUND OC/W1 GND TIME OC/W1 GROUND TIME OC PICKUP

3. When the element operates, check that the TRIP, GROUND and PICKUP LEDs are on and the following message is displayed:
```
|| LATCHED (OPERATED):
|| W1 Gnd Time OC
```

4. Reduce the current until the element resets. The reset level should be $97 \%$ of the operate level. When the element resets the TRIP and message indicators should remain on if the TARGET was selected as latched. Otherwise, only the TRIP indicator should remain on.
5. Reset indicators and clear messages.

## c) OPERATING TIME

Using a table like the one shown blow, select 3 or 4 values of current multiples at which the timing is to be measured. Enter the expected operating times from the timing curve applied in the settings. Using Figure 10-9: GENERAL TEST SETUP on page 10-21 with the Interval Timer enabled, set the current level to the desired value and apply suddenly by closing the double-pole switch. Record the operate time and compare to the expected value. Repeat for the all the desired values of current.

| CURRENT <br> MULTIPLE | NOMINAL <br> TIME | MEASURED <br> TIME |
| :---: | :---: | :---: |
| 1.5 |  |  |
| 3 |  |  |
| 5 |  |  |
|  |  |  |

## d) RESET TIME

A precise measurement of the reset time requires a relay test set capable of dynamic operation, with three sequenced stages, each with programmable current levels and time duration, and flexible external contact triggering. To perform such a test, contact GE Power Management for detailed test instructions.
A simple verification of the reset mode selected under:

## SETPOINTS/S4 ELEMENTS/GROUND OC/W1 GND TIME OC/W1 GROUND TIME OC RESET

is obtained using the setup in Figure 10-9: GENERAL TEST SETUP on page 10-21. The procedure consists of repetitive operating time measurements in quick succession. If the reset is selected for Instantaneous, the operating time always equals the nominal time derived from the selected curve. If the reset is selected as Linear, the operating time varies as a function of the time between successive applications of the current signal. If this test is performed at current multiples of 2 to 3 times the pickup level, the variations in operating time are easier to detect.
e) WINDING 2 OR 3 ELEMENTS

Because the second Ground Time Overcurrent element could be set with completely different parameters than the element for the first winding, it is necessary to repeat the full set of tests described above for each winding.
To test the second element, disable all protection elements except for the W2 GROUND TIME OVERCURRENT (or W3 GROUND TIME OVERCURRENT) element. Connect the current signal to $X=F 12$ and $Y=E 12$. Repeat all the tests described for the Winding 1 Ground Time Overcurrent element in this section.


The blocking from logic input, if enabled, can be tested as described in earlier tests for other elements.

NOTE
10.6.11 GROUND INSTANTANEOUS OVERCURRENT 1

This procedure verifies that the Ground Instantaneous O/C performance matches the in-service settings. Settings for these elements are found under:

## SETPOINTS/S4 ELEMENTS/GROUND OC/W1 GND INST OC 1/...

If your relay settings require you to test at current multiples of several times the rated CT secondary value do not leave the current signal on for more than a few seconds.

## a) WINDING 1 ELEMENT

To ensure only the Ground Instantaneous Overcurrent 1 element operates the trip relays (and any other output relays) selected by the logic, disable all protection features except Ground Instantaneous Overcurrent 1. Use the general test setup shown in Figure 10-9: GENERAL TEST SETUP on page 10-21.

Connect the current supply to terminals $X=H 10$ and $Y=G 10$ to test the Winding 1 element. Monitor the appropriate output relays as per the relay FlexLogic settings.
b) PICKUP LEVEL

1. With the interval timer disabled, apply the current signal and increase its magnitude until the trip relay (and all the selected auxiliary relays) operate. Compare the measured operating level against the setpoint:

SETPOINTS/S4 ELEMENTS/GROUND OC/W1 GND INST OC 1/W1 GND INST OC 1 PICKUP
2. When the element operates, check that the TRIP and MESSAGE indicators are flashing and the following message is displayed:

```
|| LATCHED (OPERATED):
|| W1 Gnd Inst OC 1
```

3. Reduce the current until the element resets. The reset level should be $97 \%$ of the operate level. When the element resets the TRIP, GROUND and message indicators should remain on if the TARGET was selected as latched. Otherwise, only the TRIP indicator should stay on.
4. Reset indicators and clear messages.

## c) OPERATING TIME

Using the setup shown in Figure 10-9: GENERAL TEST SETUP on page 10-21 with the Interval Timer enabled, set the current level to 1.5 times the element operate level and apply suddenly by closing the doublepole switch. Record the operate time and compare to the setting value in:

## SETPOINTS/S4 ELEMENTS/GROUND OC/W1 GND INST OC 1/W1 GND INST OC 1 DELAY

d) WINDING 2 OR ELEMENT


## Only two Ground Instantaneous Overcurrent 1 elements can be in service simultaneously.

Because the Winding 2 and 3 elements can be set with completely different parameters than the Winding 1 elements, it is necessary to repeat the full set of tests described in this section for each winding.


The blocking from logic input, if enabled, can be tested as described in earlier tests for other elements.
NOTE
10.6.12 GROUND INSTANTANEOUS OVERCURRENT 2

The Ground Instantaneous Overcurrent 2 elements are identical to the Ground Instantaneous Overcurrent 1 elements. Consequently, the same test procedure may be used to verify their correct operation. Disable all protection features except Ground Instantaneous Overcurrent 2. Make the appropriate changes for the display indications and output relays operated by the Ground Instantaneous Overcurrent 2 elements.

This procedure verifies that the Restricted Ground Fault performance matches the in-service settings. The ground element measures the current signal connected to the ground current input CT, H10 and G10 or F12 and E12. The neutral $\left(3 I_{0}\right)$ current is calculated from the vector sum of the three phase currents. Injecting current into one phase automatically produces a neutral current (i.e. $3 I_{0}=I_{A}$ ). Settings for these elements are found under:

## SETPOINTS/S4 ELEMENTS/RESTRICTED GROUND/W1 RESTD GND FAULT/...

a) WINDING \#1 ELEMENT

To ensure that only the Restricted Ground Fault element operates the trip relays (and any other output relays selected by the logic) disable all protection features except Restricted Ground Fault.

Using a current supply as shown in the figure below, connect the $I_{1}$ current source to terminals H 1 and G 1 for the Winding 1 phase current element and $I_{2}$ to terminals G10 and H 10 as shown for the ground current element. Monitor the appropriate output relays as per the relay FlexLogic settings.


Figure 10-10: RESTRICTED GROUND TEST SETUP

## b) PICKUP LEVEL

1. With the interval timer disabled, apply the current signal feeding the phase current element and increase its magnitude slowly until the trip relay, and all the selected auxiliary relays, operate. The operate level should correspond to the pickup setting in:

## SETPOINTS/S4 ELEMENTS/RESTRICTED GROUND/W1 RESTD GND FAULT/W1 RESTD GND FAULT PICKUP

2. When the element operates, check that the TRIP, GROUND and PICKUP LEDs are on and the following message is displayed:

II LATCHED (OPERATE):
II W1 Restd Gnd Fault
3. Reduce the current until the element resets. The reset level should be $97 \%$ of the operate level. When the element resets, the TRIP and message indicators should remain on if the TARGET was selected as latched. Otherwise, only the TRIP indicator should remain on.
4. Reset indicators and clear messages.

## c) OPERATING TIME

Select 3 or 4 delay times at which the timing is to be measured. With the Interval Timer enabled, set the current level to the desired value and apply suddenly by closing the double-pole switch. Record the operate time and compare to the expected value. Repeat for the all the desired values of current.
d) SLOPE

1. To measure the slope, connect current signals to the relay as shown in Figure 10-10: RESTRICTED GROUND TEST SETUP on page 10-30.
2. Inject the $I_{1}$ current such that the ground differential pickup value divided by the $I_{1}$ current is less than the slope setting. Set $I_{2}=0 \mathrm{~A}$. The element will operate as since the current appears as ground differential.
3. The slope is calculated from the values of $I_{\text {ground differential }}$ and $I_{\max }$ as shown below:

$$
\% \text { slope }=\frac{I_{\text {ground differential }}}{I_{\max }} \times 100 \%
$$

$I_{\text {max }}$ represents the maximum phase current for the winding being measured.
4. As $I_{2}$ is increased, the element will reset when the percentage of slope drops below the slope setting. Slowly increase $I_{2}$ until the element operates again. Calculate the slope at this point.
5. Decrease the slope setting to $0 \%$ then continue to increase the $I_{2}$ current until the element resets. Slowly increase $I_{2}$ until the element operates again.
6. The reset level should be $97 \%$ of the operate level. When the element resets, the TRIP and message indicators should remain on if the TARGET was selected as latched. Otherwise only the TRIP indicator should remain on.

## e) WINDING 2 OR 3 ELEMENTS

Since the second Restricted Ground Fault element can be set with completely different parameters than the first element winding, it is necessary to repeat the full set of tests described in this section for each winding.

To test the second element, disable all protection elements except for the W2 (or W3 as appropriate) Restricted Ground Fault element. Connect the ground current signal to F12 and E12. Repeat all the tests described for the Winding 1 element in this section.

10.6.14 NEGATIVE SEQUENCE TIME OVERCURRENT

This procedure verifies that the Negative Sequence Time Overcurrent performance matches the in-service settings. Since these elements can have any one of a multitude of timing curves, a table of expected operating times versus applied current should be prepared prior to testing the elements. The negative-sequence element measures the derived negative-sequence component of the phase current signals connected to the phase input CTs. Refer to Section 5.9: TIME OVERCURRENT CURVES on page 5-90 for additional information on timing curves.
If the relay elements are set for Linear reset characteristic when measuring the operating times, ensure that there is sufficient time between test current injections for the element to reset fully. Otherwise, erroneous timing measurements will be obtained.

Settings for these elements are found under:
SETPOINTS/S4 ELEMENTS/NEG SEQ OC/W1 NEG SEQ TIME OC/...

## a) WINDING \#1 ELEMENT

To ensure that only the Negative Sequence Time Overcurrent element operates the trip relays (and any other output relays selected by the logic) disable all protection features except Negative Sequence Time Overcurrent. Use the general test setup shown in Figure 10-9: GENERAL TEST SETUP on page 10-21.
Connect the current supply to terminals $\mathrm{X}=\mathrm{H} 1$ and $\mathrm{Y}=\mathrm{G} 1$ to test the Winding 1 negative-sequence element. Monitor the appropriate output relays as per the relay FlexLogic settings.

## b) PICKUP LEVEL

1. With the interval timer disabled, apply the current signal and slowly increase its magnitude until the trip relay and all selected auxiliary relays operate. If the relay has a very inverse time characteristic, it is easier and more accurate to increase the current far above the pickup level until the trip relay operates then reduce the current to just above the operate level. Then, slowly reduce the current below the operate level and observe for a reset action on the trip relay. This reset level for the current should be approximately $98 \%$ of the pickup level. Once the relay drops out, slowly increase the current until the trip contact closes. The operate level should correspond to the pickup setting:

## SETPOINTS/S4 ELEMENTS/NEG SEQ OC/W1 NEG SEQ TIME OC/W1 NEG SEQ TIME OC PICKUP



With current applied to a single phase, the negative sequence current component is calculated from:

$$
I_{\text {neg seq }}=\frac{1}{3} \times I_{\text {phase }}
$$

Hence, the phase current will be three times the pickup setting.
2. Check that, when the element operates, the TRIP and PICKUP LEDs are on and the following message is displayed:

```
|| LATCHED (OPERATED):
II W1 Neg Seq Time oc
```

3. Reduce the current until the element resets. The reset level should be $97 \%$ of the operate level. When the element resets the TRIP and message indicators should remain on if the TARGET was selected as latched. Otherwise only the TRIP indicator remains on.
Reset indicators and clear messages.

## c) OPERATING TIME

Using a table like the one shown below, select 3 or 4 values of current multiples at which the timing is to be measured. Enter the expected operating times from the timing curve applied in the settings. Using the setup in Figure 10-9: GENERAL TEST SETUP on page 10-21 with the Interval Timer enabled, set the current level to the desired value (taking into account the relationship mentioned above) and apply suddenly by closing the double-pole switch. Record the operate time and compare to the expected value. Repeat for all desired values of current.

| CURRENT <br> MULTIPLE | NOMINAL <br> TIME | MEASURED <br> TIME |
| :---: | :---: | :---: |
| 1.5 |  |  |
| 3 |  |  |
| 5 |  |  |
|  |  |  |

d) RESET TIME

A simple verification of which reset mode, selected with the following setpoint:

## SETPOINTS/S4 ELEMENTS/NEG SEQ OC/W1 NEG SEQ TIME OC/W1 NEG SEQ TIME OC RESET

can be obtained using the simple test setup in Figure 10-9: GENERAL TEST SETUP on page 10-21. The procedure consists of repetitive operating time measurements in quick succession. If the reset is selected for Instantaneous, the operating time is always equal to the nominal time derived from the selected curve. If the reset is selected as Linear, the operating time varies as a function of the time between successive applications of the current signal. If this test is performed at current multiples of 2 to 3 times the pickup level, the variations in operating time are easier to detect.

## e) WINDINGS 2 AND 3 ELEMENTS

Because the Negative Sequence Time Overcurrent elements on Windings 2 and/or 3 can be set with completely different parameters than those for the first element, it is necessary to repeat the full set of tests described in this section for each winding.

To test these elements, disable all protection elements except for W2 Negative Sequence Time Overcurrent. Connect the current signal to $\mathrm{X}=\mathrm{H} 4$ and $\mathrm{Y}=\mathrm{G} 4$. Repeat all the tests described for the Winding \#1 element in this section. For Winding 3, connect the current signal to $\mathrm{X}=\mathrm{H} 7$ and $\mathrm{Y}=\mathrm{G} 7$.


The blocking from logic input, if enabled, can be tested as described in earlier tests for other elements.

NOTE
10.6.15 NEGATIVE SEQUENCE INSTANTANEOUS OVERCURRENT

This procedure verifies that the Negative Sequence Instantaneous Overcurrent performance matches the inservice settings. Settings for these elements are found under:

## SETPOINTS/S4 ELEMENTS/NEG SEQ OC/W1 NEG SEQ INST OC/...

If the relay settings require testing at current multiples of several times the rated CT secondary value, do not leave the current signal on for more than a few seconds.
a) WINDING 1 ELEMENT

To ensure that only the Negative Sequence Instantaneous Overcurrent element operates the trip relays (and any other output relays selected by the logic), disable all protection features except Negative Sequence Instantaneous Overcurrent. Use the general test setup in Figure 10-9: GENERAL TEST SETUP on page 10-21.

Connect the current supply to terminals $\mathrm{X}=\mathrm{H} 1$ and $\mathrm{Y}=\mathrm{G} 1$ to test the Winding 1 element. Monitor the appropriate output relays as per the relay FlexLogic settings.

## b) PICKUP LEVEL

1. With the interval timer disabled, apply the current signal and increase its magnitude until the trip relay and all selected auxiliary relays operate. Compare the measured operating level against the relay settings in:

## SETPOINTS/S4 ELEMENTS/NEG SEQ OC/W1 NEG SEQ INST OC/W1 NEG SEQ INST OC PICKUP

With current applied to a single phase, the negative sequence current component is calculated from:

$$
I_{\text {neg seq }}=\frac{1}{3} \times I_{\text {phase }}
$$

Hence, the phase current will be three times the pickup setting.
2. When the element operates, check that the TRIP and PICKUP LEDs are on and the following is displayed:

```
|| LATCHED (OPERATED):
| W1 Neg Seq Inst OC
```

3. Reduce the current until the element resets. The reset level should be $97 \%$ of the operate level. When the element resets, the TRIP and message indicators should remain on if the TARGET was selected as latched. Otherwise, only the TRIP indicator should remain on.
4. Reset indicators and clear messages.
c) OPERATING TIME

Using the setup in Figure 10-9: GENERAL TEST SETUP on page 10-21 with the Interval Timer enabled, set the current level to 1.5 times the operate level of the element and apply suddenly by closing the double-pole switch. Record the operate time and compare to the setting under:

## SETPOINTS/S4 ELEMENTS/NEG SEQ OC/W1 NEG SEQ INST OC/W1 NEG SEQ INST OC DELAY

d) WINDING 2 AND 3 ELEMENTS

Because the Winding 2 and 3 elements can be set with completely different parameters than the element for Winding 1, it is necessary to repeat the full set of tests described for the Winding 1 element in this section.
Connect the current supply to terminals $\mathrm{X}=\mathrm{H} 4$ and $\mathrm{Y}=\mathrm{G} 4$ to test the Winding 2 element. Use $\mathrm{X}=\mathrm{H} 7$ and $\mathrm{Y}=\mathrm{G} 7$ for the Winding 3 element.

The blocking from logic input, if enabled, can be tested as described in earlier tests for other elements.

NOTE
10.6.16 FREQUENCY ELEMENTS

The power system frequency is measured from the voltage input if it has been enabled. If there is no voltage input, it is measured from the phase A Winding \#1 current signal. These tests require a variable-frequency current source for relays without a voltage input and a variable-frequency voltage and current source for relays with a voltage input. Connections are shown in the figure below. Only perform tests specific to the relay model.

The underfrequency, overfrequency, and frequency decay elements are all supervised by optional adjustable minimum current and minimum voltage level detectors. When testing the performance of these elements on a 745 with the voltage input enabled, it may be necessary to inject a current signal into Winding 1 phase A if the current supervision is enabled, or else the detectors will not operate.


Figure 10-11: FREQUENCY ELEMENT TESTING

## a) PRELIMINARIES

Disable all protection functions except the Underfrequency 1 function. Verify that settings match the in-service requirements. Settings can be entered or modified under:

## SETPOINTS/S4 ELEMENTS/FREQUENCY/UNDERFREQUENCY 1/...

b) VOLTAGE INPUT FUNCTION (VOLTAGE INPUT ENABLED)

1. Using the variable-frequency voltage/current source connected to terminals C11 and C12 for the voltage signal and H1 and G1 for the current signal, set the frequency to 60.00 Hz (or 50.00 Hz for 50 Hz systems) and the voltage amplitude to the rated VT secondary voltage.
2. Set the current amplitude to rated CT secondary. Monitor the appropriate trip and auxiliary relays. Reset all alarms and indications on the relay. The relay display should remain with no trip indications.
3. Slowly decrease the frequency until the output relay(s) operate. Check that the operation took place at the selected frequency setting.
4. As the frequency is varies, verify that the correct system frequency is displayed under:

## ACTUAL VALUES/A2 METERING/FREQUENCY/SYSTEM FREQUENCY

5. Slowly reduce the voltage and note the voltage at which the output relay(s) reset. Check that this dropout voltage is approximately the value of voltage supervision set under.

## SETPOINTS/S4 ELEMENTS/FREQUENCY/UNDERFREQUENCY 1/MINIMUM OPERATING VOLTAGE



If voltage supervision is set to 0.0 , then the element remains operated until the voltage is decreased below approximately $2 \%$, the level at which measurements become unreliable.
6. Slowly increase the voltage and check that the element operates when the voltage reaches $2 \%$ above the supervision level. Return the voltage to nominal value.
7. Slowly decrease the current until the element resets. Check that this dropout current level is equal to the setting:

## SETPOINTS/S4 ELEMENTS/FREQUENCY/UNDERFREQUENCY 1/MINIMUM OPERATING CURRENT

If current sensing is disabled in the element, it will remain operated with current reduced to 0.0 A .

## NOTE

8. Slowly increase the current and ensure the element operates when the current reaches a value just above the setting. Set the current to rated CT secondary.
9. Check that the TRIP and PICKUP LEDs are on and the following trip message is displayed:
|| LATCHED (OPERATED) :
|| Underfrequency 1
10. Slowly increase the frequency until the PICKUP indicator and output relays reset. Note the dropout level, which should be the pickup plus 0.03 Hz . Check that the TRIP indicator is still on. The trip message will stay on if the TARGET setting is Latched; if set to Self-resetting, the message will reset when frequency is above the setpoint.
11. For timing tests, the signal generator must be capable of triggering into step-wise changing of frequency or ramping down to a pre-selected frequency in only a few milliseconds. Connect the Signal Source and
12. Set the voltage to rated VT secondary value, the current to rated CT secondary, and the pre-trigger frequency to the nominal frequency ( 60 or 50 Hz ). If current sensing is not enabled, it is not necessary to connect the current signal.
13. Set the post-trigger to 0.5 Hz below the setting for Underfrequency 1. Reset all targets and relays, if necessary. Reset the timer.
14. Initiate the frequency step and timer start. The Interval Timer will record the operating time of element. Compare this time to the setpoint value:

## SETPOINT/S4 ELEMENTS/FREQUENCY/UNDERFREQUENCY 1 DELAY

15. Provided that the operate times are not scattered over a wide range, it may be desirable to repeat this test several times and average the results. If there is a wide scatter, verify the test setup and ensure the signal source behaves in a consistent manner.

## c) CURRENT INPUT FUNCTION (VOLTAGE INPUT DISABLED)

If the Frequency elements are using the A-phase Winding 1 current signal as a source, verify the operation of the element using the instructions below.

1. Using the variable-frequency current source connected to terminals H 1 and G 1 with no voltage connections, set the frequency to 60.00 Hz (or 50.00 Hz ) and the amplitude to the rated CT secondary current. Monitor the appropriate trip and auxiliary relays. Reset all alarms and indications. The display should remain unchanged with no trip indications.
2. Slowly decrease the frequency until the output relay(s) operate. Check that the frequency at which operation took place is the selected frequency setting.
3. Slowly reduce the current. Note the current at which the output relay(s) reset. Check that this dropout current is the minimum operating current selected in the settings.


If current sensing is not enabled, then the element will continue working all the way down to a current level of $0.02 \times$ CT A.
4. Increase the current back to nominal. Verify that the relay(s) operate.
5. Check that the TRIP and PICKUP LEDs are on and the following trip message is displayed:
|| LATCHED (OPERATED):
|| Underfrequency 1
6. Slowly increase the frequency until the PICKUP indicator and output relays reset. Note the dropout level, which should be the pickup plus 0.03 Hz . Check that the TRIP indicator is still on. The trip message remains on if the TARGET setting is Latched; if set to Self-resetting, the message resets when frequency is above the setpoint.
7. For timing tests, the signal generator must be capable of triggering into step-wise changing of frequency or ramping down to a pre-selected frequency in only a few milliseconds. Connect the Signal Source and Timer Start triggers as shown in Figure 10-11: FREQUENCY ELEMENT TESTING on page 10-34.
8. Set the current to rated CT secondary value, no voltage connection, and the pre-trigger frequency to the nominal frequency ( 60 or 50 Hz ).
9. Set the post-trigger to 0.5 Hz below the Underfrequency 1 setting. If necessary, reset all targets and relays. Reset the timer.
10. Initiate the frequency step and timer start. The Interval Timer will record the operating time of element. Compare this time to setting under:

## SETPOINT/S4 ELEMENTS/FREQUENCY/UNDERFREQUENCY 1 DELAY

11. Provided that the operate times are not scattered over a wide range, it may be desirable to repeat this test several times and average the results. If there is a wide scatter, verify the test setup and ensure the signal source behaves in a consistent manner.

The blocking from logic input, if enabled, can be tested as described in earlier tests for other elements.

NOTE
10.6.18 UNDERFREQUENCY 2

1. Disable all protection functions except the Underfrequency 2 function.
2. Verify that settings match in-service requirements. Enter/modify settings and logic under:

## SETPOINTS/S4 ELEMENTS/FREQUENCY/UNDERFREQUENCY 2/...

3. Repeat the appropriate steps of Section 10.6.17: UNDERFREQUENCY 1 on page 10-35 for this element. The results must be compared to the settings for the Underfrequency 2 element.
10.6.19 OVERFREQUENCY
a) PRELIMINARIES

Disable all protection functions except Overfrequency. Verify that settings match in-service requirements. Overfrequency settings are modified under:

## SETPOINTS/S4 ELEMENTS/FREQUENCY/OVERFREQUENCY/...

b) VOLTAGE INPUT FUNCTION (VOLTAGE INPUT ENABLED)

1. Using the variable-frequency voltage/current source connected to terminals C 11 and C 12 for the voltage signal and H1 and G1 for the current signal, set the frequency to 60.00 Hz (or 50.00 Hz ) and the voltage amplitude to the rated VT secondary voltage. Set the current amplitude to rated CT secondary. Monitor the appropriate trip and auxiliary relays. Reset all alarms and indications on the relay. The 745 display should remain unchanged with no trip indications.
2. Slowly increase the frequency until the output relay(s) operate. Check that the frequency at which operation took place is the selected frequency setting. As the frequency is varied, verify that the display indicates the correct value of system frequency under:

## ACTUAL VALUES/A2 METERING/FREQUENCY/SYSTEM FREQUENCY

3. Slowly reduce the voltage. Note the voltage at which the output relay(s) reset. Check that this dropout voltage is equal to the voltage level set under:

## SETPOINTS/S4 ELEMENTS/FREQUENCY/OVERFREQUENCY/MINIMUM OPERATING VOLTAGE

Note that this level can be set down to 0.00 A , in which case the element remains operated to a voltage level of approximately $2 \%$ of nominal.
4. Slowly increase the voltage and check that the element operates when the voltage reaches $2 \%$ above the set level. Return the voltage to nominal value.
5. Slowly decrease the current until the element resets. Check that this dropout current level is equal to the setting under:

## SETPOINTS/S4 ELEMENTS/FREQUENCY/OVERFREQUENCY/MINIMUM OPERATING CURRENT

If current sensing has not been enabled for this element, the element remains operated for current levels down to 0.00 A .
6. Slowly increase the current and check that the element operates when the current reaches a value just above the setting. Set the current to rated CT secondary.
7. Check that the TRIP and PICKUP LEDs are on and the following trip message is displayed:

```
|| LATCHED (OPERATED):
Overfrequency
```

8. Slowly decrease the frequency until the PICKUP indicator and output relays reset. Note the dropout level, which should be the pickup minus 0.03 Hz . Check that the TRIP indicator is still on. The trip message remains on if the TARGET setting is Latched; if set to Self-resetting, the message resets when frequency is below the setpoint.
9. For timing tests, the signal generator must be capable of triggering into step-wise changing of frequency or ramping down to a pre-selected frequency in only a few milliseconds. Connect the Signal Source and Timer Start triggers as shown in Figure 10-11: FREQUENCY ELEMENT TESTING on page 10-34.
10. Set the voltage to rated VT secondary value, the current to rated CT secondary, and the pre-trigger frequency to the nominal frequency ( 60 or 50 Hz ). The current signal is not required if current sensing has not been enabled for this element.
11. Set the post-trigger to 0.5 Hz above the setting of the Overfrequency element. If necessary, reset all targets and relays. Reset the timer.
12. Initiate the frequency step and timer start. The Interval Timer records the operating time of element. Compare this time to setting under:

## SETPOINT/S4 ELEMENTS/FREQUENCY/OVERFREQUENCY DELAY

13. Provided that the operate times are not scattered over a wide range, it may be desirable to repeat this test several times and average the results. If there is a wide scatter, verify the test setup and ensure the signal source behaves in a consistent manner.

## c) CURRENT INPUT FUNCTION (VOLTAGE INPUT DISABLED)

If the voltage input is disabled, the Frequency elements use the A-phase Winding \#1 current signal as a source. Verify the operation of the element using the procedure below.

1. Using the variable-frequency current source connected to terminals H 1 and G 1 , no voltage connections, set the frequency to 60.00 Hz (or 50.00 Hz ) and the amplitude to the rated CT secondary current. Monitor the appropriate trip and auxiliary relays. Reset all alarms and indications on the relay. The relay display should remain unchanged with no trip indications.
2. Slowly increase the frequency until the output relay(s) operate. Check that the frequency at which operation took place is the selected frequency setting.
3. Slowly reduce the current. Note the current at which the output relay(s) reset. Check that this dropout current is the minimum operating current selected in the settings.

If current sensing has been disabled for this element, then operation continues down to 0.00 A .
4. Increase the current back to nominal. Check that the relay(s) operate.
5. Check that the TRIP and PICKUP LEDs are on and the following trip message is displayed:
|| LATCHED (OPERATED):
II Overfrequency
6. Slowly decrease the frequency until the PICKUP indicator and output relays reset. Note the dropout level, which should be the pickup minus 0.03 Hz . Check that the TRIP indicator is still on. The trip message stays on if the TARGET setting is Latched; if it is Self-resetting, the message resets when frequency is below the setpoint.
7. For timing tests, the signal generator must be capable of triggering into step-wise changing of frequency or ramping down to a pre-selected frequency in only a few milliseconds. Connect the Signal Source and Timer Start triggers as shown in Figure 10-11: FREQUENCY ELEMENT TESTING on page 10-34.
8. Set the current to rated CT secondary value, no voltage connection, and the pre-trigger frequency to the nominal frequency ( 60 or 50 Hz ).
9. Set the post-trigger to 0.5 Hz above the setting of the Overfrequency element. Reset all targets and relays, if necessary. Reset the timer.
10. Initiate the frequency step and timer start. The Interval Timer records the element operating time. Compare this time to the setting:

## SETPOINT/S4 ELEMENTS/FREQUENCY/OVERFREQUENCY DELAY

11. Provided that the operate times are not scattered over a wide range, it may be desirable to repeat this test several times and average the results. If there is a wide scatter, verify the test setup and ensure the signal source behaves in a consistent manner.

The blocking from logic input, if enabled, can be tested as described in earlier tests for other elements.

NOTE
10.6.20 FREQUENCY DECAY RATE 1
a) PRELIMINARIES


A high-quality programmable function generator is required to verify this element. Since the frequency rates of change are measured over a narrow range, the test instrumentation must accurately simulate frequency decay rates without any significant jitter. It is the experience of GE Power Management that some commercial dedicated relay test equipment with built-in frequency ramping functions is not accurate enough to verify the 745 performance.

Disable all protection functions except the Frequency Decay function. Verify that settings match in-service requirements. The settings are entered and modified under:

## SETPOINTS/S4 ELEMENTS/FREQUENCY/FREQUENCY DECAY/...

## b) VOLTAGE INPUT FUNCTION (VOLTAGE INPUT ENABLED)

1. Use a frequency-ramping programmable voltage/current source connected to terminals C 11 and C 12 , for the voltage signal and H1 and G1 for the current signal. Set the frequency to 60.00 Hz (or 50.00 Hz ) and the voltage amplitude to the rated VT secondary voltage. Set the current amplitude to rated CT secondary. (Note: If current sensing has been disabled for this element, the current signal is not required for the tests.) Monitor the appropriate trip and auxiliary relays. Reset all alarms and indications on the relay. The relay display should remain unchanged with no trip indications.
2. Program the function generator to simulate a frequency rate-of-change just above Rate 1. The start frequency should be the nominal frequency of the relay; the end frequency must be below the Frequency Decay Threshold if the relay is to operate. Note that operation occurs if the rate criterion is satisfied and the frequency is below the threshold.
3. Initiate ramping action and verify element operation once the frequency drops below the threshold.
4. Check that the TRIP and PICKUP LEDs are on and the following trip message is displayed:

II LATCHED (OPERATED):
II Free Decay Rate 1
If the target was selected as Latched, the trip LED and the message remain on.
5. Reduce the voltage to below the voltage supervision level set under:

## SETPOINTS/S4 ELEMENTS/FREQUENCY/FREQUENCY DECAY/MINIMUM OPERATING VOLTAGE

6. Repeat ramping action and verify that element does not operate. If the voltage supervision level has been set to 0.00 , the element continues to operate correctly down to approximately $2 \%$ or nominal.
7. Return voltage to nominal value.
8. If current sensing is enabled, set the current level below the Minimum Operating Current value set under:

## SETPOINTS/S4 ELEMENTS/FREQUENCY/FREQUENCY DECAY/MINIMUM OPERATING CURRENT

9. Repeat ramping action and verify that element does not operate.
10. For timing tests, an approximate operate time is obtained if a timer is triggered at the same time as the ramping action and the time interval between the trigger point and the relay operation measured. From that measured time, subtract the time required for the frequency to reach the threshold value.

## c) CURRENT INPUT FUNCTION (VOLTAGE INPUT DISABLED)

1. Using a frequency-ramping programmable voltage/current source connected to terminals H 1 and G 1 for the current signal, set the frequency to 60.00 Hz (or 50 Hz ). Set the current amplitude to rated CT secondary. Monitor the appropriate trip and auxiliary relays. Reset all alarms and indications on the relay. The relay display should remain unchanged with no trip indications.
2. Program the function generator to simulate a frequency rate-of-change just above Rate 1. The start frequency should be the nominal frequency of the relay. The end frequency must be below the Frequency Decay Threshold if the relay is to operate. Note that operation occurs if the rate criterion is satisfied and the frequency is below the threshold.
3. Initiate ramping action and verify that the element operates once the frequency drops below the threshold.
4. Check that the TRIP and PICKUP LEDs are on and the following trip message is displayed:
```
|| LATCHED (OPERATED):
|l Freq Decay Rate 1
```

If the target was selected as Latched, the trip LED and the message remain on.
5. Set the current level to a value below the Minimum Operating Current set under:

## SETPOINTS/S4 ELEMENTS/FREQUENCY/FREQUENCY DECAY/MINIMUM OPERATING CURRENT:

6. Repeat ramping action and verify that element does not operate. If current sensing has been disabled for this element, operation will continue down to a current level of approximately $2 \%$ of nominal.
7. For timing tests, an approximate operate time is obtained if a timer is triggered at the same time as the ramping action and the time interval between the trigger point and the relay operation measured. From that measured time, subtract the time required for the frequency to reach the threshold value. The expected time must be computed using the rate of change and the effect of the time delay set under:

## SETPOINTS/S4 ELEMENTS/FREQUENCY/FREQUENCY DECAY/FREQUENCY DECAY DELAY:

d) FREQUENCY DECAY RATE 2, 3, \& 4

Repeat the above procedure for remainder of decay rate elements, making the necessary changes where appropriate.

The volts-per-hertz operating levels are set in terms of the relay-input voltage divided by the frequency of that voltage.

1. Disable all elements except Volts-per-hertz 1(2). Monitor the appropriate contact. Use the test setup in Figure 10-11: FREQUENCY ELEMENT TESTING on page 10-34 with variable-frequency voltage source.
2. The Volts-per-hertz settings are found under:

## SETPOINTS S4 ELEMENTS / OVEREXCITATION / VOLTS-PER-HERTZ 1(2) /...

3. Apply a voltage starting at 60 Hz and increase the magnitude until the element operates. Reduce the frequency in steps of 5 Hz and repeat the measurement. The element should operate at a consistent value of $\mathrm{V} / \mathrm{Hz}$ equal to the setting of the element.
4. Check that the TRIP and PICKUP LEDs are on and the following trip message is displayed:
\| LATCHED (OPERATED) :
|| Volts-Per-Hertz 1 (2)
5. For timing tests, prepare a table of expected operating time versus applied $\mathrm{V} / \mathrm{Hz}$ signal from the selected timing curve for the element. Using the variable frequency function generator to simulate the different $\mathrm{V} / \mathrm{Hz}$ ratios, apply suddenly to the relay and measure the operating time.
10.6.22 5TH HARMONIC SCHEME

The 5th Harmonic Scheme operates if the 5th harmonic content of any current signal connected to the relay exceeds the threshold setting, for the set time, provided that the level is above the set threshold.

1. Disable all protection functions except the 5th Harmonic function.
2. The 5th Harmonic scheme settings are under:

## SETPOINTS S4 ELEMENTS/OVEREXCITATION/5th HARMONIC LEVEL

3. This test requires a current generator capable of producing a fundamental and 5th harmonic component. Connect the current signal to H 1 and G 1 and set the fundamental component level above the threshold setting.
4. Slowly increase the amplitude of the 5th harmonic component until the element operates. Calculate the ratio of 5 th harmonic to fundamental at which operation occurred and compare this value to the setting of the element.
5. Check that the TRIP, PICKUP (and if selected ALARM) LEDs are on, and the following trip message is displayed:
```
| LATCHED (OPERATED):
|| 5th Harmonic Level
```

6. Reduce the 5th harmonic component until the element resets. The reset level should be $97 \%$ of the operate level. Reset indicators and clear messages.
7. Repeat the above steps with a fundamental current level below the threshold setting. Ensure that the element does not operate.
8. For timing tests, simulate an operating condition as above and apply suddenly to the relay and measure the operating time. The time should be the same as the setting in the element.
10.6.23 INSULATION AGING

## a) PRELIMINARIES

The three elements under the Insulation Aging feature, Hottest-Spot Limit, Aging Factor Limit and Loss of Life Limit, must be tested with a valid set of transformer data programmed into the relay. The ambient temperature must also be programmed (obtained from an RTD or programmed as 12-month averages). The tests consist of simulating transformer loading by applying a current signal to Winding 1 Phase A at the correct frequency.

## b) HOTTEST SPOT LIMIT

The hottest-spot temperature value is a function of load, ambient temperature, and transformer rating. Apply a current to Winding 1 phase A to represent at least a $100 \%$ load on the transformer. Use the actual value

## ACTUAL VALUES/A2 METERING/LOSS OF LIFE/HOTTEST-SPOT WINDING TEMPERATURE

to observe the hottest spot temperature increases gradually. The simulated load to may be increased for a faster temperature rise. When the hottest spot temperature reaches the programmed operating level:

## SETPOINTS/S4 ELEMENTS/INSULATION AGING/HOTTEST-SPOT LIMIT/HOTTEST-SPOT LIMIT PICKUP

the element should operate. Verify all programmed relay operations as per FlexLogic settings. Verify that all the targets and messages are as expected and programmed.

The time delay can be verified with a watch as the delay is normally set in minutes.

## c) AGING FACTOR LIMIT

The Aging Factor value is also a function of load, ambient temperature, and transformer ratings. Apply a current to Winding 1 phase A to represent at least a $100 \%$ transformer load. Use the actual value

## ACTUAL VALUES/A2 METERING/LOSS OF LIFE/INSULATION AGING FACTOR

to observe that the aging factor increases gradually. You may want to increase the simulated load or the simulated or programmed ambient temperature to cause a faster increase. When the aging factor reaches the programmed operating level under:

## SETPOINTS/S4 ELEMENTS/INSULATION AGING/AGING FACTOR LIMIT/AGING FACTOR LIMIT PICKUP

the element should operate. Verify all programmed relay operations as per FlexLogic settings. Verify that all the targets and messages are as expected and programmed.

The time delay can be verified with a watch as the delay is normally set in minutes.

## d) LOSS-OF-LIFE LIMIT

Typical settings for the Loss-of-Life Limit element dictate that either the limit be changed or the initial transformer loss-of-life be changed temporarily. Verification of this function is recommended by programming an initial loss-of-life above the element threshold. The element operates instantly as it has no associated time delay.
10.6.24 TAP MONITOR FAILURE

The tap monitor failure element operates when the sensed resistance is $150 \%$ larger than the programmed values for the monitor circuit. Connect a resistance to simulate the tap changer resistance and increase this resistance until the element operates. Calculate that the resistance at which the element operated is $150 \%$ of the resistance that would be present at the maximum tap position.

Verify all relay, targets and messages for correct operation per programmed values.

The THD settings are under:
SETPOINTS/S4 ELEMENTS/HARMONICS/W1 THD LEVEL/....
a) MINIMUM PICKUP

1. Testing of this element uses with the same setup used in testing the harmonic restraint percent differential elements (see Figure 10-1: TEST SETUP on page 10-3).
2. To test the Winding 1 THD element, connect the composite current signal to terminals H1 and G1. Since the DC component actually consists of a half-wave rectified signal, it contains all even harmonics which the relay measures and operates on. Note that the fundamental component is required to prevent saturation of the input CTs. Monitor the output relays as per the relay FlexLogic assignment.
3. Set the fundamental component to rated CT secondary (1 or 5 A ). Gradually increase the DC component to produce even harmonics until the THD Level element operates. Display the total harmonic content under:

## ACTUAL/A2 METERING/HARMONIC CONTENT/THD/W1(\%fo) THDa:....

4. The displayed value of THD at which operation took place should be the same as the programmed value.
5. Check that the TRIP, PICKUP (and ALARM if selected) LEDs are on and the following trip message displayed:
```
|| LATCHED (OPERATED):
|| W1 THD Level
```

6. Lower the DC component until the element resets. The reset value should be approximately $2 \%$ less than the operate value. Verify that the Phase, Pickup and Alarm LEDs reset if the target function is set to Selfresetting. The trip LED should remain latched.

## b) OPERATING TIME

To measure the basic operating time of this element, preset a fundamental and DC component composite current signal to cause the element to operate. Using the setup of Figure 10-1, apply the current suddenly, at the same time as you trigger the timer. The measured operating time should correspond to the time delay setting for the element.

## c) MINIMUM OPERATING CURRENT

The THD elements will only operate if the amplitude of the fundamental component is above the threshold setting. To verify this threshold, initially set the fundamental component above the threshold, with a harmonic content high enough to cause the element to operate. Now reduce the fundamental component only. This will have for effect to increase the THD level. When the fundamental component reaches a value below the set threshold, the element will reset.

If an RMS-responding meter is used to measure the current signal, the reading is the total value of current. To determine the fundamental component only, use the relay values in ACTUAL VALUES/A2 METERING/CURRENT/W1 RMS CURRENT. These values represent the fundamental component only.

## d) OTHER THD ELEMENTS

A THD element can be programmed for each winding of the transformer. Use the above procedure to verify the element(s) on the other winding(s).
10.7.2 HARMONIC DERATING FUNCTION

Testing of the Harmonic Derating Function requires that accurate transformer parameters such as Load Losses at Rated Load and Winding Resistance be entered. This feature makes use of the Harmonic Derating Factor (HDF) computed by the relay, using the harmonic content of the current signals and the transformer data (refer to IEEE C57.110-1986 for the computation method). Once the derating factor falls below a set value, the 745 can trip and/or alarm.

The harmonic derating settings are under:

## SETPOINTS/S4 ELEMENTS/HARMONICS/W1 (2) HARM DERATING/...

a) OPERATING LEVEL

1. To verify the correct operation of this element, a current signal containing harmonics must be introduced into one phase of the relay. The test setup of Figure 10-1: TEST SETUP on page 10-3 is to accomplish this. Set the fundamental component at rated CT secondary into phase A Winding \#1. Gradually increase the second harmonic component (and the rest of the even harmonics) while displaying the harmonic derating factor under:

## ACTUAL VALUES/A2 METERING/HARMONIC CONTENT/HARMONIC DERATING/HARMONIC DERATING FACTOR

The element should operate when the displayed HDF equals the element setting.
2. Check that the TRIP, PICKUP (and ALARM if selected) LEDs are on, and the following trip message is displayed:

```
|| LATCHED (OPERATED):
II
```

3. Lower the DC component until the element resets. The reset value should be approximately $2 \%$ larger than the operate value. Verify that the Pickup and Alarm LEDs reset if the target function is set to Self-resetting. The trip LED should remain latched.

## b) OPERATING TIME

To measure the basic operating time of this element, preset a fundamental and DC component composite current signal to cause the element to operate. Using the setup of Figure 10-1: TEST SETUP on page 10-3, apply the current suddenly, at the same time the timer is triggered. The measured operating time should correspond to the time delay setting for the element.

The transformer overload element uses the A-phase current of each winding to compute a transformer loading. The computation assumes a rated voltage on the wInding, hence the loading is effectively a percent of rated load current.

The transformer overload settings are under:
SETPOINTS / S4 SETPOINTS/XFORMER OVERLOAD/...
a) OPERATING LEVEL

1. Inject a fundamental-frequency current into phase A of winding \#1. Increase the current signal to a value just above the Transformer Overload Pickup setting (take into account the CT ratio and the rated-MVA phase current to set the current correctly). The element should operate after its set time delay.
2. Check that the TRIP and PICKUP (and ALARM if selected) LEDs are on, and the following trip message is displayed:
|| LATCHED (OPERATED) :
\| Xformer Overload
3. Lower the current until the element resets. The reset value should be approximately $97 \%$ of the operate value. Verify that the Pickup and Alarm LEDs reset if the target function is set to Self-resetting. The trip LED should remain latched.
b) OPERATING TIME

Using the setup in Figure 10-11: FREQUENCY ELEMENT TESTING on page 10-34 with the Interval Timer enabled, set the current level to 1.5 times the operate level of the element and apply suddenly by closing the double pole switch. Record the operate time and compare to the setting under:

## SETPOINTS/S4 ELEMENTS/XFORMER OVERLOAD/TRANSFORMER OVERLOAD DELAY.

The blocking from logic input, if enabled, can be tested as described in earlier tests for other elements.

The procedure outlined in this subsection is explicitly concerned with the 745 relay and does not include the operation/commissioning or placing into service of any equipment external to the 745. Users should have already performed such tests as phasing of CTs, ratio measurement, verification of saturation curve, insulation test, continuity and resistance measurements.

1. Restore all settings and logic to the desired in-service values. Verify against the check list prepared while testing the relay.
2. Upload all the 745 setpoints to a computer file and print for a final inspection to confirm that all setpoints are correct.
3. Set the 745 clock (date and time).
4. Clear all historical values stored in the relay by entering "YES" at the following messages:

## ACTUAL VALUES/A3 EVENT RECORDER/EVENT DATA CLEAR/CLEAR EVENT RECORDER

5. Remove all test connections, supplies, monitoring equipment from the relay terminals and relay panels except for equipment to be used to monitor first transformer energization. Restore all panel wiring to normal except for those changes made intentionally for the first energization (blocking of some tripping functions for example).
6. Perform a complete visual inspection to confirm that the 745 is ready to be placed into service. Ensure that the relay is properly inserted in its case. Energize the relay power supply and verify that the RELAY IN SERVICE indicator is ON, and that the SELF-TEST ERROR indicator is OFF, establishing that the relay is operating normally.

Table 11-1: SETPOINTS PAGE 1 - 745 SETUP

| DESCRIPTION | DEFAULT | USER VALUE |
| :---: | :---: | :---: |
| PREFERENCES |  |  |
| Beeper | Enabled |  |
| Flash Message Time | 4.0 s |  |
| Default Message Timeout | 300 s |  |
| Default Message Intensity | 25 \% |  |
| COMMUNICATIONS |  |  |
| Slave Address | 254 |  |
| COM1 Baud Rate | 19200 Baud |  |
| COM1 Parity | None |  |
| COM1 Hardware | RS485 |  |
| COM2 Baud Rate | 19200 Baud |  |
| COM2 Parity | None |  |
| Front Baud Rate | 19200 Baud |  |
| Front Parity | None |  |
| DNP COMMUNICATIONS |  |  |
| DNP port | None |  |
| DNP Point Mapping | Enabled |  |
| Transmission delay | 0 ms |  |
| Data Link Confirm | Never |  |
| Data Link Confirm Timeout | 1000 ms |  |
| Data Link Confirm Retries | 3 |  |
| Select/Operate Arm Timeout | 10000 ms |  |
| Write Time Interval | 0 min |  |
| Cold Restart Inhibit | Disabled |  |
| RESETTING |  |  |
| Local Reset Block | Disabled |  |
| Remote Reset Signal | Disabled |  |
| CLOCK |  |  |
| IRIG-B Signal Type | None |  |

Table 11-2: S2 SYSTEM SETUP(Sheet 1 of 2)

| DESCRIPTION | DEFAULT | USER VALUE | DESCRIPTION | DEFAULT | USER VALUE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TRANSFORMER |  |  | ONLOAD TAP CHANGER |  |  |
| Nominal Frequency | 60 Hz |  | Winding With Tap Changer | None |  |
| Frequency Tracking | Enabled |  | Number of Tap Positions | 33 |  |
| Phase Sequence | ABC |  | Min. Tap Position Voltage (kV) | 61.0 |  |
| Transformer Type | $\mathrm{Y} / \mathrm{d} 30^{\circ}$ |  | Voltage Increment Per Tap (kV) | 0.50 |  |
| Load Loss at Rated Load | 1250 kW |  | Res. Increment Per Tap (W) | 33 |  |
| Low Voltage Winding Rating | Above 5 kV |  | HARMONIC DERATING |  |  |
| Rated Winding Temp Rise | $65^{\circ} \mathrm{C}$ (oil) |  | Estimation | Disabled |  |
| No-Load Loss (KW) | 125.0 kW |  | FLEXCURVES |  |  |
| Type of Cooling | OA |  | see Table 11-3: FLEXCURVES TABLE on page 11-4 |  |  |
| Rated Top Oil Rise Over Ambient | $10^{\circ} \mathrm{C}$ |  | VOLTAGE INPUT |  |  |
| XFMR THRML capacity | $1.00 \mathrm{kWh} /{ }^{\circ} \mathrm{C}$ |  | Voltage Sensing | Disabled |  |
| Winding Time Constant | 2.00 min . |  | Voltage Input Parameter | W1 Van |  |
| Set Accumulated Loss of Life | $0 \times 10 \mathrm{~h}$ |  | Nominal VT Secondary Voltage | 120.0 V |  |
| WINDING 1 |  |  | VT Ratio | 1000:1 |  |
| Nom. Voltage | 220.0 kV |  | AMBIENT TEMPERATURE |  |  |
| Rated Load | 100.0 MVA |  | Ambient Temperature Sensing | Disabled |  |
| Phase CT Primary | 500 A |  | Ambient RTD Type | 100 W PI . |  |
| Ground CT Primary | 500 A |  | ANALOG INPUT |  |  |
| Series 30 Resistance | 10.700 W |  | Analog Input Name | ANALOG INPUT |  |
| WINDING 2 |  |  | Analog Input Units | "uA" |  |
| Nom. Voltage | 69.0 V |  | Analog Input Range | 0-1 mA |  |
| Rated Load | 100.0 MVA |  | Analog Input Minimum Value | $0<$ Units> |  |
| Phase CT Primary | 1500 A |  | Analog Input Maximum Value | 1000 <Units> |  |
| Ground CT Primary | 1500 A |  | DEMAND METERING |  |  |
| Series 30 Resistance | 2.100 W |  | Current Demand Meter Type | Thermal |  |
| WINDING 3 |  |  | Thermal 90\% Response Time | 15 min . |  |
| Nom. Voltage | 69.0 kV |  | Time Interval | 20 min . |  |
| Rated Load | 100.0 MVA |  |  |  |  |
| Phase CT Primary | 1500 A |  |  |  |  |
| Ground CT Primary | 1500 A |  |  |  |  |
| Series 30 Resistance | 2.100 W |  |  |  |  |

Table 11-2: S2 SYSTEM SETUP(Sheet 2 of 2)

| DESCRIPTION | DEFAULT | USER VALUE |
| :--- | :---: | :---: |
| ANALOG OUTPUT 1 | Disabled |  |
| Function | W1 øA Current |  |
| Value | $4-20 \mathrm{~mA}$ |  |
| Range | 0 A |  |
| Minimum | 1000 A |  |
| Maximum | Disabled |  |
| ANALOG OUTPUT 2 | W1 øB Current |  |
| Function | $4-20 \mathrm{~mA}$ |  |
| Value | 0 A |  |
| Range | 1000 A |  |
| Minimum |  |  |
| Maximum | Disabled |  |
| ANALOG OUTPUT 3 | W1 øC Current |  |
| Function | $4-20 \mathrm{~mA}$ |  |
| Value | 0 A |  |
| Range | 1000 A |  |
| Minimum | Disabled |  |
| Maximum | W1 Loading |  |
| ANALOG OUTPUT 4 | 020 mA |  |
| Function | $100 \%$ |  |
| Value |  |  |
| Range | Minimum |  |
| Maximum |  |  |


| DESCRIPTION |  |  |  |
| :--- | :---: | :---: | :---: |
| DEFAULT |  | USER VALUE |  |
| ANALOG OUTPUT 5 | Disabled |  |  |
| Function | Voltage |  |  |
| Value | $4-20 \mathrm{~mA}$ |  |  |
| Range | 0.00 kV |  |  |
| Minimum | 14.40 kV |  |  |
| Maximum | Disabled |  |  |
| ANALOG OUTPUT 6 | Frequency |  |  |
| Function | $4-20 \mathrm{~mA}$ |  |  |
| Value | 57.00 Hz |  |  |
| Range | 63.00 Hz |  |  |
| Minimum |  |  |  |
| Maximum | Disabled |  |  |
| ANALOG OUTPUT 7 | Tap Position |  |  |
| Function | $4-20 \mathrm{~mA}$ |  |  |
| Value | 1 |  |  |
| Range | 33 |  |  |
| Minimum |  |  |  |
| Maximum |  |  |  |

Table 11-3: FLEXCURVES TABLE

| PICKUP <br> (I/Ipkp) | TRIP TIME (ms) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.03 |  | 2.9 |  | 4.9 |  | 10.5 |  |
| 1.05 |  | 3.0 |  | 5.0 |  | 11.0 |  |
| 1.1 |  | 3.1 |  | 5.1 |  | 11.5 |  |
| 1.2 |  | 3.2 |  | 5.2 |  | 12.0 |  |
| 1.3 |  | 3.3 |  | 5.3 |  | 12.5 |  |
| 1.4 |  | 3.4 |  | 5.4 |  | 13.0 |  |
| 1.5 |  | 3.5 |  | 5.5 |  | 13.5 |  |
| 1.6 |  | 3.6 |  | 5.6 |  | 14.0 |  |
| 1.7 |  | 3.7 |  | 5.7 |  | 14.5 |  |
| 1.8 |  | 3.8 |  | 5.8 |  | 15.0 |  |
| 1.9 |  | 3.9 |  | 5.9 |  | 15.5 |  |
| 2.0 |  | 4.0 |  | 6.0 |  | 16.0 |  |
| 2.1 |  | 4.1 |  | 6.5 |  | 16.5 |  |
| 2.2 |  | 4.2 |  | 7.0 |  | 17.0 |  |
| 2.3 |  | 4.3 |  | 7.5 |  | 17.5 |  |
| 2.4 |  | 4.4 |  | 8.0 |  | 18.0 |  |
| 2.5 |  | 4.5 |  | 8.5 |  | 18.5 |  |
| 2.6 |  | 4.6 |  | 9.0 |  | 19.0 |  |
| 2.7 |  | 4.7 |  | 9.5 |  | 19.5 |  |
| 2.8 |  | 4.8 |  | 10.0 |  | 20.0 |  |

Table 11-4: S3 LOGIC INPUTS

| LOGIC INPUTS | FUNCTION | INPUT TARGET | NAMES | ASSERTED STATE |
| :---: | :---: | :---: | :---: | :---: |
| DEFAULTS | Disabled | Self -Reset | Logic Input " $X$ " | Closed |
| $\# 1$ |  |  |  |  |
| $\# 2$ |  |  |  |  |
| $\# 3$ |  |  |  |  |
| $\# 4$ |  |  |  |  |
| $\# 5$ |  |  |  |  |
| $\# 6$ |  |  |  |  |
| $\# 7$ |  |  |  |  |
| $\# 8$ |  |  |  |  |
| $\# 10$ |  |  |  |  |
| $\# 11$ |  |  |  |  |
| $\# 13$ |  |  |  |  |
| $\# 14$ |  |  |  |  |
| $\# 16$ |  |  |  |  |


| VIRTUAL INPUTS | FUNCTION | INPUT TARGET | NAMES | ASSERTED STATE |
| :---: | :---: | :---: | :---: | :---: |
| DEFAULTS | Disabled | Self -Reset | Logic Input " $X$ " | Closed |
| $\# 1$ |  |  |  |  |
| $\# 2$ |  |  |  |  |
| $\# 3$ |  |  |  |  |
| $\# 4$ |  |  |  |  |
| $\# 5$ |  |  |  |  |
| $\# 6$ |  |  |  |  |
| $\# 7$ |  |  |  |  |
| $\# 8$ |  |  |  |  |
| $\# 9$ |  |  |  |  |
| $\# 11$ |  |  |  |  |
| $\# 12$ |  |  |  |  |
| $\# 14$ |  |  |  |  |
| $\# 16$ |  |  |  |  |

Table 11-5: S4 ELEMENTS SETPOINT GROUPS

| SETPOINT GROUP | DEFAULT | USER VALUE |
| :--- | :---: | :---: |
| ACTIVE SETPOINT GROUP | Group 1 |  |
| EDIT SETPOINT GROUP | Active |  |
| GROUP 2 ACTIVATE SIGNAL | Disabled |  |
| GROUP 3 ACTIVATE SIGNAL | Disabled |  |
| GROUP 4 ACTIVATE SIGNAL | Disabled |  |

Table 11-6: S4 ELEMENTS (Sheet 1 of 12)

| DESCRIPTION | DEFAULT | GROUP 1 | GROUP 2 | GROUP 3 | GROUP 4 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| DIFFERENTIAL | Enabled |  |  |  |  |  |
| Percent Differential Function | Latched |  |  |  |  |  |
| Percent Differential Target | $0.30 \times$ CT |  |  |  |  |  |
| Percent Differential Pickup | $25 \%$ |  |  |  |  |  |
| Percent Differential Slope 1 | $2.0 \times$ CT |  |  |  |  |  |
| Percent Differential Kneepoint | $100 \%$ |  |  |  |  |  |
| Percent Differential Slope 2 | Disabled |  |  |  |  |  |
| Percent Differential Block | Enabled |  |  |  |  |  |
| Harmonic Inhibit Function | $2 n d$ |  |  |  |  |  |
| Harmonic Inhibit Parameters | Disabled |  |  |  |  |  |
| Harmonic Avg | $20.0 \% ~ f 0$ |  |  |  |  |  |
| Harmonic Inhibit Level | Enabled |  |  |  |  |  |
| Energization Function | $2 n d$ |  |  |  |  |  |
| Energization Parameters | Enabled |  |  |  |  |  |
| Harmonic Avg | $20.0 \% ~ f 0$ |  |  |  |  |  |
| Energization Level | 0.10 s |  |  |  |  |  |
| Energization Duration | Enabled |  |  |  |  |  |
| Energization Current Sensing | $0.10 \times$ CT |  |  |  |  |  |
| Energization Min. Current | Disabled |  |  |  |  |  |
| Energization Voltage Sensing | $0.85 \times$ VT |  |  |  |  |  |
| Energization Min. Voltage | Disabled |  |  |  |  |  |
| Brkrs Open Signal | Disabled |  |  |  |  |  |
| Parallel Xfmr Brkr | Disabled |  |  |  |  |  |
| 5 Sth Harmonic Inhibit Function |  |  |  |  |  |  |
| Harmonic Avg |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

Table 11-6: S4 ELEMENTS (Sheet 2 of 12)

| DESCRIPTION | DEFAULT | GROUP 1 | GROUP 2 | GROUP 3 | GROUP 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5th Harmonic Inhibit Level | 10.0\% fo |  |  |  |  |
| INSTANTANEOUS DIFFERENTIAL |  |  |  |  |  |
| Inst. Differential Function | Enabled |  |  |  |  |
| Inst. Differential Target | Latched |  |  |  |  |
| Inst. Differential Pickup | $8.00 \times$ CT |  |  |  |  |
| Inst. Differential Block | Disabled |  |  |  |  |
| PHASE OVERCURRENT |  |  |  |  |  |
| W1 Phase Time 0/C Function | Enabled |  |  |  |  |
| W1 Phase Time 0/C Target | Latched |  |  |  |  |
| W1 Phase Time 0/C Pickup | $1.20 \times$ CT |  |  |  |  |
| W1 Phase Time 0/C Shape | Ext Inverse |  |  |  |  |
| W1 Phase Time 0/C Multiplier | 1.00 |  |  |  |  |
| W1 Phase Time 0/C Reset | Linear |  |  |  |  |
| W1 Phase Time 0/C Block | Disabled |  |  |  |  |
| W1 Phase Time 0/C Harm Derating | Disabled |  |  |  |  |
| W2 Phase Time 0/C Function | Enabled |  |  |  |  |
| W2 Phase Time 0/C Target | Latched |  |  |  |  |
| W2 Phase Time 0/C Pickup | $1.20 \times$ CT |  |  |  |  |
| W2 Phase Time 0/C Shape | Ext Inverse |  |  |  |  |
| W2 Phase Time 0/C Muttiplier | 1.00 |  |  |  |  |
| W2 Phase Time 0/C Reset | Linear |  |  |  |  |
| W2 Phase Time 0/C Block | Disabled |  |  |  |  |
| W2 Phase Time 0/C Harm Derating | Disabled |  |  |  |  |
| W3 Phase Time 0/C Function | Enabled |  |  |  |  |
| W3 Phase Time 0/C Target | Latched |  |  |  |  |
| W3 Phase Time 0/C Pickup | $1.20 \times$ CT |  |  |  |  |
| W3 Phase Time 0/C Shape | Ext Inverse |  |  |  |  |
| W3 Phase Time 0/C Multiplier | 1.00 |  |  |  |  |
| W3 Phase Time 0/C Reset | Linear |  |  |  |  |
| W3 Phase Time 0/C Block | Disabled |  |  |  |  |
| W3 Phase Time 0/C Harm Derating | Disabled |  |  |  |  |
| W1 Phase Inst 0/C 1 Function | Enabled |  |  |  |  |
| W1 Phase Inst 0/C 1 Target | Latched |  |  |  |  |
| W1 Phase Inst 0/C 1 Pickup | $10.00 \times$ CT |  |  |  |  |
| W1 Phase Inst 0/C 1 Delay | 0 ms |  |  |  |  |

Table 11-6: S4 ELEMENTS (Sheet 3 of 12)

| DESCRIPTION | DEFAULT | GROUP 1 | GROUP 2 | GROUP 3 | GROUP 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| W1 Phase Inst 0/C 1 Block | Disabled |  |  |  |  |
| W2 Phase Inst 0/C 1 Function | Enabled |  |  |  |  |
| W2 Phase Inst 0/C 1 Target | Latched |  |  |  |  |
| W2 Phase Inst 0/C 1 Pickup | $10.00 \times$ CT |  |  |  |  |
| W2 Phase Inst 0/C 1 Delay | 0 ms |  |  |  |  |
| W2 Phase Inst 0/C 1 Block | Disabled |  |  |  |  |
| W3 Phase Inst 0/C 1 Function | Enabled |  |  |  |  |
| W3 Phase Inst 0/C 1 Target | Latched |  |  |  |  |
| W3 Phase Inst 0/C 1 Pickup | $10.00 \times$ CT |  |  |  |  |
| W3 Phase Inst 0/C 1 Delay | 0 ms |  |  |  |  |
| W3 Phase Inst 0/C 1 Block | Disabled |  |  |  |  |
| W1 Phase Inst 0/C 2 Function | Enabled |  |  |  |  |
| W1 Phase Inst 0/C 2 Target | Latched |  |  |  |  |
| W1 Phase Inst 0/C 2 Pickup | $10.00 \times$ CT |  |  |  |  |
| W1 Phase Inst 0/C 2 Delay | 0 ms |  |  |  |  |
| W1 Phase Inst 0/C 2 Block | Disabled |  |  |  |  |
| W2 Phase Inst 0/C 2 Function | Enabled |  |  |  |  |
| W2 Phase Inst 0/C 2 Target | Latched |  |  |  |  |
| W2 Phase Inst 0/C 2 Pickup | $10.00 \times$ CT |  |  |  |  |
| W2 Phase Inst 0/C 2 Delay | 0 ms |  |  |  |  |
| W2 Phase Inst 0/C 2 Block | Disabled |  |  |  |  |
| W3 Phase Inst 0/C 2 Function | Enabled |  |  |  |  |
| W3 Phase Inst 0/C 2 Target | Latched |  |  |  |  |
| W3 Phase Inst 0/C 2 Pickup | $10.00 \times$ CT |  |  |  |  |
| W3 Phase Inst 0/C 2 Delay | 0 ms |  |  |  |  |
| W3 Phase Inst 0/C 2 Block | Disabled |  |  |  |  |
| NEUTRAL OVERCURRENT |  |  |  |  |  |
| W1 Ntrl Time 0/C Function | Enabled |  |  |  |  |
| W1 Ntrl Time 0/C Target | Latched |  |  |  |  |
| W1 Ntrl Time 0/C Pickup | $0.85 \times$ CT |  |  |  |  |
| W1 Ntrl Time 0/C Shape | Ext Inverse |  |  |  |  |
| W1 Ntrl Time 0/C Multiplier | 1.00 |  |  |  |  |
| W1 Ntrl Time 0/C Reset | Linear |  |  |  |  |
| W1 Ntrl Time 0/C Block | Disabled |  |  |  |  |
| W2 Ntrl Time 0/C Function | Disabled |  |  |  |  |

Table 11-6: S4 ELEMENTS (Sheet 4 of 12)

| DESCRIPTION | DEFAULT | GROUP 1 | GROUP 2 | GROUP 3 | GROUP 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| W2 Ntrl Time 0/C Target | Latched |  |  |  |  |
| W2 Ntrl Time 0/C Pickup | $0.85 \times$ CT |  |  |  |  |
| W2 Ntrl Time 0/C Shape | Ext Inverse |  |  |  |  |
| W2 Ntrl Time 0/C Multiplier | 1.00 |  |  |  |  |
| W2 Ntrl Time 0/C Reset | Linear |  |  |  |  |
| W2 Ntrl Time 0/C Block | Disabled |  |  |  |  |
| W3 Ntrl Time 0/C Function | Disabled |  |  |  |  |
| W3 Ntrl Time 0/C Target | Latched |  |  |  |  |
| W3 Ntrl Time 0/C Pickup | 0.85 x CT |  |  |  |  |
| W3 Ntrl Time 0/C Shape | Ext Inverse |  |  |  |  |
| W3 Ntrl Time 0/C Multiplier | 1.00 |  |  |  |  |
| W3 Ntrl Time 0/C Reset | Linear |  |  |  |  |
| W3 Ntrl Time 0/C Block | Disabled |  |  |  |  |
| W1 Ntrl Inst 0/C 1 Function | Enabled |  |  |  |  |
| W1 Ntrl Inst 0/C 1 Target | Latched |  |  |  |  |
| W1 Ntrl Inst 0/C 1 Pickup | $10.00 \times$ CT |  |  |  |  |
| W1 Ntrl Inst 0/C 1 Delay | 0 ms |  |  |  |  |
| W1 Ntrl Inst 0/C 1 Block | Disabled |  |  |  |  |
| W2 Ntrl Inst 0/C 1 Function | Disabled |  |  |  |  |
| W2 Ntrl Inst 0/C 1 Target | Latched |  |  |  |  |
| W2 Ntrl Inst 0/C 1 Pickup | $10.00 \times C T$ |  |  |  |  |
| W2 Ntrl Inst 0/C 1 Delay | 0 ms |  |  |  |  |
| W2 Ntrl Inst 0/C 1 Block | Disabled |  |  |  |  |
| W3 Ntrl Inst 0/C 1 Function | Disabled |  |  |  |  |
| W3 Ntrl Inst 0/C 1 Target | Latched |  |  |  |  |
| W3 Ntrl Inst 0/C 1 Pickup | $10.00 \times$ CT |  |  |  |  |
| W3 Ntrl Inst 0/C 1 Delay | 0 ms |  |  |  |  |
| W3 Ntrl Inst 0/C 1 Block | Disabled |  |  |  |  |
| W1 Ntrl Inst 0/C 2 Function | Disabled |  |  |  |  |
| W1 Ntrl Inst 0/C 2 Target | Latched |  |  |  |  |
| W1 Ntrl Inst 0/C 2 Pickup | $10.00 \times C T$ |  |  |  |  |
| W1 Ntrl Inst 0/C 2 Delay | 0 ms |  |  |  |  |
| W1 Ntrl Inst 0/C 2 Block | Disabled |  |  |  |  |
| W2 Ntrl Inst 0/C 2 Function | Disabled |  |  |  |  |
| W2 Ntrl Inst 0/C 2 Target | Latched |  |  |  |  |

Table 11-6: S4 ELEMENTS (Sheet 5 of 12)

| DESCRIPTION | DEFAULT | GROUP 1 | GROUP 2 | GROUP 3 | GROUP 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| W2 Ntrl Inst 0/C 2 Pickup | $10.00 \times$ CT |  |  |  |  |
| W2 Ntrl Inst 0/C 2 Delay | 0 ms |  |  |  |  |
| W2 Ntrl Inst 0/C 2 Block | Disabled |  |  |  |  |
| W3 Ntrl Inst 0/C 2 Function | Disabled |  |  |  |  |
| W3 Ntrl Inst 0/C 2 Target | Latched |  |  |  |  |
| W3 Ntrr Inst 0/C 2 Pickup | $10.00 \times$ CT |  |  |  |  |
| W3 Ntrl Inst 0/C 2 Delay | 0 ms |  |  |  |  |
| W3 Ntrl Inst 0/C 2 Block | Disabled |  |  |  |  |
| GROUND OVERCURRENT |  |  |  |  |  |
| W1 Gnd Time 0/C Function | Enabled |  |  |  |  |
| W1 Gnd Time 0/C Target | Latched |  |  |  |  |
| W1 Gnd Time 0/C Pickup | $0.85 \times$ CT |  |  |  |  |
| W1 Gnd Time 0/C Shape | Ext Inverse |  |  |  |  |
| W1 Gnd Time 0/C Multiplier | 1.00 |  |  |  |  |
| W1 Gnd Time 0/C Reset | Linear |  |  |  |  |
| W1 Gnd Time 0/C Block | Disabled |  |  |  |  |
| W2 Gnd Time 0/C Function | Disabled |  |  |  |  |
| W2 Gnd Time 0/C Target | Latched |  |  |  |  |
| W2 Gnd Time 0/C Pickup | $0.85 \times$ CT |  |  |  |  |
| W2 Gnd Time 0/C Shape | Ext Inverse |  |  |  |  |
| W2 Gnd Time 0/C Multiplier | 1.00 |  |  |  |  |
| W2 Gnd Time 0/C Reset | Linear |  |  |  |  |
| W2 Gnd Time 0/C Block | Disabled |  |  |  |  |
| W3 Gnd Time 0/C Function | Disabled |  |  |  |  |
| W3 Gnd Time 0/C Target | Latched |  |  |  |  |
| W3 Gnd Time 0/C Pickup | $0.85 \times$ CT |  |  |  |  |
| W3 Gnd Time 0/C Shape | Ext Inverse |  |  |  |  |
| W3 Gnd Time 0/C Multiplier | 1.00 |  |  |  |  |
| W3 Gnd Time 0/C Reset | Linear |  |  |  |  |
| W3 Gnd Time 0/C Block | Disabled |  |  |  |  |
| W1 Gnd Inst 0/C 1 Function | Disabled |  |  |  |  |
| W1 Gnd Inst 0/C 1 Target | Latched |  |  |  |  |
| W1 Gnd Inst 0/C 1 Pickup | $10.00 \times$ CT |  |  |  |  |
| W1 Gnd Inst 0/C 1 Delay | 0 ms |  |  |  |  |
| W1 Gnd Inst 0/C 1 Block | Disabled |  |  |  |  |

Table 11-6: S4 ELEMENTS (Sheet 6 of 12)

| DESCRIPTION | DEFAULT | GROUP 1 | GROUP 2 | GROUP 3 | GROUP 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| W2 Gnd Inst 0/C 1 Function | Disabled |  |  |  |  |
| W2 Gnd Inst 0/C 1 Target | Latched |  |  |  |  |
| W2 Gnd Inst 0/C 1 Pickup | $10.00 \times$ CT |  |  |  |  |
| W2 Gnd Inst 0/C 1 Delay | 0 ms |  |  |  |  |
| W2 Gnd Inst 0/C 1 Block | Disabled |  |  |  |  |
| W3 Gnd Inst 0/C 1 Function | Disabled |  |  |  |  |
| W3 Gnd Inst 0/C 1 Target | Latched |  |  |  |  |
| W3 Gnd Inst 0/C 1 Pickup | $10.00 \times$ CT |  |  |  |  |
| W3 Gnd Inst 0/C 1 Delay | 0 ms |  |  |  |  |
| W3 Gnd Inst 0/C 1 Block | Disabled |  |  |  |  |
| W1 Gnd Inst 0/C 2 Function | Disabled |  |  |  |  |
| W1 Gnd Inst 0/C 2 Target | Latched |  |  |  |  |
| W1 Gnd Inst 0/C 2 Pickup | $10.00 \times$ CT |  |  |  |  |
| W1 Gnd Inst 0/C 2 Delay | 0 ms |  |  |  |  |
| W1 Gnd Inst 0/C 2 Block | Disabled |  |  |  |  |
| W2 Gnd Inst 0/C 2 Function | Disabled |  |  |  |  |
| W2 Gnd Inst 0/C 2 Target | Latched |  |  |  |  |
| W2 Gnd Inst 0/C 2 Pickup | $10.00 \times$ CT |  |  |  |  |
| W2 Gnd Inst 0/C 2 Delay | 0 ms |  |  |  |  |
| W2 Gnd Inst 0/C 2 Block | Disabled |  |  |  |  |
| W3 Gnd Inst 0/C 2 Function | Disabled |  |  |  |  |
| W3 Gnd Inst 0/C 2 Target | Latched |  |  |  |  |
| W3 Gnd Inst 0/C 2 Pickup | $10.00 \times$ CT |  |  |  |  |
| W3 Gnd Inst 0/C 2 Delay | 0 ms |  |  |  |  |
| W3 Gnd Inst 0/C 2 Block | Disabled |  |  |  |  |
| RESTRICTED GROUND FAULT |  |  |  |  |  |
| W1 Rstd Gnd Fault Function | Disabled |  |  |  |  |
| W1 Rstd Gnd Fault Target | Latched |  |  |  |  |
| W1 Rstd Gnd Fault Pickup | $0.08 \times \mathrm{CT}$ |  |  |  |  |
| W1 Rstd Gnd Fault Slope | 10\% |  |  |  |  |
| W1 Rstd Gnd Fault Delay | 0.10 s |  |  |  |  |
| W1 Rstd Gnd Fault Block | Disabled |  |  |  |  |
| W2 Rstd Gnd Fault Function | Disabled |  |  |  |  |
| W2 Rstd Gnd Fault Target | Latched |  |  |  |  |
| W2 Rstd Gnd Fault Pickup | $0.08 \times \mathrm{CT}$ |  |  |  |  |

Table 11-6: S4 ELEMENTS (Sheet 7 of 12)

| DESCRIPTION | DEFAULT | GROUP 1 | GROUP 2 | GROUP 3 | GROUP 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| W2 Rstd Gnd Fault Slope | 10\% |  |  |  |  |
| W2 Rstd Gnd Fault Delay | 0.10 s |  |  |  |  |
| W2 Rstd Gnd Fault Block | Disabled |  |  |  |  |
| W3 Rstd Gnd Fault Function | Disabled |  |  |  |  |
| W3 Rstd Gnd Fault Target | Latched |  |  |  |  |
| W3 Rstd Gnd Fault Pickup | $0.08 \times$ CT |  |  |  |  |
| W3 Rstd Gnd Fault Slope | 10\% |  |  |  |  |
| W3 Rstd Gnd Fault Delay | 0.10 s |  |  |  |  |
| W3 Rstd Gnd Fault Block | Disabled |  |  |  |  |
| W1 Rst Gnd Inst 0/C Function | Disabled |  |  |  |  |
| W1 Rst Gnd Inst 0/C Target | Latched |  |  |  |  |
| W1 Rst Gnd Inst 0/C Pickup | $10.00 \times$ CT |  |  |  |  |
| W1 Rst Gnd Inst 0/C Delay | 0 ms |  |  |  |  |
| W1 Rst Gnd Inst 0/C Block | Disabled |  |  |  |  |
| W2 Rst Gnd Inst 0/C Function | Disabled |  |  |  |  |
| W2 Rst Gnd Inst 0/C Target | Latched |  |  |  |  |
| W2 Rst Gnd Inst 0/C Pickup | $10.00 \times$ CT |  |  |  |  |
| W2 Rst Gnd Inst 0/C Delay | 0 ms |  |  |  |  |
| W2 Rst Gnd Inst 0/C Block | Disabled |  |  |  |  |
| W3 Rst Gnd Inst 0/C Function | Disabled |  |  |  |  |
| W3 Rst Gnd Inst 0/C Target | Latched |  |  |  |  |
| W3 Rst Gnd Inst 0/C Pickup | $10.00 \times$ CT |  |  |  |  |
| W3 Rst Gnd Inst 0/C Delay | 0 ms |  |  |  |  |
| W3 Rst Gnd Inst 0/C Block | Disabled |  |  |  |  |
| NEGATIVE SEQUENCE OVERCURRENT |  |  |  |  |  |
| W1 Neg Seq Time 0/C Function | Disabled |  |  |  |  |
| W1 Neg Seq Time 0/C Target | Latched |  |  |  |  |
| W1 Neg Seq Time 0/C Pickup | $0.25 \times \mathrm{CT}$ |  |  |  |  |
| W1 Neg Seq Time 0/C Shape | Ext Inverse |  |  |  |  |
| W1 Neg Seq Time 0/C Multiplier | 1.00 |  |  |  |  |
| W1 Neg Seq Time 0/C Reset | Linear |  |  |  |  |
| W1 Neg Seq Time 0/C Block | Disabled |  |  |  |  |
| W2 Neg Seq Time 0/C Function | Disabled |  |  |  |  |
| W2 Neg Seq Time 0/C Target | Latched |  |  |  |  |
| W2 Neg Seq Time 0/C Pickup | $0.25 \times$ CT |  |  |  |  |

Table 11-6: S4 ELEMENTS (Sheet 8 of 12)

| DESCRIPTION | DEFAULT | GROUP 1 | GROUP 2 | GROUP 3 | GROUP 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| W2 Neg Seq Time 0/C Shape | Ext Inverse |  |  |  |  |
| W2 Neg Seq Time 0/C Multiplier | 1.00 |  |  |  |  |
| W2 Neg Seq Time 0/C Reset | Linear |  |  |  |  |
| W2 Neg Seq Time 0/C Block | Disabled |  |  |  |  |
| W3 Neg Seq Time 0/C Function | Disabled |  |  |  |  |
| W3 Neg Seq Time 0/C Target | Latched |  |  |  |  |
| W3 Neg Seq Time 0/C Pickup | $0.25 \times$ CT |  |  |  |  |
| W3 Neg Seq Time 0/C Shape | Ext Inverse |  |  |  |  |
| W3 Neg Seq Time 0/C Multiplier | 1.00 |  |  |  |  |
| W3 Neg Seq Time 0/C Reset | Linear |  |  |  |  |
| W3 Neg Seq Time 0/C Block | Disabled |  |  |  |  |
| W1 Neg Seq Inst 0/C Function | Disabled |  |  |  |  |
| W1 Neg Seq Inst 0/C Target | Latched |  |  |  |  |
| W1 Neg Seq Inst 0/C Pickup | $10.00 \times$ CT |  |  |  |  |
| W1 Neg Seq Inst 0/C Delay | 0 ms |  |  |  |  |
| W1 Neg Seq Inst 0/C Block | Disabled |  |  |  |  |
| W2 Neg Seq Inst 0/C Function | Disabled |  |  |  |  |
| W2 Neg Seq Inst 0/C Target | Latched |  |  |  |  |
| W2 Neg Seq Inst 0/C Pickup | $10.00 \times$ CT |  |  |  |  |
| W2 Neg Seq Inst 0/C Delay | 0 ms |  |  |  |  |
| W2 Neg Seq Inst 0/C Block | Disabled |  |  |  |  |
| W3 Neg Seq Inst 0/C Function | Disabled |  |  |  |  |
| W3 Neg Seq Inst 0/C Target | Latched |  |  |  |  |
| W3 Neg Seq Inst 0/C Pickup | $10.00 \times$ CT |  |  |  |  |
| W3 Neg Seq Inst 0/C Delay | 0 ms |  |  |  |  |
| W3 Neg Seq Inst 0/C Block | Disabled |  |  |  |  |
| FREQUENCY | Disabled |  |  |  |  |
| Underfrequency 1 Function | Disabled |  |  |  |  |
| Underfrequency 1 Target | Self-reset |  |  |  |  |
| Current Sensing | Enabled |  |  |  |  |
| Underfrequency 1 Min. Current | $0.20 \times$ CT |  |  |  |  |
| Minimum Operating Voltage | $0.50 \times$ VT |  |  |  |  |
| Underfrequency 1 Pickup | $59.00 ~ H z ~$ |  |  |  |  |
| Underfrequency 1 Delay |  |  |  |  |  |
| Underfrequency 1 Block |  |  |  |  |  |

Table 11-6: S4 ELEMENTS (Sheet 9 of 12)

| DESCRIPTION | DEFAULT | GROUP 1 | GROUP 2 | GROUP 3 | GROUP 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Underfrequency 2 Function | Disabled |  |  |  |  |
| Underfrequency 2 Target | Self-reset |  |  |  |  |
| Underfrequency 2 Min. Current | $0.20 \times$ CT |  |  |  |  |
| Underfrequency 2 Pickup | 58.80 Hz |  |  |  |  |
| Underfrequency 2 Delay | 1.00 s |  |  |  |  |
| Underfrequency 2 Block | Disabled |  |  |  |  |
| Frequency Decay Function | Disabled |  |  |  |  |
| Frequency Decay Target | Latched |  |  |  |  |
| Current Sensing | Enabled |  |  |  |  |
| Frequency Decay Min. Current | $0.20 \times \mathrm{CT}$ |  |  |  |  |
| Minimum Operating Voltage | $0.50 \times \mathrm{VT}$ |  |  |  |  |
| Frequency Decay Threshold | 59.50 Hz |  |  |  |  |
| Frequency Decay Delay | 0.00 s |  |  |  |  |
| Frequency Decay Rate 1 | $0.4 \mathrm{~Hz} / \mathrm{s}$ |  |  |  |  |
| Frequency Decay Rate 2 | $1.0 \mathrm{~Hz} / \mathrm{s}$ |  |  |  |  |
| Frequency Decay Rate 3 | $2.0 \mathrm{~Hz} / \mathrm{s}$ |  |  |  |  |
| Frequency Decay Rate 4 | $4.0 \mathrm{~Hz} / \mathrm{s}$ |  |  |  |  |
| Frequency Decay Block | Disabled |  |  |  |  |
| Overfrequency Function | Disabled |  |  |  |  |
| Overfrequency Target | Latched |  |  |  |  |
| Current Sensing | Enabled |  |  |  |  |
| Overfrequency Min. Current | $0.20 \times$ CT |  |  |  |  |
| Minimum Operating Voltage | $0.50 \times \mathrm{VT}$ |  |  |  |  |
| Overfrequency Pickup | 60.50 Hz |  |  |  |  |
| Overfrequency Delay | 5.00 s |  |  |  |  |
| Overfrequency Block | Disabled |  |  |  |  |
| OVEREXCITATION |  |  |  |  |  |
| 5th Harmonic Level Function | Disabled |  |  |  |  |
| 5th Harmonic Level Target | Self-reset |  |  |  |  |
| 5th Harmonic Level Min. Current | $0.10 \times \mathrm{CT}$ |  |  |  |  |
| 5th Harmonic Level Pickup | 10.0\% f0 |  |  |  |  |
| 5th Harmonic Level Delay | 10 s |  |  |  |  |
| 5th Harmonic Level Block | Disabled |  |  |  |  |
| Volts-Per-Hertz 1 Function | Disabled |  |  |  |  |
| Volts-Per-Hertz 1 Target | Self-reset |  |  |  |  |

Table 11-6: S4 ELEMENTS (Sheet 10 of 12)

| DESCRIPTION | DEFAULT | GROUP 1 | GROUP 2 | GROUP 3 | GROUP 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Volts-Per-Hertz 1 Min. Voltage | $0.10 \times$ VT |  |  |  |  |
| Volts-Per-Hertz 1 Pickup | $2.36 \mathrm{~V} / \mathrm{Hz}$ |  |  |  |  |
| Volts-Per-Hertz 1 Shape | Def. Time |  |  |  |  |
| Volts-Per-Hertz 1 Delay | 2.00 s |  |  |  |  |
| Volts-Per-Hertz 1 Reset | 0.0 s |  |  |  |  |
| Volts-Per-Hertz 1 Block | Disabled |  |  |  |  |
| Volts-Per-Hertz 2 Function | Disabled |  |  |  |  |
| Volts-Per-Hertz 2 Target | Self-reset |  |  |  |  |
| Volts-Per-Hertz 2 Min. Voltage | $0.10 \times$ VT |  |  |  |  |
| Volts-Per-Hertz 2 Pickup | $2.14 \mathrm{~V} / \mathrm{Hz}$ |  |  |  |  |
| Volts-Per-Hertz 2 Shape | Def. Time |  |  |  |  |
| Volts-Per-Hertz 2 Delay | 45.00 s |  |  |  |  |
| Volts-Per-Hertz 2 Reset | 0.0 s |  |  |  |  |
| Volts-Per-Hertz 2 Block | Disabled |  |  |  |  |
| HARMONICS |  |  |  |  |  |
| W1 THD Level Function | Disabled |  |  |  |  |
| W1 THD Level Target | Self-reset |  |  |  |  |
| W1 THD Level Min. Current | $0.10 \times \mathrm{CT}$ |  |  |  |  |
| W1 THD Level Pickup | 50.0 \% fo |  |  |  |  |
| W1 THD Level Delay | 10 s |  |  |  |  |
| W1 THD Level Block | Disabled |  |  |  |  |
| W2 THD Level Function | Disabled |  |  |  |  |
| W2 THD Level Target | Self-reset |  |  |  |  |
| W2 THD Level Min. Current | $0.10 \times \mathrm{CT}$ |  |  |  |  |
| W2 THD Level Pickup | 50.0 \% fo |  |  |  |  |
| W2 THD Level Delay | 10 s |  |  |  |  |
| W2 THD Level Block | Disabled |  |  |  |  |
| W3 THD Level Function | Disabled |  |  |  |  |
| W3 THD Level Target | Self-reset |  |  |  |  |
| W3 THD Level Min. Current | $0.10 \times$ CT |  |  |  |  |
| W3 THD Level Pickup | 50.0 \% fo |  |  |  |  |
| W3 THD Level Delay | 10 s |  |  |  |  |
| W3 THD Level Block | Disabled |  |  |  |  |
| W1 Harmonic Derating Function | Disabled |  |  |  |  |
| W1 Harmonic Derating Target | Self-reset |  |  |  |  |

Table 11-6: S4 ELEMENTS (Sheet 11 of 12)

| DESCRIPTION | DEFAULT | GROUP 1 | GROUP 2 | GROUP 3 | GROUP 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| W1 Harm. Derating Min Current | $0.10 \times$ CT |  |  |  |  |
| W1 Harmonic Derating Pickup | 0.90 |  |  |  |  |
| W1 Harmonic Derating Delay | 10 s |  |  |  |  |
| W1 Harmonic Derating Block | Disabled |  |  |  |  |
| W2 Harmonic Derating Function | Disabled |  |  |  |  |
| W2 Harmonic Derating Target | Self-reset |  |  |  |  |
| W2 Harm. Derating Min. Current | $0.10 \times$ CT |  |  |  |  |
| W2 Harmonic Derating Pickup | 0.90 |  |  |  |  |
| W2 Harmonic Derating Delay | 10 s |  |  |  |  |
| W2 Harmonic Derating Block | Disabled |  |  |  |  |
| W3 Harmonic Derating Function | Disabled |  |  |  |  |
| W3 Harmonic Derating Target | Self-reset |  |  |  |  |
| W3 Harm. Derating Min. Current | $0.10 \times$ CT |  |  |  |  |
| W3 Harmonic Derating Pickup | 0.90 |  |  |  |  |
| W3 Harmonic Derating Delay | 10 s |  |  |  |  |
| W3 Harmonic Derating Block | Disabled |  |  |  |  |
| INSULATION AGING |  |  |  |  |  |
| Hottest Spot Limit | Disabled |  |  |  |  |
| Hottest Spot Limit Target | Self-Reset |  |  |  |  |
| Hottest Spot Limit Pickup | $150^{\circ} \mathrm{C}$ |  |  |  |  |
| Hottest Spot Limit Delay | 10 min |  |  |  |  |
| Hottest Spot Limit Block | Disabled |  |  |  |  |
| AGING FACTOR LIMIT |  |  |  |  |  |
| Aging Factor Limit Function | Disabled |  |  |  |  |
| Aging Factor Limit Target | Self -reset |  |  |  |  |
| Aging Factor Limit Pickup | 2.0 |  |  |  |  |
| Aging Factor Limit Delay | 10 min |  |  |  |  |
| Aging Factor Limit Block | disabled |  |  |  |  |
| LOSS-OF-LIFE LIMIT |  |  |  |  |  |
| Loss of Life Limit Function | Disabled |  |  |  |  |
| Loss of Life Limit Target | Self-Reset |  |  |  |  |
| Loss of Life Limit Pickup | $16000 \times 10 \mathrm{~h}$ |  |  |  |  |
| Loss of Life Limit Block | Disabled |  |  |  |  |
| ANALOG INPUT |  |  |  |  |  |
| Analog Level 1 Function | Disabled |  |  |  |  |

Table 11-6: S4 ELEMENTS (Sheet 12 of 12)

| DESCRIPTION | DEFAULT | GROUP 1 | GROUP 2 | GROUP 3 | GROUP 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Analog Level 1 Target | Self-reset |  |  |  |  |
| Analog Level 1 Pickup | 10 mA |  |  |  |  |
| Analog Level 1 Delay | 50 s |  |  |  |  |
| Analog Level 1 Block | Disabled |  |  |  |  |
| Analog Level 2 Function | Disabled |  |  |  |  |
| Analog Level 2 Target | Self-reset |  |  |  |  |
| Analog Level 2 Pickup | 100 mA |  |  |  |  |
| Analog Level 2 Delay | 100 s |  |  |  |  |
| Analog Level 2 Block | Disabled |  |  |  |  |
| CURRENT DEMAND |  |  |  |  |  |
| W1 Current Demand Function | Disabled |  |  |  |  |
| W1 Current Demand Target | Self-reset |  |  |  |  |
| W1 Current Demand Pickup | 100 A |  |  |  |  |
| W1 Current Demand Block | Disabled |  |  |  |  |
| W2 Current Demand Function | Disabled |  |  |  |  |
| W2 Current Demand Target | Self-reset |  |  |  |  |
| W2 Current Demand Pickup | 400 A |  |  |  |  |
| W2 Current Demand Block | Disabled |  |  |  |  |
| W3 Current Demand Function | Disabled |  |  |  |  |
| W3 Current Demand Target | Self-reset |  |  |  |  |
| W3 Current Demand Pickup | 400 A |  |  |  |  |
| W3 Current Demand Block | Disabled |  |  |  |  |
| TRANSFORMER OVERLOAD |  |  |  |  |  |
| Xformer Overload Function | Disabled |  |  |  |  |
| Xformer Overload Target | Self-reset |  |  |  |  |
| Xformer Overload Pickup | 208\% |  |  |  |  |
| Xformer Overload Delay | 10 s |  |  |  |  |
| Xformer Overload Block | Disabled |  |  |  |  |
| Overtemp Alarm Signal | Disabled |  |  |  |  |
| Tap changer failure |  |  |  |  |  |
| Tap changer failure Function | Disabled |  |  |  |  |
| Tap changer failure Target | Self-Reset |  |  |  |  |
| Tap changer failure Delay | 5.0 s |  |  |  |  |
| Tap changer failure Block | Disabled |  |  |  |  |

11.1.6 S5 OUTPUTS

Table 11-7: S5 OUTPUTS (Sheet 1 of 5)

| DESCRIPTION | DEFAULT | USER VALUE | DESCRIPTION | DEFAULT | USER VALUE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| OUTPUT 1 |  |  | OUTPUT 2 |  |  |
| Name | Solid State Trip |  | Name | "Trip 1" |  |
| Operation | Self-resetting |  | Operation | Self-resetting |  |
| Type | Trip |  | Type | Trip |  |
| FlexLogic 01 | Percent Diff OP |  | FlexLogic 01 | Percent Diff OP |  |
| FlexLogic 02 | Inst Diff OP |  | FlexLogic 02 | Inst Diff OP |  |
| FlexLogic 03 | Any W1 OC OP |  | FlexLogic 03 | Any W1 OC OP |  |
| FlexLogic 04 | Any W2 OC OP |  | FlexLogic 04 | Any W2 OC OP |  |
| FlexLogic 05 | OR (4 inputs) |  | FlexLogic 05 | OR (4 inputs) |  |
| FlexLogic 06 |  |  | FlexLogic 06 |  |  |
| FlexLogic 07 |  |  | FlexLogic 07 |  |  |
| FlexLogic 08 |  |  | FlexLogic 08 |  |  |
| FlexLogic 09 |  |  | FlexLogic 09 |  |  |
| FlexLogic 10 |  |  | FlexLogic 10 |  |  |
| FlexLogic 11 |  |  | FlexLogic 11 |  |  |
| FlexLogic 12 |  |  | FlexLogic 12 |  |  |
| FlexLogic 13 |  |  | FlexLogic 13 |  |  |
| FlexLogic 14 |  |  | FlexLogic 14 |  |  |
| FlexLogic 15 |  |  | FlexLogic 15 |  |  |
| FlexLogic 16 |  |  | FlexLogic 16 |  |  |
| FlexLogic 17 |  |  | FlexLogic 17 |  |  |
| FlexLogic 18 |  |  | FlexLogic 18 |  |  |
| FlexLogic 19 |  |  | FlexLogic 19 |  |  |
| FlexLogic 20 |  |  | FlexLogic 20 |  |  |

Table 11-7: S5 OUTPUTS (Sheet 2 of 5)

| DESCRIPTION | DEFAULT | USER VALUE |
| :--- | :---: | :---: |
| OUTPUT 3 | "Trip 2" |  |
| Name | Self-resetting |  |
| Operation | Trip |  |
| Type | Percent Diff OP |  |
| FlexLogic 01 | Inst Diff OP |  |
| FlexLogic 02 | Any W1 OC OP |  |
| FlexLogic 03 | Any W2 0C 0P |  |
| FlexLogic 04 | OR (4 inputs) |  |
| FlexLogic 05 |  |  |
| FlexLogic 06 |  |  |
| FlexLogic 07 |  |  |
| FlexLogic 08 |  |  |
| FlexLogic 09 |  |  |
| FlexLogic 10 |  |  |
| FlexLogic 11 |  |  |
| FlexLogic 12 |  |  |
| FlexLogic 13 |  |  |
| FlexLogic 14 |  |  |
| FlexLogic 15 |  |  |
| FlexLogic 16 |  |  |
| FlexLogic 17 |  |  |
| FlexLogic 18 |  |  |
| FlexLogic 19 |  |  |
| FlexLogic 20 |  |  |
|  |  |  |


| DESCRIPTION | DEFAULT |  |
| :--- | :---: | :---: |
| USER VALUE |  |  |
| OUTPUT 4 | "Volts/Hertz Trip" |  |
| Name | Self-resetting |  |
| Operation | Trip |  |
| Type | Volts/Hertz 1 OP |  |
| FlexLogic 01 | Volts/Hertz 2 OP |  |
| FlexLogic 02 | OR (2 inputs) |  |
| FlexLogic 03 | END |  |
| FlexLogic 04 | END |  |
| FlexLogic 05 |  |  |
| FlexLogic 06 |  |  |
| FlexLogic 07 |  |  |
| FlexLogic 08 |  |  |
| FlexLogic 09 |  |  |
| FlexLogic 10 |  |  |
| FlexLogic 11 |  |  |
| FlexLogic 12 |  |  |
| FlexLogic 13 |  |  |
| FlexLogic 14 |  |  |
| FlexLogic 15 |  |  |
| FlexLogic 16 |  |  |
| FlexLogic 17 |  |  |
| FlexLogic 18 |  |  |
| FlexLogic 19 |  |  |
| FlexLogic 20 |  |  |
|  |  |  |

Table 11-7: S5 OUTPUTS (Sheet 3 of 5)

| DESCRIPTION | DEFAULT | USER VALUE |
| :--- | :---: | :---: |
| OUTPUT 5 | Overflux Alarm |  |
| Name | Self-resetting |  |
| Operation | Alarm |  |
| Type | W1 THD Level OP |  |
| FlexLogic 01 | W2 THD Level OP |  |
| FlexLogic 02 | Xfmr Overload OP |  |
| FlexLogic 03 | 5th HarmLevel OP |  |
| FlexLogic 04 | OR (4 inputs) |  |
| FlexLogic 05 |  |  |
| FlexLogic 06 |  |  |
| FlexLogic 07 |  |  |
| FlexLogic 08 |  |  |
| FlexLogic 09 |  |  |
| FlexLogic 10 |  |  |
| FlexLogic 11 |  |  |
| FlexLogic 12 |  |  |
| FlexLogic 13 |  |  |
| FlexLogic 14 |  |  |
| FlexLogic 15 |  |  |
| FlexLogic 16 |  |  |
| FlexLogic 17 |  |  |
| FlexLogic 18 |  |  |
| FlexLogic 19 |  |  |
| FlexLogic 20 |  |  |
|  |  |  |


| DESCRIPTION | DEFAULT | USER VALUE |
| :---: | :---: | :---: |
| OUTPUT 6 |  |  |
| Name | Frequency Trip 1 |  |
| Operation | Self-resetting |  |
| Type | Trip |  |
| FlexLogic 01 | Underfreq 1 OP |  |
| FlexLogic 02 | Freq Decay R1 OP |  |
| FlexLogic 03 | OR (2 inputs) |  |
| FlexLogic 04 | END |  |
| FlexLogic 05 | END |  |
| FlexLogic 06 |  |  |
| FlexLogic 07 |  |  |
| FlexLogic 08 |  |  |
| FlexLogic 09 |  |  |
| FlexLogic 10 |  |  |
| FlexLogic 11 |  |  |
| FlexLogic 12 |  |  |
| FlexLogic 13 |  |  |
| FlexLogic 14 |  |  |
| FlexLogic 15 |  |  |
| FlexLogic 16 |  |  |
| FlexLogic 17 |  |  |
| FlexLogic 18 |  |  |
| FlexLogic 19 |  |  |
| FlexLogic 20 |  |  |

Table 11-7: S5 OUTPUTS (Sheet 4 of 5)

| DESCRIPTION | DEFAULT | USER VALUE |
| :--- | :---: | :---: |
| OUTPUT 7 | Frequency Trip 2 |  |
| Name | Self-resetting |  |
| Operation | Trip |  |
| Type | Underfreq 2 OP |  |
| FlexLogic 01 | Freq Decay R2 0P |  |
| FlexLogic 02 | OR (2 inputs) |  |
| FlexLogic 03 | END |  |
| FlexLogic 04 | END |  |
| FlexLogic 05 |  |  |
| FlexLogic 06 |  |  |
| FlexLogic 07 |  |  |
| FlexLogic 08 |  |  |
| FlexLogic 09 |  |  |
| FlexLogic 10 |  |  |
| FlexLogic 11 |  |  |
| FlexLogic 12 |  |  |
| FlexLogic 13 |  |  |
| FlexLogic 14 |  |  |
| FlexLogic 15 |  |  |
| FlexLogic 16 |  |  |
| FlexLogic 17 |  |  |
| FlexLogic 18 |  |  |
| FlexLogic 19 |  |  |
| FlexLogic 20 |  |  |
|  |  |  |


| DESCRIPTION | DEFAULT |  |
| :--- | :---: | :---: |
| USER VALUE |  |  |
| OUTPUT 8 | Frequency Trip 3 |  |
| Name | Self-resetting |  |
| Operation | Trip |  |
| Type | Underfreq 3 0P |  |
| FlexLogic 01 | Freq Decay R3 0P |  |
| FlexLogic 02 | OR (2 inputs) |  |
| FlexLogic 03 | END |  |
| FlexLogic 04 | END |  |
| FlexLogic 05 |  |  |
| FlexLogic 06 |  |  |
| FlexLogic 07 |  |  |
| FlexLogic 08 |  |  |
| FlexLogic 09 |  |  |
| FlexLogic 10 |  |  |
| FlexLogic 11 |  |  |
| FlexLogic 12 |  |  |
| FlexLogic 13 |  |  |
| FlexLogic 14 |  |  |
| FlexLogic 15 |  |  |
| FlexLogic 16 |  |  |
| FlexLogic 17 |  |  |
| FlexLogic 18 |  |  |
| FlexLogic 19 |  |  |
| FlexLogic 20 |  |  |
|  |  |  |

Table 11-7: S5 OUTPUTS (Sheet 5 of 5)

| DESCRIPTION | DEFAULT | USER VALUE |
| :---: | :---: | :---: |
| TRACE |  |  |
| Pre-Trigger | 12 cycles |  |
| FlexLogic 01 | Any Element Pkp |  |
| FlexLogic 02 | END |  |
| FlexLogic 03 |  |  |
| FlexLogic 04 |  |  |
| FlexLogic 05 |  |  |
| FlexLogic 06 |  |  |
| FlexLogic 07 |  |  |
| FlexLogic 08 |  |  |
| FlexLogic 09 |  |  |
| FlexLogic 10 |  |  |
| VIRTUAL 1 |  |  |
| FlexLogic 01 | END |  |
| FlexLogic 02 | END |  |
| FlexLogic 03 |  |  |
| FlexLogic 04 |  |  |
| FlexLogic 05 |  |  |
| FlexLogic 06 |  |  |
| FlexLogic 07 |  |  |
| FlexLogic 08 |  |  |
| FlexLogic 09 |  |  |
| FlexLogic 10 |  |  |
| VIRTUAL 2 |  |  |
| FlexLogic 01 | END |  |
| FlexLogic 02 | END |  |
| FlexLogic 03 |  |  |
| FlexLogic 04 |  |  |
| FlexLogic 05 |  |  |
| FlexLogic 06 |  |  |
| FlexLogic 07 |  |  |
| FlexLogic 08 |  |  |
| FlexLogic 09 |  |  |
| FlexLogic 10 |  |  |


| DESCRIPTION | DEFAULT | USER VALUE |
| :--- | :--- | :--- |
| VIRTUAL 3 |  |  |
| FlexLogic 01 | END |  |
| FlexLogic 02 |  |  |
| FlexLogic 03 |  |  |
| FlexLogic 04 |  |  |
| FlexLogic 05 |  |  |
| FlexLogic 06 |  |  |
| FlexLogic 07 |  |  |
| FlexLogic 08 |  |  |
| FlexLogic 09 |  |  |
| FlexLogic 10 |  |  |
| VIRTUAL 4 |  |  |
| FlexLogic 01 |  |  |
| FlexLogic 02 |  |  |
| FlexLogic 03 |  |  |
| FlexLogic 04 |  |  |
| FlexLogic 05 |  |  |
| FlexLogic 06 |  |  |
| FlexLogic 07 |  |  |
| FlexLogic 08 |  |  |
| FlexLogic 09 |  |  |
| FlexLogic 08 |  |  |
| FlexLogic 10 |  |  |
| FlexLogic 05 |  |  |
| VlexLogic 06 |  |  |
| FlexLogic 01 |  |  |
| FlexLogic 02 |  |  |
| FlexLogic 03 |  |  |
|  |  |  |

Table 11-8: TIMER SETTINGS

| TIMER | START | PICKUP DELAY | DROPUT DELAY |
| :---: | :---: | :---: | :---: |
| $\# 1$ |  |  |  |
| $\# 2$ |  |  |  |
| $\# 3$ |  |  |  |
| $\# 4$ |  |  |  |
| $\# 5$ |  |  |  |
| $\# 6$ |  |  |  |
| $\# 7$ |  |  |  |
| $\# 8$ |  |  |  |
| $\# 9$ |  |  |  |
| $\# 10$ |  |  |  |

FIGURE 1-1: SINGLE LINE DIAGRAM ........................................................................................................................ 1-3

FIGURE 1-2: 745 ORDER CODES............................................................................................................................ 1-4
Figure 3-1: CASE DIMENSIONS................................................................................................................................ 3-1
FIGURE 3-2: SINGLE AND DOUBLE SR RELAY PANEL CUTOUT ........................................................................... 3-1
FIGURE 3-3: CASE MOUNTING .................................................................................................................................. 3-2
Figure 3-4: SLIDING RELAY OUT OF CASE............................................................................................................. 3-3
FIGURE 3-5: DRAWOUT SEAL................................................................................................................................... 3-3
FIGURE 3-6: REAR TERMINAL LAYOUT..................................................................................................................... 3-4
Figure 3-7: TYPICAL WIRING DIAGRAM .................................................................................................................. 3-6
FIGURE 3-8: TYPICAL WIRING DIAGRAM FOR GENERATOR STEP-UP ................................................................ 3-7
FIGURE 3-9: ZERO-SEQUENCE (CORE BALANCE) CT INSTALLATION .................................................................. 3-8
FIGURE 3-10: CONTROL POWER CONNECTION ..................................................................................................... 3-9
FIGURE 3-11: DRY AND WET CONTACT CONNECTIONS ..................................................................................... 3-10
Figure 3-12: ANALOG OUTPUT CONNECTION ...................................................................................................... 3-11
FIGURE 3-13: RS485 CONNECTION ........................................................................................................................ 3-12
FIGURE 3-14: RS422 CONNECTION ......................................................................................................................... 3-13
FIGURE 3-15: RS232 CONNECTION ....................................................................................................................... 3-13
Figure 3-16: IRIG-B FUNCTION............................................................................................................................... 3-14
FIGURE 4-1: 745 FRONT PANEL .............................................................................................................................. 4-1
FIGURE 4-2: PROGRAM PORT.................................................................................................................................... 4-4
FIGURE 5-1: TAP POSITION INPUT ............................................................................................................................ 5-5
FIGURE 5-2: EXAMPLE TRANSFORMER................................................................................................................... 5-6
FIGURE 5-3: PHASORS FOR ABC SEQUENCE...................................................................................................... 5-6
FIGURE 5-4: PHASORS FOR ACB SEQUENCE.......................................................................................................... 5-7
FIGURE 5-5: WYE / DELTA (30× LAG) TRANSFORMER ........................................................................................... 5-8
FIGURE 5-6: PERCENT DIFFERENTIAL OPERATING PRINCIPLE ........................................................................ 5-47
FIGURE 5-7: PERCENT DIFFERENTIAL - DUAL SLOPE CHARACTERISTIC ....................................................... 5-47
FIGURE 5-8: HARMONIC DERATING CORRECTION .............................................................................................. 5-53
FIGURE 5-9: RESTRICTED EARTH GROUND FAULT PROTECTION .................................................................... 5-59
Figure 5-10: RESISTANCE GROUNDED WYE WINDING ...................................................................................... 5-59
FIGURE 5-11: FAULT CURRENTS VS. FAULT POINT FROM NEUTRAL ............................................................... 5-60
FIGURE 5-12: RGF AND PERCENT DIFFERENTIAL ZONES OF PROTECTION .................................................... 5-60
FIGURE 5-13: RESTRICTED GROUND FAULT IMPLEMENTATION ....................................................................... 5-61
FIGURE 5-14: FLEXLOGICTM EXAMPLE................................................................................................................... 5-81
Figure 5-15: FLEXLOGIC EXAMPLE IMPLEMENTED ............................................................................................ 5-82
FIGURE 5-16: INVERSE CURVE 1.............................................................................................................................. 5-96
FIGURE 5-17: INVERSE CURVE 2 ............................................................................................................................. 5-97
FIGURE 5-18: INVERSE CURVE 3........................................................................................................................... 5-98
Figure 7-1: DIFFERENTIAL SCHEME LOGIC - PERCENT DIFFERENTIAL ........................................................... 7-2
FIGURE 7-2: DIFFERENTIAL SCHEME LOGIC - 5TH HARMONIC INHIBIT ............................................................. 7-3
FIGURE 7-3: DIFFERENTIAL SCHEME LOGIC - ENERGIZATION INHIBIT .............................................................. 7-4
FIGURE 7-4: DIFFERENTIAL SCHEME LOGIC - ENERGIZATION INHIBIT ............................................................. 7-5
FIGURE 7-5: DIFFERENTIAL SCHEME LOGIC - 5TH HARMONIC INHIBIT ............................................................. 7-6
FIGURE 7-6: INSTANTANEOUS DIFFERENTIAL SCHEME LOGIC.......................................................................... 7-7
FIGURE 7-7: PHASE TIME O/C SCHEME LOGIC........................................................................................................ 7-8
FIGURE 7-8: PHASE INST O/C 1 SCHEME LOGIC .................................................................................................... 7-9
FIGURE 7-9: PHASE INST O/C 2 SCHEME LOGIC .................................................................................................. 7-10
FIGURE 7-10: NEUTRAL TIME O/C SCHEME LOGIC ............................................................................................ 7-11
Figure 7-11: NEUTRAL INST O/C 1 SCHEME LOGIC ............................................................................................ 7-12
FIGURE 7-12: NEUTRAL INST O/C 2 SCHEME LOGIC ........................................................................................... 7-13
FIGURE 7-13: GROUND TIME O/C SCHEME LOGIC............................................................................................... 7-14
FIGURE 7-14: GROUND INST O/C 1 SCHEME LOGIC ............................................................................................ 7-15
FIGURE 7-15: GROUND INST O/C 2 SCHEME LOGIC ........................................................................................... 7-16
FIGURE 7-16: RESTRICTED GROUND FAULT SCHEME LOGIC ............................................................................ 7-17
FIGURE 7-17: NEGATIVE SEQUENCE TIME O/C SCHEME LOGIC ....................................................................... 7-18
FIGURE 7-18: NEGATIVE SEQUENCE INST O/C SCHEME LOGIC......................................................................... 7-19
FIGURE 7-19: UNDERFREQUENCY SCHEME LOGIC ............................................................................................ 7-20
Figure 7-20: FREQUENCY DECAY SCHEME LOGIC ..... 7-21
FIgure 7-21: OVERFREQUENCY SCHEME LOGIC ..... 7-22
Figure 7-22: 5TH HARMONIC LEVEL SCHEME LOGIC ..... 7-23
FIGURE 7-23: VOLTS-PER-HERTZ SCHEME LOGIC ..... 7-24
Figure 7-24: THD LEVEL SCHEME LOGIC ..... 7-25
Figure 7-25: HARMONIC DERATING SCHEME LOGIC ..... 7-26
Figure 7-26: ANALOG INPUT SCHEME LOGIC ..... 7-27
Figure 7-27: CURRENT DEMAND SCHEME LOGIC ..... 7-28
Figure 7-28: TRANSFORMER OVERLOAD .....  7-29
Figure 7-29: OUTPUT RELAYS 1-8 ..... 7-30
Figure 7-30: SELF-TEST RELAY ..... 7-31
Figure 7-31: HOTTEST-SPOT LIMIT ..... 7-32
Figure 7-32: AGING FACTOR LIMIT ..... 7-33
Figure 7-33: LOSS OF LIFE LIMIT ..... 7-34
Figure 7-34: TAP CHANGER FAILURE ..... 7-35
Figure 9-1: 745PC PROGRAM STARTUP WINDOW ..... 9-1
FIGURE 9-2: 745PC TOP LEVEL MENU SUMMARY ..... 9-2
Figure 9-3: 745PC TOOLBAR SUMMARY ..... 9-3
Figure 9-4: RS232 COMMUNICATIONS SETUP ..... 9-4
Figure 9-5: RS485 COMMUNICATIONS SETUP ..... 9-4
Figure 9-6: GE POWER MANAGEMENT WELCOME SCREEN ..... 9-5
FIGURE 9-7: COMMUNICATION/COMPUTER DIALOG BOX ..... 9-6
Figure 9-8: FILE/PROPERTIES DIALOG BOX ..... 9-7
FIGURE 9-9: SAVING SETPOINTS ..... 9-7
Figure 9-10: 745 FIRMWARE FILE FORMAT ..... 9-8
Figure 9-11: OPEN SETPOINTS FILE DIALOG BOX ..... 9-9
Figure 9-12: TRANSFORMER SETPOINTS DIALOG BOX ..... 9-9
Figure 9-13: NUMERICAL SETPOINT ENTRY ..... 9-10
Figure 9-14: 745PC ACTUAL VALUES WINDOW ..... 9-11
Figure 10-1: TEST SETUP ..... 10-3
Figure 10-2: TESTING FOR DIELECTRIC STRENGTH ..... 10-5
Figure 10-3: LOGIC INPUTS ..... 10-6
Figure 10-4: SOLID STATE OUTPUT TEST CIRCUIT ..... 10-16
FIGURE 10-5: TIMER TEST CIRCUIT ..... 10-16
Figure 10-6: CURRENT SIGNAL CONNECTIONS ..... 10-17
Figure 10-7: 2ND HARMONIC RESTRAINT TEST ..... 10-18
Figure 10-8: 5TH HARMONIC RESTRAINT TEST ..... 10-19
FIGURE 10-9: GENERAL TEST SETUP ..... 10-21
FIGure 10-10: RESTRICTED GROUND TEST SETUP ..... 10-30
Figure 10-11: FREQUENCY ELEMENT TESTING ..... 10-34
A.1.2 LIST OF TABLES
Table: 5-1 TRANSFORMER TYPES ..... 5-10
Table: 5-2 PHASE SHIFTS ..... 5-23
Table: 5-3 LOW VOLTAGE WINDING RATING ..... 5-34
Table: 5-4 RTD RESISTANCE VS. TEMPERATURE ..... 5-39
Table: 5-5 FLEXLOGIC ${ }^{\text {TM }}$ OUTPUT TYPES ..... 5-79
TABLE: 5-6 FLEXLOGIC ${ }^{\text {TM }}$ INPUT TYPES ..... 5-80
Table: 5-7 FLEXLOGIC™ GATES ..... 5-80
TABLE: 5-8 OUTPUT RELAY DEFAULT FLEXLOGIC ..... 5-83
Table: 5-9 SIMULATION MODES ..... 5-88
Table: 5-10 ANSI CURVE CONSTANTS ..... 5-90
Table: 5-11 ANSI CURVE TRIP TIMES (IN SECONDS) ..... 5-91
Table: 5-12 IEC CURVE CONSTANTS ..... 5-92
Table: 5-13 IEC CURVE TRIP TIMES ..... 5-93
Table: 5-14 IAC CURVE CONSTANTS ..... 5-94
Table: 5-15 IAC CURVE TRIP TIMES ..... 5-95
Table: 6-1 TYPES/CAUSES OF EVENTS ..... 6-16
Table: 6-2 745 PROTECTION ELEMENTS ..... 6-20
Table: 6-3 SELF-TEST ERROR INTERPRETATION ..... 6-22
Table: 8-1 GE POWER MANAGEMENT FUNCTION CODES ..... 8-5
Table: 8-2 SUMMARY OF OPERATION CODES FOR FUNCTION CODE 05H ..... 8-7
Table: 8-3 ERROR CODES ..... 8-10
Table: 8-4 MEMORY MAP LOCATIONS TO BE ACCESSED ..... 8-12
Table: 8-5 MEMORY MAP ORGANIZATION ..... 8-16
TABLE: 8-6 745 MEMORY MAP ..... 8-17
Table: 8-7 745 DATA FORMATS ..... 8-74
Table: 10-1 MEASURED RTD TEMPERATURE - $100 \Omega$ PLATINUM ..... 10-12
TABLE: 10-2 MEASURED RTD TEMPERATURE - $120 \Omega$ NICKEL ..... 10-12
Table: 10-3 MEASURED RTD TEMPERATURE - $100 \Omega$ NICKEL ..... 10-12
Table: 10-4 CALIBRATION RESULTS FOR ANALOG OUTPUTS ..... 10-13
Table: 11-1 SETPOINTS PAGE 1 - 745 SETUP ..... 11-1
Table: 11-2 S2 SYSTEM SETUP ..... 11-2
Table: 11-3 FLEXCURVES TABLE ..... 11-4
Table: 11-4 S3 LOGIC INPUTS ..... 11-5
Table: 11-5 S4 ELEMENTS SETPOINT GROUPS ..... 11-6
Table: 11-6 S4 ELEMENTS ..... 11-6
Table: 11-7 S5 OUTPUTS ..... 11-18
TABLE: 11-8 TIMER SETTINGS ..... 11-23

## EU DECLARATION OF CONFORMITY

$\begin{array}{lll}\text { Applicable Council Directives: } & 73 / 23 / \text { EEC } & \begin{array}{l}\text { The Low Voltage Directive } \\ \\ 89 / 336 / \text { FEC }\end{array}\end{array} \begin{array}{ll}\text { The EMC Directive }\end{array}$

Standards) to Which Conformity is Declared:

IEC 947-1
IEC1010-1:1990+A 1:1992+ A 2:1995

CISPR 11 / EN 55011:1997
EN 50082-2:1997

IEC100-4-3 / EN 61000-4-3
EN 61000-4-6

Low Voltage Switchgear and Controlgear
Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use

Class A - Industrial, Scientific, and Medical Equipment
Electromagnetic Compatibility Requirements, Part 2: Industrial Environment

Immunity to Radiated RF
Immunity to Conducted RF

Manufacturer's Name: General Electric Power Management Inc.
Manufacturer's Address: 215 Anderson Ave. Markham, Ontario, Canada L6E 1B3

Manufacturer's Representative in the EU: Christina Bataller Mauleon GE Power Management Avenida Pinoa 10 48710 Zamudio, Spain Tel.: 34-94-4858835 Fax: 34-94-4858838

Type of Equipment: Transformer Protection Relay
Model Number: 745
First Year of Manufacture: 1998
I the undersigned, hereby declare that the equipment specified above conforms to the above Directives and Standards

Full Name: John Saunders
Position: Manufacturing Manager
Signature:


Place: GE Power Management
Date: 1998

## GE POWER MANAGEMENT RELAY WARRANTY

General Electric Power Management Inc. (GE Power Management) warrants each relay it manufactures to be free from defects in material and workmanship under normal use and service for a period of 24 months from date of shipment from factory.

In the event of a failure covered by warranty, GE Power Management will undertake to repair or replace the relay providing the warrantor determined that it is defective and it is returned with all transportation charges prepaid to an authorized service centre or the factory. Repairs or replacement under warranty will be made without charge.

Warranty shall not apply to any relay which has been subject to misuse, negligence, accident, incorrect installation or use not in accordance with instructions nor any unit that has been altered outside a GE Power Management authorized factory outlet.

GE Power Management is not liable for special, indirect or consequential damages or for loss of profit or for expenses sustained as a result of a relay malfunction, incorrect application or adjustment.

For complete text of Warranty (including limitations and disclaimers), refer to GE Power Management Standard Conditions of Sale.
Numerics
2ND HARMONIC RESTRAINT ..... 10-18
5TH HARMONIC INHIBIT
logic diagram ..... 7-3, 7-6
setpoints ..... 5-51
5TH HARMONIC LEVEL
logic diagram ..... 7-23
setpoints ..... 5-68
testing ..... 10-41
5TH HARMONIC RESTRAINT ..... $10-18,10-19$
745PC
see SOFTWARE
A
A1 STATUS ..... 6-2
A2 METERING ..... 6-4
A3 EVENT RECORDER ..... 6-13
A4 PRODUCT INFO ..... 6-17
ACTUAL KEY ..... 4-5
ACTUAL VALUES
introduction ..... 6-1, 6-2
organization ..... 6-1
viewing with PC ..... 9-11
AGING FACTOR LIMIT ..... 7-33
setpoints ..... 5-74
testing ..... 10-42
ALARM INDICATOR ..... 4-4
AMBIENT TEMPERATURE 5-39, 6-10, 10-11, 10-13
ANALOG INPUT
actual values ..... 6-11
setpoints ..... 5-40, 5-76
typical wiring ..... 3-10
ANALOG INPUT SCHEME ..... 7-27
ANALOG LEVEL setpoints ..... 5-76
ANALOG OUTPUTS
commissioning ..... 10-13
connection ..... 3-11
setpoints ..... 5-42, 5-86
typical wiring ..... 3-11
ANSI CURVES ..... 5-90, 5-91
AUTO-CONFIGURATION ..... 5-3
AUTOMATIC TRANSFORMATION ..... 10-9

## B

BLOCK DIAGRAMS ..................................................... 7-2
BLOCKING FROM LOGIC INPUTS ...............10-20, 10-21

## C

$\qquad$6-18
CASE
3-1
dimensions ..... 3-1
mounting ..... 3-2
CAUSES OF EVENT ..... 6-16
CLOCK ..... 5-28
COMMISSIONING conventions ..... 10-2
preliminary work ..... 10-4
test equipment ..... 10-3
COMMUNICATIONS
dnp ..... 5-27
electrical interface ..... 8-2
physical layer ..... 8-1
protocols ..... 8-1
RS232 ..... 3-13, 9-4
RS422 ..... 3-12, 3-13
RS485 ..... 3-12, 9-4
setpoints ..... 5-26, 5-27
CONDITIONS ..... 4-4
CONTROL KEYS ..... 4-5
CONTROL POWER ..... 3-9
CRC-16 ALGORITHM ..... 8-4
CT INPUTS ..... 3-8
CURRENT DEMAND
actual values ..... 6-10
logic diagram ..... 7-28
setpoints ..... 5-77
D
DATE ..... 6-2
DEFAULT MESSAGES ..... 5-29
DEFINITE TIME CURVE ..... 5-92
DEMAND DATA CLEAR ..... 6-9
DEMAND METERING
actual values ..... 6-9
setpoints ..... 5-41
DIELECTRIC STRENGTH TESTING ..... 10-5
DIFFERENTIAL
5th harmonic inhibit ..... 7-3, 7-6
energization inhibit ..... 7-4, 7-5
instantaneous differential ..... 5-52, 7-7
percent differential ..... 5-46, 7-2
setpoints ..... 5-46
DIFFERENTIAL BLOCKED INDICATOR ..... 4-3
DIFFERENTIAL CURRENT ..... 6-6
DISPLAY ..... 4-2
DNP COMMUNICATIONS
device profile document ..... 8-93
implementation table ..... 8-95
point list table ..... 8-97
setpoints ..... 5-27
DRAWOUT SEAL ..... 3-3
DRY CONTACT CONNECTIONS ..... 3-10
DYNAMIC CT RATIO MISMATCH ..... 5-3
E
ELEMENTS
introduction ..... 5-45
setpoints ..... 5-45
ENERGIZATION DETECTION SCHEME ..... 0-19
ENERGIZATION INHIBIT ..... 5-49
logic diagram ..... 7-4, 7-5
ENERGY ..... 6-12
ENERGY DATA CLEAR ..... 6-12
ENTER KEY ..... 4-5
ESCAPE KEY ..... 4-5
EU DECLARATION OF CONFORMITY ..... B-1
EVENT CAUSES ..... 6-16
EVENT DATA RESET ..... 6-13
EVENT RECORDER ..... 6-13, 8-11
EVENT RECORDS ..... 6-13
EVENT TYPES ..... 6-16
F
FACTORY SERVICE ..... 5-89
FAULT VALUES ..... 5-89
FIGURE LIST ..... A-1
FIRMWARE
file format ..... 9-8
upgrading ..... 9-8
FLASH MESSAGES ..... 6-23
FLEXCURVES ..... 5-37, 11-4
FLEXLOGIC
example ..... 5-81, 5-82
gates ..... 5-80
input types ..... 5-80
introduction ..... 5-79
ouput types ..... 5-79
rules ..... 5-81
FREQUENCY
actual values ..... 6-8
commissioning ..... 10-34
logic diagrams ..... 7-20
setpoints ..... 5-65
FREQUENCY DECAY
logic diagram ..... 7-21
setpoints ..... 5-66
testing ..... 10-39, 10-40
FRONT PANEL ..... 4-1
FRONT PANEL PORT ..... 3-13

## G

GROUND DIFFERENTIAL CURRENT ..... 6-6
GROUND INDICATOR ..... 4-4
GROUND INSTANTANEOUS OVERCURRENT logic diagrams ..... 7-15, 7-16
setpoints ..... 5-58
testing ..... $10-28,10-29$
GROUND OVERCURRENT SETPOINTS ..... 5-57
GROUND TIME OVERCURRENT logic diagram ..... 7-14
setpoints ..... 5-57
testing ..... 10-27
H
HARMONIC CONTENT ..... 6-7
HARMONIC DERATING ..... 6-8
actual values ..... 5-53
logic diagram ..... 7-26
setpoints ..... 5-71
testing ..... 10-44
HARMONIC INHIBIT ..... 5-49
HARMONIC SUB-COMPONENTS ..... 6-7
HARMONICS ..... 5-37, 5-70
HELP KEY ..... 4-6
HI-POT TESTING ..... 3-14
see DIELECTRIC STRENGTH TESTING HOTTEST-SPOT LIMIT
logic diagram ..... 7-32
setpoints ..... 5-72
testing ..... 10-42
I
IAC CURVES ..... 5-94, 5-95
IEC CURVES ..... 5-92, 5-93
IN SERVICE INDICATOR ..... 4-2
INDICATORSsee LEDs and entries for individual indicatorsINPUTS
AC voltage ..... 3-8
commissioning ..... 10-8
specifications ..... 1-5
INSERTION ..... 3-2
NSTALLATION setpoints ..... 2-6, 5-30
software ..... 9-5
INSTANTANEOUS DIFFERENTIAL
logic diagram ..... 7-7
setpoints ..... 5-52
testing ..... 10-20
INSULATION AGING ..... 10-42
setpoints ..... 5-72, 5-73
INVERSE CURVE 1 ..... 5-96
INVERSE CURVE 2 ..... 5-97
INVERSE CURVE 3 ..... 5-98
IRIG-B ..... 3-14

## K

## KEYPAD

actual key ..... 4-5
control keys ..... 4-5
enter key ..... 4-5
escape key ..... 4-5
help key ..... 4-6
message keys ..... 4-5
next key ..... 4-6
number keys ..... 4-6
reset key ..... 4-6
setpoint key ..... 4-5
value keys ..... 4-5
KNEEPOINT ..... 10-17
L
LEDs
alarm ..... 4-4
description ..... 4-2
differential blocked ..... 4-3
ground ..... 4-4
in logic diagrams ..... 7-1
in service ..... 4-2
load-limit reduced ..... 4-3
LOCAL ..... 4-3
message ..... 4-3
phase A ..... 4-4
phase B ..... 4-4
phase C ..... 4-4
pickup ..... 4-4
self-test error ..... 4-2
setpoint group 1 ..... 4-3
setpoint group 2 ..... 4-3
setpoint group 3 ..... 4-3
setpoint group 4 ..... 4-3
system status ..... 4-3
test mode ..... 4-2
transformer de-energized ..... 4-3
transformer overload ..... 4-3
trip. ..... 4-4
LIST OF FIGURES ..... A-1
LIST OF TABLES ..... A-2
LOAD-LIMIT REDUCED INDICATOR ..... 4-3
LOCAL INDICATOR ..... 4-3
LOCAL RESET MODE ..... 10-15
LOGIC ..... 7-1
LOGIC DIAGRAMS ..... 7-1
LOGIC INPUTS ..... $3-9,5-43,6-2$
commissioning ..... 10-6
LOSS OF LIFE ..... 6-10
LOSS OF LIFE LIMIT ..... 7-34
LOSS-OF-LIFE ..... 5-72
LOSS-OF-LIFE LIMIT ..... 5-75, 10-42
LOW VOLTAGE WINDING RATING ..... 5-34

## M

MANEUVERING ..... 2-1
MEASUREMENT UNITS ..... 7-1
MEMORY MAP ..... 8-17
MESSAGE INDICATOR ..... 4-3
MESSAGE KEYS ..... 4-5
METERING ..... 6-4
MINIMUM OPERATING CURRENT ..... 10-43
MINIMUM PICKUP .10 $0-14,10-20,10-43$
MODBUS
data formats ..... 8-74
data frame format ..... 8-2
data packet format ..... 8-3
description ..... 8-2
error codes. ..... 8-10
exception responses ..... 8-10
function code 03h ..... 8-6, 8-15
function code 04h ..... 8-6, 8-15
function code 05h ..... 8-7, 8-15
function code 06h ..... 8-8, 8-16
function code 10h ..... 8-9
memory map ..... 8-17
memory map data formats ..... 8-74
memory map organization ..... 8-16
supported function codes ..... 8-5
user map ..... 8-12
N
NEGATIVE SEQUENCE CURRENT ..... 6-5
NEGATIVE SEQUENCE INSTANTANEOUSOVERCURRENT
logic diagram ..... 7-19
setpoints ..... 5-64
testing ..... 10-33
NEGATIVE SEQUENCE OVERCURRENT ..... 5-63
NEGATIVE SEQUENCE TIME OVERCURRENT logic diagram ..... 7-18
setpoints ..... 5-63
testing ..... 10-3
NEUTRAL INSTANTANEOUS OVERCURRENT
logic diagrams ..... 7-12, 7-13
setpoints ..... 5-56
testing ..... 10-26, 10-27
NEUTRAL OVERCURRENT ..... 5-55
NEUTRAL TIME OVERCURRENT
logic diagram ..... 7-11
setpoints ..... 5-55
testing ..... 10-24
NEXT KEY ..... 4-6
NUMBER KEYS ..... 4-6
NUMERICAL SETPOINTS ..... 2-3
0
ONLOAD TAP CHANGER ..... 5-36
OPERATING TIME ..... 10-16OPTIONS
ordering ..... 1-4
setpoints ..... 5-31
ORDER CODES ..... 1-4
OUTPUT RELAYS ..... 6-2
commissioning ..... 10-6, 10-7
default flexlogic ..... 5-83
description ..... 3-11
logic diagram ..... 7-30
setpoints ..... 5-83, 5-86
typical wiring ..... 3-11
OUTPUTS
specifications ..... 1-9
OVERCURRENT
ground instantaneous ..... 5-58
ground time ..... 5-57
logic diagrams ..... 7-8
negative sequence instantaneous ..... 5-64
negative sequence time ..... 5-63
neutral instantaneous ..... 5-56
neutral time ..... 5-55
phase ..... 5-52
TOC curves ..... 5-90
OVEREXCITATION
5th harmonic level ..... 5-68, 7-23
description ..... 5-68
setpoints ..... 5-68
volts-per-hertz ..... 5-69, 7-24OVERFREQUENCY
logic diagram ..... 7-22
setpoints ..... 5-67
testing ..... 10-37
OVERVIEW ..... 1-1
P
PANEL CUTOUT ..... 3-1
PASSCODE
changing ..... 2-6
security ..... 2-6, 2-7
setpoints ..... 5-24
PERCENT DIFFERENTIAL
dual-slope characteristic ..... 5-47
harmonic restrained ..... 10-14
logic diagram ..... 7-2
operating principle ..... 5-47
setpoints ..... 5-46
zones of protection ..... 5-60
PHASE A INDICATOR ..... 4-4
PHASE ANGLE CORRECTION ..... 5-8
PHASE B INDICATOR ..... 4-4
PHASE C INDICATOR ..... 4-4
PHASE INSTANTANEOUS OVERCURRENT
logic diagrams 7-9, 7-10
setpoints ..... 5-54
testing ..... 10-23, 10-24
PHASE OVERCURRENT ..... 5-52
PHASE SEQUENCE ..... 3-8
PHASE SHIFTS ..... 5-23
description ..... 5-23
three-phase transformers ..... 5-6
PHASE TIME OVERCURRENT
logic diagram ..... 7-8
setpoints ..... 5-52
testing ..... 10-21
PHASORS
ABC sequence ..... 5-6
ACB sequence ..... 5-7
PICKUP INDICATOR ..... 4-4
PLACING THE RELAY INTO SERVICE ..... 10-46
POSITIVE SEQUENCE CURRENT ..... 6-5
POWER ..... 6-11
PREFAULT VALUES ..... 5-88
PREFERENCES ..... 5-25
PRODUCT INFO ..... 6-17
PROGRAM PORT ..... 4-4
PROTECTION ELEMENTS
specifications ..... 1-6
target messages ..... 6-20
PROTECTION SCHEMES
5th harmonic ..... 5-68, 10-41
energization detection ..... 10-19
features ..... 1-2
frequency decay ..... 5-66
frequency decay rate ..... 10-39, 10-40
ground instantaneous o/c ..... 5-58
ground instantaneous overcurrent ..... $10-28,10-29$
ground time o/c ..... 5-57
ground time overcurrent ..... 10-27
harmonic restrained percent differential ..... 10-14
instantaneous differential ..... 5-52, 10-20
insulation aging ..... 5-73, 10-42
negative sequence instantaneous o/c ..... 5-64
negative sequence instantaneous overcurrent ..... 10-33
negative sequence time o/c ..... 5-63
negative sequence time overcurrent ..... 10-31
neutral instantaneous o/c ..... 5-56
neutral instantaneous overcurrent ..... 10-26, 10-27
neutral time o/c ..... 5-55
neutral time overcurrent ..... 10-24
overfrequency ..... 5-67, 10-37
phase instantaneous o/c ..... 5-54
phase instantaneous overcurrent ..... 10-23, 10-24
phase time o/c ..... 5-52
phase time overcurrent ..... 10-21
restricted ground ..... 5-59
restricted ground fault ..... 10-30
THD level ..... 5-70, 10-43
underfrequency ..... 5-65, 10-35, 10-37
volts-per-hertz. ..... 5-69, 10-41
R
REAR TERMINAL ASSIGNMENTS ..... 3-5
REAR TERMINAL LAYOUT ..... 3-4
RELAY INSERTION ..... 3-3
RELAY WITHDRAWAL ..... 3-2
REMOTE RESET MODE ..... 10-15
RESET KEY ..... 4-6
RESETTING ..... 5-28
RESISTANCE GROUNDED WYE WINDING ..... 5-59
RESTRAINT CURRENT ..... 6-6
RESTRICTED GROUND implementation ..... 5-61
logic ..... 7-17
setpoints ..... 5-59
settings example ..... 5-61
testing ..... 10-30
zones of protection ..... 5-60
REVISION CODES ..... 6-17
RS232 COMMUNICATIONS ..... 3-13, 9-4
RS422 COMMUNICATIONS ..... 3-12, 3-13
RS485 COMMUNICATIONS ..... 3-12, 9-4
RTD
calibration ..... 10-11
driver/sensor ..... 3-10
measured temperature ..... 10-12
resistance vs. temperature ..... 5-39
S
S1 745 SETUP ..... 5-24, 11-1
S2 SYSTEM SETUP ..... 5-33, 11-2
S3 LOGIC INPUTS ..... 5-43, 11-5
S4 ELEMENTS ..... 5-45, 11-6
S5 OUTPUTS ..... 5-79, 11-18
S6 TESTING ..... 5-86
SCHEME LOGIC ..... 7-1
SCRATCHPAD ..... 5-30
SELF-TEST ERROR INDICATOR ..... 4-2
SELF-TEST ERRORS 6-3, 6-21, 6-22
SELF-TEST RELAY ..... 7-31
SERVICING ..... 10-46
SETPOINT ENTRY ..... 5-2
SETPOINT GROUP ..... 5-46
SETPOINT GROUP 1 INDICATOR ..... 4-3
SETPOINT GROUP 2 INDICATOR ..... 4-3
SETPOINT GROUP 3 INDICATOR ..... 4-3
SETPOINT GROUP 4 INDICATOR ..... 4-3
SETPOINT GROUPS ..... 5-1
SETPOINT KEY ..... 4-5
SETPOINT WRITE ACCESS ..... 5-2
SETPOINTS
745 setup ..... 5-24
access jumper ..... 2-3
changing ..... 2-3
elements ..... 5-45
entering through software ..... 9-9, 9-10
groups ..... 5-1
in logic diagrams ..... 7-1
loading through software ..... 9-9
logic inputs ..... 5-43
numerical ..... 2-4
outputs ..... 5-79
saving to a file ..... 9-7
system setup ..... 5-33
testing ..... 5-86
text-based ..... 2-5
SIMULATION ..... 5-87
SIMULATION MODES ..... 5-88
SINGLE LINE DIAGRAM ..... 1-3
SOFTWARE
actual values ..... 9-11
communications ..... 9-6
description ..... 9-1
entering setpoints ..... 9-9, 9-10
installation ..... 9-5
loading setpoints ..... 9-9
menus ..... 9-2
requirements ..... 9-2
saving setpoints ..... 9-7
toolbar summary ..... 9-3
SOLID STATE OUTPUT TEST CIRCUIT ..... 10-16
SOLID STATE TRIP OUTPUT ..... 3-11
SPECIFICATIONS ..... 1-5
STATUS INDICATORS ..... 4-2
SYSTEM STATUS INDICATORS ..... 4-3
T
TABLE LIST ..... A-2
TAP CHANGER ..... 6-8
TAP CHANGER FAILURE ..... 5-78, 7-35
TAP MONITOR FAILURE ..... 10-42
TAP POSITION ..... 10-13
TAP POSITION INPUT ..... 3-10, 5-5
TARGET MESSAGES ..... 6-19
TECHNICAL SUPPORT ..... 6-17
TEMPERATURE ambient ..... 5-39, 6-10, 10-11, 10-13
RTD ..... 10-12
TEST MODE INDICATOR ..... 4-2
TEST SETUP ..... 10-21
TEXT SETPOINTS ..... 2-5
THD LEVEL
logic diagram ..... 7-25
setpoints ..... 5-70
testing ..... 10-43
TIME ..... 6-2
TIME DELAYS ..... 7-1
TIME-OVERCURRENT CURVES see TOC CURVES
TIMER SETTINGS ..... 11-23
TIMERS ..... 5-85
ANSI ..... 5-90, 5-91
definite time ..... 5-94, 5-95
IEC ..... 5-92, 5-93
TOTAL HARMONIC DISTORTION see THD
TRACE MEMORY ..... 5-84, 8-11
TRANSFORMER ..... 5-33
TRANSFORMER OVERLOAD ..... 5-77, 7-29, 10-45
TRANSFORMER OVERLOAD INDICATOR ..... 4-3
TRANSFORMER TYPES ..... 5-10
TRANSFORMER TYPES TABLE ..... 5-10
TRANSFORMER-TYPE SELECTION ..... 10-9
TRIP INDICATOR ..... 4-
TYPICAL WIRING DIAGRAM ..... 3-6
U
UNDERFREQUENCY
logic diagram ..... 7-20
testing ..... 10-35, 10-37
USER MAP ..... 8-12
V
VALUE KEYS ..... 4-5
VIRTUAL INPUTS ..... 5-44, 6-2
VIRTUAL OUTPUTS ..... 5-84, 6-3
VOLTAGE ..... 6-9
VOLTAGE INPUT ..... 3-8, 5-38
commissioning ..... 10-9VOLTS-PER-HERTZ
logic diagram ..... 7-24
setpoints ..... 5-69
testing ..... 10-41
W
WARRANTY ..... C-1
WEBSITE ..... 9-5
WET CONTACT CONNECTIONS ..... 3-10
WINDING CURRENT ..... 6-4
WIRING DIAGRAM ..... 3-6
WITHDRAWAL ..... 3-2
WYE / DELTA TRANSFORMER ..... 5-8
Z
ZERO-SEQUENCE COMPONENT REMOVAL ..... 5-9, 10-10
ZERO-SEQUENCE CT INSTALLATION ..... 3-8
ZERO-SEQUENCE CURRENT ..... 6-5

The latest product information for the 745 Transformer Management Relay is available on the Internet via the GE Power Management home page:

## http://www.GEindustrial.com/pm



Click here for viewers download page.
This site provides access to the following customer services:

- Digital Products Directory

A brief description of products can be viewed online.

- Product Catalog

Individual product brochures can be downloaded and printed

- Product Selector Guide

A graphical tool for finding the product you are interested in

- Sales Offices

A complete listing of world-wide sales offices

- Technical Support

Complete contact information is available

- Instruction Manuals

Manuals for many products are now available online

- GE Product Software

The latest working versions of product software

- Technical Drawings

Many technical drawings are available in either AutoCAD, CoreIDRAW, or PDF formats.

- Order Codes

Order codes for many products can be downloaded and printed

- Technical Publications

Papers related to power management

Much more is also available. Visit us online at: www.GEindustrial.com/pm.

